
/ .,::.,.\" ..
'/ ' -
-.\

<._.... \ •. ..:\

NEAR EAST UNIVERSITY
,.· \ -~- :.{,.

\. t: JJ('! , ·{;__:JA 'r;'//
~_....-::;;;;~ _-;;;:::---

Faculty of Engineering

Department of Computer Engineering

Stock Database Design: Java Application

Graduation Project
COM-400

Student: Mohammad Elfawair (20020888)

Supervisor: Assist. Prof. Dr. Adil Amirijanov

t.efkosa - 2006
•

ACKNOLEDGMENT

First I want to thank Dr.Adil Amirijanov .Under this guidance, I successfully overcome

many difficulties and learn a bout programming, in each discussion he explained my

questions patiently, and I felt progress from his advices. I asked him many questions in

computer science and he always answered my questions in detail.

Special thanks to faculty of engineering for their helping me, to get good qualification

that helps me in my life.

I also want to thanks my friends those helped me for the past 4 years, special thanks to

Mohammad al Ramlawee, Imad al dahdouh for their guidance.

Finally, I want to thank my family, especially my parents. Without their endless support

and love for me, I would never achieve my current position. I wish my mother lives

happily with my father in the heaven be proud for me.

ABSTRACT

In this time (computer age) the need for computerizing becomes an important demand in

many fields factories, hospitals, companies etc .

According to this demand this program is written to satisfy that demand this is a

computer program for automating stock sales, so this program helps stock owners to be

up to date about their stock, see the sales and store them in a database management

system, JAVA language is used because it is a high technology language that can work in

any platform, also MSACCESS is used as a database management system to save data.

This program is recommended to all shops to have a computer based system for

businesses, and to have accurate information to their customers, suppliers, and their

products.

11

TABLE OF CONTENTS

ACKNOWLEDGMENT i

ABSTRACT ii

INTRODUCTION iii

CHAPTER ONE: JAVA PROGRAMMING FUNDUMENTALS 1

1.1 About The Java Technology 1

1.1.1 The java programming language 1
1.1.2 The java platform 3

1.1.3 What can java technology do 4

1.2 Language Basics 5
1.2.1 Final Variables 5

1.2.2 Exception Handling Statements 6

1.3 Object Oriented Programming 6
1.3.1 Classes 6

1.3.2 Inheritance 7
1.3.3 Interface 9

1.4 Layout Managers 10
1.4.1 How Layout Managers works 10

1.4.2 How to use Border Layout 11

1.4.3 How to use Flow Layout 11

1.4.4 How to use Grid Layout 12

1.5 How To Use Action Listener 13

1.6 JComponents 13
1.6.1 JButton 13

1.6.2 JLabel 13

111

1.6.3 JMenu

1.6.4 JScrollPane

1.6.5 JDialog

1.6.5.1 Method ShowMessageDialog

1.6.6 JFrame

1.6.6.1 Responding to Window-Closing Events

1.6. 7 JTable

1.6.8 JinternalFrame

14

14

14

15

15

16

16

17

18 CHAPTER TWO: MICROSOFT ACCESS DATABASE

2.1 Introduction 18
2.20bjects 19
2.3Tables 20

2.2.1 Data Types 21
2.2.2 Primary key 22
2.2.3 Entering Data 22
2.2.4 Relationships 23

2.4 Forms 24
2.5 Reports 24

CHAPTER THREE: OPEN DATABASE CONNECTIVITY AND

JAVA DAT ABASE CONNECTIVITY 25

3.lOpen Database Connectivity (ODBC)

3.1.1 Why use ODBC

3.2Java DataBase Connectivity (JDBC)

3.2.lCreating JDBC Application

3.2.2 Establishing a Connection

3.2.3 Loading Drivers

25

25

26

26

26

27

iv

3.2.4 Making the Connection

3.2.5 Creating JDBC Statements

3.2.6 Executing Statements

3.2.7 Closing the statements and the connection

3.3 Using The Statement Interface
3.3.1 Entering data into a table

3.3.2 Getting data from a table

3.3.3 Retrieving values from a Result Set

3.3.4 Using the method next

3.3.5 Using the get:XXX method

3.3.6 Updating Tables

3.4 Using Prepared Statement Interface
3.4.1 When to use Prepared Statement object

3.4.2 Creating a Prepared Statement objects

3.4.3 Supplying prepared statements with parameters

27

28

28

29

29

29

29

30

30

30

31

31
31

32

32

CHAPTER FOUR: STOK PROGRAM DESIGN

4.1 Database Design Of The System

4.2Block Diagram Of The System

4.3Main Menu
4.3.1 Add Menu

4.3.1.1 Product

4.3.1.1 Supplier

4.3.1.1 Exit

4.3.2 Edit Menu

4.3.2.1 Product

4.3.2.2 Supplier

4.3.3 Delete Menu

4.3.3.1 Product

4.3.3.2 Supplier

34

34

36

36
37

37

38

39

39

39

40

40

41

41

V

4.3.4 Sales Menu

4.3.4.1 Show Sales

4.3.4.1 Sell

4.3.5 About Menu

4.3.5.1 About

42

42

43

45

45

CONCLUSION

REFERENCES

APPENDIX

46

47

48

VI

INTRODUCTION

Computer automation becomes a public demand in theses days because we are In the

technology age so I have to satisfy this demand as a computer engineer.

This project helps stock managers to be up- to- date i.e. control efficiently their stock and

their relatives, add, edit, delete suppliers and customers, control the sales and issue

reports, graphical user interfaces is used to increase the interactivity between the user and

the system.

This project contains four chapters

Chapter one talks about java programming language and java technology an introduce

some of java fundamentals that is used in my project, such as OOP, Layout managers,

and JComponents.

Chapter two talks about Microsoft Access Database Management System and introduce

Database objects (i.e. Tables, reports, forms) used in designing the database part of the

project.

Chapter three talks about open database connectivity (ODBC) which is an interface or

bridge between the application programs and a database to link application program with

database, also this chapter introduces java database connectivity (JDBC) that is an API

for specification for connecting programs written in java to database.

Chapter four talks about the project design, the design of the project's database, block

diagram of the project, and guidelines to use the program.

Vil

CHAPTER ONE

JAVA FUNDUMENT ALS

1.lAbout the Java Technology

Java technology is both a programming language and a platform.

1.1.1 The Java Programming Language

The Java programming language is a high-level language that can be characterized by all

of the following buzzwords:

Simple Architecture neutral

Object oriented

Distributed

Interpreted

Robust

Secure

Portable

High performance

Multi threaded

Dynamic

With most programming languages, you either compile or interpret a program so that you

can run it on your computer. The Java programming language is unusual in that a

program is both compiled and interpreted. With the compiler, first you translate a

program into an intermediate language called Java bytecodes -the platform-independent

codes interpreted by the interpreter on the Java platform. The interpreter parses and runs

each Java bytecode instruction on the computer. Compilation happens just once;

interpretation occurs each time the program is executed. The following figure illustrates

how this works.

1

myP rog ram • j ava

myP rog ram • cl ass

Figurel.1 MyProgram

You can think of Java bytecodes as the machine code instructions for the Java Virtual

Machine (Java VM). Every Java interpreter, whether it's a development tool or a Web

browser that can run applets, is an implementation of the Java VM

Java bytecodes help make "write once, run anywhere" possible. You can compile your

program into bytecodes on any platform that has a Java compiler. The bytecodes can then

be run on any implementation of the Java VM. That means that as long as a computer has

a Java VM, the same program written in the Java programming language can run on

Windows 2000, a Solaris workstation, or on an iMac.

Figure 1.2 Java Program

2

1.1.2 The Java Platform

A platform is the hardware or software environment in which a program runs. I've

already mentioned some of the most popular platforms like Windows 2000, Linux,

Solaris, and MacOS. Most platforms can be described as a combination of the operating

system and hardware. The Java platform differs from most other platforms in that it's a

software-only platform that runs on top of other hardware-based platforms.

The Java platform has two components:

The Java Virtual Machine (Java VM)

The Java Application Programming Interface (Java API)

You've already been introduced to the Java VM. It's the base for the Java platform and is

ported onto various hardware-based platforms.

The Java API is a large collection of ready-made software components that provide many

useful capabilities, such as graphical user interface (GUI) widgets. The Java API is

grouped into libraries of related classes and interfaces; these libraries are known as

packages. The following figure depicts a program that's running on the Java platform. As

the figure shows, the Java API and the virtual machine insulate the program from the

hardware.

Java Platform

Figure 1.3 Java platform

3

Native code is code that after you compile it, the compiled code runs on a specific

hardware platform. As a platform-independent environment, the Java platform can be a

bit slower than native code. However, smart compilers, well-tuned interpreters, and just­

in-time bytecode compilers can bring performance close to that of native code without

threatening portability.

1.1.3What Can Java Technology Do?

The most common types of programs written in the Java programming language are

applets and applications. If you've surfed the Web, you're probably already familiar with

applets. An applet is a program that adheres to certain conventions that allow it to run

within a Java-enabled browser.

However, the Java programming language is not just for writing cute, entertaining applets

for the Web. The general-purpose, high-level Java programming language is also a

powerful software platform. Using the generous API, you can write many types of

programs.

An application is a standalone program that runs directly on the Java platform. A special

kind of application known as a server serves and supports clients on a network. Examples

of servers are Web servers, proxy servers, mail servers, and print servers. Another

specialized program is a servlet. A servlet can almost be thought of as an applet that runs

on the server side. Java Servlets are a popular choice for building interactive web

applications, replacing the use of CGI scripts. Servlets are similar to applets in that they

are runtime extensions of applications. Instead of working in browsers, though, servlets

run within Java Web servers, configuring or tailoring the server.

How does the API support all these kinds of programs? It does so with packages of

software components that provide a wide range of functionality. Every full

implementation of the Java platform gives you the following features:

4

The essentials: Objects, strings, threads, numbers, input and output, data structures,

system properties, date and time, and so on.

Applets: The set of conventions used by applets.

Networking: URLs, TCP (Transmission Control Protocol), UDP (User Datagram

Protocol) sockets, and IP (Internet Protocol) addresses.

Internationalization: Help for writing programs that can be localized for users

worldwide. Programs can automatically adapt to specific locales and be displayed in the

appropriate language.

Java Database Connectivity (JDBC™): Provides uniform access to a wide range of

relational databases.

1.2 Language Basics

Here are some java programming basics that I used during desining of my projects

1.2.1 Final Variables

You can declare a variable in any scope to be final. The value of a final variable cannot

change after it has been initialized. Such variables are similar to constants in other

programming languages.

To declare a final variable, use the final keyword in the variable declaration before the

type:

final int aFinalVar = O;

5

1.2.2 Exception Handling Statements

The Java programming language provides a mechanism known as expression to help

programs report and handle errors. When an error occurs, the program throws an

exception. What does this mean? It means that the normal flow of the program is

interrupted and that the runtime environment attempts to find an exception handler-a

block of code that can handle a particular type of error. The exception handler can

attempt to recover from the error or, if it determines that the error is unrecoverable,

provide a gentle exit from the program.

Three statements play a part in handling exceptions:

The try statement identifies a block of statements within which an exception might be

thrown.

The catch statement must be associated with a try statement and identifies a block of

statements that can handle a particular type of exception. The statements are executed if

an exception of a particular type occurs within the try block.

The finally statement must be associated with a try statement and identifies a block of

statements that are executed regardless of whether or not an error occurs within the try

block.

1.3 Object Oriented Programming

1.3.1 Classess

In the real world, you often have many objects of the same kind. For example, your

bicycle is just one of many bicycles in the world. Using object-oriented terminology, we

say that your bicycle object is an instance of the class of objects known as bicycles.

Bicycles have some state (current gear, current cadence, two wheels) and behavior

(change gears, brake) in common. However, each bicycle's state is independent of and

can be different from that of other bicycles.

6

When building bicycles, manufacturers take advantage of the fact that bicycles share

characteristics, building many bicycles from the same blueprint. It would be very

inefficient to produce a new blueprint for every individual bicycle manufactured.

In object-oriented software, it's also possible to have many objects of the same kind that

share characteristics: rectangles, employee records, video clips, and so on. Like the

bicycle manufacturers, you can take advantage of the fact that objects of the same kind

are similar and you can create a blueprint for those objects. A software blueprint for

objects is called a class

Definition: A class is a blueprint, or prototype, that defines the

variables and the methods common to all objects of a certain kind.

1.3.2 Inheritance

Generally speaking, objects are defined in terms of classes. You know a lot about an

object by knowing its class. Even if you don't know what a penny-farthing is, ifl told you

it was a bicycle, you would know that it had two wheels, handle bars, and pedals.

Object-oriented systems take this a step further and allow classes to be defined in terms

of other classes. For example, mountain bikes, road bikes, and tandems are all kinds of

bicycles. In object-oriented terminology, mountain bikes, road bikes, and tandems are all

subclasses of the bicycle class. Similarly, the bicycle class is the super class of mountain

bikes, racing bikes, and tandems. This relationship is shown in the following figure.

7

Bicycle

~(
--.-·/

Road bike iarn::tem bfke

Figure 1.4 Bikes Classess

Each subclass inherits state (in the form of variable declarations) from the superclass.

Mountain bikes, road bikes, and tandems share some states: cadence, speed, and the like.

Also, each subclass inherits methods from the superclass. Mountain bikes, road bikes,

and tandems share some behaviors: braking and changing pedaling speed, for example.

However, subclasses are not limited to the state and behaviors provided to them by their

superclass. Subclasses can add variables and methods to the ones they inherit from the

superclass. Tandem bicycles have two seats and two sets of handle bars; some mountain

bikes have an additional chain ring, giving them a lower gear ratio.

Subclasses can also override inherited methods and provide specialized implementations

for those methods. For example, if you had a mountain bike with an additional chain ring,

you would override the "change gears" method so that the rider could shift into those

lower gears.

You are not limited to just one layer of inheritance. The inheritance tree, or class

hierarchy, can be as deep as needed. Methods and variables are inherited down through

the levels. In general, the farther down in the hierarchy a class appears, the more

specialized its behavior.

8

The Object class is at the top of class hierarchy, and each class is its descendant (directly

or indirectly). A variable of type Object can hold a reference to any object, such as an

instance of a class or an array. Object provides behaviors that are required of all objects

running in the Java Virtual Machine. For example, all classes inherit Object's toString

method, which returns a string representation of the object.

Inheritance offers the following benefits:

Subclasses provide specialized behaviors from the basis of common elements provided

by the superclass. Through the use of inheritance, programmers can reuse the code in the
superclass many times.

Programmers can implement superclasses called abstract classes that define common

behaviors. The abstract superclass defines and may partially implement the behavior, but

much of the class is undefined and unimplemented. Other programmers fill in the details
with specialized subclasses.

1.3.3 Interface

Definition: An interface is a device that unrelated objects - objects

that are not related by class hierarchy- can use to interact with each other. An object

can implement multiple interfaces.

The bicycle class and its class hierarchy define what a bicycle can and cannot do in terms

of its "bicycleness." But bicycles interact with the world on other terms. For example, a

bicycle in a store could be managed by an inventory program. An inventory program

doesn't care what class of items it manages, as long as each item provides certain

information, such as price and tracking number. Instead of forcing class relationships on

otherwise unrelated items, the inventory program sets up a protocol of communication.

This protocol comes in the form of a set of constant and method definitions contained

within an interface. The inventory interface would define, but not implement, methods

that set and get the retail price, assign a tracking number, and so on.

9

To work in the inventory program, the bicycle class must agree to this protocol by

implementing the interface. When a class implements an interface, the class agrees to

implement all the methods defined in the interface. Thus, the bicycle class would provide

the implementations for the methods that set and get retail price, assign a tracking

number, and so on.

1.4 Layout Managers

1.4.1 How Layout Management Works

Here's an example of a layout management sequence for a frame (]Frame).

After the GUI is constructed, the pack method is invoked on the JFrame. This specifies

that the frame should be at its preferred size.

To find the frame's preferred size, the frame's layout manager adds the size of the frame's

edges to the preferred size of the component directly contained by the frame. This is the

sum of the preferred size of the frame's content pane, plus the size of the frame's menu

bar, if any.

The content pane's layout manager is responsible for figuring out the content pane's

preferred size. By default, this layout manager is a BorderLayout object. However, let's

assume that we replace it with a GridLayout object that's set up to create two columns.

The interesting thing about grid layout is that it forces all components to be the same size,

and it tries to make them as wide as the widest component's preferred width and as high

as highest one's preferred height.

First, the grid layout manager queries the content pane for its insets - the size of the

content pane's border, if any. Next, the grid layout manager queries each component in

the content pane for its preferred size, noting the largest preferred width and largest

preferred height. Then it calculates the content pane's preferred size.

When a component in the content pane is asked for its preferred size, the default

implementation (used by most components) first checks whether the user specified a
10

preferred size. If so, it reports that size. If not, it queries its look and feel for the preferred

size.

1.4.2 How to Use BorderLayout

Here's a snapshot of an application that uses a BorderLayout.

Figure 1.5 BorderLayout

If you enlarge the window, the center area gets as much of the available space as

possible. The other areas expand only as much as necessary to fill all available space.

Often, a container uses only one or two of the areas of the BorderLayout.

1.4.3 How to Use FlowLayout

The FlowLayout class provides a very simple layout manager that is

used, by default, by JPanels. Here's a picture of an example that uses a flow layout:

11

Figure 1.6 FlowLayout

FlowLayout puts components in a row, sized at their preferred size. If the horizontal

space in the container is too small to put all the components in one row, FlowLayout uses

multiple rows. If the container is wider than necessary for a row of components, the row

is, by default, centered horizontally within the container. You can specify that it stick to

the left or right side instead by using a FlowLayout constructor that takes an alignment

argument. You can also specify how much vertical or horizontal padding is put around

1.4.4 How to Use GridLayout

Here's a snapshot of an application that uses a GridLayout.

Figure 1.7 GridLayout

A GridLayout places components in a grid of cells. Each component takes all the

available space within its cell, and each cell is exactly the same size. If you resize the

GridLayoutDemo window, you'll see that the GridLayout changes the cell size so that the

cells are as large as possible, given the space available to the container.

12

1.5 How to Write an Action Listener

Action listeners are probably the easiest - and most common - event handlers to

implement. You implement an action listener to respond to the user's indication that some

implementation-dependent action should occur.

When the user clicks a button, chooses a menu item or presses Enter in a text field, an

action event occurs. The result is that an actionPerformed message is sent to all action

listeners that are registered on the relevant component.

1.6 JComponent

1.6.1 Jbutton

Ordinary buttons -]Button objects - have just a bit more functionality than the

AbstractButton class provides: You can make a JButton be the default button.

At most one button in a top-level container can be the default button. The default button

typically has a highlighted appearance and acts clicked whenever the top-level container

has the keyboard focus and the user presses the Return or Enter key. Here is a picture of a

dialog, implemented in the ListDialog example, in which the Set button is the default

button.

1.6.2 JLabel

With the JLabel class, you can display unselectable text and images. If you

need to create a component that displays a string or an image (or both), you can do so by

13

using or extending JLabel. If the component is interactive and has state, consider using a·
button instead of a label.

1.6.3 JMenu

A menu provides a space-saving way to let the user choose one of several options. Other

components with which the user can make a one-of-many choice include combo boxes,

lists, radio Buttons, spinner, and tool bar. If any of your menu items performs an action

that is duplicated by another menu item or by a tool-bar button

Menus are unique in that, by convention, they aren't placed with the other components in

the UI. Instead, a menu usually appears either in a menu bar or as a popup menu. A menu

bar contains one or more menus and has a customary, platform-dependent location­

usually along the top of a window. A popup menu is a menu that is invisible until the user

makes a platform-specific mouse action, such as pressing the right mouse button, over a

popup-enabled component. The popup menu then appears under the cursor.

1.6.4 JScrollPane

A JScrollPane provides a scrollable view of a component. When screen real estate is

limited, use a scroll pane to display a component that is large or one whose size can

hange dynamically. Other containers used to save screen space include split panes and
tabbed panes.

The code to create a scroll pane can be minimal

1.6.5 JDialog

Every dialog is dependent on a frame. When that frame is destroyed, so are its dependent

ialogs, When the frame is iconified, its dependent dialogs disappear from the screen.

14

When the frame is deiconified, its dependent dialogs return to the screen. The A WT

automatically provides this behavior.

A dialog can be modal. When a modal dialog is visible, it blocks user input to all other

windows in the program. The JDialogs that JOptionPane creates are modal. To create a

non-modal dialog, you must use the JDialog class directly.

Using JOptionPane, you can create and customize several different kinds of dialogs.

JOptionPane provides support for laying out standard dialogs, providing icons, specifying

the dialog's title and text, and customizing the button text. Other features allow you to

customize the components the dialog displays and specify where the dialog should appear

onscreen

JOptionPane's icon support lets you easily specify which icon the dialog displays. You

can use a custom icon, no icon at all, or any one of four standard JOptionPane icons

(question, information, warning, and error). Each look and feel has its own versions of

the four standard icons. The following figure shows the icons used in the Java look and

feel.

Question Information Warning Error

Figure 1.8 JoptionPane icons

1.6.5.1 Method showMessageDialog

Displays a modal dialog with one button, which is labeled "OK" (or the localized

equivalent). You can easily specify the message, icon, and title that the dialog displays.

1.6.6 JFrame

15

A frame, implemented as an instance of the JFrame class, is a window that typically has ·

ecorations such as a border, a title, and buttons for closing and iconifying the window.

Applications with a GUI typically use at least one frame. Applets sometimes use frames,

as well.

1.6.6.1 Responding to Window-Closing Events

Bv default, when the user closes a frame onscreen, the frame is hidden. Although

invisible, the frame still exists and the program can make it visible again. If you want

different behavior, then you need to either register a window listener that handles

window-closing events, or you need to specify default close behavior using the

setDefaultCloseOperation method. You can even do both.

The argument to setDefaultCloseOperation must be one of the following values, the first

three of which are defined in the WindowConstants interface (implemented by JFrame,

IlntemalPane, and JDialog)

1.6.7 JTable

'ith the JTable class you can display tables of data, optionally allowing the user to edit

data. JTable doesn't contain or cache data; it's simply a view of your data. Here's a

icture of a typical table displayed within a scroll pane:

1chasing toddl ...
Rowing

!Speed reading • ••'"-·-• l •¥""¥••••••••••••••••••••••••••••••••~••w .. ··.,.,. ·,,.,.•.••.••··-· }--------·~·

Figure 1.9 JTable

1 these parts:

16

- each cell displays an item of data

- each column header describes its column

maybe also have these labels:

- each column contains one type of data

a table header displays the column headers]

1.6.8 JlnternalFrame

With the JinternalFrameclass you can display a JFrame-like window within another

vindow. Usually, you add internal frames to a desktop pane. The desktop pane, in tum,

might be used as the content pane of a JFrame. The desktop pane is an instance of

JDesktopPane, which is a subclass of JLayeredPane that has added API for managing

multiple overlapping internal frames.

You should consider carefully whether to base your program's GUI around frames or

· ternal frames. Switching from internal frames to frames or vice versa isn't necessarily a

simple task. By experimenting with both frames and internal frames, you can get an idea

of the tradeoffs involved in choosing one over the other.

Here is a picture of an application that has two internal frames (one of which is iconified)

· ide a regular frame:

Figure 1.10 JlnternalFrame
17

CHAPTER2

MICROSOFT ACCESS DATABASE

2.1 Introduction

Access is an interactive, relational database management system. A database is an

organized collection of data stored in categories that are accessible in a logical or
practical manner.

Relational databases enable data to be stored in multiple tables linked together via data

indexes. This makes working with the data faster and easier. Once entered into the

database, the data may be manipulated or viewed in various ways such as by sorting or by

specially set-up queries and reports.

Microsoft Access is a powerful program to create and manage your databases. It has

many built in features to assist you in constructing and viewing your information. Access

is much more involved and is a more genuine database application than other programs

such as Microsoft Works. First, you need to understand how Microsoft Access breaks

down a database. Some keywords involved in this process are: Database File, Table,

Record, Field, Data-type. Here is the Hierarchy that Microsoft Access uses in breaking

down a database.

18

Database File

Database File: This is your main file that

encompasses the entire database and that is saved to

your hard-drive or floppy disk.

Table:A table is a collection of data about a specific

topic. There can be multiple tables in a database.

Field:Fields are the different categories within a

Table. Tables usually contain multiple fields.

Datatypes:Datatypes are the properties of each field.

A field only has 1 datatype.

FieldName) Student LastName

Datatype) Text

2.2 Objects

Every database can contain several types of object. The data itself is contained in

an object called a table. The data can be used in a wide variety of formats, for example,

mailing lists, forms, reports and graphs. Each of these is a type of object. You create

objects by clicking on the appropriate tab in the Database window, then clicking on the

New button. Once objects such as tables have been created, they will be listed under the

object tab whenever it is selected. To open an existing object, click on its name so that it

omes highlighted then click on Open. All objects have properties that can be set to

etermine how the object appears or operates

• .3 Tables

A table is the first type of object to create in a database. It is a way of defining

w the data is to be stored. As with all databases, a table consists of 'records' (rows) and

-.:elds' (columns).

Each record represents one individual item in the database, such as a person in an address

k, and each field represents a component of the record such as a surname or part of an

dress.

Access is a relational database management system. This means that instead of having the

stored in one large file or table, it can be divided into several smaller tables. This

es the amount of duplication of data and makes it easier to manage. The tables can

related to each other by a common field such as a case identification number. You can

rk with several tables at the same time.

Creating a Table

o create a table, make sure that the Tables object tab is selected then click on the New

on. This presents you with a dialogue box with five choices:

Figure 3.1 New Table

select Table Wizard, Access will help you to create a standard table by using pre­

*fined fields. Selecting Design View, on the other hand allows you to design your own

Design View and click OK to bring up the Table design window:

20

Figure 3.2 Table 1

In the lower right corner of this window is an area containing a brief explanation of the

section containing the cursor? Field Names and

2.3.1 Data Types

Each field of the table has three components: the Field Name, which identifies the

data stored in the field, the Data Type, which tells Access what kind of data will be stored

in the field, such as text, numbers or dates, and the Description, which helps the user

remember the purpose of the field. It is very important to choose the right data type for a

field at this stage. Access will automatically insert a data type when you name a field but

if you need to change it, click on the data type box, and then click on the downward

arrow that appears to the right of the box. You can then choose a new data type from the

drop-down list.

As you type in the name of each field, a Properties section appears in the lower left

orner of the window where you can optionally define several properties for each field.

Here you can specify the format of the data to be entered and specify criteria for

·alidating the data as it is entered.

When you have defined the name, data type and properties of each field, save the table by

hoosing save from the File menu. At this point you will be informed that a Primary key

has not been set and you will be asked if you wish Access to create one.

A table is a collection of data about a specific topic. Using a separate table for each topic

eans that you store that data only once, which makes your database more efficient, and

uces data-entry errors.

21

z -zedata into columns (called fields) and rows (called records).

2ach r,c~rd in a Stud~n:t Riu:.ords ta~li «>ntat
about one sll1dent, such at ih~ir Fir st Hmie, Last Nmw, Birthday,
Address. tmd. OfJJ. etc ... This is an ex,mw$e of a ROW

Figure3.3Record

fields (columns) whose value or values uniquely identify each record

11rimary key does not allow Null values and must always have a unique

y is used to relate a table to foreign keys in other tables.

is a field that is used uniquely to identify each record. The field can

manipulate data more efficiently. You do not have to specify a key.

one, you can choose an existing field or, if you answer yes to the

create a Primary key .Access will create an extra field containing an

·e defined the structure of a table, you can start to enter data into it.

e in Design view. To enter data, switch to Datasheet view by

-· I et from the View menu. This produces a spreadsheet style window with

at the top of a column:

22

Figure 3.4 Column

The highlighted box or cell of the datasheet denotes the insertion point for data. If you

requested Access to create a Primary key, the first cell is a counter called ID, which is

automatically filled in by Access. Press TAB to move to the next cell containing your

first Field

• Saving Data: You do not have to do anything special to save the data. When you

leave a record to go to the next one or close the table, Access automatically saves

any changes. To close the table choose Close from the File menu

• Finding Data: The simplest way to find a record in a table is: From the database

window, open the table in Datasheet view. Select the field to search by clicking

on its name box. Choose Find from the Edit menu. Enter the value you want to

search for in the Find What? box and click on Find First.

You can also specify whether the search should match for case, in which direction to

search and whether to search other fields. When you initiate a search, the cursor moves to

the first occurrence of the search string in the table and the string is highlighted. To

search for another occurrence of the same value, use the Find Next button.

2.3.4 Relationships

After you've set up multiple tables in your Microsoft Access database, you need a

way of telling Access how to bring that information back together again. The first step in

this process is to define relationships between your tables. After you have done that, you

can create queries, forms, and reports to display information from several tables at once.

A relationship works by matching data in key fields - usually a field with the same name

in both tables. In most cases, these matching fields are the primary key from one table,

which provides a unique identifier for each record, and a foreign key in the other table.

23

For example, teachers can be associated with the students they are responsible for by

creating a relationship between the teacher's table and the student's table using the

TeacherID fields.

2.4 Forms

A form is nothing more than a graphical representation of a table. You can add,

update, delete records in your table by using a form. NOTE: Although a form can be

named different from a table, they both still manipulate the same information and the

same exact data. Hence, if you change a record in a form, it will be changed in the table

0.

A form is very good to use when you have numerous fields in a table. This way you can

see all the fields in one screen, whereas if you were in the table view (datasheet) you

-ould have to keep scrolling to get the field you desire.

,. Reports

A report is an effective way to present your data in a printed format. Because you

ve control over the size and appearance of everything on a report, you can display the

· formation the way you want to see it.

24

CHAPTER3

OPEN DATABASE CONNECTIVITY AND JAVA DATABASE

CONNECTIVITY

3.1 Open DataBase Connectivity (ODBC)

Abbreviation of Open Database Connectivity, a standard database access method

developed by Microsoft Corporation.

The aim of ODBC is to make it possible to access any data from any application,

regardless of which database management system (DBMS) is handling the data. ODBC

manages this by inserting a middle layer, called a database driver, between an application

and the DBMS.

The purpose of this layer is to translate the application's data queries into commands that

the DBMS understands. For this to work, both the application and the DBMS must be

ODBC-compliant -- that is, the application must be capable of issuing ODBC commands

and the DBMS must be capable of responding to them.

ODBC consists of two key components:

ODBC Driver Manager: an application binds to this generic library, which is

responsible for loading the requested ODBC Driver.

ODBC Driver: dynamically loaded by the ODBC Driver manager for making

nnection to target Database .

. 1.1 Why use ODBC

ODBC enables maximum interoperability between the application and database as a

gle application can access any ODBC-enabled database by simply being configured to

its ODBC driver, and likewise an ODBC-enabled application can access a given

25

Database using its ODBC driver. The ODBC driver manager acts as the common·

interface enabling this dynamic switching to take place, thus giving application

developers the database-independence they have always dreamed of.

3.2 JavaDataBaseConnectivity(JDBC)

Java Database Connectivity (JDBC) is an API specification for connecting programs

written in Java to the data in popular databases. The API lets you encode access request

statements in Structured Query Language (SQL) that are then passed to the program that

manages the database. It returns the results through a similar interface. JDBC is very

similar to ODBC and, with a small "bridge" program; you can use the JDBC interface to

access databases through the ODBC interface.

3.2.1 Creating JDBC Application

The first thing you need to do is check that you are set up properly. This involves the

following steps:

3.2.2 Establishing a Connection

The first thing you need to do is establish a connection with the DBMS you want to use.

This involves two steps:

Loading the driver.

Making the connection.

26

3.2.3 Loading Drivers

Loading the driver or drivers you want to use is very simple and involves just one line of

code. If, for example, you want to use the JDBC-ODBC Bridge driver, the following

code will load it:

Class.forName(11sun.jdbc.odbc.JdbcOdbcDriver11);

Your driver documentation will give you the class name to use. For instance, if the class

name is jdbc.DriverXYZ , you would load the driver with the following line of code:

Class.forblamer'jdbc.Driver.Xyz;");

You do not need to create an instance of a driver and register it with the DriverManager

because calling Class.forName will do that for you automatically. If you were to create

your own instance, you would be creating an unnecessary duplicate, but it would do no

harm.

When you have loaded a driver, it is available for making a connection with a DBMS.

3.2.4 Making the Connection

The second step in establishing a connection is to have the appropriate driver connect to

the DBMS. The following line of code illustrates the general idea:

Connection con= DriverManager.getConnection(url,

"myl.ogin", "myl'assword");

This step is also simple, with the hardest thing being what to supply for URL. If you are

ing the JDBC-ODBC Bridge driver, the JDBC URL will start withjdbc:odbc: The rest

of the URL is generally your data source name or database system. So, if you are using

ODBC to access an ODBC data source called II Fred, 11 for example, your JDBC URL

uld be jdbc:odbc:Fred . In place of II my Login II you put the name you use to log in to

DBMS; in place of II my Password II you put your password for the DBMS

27

3.2.5 Creating JDBC Statements

A Statement object is what sends your SQL statement to the DBMS. You simply create a

Statement object and then execute it, supplying the appropriate execute method with the

SQL statement you want to send. For a SELECT statement, the method to use is

executeQuery. For statements that create or modify tables, the method to use is

executeUpdate.

It takes an instance of an active connection to create a Statement object. In the following

example, we use our Connection object con to create the Statement object stmt:

Statement stmt = con.createStatement();

At this point stmt exists, but it does not have an SQL statement to pass on to the DBMS.

We need to supply that to the method we use to execute stmt. For example, in the

following code fragment, we supply executeUpdate with the SQL statement.

3.2.6 Executing Statements

e used the method executeUpdate because the SQL statement is a DDL (data definition

language) statement. Statements that create a table, alter a table, or drop a table are all

examples ofDDL statements and are executed with the method executeUpdate. As you

might expect from its name, the method executeUpdate is also used to execute SQL

statements that update a table. In practice, execute Update is used far more often to update

tables than it is to create them because a table is created once but may be updated many

times.

The method used most often for executing SQL statements is executeQuery. This method

· used to execute SELECT statements, which comprise the vast majority of SQL

statements. You will see how to use this method shortly.

28

3.2. 7 Closing the statement and the connection

When finishing executing sql statement the statement and the connection

were created should be close by close () method;

For example see the program outline below

conn= DriverManager.getConnection(url," ","");II create a connection

stmt = conn.createStatement("any sql statement"); //creates statement

stmt.executUpdate(); // execute the sql statement

stmt.close(); // close the statement

conn.close(); II close the connection

3.3 Using Statement Interface

3.3.1 Entering Data into a Table

I will enter our data into the table one row at a time, supplying the information to be

stored in each column of that row. Note that the values to be inserted into the columrs are

listed in the same order that the columns were declared when the table was created, which

is the default order.

If the SQL statement will not quite fit on one line on the page, we could split it into two

strings concatenated by a plus sign (+) so that it will compile.

tatement stmt = con.createStatement();

stmt.execute Update(

'INSERT INTO Tabele Name +
"VALUES (' ', , , 0, 0) ");

3.3.2 Getting Data from a Table

_ ;ow that the table has values in it, we can write a SELECT statement to access those

ralues. The star (*) in the following SQL statement indicates that all columns should be

selected. WHERE clause is used to narrow down the rows from which to select.

29

3.3.3 Retrieving Values from Result Sets

We now show how you send the above SELECT statements from a program written in

the Java programming language and how you get the results we showed.

JDBC returns results in a ResultSet object, so we need to declare an instance of the class

ResultSet to hold our results. The following code demonstrates declaring the ResultSet

object rs and assigning the results of our earlier query to it:

ResultSet rs = stmt.executeQuery(

"SELECT * FROM Table_ Name");

3.3.4 Using the Method next

The variable rs, which is an instance ofResultSet, in order to access the names and

prices, we will go to each row and retrieve the values according to their types. The

method next moves what is called a cursor to the next row and makes that row (called the

current row) the one upon which we can operate. Since the cursor is initially positioned

just above the first row of a ResultSet object, the first call to the method next moves the

cursor to the first row and makes it the current row. Successive invocations of the method

next move the cursor down one row at a time from top to bottom.

3.3.5 Using the get:XXX Methods

We use the getXXX method of the appropriate type to retrieve the value in each column.

For example, the method for retrieving a value of SQL type V ARCHAR is getString, and

the method for retrieving Float values is getFloat . The following code accesses the

values stored in the current row of rs and prints a line with the name followed by three

spaces and the price. Each time the method next is invoked, the next row becomes the

current row, and the loop continues until there are no more rows in rs.

String query= "SELECT * FROM COFFEES";

ResultSet rs= stmt.executeQuery(query);

while (rs.next()) {

30

tring s = rs.getString("String _ value");

oat n = rs.getfloat("Float_ value");

ystem.out.println(s + " " + n);

BC offers two ways to identify the column from which a getXXX method gets a value.

-way is to give the column name, as was done in the example above. The second way

give the column index (number of the column), with 1 signifying the first column, 2

second, and so on. Using the column number instead of the column name looks like

gs= rs.getString(l);

n = rs.getFloat(2);

,..6 Updating Tables

QL statement to update one row might look like this:

String updateString = "UPDATE Table_Name" +
ALES= xyz" + "WHERE Condition";

.... the Statement object stmt, this JDBC code executes the SQL statement contained

eString:

execute Update(updateString);

r5ing Prepared Statement Interface

~rimes it is more convenient or more efficient to use a PreparedStatement object for

wwtrog SQL statements to the database. This special type of statement is derived from

re general class, Statement, which we already know.

,lien to Use a PreparedStatement Object

31

If you want to execute a Statement object many times, it will normally reduce execution

time to use a PreparedStatement object instead.

The main feature of a PreparedStatement object is that, unlike a Statement object, it is

given an SQL statement when it is created. The advantage to this is that in most cases,

this SQL statement will be sent to the DBMS right away, where it will be compiled. As a

result, the PreparedStatement object contains not just an SQL statement, but also an SQL

statement that has been precompiled. This means that when the PreparedStatement is

executed, the DBMS can just run the PreparedStatement 's SQL statement without having

to compile it first.

Although PreparedStatement objects can be used for SQL statements with no parameters,

you will probably use them most often for SQL statements that take parameters. The

advantage of using SQL statements that take parameters is that you can use the same

statement and supply it with different values each time you execute it.

3.4.2 Creating a PreparedStatement Object

As with Statement objects, we create PreparedStatement objects with a Connection

method. Using our open connection con from previous examples, you might write code

such as the following to create a PreparedStatement object that takes two input

parameters:

PreparedStatement deleteSales = con.prepareStatement(

"UPDATE DELETE FROM Table_Name WHERE Condition=?");

The variable updateSales now contains the SQL statement, "DELETE FROM

Table_Name WHERE Condition =?", which has also, in most cases, been sent to the

DBMS and been precompiled.

3.4.3 Supplying Values for PreparedStatement Parameters

You will need to supply values to be used in place of the question mark, if there are any,

fore you can execute a PreparedStatement object. You do this by calling one of the

32

setXXX methods defined in the class PreparedStatement . If the value you want to

substitute for a question mark is a Java int, you call the method setlnt. If the value you

want to substitute for a question mark is a Java String, you call the method setString , and

so on. In general, there is a setXXX method for each type in the Java programming

language.

Using the PreparedStatement object deleteSales from the previous example, the following

line of code sets the first question mark placeholder to a Java int with a value of 75:

updateSales.setlnt(l, 75);

As you might surmise from the example, the first argument given to a setXXX method

indicates which question mark is to be deleted.

PreparedStatement deleteSales = con.prepareStatement(

" UPDATE DELETE FROM Table Name WHERE Condition =?");

deleteSales.setlnt(l, 75);

deleteSales.executeUpdate():

We used the method executeUpdate to execute both the Statement stmt and the

PreparedStatement updateSales. Notice, however, that no argument is supplied to

executeUpdate when it is used to execute updateSales. This is true because updateSales

already contains the SQL statement to be executed.

33

CHAPTER4

STOCK DATABASE DESIGN

.1 Data base design of the system

stock database consists of three tables, supplier table, prouct table, and invoice table.

upplier table contains four fields

• Supplier code

• Supplier name

• Supplier city

• Supplier telephone

uct table contains seven fields

• Product code

• Product name

• Product price

• Product tax

• Product supplier

• Product date

• Product count

ice table contains five fields

• Invoice number

• Invoice date

• Invoice time

• Invoice product

34

Figure 4.1 relationships between tables

• Invoice product count

The relationships between tables will as follows

I-Product supplier of the product table is a foreign key to product supplier in the supplier

table

_-Product code in invoice table is a foreign key to product code in product table.

The figure below shows the relationship.

35

4.2 Block diagram of the system

lnsertProductAccess Ed~ProductAccess DeleteProductAccess

insert update delete

DB!aBase
Tables

insert

get product' I)" product
~-----< lnsertSupplierAccess

Sell

show product
'-------, DeleteSupplier Access

Bill

send sold product

Figure 4.2 Block diagram of the system

4.3 Main Menu

The aim of the main menu is to use the program easily, faster and use the entire process

screen. In main menu there is a menu bar contains four menus; each menu defines an

operation on a particular object.

36

Fig 4.2 main menu

4.3.1 Add menu

Allows user to add product, supplier to the database or exit from the system.

4.3.1.1.Product

This menu item allows user to add item to the stock i.e. database

But, before adding any item to the database we have to add supplier for

each item to be added.

Selecting this menu item will produce the following window.

37

Fig 4.4 insert product

Code: for entering a unique string for each item.

Description: for entering the supplier's code for this item.

Price: for entering the price.

Tax: for entering the tax.

Supplier Code: for entering the item's supplier code.

Date: for entering the date of purchasing.

Count: for entering the number of item sold by stock.

Insert: for insert supplier data to database.

4.3.1.2.Supplier

This menu item allows user to add supplier for product

Selecting this menu item will produce the following figure.

38

Fig 4.4 insert supplier

Supplier Code: for entering unique supplier code.

Supplier Name: for entering supplier's name.

Supplier City: for entering supplier's city.

Supplier Tel: For entering supplier's telephone number.

Insert: for inserting this supplier to database.

4.3.1.3.Exit

This menu item allows user to exit from the program, by selecting this menu item the

program terminates.

4.3.2. Edit menu

Allows user to edit product and supplier in database.

4.3.2.1.Product

This menu item allows user to modify product specification, first user should insert

product code, press search button to find the particular product, product specifications

will be appeared in text fields, and then user can edit what ever he/she wants by pressing

edit button.

39

Figure 4.5 edit product

4.3.2.2.Supplier

This menu item allows user to modify supplier's modifications, user should enter

supplier's code, press search, and then change what ever he/she wants, finally

press edit.

Figure 4.6 edit supplier

4.3.3. Delete menu

40

Allows user to delete product or supplier in the database.

4.3.3.1.Product

This menu item allows user to delete product from the database, user should enter the

product's code, press find button, to show the product's details, then press delete button.

Figure 4. 7 delete product

4.3.3.2.Supplier
This menu item allows user to delete particular product's supplier, first user should enter

supplier's code, press enter, supplier's details will be appeared, and then by pressing

delete button particular supplier will be deleted.

41

Figure 4.8 delete supplier

4.3.4. Sales menu

Allows user to sell products and to see the purchased products.

4.3.4.1.Show Sales
This menu item allows user to see all the sales of the stock, number of invoices, and the

amount of sold products.

42

Figure 4.9 reports

4.3.4.2.Sell

This menu item allows user to sell product to customer, by clicking this menu

item two windows appear; one is sell ,the other is bill, user should enter the

product code into (pro_code) field, with the amount of the product to be sold,

then user should press add button ,automatically product name, amount tax, and

vat will be added to the bill, user continue adding items till them finished, if the

amount is not entered it is assumed to be 1, then user presses sum to find the sum

of the product ,a customer give the user(cashier) the amount required ,user enter

the amount received from the customer into Money Paid field then press print

button ,if the money received by user exceeds the amount required then bill will

show the remained money to be refunded to the customer, if the user does a

43

mistake he/she can create a new bill by pressing the new bill button, sold items

will be added to invoice table.

Figure 4.10 Sell

44

MSF POST Program

Barners Bros

TEL:0324578

DATE:28-Dec-05
rrlME:11 :30
BIIINO :1

Figure 4.11 Bill

4.3.5. About menu

Contains only one menu item

4.3.5.1.About

Gives the user a brief description about the program, programmer, etc .

45

CONCLUSION

Computers have entered to many fields, education, economy, factories, this program

designed to satisfy user's demand for controlling stock sales.

This project helps stock managers to control easily efficiently all the transaction accruing

in the stock

High technology programming language is used, with user friendly interfaces to

communicate with the user, also a database system is used to save, add, edit delete

elements in the database, and so each sale is recorded in the database for referencing

later.

Some development will be added to this software, some refinements, and modifications

will be added to increase the efficiency and performance activity.

46

REFERENCES

[l] Deitrel & Deitel "Java How to Program".

[2] Java tutorials "http ://j ava. sun. com/ docs/books/tutorial. com".

[3] What is ODBC "www.goradno.com".

[4] Open Database Connectivity "www.openlinksoftware.com".

47

APPENDIX A

Main menu

import javax.swing. *;

import java.awt.event. *;

import java.awt. *;

public class MainMenu extends JFrame implements ActionListener

{ JDesktopPane desktop;

MainMenum;

JMenuBar bar;

JMenu menu 1,menu2,menu3,menu4,menu5;

JMenultem mi 1,mi2,mi3,mi4,mi5 ,mi6,mi7 ,mi8,mi9 ,mi 1 O;

Container c;

lnsertSuplierAccess insuplier;

lnsertProductAccess insproduct;

EditSuplierAccess edsuplier;

EditProductAccess edproduct;
\

DeleteSuplierAccess delsuplier;

DeleteProductAccess delproduct;

Reports rp;

Sell sel;

Bill bil;

public static void main(String args[])

{
MainMenu mm = new MainMenu();

II mm.setDefaultCloseOperation(JFrame.EXIT _ON_ CLOSE);

}

public MainMenu()

48

{ super("MainMenu");

c = getContentPane();

desktop= new JDesktopPane();

c.add(desktop);

bar= new JMenuBar();

menul = new JMenu("Add");

bar.add(menu 1);

mil = new JMenultem("Product");

menul.add(mil);

mil .addActionListener(this);

menu 1. addSeparator();

mi2 = new JMenuitem("Supplier");

menul.add(mi2);

mi2.addActionListener(this);

menul .addSeparator();

mi3 = new JMenultem("Exit");

menul .add(mi3);

mi3.addActionListener(this);

menu2 = new JMenu("Edit");

bar.add(menu2);

mi4 = new JMenultem("Product");

menu2.add(mi4);

mi4 .addActionListener(this);

menu2.addSeparator();

49

mi5 = new JMenultem("Supplier");

menu2.add(mi5);

mi5.addActionListener(this);

menu3 = new JMenu("Delete");

bar.add(menu3);

mi6 = new JMenultem("Product");

menu3.add(mi6);

mi6.addActionListener(this);

menu3 .addSeparator();

mi7 = new JMenultem("Supplier");

mi7 .addActionListener(this);

menu3.add(mi7);

menu4 = new JMenu("Sales");

bar.addtrnenu-l);

mi8 = new JMenultem("Show Sales");

mi8.addActionListener(this);

menu4.add(mi8);

menu4.addSeparator();

milO = new JMenultem("Sell");

mi 10.addActionListener(this);

menu4.add(mi 1 O);

menu5 = new JMenu("About");

50

bar.add(menu5);

mi9= new JMenultem("About Me");

menu5.add(mi9);

mi9 .addActionListener(this);

this.setJMenuBar(bar);

setVisible(true);

setSize(400,500);

this.addWindowListener(new Window Adaptert)

{
public void windowClosing(WindowEvent event)

{ System.exit(O);}

}

);

}

public void actionPerformed(ActionEvent e)

{

if(e.getSource()== mi 1)

{ insproduct = new InsertProductAccess();

insproduct.setLocation(200,200);

insproduct.setSize(300,250);

insproduct.setVisible(true);

desktop .add(ins product);

}

51

if(e.getSource() == mi2)

{insuplier = new InsertSuplierAccess();

insuplier.setLocation(200,200);

insuplier.setSize(300,250);

insuplier.setVisible(true);

desktop.add(insuplier);

}

if(e.getSource() = mi3)

{ System.exit(O);

}

if(e.getSource() =mi4)

{ edproduct = new EditProductAccess();

edproduct.setLocation(200,200);

edproduct.setSize(300,250);

edproduct.setVisible(true);

desktop .add(edproduct);

}

if(e.getSource() == mi5)

{

edsuplier = new EditSuplierAccess();
edsuplier.setSize(300,250);

edsuplier.setVisible(true);

edsuplier.setLocation(200,200);

desktop.add(edsuplier);

}

if(e.getSource() == mi6)

{

52

delproduct = new DeleteProductAccess();

delproduct.setSize(300,250);

delproduct.setVisible(true);

delproduct.setLocation(200,200);

desktop.add(delproduct);

}

if(e.getSource() == mi7)

{ delsuplier = new DeleteSuplierAccess();
delsuplier.setSize(300,250);

delsuplier.set Visible(true);

delsuplier.setLocation(200,200);

desktop.add(delsuplier);

}

if(e.getSource() == mi8)

{ rp = new Reports();
rp.setSize(600,600);

rp.setVisible(true);

rp.setLocation(200,200);

desktop.add(rp);

}

if(e.getSource() == mi9)

{
JOptionPane.showMessageDialog(m,"This program is Made Eng.Mohammad

Elfawair","About",JOptionPane.INFORMATION_MESSAGE);

}

if(e.getSource() == mi 10)

53

{

sel = new Sell();
sel.setSize(400,300);

sel.setVisible(true);

sel.setLocation(200,200);

desktop.add(sel);

}

}

}

Insert product access

import javax.swing. *;

import java.sql. *;

import java.awt. *;

import java.awt.event. *;

public class InsertProductAccess extends JintemalFrame implements ActionListener

{
JT extField text 1, text2, text3, text 4, text5, text 6, text7;

JLabel 11,12,13,14,15,16,17;

JButton ins;

JPanel panell,pane12;

Container c;

Connection conn;

PreparedStatement pstmt;

String url = "jdbc:odbc:msf';

InsertProductAccess application;

public InsertProductAccess()

54

{

super(" insert product", true, true, true, true);

c = getContentPane();

panel 1 = new JPanel();

panel2 = new JPanel();

panel2.setLayout(new GridLayout(7,2));

11 = new JLabel("Code",JLabel.CENTER);

12 = new JLabel("Description",JLabel.CENTER);

13 = new JLabel("Price",JLabel.CENTER);

14 = new JLabel("Tax",JLabel.CENTER);

15 = new JLabel("Supplier code ",JLabel.CENTER);

16 = new JLabel("Date",JLabel.CENTER);

17 = new JLabel("Count" ,JLabel.CENTER);

textl = new JTextField(lO);

text2 = new JTextField(l5);

text3 = new JTextField(6);

text4 = new JTextField(5);

text5 = new JTextField(l O);

text6 = new JTextField(l 1);

text7 = new JTextField(3);

ins= new JButton("Insert");

55

panel2.add(l 1);

panel2.add(textl);

panel2.add(l2);

panel2.add(text2);

panel2.add(l3);

panel2.add(text3);

panel2.add(l4);

panel2.add(text4);

panel2.add(l5);

panel2.add(text5);

panel2.add(l6);

pane12 .add(text6);

panel2.add(l7);

panel2 .add(text?);

panel 1.add(ins);

c.add(pane12,BorderLayout.NORTH);

c.add(panel 1,BorderLayout. CENTER);

ins.add.ActionListener(this);

setSize(300,250);

setVisible(true);

} // end ofMsf constructuer

56

public void actionPerformed(ActionEvent e)

{

if(e.getSource() == ins)

{

try

{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{

JOptionPane.showMessageDialog(application,exp.getMessage(),"WARNING",JOptionP

ane. WARNING_ MESSAGE);

}

try

{

conn= DriverManager.getConnection(url," "," ");

pstmt = conn.prepareStatement("insert into product values(?,?,?,?,?,?,?

)");

57

if(textl.getText().equals("") II text2.getText().equals("") II
text3.getText().equals("") II text4.getText().equals('"') II text5.getText().equals("") II
text6.getText().equals("") II text7.getText().equals(""))

{ JOptionPane.showMessageDialog(application,"Fill all fields","Some Fields

are missing" ,JOptionPane. WARNING_ MESSAGE);

}

else

{

String code= textl .getText().trim();

String nam = text2.getText().trim();

double pric = Double.parseDouble(text3.getText().trim());

double tax= Double.parseDouble(text4.getText().trim());

String supco = text5.getText().trim();

String dat = text6.getText().trim();

int num = Integer.parselnt(text7.getText());

pstmt.setString(l ,code);

pstmt.setString(2,nam);

pstmt.setDouble(3,pric);

pstmt.setDouble(4,tax);

pstmt.setString(5,supco);

pstmt.setString(6,dat);

pstmt.setlnt(7 ,num);

pstmt.execute Update();

pstmt.close();

conn.close();

58

JOptionPane.showMessageDialog(application,11 Insert done perfectly
11,11INFORMATION11,JOptionPane.INFORMATION_MESSAGE);

textl .set'I'extf'"');

text2. setT ext(1111);

texts.set'Iextr'");

text-l.set'Iextr'");
texto.set'I'extt?");

text6.setText("11);

text7. setT ext("");

}

}

catch(SQLException ex)

{
JOptionPane.showMessageDialog(application," SQLERROR: 11 +

ex.getMessage() , "Data Base ERROR" ,JOptionPane.ERROR _ MESSAGE);

}

}// if cancel pressed

}// end of action performed

59

}

Insert supplier access

import javax.swing. *;

import java.sql. *;

import java.awt. *;

import java.awt.event. *;

import javax.swing.event. *;

import java.beans.Property Veto Exception;

public class InsertSuplierAccess extends JlntemalFrame implements ActionListener

{

JTextField text l ,text2,text3,text4;

JLabel 11,12,13,14;

]Button ins;

JPanel panell,pane12;

Container c;

Connection conn;

PreparedStatement stmt;

String url = "jdbc.odbc.msf";

InsertSuplierAccess application;

public InsertSuplierAccess(){

super("insert supplier" ,true,true,true,true);

c = getContentPane();
panel I = new JPanel();
pane12 = new JPanel();

60

panel2.setLayout(new GridLayout(4,2));

11 = new JLabel("Supplier Code",JLabel.CENTER);
12 = new JLabel("Supplier Name",JLabel.CENTER);

13 = new JLabel("Supplier City",JLabel.CENTER);
14 = new JLabel("Supplier Tel",JLabel.CENTER);

textl = new JTextField(lO);
text2 = new JTextField(l 5);
text3 = new JTextField(6);
text4 = new JTextField(5);

ins = new JButton("Insert");

panel2.add(ll);

panel2.add(text 1);

panel2.add(l2);

panel2 .add(text2);

panel2.add(l3);

panel2 .add(text3);

panel2.add(l4);

panel2.add(text4);

panel l .add(ins);

61

c.add(panel2,BorderLayout.NORTH);

c.add(panel l ,BorderLayout.CENTER);

ins.addActionListener(this);

setSize(300,200);

setVisible(true);

} // end ofMsf constructuer

public void actionPerforrned (ActionEvent e)

{ String code,nam,city ,tel;

if(e.getSource() = ins)

{

try

{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{

62

J OptionPane. showMessageDialog(application,exp. getMessage()," WARNING" ,J OptionP

ane. WARNING_ MESSAGE);

}

try
{conn= DriverManager.getConnection(url," "," ");

stmt = conn.prepareStatement("insert into suplier values(?,?,?,?)")·

if(textl.getText().equals("") II text2.getText().equals("") II text3.getText().equals('"') II
text4.getText().equals(""))

JOptionPane.showMessageDialog(application, "Fill all fields" ,"~ome

Fields are missing" ,JOptionPane. WARNING _MESSAGE);

else

{ code= (textl .getText().trim());

nam = (text2.getText().trim());

city= (text3.getText().trim());

tel = (text4.getText().trim());

stmt.setString(l ,code);

stmt.setString(2,nam);

stmt.setString(3 .city);

stmt.setString(4,tel);

stmt.execute Update();

stmt.close();

conn.close();

63

JOptionPane.showMessageDialog(application," Insert done perfectl

","INFORMATION",JOptionPane.INFORMATION_MESSAGE);

textl .setText('"');

text2.setText("");

text3. setT ext("");

text4.setText("");

}

}

catch(SQLException ex)

{

JOptionPane.showMessageDialog(application, "SQLERROR:" +
ex.getMessage() ,"Data Base ERROR" ,JOptionPane.ERROR_MESSAGE);

}

}// if cancel pressed

}// end of action performed

}

Edit product access

64

import javax.swing. *;

import java.sql. *;

import java.awt. *;

import java.awt.event. *;

public class EditSuplierAccess extends JlntemalFrame implements ActionListener

{
JTextField textl ,text2,text3,text4,text5;

JLabel 11,12,13,14,15;

JButton edit,srch;

JPanel panel 1,pane12,panel3;

Container c;

Connection conn;

PreparedStatement pstmt;

String url = "jdbc.odbc.msf";

EditSuplierAccess application;

Statement stmt;

public EditSuplierAccess()

{
super("Edit supplier" ,true,true,true,true);

c = getContentPane();
panell = new JPanel();
pane12 = new JPanel();
panel3 = new JPanel();

panel3.setLayout(new FlowLayout(FlowLayout.CENTER));

panel2.setLayout(new GridLayout(4,2));

panel 1.setLayout(new FlowLayout(FlowLayout. CENTER));

65

11 = new JLabel("Supplier Code",JLabel.CENTER);
12 = new JLabel("New Supplier Code",JLabel.CENTER);
13 = new JLabel("New Supplier Name",JLabel.CENTER);

14 = new JLabel("New Supplier City",JLabel.CENTER);

15 = new JLabel("New Supplier Tel",JLabel.CENTER);

textl = new JTextField("",10);
text2 = new JTextField("",10);
text3 = new JTextField("",15);
text4 = new JTextField("",6);

text5 = new JTextField("",5);

edit = new JButton("Edit");
srch = new JButton("Search");

panel3 .add(ll);

panel3 .add(textl);

panel3.add(srch);

pane12 .add(l2);

panel2 .add(text2);

panel2.add(l3);

panel2 .add(text3);

panel2.add(l4);

panel2.add(text4);

panel2.add(l5);

panel2.add(text5);

66

panell .add(edit);

c.add(panel3,BorderLayout.NORTH);

c .add(panel2,BorderLayout. WEST);

c.add(panell,BorderLayout.SOUTH);

edit.addActionListener(this);

srch.addActionListener(this);

setSize(300,250);

setVisible(true);

} // end of constructuer

public void actionPerformed(ActionEvent e)

{ String nam,supcty ,suptel,cd,id;

if (e.getSource() == srch)
{
cd = textl .getText().trim();

try

{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{

67

J OptionPane. showMessageDialog(application,exp. getMessage(), 11 W ARNIN G11 ,J OptionP

ane. WARNING_ MESSAGE);

}

try

{ conn= Driverlvlanager.gen.onnectioruurl," 11,11 11);

stmt = conn.createStatement();

Strings= "SELECT* FROM suplier 11 + "WHERE supcode = "' + cd +""'·
ResultSet rset = stmt.executeQuery(s);

boolean f =rset.next();

if(f)

{

text2. setT ext(rset. getString(1));

text3. setT ext(rset.getString(2));

text4.setText(rset.getString(3));

text5. setT ext(rset.getString(4));

}

else

{

JOptionPane.showMessageDialog(application, "Not Found !\nTry

Again11,11MESSAGE11 ,JOptionPane.INFORMATION_MESSAGE);

}

68

}

catch(SQLException ex)

{

JOptionPane.showMessageDialog(application,"SQLERROR:" +
ex.getMessage() ,"Data Base ERROR" ,JOptionPane.ERROR_MESSAGE);

}

}

if(e.getSource() = edit)
{

try

{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{

JOptionPane.showMessageDialog(application,exp.getMessage(),"W ARNING",JOptionP

ane. WARNING_ MESSAGE);

}

69

try

{

conn= DriverManager.getConnection(url," "," ");

pstmt = conn.prepareStatement("update suplier set supcode = ?, supname =?

, supcity = ? , suptel = ? where supcode = ? ");

if(text2.getText().equals("") II text3.getText().equals('"') II text4.getText().equals("") II
text5.getText().equals(""))

{ JOptionPane.showMessageDialog(application,"Fill all fields","Some Fields are

missing" ,JOptionPane. WARNING_ MESSAGE);

}

else

{

cd = (textl .getText().trimO);

id= (text2.getText().trim());

nam = (text3.getText().trim());

supcty = (text4.getText().trim());

suptel = (text5.getText().trim());

pstmt.setString(l ,id);

pstmt. setString(2,nam);

pstmt.setString(3,supcty);

pstmt.setString(4,suptel);

pstmt.setString(5,cd);

pstmt.execute Update();

70

pstmt.close();

conn.close();

JOptionPane.showMessageDialog(application," Edit done perfectly

","INFORMATION",JOptionPane.INFORMATION_MESSAGE);

textl .setText("");

text2.setText("");

text3 .setText('"');

text4.setText("");

text5.setText("");

}

}

catch(SQLException ex)

{
JOptionPane.showMessageDialog(application," SQLERROR:" +

ex.getMessage() ,"Data Base ERROR" ,JOptionPane.ERROR_MESSAGE);

}

}// if cancel pressed

71

}// end of action performed

}

Edit supplier access

import javax.swing. *;

import java.sql. *;

import java.awt. *;

import java.awt.event. *;

public class EditSuplierAccess extends JintemalFrame implements ActionListener

{

JTextField text 1, text2, text3, text 4, text5;

JLabel 11,12,13,14,15;

JButton edit,srch;

JPanel panell ,panel2,panel3;

Container c;

Connection conn;

PreparedStatement pstmt;

String url = "jdbc.odbc.msf";

EditSuplierAccess application;

Statement stmt;

public EditSuplierAccess()

{

super("Edit supplier" ,true,true,true,true);

c = getContentPane();
panell = new JPanel();
panel2 = new JPanel();

72

panel3 = new JPanel();

panel3.setLayout(new FlowLayout(FlowLayout.CENTER));

panel2.setLayout(new GridLayout(4,2));

panel l .setLayout(new FlowLayout(FlowLayout.CENTER));

11 = new JLabel("Supplier Code",JLabel.CENTER);

12 = new JLabel("New Supplier Code",JLabel.CENTER);

13 = new JLabel("New Supplier Name",JLabel.CENTER);

14 = new JLabel("New Supplier City",JLabel.CENTER);

15 = new JLabel("New Supplier Tel",JLabel.CENTER);

textl = new JTextField("",10);

text2 = new JTextField("",10);

text3 = new JTextField('"',15);

text4 = new JTextField("",6);

text5 = new JTextField("",5);

edit= new JButton("Edit");

srch = new JButton("Search");

panel3.add(ll);

panel3.add(textl);

panel3.add(srch);

panel2.add(l2);

panel2 .add(text2);

73

panel2.add(l3);

panel2 .add(text3);

panel2.add(l4);

panel2.add(text4);

panel2.add(l5);

panel2.add(text5);

panel! .add(edit);

c.add(panel3,BorderLayout.NOR TH);

c.add(panel2,BorderLayout. WEST);

c.add(panel l ,BorderLayout.SOUTH);

edit.addActionListener(this);

srch.addActionListener(this);

setSize(300,250);

setVisible(true);

} // end of constructuer

public void actionPerformed(ActionEvent e)

{ String nam,supcty ,suptel,cd,id;

if (e.getSource() == srch)
{

cd = textl.getText().trim();

try

74

{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{

JOptionPane.showMessageDialog(application,exp.getMessage(),"WARNING",JOptionP

ane. WARNING _MESSAGE);

}

try
{conn= DriverManager.getConnection(url," "," ");

stmt = conn.createStatement();
Strings= "SELECT* FROM suplier" + "WHERE supcode = "' + cd +""';

ResultSet rset = stmt.executeQuery(s);

boolean f =rset.next();

if(f)

{

text2. setT ext(rset.getString(1));

text3. setT ext(rset.getString(2));

text 4. setT ext(rset. getString(3));

text5 .setT ext(rset.getString(4));

}

75

else

{
JOptionPane.showMessageDialog(application,"Not Found !\nTry

Again" ,"MESSAGE" ,JOptionPane.INFORMATION _ MESSAGE);

}

}

catch(SQLException ex)

{
JOptionPane.showMessageDialog(application,"SQLERROR:" +

ex.getMessage() ,"Data Base ERROR" ,JOptionPane.ERROR_MESSAGE);

}

}

if(e.getSource() = edit)
{

try

{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{

76

J OptionPane. showMessageDialog(application,exp. getMessage(), "WARNING" ,J OptionP

ane.WARNING_MESSAGE);

}

try

{

conn= DriverManager.getConnection(url," "," ");

pstmt = conn.prepareStatement("update suplier set supcode = ?, supname =?

, supcity = ? , suptel = ? where supcode = ? ");

if(text2.getText().equals('"') II text3.getText().equals("") II text4.getText().equals("") II
text5.getText().equals(""))

{ JOptionPane.showMessageDialog(application,"Fill all fields","Some Fields are

missing",JOptionPane.W ARNING_MESSAGE);

}

else

{

cd = (textl .getText().trim());

id= (text2.getText().trim());

nam = (text3.getText().trim());

supcty = (text4.getText().trim());

suptel = (text5.getText().trim());

pstmt.setString(l,id);

77

pstmt.setString(2,nam);

pstmt.setString(3,supcty);

pstmt.setString(4,suptel);

pstmt.setString(5,cd);

pstmt. execute Update();

pstmt.close();

conn.close();

JOptionPane.showMessageDialog(application," Edit done perfectly

","INFORMATION",JOptionPane.INFORMATION_MESSAGE);

textl .setText("");

text2.setText("");

text3. setT ext("");

text4.setText("");

text5. setT ext("");

}

}

catch(SQLException ex)

{

JOptionPane.showMessageDialog(application," SQLERROR:" +
ex.getMessage() ,"Data Base ERROR" ,JOptionPane.ERROR_MESSAGE}

}

78

}// if cancel pressed

}// end of action performed

}

Delete product access

import javax.swing. *;

import java.sql. *;

import java.awt. *;

import java.awt.event. *;

public class DeleteProductAccess extends JintemalFrame implements ActionListener

{
JTextField textl,text2,text3,text4,text5,text6,text7,text8;

JLabel ll ,12,13,14,15,16,17,18;

JButton delete,find;

JPanel panel 1,panel2,panel3;

Container c;

Connection conn;

PreparedStatement pstmt;

String url = "jdbc.odbc.msf";

DeleteProductAccess application;

Statement stmt;

public DeleteProductAccess()

79

{

super("delete product",true,true,true,true);

c = getContentPane();

panell = new JPanel();
panel2 = new JPanel();
panel3 = new JPanel();

panel3 .setLayout(new FlowLayout(FlowLayout. CENTER));

panel2.setLayout(new GridLayout(7 ,2));

panell .setLayout(new FlowLayout(FlowLayout.CENTER));

11 = new JLabel("Code",JLabel.CENTER);
12 = new JLabel("Description" ,JLabel.CENTER);
13 = new JLabel("Price",JLabel.CENTER);
14 = new JLabel("Tax",JLabel.CENTER);
15 = new JLabel("Supplier code ",]Label.CENTER);
16 = new JLabel("Date" ,JLabel.CENTER);
17 = new JLabel("Count",JLabel.CENTER);
18 = new JLabel("ID Number ",JLabel.CENTER);

textl = new JTextField(" ",10);
text2 = new JTextField(" ",15);
text3 = new JTextField(" ",6);
text4 = new JTextField(" ",5);
text5 = new JTextField(" ",10);
text6 = new JTextField(" ",11);
text? = new JTextField(" ",5);
text8 = new JTextField(" ",10);

delete = new JButton("Delete");

80

find= new JButton("Find");

pane13 .add(l 1);

pane13 .add(text 1);

panel3.add(find);

panel2.add(l8);

panel2.add(text8);

panel2.add(l2);

panel2.add(text2);

panel2.add(l3);

panel2.add(text3);

panel2.add(l4);

panel2 .add(text4);

panel2.add(l5);

panel2 .add(text5);

panel2.add(l6);

panel2.add(text6);

panel2.add(l7);

panel2.add(text7);

panel I .add(delete);

c.add(panel3,BorderLayout.NORTH);

c.add(panel2,BorderLayout. WEST);

c.add(panel 1,BorderLayout.SOUTH);

81

delete.addActionListener(this);

find. addActi onLi stener(this);

setSize(300,250);

setVisible(true);

} // end of Msf constructuer

public void actionPerforrned(ActionEvent e)

{
String cd = textl .getText().trim();

if (e.getSource() == find)
{

try

{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{

JOptionPane.showMessageDialog(application,exp.getMessage(),"WARNING",JOptionP

ane. WARNING _MESSAGE);

}

82

try

{conn= DriverManager.getConnection(url," "," ");

stmt = conn.createStatement();

Strings= "SELECT* FROM product"+ "WHERE procode = "' + cd +""';

ResultSet rset = stmt.executeQuery(s);

boolean f =rset.next();

if(f)

{

text I .setText(rset.getString("procode"));

text8.setText(textl .getText());

text2.setText(rset.getString("proname"));

text3.setText(String.valueOf(rset.getDouble("proprice")));

text4 .setT ext(String. valueOf(rset. getDouble("protax")));

text5. setT ext(rset. getString("prosuplier"));

text6.setText(String.value0f(rset.getDate("prodate")));

text7. setT ext(String. val ueOf(rset. getlnt(" procount")));

}

else

{
J OptionPane.showMessageDialog(application, "Not Found !\nTry

Again","MESSAGE" ,JOptionPane.INFORMATION_MESSAGE);

83

}

}

catch(SQLException ex)

{
JOptionPane.showMessageDialog(application, "SQLERROR:" +

ex.getMessage() ,"Data Base ERROR" ,JOptionPane.ERROR_MESSAGE);

}

}

if(e.getSource() = delete)
{

try
{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{

JOptionPane.showMessageDialog(application,exp.getMessage(),"WARN1NG",JOptionP

ane.W ARN1NG_MESSAGE);

}

84

try

{

conn= DriverManager.getConnection(url," "," ");

pstmt = conn.prepareStatement("DELETE FROM product WHERE procode

=? ")· . ,
pstmt.setString(l,cd);

pstmt.execute Update();

pstmt.close();

conn.close();

JOptionPane.showMessageDialog(application," Delete done perfectly

","INFORMATION",JOptionPane.INFORMATION_MESSAGE);

textl .setText("");

text2.setText(" ");

text3. setT ext("");

text4.setText("");

text5 . setT ext('"');

text6. setT ext("");

text7 .setText("");

text8.setText("");

}

catch(SQLException ex)

{

85

JOptionPane.showMessageDialog(application,"SQLERROR:" +
ex.getMessage() ,"Data Base ERROR" ,JOptionPane.ERROR_MESSAGE);

}

}// if cancel pressed

}// end of action performed

}

Delete supplier access

import javax.swing. *;

import java.sql. *;

import java.awt. *;

import java.awt.event. *;

public class DeleteSuplierAccess extends JlnternalFrame implements ActionListener

{
JTextField textl ,text2,text3,text4,text5;

JLabel 11,12,13,14,15;

JButton delete,find;

JPanel panel 1,panel2,panel3;

86

Container c;

Connection conn;

PreparedStatement pstmt;

String url == "jdbc:odbc:msf';

DeleteSuplierAccess application;

Statement stmt;

public DeleteSuplierAccess()

{
super("Delete supplier", true, true, true, true);

c == getContentPane();

panell == new JPanel();

panel2 == new JPanel();

panel3 == new JPanel();

panel3. setLayout(new FlowLayout(FlowLayout. CENTER));

panel2.setLayout(new GridLayout(4,2));

panell .setLayout(new FlowLayout(FlowLayout.CENTER));

11 == new JLabel("Supplier Code",JLabel.CENTER);

12 == new JLabel("New Supplier Code" ,JLabel.CENTER);

13 == new JLabel("New Supplier Name",JLabel.CENTER);

14 == new JLabel("New Supplier City",JLabel.CENTER);

15 == new JLabel("New Supplier Tel",JLabel.CENTER);

textl == new JTextField("",10);

text2 == new JTextField("",10);

text3 == new JTextField("",15);

text4 == new JTextField("",6);

text5 == new JTextField("",5);

87

delete = new JButton("Delete");

find= new JButton("Find");

panel3 .add(l 1);

panel3 .add(textl);

panel3 .add(find);

panel2.add(l2);

panel2.add(text2);

panel2.add(l3);

panel2 .add(text3);

panel2.add(l4);

panel2.add(text4);

panel2.add(l5);

panel2 .add(text5);

panel l .add(delete);

c.add(panel3,BorderLayout.NOR TH);

c.add(panel2,BorderLayout.WEST);

c.add(panel l ,BorderLayout.SOUTH);

delete.addActionListener(this);

find.addActionListener(this);

setSize(300,250);

setVisible(true);

} // end of constructuer

public void actionPerformed(ActionEvent e)

{ String nam,supcty ,supcnty ,id;

String cd = textl .getText().trim();

if (e.getSource() == find)

{

try

{ Class.forName(11sun.jdbc.odbc.JdbcOdbcDriver11);

}

catch(Exception exp)

{

J OptionPane.showMessageDialog(application,exp. getMessage(), 11 WARNING
11
,J OptionP

ane. WARNING MESSAGE);

}

try

{conn= DriverManager.getConnection(url,11 11,11 11);

stmt = conn.createStatement();

89

Strings= "SELECT* FROM suplier" + "WHERE supcode = "' + cd +""';

ResultSet rset = stmt.executeQuery(s);

boolean f =rset.next();

if(f)

{

text2.setT ext(rset.getString(1));

text3 .setT ext(rset.getString(2));

text 4. setT ext(rset. getString(3));

text5. setT ext(rset.getString(4));

}

else

{
JOptionPane.showMessageDialog(application, "Not Found !\nTry

Again" ,"MESSAGE" ,JOptionPane.INFORMATION _MESSAGE);

}

}

catch(SQLException ex)

{
JOptionPane.showMessageDialog(application,"SQLERROR:" +

ex.getMessage() , "Data Base ERROR" ,JOptionPane.ERROR _MESSAGE);

90

}

}

if(e.getSource() == delete)

{

try

{ Class.forNarne("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{

JOptionPane.showMessageDialog(application,exp.getMessage(),"WARNING",JOptionP

ane. WARNING _MESSAGE);

}

try

{

conn= DriverManager.getConnection(url," "," ");

pstrnt = conn.prepareStaternent("Delete FROM suplier WHERE supcode =?

");

pstrnt.setString(1,cd);

91

if(text2.getText().equals("") II text3.getText().equals('"') II text4.getText().equals("") II
text5.getText().equals(""))

{ JOptionPane.showMessageDialog(application,"Fill all fields" ,"Some Fields are

missing" ,JOptionPane. WARNING_ 11:ESSAGE);

}

else

{

pstmt.execute Update();

pstmt.close();

conn.closet);

JOptionPane.showMessageDialog(application," Delete done perfectly

","INFORMATION",JOptionPane.INFORMATION_MESSAGE);

textl .setText("");

text2.setText(" ");

text3. setT ext("");

text4 .setT ext("");

text5.setText("");

}

}

catch(SQLException ex)

{
J OptionPane.showMessageDialog(application," SQ LERRO R:" +

ex.getMessage() ,"Data Base ERROR" ,JOptionPane.ERROR_11ESSAGE);

}

92

}// if cancel pressed

}// end of action performed

}

Sell

import javax.swing. *;

import java.awt.event. *;

import java.awt. *;

import java.sql. *;

import java. util. Vector;

import java. util. *;

import java. text.*;

public class Sell extends JlntemalFrame implements ActionListener

{Bill b;

Container c;

JLabel 11,12,13;

JTextField tl ,t2,t3;

JButton b 1,b2,b3,b4;

JPanel pl,p2;

Statement stmt;

PreparedStatement pstmt;

Sell application;

Connection conn;

String url = "jdbc:odbc:msf';

93

Vector vect = new Vector(l00,200);

Vector vect2 = new Vector(l 00,200);

Sells;

int bin= 1;

Format formatter l ,formatter2;

java.util.Date datef;

java.util.Date timef;

String date,time;

JDesktopPane desk;

public Sell()

{ super("Sell" ,true,true,true,true);

c = getContentPane();

datef = new java.util.Date();

timef= new java.util.Date();

formatterl = new SimpleDateFormat("dd-MMM-yy");

date =formatterl .format(datef);

formatter2 = new SimpleDateFormat("hh:mm");

time= formatter2.format(timef);

b = new Bill(date,time,bin);

pl= new JPanel();

pl.setLayout(new GridLayout(3,3));

p2 = new JPanel();

p2.setLayout (new FlowLayout(FlowLayout.CENTER));

11 = new JLabel("Pro_Code",JLabel.CENTER);

94

12 = new JLabel("Count",JLabel.CENTER);

13 = new JLabel("Money _Paid" ,JLabel.CENTER);

t1 = new JTextField(" ",10);

t2 = new JTextField(" ",10);

t2.setText(" l ");

t3 = new JTextField(" ",10);

bl= new JButton("Add");

b2 = new JButton("New Bill");

b3 = new JButton("Sum");

b4 = new JButton("Print");

pl .add(l 1);

pl.add(tl);

p l.add(l2);

pl .add(t2);

pl .add(l3);

pl .add(t3);

p2.add(bl);

p2.add(b2);

p2.add(b3);

p2.add(b4);

c.add(p 1,BorderLayout.NORTH);

c.add(p2,BorderLayout.S0UTH);

setSize(400,300);

setVisible(true);

95

bl .addActionListener(this);

b2.addActionListener(this);

b3.addActionListener(this);

b4.addActionListener(this);

}

public void actionPerformed(ActionEvent e)

{ String cnt,mm,pcod,em,pcode;

double mn,mo;

String id= tl.getText().trim();

int n = Integer.parselnt(t2.getText().trim());

int day ,mon,yer ,min,hor,pcnt,pcont;

if(e.getSource() = b 1)

{

try

{
Class.forN ame(" sun.j dbc.odbc.J dbcOdbcDriver");

}

catch(Exception ex)

{

JOptionPane.showMessageDialog(application,ex.getMessage(),"Loader class

not Found" ,JOptionPane.ERROR _MESSAGE);

}

96

try

{
conn= DriverManager.getConnection(url," "," ");

stmt = conn.createStatement();

Strings ="select proname,proprice,protax from product where procode =

'"+id+"'";

ResultSet r = stmt.executeQuery(s);

boolean f =r.next();

if(f)

{
mm= r.getString("proname");

mn = r.getDouble("proprice");

mo = r.getDouble("protax");

b.fill(mm,mo,mn,n);

vect.add(id);

vect2.add(t2.getText().trim());

stmt.close();

conn.close();

tl .setText("");

t2.setText(" l ");

}

}

catch(SQLException ex)

{

97

JOptionPane.showMessageDialog(application," SQLERROR:" +
ex.getMessage() ,"Data Base ERROR" ,JOptionPane.ERROR_MESSAGE);

}

}

if(e.getSource() = b2)

{ vect.clear();

vect2.clear();

b = new Bill(date,time,bin);

}

if(e.getSource() = b3)
{

b.sum(); I* dont forget to quit after sum is calculated * I

}

if(e.getSource() = b4)

{

double g;
g =Double.parseDouble(t3.getText().trim());

b.money _paid(g);

inti= O;

intj = O;
while(i < vect.size() && j < vect2.size())

98

{

pcode =(String)(vect.get(i));

em= String.valueOf(vect2.getG));

pcont = Integer.parselnt(ern);

try

{
Class.forNarne("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception exp)

{
JOptionPane.showMessageDialog(null,exp.getMessage(),"Loader Class Not

Found" ,J OptionPane.ERROR _MES SAGE);

}

try

{
conn= DriverManager.getConnection(url,"","");

pstrnt = conn.prepareStaternent("insert into invoice values(?,?,?,?,?)");

pstrnt.setlnt(1, bin);

pstrnt.setString(2,date);

pstrnt.setString(3,tirne);

pstrnt.setString(4,pcode);

pstrnt. setlnt(5 ,pcont);

pstrnt.executeUpdate();

pstrnt.close();

99

conn.close();

}

catch(SQLException ex)

{
JOptionPane.showMessageDialog(null,ex.getMessage(), "DAT ABASE

ERROR" ,JOptionPane.ERROR _ MESSAGE);

}

i=i+l· ,
j=j+l;

}

i = O;
j = O;

while(i < vect.size() && j < vect2.size())

{
pcod =(String)(vect.get(i));

em= String.valueOf(vect2.getG));

pent = Integer. parse Int(em);

for(int k = O;k < pent ;k++)

{

try

100

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver'');

}

catch(Exception exp)

{
J OptionPane. showMessageDialog(application,exp. getMessage(), "Loader Class

Not Found" ,JOptionPane.ERROR _ MESSAGE);

}

try

{
conn= DriverManager.getConnection(url,"","");

stmt = conn.createStatement();

String s = "UPDATE product SET procount = procount - 1 WHERE procode =

"'+pcod+"' "· ,
stmt.execute Update(s);

stmt.close();

conn.close();

}

catch(SQLException ex)

{
J OptionPane. showMessageDialog(application,ex. getMessage(), "DAT ABASE

ERROR" ,JOptionPane.ERROR _ MESSAGE);

}

}

i=i+l· ,

j=j+l;

101

}

vect.clear();

vect2.clear();

t3.setText("");

bin++;

}

} // end action performed

}

Bill

import javax.swing. *;

import java.awt. *;

import java.awt.event. *;

import java.sql. *;

import java. util. *;

public class Bill extends JFrame

{ JTextArea a= new JTextArea(30,50);

Container c;

double tottax;

double totsum;

Bill application;

Statement stmt;

Connection conn;

String url = "jdbc:odbc:msf";

102

public Bill(String date,String time,int bb)

{ super("Bill");

c = getContentPane();

tottax = O;

totsum = O;

a.setText("\tMSF POST Program\n\n\tBarners Bros\n\n\tTEL:0324578\n\n");

a.append("DATE:"+date +"\n");

a.append("TIME:" +time +"\n");

a.append("Bill NO :"+bb+"\n\n");

a.setEditable(false);

c.add(a);

setSize(310,500);

setVisible(true);

}

public void fill(String nm, double tx, double pc,int n)

{double me;

me = pc * tx + pc ;
if(n == 1)

a.append(nm+"\t"+tx+"\t\t" + me + "\n");

if(n > 1)
a.append(n +" x"+ nm+"\t"+n * tx+"\t\t"+n * mc+"\n");

tottax+=tx;

totsum+=mc;

}

public void sum()

{
a. append (11 ---\n 11);

a.append("TOT TAX "+"\t\t\t" +tottax + "\n");

103

------- ·----

a.append("TOT PRICE" +"\t\t\t" + totsum + "\n");

}

public void money _paid(double t)

{

a. append(11 ---\n 11),

if (t == totsum)

a.append("Money Paid"+"\t\t\t"+t+"\n");

if (t > totsum)

{
a.append("Money Paid"+"\t\t\t"+t+"\n");

a.append("Money Remained"+"\t\t"+(t-totsum)+"\n\n");

}

a.append("\t"+"THANK YOU");

}

}

--- -
Show sales

import javax.swing. *;

import java.awt.event. *;

import java.sql. *;

import java.awt. *;

import java. util. *;

import javax.swing.table. *;

import java.text. *;

104

public class Reports extends JlntemalFrame implements ActionListener

{Reports mp;

DefaultTableModel model;

Container c;

JTable table;

JScrollPane scrol;

JPanel panel 1,panel2,panel3,panel4,panel5,panel6;

JLabel label 1,label2,label3 ,label4;

JTextField textl,text2,text3;

JButton button;

Statement stmt;

Connection conn;

String url = "jdbc:odbc:msf'';

Vector vector;

public Reports()

{ super("Reports", true, true, true, true);

c = getContentPane();

model = new DefaultTableModel();

JTable table = new JTable(model);

model.addColumn("Invoice _ Number");

model.addColumn(''Date");

model.addColumn("Time'');

model.addColumn("Product_ Code");

model.addColumn("Product_ Count");

scrol = new JScrollPane(table);

105

panel 1 = new JPanel();

labell = new JLabel("REPORTS");

panel l .add(label 1);

panel3 = new JPanel();

panel3.add(scrol);

button= new JButton("FIND");

panel4 = new JPanel();

panel4.add(button);

panel2 = new JPanel();

panel2.setLayout(new GridLayout(3,2));

label2 = new JLabel("TOT Sales:",JLabel.RIGHT);

label3 = new JLabel("TOT Invoices:",JLabel.RIGHT);

label4 = new JLabel("Sales Count:",JLabel.RIGHT);

textl = new JTextField(lO);

text2 = new JTextField(lO);

text3 = new JTextField(lO);

panel2.add(label2);

panel2.add(textl);

panel2.add(label3);

panel2.add(text2);

panel2.add(label4);

panel2.add(text3);

106

panel5 = new JPanel();
panel5.setLayout(new BorderLayout());

panel5.add(panel4,BorderLayout.NORTH);

panel5 .add(panel2,BorderLayout. CENTER);

c.add(panel 1,BorderLayout.NORTH);

c.add(panel3 ,BorderLayout. CENTER);

c.add(panel5,BorderLayout.SOUTH);

button.addActionListener(this);

setSize(600,600);

setVisible(true);

}

public void actionPerformed(ActionEvent e)

{ int num;

java.sql.Date t1;

java.sql.Time t2;

String dtl,dt2,tml,tm2,s;

int n;

if(e.getSource()= button)

{

try

{

107

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception ex)

{

JOptionPane.showMessageDialog(mp,ex.getMessage(),"ERROR",JOptionPane.ERROR_

MESSAGE);

}

try

{

conn= DriverManager.getConnection(url,"",1111);

stmt=

conn.createStatement(ResultSet. TYPE SCROLL SENSITIVE,ResultSet. CONCUR UP - - -

DATABLE);

String m ="select* from invoice ORDER BY invdate,invtime";

ResultSet r = stmt.executeQuery(m);

while(r.next())

{

vector= newVector(5);

num = r.getlnt("invnum");

tl = r.getDate("invdate");

t2 = r.getTime("invtime");

s = r.getString("procode");

n = r.getlnt("procount");

vector.add(new Integer(num));

vector.add(tl);

108

vector.add(t2);

vector.add(s);

vector.add(new Integer(n));

model.addRow(vector);

}

stmt.close();

conn.close();

}

catch(SQLException exp)

{
JOptionPane.showMessageDialog(mp,exp.getMessage(),"SQL

ERROR" ,JOptionPane.ERROR _ MESSAGE);

}

try

{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception ex)

{

109

J OptionPane.showMessageDialog(mp,ex.getMessage(), "ERROR" ,JOptionPane.ERROR _

MESSAGE);

}

try

{
conn= DriverManager.getConnection(url,"","");

stmt = conn.createStatement();

String d = "SELECT sum((invoice.procount)*((product.proprice *

product. protax)+product. pro price)) FROM invoice,product WHERE invoice. procode =

product. procode";

ResultSet r = stmt.executeQuery(d);

if(r.next())

textl.setText(String.valueOf(r.getDouble(l)));

stmt.close();

conn.close();

}

catch(SQLException exp)

{
JOptionPane.showMessageDialog(mp,exp.getMessage(),"SQL

ERROR" ,JOptionPane.ERROR _ MESSAGE);

}

try

{
Class.forN ame(" sun.j dbc. odbc.J dbcOdbcDriver");

}

catch(Exception ex)

110

{

JOptionPane.showMessageDialog(mp,ex.getMessage(), "ERROR" ,JOptionPane.ERROR _

MESSAGE);

}

try

{

conn= DriverManager.getConnection(url,"","");

stmt = conn.createStatement();

String p = "SELECT sum(invoice.procount) FROM invoice, product WHERE

invoice.procode = product.procode";

ResultSet r = stmt.executeQuery(p);

if(r.next())

text2.setText(String.valueOf(r.getDouble(l)));

stmt.close();

conn.close();

}

catch(SQLException exp)

{

JOptionPane.showMessageDialog(mp,exp.getMessage(),"SQL

ERROR" ,JOptionPane.ERROR_ MESSAGE);

}

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception ex)

111

{

JOptionPan~.showMessageDialog(mp,ex.getMessage(),"ERROR",JOptionPane.ERROR_

MESSAGE);

}

try

{
conn= DriverManager.getConnection(url,"","");

stmt = conn.createStatement();

String g = "SELECT DISTINCT count(invnum) FROM invoice";

ResultSet r = stmt.executeQuery(g);

if(r.next())

text3.setText(String.value0f(r.getDouble(l)));

stmt.close();

conn.close();

}

catch(SQLException exp)

{
JOptionPane.showMessageDialog(mp,exp.getMessage(),"SQL

ERROR" ,JOptionPane.ERROR _ MESSAGE);

}

}

112

	Page 1
	Titles
	\. t: JJ('!
	Faculty of Engineering
	NEAR EAST UNIVERSITY

	Images
	Image 1

	Page 2
	Titles
	ACKNOLEDGMENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGMENT i
	ABSTRACT ii
	INTRODUCTION iii
	CHAPTER ONE: JAVA PROGRAMMING FUNDUMENTALS 1
	1.1 About The Java Technology 1
	1.2 Language Basics 5
	1.3 Object Oriented Programming 6
	1.4 Layout Managers 10
	1.5 How To Use Action Listener 13
	1.6 JComponents 13

	Images
	Image 1

	Page 5
	Titles
	18
	25

	Images
	Image 1

	Tables
	Table 1

	Page 6
	Titles
	CHAPTER FOUR: STOK PROGRAM DESIGN
	4.2Block Diagram Of The System
	4.3Main Menu

	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 9
	Titles
	CHAPTER ONE

	Images
	Image 1

	Page 10
	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 1
	Titles
	~(

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	CHAPTER2

	Images
	Image 1

	Page 12
	Titles
	Database File

	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Titles
	CHAPTER3
	OPEN DATABASE CONNECTIVITY AND JAVA DATABASE

	Images
	Image 1
	Image 2

	Page 1
	Titles
	3.2 JavaDataBaseConnectivity(JDBC)

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1

	Page 9
	Titles
	CHAPTER4
	STOCK DATABASE DESIGN

	Images
	Image 1

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Titles
	Figure 4.2 Block diagram of the system
	4.3 Main Menu
	4.2 Block diagram of the system

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Titles
	CONCLUSION

	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Titles
	REFERENCES

	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1

	Page 1
	Titles
	{
	}
);
	{

	Images
	Image 1
	Image 2

	Page 2
	Titles
	}
	}
	}
	}

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	}
	}

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	}
	}
	{

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	{
	}
	}

	Images
	Image 1

	Page 8
	Titles
	}
	{

	Images
	Image 1

	Page 9
	Titles
	}
	}

	Images
	Image 1
	Image 2

	Page 10
	Titles
	}

	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Page 12
	Titles
	}

	Images
	Image 1
	Image 2

	Page 13
	Titles
	}

	Images
	Image 1

	Page 14
	Titles
	}
	}
	}
	}

	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles
	{
	{

	Images
	Image 1

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Titles
	67

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	}
	}
	}

	Images
	Image 1

	Page 4
	Titles
	}
	{
	}
	}

	Images
	Image 1

	Page 5
	Titles
	}
	{

	Images
	Image 1

	Page 6
	Titles
	}
	}
	}

	Images
	Image 1
	Image 2

	Page 7
	Titles
	}

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	}
	}

	Images
	Image 1
	Image 2

	Page 11
	Titles
	{
	}
	{
	}
	}
	}
	{

	Images
	Image 1
	Image 2

	Page 12
	Titles
	}

	Images
	Image 1

	Page 13
	Titles
	}
	}

	Images
	Image 1

	Page 14
	Titles
	}

	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Titles
	{
	}
	}

	Images
	Image 1

	Page 3
	Titles
	}
	{

	Images
	Image 1

	Page 4
	Titles
	}
	{
	}
	}
	}
	{
	}

	Images
	Image 1

	Page 5
	Titles
	. ,
	}
	{

	Images
	Image 1

	Page 6
	Titles
	}
	}
	{

	Images
	Image 1
	Image 2

	Page 7
	Titles
	{

	Images
	Image 1

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Titles
	{
	}

	Images
	Image 1

	Page 10
	Titles
	if(f)
	}
	{

	Images
	Image 1
	Image 2

	Page 11
	Titles
	}
	}
	{

	Images
	Image 1

	Page 12
	Titles
	}
	{
	}
	}

	Images
	Image 1

	Page 13
	Titles
	}

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Titles
	}
	{
	}

	Images
	Image 1
	Image 2

	Page 17
	Titles
	{
	}
	}
	{

	Images
	Image 1
	Image 2

	Page 18
	Titles
	}
	}
	}
	{
	}

	Images
	Image 1
	Image 2
	Image 3

	Page 19
	Titles
	{
	}

	Images
	Image 1
	Image 2
	Image 3

	Page 20
	Titles
	{
	}
	,
	{

	Images
	Image 1

	Page 21
	Titles
	}
	,
	}
	}
	}
	,

	Images
	Image 1

	Page 22
	Titles
	}
	}
	}

	Images
	Image 1

	Page 23
	Titles
	}
	{

	Images
	Image 1

	Page 24
	Titles
	{
	}
	}
	}

	Images
	Image 1
	Image 2
	Image 3

	Page 25
	Images
	Image 1
	Image 2

	Page 26
	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Titles
	{

	Images
	Image 1

	Page 29
	Titles
	}
	}
	}

	Images
	Image 1

	Page 30
	Titles
	{
	}
	}

	Images
	Image 1

	Page 31
	Titles
	}
	}
	}
	111

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 32
	Titles
	{
	}
	}
	}
	}

	Images
	Image 1
	Image 2

