
•

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

SECURE COMMUINCATION USING DES

Graduation Project

COM-400

Student: Mahmoud ALLabadi (20011073)

Supervisor: Prof. Dr. Fakhreddin Mamedov

Nicosia - 2004 ~~!~~\\']~
NEU

/

•

ACKNOWLEDGEMENTS

First of all I would like to express sincere gratitude to my project supervisor Professor

Dr. Fakhherredin Mamedov for his patient and consistent support. Without his

encouragement and direction, this work would not have been completed.

More over I want to pay special regards to my family who are enduring these all

expenses and supporting me in all events. I am nothing without their prayers. They also

encouraged me in crises. I shall never forget their sacrifices for my education so that I

can enjoy my success.fa/ life as they are expecting, I will never forget my father, my

mother, my brother and sisters. They may get peace.fa/ life in Heaven.

Finally, the best of my acknowledges, I want to honor all my friends who have supported

me or helped me in our life. I also pay my special thanks to my all friends who have

helped me in my project and gave me their precious time to complete my project,

especially Ahmed Zidat, Amjad Humoda, Mahmoud EL-Ali, Magdi AL-Tebe, Mohammed

AL-Arrore And Rami Alea.

•

ABSTRACT

Cryptography protects a message or file from being read by an eavesdropper who

has no other means of access to either the original text of what is protected, or the key with

which it is encrypted. We can achieve this by using DES algorithm. We use a program to

encrypt the text; the program will change the letters into symbols and other weird

characters, so when someone opens the file they cannot read it. The interconnection of

networks is an increasing trend in government and private industry. There is the obvious

danger that connections made in such an extended network may increase the risk of a

security compromise, with the owners unaware of the risk. Network connections should

therefore be protected, at a level based on the risk.

The aim of this project is to transmit data and preserve its privacy and

authentication in critical applications. One of the several data encryption types, Data

Encryption Standard (DES) has emerged to be the most commonly used in varying
applications.

The selective application of technological and related procedural safeguards is an

important responsibility of every Federal organization in providing adequate security to its

electronic data systems. The Data Encryption Standard (DES) which may be used by

Federal organizations to protect sensitive data. Protection of data during transmission or

while in storage may be necessary to maintain the confidentiality and integrity of the

information represented by the data. The algorithms uniquely define the mathematical steps

required to transform data into a cryptographic cipher and also to transform the cipher back

to the original form. The Data Encryption Standard is being made available for use by

Federal agencies within the context of a total security program consisting of physical

security procedures, good information management practices, and computer

system/network access controls.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
1. INTRODUCTION TO SECURE COMMUINCATION

1.1 Overview
1.2 Secure Communications

1.2.1 Secure Communications over Insecure Channels
1.3. Security objectives
1. 4 Data Privacy
1.5 Authentication
1. 6 Data Integrity

2. INTRODUCTION TO CRYPTOGRAPHY
2.1 Overview
2.1 Cryptography
2.3 Basic Functions and Concepts

2.3.1 Function
2.3 .2 Basic Terminology and Concepts
2.3 .2.1. Encryption Domains and Co-domains
2.3.2.2 Encryption and Decryption Transformation
2.3 .2.3 Achieving Confidentiality
2.3.2.4 Communication Participants
2.3.2.5. Channels
2.3.2.6 Security
2.3.2.7 Network Security in General

2.4 Symmetric-key Encryption
2.4.1 Block Ciphers
2.4.2 Stream Ciphers
2.4.3 The Key Space

2.5 Digital Signatures
2.5.1. Nomenclature and Set-up

2.6 Public-key Cryptography
2.7 Hash Functions
2.8 Protocols, Mechanisms

2.8.1 Protocol and Mechanism Failure
2.9 Classes of Attacks and Security Models

2.9.1 Attacks on Encryption Schemes
2.9.2 Attacks on Protocols

3. CRYPTOGRAPHY FUNCTIONS
3.1 Overview
3.2 Block Cipher

3 .2.1 Iterated Block Cipher
3.2.2 Electronic Codebook (ECB) Mode

lll

•

ii
iii
V

1
1
1
2
3
4
5
6
9
9
9

12
12
13
13
13
13
14
15
15
16
16
17
17
18
18
18
19
20
20
20
21
21
22
23
23
23
23
23

•

3 .2.4 Feistel Ciphers
3 .3 Authentication Confirms an Identity
3.4 Symmetric-Key algorithms

3.4.1 Data Encryption Standard (DES)
3.4.2 Triple DES

3.5 Asymmetric key Algorithms
3.5.1 RSA
3.5.2Diffie and Hellman's Contribution

3.6 Hash Functions
3.7 Digital Signatures
3.8 Attacks on Ciphers

3.8.1 Exhaustive Key Search
3.8.2 Differential Cryptanalysis
3. 8. 3 Linear Cryptanalysis
3.8.4 Weak Key for a Block Cipher
3.8.5 Algebraic Attacks
3.8.6 Data Compression Used With Encryption
3.8.7 When an Attack Become Practical

3.9 Strong Password-Only Authenticated Key Exchange
3.9.1 The Remote Password Problem
3.9.2 Characteristics of Strong Password-only Methods

4. DES OVER SECURE CHANNEL
4.1 Overview
4.2 Simplified DES (S_DES)

4.2.1 Subkey generation
4.2.2 Relation with DES

4.3 History of DES
4.4 How DES Works in Detail

4.4.1 Step 1 find 16 sub keys, each of which is 48-bits long
4.4.2 Step 2: Encode each 64-bit block of data
4.4.3 DES Modes of Operation
4.4.4 Some Preliminary Examples of DES

4. 5 Cracking DES
4.6 Triple-DES

5. IMPLEMENTATION OF S DES BY USING C LANGUAGE
5.1 Overview
5.2 Flow Chart of Software
5.3 Encryption and Decryption Algorithms
5.4 Examples of Encryption and Decryption
5.5 Summary

CONCLUSION
REFERENCES
APPENDIX

IV

25
26
28
28
29
29
30
31
32
32
34
35
35
35
36
36
36
37
38
39
40
41
41
41
44
45
46
47
49
54
61
61
63
64
65
65
65
66
67
69
70
71
73

•

INTRODUCTION

Communication and information technology are making a dramatic impact on

society and commerce. Digital information can be efficiently stored, processed and

communicated, allowing substantial improvements in production and wealth.

Data encryption is used pervasively in today's connected society. The two most

basic facets of modern day data encryption are data privacy and authentication. As modem

society becomes more connected, and more information becomes available there is a need

for safeguards which bring data integrity and data secrecy. In addition, authenticating the

source of information gives the recipient, with complete certainty that the information came

from the original source and that it has not been altered from its original state. Both, the

needs for information privacy and data authentication have motivated cryptography.

The DES cryptographic algorithm converts plaintext to ciphertext using the 56-bit

key in the encryption process. The same algorithm is reused with the same key to convert

ciphertext back to plaintext, in the decryption process. The algorithm consists of 16

"rounds" of operations that mix the data and key together in a prescribed manner using the

fundamental operations of permutation and substitution. The goal is to completely scramble

the data and key so that every bit of the ciphertext depends on every bit of the data plus

every bit of the key.

The unique key chosen for use in a particular application makes the results of

encrypting data using the algorithm unique. Using a different key causes different results.

The cryptographic security of the data depends on the security provided for the key used to

encrypt and decrypt the data.

My first chapter is all about secure communication and its objectives authentication,

data integrity and data privacy.

My second Chapter is all about the introduction as cryptography is the art of

limiting the use and access of information to attain secure communication, to address such

threats. And what functions involve in this technique and then main encryption and

decryption of data.

V

•

In my third chapter I have explained various functions techniques used in

cryptography in detail. It includes ciphers and the two kinds of cryptography: private key

algorithm and public key algorithm and some examples on each of them.

The fourth chapter describes briefly simplified DES (S_DES) and how DES

algorithm works in details, and there are a lot of examples which make the understanding

of this complex algorithm more easily. And also assigns if is it possible to crack DES

algorithm or not.

The final chapter presents implementation S_DES by using C language which it's

educational more than secure encryption algorithm.

Conclusion presents the obtained important results and contribution in the project.

Vl

•

1. INTRODUCTION TO SECURE COMMUINCATION

1.1 Overview
When two people wish to communicate over some distance, they will send some

form of message. To prevent some enemy from understanding the message, they can

encrypt it. If the enemy were to learn the encryption method, he could read the message. It

would seem obvious that the method of encryption cannot be transmitted, in the clear, over

the communications channel, and still be useful. This, however, is not so. If the two

communicants transmit the encryption method in the proper fashion, then they will be able

to understand what is going on, but any enemy will become hopelessly confused. Secure

communication should provide Privacy, Authentication, and Integrity.

1.2 Secure Communications
The Mutual Authentication procedure ensures that both sender and recipient are

authorized to communicate together. This procedure is very convenient when it comes to

protecting access to a server and avoiding connection to a wrong address. Smart cards lend

themselves excellently to Mutual Authentication. At the beginning of the communication

session you check with your smart card whether or not you are connected to the right

server. The authentication is managed directly between the smart card and the server or

fire-wall and is based on cryptographic algorithms and random numbers. As all the

calculations are made internally in the smart card no outsiders have insight into how these

computations are performed. Both sender and recipient must be sure that the information

communicated over the network has not been modified while being sent. Without security

methods an intruder has the capability to modify the data while it is being transferred. Two

features based on the same concept can be used to certify the integrity of the information.

The first feature is the digital signature. The digital signature is a set of

information calculated from the data to be sent and is therefore unique to each document.

The most widely used approach to calculate this signature is based on hashing algorithm.

This algorithm reduces the message to a unique smaller set of data. After the exchange, the

signature is enciphered using a cryptographic algorithm. Throughout the whole process the

digital signature is unique to the sender and to the message itself The message itself is sent

1

•

in plain-text with the ciphered signature. If an intruder changes the message, the ciphered

signature is no longer correct and the recipient rejects the message.

The second feature is the Cipher text method. This means that the complete

message is enciphered by cryptographic algorithm before sending. In this way, no intruder

has the capability to understand the message and even less to change it. The recipient

receives the Cipher text and uses a decryption algorithm to get the plain-text message.

1.2.1 Secure Communications over Insecure Channels

When two people wish to communicate over some distance, they will send some

form of message. When they fear that some enemy, who they do not wish to read the

message, might intercept it, then they will encrypt the message. The enemy will then be

unable to understand the message, even if he intercepts it, because he does not know how it

was encrypted. If the enemy were to learn the encryption method, then he could read the

message. Thus, the two people can communicate securely because they have information

which is not known to the enemy. This implies that the two people, (call them A and B),

have made some form of prior arrangement, while E was unable to listen in. It would thus

appear that a necessary precursor to a cryptographically secure communications channel

between A and B is the making of prior arrangements or the communication of information

over some very special communications channel which is known to be secure already. This

is not in fact the case. If A and B have made no prior arrangements, and E can listen to all

communications between A and B, they can still establish a cryptographically secure

communications channel. The work required of E to break the encryption will increase as

the square of the work required of A and B to establish the link. Two agencies, be they

computers, people, institutions, or whatever, wish to communicate securely. These two, A

and B, have available a communication channel with the following properties:

No message sent by either A or B can be modified by E. Eis unable to send false or

spunous messages.

E can read every message which is sent. His reception of these messages is as good

as that of A and B. He does not occasionally let a message slip by, but receives all of them.

In addition to this, through some massive breach of security by both A and B, E is

aware of everything that A and B know. This security breach has just been sealed, and E is

2

•

no longer able to find out information known to A and B, unless they transmit it on the

communications channel.

1.3. Security objectives
The table below explains some of objectives.

Table 1.1 Some information security objectives

Privacy or Keeping information secret from all but those who are

confidentiality authorized to see it.

Data integrity Information has not been altered by unauthorized or unknown

ensunng means.

Entity Corroboration of the identity of an entity (e.g., a person, a

authentication computer terminal, a credit card, etc.).

or

identification

Message Corroborating the source of information; also known as data

authentication origin authentication.

Signature A means to bind information to an entity.

Authorization Conveyance, to another entity, of official sanction to do or be

something.

Validation A means to provide timeliness of authorization to use o~

manipulate information or resources.

Access Restricting access to resources to privileged entities.

control

Certification Endorsement of information by a trusted entity.

Time Recording the time of creation or existence of information.

stamping

Witnessing Verifying the creation or existence of information by an entity

other than the creator.

Receipt Acknowledgement that information has been received.

3

•

Confirmation Acknowledgement that services has been provided.

Ownership A means to provide an entity with the legal right to use or

transfer a resource to others.

Anonymity Concealing the identity of an entity involved in some process.

Non- Preventing the denial of previous commitments or actions.

repudiation

Revocation Retraction of certification or authorization.

In later three sections some related concepts belong to security.

1.4 Data Privacy
There are two aspects to determining the level of privacy that can be attained. To

begin with, there is an analysis of the security of the two systems from an algorithmic view.

The questions rose at this stage aim to consider exactly how hard it is to derive a private or

secret key from encrypted text or public keys.
Currently, one of the main secret key algorithms is DES, although two other more

recent algorithms, RC2 and RC4 have also arisen. The size (i.e. length) of keys employed

in processes is considered to be a useful metric when considering the strength of
cryptology. This is because, longer key sizes generally make encrypted text more difficult

to decrypt without the appropriate key.
The DES algorithm has a maximum key length of 56 bits. Current consensus is that

this range of key size yields keys that are strong enough to withstand attacks using current

technologies. The algorithms fixed size nature may, however, constrain it in the future

when hardware and theoretic advances are made. The RC2 and RC4 algorithms also have

bounded maximum key sizes that limit their usefulness similarly.

A major problem associated with secret key systems, however, is their need for a

secure channel within which keys can be propagated. In Kerberos, every client needs to be

made aware of its secret key before it can begin communication. To do so without giving

away the key to any eavesdroppers requires a secure channel. In practice, maintaining a

channel that is completely secure is very difficult and often impractical.

4

•

A second aspect to privacy concerns how much inferential information can be

obtained through the system. For example, how much information is it possible to deduce

without explicitly decrypting actual messages. One particularly disastrous situation would

be if it were possible to derive the secret or private keys without mounting attacks on public

keys or encrypted messages.

There is a danger that the ability to watch a client progress through the

authentication protocol is available. Such information may be enough to mount an attack on

the client by jamming the network at strategic points in the protocol. Denial of service like

this may be very serious in a time critical system.

In pure algorithmic terms, RSA is a strong. It has the ability to support much longer

key lengths than DES etc. Key length is also only limited by technology, and so the

algorithm can keep step with increasing technology and become stronger by being able to

support longer key lengths.

Unlike secret key systems, the private keys of any public key system need never be

transmitted. Provided local security is strong, the overall strength of the algorithm gains

from the fact that the private key never leaves the client.

RSA is susceptible to information leakage, however, and some recent theoretic work

outlined an attack plan that could infer the private key of a client based on some leaked,

incidental information. Overall however, the RSA authentication protocol is not as verbose

'as the Kerberos equivalent. Having fewer interaction stages limits the bandwidth of any

channel though which information may escape. A verbose protocol like Kerberos's simply

gives an eavesdropper more opportunity to listen and possibly defines a larger and more

identifiable pattern of interaction to listen for.

1.5 Authentication
A system geared primarily towards secure authentication of access requests and

identity. It achieves this through a three stage protocol. As clients progress through the

protocol they gain more confidence in the server's authenticity based on a protocol whereby

a server is deemed trustworthy if it can return a piece of secret information known

originally only to the client that is passed as a message to the server. The message is

encoded prior to transmission in a key that only the proper destination server can

5

•

understand. This general algorithm is applied at first to the main repository, which is

assumed not to have been compromised; no communication in the system can be trusted

until the repository regains integrity.

If a server can understand a message containing some secret piece of information,

known only to the originating client initially, that was sent to it in an encrypted form using

its own public key, then returning the secret information to the originating client (using its

public key) will gain the clients trust. The client may assume that the responding server is

legitimate as only the legitimate server could decrypt the original message.

The main sticking point in this protocol believes whether or not the initial message

is being encoded using the correct public key. Often to determine the correct public key for

a service (if it is not initially known) a client must ask a public key server. An attacker

successfully impersonating the public key server may supply the client with a fake key,

claiming that it is the correct public key for the required server when, in actuality, the

impostor can decrypt the supplied key and is waiting to steal the messages.

RSA uses 'certificates' that can be attached to a reply to authenticate the public key

of the sender. The certificates themselves are trusted because they are issued from a higher

authority (a Certificate Authority, CA) that, it must be assumed, has validated the contents

of the certificate.

The trust of the certificate issuer in this situation is similar to the trust required of

the key repository. If can be argued that trust can be broken between the client and

certificate issuer. If a false certificate is presented to a trusting client, the client has no

defenses and may simply believe the false certificate.

1.6 Data Integrity
RSA, as a public key cryptosystem, supports the notion of digitally signing a

document by appending a '' digital signature" to the main body text of the document. To

prove that the signature corresponds to the message body, and hasn't been copied from

another of the sender's messages by an impostor, each signature is made message specific

by the sender before the message is sent. A technique called hashing is used to derive a

'unique' identifier (or "message digest") that corresponds to the message being sent. Each

identifier is probabilistically unique to the point that it is unlikely that any other meaningful

6

•

message may map to the same digest. Well known digest functions MD2, MD4 and MDS

are algorithmically strong in the respect that they produce digests that are probabilistically

unique within an appropriately wide context. By encrypting the digest with the private key

of the sender, no other person may alter it in transit, except in the unlikely event that they

have the private key of the sender. Anyone may decrypt the signature using the sender's

public key. This yields the original message digest which can be compared with a hashed

version of the received version. If the two digests don't match, then the message has been

corrupted or vandalized.
All in all, digital signatures provide an elegant method of detecting unauthorized

modifications to information in transit, or even in storage. Performing the hashing

operations on top of any standard encryption may incur a cost, but the overall idea is to not

have to encrypt bulky general messages in their entirety if they only need protection against

modification, rather than against snooping.

The cost of encrypting an entire message would theoretically be larger than the total

cost of hashing the entire message into a smaller "digest" and then encrypting that digest.

This is only acceptable, however for messages that require protection against modification

and not against snooping.
The main limitations of digital signatures are their dependency on an authentic

public key. If the receiver is fooled into using the wrong public key then an impostor can

craft his own signatures and pass false information. Because all messages are encrypted

with the appropriate keys, the transmissions are assured to be secure within the domain

To communicate outside the domain although communication outside the domain is

possible, it creates tenuous long links which are possibly more prone to attack. Their size

attracts attention and logically there are more points to attack. To be sure of authenticity, all

data transmitted needs to be encrypted by the sender using an appropriate key that was

gained by communicating.

Communication is an essential part of life. We can say that it marks the progress of

human beings. Traditional media for communication are the sending of letters through the

Post Office, talking over the phone through the Telecommunications company, or -- more

commonly -- to speak directly with the other person. These traditional media have existed

for a long period of time and special provisions have been made so that people can

7

•

communicate in a secure way, either for personal or for business communication. For face

to-face communication, people can recognize each other's physical characteristics or they

can compare hand-written signatures with that of official documents like an ID card.

Mimicking all of the physical characteristics of a person is difficult. People can accept with

a high level of certainty the identity of their colleague. Signature forging is difficult and

there are laws that define forging as a crime. The bottom line is that for each

communication medium, there is a transitional period when specific laws and technologies

are set in order for people to communicate securely and transparently.

The Internet, as a network that interconnects networks of computers around the

world, is a new communication medium that is substantially different from existing ones.

For example, on the Internet, the communicating parties do not have physical contact. It is

rather more difficult for one to disguise oneself to someone else, imitate the voice and other

aspects behavior and get information on prior common experiences. On-line transactions

do not impose such barriers for illegitimate transactions. Additionally, on the Internet, one

can automate the same type of fraud bringing higher gains and a bigger incentive. The law

and the technologies to let transparent and secure communication have not been fully

defined or set yet.

Since the Cryptography is the science of devising methods that allow information to

be secret in a secure form in such a way that the only person able to retrieve this

information is the intended recipient, so to attain secure communication cryptography must

be applied.

8

•

2. INTRODUCTION TO CRYPTOGRAPHY

2.1 Overview
To introduce cryptography, an understanding of issues related to information

security in general is necessary. Network security manifests itself in many ways according

to the situation and requirement. Regardless of who is involved, to one degree or another,

all parties to a transaction must have confidence that certain objectives associated with

network security have been met. Often the objectives of on security cannot solely be

achieved through mathematical algorithms and protocols alone, but require procedural

techniques and abidance of laws to achieve the desired result. One of the fundamental tools

used in network security is the signature. It is a building block for many other services such

as no repudiation, data origin authentication, identification, and witnessing, to mention a

few. Achieving network security in an electronic society requires a vast array of technical

and legal skills. There is, however, no guarantee that all of the network security objectives

deemed necessary can be adequately met. The technical means is provided through

cryptography. Cryptography is not the only means of providing network security, but rather

one set of techniques

2.1 Cryptography
Cryptography is the study of mathematical techniques related to aspects of network

security such as confidentiality, data integrity, entity authentication, and data origin

authentication.

The following are the goals of the Cryptography

1. Confidentiality is a service used to keep the content of information from all but

those authorized to have it. There are numerous approaches to providing

confidentiality, ranging from physical protection to mathematical algorithms.

2. Data integrity is a service which addresses the unauthorized alteration of data. To

assure data integrity, one must have the ability to detect data manipulation by

unauthorized parties.

9

•

3. Authentication is a service related to identification. This function applies to both

entities and information itself Aspect of cryptography is usually subdivided into

two major classes: entity authentication and data origin authentication.

4. Non-repudiation is a service which prevents an entity from denying previous

commitments or actions.

A fundamental goal of cryptography is to adequately address these four areas in

both theory and practice. Cryptography is about the prevention and detection of cheating

and other malicious activities. A number of basic cryptographic tools (primitives) used to

provide network security. Examples of primitives include encryption schemes hash

functions, and digital signature schemes. Figure 2.1 provides a schematic listing of the

primitives considered and how they relate.

These primitives should be evaluated with respect to various criteria such as:

1. Level of security. This is usually difficult to quantify. Often it is given in terms of

the number of operations required to defeat the intended objective.

2. Functionality. Primitives will need to be combined to meet various network

security objectives. Which primitives are most effective for a given objective will

be determined by the basic properties of the primitives.

10

u rik,i vw:I
P. ri rnithm:,

f;,;,cu1ity
Prlmltlv>':.s

Put:,lh::+ . .:,':{
Prirnllivos

•

Arb I trnry li:,11~itt1
lw:s1·1 function:s

i'?,lor::k
ciph,,rs

Syn1rnfftril:-k,1y
ciphers

t'.;;ln,,11in
dpl1!!1'$ i\rt, i lm I)' l.:c>fl~J lll

l1asl1 tunctiurn:. (Ml,C:s:,

Ps,i ud o rrn1,:k,rn
~:,~~(J IJ<:·~1-1 Ct.~~~

ld~mtifiiwtlon primiti'if':,

Publir~-kEN
dpl1ers ··

l<:fr:,n1Jfiea1:lon prlrniik<:,s

Figure 2.1 A taxonomy of cryptographic primitives.

3. Methods of operation. Primitives, when applied in various ways and with various

inputs, will typically exhibit different characteristics; thus, one primitive could

provide very different functionality depending on its mode of operation or usage.

4. Performance. This refers to the efficiency of a primitive in a particular mode of

operation.

5. Ease of implementation. This refers to the difficulty of realizing the primitive in a

practical instantiation. This might include the complexity of implementing the

primitive in either a software or hardware environment. The relative importance of

various criteria is very much dependent on the application and resources available.

For example, in an environment where computing power is limited one may have

11

•

to trade off a very high level of security for better performance of the system as a

whole.

2.3 Basic Functions and Concepts
A familiarity with basic mathematical concepts used in cryptography will be useful.

One concept which is absolutely fundamental to cryptography is that of a function in the

mathematical sense. A function is alternately referred to as a mapping or a transformation.

2.3.1 Function

A set consists of distinct objects which are called elements of the set. For example,

a set X might consist of the elements a, b, c, and this is denoted X = {a; b; c}. If x is an
element of X (usually written xE X) the image of x is the element in Y which the rule f
associates with x; the "image y of x is denoted by y = f(x). Standard notation for a

function f from set X to set Y is f: X 7 Y.

Figure 2.2 A function f from a set X to a set Y.

• 1-1 Functions: A function is 1 - 1 (one-to-one) if each element in the co domain Y is

the image of at most one element in the domain X.

• Onto function: A function is onto if each element in the co domain Y is the image of

at least one element in the domain.

• Bijection: If a function f: X7Y is 1-1 and Im (f) = Y, then f is called a bijection.
• One-way functions: A function f from a set X to a set Y is called a one-way

function if f (x) is easy to compute for all x EX but for essentially all elements

y E Im (f) it is "computationally infeasible" to find any x EX such that f (x) = y.
• Trapdoor one-way functions: A trapdoor one-way function is a one-way function f:

X 7 Y with the additional property that given some extra

12

•

• Permutations: Let S be a finite set of elements. A permutation p on S is a bijection

from S to itself (i.e., p: S7S).

• Involutions: Involutions have the property that they are their own inverses. (i.e.,

f: S7 S).

2.3.2 Basic Terminology and Concepts

The scientific study of any discipline must be built upon exact definitions arising

from fundamental concepts. Where appropriate, strictness has been sacrificed for the sake

of clarity.

2.3.2.1. Encryption Domains and Co-domains

• A denotes a finite set called the alphabet of definition.

• M denotes a set called the message space. M consists of strings of symbols from an

alphabet. An element of Mis called a plain text message or simply a plain text.

• C denotes a set called the ciphertext space. C consists of strings of symbols from an

alphabet; differ from the alphabet ofM. An element of C is called a ciphertext.

2.3.2.2 Encryption and Decryption Transformations

• K denotes a set called the key space. An element of K is called a key.

• Each element e EK uniquely determines a bijection from M to C, denoted by Ee.

• D, denotes a bijection from C to Mand D, is called a decryption function.

• The process of applying the transformation Ee to a message m EM is usually

referred to as encrypting m or the encryption of m.

• The process of applying the transformation D, to a cipher text c is usually referred

to as decrypting c or the decryption of c.

• The keys e and d are referred to as a key pair and denoted by (e; d).

2.3.2.3 Achieving Confidentiality

An encryption scheme may be used as follows for the purpose of achieving

confidentiality. Two parties Alice and Bob first secretly choose or secretly exchange a key

pair (e; d). At a subsequent point in time, if Alice wishes to send a message m EM to Bob,

13

•

she computes c = Ee (m) and transmits this to Bob. Upon receiving c, Bob computes Dd (c)

= m and hence recovers the original message m.

The question arises as to why keys are necessary. If some particular

encryption/decryption transformation is exposed then one does not have to redesign the

entire scheme but simply change the key. Figure 2.3 provides a simple model of a two

party communication using encryption.

""ncryption
.E,J·m),,,, <:'

(' * --· ---1------t,.
UNSECURED Cf-{;l,Jltffl

de(ryption
D,1 (e) ,,, m

l·m. !_.,,., ,,f,,·
plainteKt
sourcs

Figure 2.3 Schematic of a two-party communication.

2.3.2.4 Communication Participants

Referring to Figure 1.3, the following terminology is defined.

• .An entity or party is someone or something which sends, receives, or manipulates

information. An entity may be a person, a computer terminal, etc.

• A sender is an entity in a two-party communication which is the legitimate

transmitter of information.

• A receiver is an entity in a two-party communication which is the intended

recipient of information.

• An adversary is an entity in a two-party communication which is neither the sender

nor receiver, and which tries to defeat the information security service being

provided between the sender and receiver.

14

••

2.3.2.5. Channels

A channel is a means of conveying information from one entity to another. A

physically secure channel is one which is not physically accessible to the adversary. An

unsecured channel is one from which parties other than those for which the information is

intended can reorder, delete, insert, or read. A secured channel is one from which an

adversary does not have the ability to reorder, delete, insert, or read. A secured channel

may be secured by physical or cryptographic techniques.

2.3.2.6 Security

A fundamental principle in cryptography is that the sets M; C; K; {Ee: e E K}, {Da:

d EK} are public knowledge. When two parties wish to communicate securely using an

encryption scheme, the only thing that they keep secret is the particular key pair (e; d),

which they must select. One can gain additional security by keeping the class of encryption

and decryption transformations secret but one should not base the security of the entire

scheme on this approach. An encryption scheme is said to be breakable if a third party,

without prior knowledge of the key pair (e; d) can systematically recover plaintext from

corresponding ciphertext within some appropriate time frame. An encryption scheme can

be broken by trying all possible keys to see which one the communicating parties are using.

This is called an exhaustive search of the key space.

Frequently cited in the literature are Kerckhoffs' desiderata, a set of requirements

for cipher systems. They are given here essentially as Kerckhoffs originally stated them:

1. The system should be, if not theoretically unbreakable, unbreakable in practice.

2. Compromise of the system details should not inconvenience the correspondents.

3. The key should be remember able without notes and easily changed.

4. The cryptogram should be transmissible by telegraph.

5. The encryption apparatus should be portable and operable by a single person.

6. The system should be easy, requiring neither the knowledge of a long list of rules

nor mental strain.

15

•

2.3.2.7 Network Security in General

So far the terminology has been restricted to encryption and decryption with the

goal of privacy in mind. Network security is much broader, encompassing such things as

authentication and data integrity.

• A network security service is a method to provide specific aspect of security.

• Breaking a network security service implies defeating the objective of the intended

service.

• A passive adversary is an adversary who is capable only of reading information

from an unsecured channel.

• An active adversary is an adversary who may also transmit, alter, or delete

information on an unsecured channel.

2.4 Symmetric-key Encryption
Consider an encryption scheme consisting of the sets of encryption and decryption

transformations {Ee: e EK} and {D, : d E K}, respectively, where K is the key space. The

encryption scheme is said to be symmetric-key if for each associated encryption/decryption

key pair (e; d), it is computationally easy to determine d knowing only e, and to determine e

from d. Since e = d in most practical symmetric-key encryption schemes, the term

symmetric key becomes appropriate.

A two-party communication using symmetric-key encryption can be described by

the block diagram of Figure 2.4, with the addition of the secure channel.

16

•

Adversary

key SEC:U RE CHANNEL

L, r
encryption
E., (m) ,,,, r:

c I H de(ryption
UNSECURED CH.AN~lEL D,1 (c·) :::. '!l'l

--',,., T d.

plaintext
soun::e

Alice Bob

Figure 2.4 Two-party communication using encryption, with a secure channel

One of the major issues with symmetric-key systems is to find an efficient method

to agree upon and exchange keys securely. It is assumed that all parties know the set of

encryption/decryption transformations there are two classes of symmetric-key encryption

schemes which are commonly distinguished, block ciphers and stream ciphers.

2.4.1 Block Ciphers

A block cipher is an encryption scheme which breaks up the plaintext messages to

be transmitted into strings (called blocks) of a fixed length t over an alphabet A, and

encrypts one block at a time. Most well-known symmetric-key encryption techniques are

block ciphers. Two important classes of block ciphers are substitution ciphers and

transposition ciphers

2.4.2 Stream Ciphers

Stream ciphers form an important class of symmetric-key encryption schemes. They

are, in one sense, very simple block ciphers having block length equal to one. What makes

them useful is the fact that the encryption transformation can change for each symbol of

17

•

plaintext being encrypted. In situations where transmission errors are highly probable,

stream ciphers are advantageous because they have no error propagation. They can also be

used when the data must be processed one symbol at a time

2.4.3 The Key Space

The size of the key space is the number of encryption/decryption key pairs that are

available in the cipher system. A key is typically a compact way to specify the encryption

transformation to be used. For example, a transposition cipher of block length t has t!

Encryption functions from which to select. Each can be simply described by a permutation

which is called the key.

2.5 Digital Signatures
A cryptographic primitive who is fundamental in authentication, authorization, and

non-repudiation is the digital signature. The purpose of a digital signature is to provide a

means for an entity to bind its identity to a piece of information. The process of signing

entails transforming the message and some secret information held by the entity into a tag

called a signature.

2.5.1. Nomenclature and Set-up

The transformations SA and VA provide a digital signature scheme for A

• M is the set of messages which can be signed.

• S is a set of elements called signatures, possibly binary strings of a fixed length.

• SA is a transformation from the message set M to the signature set S, and is called a

signing transformation for entity A

• VA is a transformation from the set M x S to the set { true, false} VA is called a

verification transformation for A's signatures, is publicly known, and is used by

other entities to verify signatures created by A

18

•

2.6 Public-key Cryptography
The concept of public-key encryption is simple and elegant, but has far-reaching

consequences. Let {Ee: e E K} be a set of encryption transformations, and let {Dd: d E K}

be the set of corresponding decryption transformations, where K is the key space. Consider

any pair of associated encryption/decryption transformations (Ee; Dd) and suppose that

each pair has the property that knowing Ee it is computationally infeasible, given a random

ciphertext c EC, to find the message m EM such that Ee(m) = c. This property implies that

given e it is infeasible to determine the corresponding decryption key d. Ee is being viewed

here as a trapdoor one-way function with d being the trapdoor information necessary to

compute the inverse function and hence allow decryption. This is unlike symmetric-key

ciphers where e and d are essentially the same.

The encryption method is said to be a public-key encryption scheme if for each

associated encryption/decryption pair (e; d), one key e (the public key) is made publicly

available, while the other d (the private key) is kept secret. For the scheme to be secure, it

must be computationally infeasible to compute d from e. To avoid ambiguity, a common

convention is to use the term private key in association with public-key cryptosystems, and

secret key in association with symmetric-key cryptosystems

Passive
Adversf1ry

f' t . ----· --------- ---· __ ...
: UNSECURED CI-V.NNEL

kBy
:30llrCB

"Tr ,,,.
encryptk•n
E,(m.) ,,,c

c • H d&:ryption ·~----------t.--
u t·JSECURED C.H~Nt·JEL J:);i (c) :··· m.

+m· t.,n
plaintext

Bob

Figure 2.5 Encryption using public-key techniques.

19

•

2. 7 Hash Functions
One of the fundamental primitives in modern cryptography is the cryptographic

hash function, often informally called a one-way hash function. A simplified definition for

the present discussion follows. A hash function is a computationally efficient function

mapping binary strings of arbitrary length to binary strings of some fixed length, called

hash-values. For a hash function which outputs n-bit hash-values and has desirable

properties, the probability that a randomly chosen string gets mapped to a particular n-bit

hash-value (image) is 2·n. The basic idea is that a hash-value serves as a compact

representative of an input string. To be of cryptographic use, a hash function h is typically

chosen such that it is computationally infeasible to find two distinct inputs which hash to a

common value and that given a specific hash-value y, it is computationally infeasible to

find an input x such that h(x) = y. The most common cryptographic uses of hash functions

are with digital signatures and for data integrity Hash functions are typically publicly

known and involve no secret keys. When used to detect whether the message input has

been altered, they are called modification detection codes (MDCs). Related to these are

hash functions which involve a secret key, and provide data origin authentication as well as

data integrity; these are called message authentication codes (MA Cs).

2.8 Protocols, Mechanisms
A cryptographic protocol is a distributed algorithm defined by a sequence of steps

precisely specifying the actions required of two or more entities to achieve a specific

security objective. As opposed to a protocol, a mechanism is a more general term

encompassing protocols, algorithms and non-cryptographic techniques to achieve specific

security objectives. Protocols play a major role in cryptography and are essential in meeting

cryptographic goals. Encryption schemes, digital signatures, hash functions, and random

number generation are among the primitives which may be utilized to build a protocol.

2.8.1 Protocol and Mechanism Failure

A protocol failure or mechanism failure occurs when a mechanism fails to meet the

goals for which it was intended. Protocols and mechanisms may fail for a number of

reasons:

20

1. Weaknesses in a particular cryptographic primitive which may be amplified by the

protocol or mechanism.

2. Claimed or assumed security guarantees which are overstated or not clearly

understood.

3. The oversight of some principle applicable to a broad class of primitives such as

encryption.

When designing cryptographic protocols and mechanisms, the following two steps are

essential:

1. Identify all assumptions in the protocol or mechanism design.

2. For each assumption, determine the effect on the security objective if that

assumption is violated.

2.9 Classes of Attacks and Security Models
Over the years, many different types of attacks on cryptographic primitives and

protocols have been identified. The attacks these adversaries can mount may be classified

as follows:
1. A passive attack is one where the adversary only monitors the communication

channel. A passive attacker only threatens confidentiality of data.

2. An active attack is one where the adversary attempts to delete, add, or in some other

way alter the transmission on the channel.

A passive attack can be further subdivided into more specialized attacks for deducing

plaintext from ciphertext.

2.9.1 Attacks on Encryption Schemes

The objective of the following attacks is to systematically recover plaintext from

ciphertext, or even more drastically, to deduce the decryption key.
1. A ciphertext-only attack is one where the adversary tries to deduce the decryption

key or plaintext by only observing ciphertext.

2. A known-plaintext attack is one where the adversary has a quantity of plaintext and

corresponding ciphertext.

21

•

3. A chosen-plaintext attack is one where the adversary chooses plaintext and is then

given corresponding ciphertext.

4. An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the choice

of plaintext may depend on the ciphertext received from previous requests.

5. A chosen-ciphertext attack is one where the adversary selects the ciphertext and is

then given the corresponding plaintext. One way to mount such an attack is for the

adversary to gain access to the equipment used for decryption

6. An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the choice

of ciphertext may depend on the plain text received from previous requests.

2.9.2 Attacks on Protocols

The following is a partial list of attacks which might be mounted on vanous

protocols. Until a protocol is proven to provide the service intended, the list of possible

attacks can never be said to be complete.

1. Known-key attack. In this attack an adversary obtains some keys used previously

and then uses this information to determine new keys.

2. Replay. In this attack an adversary records a communication session and replays the

entire session, or a portion thereof, at some later point in time.

3. Impersonation. Here an adversary assumes the identity of one of the legitimate

parties in a network.

4. Dictionary. This is usually an attack against passwords. An adversary can take a list

of probable passwords; hash all entries in this list, and then compare this to the list

of true encrypted passwords with the hope of finding matches.

5. Forward search. This attack is similar in spirit to the dictionary attack and is used to

decrypt messages.

6. Interleaving attack. This type of attack usually involves some form of

impersonation in an authentication protocol.

22

•

3. CRYPTOGRAPHY FUNCTIONS

3.1 Overview
In this chapter basic functions involved in cryptography are explained. Functions

which are used in the encryptions and decryption of the text such ciphers mainly block

cipher and. Hash functions are also one of the important encryption functions. It is also

explained that how the attacks are being done on cryptography and what are the

authentication methods are being used so for.

3.2 Block Cipher
The most important symmetric algorithms are block ciphers. The general operation

of all block ciphers is the same - a given number of bits of plaintext (a block) are encrypted

into a block of ciphertext of the same size. Thus, all block ciphers have a natural block size,

the number of bits they encrypt in a single operation. This stands in contrast to stream

ciphers, which encrypt one bit at a time. Any block cipher can be operated in one of several

modes.

3.2.1 Iterated Block Cipher

An iterated block cipher is one that encrypts a plaintext block by a process that has

several rounds. In each round, the same transformation or round function is applied to the

data using a sub key. The set of sub keys are usually derived from the user-provided secret

key by a key schedule. The number of rounds in an iterated cipher depends on the desired

security level and the consequent trade-off with performance. In most cases, an increased

number of rounds will improve the security offered by a block cipher, but for some ciphers

the number of rounds required to achieve adequate security will be too large for the cipher

to be practical or desirable.

3.2.2 Electronic Codebook (ECB) Mode

ECB is the simplest mode of operation for a block cipher. The input data is padded out

to a multiple of the block size, broken into an integer number of blocks, each of which is

23

•

encrypted independently using the key. In addition to simplicity, ECB has the advantage of

allowing any block to be decrypted independently of the others. Thus, lost data blocks do

not affect the decryption of other blocks. The disadvantage of ECB is that it aids known

plaintext attacks. If the same block of plaintext is encrypted twice with ECB, the two

resulting blocks of cipher text will be the same.

ECRENCRVPTJON ECB DECRYPTION

Figure 3.1 Shows a ECB Encryption/Decryption Model

3.2.3 Cipher Block Chaining (CBC) Mode

CBC is the most commonly used mode of operation for a block cipher. Prior to

encryption, each block of plaintext is XOR-ed with the prior block of ciphertext. After

decryption, the output of the cipher must then be XOR-ed with the previous ciphertext to

recover the original plaintext. The first block of plaintext is XOR-ed with an initialization

vector (IV), which is usually a block of random bits transmitted in the clear. CBC is more

secure than ECB because it effectively scrambles the plaintext prior to each encryption

step. Since the ciphertext is constantly changing, two identical blocks of plaintext will

encrypt to two different blocks of ciphertext. The disadvantage of CBC is that the

24

•

encryption of a data block becomes dependent on all the blocks prior to it. A lost block of

data will also prevent decoding of the next block of data. CBC can be used to convert a

block cipher into a hash algorithm. To do this, CBC is run repeatedly on the input data, and

all the ciphertext is discarded except for the last block, which will depend on all the data

blocks in the message. This last block becomes the output of the hash function.

6ttt1il.J't'llt.aci~

! !•E!r¥J;r1tW:1

.... " .

•••••••••P:I-4* NJt;XJ 1

Figure 3.2 Shows a CBC Encryption/Decryption Model

3.2.4 Feistel Ciphers

The figure shows the general design of a F eistel cipher, a scheme used by almost all

modem block ciphers. The input is broken into two equal size blocks, generally called left

(L) and right (R), which are then repeatedly cycled through the algorithm. At each cycle, a

hash function (f) is applied to the right block and the key, and the result of the hash is

XOR-ed into the left block. The blocks are then swapped. The XOR-ed result becomes the

new right block and the unaltered right block becomes the left block. The process is then

repeated a number of times.

25

•

The hash function is just a bit scrambler. The correct operation of the algorithm is

not based on any property of the hash function, other than it is completely deterministic; i.e.

if it's run again with the exact same inputs, identical output will be produced. To decrypt,

the ciphertext is broken into L and R blocks, and the key and the R block are run through
the hash function to get the same hash result used in the last cycle of encryption; notice that

the R block was unchanged in the last encryption cycle. The hash is then XOR'ed into the L

block to reverse the last encryption cycle, and the process is repeated until all the

encryption cycles have been backed out. The security of a Feistel cipher depends primarily

on the key size and the irreversibility of the hash function. The output of the hash function

should appear to be random bits from which nothing can be determined about the inputs.

Figure 3.3: Shows a Feistel Model

26

3.3 Authentication Confirms an Identity
Authentication is the process of confirming an identity. In the context of network

interactions, authentication involves the confident identification of one party by another

party. Authentication over networks can take many forms. Certificates are one way of

supporting authentication.

Network interactions typically take place between a client, such as browser software

running on a personal computer, and a server, such as the software and hardware used to

host a Web site. Client authentication refers to the confident identification of a client by a

server (that is, identification of the person assumed to be using the client software). Server

authentication refers to the confident identification of a server by a client (that is,

identification of the organization assumed to be responsible for the server at a particular

network address).

Client and server authentication are not the only forms of authentication that

certificates support. For example, the digital signature on an email message, combined with

the certificate that identifies the sender, provide strong evidence that the person identified

by that certificate did indeed send that message. Similarly, a digital signature on an HTML

form, combined with a certificate that identifies the signer, can provide evidence, after the

fact, that the person identified by that certificate did agree to the contents of the form. In

addition to authentication, the digital signature in both cases ensures a degree of non

repudiation--that is, a digital signature makes it difficult for the signer to claim later not to

have sent the email or the form.

Client authentication is an essential element of network security within most

intranets or extranets. The sections that follow contrast two forms of client authentication:

• Password-Based Authentication. Almost all server software permits client

authentication by means of a name and password. For example, a server might

require a user to type a name and password before granting access to the server. The

server maintains a list of names and passwords; if a particular name is on the list,

and if the user types the correct password, the server grants access.

• Certificate-Based Authentication. Client authentication based on certificates is part

of the SSL protocol. The client digitally signs a randomly generated piece of data

27

•

and sends both the certificate and the signed data across the network. The server

uses techniques of public-key cryptography to validate the signature and confirm

the validity of the certificate.

3.4 Symmetric-Key Algorithms
With symmetric-key encryption, the encryption key can be calculated from the

decryption key and vice versa. With most symmetric algorithms, the same key is used for

both encryption and decryption.

Implementations of symmetric-key encryption can be highly efficient, so that users

do not experience any significant time delay as a result of the encryption and decryption.

Symmetric-key encryption also provides a degree of authentication, since information

encrypted with one symmetric key cannot be decrypted with any other symmetric key.

Thus, as long as the symmetric key is kept secret by the two parties using it to encrypt

communications, each party can be sure that it is communicating with the other as long as

the decrypted messages continue to make sense.

Symmetric-key encryption is effective only if the symmetric key is kept secret by

the two parties involved. If anyone else discovers the key, it affects both confidentiality and

authentication. A person with an unauthorized symmetric key not only can decrypt

messages sent with that key, but can encrypt new messages and send them as if they came

from one of the two parties who were originally using the key.

Symmetric-key encryption plays an important role in the SSL protocol, which is

widely used for authentication, tamper detection, and encryption over TCP/IP networks.

SSL also uses techniques of public-key encryption, which is described in the next section.

3.4.1 Data Encryption Standard (DES)

DES is a Feistel-type Substitution-Permutation Network (SPN) cipher. DES uses a

56-bit key which can be broken using brute-force methods, and is now considered obsolete.

A 16 cycle Feistel system is used, with an overall 56-bit key permuted into 16 48-bit sub

keys, one for each cycle. To decrypt, the identical algorithm is used, but the order of sub

keys is reversed. The Land R blocks are 32 bits each, yielding an overall block size of 64

bits. The hash function "f", specified by the standard using the so-called "S-boxes", takes a

28

•

32-bit data block and one of the 48-bit sub keys as input and produces 32 bits of output.

Sometimes DES is said to use a 64-bit key, but 8 of the 64 bits are used only for parity

checking, so the effective key size is 56 bits, (you can see DES algorithm in details in next

chapter).

3.4.2 Triple DES

Triple DES was developed to address the obvious flaws in DES without designing a

whole new cryptosystem. Triple DES simply extends the key size of DES by applying the

algorithm three times in succession with three different keys. The combined key size is thus

168 bits (3 times 56), beyond the reach of brute-force techniques such as those used by the

EFF DES Cracker. Triple DES has always been regarded with some suspicion, since the

original algorithm was never designed to be used in this way, but no serious flaws have

been uncovered in its design, and it is today a viable cryptosystem used in a number of

Internet protocols.

3.5 Asymmetric key Algorithms
The most commonly used implementations of public-key encryption are based on

algorithms patented by RSA Data Security. Therefore, this section describes the RSA

approach to public-key encryption.

Public-key encryption (also called asymmetric encryption) involves a pair of keys-

a public key and a private key--associated with an entity that needs to authenticate its

identity electronically or to sign or encrypt data. Each public key is published, and the

corresponding private key is kept secret. Data encrypted with your public key can be

decrypted only with your private key

When you are using public key, only you will be able to read data encrypted using

this key. In general, to send encrypted data to someone, you encrypt the data with that

person's public key, and the person receiving the encrypted data decrypts it with the

corresponding private key.

Compared with symmetric-key encryption, public-key encryption requires more

computation and is therefore not always appropriate for large amounts of data. However,

29

•

it's possible to use public-key encryption to send a symmetric key, which can then be used

to encrypt additional data. This is the approach used by the SSL protocol.

As it happens, the reverse of public key also works: data encrypted with your

private key can be decrypted only with your public key. This would not be a desirable way

to encrypt sensitive data, however, because it means that anyone with your public key,

which is by definition published, could decrypt the data. Nevertheless, private-key

encryption is useful, because it means you can use your private key to sign data with your

digital signature--an important requirement for electronic commerce and other commercial

applications of cryptography. Client software such as Communicator can then use your

public key to confirm that the message was signed with your private key and that it hasn't

been tampered with since being signed. Digital Signatures and subsequent sections describe

how this confirmation process works.

3.5.1 RSA

RSA stands for the initials of the three men Ron Rivest, Adi Shamir, and Len

Adleman. The security behind RSA lies in the difficulty of factoring large numbers into

their primes. The process involves selecting two large (hundreds of digits) prime numbers

(p and q), and multiplying them together to get the sum, n. These numbers are passed

through a mathematical algorithm to determine the public key KU= {e, n} and the private

key KR = { d, n}, which are mathematically related (the necessary equations are given at the

bottom of the page). It is extremely difficult to determine e and/or d given n, thus the

security of the algorithm. Once the keys have been created a message can be encrypted in

blocks, and passed though the following equation:

C=~modn

Where C is the ciphertext, M is the plaintext, and e is the recipient's public key.

Similarly, the above message could be decrypted by the following equation:

M= Cd mod n

Where d is the recipient's private key. For example: let's assume that our M is I 9

(we will use smaller numbers for simplicity, normally theses numbers would be much

larger). We will use 7 asp and 17 as q. Thus, n = 7 * 17 = 119. Our e is then calculated to

30

•

be 5 and dis calculated to be 77. Thus our KU is {5, 119} and our KR is {77,119}. We can

then pass the needed values through equation (1) to compute C. In this case C is 66. We

could then decrypt C (66) to get back our original plain text. We pass the needed values

through equation (2) and get 19, our original plaintext! Try it yourself with other numbers.

Note: To determine e and d, perform the following:

Calculate f (n) = (p - 1) (q - 1)

Choose e to be relatively prime to f (n) and less than f(n).

Determined such that de= 1 mod f (n) and d < f (n).

3.5.2Diffie and Hellman's Contribution

The problem with symmetric keys is that because they can be used both to encrypt

and to decrypt, they must be kept very secret. Before any messages are sent, the sender and

the receiver must communicate the key very secretly. If the key is found by anyone, they

can use it to snoop on the messages. But this limitation is a severe one. If I want to send

sensitive information to someone I've never met, perhaps my credit card number to

purchase an item, must I first meet with him to set up a secure key? Clearly this is not ideal.

Diffie and Hellman solved this problem by devising a coding scheme called public

key cryptography. Actually there are two keys, one public the other private. The public key

is used for encoding messages and the private one for decrypting them. It's like a strong box

which uses one key to lock up the information and another key to open it.

If I wish to use such a system, I can generate my two keys and give everyone my

public key for them to use to encrypt messages they wish to send to me. Only I can decrypt

them with my private key. Any one, who wishes to receive encoded messages from me, can

do likewise. That is they can generate two keys and send me their public key for encoding

messages to them.

3.6 Hash Functions
Hash Functions take a block of data as input, and produce a hash or message digest

as output. The usual intent is that the hash can act as a signature for the original data,

31

•

without revealing its contents. Therefore, it's important that the hash function be

irreversible - not only should it be nearly impossible to retrieve the original data, it must

also be unfeasible to construct a data block that matches some given hash value.

Randomness, however, has no place in a hash function, which should completely

deterministic. Given the exact same input twice, the hash function should always produce

the same output. Even a single bit changed in the input, though, should produce a different

hash value. The hash value should be small enough to be manageable in further

manipulations, yet large enough to prevent an attacker from randomly finding a block of

data that produces the same hash.

MDS, documented in RFC 1321, is perhaps the most widely used hash function at

this time. It takes an arbitrarily sized block of data as input and produces a 128-bit (16-

byte) hash. It uses bitwise operations, addition, and a table of values based on the sine

function to process the data in 64-byte blocks. RFC 1810 discusses the performance of

MDS, and presents some speed measurements for various architectures.

Hash functions can't be used directly for encryption, but are very useful for

authentication. One of the simplest uses of a hash function is to protect passwords. UNIX

systems, in particular, will apply a hash function to a user's password and store the hash

value, not the password itself To authenticate the user, a password is requested, and the

response runs through the hash function. If the resulting hash value is the same as the one

stored, then the user must have supplied the correct password, and is authenticated. Since

the hash function is irreversible, obtaining the hash values doesn't reveal the passwords to

an attacker. In practice, though, people will often use guessable passwords, so obtaining the

hashes might reveal passwords to an attacker who, for example, hashes all the words in the

dictionary and compares the results to the password hashes.

Another use of hash functions is for interactive authentication over the network.

Transmitting a hash instead of an actual password has the advantage of not revealing the

password to anyone sniffing on the network traffic. If the password is combined with some

changing value, then the hashes will be different every time, preventing an attacker from

using an old hash to authenticate again. The server sends a random challenge to the client,

which combines the challenge with the password, computes the hash value, and sends it

back to the server. The server, possessing both the stored secret password and the random

32

challenge, performs the same hash computation, and checks its result against the reply from

the client. If they match, then the client must know the password to have correctly

computed the hash value. Since the next authentication would involve a different random

challenge, the expected hash value would be different, preventing an attacker from using a

replay attack. Thus, hash functions, though not encryption algorithms in their own right,

can be used to provide significant security services, mainly identity authentication.

3. 7 Digital Signatures
Encryption and decryption address the problem of eavesdropping, one of the three

Internet security. But encryption and decryption, by themselves, do not address the other

two problems mentioned in Internet Security Issues: tampering and impersonation.

This section describes how public-key cryptography addresses the problem of

tampering. Tamper detection and related authentication techniques rely on a mathematical

function called a one-way hash (also called a message digest). A one-way hash is a number

of fixed lengths with the following characteristics:

• The value of the hash is unique for the hashed data. Any change in the data, even

deleting or altering a single character, results in a different value.

• The content of the hashed data cannot, for all practical purposes, be deduced from

the hash--which is why it is called "one-way."

As mentioned in Public-Key Encryption, it's possible to use your private key for

encryption and your public key for decryption. Although this is not desirable when you are

encrypting sensitive information, it is a crucial part of digitally signing any data. Instead of

encrypting the data itself, the signing software creates a one-way hash of the data, and then

uses your private key to encrypt the hash. The encrypted hash, along with other

information, such as the hashing algorithm, is known as a digital signature.

Two items transferred to the recipient of some signed data: the original data and the

digital signature, which is basically a one-way hash (of the original data) that has been

encrypted with the signer's private key. To validate the integrity of the data, the receiving

software first uses the signer's public key to decrypt the hash. It then uses the same hashing

algorithm that generated the original hash to generate a new one-way hash of the same data.

33

•

(Information about the hashing algorithm used is sent with the digital signature, although

this isn't shown in the figure 3.3.) Finally, the receiving software compares the new hash

against the original hash. If the two hashes match, the data has not changed since it was

signed. If they don't match, the data may have been tampered with since it was signed, or

the signature may have been created with a private key that doesn't correspond to the public

key presented by the signer.

If the two hashes match, the recipient can be certain that the public key used to

decrypt the digital signature corresponds to the private key used to create the digital

signature. Confirming the identity of the signer, however, also requires some way of

confirming that the public key really belongs to a particular person or other entity. For a

discussion of the way this works.

The significance of a digital signature is comparable to the significance of a

handwritten signature. Once you have signed some data, it is difficult to deny doing so

later--assuming that the private key has not been compromised or out of the owner's

control. This quality of digital signatures provides a high degree of non-repudiation--that is,

digital signatures make it difficult for the signer to deny having signed the data. In some

situations, a digital signature may be as legally binding as a handwritten signature.

3.8 Attacks on Ciphers
Here the different kinds of possible attacks what have been observed so for and can

be expected are explained in detail.

3.8.1 Exhaustive Key Search

Exhaustive key search, or brute-force search, is the basic technique of trying every

possible key in turn until the correct key is identified. To identify the correct key it may be

necessary to possess a plaintext and its corresponding ciphertext, or if the plaintext has

some recognizable characteristic, ciphertext alone might suffice. Exhaustive key search can

be mounted on any cipher and sometimes a weakness in the key schedule of the cipher can

help improve the efficiency of an exhaustive key search attack. Advances in technology and

computing performance will always make exhaustive key search an increasingly practical

attack against keys of a fixed length. When DES was designed, it was generally considered

34

•

secure against exhaustive key search without a vast financial investment in hardware. Over

the years, this line of attack will become increasingly attractive to a potential adversary.

While the 56-bit key in DES now only offers a few hours of protection against

exhaustive search by a modem dedicated machine, the current rate of increase in computing

power is such that 80-bit key can be expected to offer the same level of protection against

exhaustive key search in 18 years time as DES does today.

3.8.2 Differential Cryptanalysis

Differential cryptanalysis is a type of attack that can be mounted on iterative block

ciphers. Differential cryptanalysis is basically a chosen plaintext attack and relies on an

analysis of the evolution of the differences between two related plaintexts as they are
encrypted under the same key. By careful analysis of the available data, probabilities can be

assigned to each of the possible keys and eventually the most probable key is identified as

the correct one.
Differential cryptanalysis has been used against a great many ciphers with varying

degrees of success. In attacks against DES, its effectiveness is limited by what was very

careful design of the S-boxes during the design of DES. Differential cryptanalysis has also

been useful in attacking other cryptographic algorithms such as hash functions.

3.8.3 Linear Cryptanalysis

Linear cryptanalysis is a known plaintext attack and uses a linear approximation to

describe the behavior of the block cipher. Given sufficient pairs of plaintext and

corresponding ciphertext, bits of information about the key can be obtained and increased

amounts of data will usually give a higher probability of success. There have been a variety
of enhancements and improvements to the basic attack. Differential-linear cryptanalysis is

an attack which combines elements of differential cryptanalysis with those of linear

cryptanalysis. A linear cryptanalytic attack using multiple approximations might allow for a

reduction in the amount of data required for a successful attack.

35

•

3.8.4 Weak Key for a Block Cipher

Weak keys are secret keys with a certain value for which the block cipher in

question will exhibit certain regularities in encryption or, in other cases, a poor level of

encryption. For instance, with DES there are four keys for which encryption is exactly the

same as decryption. This means that if one were to encrypt twice with one of these weak

keys, then the original plaintext would be recovered. For IDEA there is a class of keys for

which cryptanalysis is greatly facilitated and the key can be recovered. However, in both

these cases, the number of weak keys is such a small fraction of all possible keys that the

chance of picking one at random is exceptionally slight. In such cases, they pose no

significant threat to the security of the block cipher when used for encryption.

Of course for other block ciphers, there might well be a large set of weak keys

(perhaps even with the weakness exhibiting itself in a different way) for which the chance

of picking a weak key is too large for comfort. In such a case, the presence of weak keys

would have an obvious impact on the security of the block cipher.

3.8.5 Algebraic Attacks

Algebraic attacks are a class of techniques which rely for their success on some

block cipher exhibiting a high degree of mathematical structure. For instance, it is

conceivable that a block cipher might exhibit what is termed a group structure. If this were

the case, then encrypting a plaintext under one key and then encrypting the result under

another key would always be equivalent to single encryption under some other single key.

If so, then the block cipher would be considerably weaker, and the use of multiple

encryptions would offer no additional security over single encryption. For most block

ciphers, the question of whether they form a group is still open. For DES, however, it is

known that the cipher is not a group. There are a variety of other concerns with regards to

algebraic attacks.

3.8.6 Data Compression Used With Encryption

Data compression removes redundant character strings in a file. This means that the

compressed file has a more uniform distribution of characters. In addition to providing

shorter plaintext and ciphertext, which reduces the amount of time needed to encrypt,

36

•

decrypt and transmit a file, the reduced redundancy in the plaintext can potentially hinder

certain cryptanalytic attacks.

By contrast, compressing a file after encryption is inefficient. The ciphertext

produced by a good encryption algorithm should have an almost statistically uniform

distribution of characters. As a consequence, a compression algorithm should be unable to

find redundant patterns in such text and there will be little, if any, data compression. In fact,

if a data compression algorithm is able to significantly compress encrypted text, then this

indicates a high level of redundancy in the ciphertext which, in turn, is evidence of poor

encryption.

3.8. 7 When an Attack Become Practical

There is no easy answer to this question since it depends on many distinct factors.

Not only must the work and computational resources required by the cryptanalyst be

reasonable, but the amount and type of data required for the attack to be successful must

also be taken into account. One classification distinguishes among cryptanalytic attacks

according to the data they require in the following way: chosen plaintext or chosen

ciphertext, known plaintext, and ciphertext-only. This classification is not particular to

secret-key ciphers and can be applied to cryptanalytic attacks on any cryptographic

function. A chosen plaintext or chosen ciphertext attack gives the cryptanalyst the greatest

freedom in analyzing a cipher. The cryptanalyst chooses the plaintext to be encrypted and

analyzes the plaintext together with the resultant ciphertext to derive the secret key. Such

attacks will, in many circumstances, be difficult to mount but they should not be

discounted. A known plaintext attack is more useful to the cryptanalyst than a chosen

plaintext attack (with the same amount of data) since the cryptanalyst now requires a

certain numbers of plaintexts and their corresponding ciphertexts without specifying the

values of the plaintexts. This type of information is presumably easier to collect. The most

practical attack, but perhaps the most difficult to actually discover, is a ciphertext-only

attack. In such an attack, the cryptanalyst merely intercepts a number of encrypted

messages and subsequent analysis somehow reveals the key used for encryption. Note that

some knowledge of the statistical distribution of the plaintext is required for a ciphertext

only attack to succeed.

37

•

An added level of sophistication to the chosen text attacks is to make them adaptive.

By this we mean that the cryptanalyst has the additional power to choose the text that is to

be encrypted or decrypted after seeing the results of previous requests. The computational

effort and resources together with the amount and type of data required are all important

features in assessing the practicality of some attack.

3.9 Strong Password-Only Authenticated Key Exchange
A new simple password exponential key exchange method (SPEKE) is described. It

belongs to an exclusive class of methods which provide authentication and key

establishment over an insecure channel using only a small password, without risk of off

line dictionary attack. SPEKE and the closely-related Diffie-Hellman Encrypted Key

Exchange (DH-EKE) are examined in light of both known and new attacks, along with

sufficient preventive constraints. Although SPEKE and DH-EKE are similar, the

constraints are different. The class of strong password-only methods is compared to other

authentication schemes. Benefits, limitations, and tradeoffs between efficiency and security

are discussed. These methods are important for several uses, including replacement of

obsolete systems, and building hybrid two-factor systems where independent password

only and key-based methods can survive a single event of either key theft or password

compromise.

It seems paradoxical that small passwords are important for strong authentication.

Clearly, cryptographically large passwords would be better, if only ordinary people could

remember them. Password verification over an insecure network has been a particularly

tough problem, in light of the ever-present threat of dictionary attack. Password problems

have been around so long that many have assumed that strong remote authentication using

only a small password is impossible. In fact, it can be done. In this paper we outline the

problem, and describe a new simple password exponential key exchange, SPEKE, which

performs strong authentication, over an insecure channel, using only a small password.

That a small password can accomplish this alone goes against common wisdom. This is not

your grandmother's network login. We compare SPEKE to the closely-related Diffie

Hellman Encrypted Key Exchange, and review the potential threats and countermeasures in

some detail. We show that previously-known and new attacks against both methods are

38

•

dissatisfied when proper constraints are applied. These methods are broadly useful for

authentication in many applications: bootstrapping new system installations, cellular

phones or other keypad systems, diskless workstations, user-to-user applications, multi

factor password + key systems, and for upgrading obsolete password systems. More
generally, they are needed anywhere that prolonged key storage is risky or impractical, and

where the communication channel may be insecure.

3.9.1 The Remote Password Problem

Ordinary people seem to have a fundamental inability to remember anything larger

than a small secret. Yet most methods of remote secret-based authentication presume the

secret to be large. We really want to use an easily memorized small secret password, and
not are susceptible to dictionary attack. We make a clear distinction between passwords and

keys: Passwords must be memorized, and are thus small, while keys can be recorded, and

can be much larger. The problem is that most methods need keys that are too large to be

easily remembered. User-selected passwords are often confined to a very small, easily

searchable space, and attempts to increase the size of the space just make them hard to

remember. Bank-card PIN codes use only 4-digits to remove even the temptation to write

them down. A ten-digit phone number has about 30 bits, which compels many people to

record them. Meanwhile, strong symmetric keys need 60 bits or more, and nobody talks

about memorizing public-keys. It is also fair to assume that a memorizable password

belongs to a brute-force searchable space. With ever-increasing computer power, there is a

growing gap between the size of the smallest safe key and the size of the largest easily

remembered password.
The problem is compounded by the need to memorize multiple passwords for

different purposes. One example of a small-password-space attack is the verifiable plain

text dictionary attack against login. A general failure of many obsolete password methods

is due to presuming passwords to be large. We assume that any password belongs to a

cryptographically-small space, which is also brute-force searchable with a modest effort.

Large passwords are arguably weaker since they can't be memorized.
So why do we bother with passwords? A pragmatic reason is that they are less

expensive and more convenient than smart-cards and other alternatives. A stronger reason

39

•

is that, in a well-designed and managed system, passwords are more resistant to theft than

persistent stored keys or carry-around tokens. More generally, passwords represent

something you know, one of the "big three" categories of factors in authentication.

3.9.2 Characteristics of Strong Password-only Methods

We now define exactly what we mean by strong password-only remote

authentication. We first list the desired characteristics for these methods, focusing on the

case of user-to-host authentication. Both SPEKE and DH-EKE have these distinguishing

characteristics.

1. Prevent off-line dictionary attack on small passwords.

2. Survive on-line dictionary attack.

3. Provide mutual authentication.

4. Integrated key exchange.

5. User needs no persistent recorded.

6. (a) Secret data, or

(b) Sensitive host-specific data.

Since we assume that all passwords are vulnerable to dictionary attack, given the

opportunity, we need to remove the opportunities. On-line dictionary attacks can be easily

detected, and thwarted, by counting access failures. But off-line dictionary attack presents a

more complex threat. These attacks can be made by someone posing as a legitimate party to

gather information, or by one who monitors the messages between two parties during a

legitimate valid exchange. Even tiny amounts of information "leaked" during an exchange

can be exploited. The method must be immune to such off-line attack, even for tiny

passwords. This is where SPEKE and DH-EKE excel.

40

•

3.3 Authentication Confirms an Identity
Authentication is the process of confirming an identity. In the context of network

interactions, authentication involves the confident identification of one party by another

party. Authentication over networks can take many forms. Certificates are one way of .
supporting authentication.

Client and server authentication are not the only forms of authentication that
~

certificates support. For example, the digital signature on an email message, combined with

the certificate that identifies the sender, provide strong evidence that the person identified

by that certificate did indeed send that message. Similarly, a digital signature on an HTML

form, combined with a certificate that identifies the signer, can provide evidence, after the

fact, that the person identified by that certificate did agree to the contents of the form. In

addition to authentication, the digital signature in both cases ensures a degree of non

repudiation--that is, a digital signature makes it difficult for the signer to claim later not to

have sent the email or the form.

Client authentication is an essential element of network security within most

intranets or extranets. The sections that follow contrast two forms of client authentication:

• Password-Based Authentication. Almost all server software permits client

authentication by means of a name and password. For example, a server might

require a user to type a name and password before granting access to the server. The

server maintains a list of names and passwords; if a particular name is on the list,

and if the user types the correct password, the server grants access.

• Certificate-Based Authentication. Client authentication based on certificates is part

of the SSL protocol. The client digitally signs a randomly generated piece of data

41

•

4. DES OVER SECURE CHANNEL

4.1 Overview
The DES (Data Encryption Standard) algorithm is the most widely used encryption

algorithm in the world. For many years, and among many people, "secret code making" and

DES have been synonymous. And despite the recent coup by the Electronic Frontier

Foundation in creating a $220,000 machine to crack DES-encrypted messages, DES will

live on in government and banking for years to come through a life- extending version

called "triple-DES." This chapter explains the various steps involved in DES-encryption,

illustrating each step by means of a simple example. To understand DES easily, it better to

understand first simplified DES (S_DES).

4.2 Simplified DES (S_DES)
S-DES is a simplified version of the well-known DES (Data Encryption Standard)

algorithm .It closely resembles the real thing, with smaller parameters, to facilitate

operation by hand for pedagogical purposes. It was designed by Edward Schaefer as a

teaching tool to understand DES that has similar properties and structure but with much

smaller parameters than DES. Figure 4.1 illustrate the simplified DES scheme. The

programming of this algorithm will be in next chapter which will be an implementation of

S DES.

The S DES encryption algorithm takes an 8-bit block of plaintext (example:

11001010) and a 10-bit key as input and produces an 8-bit block of ciphertext as output .the

S _ DES decryption algorithm takes an 8-bit block of ciphertext and the same 10-bit key used

to produce that ciphertext as input and produces the original 8-bit block of plaintext.

The encryption algorithm involves five functions: an initial permutation (IP); a

complex function labeled fK, which involves both permutation and substitution operations

and depends on a key input; a simple permutation function that switches (SW) the two

halves of the data; the function fK again, and finally a permutation function that is the

inverse of initial permutation (IP·1). The use of multiple stages of permutation and

substitution results in a more complex algorithm, which increases the difficulty of

42

•

cryptanalysis. The function fK takes as input not only the data passing through the

encryption algorithm, but also an 8-bit key. The algorithm could have been designed to

work with a 16-bit key, consisting of two 8-bit subkeys, one used for each occurrence of k
Alternatively, a single 8-bit key could have been used, with the same key used twice in the

algorithm. A compromise is to use a 10-bit key from which two 8-bit subkeys are generated,

addicted in figure 4.1. In this case, the key is first subjected to permutation (Pl 0). Then a

shift operation is performed. The output of the shift operation then passes through a

permutation function that produces an 8-bit output (P8) for the first subkey (Kl). The output

of shift operation also feeds into another shift and another instance of P8 to produce the

second subkey (K2).

Figure 4.1 S_DES scheme

In fK the rightmost 4 bits are passed through unchanged, and the leftmost 4 bits are

"mangled" by the non-invertible function F:

43

•

fa(L,R) = L XOR F(R,Ki), R -- encrypt or decrypt

E/P = { 4, 1, 2, 3, 2, 3, 4, 1}
P4 = { 2, 4, 3, 1}

S0=1032 Sl=Ol23

3210 2013

0213 3010

3132 2103

n1n2n3n4 then Si[n1n4][n2n3]

Example:

R= 1010

E/P 0101 0101

Kl= 1010 0100

XOR 1111 0001

SO[ll][ll]=IO Sl[Ol][OO]=IO -> P4 =0011

4.2.1 Subkey generation

As in DES, the initial and final permutations, which are fixed and independent of the

key, provide no real security benefit, but make the algorithm slow if implemented m

software.

First, produce two subkeys K1 and K2:

K1=P8(LS(Pl O(key)))

K2 = P8(LS(LS(PIO(key))))

where Pl O(k1k2k3k4ksk6k1ksk9k10) = k3ksk2k1~k10k1k9ksk6.

44

•

10-bit key

Figure 4.2 key Generation of S _ DES

The 10-bit key is transformed into two 8-bit sub-keys Kl and K2.

Example:

PIO= { 3, 5, 2, 7, 4, 10, 1, 9, 8, 6}

P8 = { 6, 3, 7, 4, 8, 5, 10, 9}

K = 10100 00010

PIO = 10000 01100

LS-1 00001 11000 -> P8 -> Kl= 1010 0100

LS-2 00100 00011 -> P8 -> K2 = 0100 0011

4.2.2 Relation with DES

SDES is a simplification of a real algorithm. DES operates on 64 bit blocks, and

uses a key of 56 bits, from which sixteen 48-bit subkeys are generated. There is an initial

permutation (IP) of 56 bits followed by a sequence of shifts and permutations of 48 bits. F

acts on 32 bits.

ciphertext = IP·1(fK16(SW(fK1s(... (SW(fK1(IP(plaintext)))) ...))))

45

•

4.3 History of DES
On May 15, 1973, during the reign of Richard Nixon, the National Bureau of

Standards (NBS) published a notice in the Federal Register soliciting proposals for

cryptographic algorithms to protect data during transmission and storage. The notice

explained why encryption was an important issue.

Over the last decade, there has been an accelerating increase in the accumulations

and communication of digital data by government, industry and by other organizations in

the private sector. The contents of these communicated and stored data often have very

significant value and/or sensitivity. It is now common to find data transmissions which

constitute funds transfers of several million dollars, purchase or sale of securities, warrants

for arrests or arrest and conviction records being communicated between law enforcement

agencies, airline reservations and ticketing representing investment and value both to the

airline and passengers, and health and patient care records transmitted among physicians

and treatment centers.

The increasing volume, value and confidentiality of these records regularly

transmitted and stored by commercial and government agencies has led to heightened

recognition and concern over their exposures to unauthorized access and use. This misuse

can be in the form of theft or defalcations of data records representing money, malicious

modification of business inventories or the interception and misuse of confidential

information about people. The need for protection is then apparent and urgent.

It is recognized that encryption (otherwise known as scrambling, enciphering or

privacy transformation) represents the only means of protecting such data during

transmission and a useful means of protecting the content of data stored on various media,

providing encryption of adequate strength can be devised and validated and is inherently

integrable into system architecture. The National Bureau of Standards solicits proposed

techniques and algorithms for computer data encryption. The Bureau also solicits

recommended techniques for implementing the cryptographic function: for generating,

evaluating, and protecting cryptographic keys; for maintaining files encoded under expiring

keys; for making partial updates to encrypted files; and mixed clear and encrypted data to

permit labeling, polling, routing, etc. The Bureau in its role for establishing standards and

46

•

aiding government and industry in assessing technology, will arrange for the evaluation of

protection methods in order to prepare guidelines.

NBS waited for the responses to come in. It received none until August 6, 1974,

three days before Nixon's resignation, when IBM submitted a candidate that it had

developed internally under the name LUCIFER. After evaluating the algorithm with the

help of the National Security Agency (NSA), the NBS adopted a modification of the

LUCIFER algorithm as the new Data Encryption Standard (DES) on July 15, 1977.

DES was quickly adopted for non-digital media, such as voice-grade public

telephone lines. Within a couple of years, for example, International Flavors and Fragrances

was using DES to protect its valuable formulas transmitted over the phone ("With Data

Encryption, Scents Are Safe at IFF," Computerworld 14, No. 21, 95 (1980).) Meanwhile,

the banking industry, which is the largest user of encryption outside government, adopted

DES as a wholesale banking standard. Standards for the wholesale banking industry are set

by the American National Standards Institute (ANSI). ANSI X3.92, adopted in 1980,

specified the use of the DES algorithm. K = 00010011 00110100 01010111 01111001

10011011 10111100 11011111 11110001.

4.4 How DES Works in Detail
DES is a block cipher meaning it operates on plaintext blocks of a given size (64-

bits) and returns cipher text blocks of the same size. Thus DES results in a permutation

among the 2/\64 (read this as: "2 to the 64th power") possible arrangements of 64 bits, each

of which may be either O or 1. Each block of 64 bits is divided into two blocks of 32 bits

each, a left half block Land a right halfR. (This division is only used in certain operations.)

47

•

INFUT

PERMUTED
INA.JT

L15 ; RU R15 ; Ll-4 (+ lf (R ,Kl.t)15

PRE-OUTPUT Rlo ; Ll5(+)f(R,K15]16 Ll6 ; R15

I NVERS:: I NI Tl AL PERM UT ATI ON

OUTPUT

Figure 4.3 DES Encryption Structure

Example: Let M be the plain text message M = 0123456789ABCDEF, where M is in

hexadecimal (base 16)format. Rewriting Min binary format, we get the 64-bit block of text:

M = 0000 0001001000110100010101100111 1000 1001 1010 1011 1100 1101 1110

1111

L = 0000 0001 0010 0011 0100 0101 0110 0111
R = 1000 1001 101 O 1011 1100 11 O 1 111 O 1111

The first bit ofM is "O". The last bit is "1 ". We read from left to right.

DES operates on the 64-bit blocks using key sizes of 56- bits. The keys are actually

stored as being 64 bits long, but every 8th bit in the key is not used (i.e. bits numbered 8,

16, 24, 32, 40, 48, 56, and 64). However, we will nevertheless number the bits from 1 to 64,

going left to right, in the following calculations. But, as you will see, the eight bits just

mentioned get eliminated when we make subkeys.

48

•

Example: Let K be the hexadecimal key K = 133457799BBCDFF1. This gives us as the

binary key (setting 1 = 0001, 3 = 0011, etc., and grouping together every eight bits, of
which the last one in each group will be unused):

K = 00010011 00110100 01010111 O 1111001 10011 O 11 10111100 11 O 11111 11110001

The DES algorithm uses the following steps:

4.4.1 Step 1 find 16 subkeys, each of which is 48-bits long.

Ca

PERMUTED
CHOICE 2

LEIT] (LEFil
~ ~

~ I l I i,{ PERMUTID }-• CHOICE 2

LEIT ~ r LEIT l
SHIFTS SHIFTS

PERMUTED
CHOICE 2 lei

Figure 4.4 DES Key Setup

The 64-bit key is permuted according to the following table, PC-I. Since the first

entry in the table is "57'', this means that the 57th bit of the original key K becomes the first

bit of the permuted key K +. The 49th bit of the original key becomes the second bit of the

permuted key. The 4th bit of the original key is the last bit of the permuted key. Note only

56 bits of the original key appear in the permuted key.

49

•

Table 4.1 Permutation of key

PC-1

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

Example: From the original 64-bit key

K = 00010011 00110100 O 1010111 01111001 10011011 10111100 11011111 11110001

We get the 56-bit permutation

K+ = 1111000 0110011 0010101 010111101010101011001 1001111 0001111

Next, split this key into left and right halves, Co and Do, where each half has 28 bits.

Example: From the permuted key K+, we get

Co= 1111000 0110011 0010101 0101111

Do=Ol01010101100110011110001111

With Co and Do defined, we now create sixteen blocks C0 and Dn, 1 <=n<=l6. Each

pair of blocks C, and D, is formed from the previous pair Cn-1 and Dn-1, respectively, for n =

1, 2 ... 16, using the following schedule of "left shifts" of the previous block. To do a left

shift, move each bit one place to the left, except for the first bit, which is cycled to the end

of the block (The result shown in table 5.2).

Table 4.2

Iteration Number of

Number Left Shifts

1 1

2 1

50

3 2

4 2

5 2

6 2

7 2

8 2

9 1

10 2

11 2

12 2

13 2

14 2

15 2

16 1

•

This means, for example, C3 and D3 are obtained from C2 and D2, respectively, by

two left shifts, and C16 and D16 are obtained from C1s and Dis, respectively, by one left

shift. In all cases, by a single left shift is meant a rotation of the bits one place to the left, so

that after one left shift the bits in the 28 positions are the bits that were previously in

positions 2, 3, ... , 28, 1.

Example: From original pair Co and Do we obtain:

Co

Do= 0101010101100110011110001111

C1

D 1 = 1 010101011001100111100011110

C2

D 2 = 010101O110011001111000111101

C3

D 3 = 01O101100110011110001111 O 1 O 1
C4
D4 = 010110011001 l 110001111010101

51

1111000011001100101010101111

1110000110011001010101011111

1100001100110010101010111111

0000110011001010101011111111

0011001100101010101111111100

•

C5
D 5 = O 110011001111000111101O1O101

c6
D6 = 1001100111100011110101010101

C7

D7 = 011001111000111101O101O1O110

c8
D 8 = 1 001111 000 1111 01 01 01 01 011 001

C9

D9 = 001 l l 10001111010101010110011

C10

D10 = ll 11000111101010101011001100

C11

D11 = 110001 l l 10101010101100110011

C12

D 12 = 00011110101O1010110011001111

C13

D13 = Ol l l 101010101011001100111100

1100110010101010111111110000

0011001010101011111111000011

1100101010101111111100001100

0010101010111111110000110011

0101010101111111100001100110

0101010111111110000110011001

0101011111111000011001100101

0101111111100001100110010101

0111111110000110011001010101

= 1111111000011001100101010101

D 14 = 1110101010101100110011110001

= 1111100001100110010101010111

D 15 = 1O10101O1011 0011001111000111

C16

D16 = 0101010101100110011110001 l l 1

1111000011001100101010101111

We now form the keys K0, for 1 <=n<=l6, by applying the following permutation

table to each of the concatenated pairs C0Dn. Each pair has 56 bits, but PC-2 only uses 48 of

these.

52

•

Table 4.3 shows the result of second permutation

PC-2

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Therefore, the first bit of Kn is the 14th bit of CnDn, the second bit the 17th, and so

on, ending with the 48th bit of Kn being the 32th bit of CnDn-

Example: For the first key we have C1D1 = 1110000 1100110 0101010 1011111 1010101
0110011 0011110 0011110

This, after we apply the permutation PC-2, becomes

K1 = 000110 110000 001011 101111 111111 000111 000001 11001 O
For the other keys we have

K2 = 011110 011010 111011 011001 110110 111100 100111 100101

K3 = 010101 011111 110010 001010 010000 101100 111110 011001

K4 = 011100 101010 110111 010110 110110 110011 010100 011101

K5 = 011111 001110 110000 000111 111010 110101 001110 101000

K6 = 011000 111010 010100 111110 010100 000111 101100 101111

K7 = 111011 001000 010010 110111 111101 100001 100010 111100

Ks = 111101 111000 101000 111010 110000 010011 101111 111011

K9 = 111000 001101 101111 101011 111011 011110 011110 000001

K10 = 101100 011111 001101 000111 101110 100100 011001 001111

K11 = 001000 010101 111111 010011 110111 101101 001110 000110

K12 = 011101 010111 000111 110101 100101 000110 011111 101001

K13 = 100101 111100 010111 010001 111110 101011 101001 000001

53

•

Ku= 010111 110100 001110 110111 111100 101110 011100 111010

K15 = 1 01111 111001 000110 0011 01 001111 01 0011 1111 00 001 01 O

K16 = 110010 110011 110110 001011 000011 100001 011111 110101

So much for the subkeys. Now we look at the message itself.

4.4.2 Step 2: Encode each 64-bit block of data.

There is an initial permutation IP of the 64 bits of the message data M. This

rearranges the bits according to the following table, where the entries in the table show the

new arrangement of the bits from their initial order. The 58th bit of M becomes the first bit

of IP. The 50th bit of M becomes the second bit of IP. The 7th bit ofM is the last bit of IP.

Table4.4 First permutation of the message

IP

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Example: Applying the initial permutation to the block of text M, given previously, we get

M = 0000 0001001000110100010101100111100010011010101111001101 1110

1111

IP= 1100 1100 0000 0000 1100 1100 1111 1111 111100001010 1010 111100001010

1010

Here the 58th bit ofM is "I ", which becomes the first bit of IP. The 50th bit ofM is

"l ", which becomes the second bit of IP. The 7th bit ofM is "O", which becomes the last bit

of IP. Next divide the permuted block IP into a left half Lo of 32 bits, and a right half Ro of

32 bits.

54

•

Example: From IP, we get Lo and Ro
Ls= 1100 1100 0000 0000 1100 1100 1111 1111

Ro = 1111 0000 1010 1010 1111 0000 1 010 1010

We now proceed through 16 iterations, for l<=n<=l6, using a function f which

operates on two blocks--a data block of 32 bits and a key Kn of 48 bits--to produce a block

of 32 bits. Let + denote XOR addition, (bit-by-bit addition modulo 2). Then for n going

from 1 to 16 we calculate

L, = Rn-1

Rn= Ln-1 + f(Rn-1,Kn)
This results in a final block, for n = 16, of Lu5R16. That is, in each iteration, we take

the right 32 bits of the previous result and make them the left 32 bits of the current step. For

the right 32 bits in the current step, we XOR the left 32 bits of the previous step with the

calculation f .

Example: For n = 1, we have

K1 = 000110 110000 001011 101111 111111 000111 000001 110010

1111 0000 1010 1010 1111 0000 1010 1010 L1 = Ro =

R1 = Lo + f{Ro,K1)
It remains to explain how the function f works. To calculate f, we first expand each

block Rn-1 from 32 bits to 48 bits. This is done by using a selection table that repeats some

of the bits in Rn-i . We'll call the use of this selection table the function E. Thus ECRn-1) has

a 32 bit input block, and a 48 bit output block.

Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are

obtained by selecting the bits in its inputs in order according to the following table:

Table 4.5 E Bit Selection

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

55

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Thus the first three bits ofE(Rn.1) are the bits in positions 32, 1 and 2 of Rn-1 while

the last 2 bits ofE(Rn.1) are the bits in positions 32 and 1.

Example: We calculate E(Ro) from Ro as follows:

Ro = 1111 0000 1010 1010 1111 0000 1010 1010

E(R0)=011110100001010101010101011110100001010101010101

(Note that each block of 4 original bits has been expanded to a block of 6 output bits.)

Next in the f calculation, we XOR the output E(Rn-1) with the key Kn:

Kn+ E(Rn-1).

Example: For K1 , E(Ro), we have

K1 = 000110 110000 001011

E(Ro) = 011110 100001 010101

101111

010101

111111 000111

100001

000001 110010

011110 010101 010101

K1+E(R0) = 011000 010001011110111010 100001 100110 010100 100111.

We have not yet finished calculating the function f. To this point we have expanded

Rn.1 from 32 bits to 48 bits, using the selection table, and XORed the result with the key Kn .

We now have 48 bits, or eight groups of six bits. We now do something strange with each

group of six bits: we use them as addresses in tables called "S boxes". Each group of six bits

will give us an address in a different S box. Located at that address will be a 4 bit number.

This 4 bit number will replace the original 6 bits. The net result is that the eight groups of 6

bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S boxes) for 32

bits total.

Write the previous result, which is 48 bits, in the form:

Kn+ E(Rn-1) =B1B2BJIJ,;BsfJJhBs,

Where each B; is a group of six bits. We now calculate

S1(B JS2(B 2)S3(B 3)S4(B4)S5(B 5)S6(B6)S7(B 7)Ss(B s)

Where S;{BJ referrers to the output of the z-th S box.
To repeat, each of the functions SJ, S2, ... , S8, takes a 6-bit block as input and yields

a 4-bit block as output. The table to determine S1 is shown and explained n table 5.6:

56

•

Table 4.6 Simulation Table

Sl

Row Column Number

No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 1512 82 49 17 511 314100 613

f S1 is the function defined in this table and B is a block of 6 bits, then S1(B) is

determined as follows: The first and last bits of B represent in base 2 a number in the

decimal range O to 3 (or binary 00 to 11). Let that number be i. The middle 4 bits of B

represent in base 2 a number in the decimal range O to 15 (binary 0000 to 1111). Let that

number bej. Look up in the table the number in the z-th row andj-th column. It is a number

in the range O to 15 and is uniquely represented by a 4 bit block. That block is the output

S1(B) of S1 for the input B. For example, for input block B = 011011 the first bit is "O" and
the last bit "l" giving 01 as the row. This is row 1. The middle four bits are "1101 ". This is

the binary equivalent of decimal 13, so the column is column number 13. In row 1, column

13 appears 5. This determines the output; 5 is binary 0101, so that the output is 0101. Hence

S1(011011) = 0101.
The tables defining the functions S1, ... ,Ss are the following in table 5.7:

Table 4.7

Sl
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 1 5 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

57

•

S2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 610 2 8 514 1211151

13 6 4 9 815 3 0 11 1 212 510 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

58

•

S7

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8

13 2 8 4 615 11 1 10 9 314 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Example: K1 + E(Ro) = 011000 010001011110111010 100001 100110 010100 100111.

: For the first round, we obtain as the output of the eight S boxes:

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7{B7)Ss(Bs) = 0101 1100 1000 0010 1011 0101 1001

0111

The final stage in the calculation off is to do a permutation P of the S-box output to

obtain the final value off

f= P(S1(B1)S2(B2) ... Ss(Bs))

The permutation P is defined in the table5.8. P yields a 32-bit output from a 32-bit

input by permuting the bits of the input block.

Table 4.8 P results

p

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

59

•

32 27 3 9

19 13 30 6

22 11 4 25

Example: From the output of the eight S boxes:

S1(B1)S2(B2)S3(B3)S4(B4)Ss(Bs)S6(B6)S7(B7)Ss(Bs) = 0101 1100 1000 0010 1011 0101 1001
0111

we get

f = 0010 0011 0100 1010 1010 1001 1 011 1011

R1 =Ln+ f(Ro , K1)

= 1100 1100

+ 0010 0011

= 111 0 1111 01 00 1 01 0 011 0 01 01 01 00 01 00
0100 1010

0000 0000 1100

1010

1100

1001

1111

1011

1111

1011

In the next round, we will have L2 = R1, which is the block we just calculated, and

then we must calculate R2 =L1 + f(R1, K2), and so on for 16 rounds. At the end of the

sixteenth round we have the blocks L16 and R16. We then reverse the order of the two blocks

into the 64-bit block R1~16, and apply a final permutation IP.1 as defined by the table5.9:

Table 4.9 final permutation
1p·l

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

60

..

That is, the output of the algorithm has bit 40 of the pre output block as its first bit,

bit 8 as its second bit, and so on, until bit 25 of the pre output block is the last bit of the

output.

Example: If we process all 16 blocks using the method defined previously, we get, on the

16th round,

L 16 = O 100 0011 O 100 0010 0011 0010 0011 0100
R16= 0000 1010 0100 1100 1101 1001 1001 0101

We reverse the order of these two blocks and apply the final permutation to

Ru£16 = 00001010 01001100 11011001 10010101 01000011 01000010 00110010

00110100

IP-1 = 10000101 11101000 00010011 01010100 000011110000101010110100 00000101

which in hexadecimal format is

85E813540FOAB405.

This is the encrypted form ofM = 0123456789ABCDEF: namely,

C = 85E813540FOAB405.

Decryption is simply the inverse of encryption, following the same steps as above,

but reversing the order in which the subkeys are applied.

4.4.3 DES Modes of Operation

The DES algorithm turns a 64-bit message blocks M into a 64-bit cipher block C. If

each 64-bit block is encrypted individually, then the mode of encryption is called Electronic

Code Book (ECB) mode. There are two other modes of DES encryption, namely Chain

Block Coding (CBC) and Cipher Feedback (CFB), which make each cipher block

dependent on all the previous messages blocks through an initial XOR operation which

explained previous

4.4.4 Some Preliminary Examples of DES

DES works on bits, or binary numbers--the Os and 1 s common to digital computers.

Each group of four bits makes up a hexadecimal, or base 16, number. Binary "0001" is

equal to the hexadecimal number "l ", binary "l 000" is equal to the hexadecimal number

61

•

11811, "1001" is equal to the hexadecimal number "9", "1010" is equal to the hexadecimal

number "A", and "1111" is equal to the hexadecimal number "F".

DES works by encrypting groups of 64 message bits, which is the same as 16

hexadecimal numbers. To do the encryption, DES uses "keys" where are also apparently 16

hexadecimal numbers long or apparently 64 bits long. However, every 8th key bit is

ignored in the DES algorithm, so that the effective key size is 56 bits. But, in any case, 64

bits (16 hexadecimal digits) is the round number upon which DES is organized.

For example, if we take the plaintext message "8787878787878787", and encrypt it

with the DES key "OE329232EA6DOD73", we end up with the cipher text

"0000000000000000". If the cipher text is decrypted with the same secret DES key

"OE329232EA6DOD73", the result is the original plaintext "8787878787878787".

This example is neat and orderly because our plaintext was exactly 64 bits long. The

same would be true if the plaintext happened to be a multiple of 64 bits. But most messages

will not fall into this category. They will not be an exact multiple of 64 bits (that is, an exact

multiple of 16 hexadecimal numbers).

For example, take the message "Your lips are smoother than vaseline". This

plaintext message is 38 bytes (76 hexadecimal digits) long. So this message must be padded
e

with some extra bytes at the tail end for the encryption. Once the encrypted message has

been decrypted, these extra bytes are thrown away. There are, of course, different padding

schemes--different ways to add extra bytes. Here we will just add Os at the end, so that the

total message is a multiple of 8 bytes (or 16 hexadecimal digits, or 64 bits).

The plaintext message "Your lips are smoother than Vaseline" is, in hexadecimal,

"596F7572206C6970 732061726520736D 6F6F746865722074 68616E2076617365

6C696E650DOA".

(Note here that the first 72 hexadecimal digits represent the English message, while

"OD" is hexadecimal for Carriage Return, and "OA" is hexadecimal for Line Feed, showing

that the message file has terminated.) We then pad this message with some Os on the end, to

get a total of 80 hexadecimal digits:

"596F7572206C6970 732061726520736D 6F6F746865722074 68616E2076617365

6C696E650DOAOOOO".

62

•

If we then encrypt this plain text message 64 bits (16 hexadecimal digits) at a time,

using the same DES key "OE329232EA6DOD73" as before, we get the cipher text:

"C0999FDDE378D7ED 727DAOOBCA5A84EE 47F269A4D6438190 9DD52F78F5358499

828AC9B453EOE653".

This is the secret code that can be transmitted or stored. Decrypting the cipher text

restores the original message "Your lips are smoother than Vaseline". (Think how much

better off Bill Clinton would be today, if Monica Lewinsky had used encryption on her

Pentagon computer!)

4.5 Cracking DES
Before DES was adopted as a national standard, during the period NBS was

soliciting comments on the proposed algorithm, the creators of public key cryptography,

Martin Hellman and Whitfield Diffie, registered some objections to the use of DES as an

encryption algorithm. Hellman wrote: "Whit Diffie and I have become concerned that the

proposed data encryption standard, while probably secure against commercial assault, may

be extremely vulnerable to attack by an intelligence organization" (letter to NBS, October

22, 1975).

Diffie and Hellman then outlined a "brute force" attack on DES. (By "brute force" is

meant that you try as many of the 2/\56 possible keys as you have to before decrypting the

cipher text into a sensible plaintext message.) They proposed a special purpose "parallel

computer using one million chips to try one million keys each" per second, and estimated

the cost of such a machine at $20 million.

A brute force attack remains the most promising approach. For SDES, it is trivial;

there are only 1024 keys. For DES it is much harder; there are 7 x 1016 keys. This would

take over 2000 years if you checked each key in one microsecond. Michael Wiener

designed a DES cracker with millions of specialized chips on specialized boards and racks

[l, p.153]. He concluded in 1995 that for $1 million, a machine could be built that would

crack a 56-bit DES key in 7 hours. Schneier estimates that this would be doable for

$100,000 in 2000, so we might extrapolate to $10,000 in 2005. For these reasons,

algorithms based on 56-bit keys, like DES, are no longer thought secure. Schneier: "insist

on at least 112 bit keys."

63

•

Fast forward to 1998. Under the direction of John Gilmore of the EFF, a team spent

$220,000 and built a machine that can go through the entire 56-bit DES key space in an

average of 4.5 days. On July 17, 1998, they announced they had cracked a 56-bit key in 56

hours. The computer, called Deep Crack, uses 27 boards each containing 64 chips, and is

capable of testing 90 billion keys a second.

Despite this, as recently as June 8, 1998, Robert Litt, principal associate deputy

attorney general at the Department of Justice, denied it was possible for the FBI to crack

DES: "Let me put the technical problem in context: It took 14,000 Pentium computers

working for four months to decrypt a single message We are not just talking FBI and

NSA [needing massive computing power], we are talking about every police department."

Responded cryptography expert Bruce Schneider: " ... the FBI is either incompetent or

lying, or both." Schneider went on to say: "The only solution here is to pick an algorithm

with a longer key; there isn't enough silicon in the galaxy or enough time before the sun

burns out to brute- force triple-DES" (Crypto-Gram, Counterpane Systems, August 15,

1998).

4.6 Triple-DES
Triple-DES is just DES with two 56-bit keys applied. Given a plaintext message, the

first key is used to DES- encrypt the message. The second key is used to DES-decrypt the

encrypted message. (Since the second key is not the right key, this decryption just scrambles

the data further.) The twice-scrambled message is then encrypted again with the first key to

yield the final cipher text. This three-step procedure is called triple-DES.

Triple-DES is just DES done three times with two keys used in a particular order.

(Triple-DES can also be done with three separate keys instead of only two. In either case

the resultant key space is about 2/\112.)

64

•

5. IMPLEMENTATION OF S DES BY USING C LANGUAGE

5.1 Overview
This chapter explains software for Simplified Data Encryption Stranded (SDES)

using C language. Simplified of DES is an educational rather than a secure encryption

algorithm. It has similar properties and structure to DES with much smaller parameters. It

was developed by Professor Edward Schaefer

5.2 Flow Chart of Software
The below diagram explain how the program work

Enter 10 bits
for Kev

es No
Enter

character

Original
character

Character
encrypted

Figure 5.1 flowchart of S_DES

65

•

5.3 Encryption and Decryption Algorithms
After the user enter the private key, the user will enter the character to encrypt,

which describe in figure below, after encryption the character will decrypt to same

character. The S_DES encryption algorithm takes an 8_bit block of plaintext (example

10111101) and a 10 _bit key as input and produces an 8_bit block of ciphertext as output.

The S_DES decryption algorithm takes an 8_bit block of ciphertext and the same lO_bit

key used to produce that ciphertext as input and produces the original 8

_bit block of plaintext. Note that the enter character of message is a letter, which the

program changes it to ACSII which is 8_bit of binary.

Figure 5.2

66

•

4.5 Examples of Encryption and Decryption

Figure 5.3

In this example the message is (M) but in the example of figure 5.2 the message is

(m) and the same key is used for the both, but the ciphertext changes from (t) to (T).

67

•

Figure 5.4

In this example as shown in the figure 5.4 the lO_bit key is changed to

(1110001011), but the message is the same (M) but the cipher text is changed to (I~).

68

•

Figure 5.5

The key entered in figure 5 .5 is (0001110101), the plaintext is T and the cipher text is

(I).

4.6 Summary
The simplified Data Encryption Standard specifies a cryptographic algorithm that

converts plaintext to ciphertext using a key .The same algorithm is used with the same

key to convert ciphertext back to plaintext mix the data and key together. The goal is to

completely scramble the data and key so that every bit of the ciphertext depends on every

bit of the data and every bit of the key .After sufficient "rounds", there should be no

correlation between the ciphertext and either the original data or key.

69

•

REFERENCES:

[1] Symmetric cryptographic system for data encryption by C. ADAMS in Apr 1996.

[2] Proceedings of the Internet Society Symposium on Network and Distributed System

Security by IDUP and SPKM inl 996.
[3) Random sources for cryptographic systems by G.B. AGNEW in 1988.
[4) An implementation for a fast public-key cryptosystem by G.B. AGNEW, RC.

MULLIN, I.M. ONYSZCHUK& S.A. VANSTONE in1991.

[5] A Secure Key Distribution System by N. ALEXANDRIS, M. BURMESTER & V.

CHRISSIKOPOULOS.
[6) A Weakness in the 4.2BSD UNIX TCP/IP Software by RT. Morris in 1985.
[7] Security Problems in the TCP/IP Protocol Suite Vol. 19 by S.M. Bellovin in April 1989.

[8) Handbook of Applied Cryptography by A. Menezes, P. van Oorschot, and S. Vanstone

in 1996.
[9) Edward G. Amoroso," Fundamentals of Computer Security and Network Technology",

Second Edition, Prentice Hall, Mayl 994.
[10) MEDINA, M., "E-Mail Security - Public Key Distribution and Certification Paths,"

MSc Dissertation, Catholic University of Rio de Janeiro, 1996.
[11) Internet Mail Consortium, postings to PKIX mailing list, under the title "certificate

path services," 15-16 October 1998, http://www.imc.org/ietf-pkix. Retrieved October

30,2003.
[12) ADAMS, A., Zuccherato, R, "Internet X.509 Public Key Infrastructure - Data

Certification Server Protocols," IETF Draft, PKIX Working Group, <draft-ietf-pkix-dcs-

00.txt>, September 1998.
[13) DANIELSSON, J., Westerlund, A., "KTH-KRB (Kerberos 4 from KTH)", Edition 1.0

for version 0.9.8, Kungliga Tekniska Hogskolan - Royal Institute of Technology,

Stockholm, Sweden, December 1997, http://www.pdc.kth.se/kth-krb. Retrived December

5,2003.
[14] University of Michigan, "Lightweight Directory Access Protocol,"

http://www.umich.edu/-dirsvcs/ldap. Retrieved November 15, 2003.

71

•

[15] Queensland University of Technology, "Oscar - DSTC's Public key Infrastructure

Project," December 1998, http://oscar.dstc.qut.edu.au/. Retrieved December 5, 2003.

[16] Dorothy Denning April 3, 1998

http://www.cs.technion.ac.il/%7Ebiham/pub1ications.htm1. Retrieved December 14, 2003

[17] J. Orlin Grabbe The DES Algorithm Illustrated

Homepage: http://orlingrabbe.com. Retrieved October 25, 2003.

[18] Data Encryption Standard, Federal Information Processing Standard (FIPS)

Publication 46, National Bureau of Standards, U.S. Department of Commerce, Washington

D.C. (January 1977).

[19] Miles E. Smid and Dennis K. Branstad, "The Data Encryption Standard: Past and

Future," in Gustavus J. Simmons, ed., Contemporary Cryptography: The Science of

Information Integrity, IEEE Press, 1992.

72

APPENDIX

II THIS PROGRAM PRESENTS S DES ALGORITHM
II PREPARED BY: MAHMOUD ALLABADI
II REG. NUMBER: 20011073
II TO : ProfDr.F AKHREDDIN MAMEDOV

#include<stdio.h>
#include<conio.h>

//Global variable's
int kl [8];
int k2[8];
int flag;

//Prototype
void find_keys();
void fk(int input[8]);
void permut(int array[],int len);
void shift_left(int array[],int len);
void E_P(int array[4]);
int SO(int array[4]);
int Sl(int array[4]);
char convert_char(int array[8]);

void main(){
char message;
int plaintext[8];
int array[8];
int i,k;
//clrscr();
find _keys();

printf("\n Enter Your Char: ");
message=getchar();
message=getchar();
k=message;
for(i=O;i<8;i++) {plaintext[i]=(k%2);

k=k/2;
}

printf("\n\n Your 8 bit plain text is:");
for(i=7;i>=O;i--) { array[i]=plaintext[i];

printf("%d" ,plain text[i]);

73

•

•

}

II IP of the 8 bit

permut(array,8);
flag=l;
fk(array);

permut(array,8);
flag=2;
//fk #2 after SW
fk(array);
//After IP-1
permut(array,8);

printf("\n \n
* * *** *** *** *** *** *** * ** *** *** * * * *** ** * *** ** * ** * *** ** * ** * * * ");

printf("\n
** *** * ** *** *** * ** *** ** * *** *** ** * *** *** * * * *** *** * ** *** *** * * ");

printf("\n ****** ******");
printf("\n ****** ******");
printf("\n ****** THE CIPHER TEXT IS : ******");
printf("\n *** *** ");
printf(" ");

for(i=7;i>=O;i--)printf(" %d",array[i]);
printf("==> %c 11,convert_char(array));

printf(" ******");
printf("\n ** * ** *
printf("\n ******
printf("\n ******
printf("\n

* * *** *** *** ** * *** *** * ** *** *** *** *** ** * *** ** * ** * *** * * * * * * **");
printf("\n

** *** *** ** * *** * ** *** *** * ** *** *** *** *** * ** *** *** * ** *** *** * * ");

******");
******");
******");

//deciphering
permut(array,8);
fk(array);
//switching
permut(array,8);
flag=l;
fk(array);
permut(array,8);

74

•

printf("\n \n
** ** * *** * ** * ** *** *** *** *** ** * *** * * * * * * *** * * * * * * *** * * * * * * * *");

printf("\n
** * ** ** * *** *** * * * *** *** * ** *** *** * * * * ** ** * *** *** ** * * ** * * * **");

printf("\n ****** ******");
printf("\n ****** ******");
printf("\n ****** THE DECIPHER TEXT IS ******");
printf("\n ******");
printf(" ");

for(i=7;i>=O;i--)printf(" o/od",array[i]);
printf("==> o/oc ",convert_char(array));
printf(" ******");
printf("\n ******
printf("\n ******
printf("\n ******
printf("\n

* * *** * ** *** ** * *** *** * * * *** *** ** * *** *** * ** *** *** * * * *** *** **");
printf("\n

** *** *** *** * ** *** *** *** *** ** * *** ** * ** * *** * * * * ** *** ** * ** * * *\n ");

******");
******");
******");

getchet);
}

I !fHE BI GIN OF THE FUNCTION find_ keys()
l!fhe function is to find kl and k2
void find_keys(){

int Ten_key[l O),i;
int Five_L[5];
int Five_R[5];
int Eight_bit[8);

II reading the lO_bit key
printf("\n Enter your 10 bit key\n\n");
for(i=9;i>=O;i--){printf(" Enter bit number o/od = ",i);

scanf("o/od",&Ten_key[i]);
}

printf("\n \n Your 10 bit key is : ");
for(i=9;i>=O;i--)printf("o/od 11, Ten_ key[i]);

II permutation of the 10 bit
permut(Ten _ key, 1 O);

II devide the 10 bit to Right And Left

75

for(i=O;i<5 ;i++)Five_ L[i]=Ten _ key[i];
for(i=4;i>=O;i--)Five _R[i]=Ten _ key[i+5];

II Shifting 1 step to Left

shift_left(Five _ R,5);
shift_left(Five _ L,5);

//Combine it in 8 bit array
for(i=O;i<4;i++)Eight_ bit[i]=Five_ L[i];
for(i=O;i<4;i++)Eight_ bit[i+4]=Five_ R[i];

//permutation to the Eight bit
permut(Eight_ bit,8);
printf("\n\n THIS IS Kl : ");
for(i=O;i<8;i++)kl [i]=Eight_bit[i];
for(i=7;i>=O;i--)printf("%d",kl [i]);

I I Shifting 2 step to Left

shift_left(Five_R,5);
shift_left(Five_R,5);

shift_left(Five _ L,5);
shift_left(Five _ L,5);

//Combine it in 8 bit array
for(i=O;i<4;i++)Eight_ bit[i]=Five_ L[i];
for(i=O;i<4;i++)Eight_bit[i+4]=Five_R[i];

//permutation to the Eight bit

permut(Eight_bit,8);
printf("\n\n THIS IS K2: ");
for(i=O;i<8;i++)k2[i]=Eight_ bit[i];
for(i=7;i>=O;i--)printf("%d" ,k2[i]);

}//THE END OF THE FUNCTION find_keys()

I !THE BI GIN OF THE FUNCTION cipher()
I !The function is to Encryption the massege

void fk(int input[8]){

76

•

int Four_L[4];
int Four_R[4];
inti;

II devide the 8 bit to Right And Left
for(i=O;i<4;i++) {Four_ L[i]=input[i];}
for(i=3;i>=O;i--)Four_ R[i]=input[i+4];

E_P(Four_L);

I I now xor with Four R
for(i=O;i<4;i++) {

if(Four _ L[i]==Four_ R[i])Four _ L[i]=O;
else Four_L[i]=l;
}

for(i=4;i<8;i++)input[i]=Four _ L[i-4];

}//THE END OF THE FUNCTION fk()

//the function for permutation
void permut(int array[],int len){

int i,x;
for(i=O;i<len/2;i++) {

x=array[i];
array[i]=array[i+len/2];
array[i+len/2]=x;
}

}//END of fun permute()

//the function for shift left
void shift_left(int array[],int len){

int i.x;

x=array[len-1];
for(i=len-1 ;i>O;i--)array[i]=array[i-1];
array[O]=x;

77

•

}//END of fun shift_left()

void E_P(int array[4]){
int Eight[8];
int Four_L2[4];
int Four_R2[4];
int i,valO,vall;

Eight[7]=array[O];
Eight[6]=array[3];
Eight[5]=array[2];
Eight[4]=array[l];
Eight[3]=array[2];
Eight[2]=array[l];
Eight[l]=array[O];
Eight[O]=array[3];

if(flag== 1) {
II now xor with kl
for(i=O;i<8;i++){

if(kl [i]==Eight[i])Eight[i]=O;
else Eight[i]= 1 ;

}
}

if(flag==2){
// now xor with k2
for(i=O;i<8;i++) {

if(k2[i]==Eight[i])Eight[i]=O;
else Eight[i]= 1;

}
}

II devide the 8 bit to Right And Left
for(i=O;i<4;i++)Four_L2[i]=Eight[i];
for(i=3 ;i>=O;i--)Four_ R2[i]=Eight[i+4];

// Entering Four_ R2 to SO
val0=SO(Four_R2);

II Entering Four_L2 to Sl
vall =Sl (Four_L2);

if((valO=O) && (vall=O)){

78

•

array[O]=O;
array[l]=O;
array[2]=0;
array[3]=O;
}

if((valO=O) && (vall=l)){
array[O]=l;
array[1]=O;
array[2]=0;
array[3]=O;
}

if((valO=O) && (val1=2)){
array[O]=O;
array[l]=l;
array[2]=0;
array[3]=0;
}

if((valO=O) && (val1=3)){
array[O]=l;
array[l]=l;
array[2]=0;
array[3]=0;
}

if((valO=l) && (vall=O)){
array[O]=O;
array[l]=O;
array[2]=1;
array[3]=0;
}

if((valO=l) && (vall=l)){
array[O]=l;
array[l]=O;
array[2]=1;
array[3]=0;
}

if((valO=l) && (val1=2)){
arraylO]=O;
array[1]= 1;
array[2]=1;
array[3]=O;
}

if((valO=l) && (val1=3)){
array[O]=l;
array[l]=l;
array[2]=1;
array[3]=0;

79

..

}
ifl(val0=2) && (vall=O)){

array[O]=O;
array[l]=O;
array[2]=0;
array[3]= 1;
}

ifl(val0=2) && (vall=l)){
array[O]=l;
array[l]=O;
array[2]=0;
array[3]=1;
}

ifl(val0=2) && (vall=2)){
array[O]=O;
array[1]= 1;
array[2]=0;
array[3]= 1;
}

ifl(val0=2) && (vall=3)){
array[O]=l;
array[l]=l;
array[2]=0;
array[3]= 1;
}

ifl(val0=3) && (vall=O)){
array[O]=O;
array[l]=O;
array[2]=1;
array[3]=1;
}

ifl(val0=3) && (vall=l)){
array[O]=l;
array[l]=O;
array[2]=1;
array[3]= 1;
}

ifl(val0=3) && (vall =2)){
array[O]=O;
array[l]=l;
array[2]=1;
array[3]=1;
}

ifl(val0=3) && (vall=3)){
array[O]=l;
array[l]=l;

80

"

array[2]=1;
array[3]= 1;
}

permut(array,4);

}//END of fun E_P

int SO(int array[4]) {
int row,col,valO;
int s0[4][4]={ 1,0,3,2,3,2,1,0,0,2,1,3,3, 1,3,2};

ift(array[3]==0) && (array[O]==O))row=O;
ift(array[2]==0) && (array[l]==O))col=O;
if{ (array[3]==O) && (array[O]== 1))row= 1 ;
ift(array[2]==0) && (array[l]==l))col=l;
ift(array[3]==1) && (array[O]==O))row=2;
ift(array[2]==1) && (array[l]==O))col=2;
ift(array[3]==1) && (array[O]==l))row=3 ;
ift(array[2]==1) && (array[l]==l))col=3;

valO=sO[row][col];
return valO;

}//END of fun SO

int S 1 (int array[4]) {
int row,col,vall;
int sl [4][4]={0,1,2,3,2,0,1,3,3,0,1,0,2, 1,0,3};

ift(array[3]==0) && (array[O]==O))row=O;
ift(array[2]==0) && (array[l]==O))col=O;
if{ (array[3]==O) && (array[O]== 1))row= 1 ;
ift(array[2]==0) && (array[l]==l))col=l ;
ift(array[3]==1) && (array[O]==O))row=2;
ift(array[2]==1) && (array[l]==O))col=2;
ift(array[3]==1) && (array[O]==l))row=3;
ift(array[2]==1) && (array[l]==l))col=3;

81

•

vall =sl [row][col];
return vall;

}//END of fun Sl

char convert_ char(int array[8]) {
char ch;
int i,f=O,d,z;

for(i=O;i<8;i++) { z= 1;
if(array[i]==l){

for(d=l ·d<=i·d++)z*=2· ' ' ' }
else z=O;
f+=z;

}
ch=f;
return ch;

}

82

•

CONCLUSION

The most efficient way to provide security for communication between parties

within a communication network is the use of cryptography. However, in order for this

mechanism to keep information secure, safe ways of distributing keys must exist.

Data encryption devices are deployed within a vast number of different critical

data communication applications. DES is the most common of encryption methods which

devices with their extensive features and cost effectiveness compete effectively; it

enhances performance and security within communication applications.

Since its adoption as federal standard, there have been lingering concerns about

the level of security provided by DES. These concerns, by and large, fall into two areas:

key size and the nature of the algorithm.

Today's connected society requires secure data encryption devices to preserve

data privacy and authentication in critical applications. One of the several data encryption

types, Data Encryption Standard (DES) has emerged to be the most commonly used in

varying applications. Data encryption is used pervasively in today's connected society.

0

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering
	~~!~~\\']~

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Page 4
	Titles
	TABLE OF CONTENTS

	Page 5
	Page 6
	Titles
	INTRODUCTION

	Page 7
	Page 8
	Titles
	1. INTRODUCTION TO SECURE COMMUINCATION
	1.1 Overview
	1.2 Secure Communications

	Page 9
	Page 10
	Titles
	1.3. Security objectives

	Tables
	Table 1

	Page 11
	Titles
	1.4 Data Privacy

	Tables
	Table 1

	Page 12
	Titles
	1.5 Authentication

	Page 13
	Titles
	1.6 Data Integrity

	Page 14
	Page 15
	Page 16
	Titles
	2. INTRODUCTION TO CRYPTOGRAPHY
	2.1 Overview
	2.1 Cryptography

	Page 17
	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 19
	Titles
	2.3 Basic Functions and Concepts

	Images
	Image 1

	Page 20
	Page 21
	Titles
	l·m.
	(' *
	--· ---1------t,.

	Images
	Image 1
	Image 2

	Page 22
	Page 23
	Titles
	2.4 Symmetric-key Encryption

	Page 24
	Titles
	L,
	--',,.,

	Images
	Image 1
	Image 2

	Page 25
	Titles
	2.5 Digital Signatures

	Page 26
	Titles
	2.6 Public-key Cryptography
	----· --------- ---· __ ...
	"Tr
	t.,n
	+m·

	Images
	Image 1
	Image 2

	Page 27
	Titles
	2. 7 Hash Functions
	2.8 Protocols, Mechanisms

	Page 28
	Titles
	2.9 Classes of Attacks and Security Models

	Page 29
	Page 30
	Titles
	3. CRYPTOGRAPHY FUNCTIONS
	3.1 Overview
	3.2 Block Cipher

	Page 31
	Titles
	ECRENCRVPTJON
	ECB DECRYPTION

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 32
	Titles
	! !�E!r¥J;r1tW:1

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12
	Image 13
	Image 14
	Image 15
	Image 16
	Image 17
	Image 18
	Image 19

	Page 33
	Images
	Image 1

	Page 34
	Titles
	3.3 Authentication Confirms an Identity

	Page 35
	Titles
	�
	3.4 Symmetric-Key Algorithms

	Page 36
	Titles
	3.5 Asymmetric key Algorithms

	Page 37
	Page 38
	Titles
	�
	3.6 Hash Functions

	Page 39
	Page 40
	Titles
	3. 7 Digital Signatures

	Page 41
	Titles
	3.8 Attacks on Ciphers

	Page 42
	Images
	Image 1

	Page 43
	Titles
	�

	Images
	Image 1

	Page 44
	Images
	Image 1

	Page 45
	Titles
	�
	3.9 Strong Password-Only Authenticated Key Exchange

	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Titles
	�
	3.3 Authentication Confirms an Identity
	.

	Page 49
	Titles
	4. DES OVER SECURE CHANNEL
	4.1 Overview
	4.2 Simplified DES (S_DES)

	Page 50
	Titles
	�

	Images
	Image 1
	Image 2
	Image 3

	Page 51
	Titles
	�

	Images
	Image 1

	Page 52
	Images
	Image 1
	Image 2

	Page 53
	Titles
	4.3 History of DES

	Images
	Image 1

	Page 54
	Titles
	4.4 How DES Works in Detail

	Images
	Image 1
	Image 2

	Page 55
	Images
	Image 1

	Page 56
	Titles
	LEIT] (LEFil

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 57
	Images
	Image 1

	Tables
	Table 1

	Page 58
	Images
	Image 1

	Page 59
	Titles
	c6
	c8
	=

	Images
	Image 1

	Page 60
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 61
	Images
	Image 1

	Tables
	Table 1

	Page 62
	Images
	Image 1
	Image 2

	Page 63
	Images
	Image 1

	Page 64
	Images
	Image 1

	Page 65
	Images
	Image 1

	Page 66
	Images
	Image 1

	Page 67
	Titles
	+

	Images
	Image 1

	Tables
	Table 1

	Page 68
	Titles
	..

	Images
	Image 1

	Page 69
	Images
	Image 1

	Page 70
	Titles
	4.5 Cracking DES

	Images
	Image 1

	Page 71
	Titles
	4.6 Triple-DES

	Page 72
	Titles
	�
	5. IMPLEMENTATION OF S DES BY USING C LANGUAGE
	5.1 Overview
	5.2 Flow Chart of Software

	Images
	Image 1
	Image 2
	Image 3

	Page 73
	Titles
	5.3 Encryption and Decryption Algorithms

	Images
	Image 1
	Image 2

	Page 74
	Titles
	4.5 Examples of Encryption and Decryption

	Images
	Image 1
	Image 2

	Page 75
	Images
	Image 1
	Image 2
	Image 3

	Page 76
	Titles
	4.6 Summary

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 77
	Titles
	REFERENCES:

	Images
	Image 1
	Image 2

	Page 78
	Images
	Image 1

	Page 79
	Titles
	APPENDIX
	}

	Images
	Image 1
	Image 2
	Image 3

	Page 80
	Images
	Image 1
	Image 2

	Page 81
	Images
	Image 1
	Image 2

	Page 82
	Images
	Image 1

	Page 83
	Images
	Image 1

	Page 84
	Titles
	}

	Images
	Image 1

	Page 85
	Titles
	..

	Page 86
	Titles
	"

	Page 87
	Page 88
	Page 89
	Titles
	CONCLUSION

	Images
	Image 1
	Image 2

