
I.

(
. r-

NEAR EAST UNIVERSITY ;~,)'ı·l ...·--~

Faculty of Engineering

Department of Computer Engineering

Purchasing and Selling Computer Parts
Visual Basic

Graduation Project
COM-400

Student Name: Ahmad Moh'd Eid(20020934)

Supervisor: Assist.Prof Dr. Firudin Muradov

Nicosia - 2007

ACKNOWLEDGEMENT

First of all I would like to thanks ALLAHfor guiding me through my study.

More over I feel proud to pay my special regards to my project adviser "Assist.Prof Dr.

Firudin Muradov ". He never disappointed me in any affair. He delivered me too much

information and did his best of efforts to make me able to complete my project. He has

Devine place in my heart and I am less than the halfwithout his help. I am really thankful

to my teacher.

Also, I want to pay special regards to my parents who are enduring these all expenses

and supporting me in all events. I am nothing without their prayers. They also

encouraged me in crises. I shall never forget their sacrifices for my education so that I

can enjoy my successful life as they are expecting. They may get peaceful life in Heaven.

At the end I am again thankful to those all persons who helped me or even encouraged

me to complete me, myproject. My all efforts to complete thisproject might befruitful.

To the best of my knowledge, I want to honor those all people who have supported me or

helped me in my project. I also pay my special thanks to my all friends who have helped

me in myproject and gave me theirprecious time to complete myproject.

ABSTRACT

This project is a package program to store the company daily transaction concerning

purchasing and selling computer parts.

The project uses Microsoft Visual Basic 6.0, Microsoft Access XP for creating Data

Base and some SQL Queries to manage database.

The aim of this project is to help the user to manage the data storage and use it when

it is needed.

Customers pass by in computer shops to search for the best quality computer parts

and prices, some customers pay in cash and some pay by using credit cards. So, the

selling operation must be managed and controlled daily. On the other hand the company

must hire employees with full information about them in which they can help the

customers in finding the computer parts and writing full information about the product

sells with the customer information.

This program helps user to manage the whole information in general and save it in

database so they can use it later when it's needed.

11

Table of Contents

ACKNOWLEDGEMENT

ABSTRACT

CONTENTS

INTRODUCTION

1. DATABASE

1 .1 Overview

1.2 History

1 .3 Database models

1 .3. 1 Flat model

1 .3 .2 Hierarchical model

1.3.3 Network model

1 .3.4 Relational model

1.3.4.1 Relational operations

1.3.5 Dimensional model

1.3.6 Object database models

1 .4 Database internals

1. 4. 1 Indexing

1 .4.2 Transactions and concurrency

1 .4.3 Replication

1 .5 Applications of database

2. SQL

2. 1 What is SQL

2.2 History

2.3 Standardization

2.4 Scope

2.5 Reasons For Lack Of Portability

2.6 SQL keywords

2.6.1 Data retrieval

2.6.2 Data manipulation

11

1ll

1ll

1

1

2

4

4

5

5

6

7

8

9

10

10

10

11

11

13

13

13

14

15

16

17

17

19

1ll

2.6.3 Data transaction

2.6.4 Data definition

2.6.5 Data control

2.7 Criticisms of SQL

2.8 Alternatives to SQL

3. MICROSOFT ACCESS

3.1 Over View

3.2 History

3.3 Uses

3 .4 Features

3.5 Development

4. VISUAL BASIC

4.1 Over View

4.2 Derivative languages

4.3 Language features

4.4 Controversy

4.4.1 Weaknesses

4.4.1.1 Performance

4.4.1.2 Error Handling

4.4.1.3 Simplicity

4.4.2 Strengths

4.4.2.1 Debugging

4.4.2.2 Simplicity

4.4.3 Programming constructs not present in Visual Basic

4.4.4 Characteristics present in Visual Basic

4.5 Evolution of Visual Basic

4.6 Timeline of Visual Basic (VBl to VB6)

5. DESCRIPTION OF THE SOFTWARE

5 .1 Introduction

5.2 Description of the forms

CONCLUSION

20

20

21

23

25

27

27

28

28

29

30

32

32

32

34

36

36

36

37

37

38

38

38

39

40

41

42

44

44

48

59

ıv

REFERENCES

APPENDIX
60

61

V

INTRODUCTION

This project describes database system concepts and a simple computer shop program

which named purchasing and selling computer parts. The application part uses Access

and SQL quires. The program is written by Microsoft Visual Basic 6.0, and Microsoft

Access XP to create database.Also it uses some SQL codes.

The project contains five chapters.

CHAPTER 1: describes information about the database in general, database models,
relational database operations and brands.

CHAPTER 2: describes basics of SQL. Its history, keywords and some of the
commands of it.

CHAPTER 3: describesMicrosoft Access and its features.

CHAPTER 4: presents information about Visual Basic Language Features and the

basic concepts of VisualBasic.

CHAPTER 5: describes the program execution and basics about purchasing and
selling computerparts,

vı

CHAPTER ONE

DATABASE

1.1 Overview

The term database originated within the computer industry. Although its meaning

has been broadened by popular use, even to include non-electronic databases, this

article takes a more technical perspective. A possible definition is that a database is a

collection of records stored in a computer in a systematic way, so that a computer

program can consult it to answer questions. The items retrieved in answer to queries

become information that can be used to make decisions. The computer program used

to manage and query a database is known as a database management system (DBMS).

The properties and design of database systems are included in the study of

information science.

The central concept of a database is that of a collection of records, or pieces of

knowledge. Typically, for a given database, there is a structural description of the type

of facts held in that database: this description is known as a schema. The schema

describes the objects that are represented in the database, and the relationships among

them. There are a number of different ways of organizing a schema, that is, of

modeling the database structure: these are known as database models (or data

models). The model in most common use today is the relational model, which in

layman's terms represents all information in the form of multiple related tables each

consisting of rows and columns (the true definition uses mathematical terminology).

This model represents relationships by the use of values common to more than one

table. Other models such as the hierarchical model and the network model use a more

explicit representation of relationships.

Strictly speaking, the term database refers to the collection of related records, and

the software should be referred to as the database management system or DBMS.

When the context is unambiguous, however, many database administrators and

programmers use the term database to cover both meanings.

1

Many professionals would consider a collection of data to constitute a database

only if it has certain properties: for example, if the data is managed to ensure its

integrity and quality, if it allows shared access by a community of users, if it has a

schema, or if it supports a query language. However, there is no agreed definition of

these properties.

Database management systems are usually categorized according to the data

model that they support: relational, object-relational, network, and so on. The data

model will tend to determine the query languages that are available to access the

database. A great deal of the internal engineering of a DBMS, however, ıs

independent of the data model, and is concerned with managing factors such as

performance, concurrency, integrity, and recovery from hardware failures. In these

areas there are large differences between products.

1.2 History

The earliest known use of the term 'data base' was in June 1963, when the System

Development Corporation sponsored a symposium under the title Development and

Management of a Computer-centered Data Base. Database as a single word became

common in Europe in the early 1970s and by the end of the decade it was being used

in major American newspapers. (Databank, a comparable term, had been used in the

Washington Post newspaper as early as 1966.)

The first database management systems were developed in the 1960s. A pioneer in

the field was Charles Bachman. Bachrnan's early papers show that his aim was to

make more effective use of the new direct access storage devices becoming available:

until then, data processing had been based on punched cards and magnetic tape, so

that serial processing was the dominant activity. Two key data models arose at this

time: CODASYL developed the network model based on Bachrnan's ideas, and

(apparently independently) the hierarchical model was used in a system developed by

North American Rockwell, later adopted by IBM as the cornerstone of their IMS

product.

2

The relational model was proposed by E. F. Codd in 1970. He criticized existing

models for confusing the abstract description of information structure with

descriptions of physical access mechanisms. For a long while, however, the relational

model remained of academic interest only. While CODASYL systems and IMS were

conceived as practical engineering solutions taking account of the technology as it

existed at the time, the relational model took a much more theoretical perspective,

arguing (correctly) that hardware and software technology would catch up in time.

Among the first implementations were Michael Stonebraker's Ingres at Berkeley, and

the System R project at IBM. Both of these were research prototypes, announced

during 1976. The first commercial products, Oracle and DB2, did not appear until

around 1980. The first successful database product for microcomputers was dBASE

for the CP/Mand PC-DOS/MS-DOS operating systems.

During the 1980s, research activity focused on distributed database systems and

database machines, but these developments had little effect on the market. Another

important theoretical idea was the Functional Data Model, but apart from some

specialized applications in genetics, molecular biology, and fraud investigation, the

world took little notice.

In the 1990s, attention shifted to object-oriented databases. These had some

success in fields where it was necessary to handle more complex data than relational

systems could easily cope with, such as spatial databases, engineering data (including

software engineering repositories), and multimedia data. Some of these ideas were

adopted by the relational vendors, who integrated new features into their products as a

result.

In the 2000s, the fashionable area for innovation is the XML database. As with

object databases, this has spawned a new collection of startup companies, but at the

same time the key ideas are being integrated into the established relational products.

XML databases aim to remove the traditional divide between documents and data,

allowing all of an organization's information resources to be held in one place,

whether they are highly structured or not

3

1.3 Database models

Various techniques are used to model data structure. Most database systems are

built around one particular data model, although it is increasingly common for

products to offer support for more than one model. For any one logical model various

physical implementations may be possible, and most products will offer the user some

level of control in tuning the physical implementation, since the choices that are made

have a significant effect on performance. An example of this is the relational model:

all serious implementations of the relational model allow the creation of indexes

which provide fast access to rows in a table if the values of certain columns are

known.

A data model is not just a way of structuring data: it also defines a set of

operations that can be performed on the data. The relational models, for example,

define operations such as select, project, and join. Although these operations may not

be explicit in a particular query language, they provide the foundation on which a

query language is built.

1.3.1 Flat model

This may not strictly qualify as a data model, as defined above. The flat (or table)

model consists of a single, two-dimensional array of data elements, where all

members of a given column are assumed to be similar values, and all members of a

row are assumed to be related to one another. For instance, columns for name and

password that might be used as a part of a system security database. Each row would

have the specific password associated with an individual user. Columns of the table

often have a type associated with them, defining them as character data, date or time

information, integers, or floating point numbers. This model is, incidentally, a basis of

the spreadsheet.

4

1.3.2 Hierarchical model

In a hierarchical model, data is organized into a tree-like structure, implying a

single upward link in each record to describe the nesting, and a sort field to keep the

records in a particular order in each same-level list. Hierarchical structures were

widely used in the early mainframe database management systems, such as the

Information Management System (IMS) by IBM, and now describe the structure of

XML documents. This structure allows one 1: N relationship between two types of

data. This structure is very efficient to describe many relationships in the real world;

recipes, table of contents, ordering of paragraphs/verses, any nested and sorted

information. However, the hierarchical structure is inefficient for certain database

operations when a full path (as opposed to upward link and sort field) is not also

included for each record.

1.3.3 Network model

The network model (defined by the CODASYL specification) organizes data

using two fundamental constructs, called records and sets. Records contain fields

(which may be organized hierarchically, as in the programming language COBOL).

Sets (not to be confused with mathematical sets) define one-to-many relationships

between records: one owner, many members. A record may be an owner in any

number of sets, and a member in any number of sets.

The operations of the network model are navigational in style: a program

maintains a current position, and navigates from one record to another by following

the relationships in which the record participates. Records can also be located by

supplying key values.

Although it is not an essential feature of the model, network databases generally

implement the set relationships by means of pointers that directly address the location

of a record on disk. This gives excellent retrieval performance, at the expense of

operations such as database loading and reorganization.

5

1.3.4 Relational model

The relational model was introduced in an academic paper by E. F. Codd in 1970

as a way to make database management systems more independent of any particular

application. It is a mathematical model defined in terms of predicate logic and set

theory.

The products that are generally referred to as relational databases in fact

implement a model that is only an approximation to the mathematical model defined

by Codd. The data structures in these products are tables, rather than relations: the

main differences being that tables can contain duplicate rows, and that the rows (and

columns) can be treated as being ordered. The same criticism applies to the SQL

language which is the primary interface to these products. There has been

considerable controversy, mainly due to Codd himself, as to whether it is correct to

describe SQL implementations as "relational": but the fact is that the world does so,

and the following description uses the term in its popular sense.

A relational database contains multiple tables, each similar to the one in the "flat"

database model. Relationships between tables are not defined explicitly; instead, keys

are used to match up rows of data in different tables. A key is a collection of one or

more columns in one table whose values match corresponding columns in other

tables: for example, an Employee table may contain a column named Location which

contains a value that matches the key of a Location table. Any column can be a key,

or multiple columns can be grouped together into a single key. It is not necessary to

define all the keys in advance; a column can be used as a key even if it was not

originally intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique key.

Typically one of the unique keys is the preferred way to refer to a row; this is defined

as the table's primary key.

A key that has an external, real-world meaning (such as a person's name, a book's

ISBN, or a car's serial number) is sometimes called a "natural" key. If no natural key

is suitable (think of the many people named Brown), an arbitrary key can be assigned

(such as by giving employees ID numbers). In practice, most databases have both

6

generated and natural keys, because generated keys can be used internally to create

links between rows that cannot break, while natural keys can be used, less reliably, for

searches and for integration with other databases. (For example, records in two

independently developed databases could be matched up by social security number,

except when the social security numbers are incorrect, missing, or have changed.)

1.3.4.1 Relational operations

Users (or programs) request data from a relational database by sending it a query

that is written in a special language, usually a dialect of SQL. Although SQL was

originally intended for end-users, it is much more common for SQL queries to be

embedded into software that provides an easier user interface. Many web sites, such

as Wikipedia, perform SQL queries when generating pages.

In response to a query, the database returns a result set, which is just a list of rows

containing the answers. The simplest query is just to return all the rows from a table,

but more often, the rows are filtered in some way to return just the answer wanted.

Often, data from multiple tables are combined into one, by doing a join.

Conceptually, this is done by taking all possible combinations of rows (the Cartesian

product), and then filtering out everything except the answer. In practice, relational

database management systems rewrite ("optimize") queries to perform faster, using a

variety of techniques.

There are a number of relational operations in addition to join. These include

project (the process of eliminating some of the columns), restrict (the process of

eliminating some of the rows), union (a way of combining two tables with similar

structures), difference (which lists the rows in one table that are not found in the

other), intersect (which lists the rows found in both tables), and product (mentioned

above, which combines each row of one table with each row of the other). Depending

on which other sources you consult, there are a number of other operators - many of

which can be defined in terms of those listed above. These include semi-join, outer

operators such as outer join and outer union, and various forms of division. Then there

are operators to rename columns, and summarizing or aggregating operators, and if

you permit relation values as attributes (RVA - relation-valued attribute), then

7

operators such as group and ungroup. The SELECT statement in SQL serves to

handle all of these except for the group and ungroup operators.

The flexibility of relational databases allows programmers to write queries that

were not anticipated by the database designers. As a result, relational databases can be

used by multiple applications in ways the original designers did not foresee, which is

especially important for databases that might be used for decades. This has made the

idea and implementation of relational databases very popular with businesses.

1.3.5 Dimensional model

The dimensional model is a specialized adaptation of the relational model used to

represent data in data warehouses in a way that data can be easily summarized using

OLAP queries. In the dimensional model, a database consists of a single large table of

facts that are described using dimensions and measures. A dimension provides the

context of a fact (such as who participated, when and where it happened, and its type)

and is used in queries to group related facts together. Dimensions tend to be discrete

and are often hierarchical; for example, the location might include the building, state,

and country. A measure is a quantity describing the fact, such as revenue. It's

important that measures can be meaningfully aggregated - for example, the revenue

from different locations can be added together.

In an OLAP query, dimensions are chosen and the facts are grouped and added

together to create a summary.

The dimensional model is often implemented on top of the relational model using

a star schema, consisting of one table containing the facts and surrounding tables

containing the dimensions. Particularly complicated dimensions might be represented

using multiple tables, resulting in a snowflake schema.

A data warehouse can contain multiple star schemas that share dimension tables,

allowing them to be used together. Coming up with a standard set of dimensions is an

important part of dimensional modeling.

8

1.3.6 Object database models

In recent years, the object-oriented paradigm has been applied to database

technology, creating a new programming model known as object databases. These

databases attempt to bring the database world and the application programming world

closer together, in particular by ensuring that the database uses the same type system

as the application program. This aims to avoid the overhead (sometimes referred to as

the impedance mismatch) of converting information between its representation in the

database (for example as rows in tables) and its representation in the application

program (typically as objects). At the same time object databases attempt to introduce

the key ideas of object programming, such as encapsulation and polymorphism, into

the world of databases.

A variety of these ways have been tried for storing objects in a database. Some

products have approached the problem from the application programming end, by

making the objects manipulated by the program persistent. This also typically requires

the addition of some kind of query language, since conventional programming

languages do not have the ability to find objects based on their information content.

Others have attacked the problem from the database end, by defining an object­

oriented data model for the database, and defining a database programming language

that allows full programming capabilities as well as traditional query facilities.

Object databases suffered because of a lack of standardization: although standards

were defined by ODMG, they were never implemented well enough to ensure

interoperability between products. Nevertheless, object databases have been used

successfully in many applications: usually specialized applications such as

engineering databases or molecular biology databases rather than mainstream

commercial data processing. However, object database ideas were picked up by the

relational vendors and influenced extensions made to these products and indeed to the

SQL language.

9

1.4 Database internals

1.4.1 Indexing

All of these kinds of database can take advantage of indexing to increase their

speed, and this technology has advanced tremendously since its early uses in the

1960s and 1970s. The most common kind of index is a sorted list of the contents of

some particular table column, with pointers to the row associated with the value. An

index allows a set of table rows matching some criterion to be located quickly.

Various methods of indexing are commonly used; B-trees, hashes, and linked lists are

all common indexing techniques.

Relational DBMSs have the advantage that indexes can be created or dropped

without changing existing applications making use of it. The database chooses

between many different strategies based on which one it estimates will run the fastest.

Relational DBMSs utilize many different algorithms to compute the result of an

SQL statement. The RDBMS will produce a plan of how to execute the query, which

is generated by analyzing the run times of the different algorithms and selecting the

quickest. Some of the key algorithms that deal with joins are Nested Loops Join, Sort­

Merge Join and Hash Join

1.4.2 Transactions and concurrency

In addition to their data model, most practical databases ("transactional

databases") attempt to enforce a database transaction model that has desirable data

integrity properties. Ideally, the database software should enforce the ACID rules,

summarized here:

Atomicity: Either all the tasks in a transaction must be done, or none of them. The

transaction must be completed, or else it must be undone (rolled back).

Consistency: Every transaction must preserve the integrity constraints - the

declared consistency rules - of the database. It cannot place the data in a

contradictory state.

10

