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ABSTRACT

By increasing complexityof processes, it has becomevery difficult to control them on the

base of traditional methods. In such condition it is necessary to use modem methods for

solving these problems. One of such method is global optimization algorithm based on

mechanics of natural selection and natural genetics,which is called Genetic Algorithms. In

this project the application problems of genetic algorithms for optimization problems, its

specific characters and structures are given. The basic genetic operation: Selections,

reproduction, crossover and mutation operations are widely described the a:ffectivityof

genetic algorithms for optimization problem solving is shown. After the representation of

optimizations problem, structural optimization and the. finding of optimal solution of

quadratic equation are given.
The practical application for selection, reproduction,crossover, and mutation operation are

shown. The functional implementation of GA based optimization· in MATLAB

programming language is considered. Also the multi-modal optimization problem, some

methods for global optimization and-the application of Niching method for multi-modal.

optimization are discussed.
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INTRODUCTION OF GENETIC ALGORITHM

The GENETIC ALGORITHM is a model of machine learning which derives its

behavior from a metaphor of the processes of EVOLUTION in nature. This is done by

the creation within a machine of a POPULATION of Individuals represented by

Chromosomes, in essence a set of character strings that are analogous to the base-4

chromosomes that we see in our own DNA. The individuals in the population then go

through a process of evolution.
We should note that EVOLUTION (in nature or anywhere else) is not a purposive or

directed process. That' is, there is no evidence to support the assertion that the

goal of evolution is to produce Mankind. Indeed, the processes ofnature seem to boil

down to different Individuals competing for resources in the ENVIRONMENT.

Some are better than others. Those that are better are more likely to survive and

propagate their genetic material.
In nature, we see that the encoding for our genetic information (GENOME) is done in a

way that-admits asexual REPRODUCTION (such as by budding) typically results in

OFFSPRING that are genetically identical to the PARENT. Sexual REPRODUCTION

allows the creation of genetically radically different offspring that are still of the same

general flavor (SPECIES).
At the molecular level what occurs (wild oversimplification alert!) is that pair of

Chromosomes bumps into one another, exchange chunks of genetic information and

drift apart. This is the RECOMBINATION operation, which GA/GPers generally refer

to as CROSSOVER because of the way that genetic material crosses over from one
~

chromosome to another.
The CROSSOVER operation happens in an ENVIRONMENT where the SELECTION••
of who gets to mate is a function of the FITNESS of the INDIVIDUAL, i.e. How good

the individual is at competing in its environment.

Some GENETIC Algorithms use a simple function of the fitness measure to select

individuals (probabilistically) to undergo genetic operations such as crossover or

asexual REPRODUCTION (the propagation of genetic material unaltered). This is

fitness-proportionate selection. Other implementations use a model in which certain

randomly selected individuals in a subgroup compete and the fittest is selected. This is

called tournament selection and is the form of selection we see in nature when stags rut

VI 



to vie for the privilege of mating with a herd of hinds. The two processes that most

contribute to EVOLUTION are crossover and fitness based selection/reproduction.

As it turns out, there are mathematical proofs that indicate that the process of FITNESS

proportionate REPRODUCTION is, in fact, near optimal in some senses.

MUTATION also plays a role in this process, although how important its role is

continues to bad a matter of debate (some refer to it as a background operator, while

others view it as playing the dominant role in the evolutionary process). It cannot be

stressed too strongly that the GENETIC ALGORITHM (as a SIMULATION of a

genetic process) is not a random search for a solution to a problem (highly fit

INDIVIDUAL).
The genetic algorithm uses stochastic processes, but the result is distinctly non-random

(better than random).

GENETIC Algorithms are used for a number of different application areas. An example

of this would be multidimensional OPTIMIZATION problems in which the character

string of the CHROMOSOME can be used to encode the values for the different

parameters being optimized.

In practice, therefore, we can implement this genetic model of computation by having

arrays of bits or characters to represent the Chromosomes. Simple bit manipulation

operations allow · the-implementation of CROSSOVER, MUTATION and other

operations. Although a substantial amount of research has been performed on

variable- length strings and other structures, the majority of work with GENETIC

Algorithms is focused on fixed-length character strings. We should focus on both this

aspect of fixed-length ness and the need to encode the representation of the solution
t<

being sought as a character string, since these are crucial aspects that distinguish
•

GENETIC PROGRAMMING, which does not have a fixed length representation and•
there is typically no encoding of the problem.
When the GENETIC ALGORITHM is implemented it is usually done in a manner that

involves the following cycle: Evaluate the FITNESS of all of the Individuals in the

POPULATION. Create a new population by performing operations such ·· as

CROSSOVER, fitness-proportionate REPRODUCTION and MUTATION on the

individuals whose fitness has just been measured. Discard the old population and iterate

using the new population.
One iteration of this loop is referred to as a GENERATION. There is no theoretical

reason for this as an implementation model. Indeed, we do not see this punctuated
(
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behavior in Populations in nature as a whole, but it is a convenient implementation

model.

The first GENERATION (generation O) of this process operates on a POPULATION of

randomly generated Individuals. From there on, the genetic operations, in concert with

the FITNESS measure, operate to improve the population.

vıu



CHAPTER 1. WHAT ARE GENETIC ALGORITHMS (GAS)?

1.1. Evolution in a Changing World
Looking at the world around us, we see a staggering diversity oflife. Millions of

species, each with its own unique behaviors patterns and characteristics, abound. Yet,

all of these plants and creatures have evolved, and continue evolving, over millions of

years. They have adapted themselves to a constantly shifting and changing environment

in order to survive. Those weaker members of a species tend to die away, leaving the

stronger and fitter to mate, create offspring and ensure the continuing survival of the

species. Their lives are dictated by the laws of natural selection and Darwinian

evolution. And it is upon these ideas that genetic algorithms are based.

1.2. Defining Genetic Algorithms
What exactly do we mean by the term Genetic Algorithms? Goldberg (1989)

defines it as:
Genetic algorithms are search algorithms based on the mechanics of natural

selection and natural genetics.

Bauer (199~) gives a similar definition in his book:
Genetic algorithms are software, procedures modeled after genetics and

evolution.
GAs exploits the idea of the survival of the fittest and an interbreeding population to

create a novel and innovative search strategy. A population of strings, representing

solutions to a specified problem, is maintained by the GA. The GA then iteratively

creates new populations from the old by ranking the strings and _interbreedingthe fittest

to create new strings, which are (hopefully) .closer to the optimum solution to the

problem at hand. So in each generation, the GA creates a set of strings from the bits and

pieces of the previous strings, occasionally adding random new data to keep the

population from stagnating. The end result is a search strategy that is tailored for vast, ·

complex, multimodal search spaces.
GAs is a form of randomized search, in that the way in which strings are chosen and

combined is a stochastic process. This is a radically different approach to the problem

solving methods used by more traditional algorithms, which tend to be more

1



deterministic in nature, such as the gradient methods used to find minima in graph
theory.

The idea of survival of the fittest is of great importance to genetic algorithms. GAs use

what is termed as a fitness function in order to select the fittest string that will be used

to create new, and conceivably better, populations of strings. The fitness function takes

a string and assigns a relative fitness value to the string. The method by which it does

this and the nature of the fitness value does not matter. The only thing that the fitness

function must do is to rank the strings in some way by producing the fitness value.

These values are then used to select the fittest strings. The concept of a fitness function

is, in fact, a particular instance of a more general AI concept, the objective function.

1.3. Genetic Algorithms: A Natural Perspective

The population can be simply viewed as a collection of interacting creatures. As

each generation ofcreatures comes and goes, the weaker ones tend to die away without

producing children, while the stronger mate, combining attributes of both parents, to

produce new, and perhaps unique children to continue the cycle. Occasionally, a

mutation creeps into one of the creatures, diversifying the population even more.

Remember that in nature, a diverse population within a species tends to allow the

species to adapt to it's environment with more ease. The same holds true for genetic
algorithms.

•
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. The Iteration Loop of a Basic Genetic Algorithm

Raıdomly creaed
Initial Populciion

Selection
(wtıo le population)

Pc 1-Pc

Recom bina.tio n

No

End

The following flowchart shows the interactive cycle of a basic genetic

algorithm. Firstly, an initial population.of strings is created. The process then iteratively

selects individuals from the population that undergo some form of transformation (via

the recombination step) to create new a population. The new population is then tested to
. ~

see if it fulfills some stopping criteria. If it does, then the process halts, otherwise

another iteration is performed. (Diagram taken from Blickle, 1995).

1.5. Biological Metaphors for GAs

1.5.1. Genetics
Within most cells in the human body (and in most other living organisms) are

rods like structures called chromosomes. These0chromosomes_dictate various hereditary

aspects of the individual. Within the chromosomes are individual genes. A gene

encodes a specific feature ofthe individual. For example, a person's eye color is dictated

by a specific gene. The actual value ofthe gene is called an allele. So the eye color gene

may produce brown eyes.
This is a grossly oversimplified look at genetics, but will suffice to show its correlation

with genetic algorithms. A hierarchical picture is· built up, with alleles being encoded as

genes, with sequences of genes being chained together in chromosomes, which makes

up the DNA of an individual.

3
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/hen two individuals mate, both parents pass their chromosomes onto their offspring.

In humans, who have 46 paired chromosomes in total, both parents pass on 23

:bromosomes each to their child. Each chromosome passed to the child is an

amalgamation of two chromosomes from a parent. The two chromosomes come

together and swap genetic material, and only one of the new chromosome strands is

passed to the child. So the chromosome strands undergo a crossover ofgenetic material,

which leads to a unique new individual.
As if this were not enough, genetic material can undergo mutations, resulting from

imperfect crossovers or other external stimuli. Although mutation is rare, it does lead to

an even greater diversification in the population. It must be noted however that a

significant number of mutations are harmful and can destroy good genetic code, so the

rate of mutation must be low in order to prevent severe degradation of the genetic code.

1.5.2. Genetic Algorithms _
Genetic algorithms are modeled closely on the ideas presented above. GAs

maintains string structures that are analogous to chromosomes. The gene idea maps to

the elements within the string and the values stored in these string elements are

analogous to alleles.
The strings are rated by a fitness function. Strings are then selected for mating based on

their ratings. When the strings are mated, crossover may occur, with a new child string

being formed from parts of both parent strings. Mutation may also occur within the

child string, based on a low mutation probability. Thus a new population is formed as a

new generation of strings are created. The process then repeats itself, and a dynamically
"evolving population of strings runs through a number of iterations.

1.6. Traditional Optimization Methods vs. GAs

1.6.1. GAs and Robustness.
Two of the most remarkable traits of biological systems in general are their

robustness and flexibility. Biological systems have methods for self-guidance, self­

repair and reproduction. Very few artificial systems have any of these features.

Do GAs demonstrate at least some of these desirable traits from nature? Intuitively, we

may think so as genetic algorithms are modeled closely on evolution in the biological

world. And we would be right. Genetic algorithms have been proven to be robust,
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flexible and efficient in vast complex spaces. For a discussion of this see (Holland,

1975).

1.6.2. Genetic Algorithm Traits
So genetic algorithms provide robustness, efficiency and flexibility when

searching a problem space for the optimum solution. But why is this? For a more

technical look at the power of GAs, a discussion on building blocks and schemata is

required. For the moment, we shall just give a very brief look at the GAs search

strategy.
GAs judiciously uses the idea of randomness when performing a search. However, it

must be clearly understood that GAs are not simply random search algorithms, which

will be dealt with later. Random search algorithms can be inherently inefficient due to

the directionless nature of their search. GAs is not directionless. They utilize knowledge

from previous generations of strings in order to construct a new generation that ~11

approach the optimal solution. In other words, they use past knowledge to direct the

search. Such search algorithms are known as randomized search techniques, and are

discussed further below.

1.6.3. Other Search Techniques
We will now look at· some of the other, more traditional, optimization

techniques, and show both their strengths and shortcomings when compared with GAs.

1.6.4. Some Sample Problem Spaces
In order to understand the problems of optimization, it is helpful to visualize

exactly what the problem spaces may look like. Pictures of some difficult problem

spaces can be viewed here. 1.6.5 Hill Climbing

5



Hill climbing optimization techniques have their roots in the classical mathematics

developed in the 18th and 19th centuries. In essence, this class of search methods finds

an optimum by following the local gradient of the function (they are sometimes known

as gradient methods). They are deterministic in their searches. They generate successive

results based solely on the previous results.

There are several drawbacks to hill climbing methods. Firstly, they assume that the

problem space being searched is continuous in nature. In other words, derivatives of the

function representing the problem space exist, This is not true of many real world

problems where the problem space is noisy and discontinuous.

Another major disadvantage of using hill climbing is that hill climbing algorithms only

find the local optimum in the neighborhood of the current point. They have no way of

looking at the global picture in general. However, parallel methods of hill-climbing can

be used to search multiple points in the problem space. This still suffers from the

problem that there is no guarantee of finding the optimum value, especially in very

noisy spaces with a multitude oflocal peaks or troughs.

6



1.6.6. Enumerative
The basis for enumerative techniques is simplicity itself To find the optimum

rahıe in a problem space (which is finite), look at the function values at every point in

e space. The problem here is obvious. This is horribly inefficient. For very large

1)rnb\em 'ı,;paces, fue CGID.~\l\a\1Gn.a\ \as\'._\':', m_~':',\.'1~, l)~'-n.al)':', \.n.\"ac.\au\.':! ':',Ç).

1.6.7. Random Search Algorithms
Random searches simply perform random walks of the problem space, recording the

best optimum values discovered so far. Efficiency is a problem here as well. For large

problem spaces, they should perform no better than enumerative searches. They do not

use any knowledge gained from previous results and thus are both dumb and blind.

1.6.8. Randomized Search Techniques
A randomized search algorithm uses random choice to guide themselves through

the problem search space. But these are not just simply random walks. These techniques

are not directionless like the random search algorithms. They use the knowledge gained

from previous results in the search and combine them with some randomizing features.

The result is a powerful search technique. that can handle noisy, multimodal search

spaces with some relative efficiency. The two most popular forms ofrandomized search

algorithms are simulated annealing and genetic algorithms.

1.6.9. The Differences between Genetic Algorithms and Traditional

Methods
The following list is a very quick look at the essential differences between GAs and" .

other forms of optimization. For a more complete discussion, see (Goldberg, 1989).

· 1. Genetic algorithms a coded form of the function values (parameter set), rather

than with the actual values them. So, for example, if we want to find the

minimum of the function f(x) =x3+x2+5, the GA would not deal directly with x

or y values, but with strings that encode these values. For this case, strings

representing the binary x values should be used.
2.. Genetic algorithms use a set, or population, of points to conduct a search, not

just a single point on the problem space. This gives GAs the power to search

noisy spaces littered with local optimum points. Instead of relying on a single

7



point to search through the space, the GAs looks at many different areas of the

problem space at once, and uses all of this information to guide it.

3. Genetic algorithms use only payoff information to guide themselves through the

problem space. Many search techniques need a variety of information to guide

them. Hill climbing methods require derivatives, for example. The only

information a GA needs is some measure of fitness about a point in the space

(sometimes known as an objective function value). Once the GA knows the

current measure of "goodness" about a point, it can use this to continue

searching for the optimum.

4. GAs is probabilistic in nature, not deterministic. This is a direct result of the

randomization techniques used by GAs.

5. GAs is inherently parallel. Here lies one of the most powerful features of genetic.
algorithms. GAs, by their nature, is very parallel, dealing with a large number of

points (strings) simultaneously. Holland has estimated that a GA processing n

strings at each generation, the GA in reality processes n 3 useful substrings. Thi~

becomes clearer when schemata are examined.

1.7. Basic Genetic Algorithm Operations

1.7.1. The Inner Workings of a Genetic Algorithm
With GAs having such a solid basis in genetics and evolutionary biological

systems, one might think that the inner workings of a GA would be very complex. In

fact, the opposite is true. Simple GAs are based on simple string copying and substring

concatenation, nothing more, nothing less. Even more complex versions ofGAs still use

these two ideas as the core of their search.engine. All this will become clear when we

walk through a simple GA optimization problem.

1.7.2. The Basic Genetic Algorithm Operations
There are three basic operators found in every genetic algorithm. (Although some

algorithms may not employ the crossover operator, we shall refer to them as

evolutionary algorithms rather than genetic algorithms.)

1. Reproduction

2. Crossover

3. Mutation

8



1.7.3. Reproduction
The reproduction operator allows individual strings to be copied for possible

inclusion in the next generation. The chance that a string will be copied is based on the

string's fitness value, calculated from a fitness function. For each generation, the

reproduction operator chooses strings that are placed into a mating pool, which is used

as the basis for creating the next generation. For example, look at the table below:

rı=---- . - -~ı= \FitnessValue'\Percen~age I

!101001 \5_ '~9% . ·I

ı\10000·\12 '146%i . .

i ; i.

\r1~~,l_·_· __· ,i3s% I

From this table, it is obvious that the string 10000 is the fittest, and should be selected

for reproduction approximately 46% of the time. 01001 is the weakest, andshould only

be selected 19% of the time.
There are, many different types of reproduction operators. One always selects_the fittest

and discards the worst, statistically selecting the rest of the mating pool from the

remainder of the population. There are hundreds of variants of this scheme. None are

right or wrong. In fact, some will perform better than others depending on the problem

domain being explored. For a detailed, mathematical comparison of

reproduction/selection strategies for genetic algorithms, see (Blickle, 1995).

For the moment, we shall look at the most commonly used reproduction method in

GAs. The Roulette Wheel Method simply chooses the strings in a statistical fashion

based solely upon their relative (ie. percentage) fitness values. To look abstractly at this
)

method, consider the roulette wheel below, which is based on the previous example

above.

9



Roulette Wheel Selection

When selecting the three strings that will be placed in the mating pool, the roulette

wheel is spun three times, with the results indicating the string to be placed in the pool.

It is obvious fromthe above wheel that there's a good chance that string 10000 will be

selected more than once. This is fine. Multiple copies of the same string can exist in the

mating pool. This ·is even desirable, since the stronger strings will begin to dominate,

eradicating the weaker ones from the population. There are difficulties with this, as it

can lead to premature convergence on a local optimum.

1.7.4. Crossover
Once the mating pool is created, the next operator in the GA's arsenal comes into

play. Remember that crossover in biological terms refers to the blending of

chromosomes from the parents to produce new chromosomes for the offspring. The

analogy carries over to crossover in GAs.
The GA selects two strings at random from the" mating pool. The strings selected may

be different or identical, it does not matter. The GA then calculates whether crossover

should take place using a parameter called the crossover probability. This is simply a

probability value p and is calculated by flipping a weighted coin. The value ofp is set

by the user, and the suggested value is p=0.6, although this value can be domain

dependant.
If the GA decides not to perform crossover, the two selected strings are simply copied

to the new population (they are not deleted from the mating pool. They may be used

multiple times during crossover). If crossover does take place, then a random splicing

10



point is chosen in a string, the two strings are spliced and the spliced regions are mixed

to create two (potentially) new strings. These child strings are then placed in the new

population.
As an example, say that the strings 10000 and O 111 O are selected for crossover and the

GA decides to mate them. The GA selects a splicing point of 3. The following then

occurs:

100 00
011 10

10010
01100

Crossover in Action

The newly created strings areJ 001 O and O 1100.
Crossover is performed until the new population is created. Then the cycle starts again

with selection. This iterative process continues until any user specified criteria are met

(for example, fifty generations, or a string is found to have a fitness exceeding a certain

threshold).

1.7.5. Mutation
Selection and crossover alone can obviously generate a staggering amount of

differing strings. However, depending on the initial population.chosen, there may not be

enough variety of strings to ensure the GA sees the entire problem space. Or the GA

may find itself converging on strings that are not quite close to the optimum it seeks due

to a bad initial population.
Some of these problems are overcome by introducing a mutation operator into the GA.

The GA has a mutation probability, m, which dictates the frequency at which mutation-occurs. Mutation can be performed either during selection -or crossover (though

crossover is more usual). For each string element in each string in the mating pool, the.
• • 

GA checks to see if it should perform a mutation. If it should, it randomly changes the

element value to a new one. In our binary strings, ls are changed to Os and Os to ls. For

example, the GA decides to mutate bit position 4 in the string 10000:

10000 Mutate ;ı.ı 10010

ll



The resulting string is 1001 O as the fourth bit in the string is flipped. The mutation

probability should be kept very low (usually about 0.001 %) as a high mutation rate will

destroy fit strings and degenerate the GA algorithm into a random walk, with all the

associated problems.

But mutation will help prevent the population from stagnating, adding "fresh blood", as

it were, to a population. Remember that much of the power of a GA comes from the fact

that it contains a rich set of strings of great diversity. Mutation helps to maintain that

diversity throughout the GA's iterations.

••
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CAPTER2. OPTIMIZATION PROBLEM

2.1. What is Optimization
Optimization problems are made up of three basic ingredients:

• An objective function which we want to minimize or maximize. For instance, in a

manufacturing process, we might want to maximize the profit or minimize the cost.

In fitting experimental data to a user-defined model, we might minimize the total

deviation of observed data from predictions based on the model. In designing an

automobile panel, we might want to maximize the strength.

• A set of unknowns or variables which affect the value of the objective function. In

the manufacturing problem, the variables might include the amounts of different

resources used or the time spent on each activity. In fitting-the-data problem, the

unknowns are the parameters that define the model. In the panel design problem, the

variables used define the shape and dimensions of the panel.

• A set of constraints that allow the unknowns to take on certain values but exclude

others. For the manufacturing problem, it does not make sense to spend a negative

amount of time on any activity, so we constrain all the "time" variables to be non- ·

negative. In the panel design problem, we would probably want to limit the weight

of the product and to constrain its shape.

The optimization problem is then:

Find values of the variables that minimize or maximize the objective function while

satisfying the constraints. •

2.2. Are all these ingredients necessaryr,

2.2.1. Objective Function
Almost all optimization problems have a single objective function. (When they don't they

can often be reformulated so that they do!) The two interesting exceptions are:

• No objective function. In some cases (for example, design of integrated circuit

layouts), the goal is to find a set of variables that satisfies the constraints of the

model. The user does not particularly want to optimize anything so there is no
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reason to define an objective function. This type of problems is usually called a

feasibility problem.

• Multiple objective functions. Often, the user would actually like to optimize a

number of different objectives at once. For instance, in the panel design problem, it

would be nice to minimize weight and maximize strength simultaneously. Usually,

the different objectives are not compatible; the variables that optimize one objective

may be far from optimal for the others. In practice, problems with multiple

objectives are reformulated as single-objective problems by either forming a

weighted combination of the different objectives or else replacing some of the

objectives by constraints. These approaches and others are described in our section

on multi-objective optimization.

2.2.2. Variables

These are essential. If there are no variables, we cannot define the objective

function and the problem constraints. · .

2.2.3. Constraints

Constraints are not essential. In fact, the field of unconstrained optimization is a

large and important one for which a lot of algorithms and software are available. It's been

argued that almost all problems really do have constraints. For example, any variable

denoting the "number of objects" in a system can only be useful if it is less than the number

of elementary particles in the known universe! In practice though, answers that make good

sense in terms of the underlying physical or economic problem can often be obtained

without putting constraints on the variables

2.3. Continuous Optimization

2.3.1. Unconstrained Optimization

The unconstrained optimization problem is central to the development of optimization

software. Constrained optimization algorithms are often extensions of unconstrained

algorithms, while nonlinear least squares and nonlinear equation algorithms tend to be

specializations. In the unconstrained optimization problem, we seek a local minimizes of a
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real-valued function, f(x), where x is a vector of n real variables. In other words, we seek a

vector, x*, such that f(x*) <= f(x) for all x close to x*.

Global optimization algorithmstry to find an x* that minimizes f over all possible vectors x.

This is a much harder problem to solve. We do not discuss it here because, at present, no

efficient algorithm is known for performing this task. For many applications, local minima

are good enough, particularly when the user can draw on his/her own experience and

provide a good startingpoint for the algorithm.
Newton's method gives rise to a wide and important class of algorithms that require

lôJ(x)J
computation ofthe gradient vector Vf(x) = : ,

. ônf(x)

and the Hessian matrix, V2 f(x) = (a 1ô;(x))
although the computation or approximatiön of the Hessian can be a time-consuming

operation, there are many problems for which this computation is justified. We describe

algorithms in which the user supplies the Hessian explicitly before moving on to a

discussion of algorithmsthat don't require the Hessian.
Newton's method forms· a quadratic model of the objective function around the current

iteratexk. The model function is definedby q k (ô) = f(xk) + Vf(xk fa+ 2-arvı J(xk )ô.2

In the basic Newton method, the next iterate is obtained from the minimizes ofqı : When

the Hessian matrix, V 2 f (x k) , is positive definite, the quadratic model has a unique

minimizes that can be obtained by solvingthe symmetric n x n linear system:

V2 iı»,)ô k = -Vf(xk ). The next iterate is then xk + 1 ~ x, + 8 k

Convergence is guaranteed ifthe startingpoint is sufficiently close to a local minimizes x*

at which the Hessian is positive definite. Moreover, the rate of convergence is quadratic,

that is, \\xk + 1- x·\\ s ,a\\xk - x ·\\2. for some positive constant,B.

In most circumstances, however, the basic Newton method has to be modified to achieve

convergence.
Versions ofNewton's method areınıplemented in the following softwarepackages:
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BTN, GAUSS, IMSL, LANCELOT, NAG, OPTIMA, PORT 3, PROC NLP, TENMIN,

TN, TNPACK, UNCMIN, and VE08.
The NEOS Server also has an unconstrained minimization facility to solve these problems

remotely over the Internet.
These codes obtain convergence when the starting point is not close to a minimizes by

using either a line-search or a trust-region approach.

The line-search variant modifies the search direction to obtain another a downhill, or

descent direction for f. It then tries different step lengths along this direction until it finds a

step that not only decreases f, but also achieves at least a small fraction of this direction's

potential.
The trust-region variant uses the original quadratic model function, but they constrain the

new iterate to stay in a local neighborhood ofthe current iterate. To find the step, then, we

have to minimize the quadratic subject to s.tayingin this neighborhood, which is generally

ellipsoidal in shape.
Line-search and trust-region techniques are suitable if the number ofvariables n is not too

large, because the cost per iteration is of ordern3 • Codes for problems with a large number

ofvariables tend to use truncated Newton methods, which usually settle for an approximate

minimizes ofthe quadratic model.
So far, we have assumed that the Hessian matrix is available, but the algorithms are

unchanged if the Hessian matrix is replaced by a reasonable approximation. Two kinds of

methods use approximateHessians in place of the real thing:
• The first possibility İii to use difference approximations to the exact Hessian. We

exploit the fact that each column ofthe Hessian can be approximated by taking the

difference between two instances of the gradient vector evaluated at two nearby.•
points. For sparse Hessians, we can often approximate many columns of the

Hessian with a single gradient evaluation by choosing the evaluation points

judiciously.
• Quasi-NewtonMethods build up an approximation to the Hessian by keeping track

of the gradient differences along each step taken by the algorithm. Various

conditions are imposed on the approximate Hessian. For example, its behavior
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along the step just taken is forced to mimic the behavior of the exact Hessian, and it

is usually kept positive definite.

Finally, we mention two other approaches for unconstrained problems that are not so

closely related to Newton's method:

• Nonlinear conjugate gradient methods are motivated by the success of the linear

conjugate gradient method in minimizing quadratic functions with positive definite

Hessians. They use search directions that combine the negative gradient direction
- -

with another direction, chosen so that the search will take place along a direction

not previously explored by the algorithm. At least, this property holds for the

- quadratic case, for which the minimizes is found exactly within just n iterations. For

nonlinear problems, performance is problematic, but these methods do have the

advantage that they require only gradient evaluations and do not use much storage.

• The nonlinear Simplex method (not to be confused with the simplex method for

linear programming) requires neither gradient nor Hessian evaluations. Instead, - it

performs a pattern search based only on function values. Because it makes little use

of information about f, it typi~ally requires a great many iterations to find a solution

that is even in the ballpark. It can be useful when f is no smooth or when derivatives

are impossible to find, but it is unfortunately often used when one of the algorithms

above would be more appropriate.

2.3.1.1. Systems of Nonlinear Equations
Systems of nonlinear equations arise as constraints in optimization problems, but

also arise, for example, when differential and integral equations are discredited. In solving a

system of nonlinear equations, we seek a vector such that f(x)=O where xis an n-dimensional

of n variables. Most algorithms in this section are closely related to algorithms for

unconstrained optimization and nonlinear least squares. Indeed, algorithms for systems of

nonlinear equations usually proceed by seeking a local minimizes to the problem

min~IJ(x)II: x E Rn} For some normll-11, usually the 2-norm. This strategy is reasonable,

since any solution of the nonlinear equations is a global solution of the minimization

problem.
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Oflinearequations f'(xk)ôk = -f(xk), (1.1)

Newton's method, modified and enhanced, forms the basis for most of the softwareused to

solve systems ofnonlinear equations. Given an iterate,Newton's method computes flx) and

its Jacobian matrix, finds a step by solving the systemand then sets xk + 1 = xk +a* .
Most of the computational cost of Newton's method is associated with two operations:

evaluation of the function and the Jacobian matrix, and the solution of the linear system

(1.1). Since the Jacobian is f'(x) = (ôıf(x), ....,ônf(x)),

the computation ofthe ith column requires the partial derivative of f with respect to the ith

variable, while the solution ofthe linear system (1.1) requires order n3 operations when the

Jacobian is dense.
Convergence of Newton's method is guaranteed if the starting is sufficiently close to the

solution and the Jacobian at the solution is nonsingular. Under these conditions the rate of

convergence is quadratic; that is, llx k + 1 - x • ıı ::; Pllxk - x • r, for some positive constant ,8 .

This rapid local convergence is the main advantageofNewton's method. The disadvantages

include the need to calculate the Jacobian matrix and the lack of guaranteed global

convergence; that is, conyergence fromremote startingpoints.

The following softwareattempts to overcome these two disadvantages ofNewton's method

by allowing approximations to be used in place of the exact Jacobian matrix and by using

two basic strategies-trustregion and line search-to improve global convergence behavior:

GAUSS, IMSL, LANCELOT, MATLAB, MINPACK-1, NAG(FORTRAN), NAG(C),

NITSOL , and OPTIMA .

• Trust Region and Line-search Methods.

• Truncated Newton Method. "

• Broyden's Method. *

• Tensor Methods.

• Homotopy Methods.

2.3.1.2. Nonlinear Least Squares

The nonlinear least squaresproblem has the general form
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min{r(x): x E IR"}, Where r is the function defined by r(x) = .l\\f(x)\\~ For some vector-2

valued function f that maps Rn to Rm.
Least squares problems often arise in data-fittingapplications. Suppose that some physical

or economic process is modeled by a nonlinear function ¢ that depends on a parameter

vector x and time t. If b, is the actual output of the system at time t, , then the residual

¢(x,t; )-b; measures the discrepancy between the predicted and observed outputs of the

system at time t, . A reasonable estimate for the parameter x may be obtained by defining

the ith component off by J; (x) = ¢(x, t;) - b.,

and solving the least squares problem with this definition off.
From an algorithmic point of view, the feature that distinguishes least squares problems

from the general unconstrained optimization problem is the structure ofthe Hessian matrix

of r. The Jacobian matrix off, f'(x) = (ôıf(x), ... ,ônf(x)),a be used to express the gradient

of r since 'vr(x) = f'(x/ f(x).similarly, f'(x) is part of the Hessian matrix 'v2r(x) since

m
'v2r(x)=f'(x/ f'(x)+ Lf(x)'v2J;(x).To calculate the gradient of r, we need to

i=l

calculate the Jacobian matrixf'(x). Having done so, we know the first term in the Hessian

matrix V2r(x)without doing any further evaluations. Nonlinear least squares algorithms

exploit this structure.
In many practical circumstances, the first term f'(x/ f'(x) in 'v2r(x) is more important

than the second term, most notably when the residuals J; (x) are small at the solution.

-·Specifically, we say that a problem has small residuals if, for all x near a solution, the

quantities \f;(x)\jjv2 J; (x)\\;
off'(x/ f'(x).

i = 1,2,... , n are ~mall relative to the smallest eigenvalue

• Gauss-NewtonMethod

• Levenberg-MarquardtMethod

• Hybrid Methods

• Large ScaleMethods
• Techniques for solving L.S. problems with constraints
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• Notes and References

2.3.2. Constrained Optimization

2.3.2.1. Linear Programming
Software for linear programming (including network linear programming) consumes more

computer cycles than software for all other kinds of optimization problems combined.

There is a proliferation of linear programming software with widely varying capabilities

and user interfaces. The most recent survey of linear programming software for desktop

computers carried out by OR/MS Today (19 (1992), pp. 44-59) gave details on 49

packages!
The basic problem of linear programming is to minimize a linear objective function of

continuous real variables, subject to linear constraints. For purposes of describing and

analyzing algorithms, the problem is often stated in the standard form

min~r x: Ax= b,x ~ o}, where x E !Rn is the vector of unknowns, c E Rn is the cost vector,

and A E R"?" is the constraint matrix. The feasible region described by the constraints is a

polytope, or simplex, and at least one member of the solution set lies at a vertex of this

polytope. ·
The simplex algorithm, so named because of the geometry ofthe feasible set, underlies the

vast majority of available software packages for linear programming. However, this

situation may change in the future, as more software for interior-point algorithms becomes

available.

2.3.2.2. Nonlinearly Constrained Optimization.
The general constrained optimization problem is to minimize a nonlinear function

subject to nonlinear constraints. Two equivalent formulationsofthis problem are useful for

describing algorithms.They are,min{J(x): c;(x) s O,i E r.c, (x) = O,i E &} (1. 1) where each

c; is a mapping from Rn to R, and t and s are index sets for inequality and equality

constraints, respectively; andmin{J(x): c(x) = O,l s x su}, (1.2) where cmaps Rn to Rm,

and the lower- and upper-bound vectors, land u , may contain some infinite components.
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2.3.2.3. Bound-Constrained Optimization

Bound-constrained optimization problems play an important role in the

development of software for the general constrained problem because many constrained

codes reduce the solution of the general problem to the solution of a sequence ofbound­

constrained problems. The development of software for this problem, which we state as

min{J(x) : l :::; x:::; u}, is also important in applications because parameters that describe

physical quantities are often constrained to lie in a given range.

Algorithms for the solution ofbound-constrained problems seek a local minimizes x· off.

The standard first-order necessary condition for a local minimizes x• can be expressed in

terms of the binding set B(x·) = ~: x; = li'8J(x·) ~ o}u ~: x;· = u;,8J(x·):::; o} at x·by

requiring that 8J(x·) = O,i ı;,; B(x·)

There are other ways to express this condition, but this form brings out the importance of

the binding constraints. A second-order sufficientcondition for x· to be a local minimizes

of the bound-constrained problem is that the first-order condition hold and that

wrv'2f(x·)w>0 for all vectors wwith w:;t:0,w; =Ü,iEBA(x*),where

BA (x.) = B(x·) n ~: aJ(x *) :;t: o} is the strictlybinding set at

Given any .set of free variablesF , we can define the reduced gradient and the reduced

Hessian matrix, respectively,as the gradient of f and the Hessian matrix off with respect

to the free variables. In this terminology, the second-order condition requires that the

reduced gradient be zero and that the reduced Hessian matrix be positive definite when the~
set F of free variables consists of all the variables that are not strictly binding atx • . As we

shall see, algorithms for the solution of bound-constrained problems use unconstrained• •
minimization· techniques to explore the reduced problem defined by a set F, of free

variables. Once this exploration is complete, a new set of free variables is chosen with the

aim ofdriving the reduced gradient to zero.
The NEOS SERVER also has a bound-constrained minimization facility to solve these

problems remotely over the Internet.
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2.3.2.4. Network Programming
Network problems arise, as the name indicates, in applications that can be

represented as the flow of a commodity in a network. The resulting programs can be linear

or non-linear; however, we only discuss the linear case. Due to the network structure ofthe

model, we can develop fast techniques for solving these problems.
For example, assume that you are the manager of a company that has different production

lines in different locations. The goods produced by your company (in these different

locations) are shipped to the distribution centers. In order to simplifythe problem, let us say

that there are two production lines and two distribution centers. The cost of shipping a unit

of product from a production center to each distribution center is known. We also assume

that we know the demand at each center and the production level ofeach production line. In

other words, we have a table ofthe form:

Distr.1 Distr.2 supply

Linel 5$/unit 8$/unit 30 units

Line2 7$/unit 9$/unit 25 units

Demand 20 units 35 units ·

You want to minimize the cost of shippingyour product to the different distribution centers

while meeting the demand of the customers. Remember, your company produces items or

units that cannot be broken down into fractions (cars for example); i.e., some of the

decision variables representing your shipping problem must be integer.
One can build a mathematicalmodel for solvingthe previous problem. An integervariable,

ıü, indicates the number of items that need to be shipped from location i to distribution

center j. Mathematically,our model is
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mın 5ı-11 + 8ı-12 +7ı-21 + 9ı-22

s.t. Tı ı, +ı-12, =30

T21, +ı-22 =25

ı-11, + t:ıı, =20

ı-12' +ı-22 =35

ı-11, '12' T21, '22 ~o

And all variables are integer. The first two constraints indicate that production centers 1

and 2 supply exactly 30 and 25 units of the product, respectively. The last two constraints

indicate that we must meet the demand of each of the distribution.Iines.Note that we can

formulate the first two constraints as ~ constraints and the last two constraints as

~constraints; that is, we canproduce at most 30 and 25 units and we do notwant to exceed.

the demand of20 and 35 units. However, since the total supply is equal to the total demand,

it is clear that any feasible solution must satisfyall-constraintsas equality constraints (if the

total demand is not equal to the total supply, we can add dummy production lines or

distribution centers to the problem to make it balanced).

Note that only two entries appear in the column of a decision v~able and that all the

coefficients are equal to 1 (or -1 if we multiply a constraint by -1 ). In general, this

constraint-matrix structure arises in optimization problems that can be modeled as directed

network problems. For example, the previous model has the following network

representation:
"

,.,.
Prod. Line I Dist. Center i

-~20

<I'

~

~

7
9 $/unit -u-35

Prod. Line 2 Dist. Center 2

25~
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This is why, in such models, the constraint matrix is called the node-arc incidence matrix. It

can be shown that every non-singular square sub-matrix of the node-arc incidence matrix is

triangular and has a determinant that is either 1 or - 1. Given this property along with integer

demand and supply vectors, there is an integer optimal solution for the previous problem.

That is, we can ignore the integer restriction on the variables and solve our problem as a

linear program. As a matter of fact, the special structure of this class of problems permits

developing special algorithms for solving these problems efficiently.

Network problems cover a large number of applications. Here, we describe some of them:

• Transportation Problem. We have a commodity that can be produced in different

locations and needs to be shipped to differentdistribution centers. Given the cost of

shipping a unit of commodity between each two points, the capacity of each

production center, and the demandat each distribution center, find the minimal cost

shipping plan. Note that the example that we described above is a transportation

model.

• Assignment Problem. There are n individuals that need· to be assigned to

n different tasks. Each individual is assigned to one job only and each job is

performed by one pe!son. Given the cost that each individual charges for

performing each of the n jobs, find a minimal cost assignment. Clearly, this

problem is a special case of the transportation problem. Many techniques are

developed for solving this class of problems since it is often encountered in

application (for example, relaxing the tour constraint in a traveling salesman

problem results in an assignmentproblem).

• Maximum Value Flow~ Given a directed network ofroads that connects two cities

and the capacities of these roads, find the maximum number ofunits (cars)that can
ır

be routed from one city to another. Here, the constraints are the equilibrium or

balance equations at each node (or road intersection); i.e., flow of the cars into a

node is equal to the flowofthe cars out ofthat node.

• Shortest Path Problem. Givena directed network and the length ofeach arc in this

network, find a shortest between two given nodes.

• Minimum Cost Flow Problem. Given a directed network with upper and lower

capacities on each ofits arcs, and given a set ofexternal flows (positive or negative)
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that need to be routed through this network, find the minimal cost routing of the

given flows through this network. Here, the cost per unit of flow on each arc is

assumed to be known.

The NEOS SERVER operates a linear network optimization facility containing the codes

NETFLOW and RELAX-IV to solve these problems remotely over the Internet.

2.3.2.5. Stochastic Programming
All of the model formulations that you have encountered thus far in the

Optimization Tree have assumed that the data for the given problem are known accurately.

However, for many actual problems, the problem data cannot be known accurately for a

variety ofreasons. The first reason is due to simple measurement error the second and more

fundamental reason is that some data represent information about the future (e.g., product

demand or price for a future time periodjand simply cannot be known with certainty. We

will discuss a few ways of taking this uncertainty into account and, specifically, illustrate

how stochastic programmingcan be used to make some optimal decisions.

1. Recourse ·
The fundamental idea behind stochastic linear programming is the concept ofrecourse.

Recourse is the ability to take corrective action after a random event has taken place. A

simple example oftwo-stagerecourse is the following:

• Choose some variables, x, to control what happens today.

• Overnight, a random ev"ent happens.

• Tomorrow, take some.recourse action"y, to correct what may have gotten messed

up by the random event. ••
e can formulate optimization problems to choose x and y in an optimal way. In this

example, there are two periods; the data for the first period are known with certainty and

some data for the future periods are stochastic, that is, random.

Example.
You are in charge of a local gas company. When you buy gas, you typically deliver

me to your customers right away and put the rest in storage. When you sell gas, you take
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· either from storage or from newly-arrived supplies. Hence, your decision variables are 1)

how much gas to purchase and deliver, 2) how much gas to purchase and store, and 3) how

much gas to take from storage and deliver to customers. Your decision will depend on the

price of gas both now and in future time periods, the storage cost, the size of your storage

facility, and the demand in each period. You will decide these variables for each time

period considered in the problem. This problem can be modelled as a simple linear program

with the objective to minimize overall cost. The solution is valid if the problem data are

known with certainty, that is, if the future events unfold as planned.

More than likely, the future will not be precisely as you have planned; you don't know for

sure what the price or demand will be in .iıture periods though you can make good guesses.
For example, ifyou deliver gas to your customers for heating purposes, the demand for gas

and its purchase price will be strongly dependent on the weather. Predicting the weather is

rarely an exact science; therefore, not taking this uncertainty into account may invalidate

the results from your model. Your "optimal" decision for one set of data may not be

optimal for the actual situation.

3. Scenarios
Suppose in our example that we are experiencing a normal winter and that the next

winter can be one of three scenarios: normal, cold, or very cold. To formulate this problem

as a stochastic linear program, we must first characterize the uncertainty in the model. The

most common method is to formulate scenarios and assign a probability to each scenario.

Each ofthese scenarios has differentdata as shown in the following table:

Scenario Probability Gas Cost($) Demand (units)

Normal 1/3

Cold 1/3

Very Cold 1/3

5.0

6.0

7.5

100

150

180
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Both the demand for gas and its cost increase as the the weather becomes colder. The

storage cost is constant, say, 1 unit of gas is $ 1 per year. Ifwe solve the linear program for

each scenario separately,we arrive at three purchase/storage strategies:

• Normal - Normal

• Total Cost= $1000

• Normal - Cold .

\E\Purchase to Use:frchase to Store:~B

j[J[100 :lo \CF
\L\(50 :.\o ---- - :C;E~J

.-- Total Cost= $1400

• .ı0DHaY- #./_TW.dT

;:\Y~;[PurchasetoUse~ıh~h-~~to Store{S1:o~e,1C~st;
I ! ! , ı;Di[ıoo- - · tso ··· -fso- --,ııss~
' ' ' I I I

irJl0 - - - 1° ... . no
• Total Cost= $1580

We do not know which of the three scenarios will actually occur next year, but we would

like our current purchasing decision to put is in the best position to minimize our expected

cost. Bear in mind that by the time we make our second purchasing decision, we will know

which of the three scenarios has actually happened.
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4. Formulating a Stochastic Linear Program
Stochastic programs seek to minimize the cost of the first-period decision plus the

expected cost of the second-period recourse decision.

Min erx+EwQ(x,w)

Subject to Ax= b

x 2: O Where

Q(x,w) = min d(wf y

Subject to T(w)x + W(w)y(w) = h(w)

The first linear program minimizes the first-period direct costs, cTx plus the expected

recourse cost, Q(x,w) over all of the possible scenarios while meeting the first-period

constraints, Ax = b
The recourse cost Q depends both on x, the first-period decision, and on the random event,

ca the second LP describes how to choose y(w) (a different decision for each random

scenario z» ). It minimizes the cost dTy subject to some recourse function, Tx + Wy = h.

This constraint can be thought of as requiring some action to correct the system after the

random event occurs. In our example, this constraint would require the purchase of enough

gas to supplement the original amount on hand in order to meet the demand.

One important thing to notice in stochastic programs is that the first-period decision, x, is

independent of which second-period scenario actually occurs. This is called the

nonanticipativity property. The future is uncertain and so today's decision cannot take

advantage of knowledge of the future.
. ~

..
5. Deterministic Equivalent

The formulation above looks a lot messier than the deterministic LP formulation

that we discuss elsewhere. However, we can express this problem in a deterministic for b

introducing a different second-period y variable for each scenario. This formulation is

called the deterministic equivalent:
N

Min er x+ LP;dr Yi
i=l

Subject to Ax = b
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Tıx + W,y; = h; .i = 1, ... ,N

X o
o

where N is the number of scenarios and P; is the probability of the scenario's occurrence.

For our three-scenario problem, we have

Min erx + Pıd{ Yı +Pıdf Yı +p3d{ YJ

s.t. Ax =b

T1x +w;_yı =hı

T2x + WıYı =hz

T3X + W3y3 =~
-

X,Y; ~ o

Notice that the nonanticipativity constraint is met. There is only one first-period decision,

x, whereas there are N second-period decisions, one for each scenario. The first-period

decision cannot anticipate one scenario over another and must be feasible for each scenario.

That is, Ax= b and Ti ·x + Wi Yi = hi for i= 1,.~.,N Because we solve for all the decisions, x

and Yi simultaneously, we are choosing x to be (in some sense) optimal over all the

scenarios.

Another feature of the deterministic equivalent is worth noting. Because the T and W

matrices are repeated for every scenario in the model, the size of the problem increases

linearly with thenumber of scenarios. Since ~pe structure of the matrices remains the same

and because the constraint matrix has a special shape, solution, algorithms can take•
advantage of these properties. Taking uncertainty into · account leads to more robust

solutions but also requires more computational effort to obtain the solution.

6. Comparisons with Other Formulations
Because stochastic programs require more data and computation to solve, most

people have opted for simpler solution strategies. One method requires the solution of the
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problem for each scenario. The solutions to these problems are then examined to find where

the solutions are similar and where they are different. Based on this information, subjective

decisions can be made to decide the best strategy.

7. Expected-Value Formulation
A more quantifiable approach is to solve the original LP where all the random data

have been replaced with their expected values. Hopefully in this approach we will do all

right on average. For our example then, we consider the (expected value) problem data to

be

E\Gas cost ($)i~

:ıı:\ 5.0 :ıToo,t±1 _6.I67_~

Solving this problem gives the followingresult:

Cost= $1360.00 "'

Let's compute what happens in each scenario ifwe implement the expected value solution:

\[S~~o I . ~ecourseAction . J~~ourse C•stJf al Cost

\I No~al ı\~tore 43.33 excess_~ $1 ~r u_mtj\ 43_33 _ j[ 1403.33

L Cold [!3uy 6.67 units @ $6 per ~t _l[ 4~ \~

ı\Very Col<lj\Buy36.67 ınıits@$7.5 per unit\[ 275 ı\ 1635 '
ı --------------~-- -----·---·-'

31



minimizing over a number of scenarios and, as a result, sacrifices the minimum cost for

each scenario in order to obtain a robust solution over all the scenarios.

2.4 Discrete Optimization
In many applications, the solution of an optimization problem makes sense only if

certain of the unknowns are integers. Integer linear programming problems have the

general form
min{:?x:Ax=b, x z O, xEZ11}(l.l) where Z11is the set of n-dimensional integer

vectors. In mixed-integer linear programs, some components of x are allowed to be real.

W_e restrict ourselves to the pure integer ca~e, bearing in mind that the software can also

handle mixed problems with little additional complication of the underlying algorithm.

Integer programming problems, such as the fixed-charge network flow problem and the

famous traveling salesman problem, are often expressed in terms .of binary variables. The

fixed-charge network problem modifies the minimum-cost network flow paradigm by

adding a term i1yiJ to the cost, where the binary variable yiJ is set to ı if arc (i,j) carries a

nonzero flow X;1; it is set to zero otherwise.

In other words, there is a fixed overhead cost for using the arc at all. In the traveling

salesman problem, we need to find a tour of a number of cities that are connected by

directed arcs, so that each city is visited once and the time required to complete the tour is

minimized. One binary variable is assigned to each directed arc; a variable xii is set to ı if

city i immediately follow city j oa the tour, and to zero otherwise.

2.5. Multi-Objective Optimization
Most realistic optimization problems, particularly those in design, require the

simultaneous optimization of more than one objective function. Some examples:

• In bridge construction, a good design is characterized by low total mass and high

stiffness.
• Aircraft design requires simultaneous optimization of fuel efficiency, payload. and

weight.
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• In chemical plant design, or in design of a groundwater remediation facility,

objectives to be considered include total investment and net operating costs.

• A good sunroof design in a car could aim to minimize the noise the driver hears and

maximize the ventilation.
• The traditional portfolio optimization problem attempts to simultaneously minimize

the risk and maximize the fiscal return.
In these and most other cases, it is unlikely that the different objectives would be optimized

by the same alternative parameter choices. Hence, some trade-off between the criteria is

needed to ensure a satisfactory design.
Multicriteria optimization has its roots in late-nineteenth-century welfare economics, in the

works of Edge worth and Pareto. A mathematical description is as follows:

/ı(x)
fı(x)

min F(x) =
xeC

... (MOP)

fi1.(x)
Where n >= 2 and

C = {x : h(x) = O, g(x) < O, a< x < b}
Denotes the feasible set constrained by equality and inequality constraints and explicit

variable bounds. The space in which the objective,,vectorbelongs is called the objective

space and image ofthe feasible set under Fis called the attained set.
The scalar concept of ''optimality" does not apply directly in the multiobjective setting. A

x"'EC
useful replacement is the notion ofPareto optimality.Essentially, a vector is said to

~ xEC
be Pareto optimal for (MOP) if all other vectors have a higher value for at least one

of the objective functions fi ( • )' or else have the same value for all•objectives. Formally

speaking, we have the following definition:

x"' ECA point is said to be (glob ally)Pareto optimal or a (globally) efficient solution or a
.. xEC

non-dominated or a non-inferior point for (MOP) if and only if there is no such that

fi(x) < fi(x"') i E {1,2, ... ,n}- for all , with at least one strict inequality.

Pareto optimal points are also known as efficient, non-dominated, or non-inferior points.
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We can also speak of locally Pareto optimal points, for which the definition is the same as

the one just given, except that we restrict attention to a feasible neighborhood of z". That is,

B(x"', ı5)
if denotes a ball ofradius ı5aroundthe point

We can also speak oflocally Pareto optimal points, for which the definition is the same as

the one just given, except that we restrict attention to a feasible neighborhood ofz". That is,
B(x"', ı5) ı5 > O

if denotes a ball of radius ı5aroundthe point x•, we require that for some ,

xECnB(x\8)
there is no such that

fi (x) < fi (x•)? for all i = {1? 2, ... ? n}

with at least one strict inequality.
Typically, there is an entire curve or surface of Pareto points, whose shape indicates the

nature ofthe tradeoffbetween differentobjectives.

2.5.1. Solution Techniques
The multiobjective problem is almost always solved by combining the multiple

objectives into one scalar objective whose solution is a Pareto optimal point for the original

MOP. Most algorithms have been developed in the linear :framework(i.e. linear objectives

and linear constraints), but the techniques described below are also a~plicable to nonlinear

problems.

2.5.2. Minimizing Weighted Sums of Functions
A standard technique fosMOP is to minimize a positively weighted convex sum of

the objectives, that is,
fl,

Eaifi(x),
i=l

It is easy to prove that the minimizes ofthis combined function is Pareto optimal. It is up to

the user to choose appropriate weights. Until recently, considerations of computational

expense forced users to restrict themselves to performing only one such minimization.

Newer, more ambitious approaches aim to minimize convex sums of the objectives for

various settings ofthe convex weights, thereforegeneratingvarious points in the Pareto sel

Though computationally more expensive, this approach gives an idea of the shape of the
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Pareto surface and provides the user with more information about the trade-off among the

various objectives. However, this method suffers from two drawbacks. First, the

relationship between the vector of weights and the Pareto curve is such that a uniform

spread of weight parameters rarely produces a uniform spread of points on the Pareto set.

Often, all the points found are clustered in certain parts of the Pareto set with no point in

the interesting "middle part" of the set, thereby providing little insight into the shape of the

trade-off curve. The second drawback is that non-convex parts of the Pareto set cannot be

obtained by minimizing convex combinations of the objectives (note though that non­

convex Pareto sets are seldom found in actual applications).

2.5.3. Homotopy Techniques
Homotopy techniques aim to trace the complete Pareto curve in the bi-objective

case (n=Z), By tracing the full curve,' they overcome the sampling deficiencies of the

weighted-sum approach. The main drawbackis that this approach does not generalize to the

case of more than two objectives. For more information, see Rao and Papalambros [7] and

Rakowska, Haftka, and Watson [6].

2~5.4. Goal Programming
In the goal programming approach, we minimize one objective while constraining

. .
the remaining objectives to be less than given target values. This method is especially

useful if the user can afford to solve just one optimization problem. However, it is not

always easy to choose appropriate '' goals"forthe constraints. Goal programmingcannot be

used to generate the Pareto set effeetively,particularlyifthe number ofobjectives is greater

than two. .•
•

2.5.5. Normal-Boundary Intersection (NBI)
The normal-boundary intersection method uses a geometrically intuitive

parameterizations to produce an even spread of points on the Pareto surface, giving an

accurate picture of the whole surface. Even for poorly scaled problems (for which the

relative scaling on the objectives are vastly different), the spread ofPareto points remains

uniform. Given any point generated by NBI, it is usually possible to find a set of weights

such that this point minimizes a weighted sum of objectives, as described above. Similarly,
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is usually possible to define a goal programming problem for which the NBI point is a

lution. NBI can also handle problems where the Pareto surface is discontinuous or non­

smooth, unlike homotopy techniques. Unfortunately, a point generated by NBI may not be

Pareto point if the boundary of the attained set in the objective space containing the

Pareto points is no convex or 'folded' (which happens rarely in problems arising from

tual applications).
NBI requires the individual minimizes of the individual functions at the outset, which can

also be viewed as a drawback.
NBI was developed by Das and Dennis ([8], [1]). A public domain Mat lab 4.2

implementation ofNBI.

2.5.6. Multilevel Programming
Multilevel programıiıirig is a one-shot optimization technique and is intended to find

just one "optimal" point as opposed to the entire Pareto surface. The first step in multilevel

programming involves ordering the objectives in terms ofimportance. Next, we find the set

xEGof points for which the minimum value of the first objective function is attained. We

then find the points in this set that minimize the second most important objective. The

method proceeds recursively until all objectives have been optimized on successively

smaller sets.
Multilevel programming is a useful approach if the hierarchical order among the objectives

is of prime importance and the user is not interested in the continuous trade-off among the

functions. However, problems lower down in the hierarchy become very tightly constrained

and often become numerically infeasible, so that the less important objectives have no

influence on the :final result. Hence, multilevel programming should surely be avoided by

users who desire a sensible compromise solution among the various objectives.
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CHAPTER.3 A SIMPLE GA OPTIMIZATION ALGORITIDVI

3.1. The GA Algorithm
The GA algorithm used in the following example is based almost exactly on the

description given on the previous page. The population size will be 4, and strings ofbits

of length 5 will be used. A crossover probability of 0.6 is assumed and a mutation

probability of 0.001. With such a low chance of mutation, it does not occur in the

following example.

3.1.1. The Optimization Problem .
The problem is simply stated. Find the maximum value of the following

function:

Y = -x2+ 8x + ıs
In order to make things easy for us, we will assume that the maximum is between O and

25 (the actual maximum is at x=4) and that the maximum is an integer value.
So with this knowledge in hand, we must now choose a coding scheme for the string. In

binary, we can·represent integer values in the range [0..31] with a 5 bit string. Some

examples of strings in a population may be :

~S~ri~g-l~ded Va~

~~o~[~~l . ·,
\\00101 ;\ ~s .
l[ıoııo :[_ 22 ·-ı ' 1I 1 ___j

Finally, we must decide on a fitness function, which will give the relative fitness values.

Now the simplest method to employ here is to use the decoded x value to calculate they

coordinate and use the y coordinate as the fitness rating. Then, the fitness value for

string i, as a percentage, will be the y value at i divided by the sum of all the y values

for every string.
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f.
1

Fitness Value. =
1 ~ f

Fitness Function for String i
in the String Population

For example, say we have a function y=x.2 and we are trying to find the maximum value

of the function between [0 .. .31]. Then the following strings would have the relative

fitness's indicated below:

lEring;~ ~alu~\\t(x): ~elative Fitness

l~L-5 JI 25 \[ o.04 __J

i\oıı~-~JL 1~__J169i\_ 025 __j
:ru°J~~I 0.11__ \

In reality, since the value of the function we want to minimise can take on negative

values, the fitness function is slightly more complex than the one used above. However,

in essence, the two remain equivalent.

3.1.2. Running the GA : Results
The first Iteration:

Firstly, we need to create a random .populatiorı of- strings. Say we start with the
••

following:

;=========·====ı •
J~tring Popu~tio_~j

IL 00010 iI I

I IIL 00111 -i
I I
j , __ __JIL 10110 j
' Iı - ____ı

\[ 01011 _J
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ow we perform selection. The fitness value of each string is calculated and the strings

are selected the following number of times:

With these selections, our mating pool now looks like this:

String-~opulati:~J\-

\ . 00111 ;
, I; --- __,

;\ - - -

. : \ ,

:l 01011
l -------- ' ..

00010

00111

Finally, the crossover probabilities need to be calculated (two crossovers need to be

performed to create a new population of two). The GA calculates that it should perform

splicing twice on two sets of randomly selected genes: Crossover performs the" .

following to create the new population:

-· -· '
.. -··- --·

Mating Pool Strings \lNew Population\
- . i.___ - - __ !
0001\0 00011 ı

! I
!

i I001111 ' 00110! I
i i

--~-------------- -----·-- -· _.ı

011011 ! 01010i

001010
i 00011I

' --
J. - -

So, at the end ofthe first iteration, our new population looks like the following:
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r;::= ··-:-·

\ String Population !f5
\L - 00011 ·· - I 3 _ :

:l 00110 :~
i ,! __~~
\; _ 01010 'I ~ j
\\._ 00011 __:[3]

So, even after one iteration, with no knowledge except for the relative fitness value, the

GA has begun to quickly converge on the optimum value of 4. This is startling,

considering the GA know~ nothing ab.?ut the problem space in which it searches. It is

effectively blind. Yet, just by examining a measure of goodness, having a large number

of points to examine simultaneously and having a large amount of randomization

thrown in, the GA efficiently searches the problem space for possible answers.

3.2. Schemata: The Building Blocks of GAs

3.2.l. Why do Genetic Algorithms Work the Way They Do?
GAs seems to perform wonders in practice, but many · demand solid

mathematical proof that search algorithms perform to the required expectations. What

will follow will only be the simplest of introductions to the mathematical foundations of

GAs. For a more comprehensive coverage, see (Holland, 1975) and (Goldberg, 1989).

In order to put GAs on somefirm theoretical footing, the idea of notions, or building

blocks, needs to be introduced. The basic idea behind building blocks is that very fit

individuals in a population pass on high performance notions to their children. These
•

notions take the form of substrings. It stands to reason that strings with a high fitness

value must contain a substring that is a primary cause of such a high fitness. Thus, even

though crossover may splice the string into two, there may be a good chance that the

highly fit substring is passed on to the children. These highly fit substrings are known as

building blocks.

3.2.2. Schemata
Schemata are templates of strings that describe similarity between certain sets of

strings. In order to define a schema, the following alphabet is used:
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\\Binary ~lpha~~ti[_ Meaning

'.\ -·· _ O _ _\Binary O in S~

\[ 1 :\Binary 1 in String

\\ * J_non'tCare Term

The alphabet {O, 1,*}, can be used to represent any pattern of binary substrings we

wish. For example:

-- - . - - ... -

!Schema \lMatching Strings!
L_~· -- - J

Eı\_ 01111 I
i\ 11111 - .!l I

===j -.J

(\ 10101~ I
: . jl 001010 ı·
1 *010*0 i _ l

. _ .. \ [ _ _ 10 ~ ooo _ I
I .. . -

, \\ 001000 I
l j !
!Ill . 00100 ·ı
:\ **1*O \ _ -- !

i\ ·ı I
! ı !

• I
ı-- - -- - --·-

Now, say we were experimenting with the GA from the previous optimization example.

It is fairly obvious from the first iteration that the schema 00*** may produce high

performance substrings. There are other schemata that can be hypothesized from this

GA. So, much ofthe power of a GA revolves around its ability to process these building

blocks in such a way as to use them to create fitter and fitter strings. Remember that

Holland has suggested that for n strings in a population, n3 substrings, and hence

schemata, are usefully processed per iteration.
It is also useful to look at how our basic _GA operators affect the processing of

schemata. In reproduction, the effect is obvious. Fitter strings get selected for the

mating pool more than weaker strings, and thus fitter schemata have a greater chance of

being involved in the creation ofthe next generation than their weaker counterparts.
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Crossover has a huge impact on the GA building blocks. Obviously, every time

crossover occurs, there is a chance that useful schemata might be destroyed by the

splicing process. This is one of the main reasons why crossover should not be

performed 100% of the time. Look at the following two schemata. We define the length

of a schema to be the distance between the first and last specific string position.

~--··-·--·----------

i~che~~

:ı **O*** Jeo=
' 1**1** ı[e- 3 ,
! I '

\[*0*1 *l __\[T
Remember the way single point crossover functions. It is intuitive to see that useful

schemata oflong length are far more easily disrupted than schemata of short length.

We define the order of a schema to be the number of fixed positions in the schema.

ilSchema :.[Order'. 'I ,:----! --·--jil *O*** :c~
; t ;

i ·--- '-----·- ı

po*O**;~i
~ i i:~cc

The higher the order of a schema:' the more specific the schema becomes. Obviously,

100*1 is far more specific than **O**. Again, with crossover, it is obvious that

schemata with small orders have a less likely chance of being disrupted than schemata

with high orders.

The affect of mutation on schemata is not difficult to determine. A high mutation rate

will badly disrupt schemata, which is why a very low mutation rate is always advised

for most GAs.
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3.3. Advanced GA Operators

3.3.1. The Operators
Here's a list of some of the more advanced techniques being used and experimented

with today:
• Dominance & Diploidy.

• Inversion & Reordering.

• Niche & Speciation.

• The Islands Model.

• Spatial Mating.

3.3.2. Uses of GAs in the Real World
Although the previous pages dealt with GAs solely as a optimization technique,

there are a huge diversity of fields using GA technology for all sorts of different

applications. Listed below is just a small sampling of the staggering number of

applications that put GAs to use:

1. Criminal Suspect Recognition.

2. Music Composition.

3. Construction and Training ofNeural Networks.

4. Scheduling Problems (The Traveling Salesman Problem).

5. Games Playing.

6. Prisoner's Dilemma.

7. Earthquake Epicenter Detection.

8. Structural Optimization. ~

9. Function Optimization.

10. Database Query Optimization.

11. Aircraft Design.

12. Determination of Protein Structures.

3.3.3. Criminal Suspect Recognition
One of the most novel (and copyrighted) uses of GAs to date has been created

by Caldwell and Johnson (Caldwell, 1991). This system is used to help witnesses

reconstruct facial depictions ofcriminals. This system is based on the fact that a witness
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may be able to easily identify a suspect visually, but the ability to describe and recall a

face in order to make a sketch is much more difficult.

The system has a large library of basic facial features. For example, the system contains

images of noses, foreheads, ears, etc. The system contains the following building blocks

used to create faces.

![ -F~~ial Building Blocks

il Foreheads

![~_Yes and the_SeparationDistances ı
I\ Noses I
i I

i~- :! Mouths J
[___ _ Chins i

The system uses a 3 5 bit binary string to encode the features, and creates an initial

population of 20 strings (faces). The witness studies the 20-·face·s, ranking each one

(from Ot~ 9), which serves as the fitness value. Then, a new generation is created using

selection, crossover and mutation.

This GA has one feature, however, not present in others. The witness can lock a facial

feature ifhe or she desires. Thus, if the eyes look okay, the witness can prevent the eyes

from changing in future generations. This dramatically limits the problem space that the

GA is required to search. The researchers have reported that convergence on a specific

face can occur in as little as 2Q generations, which is impressive considering that the

GA has to search a problem space consisting of over 34 billion different faces.

3.3.4. Music Composition

Homer and Goldberg (1989), produced a paper describing a GA they had

developed for composing music. This system µsed a GA to take an initial music pattern

as input and then use the GA to gradually transform this input into a specified output

pattern. The important point to note here is that the system has a series of starting notes

which it must transform into a known series of final notes. The operations to be

performed on the input pattern were discovered using a GA.
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The GA did not work with the musical notes themselves. Instead, it cleverly worked

rith the transformational operations. So, for example, a substring in one of the GAs

strings may represent an operation to "add a note", turning an initial four note pattern

· to a five note one. There were a number of transformational operators handled by the

GA.
The GA in question used binary strings, with certain binary patterns mapping to

transformational operations. The length of the strings was directly related to the length

of the music to be produced. The GA used mutation, selection and crossover.
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CHAPTER 4. OPTIMIZATION OF STRUCTURING ELEMENTS BY

GENETIC ALGORITHMS

Optimization is an important issue in image and signal processing. The cost

function can be modeled to define a multi-dimensional performance surface. The easiest

way to find the set of best solutions is to solve the problem for all possible parameters and

retain the ones giving the best result, a method that is termed full-searchmethod. The set of

parameters is called solution vector and in many cases it is not possible to compute all

solution vectors because their number is simplytoo large. In these cases, iterative methods

are better suited.
In the present case, it is not possible to use full-search algorithms. First of all, the search

.. . .. . 6ı(x)
space is incredibly large: consider a (small) support of a mask of 5 5 pixels for the

22sdefinition of . The total number ofpossible arbitraryshapes is (Figure 4.1)

chromosome population

I : I O I 1 ı ~ I 41 ı. f 1 I O I j I , , - I ~ 1 ·0 I 1 I I I * I = ı 1 I O , , I , I
1111fıjll :.j,J1(11ıı 11

l1l1!1l0l:l*l1l0l1l1!
(Figure4.1)

And even much larger for bigger image supports. It is therefore out of question to explore

the entire set of possible solution vectors. The use of coarse to fine strategies can

sometimes be helpful in such situations, when a coarser representation of the problem is

possible, which is not the case case.

4.1. Basic principles
It is not the intention of this chapter to derive the formal framework for GAs,but rather

to provide the basic principles so that the algorithm can be understood. The inquiry for
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robust search has made genetic algorithms become fundamentally different from classical

algorithms. The differences are based on four principles:
ı. GAs uses a coded representation of the parameters,not the parameters themselves.

2. GAs seaı:chfrom a population of solutionvectors, not a single solution vector.
3. GAs exclusively use values of the function under study, and do not consider

auxiliary infonnation, such as the derivative.
4. GAs use probabilistic transition roles, not detenninistic roles.

The function parameters - or the "living being" - are represented by a structure called

chromosome. Genetic algorithms ınıuıipulate chromosomes to profit from and. exploit

similarities between different perfunning chromosomes. GAs optimizes a population of
chromosomes, unlike other methods that optimize only a single solution vector. The

probability to select a false solution is reduced by considering several solution vectors of
high performance. GAs remains highly generalbecause their optimization is directly based

on the function values. There are no limitations set to continuous and derivable functions.

Transition rules of GAs are stochastic and not detenninistic as in many other algorithms.. -,

Yet, there remalııs an important difference between GAs and random seaı:chalgOrithms;
where decisions uniquely based on pure chance guidethe exploration. GAsbenefits largely

form the available informationwithin the current population and use chance only to guide

their exploration.
As in any optimization procedure, three associatedobjects are characteristic for GAs:

1. The environment of the system undergoing optimization.
2. The adaptive plan which determines suCcessivestructural modifications in response

to the environment.
3. A measure of the perfuıınance ofailferent chromosomes in the environment.

first point and the third point are given by the problem and the task of the GA is to
-I the mixture of operators that affect the system undergoing optimizatio,ı. Thus, the

-'1ıgs of the S)'Stem are conveyed in the adaptive plan which determines what
mosomes arise in response to its environment. A given chromosome ııerforms

M,rently in different environments, it is more or less fit, and it is the adaptive plan's task
produce chromosomes which perform "well" (are fit) in the environment confronting it.
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4.2. Query Handling as a Complex Optimization Problem
Among all relational operators the most difficult one to process and optimize is the

join. The number of alternative plans to answer a query grows exponentially with the

number of joins included in it. Further optimization effort is caused by the support of a

variety of join methods (e.g., nested loop, hash join, merge join in Postgres) to process

individual joins and a diversity of indices (e.g., r-tree, b-tree, hash in Postgres) as access

paths for relations.
The current Postgres optimizer implementation performs a near-exhaustive search over the

space of alternative strategies. This query optimization technique is inadequate to support

database application domains that involve the need for extensive queries, such as artificial

intelligence.
The Institute of Automatic Control at the University of Mining and Technology, in

Freiberg, Germany, encountered the described problems as its folks wanted to take the

Postgres DBMS as the backend for decision support knowledge based system for the

maiıitenance of an electrical power grid. The DBMS neededto handle large join queries for

the inference machine of the knowledge based system.

Performance difficulties in exploring the space of possible query plans created the demand

for a new optimization technique being developed.

In the following we pr.opose the implementation of a Ge_netic Algorithm as an option for the

database query optimization problem.
ıı,

4.2.1. Genetic Algorithms (GA)
•

The GA is a heuristic optimization method which operates through determined,

randomized search. The set of possible solutions for the optimization problem is considered

as a population of individuals. The degree of adaption of an individual to its environment is

specified by its fitness.
The coordinates of an individual in the search space are represented by chromosomes, in

essence a set of character strings. A gene is a subsection of a chromosome which encodes

49



the value of a single parameter being optimized. Typical encodings for a gene could be

binary or integer.
Through simulation of the evolutionary operations recombination, mutation, and selection

new generations of search points are found that show a higher average fitness than their

ancestors .
.ccording to the "comp.ai.genetic" FAQ it cannot be stressed too strongly that a GA is not

pure random search for a solution to a problem. A GA uses stochastic processes, but the

tis distinctly non-random (better than random).

-~:=uctured Diagram of a GA:

---------------------------

?(t) generation of ancestors at a time t

P'' (t) generation of descendants at a time t

•=========================================+
!>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<!
•=========================================+

INITIALIZE t := O I
-======= =================================+

INITIALIZE P(t)
+~== . == .. ===========. =-==================+

evaluate FITNESS of P(t)
-=========================================+

while not STOPPING CRITERION do
+-------------------------------------+
I P' (t) := RECOMBINATION{P(t)}
+-------------------------------------+

I P'' (t) := MUTATION{P' (t)}
+---------------~--~ --- --------- ---+

I P(t+l) := SELECTION{P'' (t~ + P(t)}
+----------------------- -------------+
I evaluate FITNESS of P'' (t)
+-------------------------------------+
I t := t + 1

-===+=====================================+

.•2.2. Genetic Query Optimization (GEQO) in Postgres
The GEQO module is intended for the solution of the query optimization problem

-ııı•aı to a traveling salesman problem ([SP). Possible queıy plans are encoded as integer
~- Each string represents the join order from one relation of the query to the next. E.
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/\ 2

/\ 3

1

is encoded by the integer string '4-1-3-2', which means, first join relation '4' and 'l', then '3',

and then '2', where 1, 2, 3, 4 are relids within the Postgres optimizer.

Parts of the GEQO module are adapted from D. Whitley's Genitor algorithm.

Specific characteristics of the 9EQO implementation in Postgres are:.
• Usage of a steady state GA (replacement of the least fit individuals in a population,

not whole-generational replacement) allows fast convergence towards improved

query plans. This is essential for query handling with reasonable time; ·

• Usage of edge recombination crossover which is especially suited to keep edge

losses low for the solution of the TSP by ineans of a GA;

• Mutation as genetic operator is deprecated so that no repair mechanisms are needed

to generate legal TSP tours.
The GEQO module allows the Postgres query optimizer to support large join queries

effectively through non-exhaustive.search.

4.2.3. Future Implementation Tasks for Postgre SQL GEQO
Work is still needed to improve the genetic algorithm parameter settings. In file

backend/optimizer /geqo/geqo_params. c, routines gimme_pool_size and

gimme_number_generations, we h~ve to find a compromise for the parameter settings to

satisfy two competing demands:

• Optimality of the query plan
-~

• Computing time

4.3. Transposition to the optimization of the structuring element

Encoding of the arbitrary shaped structuring function ôL(% \s rather straightforward.

. . ıh(%)
Suppose .,., X .M. is defined on a binary image mask. Because of its binary character

two alleles are sufficient in the chromosome representation (O= black and 1 = white). The
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mosome can be a vector representation of the image when it is scanned in direct video

an (or any other scan) (see Fig. a).

I o I ı. j o I o I o I ı. j ı. j o I o I oj oj ı.j ı.j ı j ı. j o I

~ı(:::) chromaıomc:

If some restrictions on are p~t, for example that only rectangular structuring elements are

allowed, a different chromosome representation becomes possible. In this case, the length

and the width can be expressed as a binary number which can be directly coded into the

chromosome (Fig. b).

j Dıeı>gtlı = ?

) .
I 1 I 1J 1 I 1 I o I 1 I._,_, ._,_,

7 5

chı:omoeomc
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Figure: Encoding ofa chromosome:,a)arbitraryshape and b) rectangular shape

Other encoding solutions are based on different strategies, for example encoding into

continuous vectors. Probably, there is no single technique that works best for all problems

and a certain amount ofart is involved in selecting a good encoding technique.~ . . - .. ~
The evaluation function provides a fitness measure for a chromosome when applied to the

problem to be solved. An evaluation function takes a chromosome as an input, decodes it

into its natural representation, applies it to the problem and returns a number or a list of

numbers that is a measure ofthe chromosome's performance on the problem to be solved.

Evaluation functıons play the samerolein genetic-algorithmsthat the environment plays in

natural evolution. The interaction of a chromosomewith an evaluation functions provides a

measure of fitness that the genetic algorithmsuses when carrying out reproduction. In the

present case, a fitness measure is for example the number of skeleton points or the bit--

requirements after entropy coding.
Given these initial components -- a prçblem, a way of encoding solutions to it, and an

objective function that returns a measure of how good any encoding is -- the genetic

algorithm carries out a simulated evolution dictated by the adapted plan as follows (Fig. ~ . .~

4.2): At the beginning of each time period (generation),the plan's accumulated information

about the environment resides in the finite population selected from the set ofall attainable

structures.

C'moTl'IMlfflt! l 2 ı " i ~ 1 8 t to
FitnMı 7 .ı 2 9 1 • 3 ~ 4 i
1'ııt.ıl 7 'l(j 12 21 ız tT 36 41 4i •o

Figure (4.2): General schemeofa genetic algorithm
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Figure (4.3): Example of a mutation with probability of

4.4.2. Crossover
Unlike mutation that is studied in most biological classes, crossover is not as well

known. There are difTorent possible crossovers, e.g. one--point crossover, two--point

crossover.
For a crcissover Operation to take place, two paftİıİs are necessary and they will give two

new children. A user defined probability value
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...

[! ı o.ı ı o o o ı] " / t? ı ı: ı ı o o o a
•

•
• .crcs saver •
•

ıı

• / "
••

@ l 1;1 ô ı l O ı]
f! ı o;ı o ı ı o I]

. •

. .•

. .

Determines if the operator is applied to a chromosome. The one-point crossover swaps

parts oftlıe two parent genes after a randomly selected point (see Fig.4.4).

· Fig (4.4)
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Figure: Example of a one--point crossover.

· The twc--point crossover operator acts by slicing the chromosome at two randomly .

selected places and interchanging the information between the two cuts. Hence it is

possible to exchange a set of genes in the-middleofa chromosome.
Crossover represents an important feature of natural evolution - namely the ability of a

population of chromosomes to. explore its search space in parallel and combine the best

findings.· ·

4.4.3. Evaluation of the importance of the genetic operators
Let us analyses the role of the two genetic operators, mutation and crossover.

Consider an algorithm with no mutation operator, only a crossover operator. If by any

chance an allele is not present in the initial population, there is no way for the crossover

operator to recover this allele. It is possible only due to the mutation operator, which is able
8

to locally change the chromosome's value. On the other hand, an algorithm without

crossover operator results in a random sequence of structures drawn from the set of all

possible structures, equivalent to a random search technique. It is the crossover operator

that provides the necessary mechanism to exploit beneficial material originating from two

different chroniosomes.

4.5. Shape oriented crossover operator One-point shape crossover

The one-point shape-crossover is composed of two complementary traditional one­
point crossovers ofwhich one is chosen randomly. The first one is applied on the bit-string
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representation of the structuring element and the second one is applied on the bit-string

representation turned by z 2 in a .clockwisesense. In this way, rows and columns are treated

equally. One of the cuts in the figure is chosen randomly, e.g. in this example the vertical

cut. The different shaded areas indicate the area which is exchanged between the two

squares.

4.5.1. Cut-out crossover
The .one-point crossovers are incapable of extracting an area within the structuring

element. The cut-out crossover determines randomlytwo pairs of coordinates, defining the

comer points ~0°and ,z I.of a rectangle. Crossover consists in exchanging the genetic

material within the rectangle.

4.5.2. Two-point shape crossover
The traditional two-point crossover cuts the bit-string representation of the

chrÖmosomeat two positions and exchanges the.information in between. As for the one­

point crossover, these cuts translate into horizontally oriented cuts in the matrix

representation of the structuring element. The two-point shape crossover consists of two

. traditional two-point crossovers of which one is applied ön the structuring element which is

turned by Figure (4.5)

Fig (4.5)
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In a clockwise sense. Randomly, the rotated or non-rotated representation determines the

crossover site.

4.5.3. Multi-direction crossover
The multi-direction crossover lays a random line through the structuring element

which defines the crossover site. The line is constructed by choosing randomly a point

5 ~ 5on any of the four borders of the structuring element. The second point of the line is

chosen randomly on any ofthe remainingthree borders. With this operator, it is possible to

exchange beneficial material that lies in the comers of the structuring element.

4.5.4. Universal crossover
Four shape-orie_ntedcrossovers have been presented. Easily, other configurations

may be constructed. For instance, operators that cut out triangles have also been

implemented. Of all the. different operators, .the choice of which·one performs best is

impossible. Indeed, for differentoptimizationproblems different shape-crossover operators

may achieve the best result, as illustrated in the next paragraph. The· reason is the

following: in the case-of a binary representation of a decimal number, each gene can be

attributed to a weight corresponding to its binary position. Genes with similar weights

constitute performant substrings and naturally, they are adjacent one to the other. An
example earlier in the thesis Fig (4.6) gave an illustration. In the case of a matrix

representation of a structuring element, ~verygene has the same weight. It is impossible to

judge whether rectangular grouped genes, triangularlygrouped genes, or genes grouped on

rows. or columns are more performant. It heavily depends upon the problem to be

optimized. Thus, either one of the presented shape-crossovers may be best for a particular

problem and all of them should be tried. The logical reaction is the definition of a universal

crossover, proposed here, that randomly chooses one crossover operator out of all the

possibilities, i.e. either the one-point shape crossover, the cut-out crossover, the two-point

shape crossover ofthe multi-directioncrossover is chosen randomly.
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The influence of the mutation and crossover operator on the performance of the GA is

studied. Both operators applied individually result in bad results, but their combination

gives good results. Even though the crossover operator may rarely be directly responsible

for the .creation of a new more performing chromosome, it is extremely important for

exploring the solution space by combining beneficial material between different

chromosomes.
In the search for improved performance, the crossover operator should be adapted to the

particul3: problem ofoptimization oftwo-dimensional structuring elements. Therefore, it is
proposed to replace the traditional crossover operator by a shape-oriented crossover

operator. The bit-string representation of a chromosome is replaced by a matrix

representation. It allows treating columns and rows of a structuring element in-an equal

manner, which was not possible with the traditional one-point crossover defined on the bit­

string representation. Improving the crossover operator has shown that no-one of the new

defined shape-crossovers clearly demonstratedoutstanding performances in the majority of

the cases. The reason is thatall ge.~es in the representation ofıl:e structuring element have

equal weights and it is impossible to. decide what spatial config~tions provide·above

average contributions. Nevertheless, experimental results show:that a random combination

of the various shape-crossover operators results in significant improvement of the

performance of the GA Such a combination adds genetic diversity to the algorithm and

turns out to be very effective.
Various simulation results have demonstratedthat the optimal structuring element can

mö.eeö. be found.b'j' G/\.sırı a ııme much shortercoml)aredto full search approaches. It is

a\"SC) ~efilC)'\\'S\ta\e\l \\\a\ ~e '\\\ill.\be.t Gt~k~let<m vain.ts can be reduced by a factor of 2 for

segmented imagesby using optimized structuringelements rather than a traditional

Skeletondecompositionbased on the chessboardmask.

I, = -lbPi [bits] 
(8.1)

An inherent problem in genetic algorithms is to know when to stop with the evolution.

Different strategies can be employed, all of them being more · or less heuristic. In the

proposed application, the number of cycles that the GA is to run through has been fixed

experimentally. Another solution could be the analysis ofthe evolution curve; if the rate of
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increase in performance decreases with respect to a sliding window, it could indicate that

the maximal 11erförmance is attained.
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CHAPTER.5 APPLICATIONS OF GENETIC ALGORITHMS 

5.1. Brief Overview 

GAs was introduced as a computational analogy of adaptive systems. They are

modeled loosely on the principles of the evolution via natural selection, employing a

population of individuals that undergo selection in the presence of variation-inducing

operators such as mutation and recombination (crossover). A fitness function is used to

evaluate individuals, and reproductive success varies with fitness.

The Algorithms
1. Randomly generate an initial population M(O)
2. Compute and save the fitness u(m) for each individual min the current population

M(t)
3. Define selection probabilities p(m) for each individual m in M(t) so that p(m) is

proportional to u(m)
4. Generate ·M(!+.ı) by probabilistically selecting individuals from M(t) to produce

offspringvia genetic operators

5. Repeatstep 2 until satisfyingsolution is obtained.
The paradigm of GAs described above-is usually the one applied to solving most of the

problems presented to GAs.Though it might not find the best solution. more often than not,

it would come up with a partiallyoptimal solution.

5.2. Who can benefit from GA 
~-

Nearly everyone can gain benefits from Genetic Algorithms, once he can encode

solutions ofa given problem to chromosomes in GA,and compare the relative performance

. (fitness) of solutions. An effective GArepresentation and meaningful fitness evaluation are

the keys of the success in GA applications. The appeal ofGAs comes from their simplicity

and elegance as robust search algorithms as well as from their power to discover good

solutions rapidly for difficulthigh-dimensional problems. GAs is useful and efficientwhen

• The search space is large, complex or poorly understood.
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• .. Domain knowledge is scarce or expert knowledge is difficult to encode to narrow

the search space.

• No mathematical analysis is available.

• Traditional search methods fail.
The advantage of the GA approach is the ease with which it can handle arbitrary kinds of

constraints and objectives; all such things can be handled as weighted components of the

fitness function, making it easy to adapt the GA scheduler to the particular requirements of

a very wide range of possible overall objectives. . .
GAs has been used for problem-solving and for modeling. GAs is applied to many

scientific, engineering problems, in business and entertainment, including:

1. Optimization: GAs have been used in a wide variety of optimization tasks,

including numerical~ptimization, and combinatorial optimization problems such as

traveling salesman problem (TSP), circuit design [Louis 1993] ,job shop scheduling

[Goldstein 1991] and video & sound quality optimization.
2. Automatic Programming: GAs have been used to evolve computer programs for

specific tasks, and to _designot?er computational structures, for example, cellular

automata and sortingnetworks.
3. Machine and robot learning: GAs has been used for many machine- learning

applications, including classification and prediction, and protein structure

prediction. GAs have also been used to design neural networks, to evolve rules for

learning classifier systems rr symbolic production systems, and to design and

control robots.
4. Economic models: GAs has been used to model processes of innovation, the. ~

development ofbidding strategies, and the emergence ofeconomic markets.

5. Immune system models: GAs has been used to model various aspects ofthe natural

immune system, including somatic mutation during an individual's lifetime and the

discovery ofmuHi-gene familiesduring evolutionarytime.
6. Ecological models: GAs have been used to model ecological phenomena such as

biological arms races, host-parasite co-evolutions, symbiosis and resource flow in

ecologies.
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7. Population genetics models: GAs has been used to study questions in population

genetics, such as "under what conditions will a gene for recombination be

evolutionarily viable?"

8. Interactions between evolution and learning: GAs has been used to study how

individual learning and species evolution affect one another.

9. Models of social systems: GAs has been used to study evolutionary aspects of social

systems, such as the evolution of cooperation [Chughtai 1995], the evolution of

- communication, and trail-following behavior in ants.

5.3. GA on optimization and planning: Traveling Salesman Problem 
The TSP is interesting not only from a theoretical point of view, many practical

applications can be modeled as a traveling salesman problem or as variants of it, for
. . ';'.. . . . - ..

example, pen movement of a plotter, drilling of printed circuit boards (PCB), real-world

routing of school buses, airlines, delivery trucks and postal carriers. Researchers have

tracked TSPs to study bimolecular pathways, to route a computer networks' parallel

processing, to advance cryptography, to determine the order of thousands of exposures

needed in X-ray crystallographyand to determine routes searching for forest fires (which is

a multiple-salesman problempartitioned into single TSPs). Therefore, there is a tremendous

need for algorithms.
In the last two decades an enormous progress has been made with respect to solving

traveling salesman problems to optimality which, of course, is the ultimate goal of every

researcher. One of landmarks in thc'scarch for optimal solutions is a 3038-city problem.

This progress is only party due to the increasing hardware power ofcomputers. Above all,

it was made possible by the development of mathematical theory and of efficient

algorithms. Here, the GAapproach is discussed.

There are strong relations between the constraints of the problem, the representation

adopted and the genetic operators that can be used with it. The goal of traveling Salesman

Problem is to devise a travelplan (a tour) which minimizes the total distance traveled. TSP

is NP-hard (NP stands for non-deterministic polynomial time) - it is generally believed

cannot be solved (exactly) in time polynomial. The TSP is constrained:

• The salesman can only be in a city at any time
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• Cities have to be visited once and only once.

When GAs applied to very large problems, they fail in two aspects:
1. They scale rather poorly (in terms of time complexity) as the number of cities

increases.
2. The solution quality degrades rapidly.

5.3.1. Failure of Standard Genetic Algorithm 
· To use a standard GA,the followingproblems have to be solved:

• A binary representation for tours is found such that it can be easily translated into a

chromosome.
• An appropriate fitness function is designed, taking the constraints into account.

1. Non-perm~t.ation_matrices represent unrealistic solutions, that is, the GA can generate

some chromosomes that do not represent valid solutions. This happens:

• In the random initialization step ofthe GA.
• As a result of genetic operators (mutation and crossover).

Thus, permutation matrices are used. Two tours including the same cities in the same order

but with diffetent startingpoints or differentdirections are represented by differentmatrices ·

and hence.by different chromosomes, for example:

tour (23541) = tour (12354)
2. An proper fitness function is obtained using penalty-function method to enforce the

constraints.
However, the ordinary genetic operators generate too many invalid solutions, leading to

poor results. Alternative solutions to TSP require new representations (Position Dependent

Representations) and new genetic operators.

5.3.2. Evolutionary Divide and Conquer (EDAC) 
This approach, EDAC [Valenzuela 1995], has potential for any search problem in

which knowledge of good solutions for sub problems can be exploited to improve the

solution ofthe problem itself The idea is to use the Genetic Algorithm to explore the space

of problem subdivisions rather than the space of solutions themselves, and thus capitalize

on the near linear scaling qualities generally inherent in the divide and conquer approach.
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The basic mechanisms for dissecting a TSP into sub problems, solving the sub problems

and then patching the sub tours together to form a global tour, have been obtained from the

cellular dissection algorithms of Richard Karp. Although solution quality tends to be rather

poor, Karp's algorithms possess an attractively simple geometrical approach to dissection,

and offer reasonable guarantees of performance. Moreover, EDAC approach is intrinsically

parallel.
The EDAC approach has lifted the application of GAs to TSP an order or magnitude larger

in. terms of problem sizes than permutation representations. Experimental results
. .. .. ~

demonstrate the successful properties for EDAC on uniform randoı_n points and PCB

problems in the range 500 - 5000 cities.

5.4. GA in Business and Their Supportive Role in Decision Making 
. . - '

Genetic Algorithms have been used to solve many different types of business

problems in functional areas such as finance, marketing, information systems, and

production/ operations. Within these functional areas, GAs has performed a variety of

applications such as tactical asset allocation, job scheduling, machine-part grouping, and

computer network design.

5.4.1. Finance Applications 
Models for tactical asset allocation and international equity strategies have been

improved with the use of GAs. They report an 82% improvement in cumulative portfolio
"value over a passive benchmark model and a 48% improvement over a non-GA model

designed to improve over the passive benchmark.
Genetic algorithms are particularlywell-suited for financialmodeling applications for three

reasons:
1. They are payoffdriven. Payoffscan be improvements in predictive power or returns

over a benchmark. There is an excellent match between the tool and the problems

addressed.
2. They.are inherently quantitative, and well-suited to parameter optimization (unlike

most symbolic machine learning techniques).
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3. They are robust, allowing a wide variety of extensions and constraints that cannot

be accommodated in traditional methods."

5.4.2. Information Systems Applications 
Distributed computer network topologies are designed by a GA, using three

different objective functions to optimize network reliability parameters, namely diameter,
average distance, and computer network reliability. The GA has successfully designed

networks with 100 orders ofnodes. ·
~ GAhas also been used to determine file allocation for a distributed system. The objective is

to maximize the programs' abilities to reference the file s located on remote nodes. The

problem is solved with the followingthree differentconstraint sets:

1. There is exactly one copy ofeach file to be distributed. --
2. There may be any number of copies of each file subject to a finite memory

constraint at each node.
3. The number ofcopies and the amount ofmemory are both limited.

5.4.3. Production/Operation Applications 
Genetic Algorithm has been used to schedulejobs in a sequence dependent setup .

environment for a minimal total tardiness. Alljobs are scheduled on a single machine; each

job has a processing time and a due date. The setup time of each job is dependent upon the

job which immediatelyprecedes it. The GAis able to find good, but not necessarily optimal

schedules, fairly quickly. "
GA is also used to schedule jobs in non-sequence dependent setup environment. The jobs

are scheduled on one machine with the objective ofminimizing the total generallyweighted

penalty for earliness or tardiness fromthe jobs' due dates. However, this does not guarantee

that it will generate optimal solutions for all schedules.
GA is developed for solving the machine-component grouping problem required for

cellular manufacturing systems. GAprovides a collection ofsatisfactory solutions for a two

objective environment (minimizingcell load variation and minimizing volume of inter cell

movement), allowing the decision maker to then select the best alternative.
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5.4.4. Role in Decision Making 

Applying the well established decision processing phase model of Simon (1960),

Genetic Algorithms appear to be very well suited for supporting the design and choice
phases ofdecision making.

• In solving a single objective problem, GA designs many solutions until no further

improvement (no increase in fitness) can be achieved or some predetermined

numbers of generations have evolved or when the allotted processing time is

complete. The most fit solution in the final generation is the one that maximizes or

minimizes the objective (fitness) function; this solution can be thought ofas the GA

has recommended choice. Therefore with single objective problems the user of GA
is assisted in the choice phase ofdecision processing.~ . ...., . - :: .

• When solving multi-objective problems, GA gives out many satisfactory solutions

in terms of the objectives, and then allows the decision maker to select the best

alternative. Therefore GAs assist with the design phase of decision processing with
multi-objective problems.

GAs can be of great assistance for examining alternatives since they are designed to

evaluate existing potential solutions as well to gene~te new (and better) solutions for

evaluation. Thus GAs can improve the quality of decision making.
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5.5. Learning Robot behavior using Genetic Algorithms 

Robot has become such an prominent tools that it has increasingly taken a more

important role in many different industries. As such, it has to operate with great efficiency
. ·- .. ··

and accuracy. This may not sound very difficult if the environment in which the robot

operates remain unchanged, since the behaviors of the robot could be pre-programmed.

However, if the environment is ever-changing, it gets extremely difficult, if not impossible,

for programmers to figure out every possible behaviors of the robot. Applying robot in -a

changing environment is not only inevitable in modem technology, but is also becoming
~

_ more frequent. This has obviously led to the development ofa learning robot.
The approach to learning behaviors, which lead the robot to its goal, described here reflects

•..a particular methodology for learning via simulationmodel. The motivation is that making

mistakes on real system can be costly and dangerous. In addition, time constraints may

limit the extent of learning in real world. Since learning .requires experimenting with

behaviors that might occasionally produce undesirable results if applied to real world.
-

Therefore, as shown in the diagram, the current best behavior can be place in the real, on-

line system, while learning continues in the off-linesystem.
Previous studies have shown that knowledge learned under simulation is robust and might

be applicable to the real world if the simulation is more general (add more noise and
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distortion). If this is not possible, the differences between the real world and the simulation

have to be identified.

5.5.1. GAs' Role 
Genetic Algorithms are adaptive search techniques that can learn high performance

knowledge structures. The genetic algorithms' strength come from the implicitly parallel

search ofthe solution~atit performsvia a population ofcandidate solutions and this

population is manipulated in the simulation. The candidate solutions represent every

possible behaviors of the robot and based on the overall performance of the candidates,

each could be assigned a fitness value. Genetic operators could then be applied to improve

the performance of the population of behaviors. One cycle of testing all of the competing

behaviors is defined as a generation, and is repeated until a good behavior is evolved. The
. . ~ ~ , ... , ~

good behavior is then applied to the real world. Also because of the nature of GA, the

initial knowledge does not have to be very good.

5.5.2. Conclusion and Future Work 
The system described has been used to learn behaviors for controlling simulate

,. autonomous underwater vehicles, missile evasion, and other simulated tasks. Future work

will continue examining the process ofbuilding robotic systemthrough evolution. Wewant

to know how multiple behaviors that will be required for a higher level task interact, and

how multiple behaviors can be evolved simultaneously. We are also examining additional

ways to bias the learning both with initial rule sets, and by modifying the rule set during

evolution through human interaction. ®ther open problems include how to evolve

hierarchies ofskills and how to enable the robot to evolve new fitness functions as the need

for new skill arises.

5.6. Genetic Algorithms for Object Localization ina Complex Scene 

In order to provide machines with the ability to interact in complex, real-world

environments, and sensory data must be presented to the machine. One such module

dealing with · sensory input is the visual data processing module, also known as the
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computer. vision module. A central task of this computer vision module is to recognize

objects from images of the environment.

There are two different parts to computer vision modules, namely segmentation and

recognition. Segmentatio~rncess of fınding ınterested ob3ects while recognition

wor'Ks to see il t'ııe\ocateı.\ o'tı°)ect ma\c'n.e"::> \'n.e 1)teııe'1n.eıı a\\ntı~\e<;:.. ~\.nee \.maı,e<;:. c~Ç)\ ~e

recognized until they have been located and separated from the background, it is of

paramount importance that this vision module is able to locate different objects of interest

for different systems with great efficiency.

5.6.1. GA parameters 

The task oflocating a particular object of interest in a complex scene is quite simple

when cast in the :framework of genetic algorithms. The brute force-force method for finding

an object in a complex scene is to examine all positions and sizes, with varying degrees of

occlusion of the objects, to determine whether the extracted sub image matches a rough
~

notion of what is being sought. This method is immediately dismissed as it is far too

computational expensive to achieve. The use of genetic methodology, however, can raise
••

the brute-force setup to an elegant solution to this complex problem. Since the GA

approach does well in very large search spaces by working only with a sample available

population, the computational limitation of the brute-force method using full search space

enumeration does not apply.

An experiment was actually carried out based on the following technique, GAs optimized

for Portability and Parallelism developed at Michigan State University.
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5.6.2. Conclusion and Future Work 

It has been shown that the genetic algorithm perform better in finding areas of

interest even in a complex, real-world scene. Genetic Algorithms are adaptive to their

environments, and as such this type ofmethod is appealing to the vision community who

must often work in a changing environment.However,several improvements must be made

in ordd1 that GAs could be more generally applicable. Grey coding the field would greatly

improv~ the mutation operation while combing segmentation with recognition so that the
interested object could be evaluated at once. Finally,timing improvement could be done by

utilizing the implicit parallelization of multiple independent generations evolving at the
same time.

5.7. Artificial Life 

Genetic algorithmsare currentlythe most prominent and widely used computational

models of evolution in artificial-life systems. These decentralized models provide a basis

for understanding many other systems and phenomena in the world. Researches on GAs in
a life give illustrative examples in which the genetic algorithm is used to study how

learning - and evolution interact, and· to niodel ecosystems; iıiımune system, cognitive

systems, and social systems.

5. 7.1. A life on Telecommunication 

In the rapidly converging telecommunications industry, technology never stops
~

changing. To assist telecom managers in adapting and prospering during this turbulent

period, a business-simulationprogram,TeleSim,is developed, using artificial life approach.

This training tool is designed to provide thought leadership and training for managers

facing the challenges ofa rapidly changing marketplace.
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A TeleSim player acts as a manager in a telecommunications·company and pilots the

company through a simulated marketplace testing various scenarios and the impact on

-operations; competitor response·end-customer behavior:The player confronts with internal

staff communications, regulatory penalties, natural disasters, and financial/ technological

trade-offs similar to those that managers face in the real world.
In this virtual telecommunications marketplace, the TeleSim player faces seven

competitorş, which are mode!ed using ad~ptiveagent technology. The competitive agents
interact, adapt to each other, and to the decisions of the player. The competitors learn to·

execute the best strategic moves as they adapt to the ever changing environment. This

emerging and evolving world involves convergence in technology as well as changes in the

market and regulations, demonstrating some self-organizingbehaviors.

73



Simulations let people experience and think through the complexity of the business

situation .and make experiments that they could not possibly do in the real world. People

learn to make decisions and gain a better understanding of what present management has

been doing. TeleSim allows for a more interactive computer-based approach to scenario

development and strategic planning. TeleSim simulates telecommunications businesses,

designed as a tool for business planning and management training. In TeleSim, the player

learns to develop strategic plans to assess market opportunities and determine an

organization's capability for pursuing the .dynamics of its strategic direction.

5.8. Vision Intellige~ce for Precision Farming Using Fuzzy. Logic 

Optimized Genetic Algorithm and Artificial Neural network 
Agriculture jn developed countries after the Industrial, Revolution has tended to

. - . .

favor increases in energy input through the use of larger tractors and increased chemical

and fertilizer application. Although this agricultural technology has negative societal and

environmental implications, it has supported food for rapidly increasing human population.

In western countries, "sustainable agriculture" was developed to reduce the environmental

'impact of productioh' agriculture. At the ·same time, the global agricultural workforce

continues to shrink; each worker is responsible.for greater areas ofland. Simply continuing

the current trend toward larger and heavier equipment is not the solution. A new mode of

thought, a new agricultural technology is required for the future. Intelligent robotic tractors

are one potential solution (Noguchi, et al., 1996, 1997). Sensors are an essential part of

intelligent agricultural machinery. Machine vision, iri particular, can supply information

about current crop status, including maturity and weed infestations. The information

gathered through machine vision and other sensors such as GPS can be used.to create field. .
management schedules for chemical application, cultivation and harvest. The purpose of

the study is to develop an intelligent machine vision system for an agricultural mobile

robot. The vision system developed is able to simultaneously detect crop rows and gather

field information. The vision system uses a Genetic Algorithm (GA) optimized fuzzy logic

decision-making system to classify crop and weed material. After segmenting out weeds,
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the vision system can estimate the crop height and width using an artificial neural

network (ANN).

5.9. Machine Vision Hardware 

5.9.1. Vision System 
The machine vision system developed uses a CCD camera, a frame grabber and a

computer. A monochrome CCD camera serves as the image sensor for the vision system. A

near infrared filter (800 nm) is installed on the camera to improve discrimination between

the plant material and soil. The camera is mounted on the centerline of-the test vehicle, with

a 20 degree down angle. The test vehicle is a conventional 115-kW tractor (CASE-IH,

7220) with a modified computer controlled electro hydraulic steering system. In addition to

machine vision, the navigation sensors on. the vehicle included a geomagnetic direction

sensor and DGPS (Fig. 5.1). 

Fig.5.1 Overview of the test vehicle

Under ideal conditions, the real-time kinematics DGPS has achieved 20-cm or better

accuracy.

5.9.2. Camera Calibration 
The camera field of view was approximately 4 m x 20 m. Static camera calibration

was used to develop a conversion from the camera coordinate system to the a ground

coordinate system. The camera calibration method is briefly explained here. On the image
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plane the pixel coordinates (U, JI) can be represented by a set of homogeneous coordinates

(u, V, t):

U=1!._ V=!
't t

(1)

If the z-coordinate of the field is on a known constant plane, the mapping of (x, y, 1) in the

field into (u, v, t) on the image plane becomes: ·

An inverse perspective transformation matrix, which can convert from the pixel coordinates .

· (U, JI) to the ground c9ordinates (x, y), can be repreşented as toüows:

(2) 

(3)·

. (4) 

The center of the front of the tractor was adopted as origin of the ground coordinate system

in the study. The transfonnation matrixes were calculated using a least square method for

nine points measured in the range of -2 m to· 2m for x-axis, and O m to 1 O m for y-axis. As

the results, the following transfonnation matrixes were obtaine_d:

1) Perspective transformatio~ matrix: 

l240.03
C= -4.51

o.o .

93:04 . 262.1j
-15.85 1058.1

0.37 1.0

(5) 
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2) Inverse perspective transformation matrix: 

[

0.4148 -0.0039 . -104.60951
c-1 = -0.0003 -0.2458 260.1519

O.O 0.0009 0.0345
(6) 

The root-mean-square (RMS)conversion accuracyfromthe image coordinate to the ground

coordinate was approximately5.8 cm for the over all field-of-view.

5.9.3. Compression of Image Information 
The machine vision system can quickly gather a large amount of information in a

short period of time. To reduce the processing load and to decrease the computer memory
requirements, the image was compressed by expressing the canopy area as a densitywithin

a 20-cm square. The upper image in Fig. 5.2 was obtained thorough binalization of a raw

image in the 4 m x 2m field-of-view.The lower image in Fig. 5.2 shows the canopy area

represented as a gray level calculated through the transformationmentioned above.Because
. the actual area of the each pixel is spatially different, the conversion coefficient from a. -- . . . -- - - - •.. - ... -

pixel size to the actual areawas calculated for each ofthe 20-cm squares.

2.0km
••

400 cm

Fig.5.2 Conversionand compressionof

The image information
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5.10. Classification of Crop and Weed by A combination of Fuzzy Logic 

and Genetic Algorithm 

5.10.1. Classifier of Crop and Weed Based on Fuzzy Logic 
Fuzzy logic, which can deal with ambiguous information, was used as the crop and

weed classifier in this study. Fuzzy logic can represent the solution in terms of a

probability. Therefore, three fuzzy input parameters xi to x3 were chosen to classify crop

and weed areas in the field-of-view. Since crop rows are almost parallel with the y-axis of

the field-of-view during the travel, we chose the average of the gray level for each row in

the image as xi, the standard deviation of that as x2, and the spatial weighting factor as x3.

As shown in Fig. 5.3, 

[ l}

Fig.5.3 Definition of spatial weighting factor, x3

The spatial weighting factor, x3 utilized the fixed crop row width as priori information. The

fuzzy logic input parameters are normalized and can be expressed as follows:

X1 = "g .Jn.~ 1,J J (7)

X2 = 10 (8)
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x3 = 50sin(i - -r)(21r I 4.5) + 50 (9) 

The input and output membership functions and the fuzzy rules are shown in Fig. 5.4, Fig. 

5.5 and Table3.1. 

P: ~ositive, N: Negative

I).ı

o o
X - . 10

Pj ('C) = tan -ıa: (Yj - bi) + l /2
(i =O,_ 5)

Fig.5.4 Input membership function

PB: Positive Big
PS: Positive Small
NS: Negative Small
NB: Negativ Big

••

o Po P2 Pı LO
Probabi lity of

Fig.5.5 Output membership function
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Rule L: IF Input x, is P. Input .r2 is r. and luput .'(~ is' P
THEN ıhe class is rs.
Rule 2: IF lnputx, is P. Input x.2 is P. and Input x; is N
THEN the class is NS.
Rule 3: [F Input xı is P. Input x: is N. and Input X3 is P
THEN the class is PB.
Rule 4: tF lupur xı is P. Input xı is N. and Input X3 is N
THEN the class is PS.
Rule 5: IF Input xı is N, Input x:ı is P. and Input XJ is P
THEN the class is NS.
Rule 6: [F Input x, is N, Input x:ı is P, and lnput X3 is N
THEN.tlıe class is NB.
Rule 7: IF I upur x 1 is N, Input x:ı is N, and input XJ is P
THEN the class is PS.
Rule 8: [F Input xı is N', Input x:ı is N:and input XJ is N
THFN HM class is NS.

- Tab_le5 .1 Temporally· fuzzy rules.

The fuzzy logic was designed so as to output the probability of crop from the fuzzy logic

classifier.

5.1_0.2. Optimization of Fuzzy Logic by GA·
One of the disadvantages of fuzzy logic when compared· to a conventional image

classifier (such as the Kmeans algorithm or simple threshold based segmentation) is that the

classification accuracy depends on the shape of the membership functions and the fuzzy

rules built by a designer. Trial-and-error methods are frequently used to determine the

fuzzy logic parameters and membership functions. A GA was used to optimize the fuzzy

logic input membership functions, the fuzzy rules and the output membership functions.

Holland (1975) proposed GAs as a general-purpose stochastic optimization method for

search problems. GAs is interesting because they are inspired by biological evolution and

they seem applicable to a wide range of optimization problems (Noguchi and Terao, 1997;

Noguchi et al., 1997). The data processed by the algorithm consists of a set (population) of

strings that represent multiple points in a search space. A finite length string, in which each

bit is called an allele, is defined as a solution (individual) having the objective function

value of a point in the search space. The function to be minimized by the algorithm is
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converted to a fitness value that determines the probability of the individual undergoing

transitional operators. The operators are analogous to the biological terms of crossover,

mutation and selectiÔn. In the study, coefficients, ai and bi (i= O to 5) in the input

membership function and pO to p3 in output membership function, which decide the shape

of those, were coded in the individuals as shown in Fig. 5.6.

a I a I a I al a I a I b \ b I b I bl b I b \ PI Pl Pl P

· Input: membaship
function

oııput manb"•cshp
function

Fig.5.6 Coding of fuzzy parameters to a

Chromosome.

The :flowchart of the GA for optimizing the fuzzy logic classifier is shown in Fig. 5.7.

reaıı.x1o
first oij~tiv-e function&

·Fi~v:ııoo· ·

Mutation Selection

Crossover Shanna. (,. .o

Fuzzy logic
siınul:ııcc Optimal fuzzy logic

Fig.5.7 Flowchart of GA optimization of

Fuzzy logic

- Crossover was a random exchange of multiple alleles between the selected mating pairs,

which created two offspring. Half of an individual's total number of alleles was exchanged

during crossover. Mutation happened with a probability of 1.0 on selected individuals that

had not crossed over. All the alleles were increased by a mutation width De that was
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randomly chosen in the range of -1 O to 1 O. After these transitional operators created new

individuals, the survivors were selected from the double-sized tentative population that

included the current and newly created individuals. Selection, an analog to natural

selection, was conducted by spinning a simulated roulette wheel whose slots had different

sizes proportional to the fitness values of the individuals and by an elitist preservation

strategy in which the individual with the lowest objective function value was exceptionally

chosen.
As shown in Eqn. (1 O), the adopted objective function was the error function summing up

the squared error between the training data and the data calculated by each individuals for

all acquired image data.

n 2

V(c;) = L(i,1 - p(c; ,j)) (10) 
. 1~0

Here,
V : Objective function, P: Fuzzy logic probability,

C;: i-th chromsome, n: Number of training data,

p : Real probability.

The training data, including the real probability of the crop, was determined manually. For

the image data gathered over the entire growing period, n was 1235. The fitness value/for

each individual was converted from the objective function V(u). In addition, to maintain the

diversity of individuals in the evolution process, the fitness value _was corrected using a

sharing operation proposed by Ichikawa and Sano (1992). The size of the population for the

next generation was also kept constant by choosing half of the tentative population. The

results were obtained using the GA parameters of population size m= 20, the number of

generations Ng= 500, the probability of crossover Pc= 0.7, and the probability of mutation

Pm= 0.3. William82 soybeans were chosen as the test crop in the study. Fig. 5.8 shows the

GA optimization process for the fuzzy logic parameters.
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~ill~ ..•. 3
~ô.2 2.9

o

Clıromo~me
widı lıiglıest fi~s \"alH

100 200 400 500

Gonaratıon

l ..235 te5t image data set
20 chromosomes, 500 geneneions
Pc"" 1.7, P,.= 0.3

Fig.5.8 the GA/fuzzy logic optimization

Process

The objective :function value of the individual with the highest fitness value in each

generation. was represented. in the figure. Because it was found that the objective :function. - . ..~ ~- - . . '~.

value decreased with the progress of the generation, and converged in certain value, it was

seemed that the developed GA could find out the sub-optimal fuzzy logic.

5.10.3. Results using Fuzzy Logic optimized by GA
Th~ input and output membership functions created by the GA ate shown in Fig.

5.9 arid Fig. 5.10, respectively.

l.0

Crop probability
••

Fig.5 .9 Output membership function created

By GA.
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Fig.5.10 Input membership function create

By the GA

The shapes of the membership functions were quite different from fuzzy logic functions

conventionally created by a human.

In particular, the GA created unsymmetrical membership seems unique in the general fuzzy

logic. Fig. 5.11 shows one of the results of segmenting crop and weed by the created fuzzy

logic.

•
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Fig.5.11 Results.using fuzzy logic created

By GA

The top figure is a raw image and gray level in the second and the third figures indicate the

existence probabilities of crop and weed. It was clear that the fuzzy logic could correctly

distinguish crops and weeds in the figure. In fact, accuracy of the segmentation were

investigated using the images acquired in six different growth stages covered the entire

· growing period to verify robustness of the created fuzzy logic. We confirmed that

recognition accuracy did not relate with the .crop growth, and the weed area could be almost

perfectly segmented. It is fair to say that the method developed by combining the fuzzy
logic and the GA was appropriate and effective.

5.11. Estimation of Crop Growth Using ANN 

5.11.1. Construction of an ANN'ror crop growth"prediction 
-~

Crop growth information is important for making fertilzer application, decisions as
•well as for investigating spatial variation in overall yield. A tractor operator qualitatively

observes crop conditions during travel and operations in the field; an agricultural mobile

robot also has to detect crop growth parameters such as such as crop height and width. A

'crop prediction method was developed for machine vision. An ANN was utilized to find the

relationship between the image pattern and the crop growth parameters. The construction of
the ANN is shown in Fig.5.12. 
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Crop

Height
dı I dı I <13-
d, ds I <1,;

20 d7 ds d9 
cm

20cm

\Vidth

Subject to max. d, = d5
'

a. density of vegeıarion

Fig.5.12 Constructionofthe crop growth

Predictor using the NNA.

The ANN is three layers network, which was composed of an input layer, a hidden layer.

and an output layer.The gray levels ofnine 20-cm square tiles were the inputs to the ANN.
T~ ident{fy the individual crop :~ent~~'d5, which was- the highest gray level in . the- -

neighbors, was adopted as a constraint condition. Training data were randomly chosen from

the image data during entire growing period. A back propagation algorithm (BP) was

adopted as the ANNtraining method. A set of 300 training samples were used to build the

. ANN.
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5.11.2. ANN Prediction Accuracy 
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Fig.5.13 Accuracy of the NNA crop growth 

Predictor. 

Fig.5.13 shows the ANN prediction accuracy for crop height and width using the

training data. We investigated the relationship between the measured and predicted values

through the entire growing period. The r2 for both crop height and crop width was 0.92 for

the training data and about 0.84 for the test data, The high correlation implies that an ANN

- machine vision system can be used as a crop prediction sensor. Combining GPS and

image data created spatial maps relating the crop height and width. Arc View. .

(Environmental Systems Research Institute, Inc.) Geographic Information System (GIS)

software was used to create the maps.

5.12. Artificial Life? Real Life? Are they interchangeable? 
Artificial-life programmer claims that, with the help of the increasingly advanced

technology, they will soon go beyond merely modeling or simulating living organisms and
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actually create life. The claim is not simply that one could design an artificial life with the

help of a computer, and then build it out of organic molecules. They claim that one could

create living organism simply by programming a computer in a right way. If today's virus is

not alive, tomorrows will be. Computer equivalent of worm, frog would soon be rampaging

in the networks. This claim is known as "strong A-life", as opposed to "weak A-life". 

Obviously there are two schools ofthought regardingto this claim.
Foes of strong-A-life argue that no matter how advance computer technology would

become, life cannot be created simply by programminga computer. They put forward the

arguments:

• A computer generatedIife is not a material object.

• It can not move about

• It is not capable ofdying·
• Same individual but have different life span on different machines.

A computer generated life is not a material object. When one talks about living organism, it

is a kind of material object: something that takes up space and has a mass, a chemical

composition, and other physical properties.Material objects are something that satisfymost. - ~. ~ ..., ' .

proposed definitions oflife: they take in matter,utilize its energy, and expel its remains in a

less ordered form; they have well-definedboundaries; they can reproduce themselves"with

great accuracy; and so on. On the contrary computer generated life forms do not satisfy

these definitions oflife.
It can not move about. The only movements one could detect from computer generated

organism are contraction and expansion.
It is not capable ofdying. Computer generated life forms can not really die. Real organism

is made up of molecules arranged in an extremely complex and delicate way. When an·

organism dies, the arrangement is destroyed. However, the life of artificial life ceases to..
exit when the machine on which it is running stops.But the programhardly dies since when

the machine is turned back on, computer generated life "resurrects".
Same individual but have different life span on different machines. When a program,

regarded as the artificial life, is run on two machine, the two instances of the program are

supposed to have identical attribute and thus can be assumed to be the same individual.
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However, clearly two instances could have different life span if one of the machine stops

running before the other. This is absolutely nonsense in the context of real life. It literally

means that one individual could die more than once.
Supporters of strong a-life obviously think otherwise. One of the more prominent

supporter, Christopher Langton, writes that the artificial life created do not live in the

medium as we know. It is in a virtual medium where they reside. He further argues that

models built could be so real that they would cease to be models of life and become

examples of life themselves. He cla~s that anydefinition or list of criteria broad enough to

include all known biological life will also include certain classes ofcomputer processs arid ·

therefore will have to be considered as "actuallyalive".

••
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CON CLO ISON 

A couple of conclusions from building block theory are of importance to note.

Strings with very fit schemata of short length will have a high likelihood of being selected

to create the next population, and thus pass on those schemata to strings in the new

population. It has been shown that schemata of this form increase in number from one

population to the next in an exponential fashion. In other words, n3 useful schemata are

processed per generation, and the majority of these have small orders and lengths

associated with them. These schemata are what give a GA the power to efficiently search

through a prqbl_em space. This n3 feature is so important.to GAs that it has been ~iven a

special name, implicit parallelism.
If ~the. c~nception of a computer algorithms being based on the evolutionary of

organism is surprising, the extensiveness with which this algorithms is applied in so many

areas is no less than astonishing. These applications, be they commercial, educational and

scientific, are increasingly dependent on this algorithms, the Genetic Algorithms. Its

usefulness and gracefulness of solving problems has made it the more favorite choice

among the traditional methods, namely gradient search, random search and others. GAs are

v~ry helpful when the. developer does not have precise domain expertise, because GAs

possess the ability to explore and learn from their domain.

In this project, the use of operators of GAs in optimization of engineering and commerce

are considered. We believe that, by these interesting examples, one could grasp the idea of

GAs with greater ease. The different optimization problems are described. The application

of GA to solve optimization problem are given the selection procedure model parameters

by using GA operators are represented. Also different problems solution, by using GA, is

gıven. •
In future, the developments of variants of GAs to tailor for some very specific tasks will be

interesting .This might defy the very principle of GAs that it is ignorant of the problem

domain when used to solve problem. But we would realize that this practice could make

GAs even more powerful
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