
., I

]: !}
'I . ~'.;

\:}i

NEAR EAST UNIVERSITY

ELECTRICAL AND ELECTRONIC

ENGINEERING

EE400

GRADUATION PROJECT

PROGRAMMABLE LOGIC CONTROLLERS

SUPERVISOR: Özgür ÖZERDEM

PREPARED BY : Yücel YILMAZ (961108)

June - 1999 .

INDEX
1. INTRODUCTION

1.1 Terminology (PC or PLC)
1.2 Comprasion With Other Control System
1.3 The Advantages Of PLC Control

3

2. PLCs-HARDWARE DESIGN
2.1 Central Processing Unit (CPU)

2.1.1 Registers
2.1.2 Flag Register
2.1.3 Auxiliary Relays
2.1.4 Timers
2.1.5 Shift Register
2.1.6 Binary Counter

2.2 Memory
2.2.1 Memory Storage Capacity
2.2.2 Memory Map

2.3 Multitasking
2.4 Types of Ports (input/output units)

2.4.1 Analogue Ports
2.4.2 Communications Ports

2.5 Power Supplies

7

-------------- 5

3. TYPES OF PLC SYSTEM
3.1 Small PLCs
3.2 Medium-Sized PLCs
3.3 Large PLCs
3.4 Remote Input/Output

---------------- 11

4. PLC- SOFTWARE ENGINNERING
4.1 PLC Operating System
4.2 User Program Operation
4.3 General Physical Build Mechanism
4.4 Flow Diagram For ijxecuting the program
4.5 Internal Structure Of PLCs
4.6 Accessing Data Memory

-----------------19

5. PROGRAMMING TECNIQUES ----------------- 26
5.1 Programming

5.1.1 Logic Function Start Instructıon
5.1.2 Basic Logic Function Instructıon
5.1.3 End of Function Statement
5.1.4 Assignment To Output Statement

1

5.2 Input/Output Numbering 32

5.3 Some Special Ladder Instructions With Examples
5.3.1 AND Gate
5.3.2 OR Gate
5.3.3 NAND Gate
5.3.4 NOR Gate
5.3.5 XOR Gate
5.3.6 XNOR Gate
5.3.7 TIMER (Simatic S7-200)
5.3.8 COUNTER

5.4 Accessing Data Memory 37
5.4.1 Bit Access
5.4.2 Byte, Word or Double Word Access

5.5 Addressing Modes 37
5.5.1 Direct Addressing
5.5.2 Indirect Addressing

5.6 Sample programs 40

6. INSTRUCTION SET ---------------- 44

6.1 Ladder Instruction Set 44
6.2 Statement List Instruction Set 80

Reference ---------------- 117

2

PROGRAMMABLE LOGIC CONTROLLERS (ı-ı.c s)

1 : INTRODUCTION

In the late 1960s the American motor car manufacturer General motors was
interested ın the application of computers to replace the relay sequancing used ın the
control of ıts automated car plants.

Two independent companies, Bedford Associates and Allen Bradley , responded
to General Motors' specification.

The computer itself, called the central processor, was designed to live in an
industiıal envıironment, and was connected to the outside world via racks into which
input or output cards could be plugged.

The need for low-cost versatile and easily commissioned controllers has resulted
in the development of Programmable-Control systems-standard units based on a
hardware CPU and memory for the control of machines or processes. Originally designed
as a replacement for the hard-wired relay and timer logic to be found in traditional
control panels, PLCs provide ease and flexibility of control based on programming and
executing simple logic instructions .PLCs have internal functions such as timers, counters
and shift registers, making sophisticated control possible using even the smallest PLC.

A programmable controller operates by examining the input signals from a
process and carrying out logic instructions on these input signals, producing output
signals to drive process aquipment or machinery. Standard interfaces built in to PLCs
allow them to be directly connected to process actuators and transducers whithout the
need for intermediate circuitry or relays.

Through using PLCs it became possible to modify a control system without
having to disconnect or re-route a single wire ; it was necessary to change only the
control program using a keypad or VDU terminal. Programmable controllers also require
shorter installation and commisioning times than do hardwired systems. Alhough PLCs
are similar to 'conventional' computers in terms of hardware technology, they have
specific features suited to industrial control :

• rugged, noise immune equipment ;
• modular plug-in construction, allowing easy replacement/addition of units
• standard input/output connections and signal levels;
• easily understood programming language
• ease of programming and reprogramming in-plant.

3

1.1 : Terminology (PC or PLC)

There are several different terms used to describe programmable controllers, most
referring to the functional operation of the machine question :

PC programmable controller (UK origin)

PLC programmable logic controller (American origin)

PBS programmable binary system (Swedish origin)

By their nature these terms tend to describe controllers that normally work in a
binary (on/off) enviroment.Since all but the smallest programmable controllers can now
equipped to process analog inputs and outputs these ' labels' are not representative of
their capabilities. For this reason the overall term programmable controller has been
widely adopted to describe the family of freely programmable controllers. However, to
avoid confusion with the personal computer 'PC', this text uses the abbreviation PLC for
programmable logic controller.

1.2 : Comparison With Other Control Systems

This is only an approximate guide to their capabilities, and further technical
information can be obtained from the manufacturers data sheets on each specific system.

Programmable controllers emerge from the comparison as the best overall choice
for a control system, unless the ultimate in operating speed or resistance to electrical
noise is required, in which case hardwired digital logic relays are chosen respectively.
For handling complex functions a conventional computer is still marginally superior to a
large PLC equipped with relevant function cards, but only in terms of creating the
functions, not using them. Here the PLC is more efficient through passing values to the
special function module, which then handles the control function independently of the
main processor-a multiprocessor system.

Programmable controllers pave both hardware and software features that make
them attractive as controllers of a wide range of industrial equipment.

1.3 : The Advantage of (PLC) Control

Any controlsystem goes through four stages from conception to a working plant.
A PLC system brings advantages at each stage.

4

DESIGN; The required and the control strategies decided.With conventional
systems design must be complete before construction can start. With a PLC system all
that is needed is a possibly vague idea of the size of the machine and 1/0 requirements.
The input and output cards are cheap at this stage, so a healthy spare capacity can be built
in to allow for the inevitable omissions and future developments.

Next comes construction. With conventional schemes, every job is a 'one-off '
with inevitable delays and costs. A PLC system is simply bolted together from standard
parts. During this time the writing of the PLC program is started .

INSTALLATION ; a tedious and expensive business as sensors, actuators, limit
switches and operators controls are cabled. A distributed PLC system using serial links
and pre-built and tested desks can simplify installation and bring huge cost benefits. The
majority of the PLC program is written at this stage.

Finally comes commissioning, and this is where the real advantages are found. No
plant ever works first time. Human nature being what it is, there will be some oversights.
Changes to conventional systems are time consuming and expensive. Provided the
designer of the PLC system has built in spare memory capacity, spare 1/0 and a few spare
cores in multicore cables, most changes can be made quickly and relatively cheaply. An
added bonus is that all changes are recorded in the PLC's program and commissioning
modifications do not go unrecorded, as is often the case in conventional systems.

MAINTENANCE ; which starts once the plant is working and is harded over to
production. All plants have faults, and most tend to spend the majority of their time in
some from of failure mode. A PLC system provides a very powerful toll assisting with
fault diagnosis.

A plant is also subject to many changes during its life to speed production, to ease
breakdowns or because of changes in its requirements. A PLC system can be changed so
easily that modifications are simple and the PLC program will automatically document
the charges that have been made.

2: PLCs-HARDWAREDESIGN

Programmable controllers are purpose-built computers consıstıng of three
functional areas: processing, memory and input/output. Input conditions to the PLC are
sensed and then stored in memory, where the PLC performs the programmed logic
instructions on these input state. Output conditions are then generated to drive associated
eqıipment. The action taken depends totally on the control program held in memory.

In smaller PLCs these functions are performed by individual printed circuit cards
within a single compact unit, whilst larger PLCs are constructed on a modular basis with
function modules slotted into the backplane connectors of the mounting rack. This allows
simple expansion of the system when necessary. In both these cases the individual circuit
boards are easily removed and replaced, facilitating rapid repair of the system should
faults development.

5

2.1: Central Processing Unit (CPU)

The CPU controls supervises all operations within the PLC, carrying out
programmed instructions stored in the memory. An internal communications highway, or
bus system, carries information to and from the CPU, memory and 1/0 units, under
control of the CPU. The CPU is supplied with a clock frequency by an external quartz
crystal or RC oscillator, typically between 1 and 8 megahertz depending on the
microprocessor used and the area of application. The clock determines the operating
speed of the PLC and provides timing/synchronization for all elements in the system.

Virtually all modem programmable controllers are microprocessors-based, using
a 'micro' as the system CPU. Some larger PLCs also employ additional microprocessors
to control complex, time-consuming functions such as mathematical processing, three
term PID control, etc.

2.1.1 : REGISTERS

Most CPU operations involve the use of a register, which is a memory element
used to store a group of bits on a temporary basis. CPU registers are located inside the
microprocessor. So-called data registers are located in RAM and are used for storing
flags, counter and timer constants and other types of data.A 4-bit register storesa nibble,
which is 4 bits of data. An 8-bit register stores abyte, which is 8 bits of data.A 16-bit
register stores aword, which is 16 bits of data.

2.1.2 : FLAG REGİSTERS

If a bit state (O or 1) is used to indicate that some condition has ocurred it is called
a flag. A register which stores a group of flag bits is called a flag register. The CPU has
an internal flag register which contains information about the result of the latest
arithmetical and logical operations. PLC image memory is effectively aflag register, as it
contains the current status of the inputs and outputs. ·

2.1.3: AUXILIARY RELAYS

Auxiliary relays are singl~-bit memory elements located in RAM that may be
manipulated by the user's program. They are called auxiliary relays because they may be
likened to imaginary internal relays. A battery-backed auxiliary relay is called a retentive
or holding relays and can be used for storing data during power failure. A number of
auxiliary relays may be grouped together to form a register.

It is important to remember that because auxiliary relays are only bit values stored
in memory output loads cannot be connected directly to them. However, auxiliary relays
can be used to control output loads indirectly.

6

2. 1.4 : TIMERS

A CPU will have a built-in clock oscillator which controls the rate at which it
operates. The CPU uses the clock signal to generate delay times.A delay times.A delay
time could be used, for example, to keep an output relay energized for a fixed period.

2.1.5 : SHIFT REGISTER

Some register are arranged so that bits stored in them can be moved one position
to the left or to the right with the application of a shift command or pulse.Such registers
are called shift registers and can be used for sequence control applications

2.1.6 : BINARY COUNTER

The CPU may functions as a binary counter since it isable to increment and
decrement binary data stored in a register and compare binary data stored in two
seperateregisters.Counters are used to count, for example,digital pulses generated from a
switching device connected to an input port. An output is usually generated after a
predetermined number of input pulses have been counted. The count value required is
stored in a data register.

2.2: Memory

Memory is charecterized by its volatility. A memory is volatile if it loses its data
when the power to it is switched off and non-volatile otherwise. Common types of
memory include semiconductor memory and magnetic disk. The various types of
semiconductor memory are :

1. RAM Random access memory is a flexible type of read/write memory. All
PLCs will have some amount of RAM, which is used to store ladder programs
being developed by the user, program data which needs to be modified and image
data.

RAM is volatile. This means that RAM cannot be used to store data while the
PLC is turned off unless the RAM is battery hacked. A type of RAM called CMOS
RAM (complementary metal-oxide semiconductor RAM) is suitable for use with
batteries because it consumers very little power and operates over a very wide
range of supply voltages.

2. ROM A read only memory is programmed during its manufacture using a
mask. It is a non-volatile memory and provides permanent storage for the
operating system and fixed data.

7

3. EPROM Erasable programmable read only memory is a type of ROM which
can be programed by electrical pulses and erased by exposing a transparent quartz
window found in the top of each device to ultraviolet light. EPROM is non
volatile memory and provides permanent storage for ladder programs.
4. EEPROM Electrically erasable programmable read only memory is similar
to EPROM but is erased by using electrical pulses rather than ultaviolet light. It
has the the flexıbılıty of battery-backed CMOS RAM. However, writing data into
an EEPROM takes much longer than into a RAM.

2.2.1 : MEMORY STORAGE CAPACITY

The storage capacity of a memory device is determined by the number of binary
digits,i.e. on/off states, it can hold. In microelectronics, 1 K represents the number 1024
i.e. the binary number 2 . A 4K byte memory is capable of 4*1024 words, each of 8 bits,
and has a total storage capacity of 32 768 bits.

Clearly, the storage capacity of the user memory will determine the maximum
program size. As a guide, a lK byte memory will hold 1024 program instructions and
data if these are stored as groups of 8 bits.

2.2.2 : MEMORY MAP

We use the term memory mapping to describe the situation in which input/output
ports are controlled by writing data into the image memory. A diagram which shows the
allocation of memory addresses of ROM, RAM and I/O is called a memory map.In this
image bits are stored in RAM above the user's program and data for flags, counters and
timers. Flags,counters and timers are discussed below. With most PLCs the memory map
is already configured by the manufacturer. This means that the program capacity, the
number of input/output ports and the number of internal flags, counters and timers are
fixed.

2.3 : Multitasking

More advanced PLCs use multitasking. This is the process of running two or more
control tasks using a single CHU. Each tasks has its own program and allocated
input/output ports. The CPU may schedule its prcessing time among the various tasks or
allow events to initiate the various tasks. Tasks are assigned priority levels.Higher-
priority tasks are always executed before lower-priority tasks. · ~

Multitasking systems make use of interrupts. An interrupt is a special control
signal to the CPU which tells it to stop executing the program in hand and start executing
another program stored elsewhere in memory. The CPU clock oscillator can be used to
provide interrupts at regular intervals so that processor time can be shared between tasks.
Alternatively, an external event such as a machine fault alarm can be used to drive the
interrupt line.

8

2.4 : Types of ports (input/output units)

Most PLCs operate internally at between 5 and 15 V d.c (common TTL and
CMOS voltage), whilst process signals can be much greater, typically 24 V d.c. to 240 V
a.c. at several amperes.

The 1/0 units form the interface between the microelectronics of the
programmable controller and the real world outside, and must therefore provide all
necessary signal conditioning and transducers whithout the need for intermediate
circuitry or relays.

To provide this signal conversion programmable controllers are available with a
choice of input/output units to suit different requirements. For example;

Inputs (choice of): 5 V (TTL level) switched 1/P
24 V swiched 1/P

11 O V swıched 1/P
240 V switched 1/P

24 V 100 mA switched 0/P
ııov 1 amp
240 V 1 A a.c. (triac)
240 V 2 A a.c. (relay)

Outputs (choice of):

It is standard practice for all 1/0 channels to be electrically isolated from the
controlled process, using opto-isolator circuits on the 1/0 modules. An opto-isolator
circuit consists of a light-emitting diode and a photo-transistor, forming an opto-coupled
pair that allows small signals to pass through, but will clamp any high-voltage spikes or
surges down to the same small level. This provides protection against switching
transients and power-supply surges, normally up to 1500 V.

In small self-contained PLCs in which all 1/0 points are physically located on the
one casing, all inputs will be of one type and the same for outputs. This is because
manufactererssupply only standard function boards for economic reasons. Modular PLCs
have greater flexibility of 1/0 however,since the user can select from several different
types and combination of input and output modules.

In all cases the input/output units are designed with the aim of simplifying the
connection of process translucers and actuators to the programmable controller.

For this purpose all PLCs ci're equipped with standard screw terminals or plugs on
every 1/0 point, allowing the rapid and simple removal and replacement of a faulty 1/0
card. ...

Every input/output point has a unique address or chanel number which is used
during program development to specify the monitoring of an input or the activating of a
particular output within the program. Indication of the status of input/output chanels is
provided by light-emitting diodes on the PLC or 1/0 unit, making it simple to check the
operation of process inputs and outputs from the PLC itself .

9

2.4.1 : ANALOGUE PORTS :

Many types of transducer produce analogue signals variable-speed motor drives
are controlled by an analogue speed command signal.consequently, PLC manufacturers
provide ports for handling analogue signals as well as digital. This are based on analogue
to digital converters (ADCs) and digital to analogue converters (DACs).

2.4.2 : COMMUNICATIONS PORTS :

Many PLCs have ports for network communications and for interfacing to a
computer.

1. Presenting operating data and alarm, etc.via printers or VDUs.
2. Data logging into archive files or record : to be used for process performance

analysis and management information. ·
3. Passing values/parameters into existing PLC programs from operator

terminals or supervisory controllers.
4. Forcing 1/0 points and memory elements from a remote terminal.
5. Changing resident PLC programs-uploading/from a supervisory controller
6. Linking a PLC into a control hierarchy containing several sizes of PLC and

computer.

2.5 : Power Supplies

The CPU, memory and input/output are electronic companents which require
power (typically +5 V d.c. and +/- 15 V d.c. at a few milliamperes). A PLC
incorporates a power supply for powering internal companents and input ports.

Power supplies fall into two categories : linear and swich mode. A linear power
supply uses a simple regulator circuit to convert the mains supply to a constant d.c.
voltage. A swich-mode power supply uses a high-frequancy swiching regulator to
produce a series of pulses. Averaging the pulses provides a smooth d.c. voltage. The main
advantages of a swich-mode powet supply are : (a) it is capable of providing a vide range
of supply voltage. (e.g. +/- 24 V d.c., +/- 15V d.c., +/- 5 V d.c., OV), (b) swich action
makes it highly efficiend so that the amount of heat dissipated from the supply is small,
and (c) it is compact and lightweight. Becomes of these advantages.the swich-mode
power supply is often used in PLCs .

10

3 : TYPES OF PLC SYSTEM

The increasing demand from industry for programmable controllers that can be
applied to different forms and sizes of control tasks has resulted in most manufacturers
producing a range of PLCs with various levels of performance and facilities.

Typical rough definitions of PLC size are given in terms of program memory size
and the maximum number of input/output points the system can support.

However ,to evaluate properly any programmable controller we must consider
many additional features such as it processors , cycle time, language facilities , function ,
expansion capability ,etc...

A brief outline of the characteristics of small ,medium and large programmable
controllers is given below , together with typical applications.

PC size Max I/O Points User memory size
(no.of instructions)

Small 40/40 lK
Medium 128/128 4K
Large >128/>128 >4K

3.1 : Small PLCs

In general, small and 'mini' PLCs are designed as robust ,compact units which
can be mounted on or beside the equipment to be controlled . They are mainly used to
replace hard-wired logic relays , timers , counters , etc.. That control individual items of
plant or machinery , but can also be used to coordinate several machines working
conjunction with each other.

Small programmable controllers can normally have their total I/O expandet by
adding one or two I/O modules , but if any further developments are required this will
often mean replacement of the complete unit.

This end of the market is very much concerned with non-specialist end-users ,
therefore ease of programming ana a 'familiar' circuit format are desirable. Competition
between manufacturers is extremely fierce in this field, as they vie to obtain a maximum
share in this partially developed sector of the market.

A single processor is normally used, and programming facilities are kept at a
fairly basic level, including conventional sequencing controls and simple standard
functions : e.g. timers and counters. Programming of small PLCs is by way of logic
instruction lists or relay ladder diagrams.

Program storage is by EPROM or battery-backed RAM. There is now a trend
towards EEPROM memory with on-board programming facilities on several controllers.

11

..,

(b)

Small PLCs: (a) Mitsubishi F40 (courtesy Mitsubishi Electric UK
ltd); (b) GEseries 1 (courtesy General Electric).

12

J I J 1 l
s, ;.) •I\C ::.u.ı
.,.(,• .tJfı t)Q,<

~· ,.,. (:Slll!I

"'-'-~ ~--r "'9...9
Jlı(JII• •.••.••

U.~ ·- i,C.'I,• ~~ R'Me m l!!S .• ,J
·~ $,.~

ffll :!!!9

al

(b)

Small PLCs: (a) Mitsubishi F series (courtesy Mitsubishi Electric
Uf< ltd); (b) GE series 1 (courtesy General Electric).

13

3.2 : Medium-size PLCs

İn this range modular construction_predominates with plug-in modules based
around the Eurocard 19 inch rack format or another rack mounting system. This
construction allows the simple upgrading or expansion of the system by fitting additional
I/O cards into the rack, since most rack systems have space for several extra functions
cards. Boards are usually 'ruggdized' to allow reliable operations over a range of
environment.

İn general this type of PLC is applied to logic control tasks that cannot be met by
small controllers due to insufficient I/O provision , or because the control task is likely to
be extended in the future. This might require the replacement of a small PLC , whereas a
modular system can be expanded to a much greater extent , allowing for growth.. A
medium-sized PLC may therefore be financially more attractive in the long term.

Communication facilities are likely to be provided, enabling the PLC to be
included in a 'distributed control' system.

Combinations of single and mulyi-bit processors are likely within the CPU. For
programming, standard instructions or ladder and logic diagrams are avaliable.
Programming_is normally carried out via a small keypad or a VDU terminal.

3.3 : Large PLC

Where control of very large numbers of input and output points is necessary or
complex control functions are required, a large programmable controller is the obvious
choice. Large PLCs are designed for use in large plants or on large machines requiring
continuous control. They are also employed as supervisory controllers to monitor and
control several other PLCs or intelligent machines, e.g. CNC tools.

Modular construction in Eurocard format is standard, with a wide range of
function cards available including analog input/output modules. There is a move toward
16-bit processors, and also multi-processor usage in order to efficiently handle a large of
differing control tasks.

• 16-bit processor as main processor for digital arithmetic and text handling.
• Single-bit processors as co-or parallel processors for fast counting,storage,etc.
• Peripheral processors tor handling additional tasks which are time-critical,

such as:
Cosed-loop (PID) control
Position controls
Floating-point numerical calculations
Diagnostics and monitoring
Communications for decentralized I/O
Process mimics (screen graphics)
Remote input/output racks.

14

Medium-sized PLCs: Mitsubishi A O PLC· ı .t'

15

The four medium-sized PL Cs discussed:

(a) the Allen Bradley PLC-5;

(b) the Siemens 55-7 7 54;

·•.

the ABB Master. Photographs courtesy of the manufacturers
17

This multi-processor solution optimizes the performance of the overall system as
regards versatility and processing speed, allowing the PLC to handle very large programs
of 1 OOK instructions or more. Memory cards can now provide several megabytes of
CMOS RAM or EPROM storage.

3.4 : Remote input/output

When large numbers of input/output points are located a considerable distance
away from the programmable controller, it is uneconomic to run connecting cables to
every point. A solution to this problem is to site a remote I/O unit near to the desired I/O
points. This acts as a concentrator to monitor all inputs and transmit their status over a
single serial communications link to the programmable controller. Once output signals
have been produced by the PLC they are fed back along the communications cable to the
remote I/O unit, which converts the serial data into the individual output signals to drive
the process.

4: PLCs- SOFTWARE ENGINEERING

Figure 4.1 shows the six stages that any software project must go through during
its life. Although few projects are compartmentalized as neatly as this, the principles
apply to all.

The first stage is analysis of the problem that is to be solved. The supplier I
programmer of the PLC system must meet with the other contractors and the user to
determine what controls are needed and how the control actions are to be provided.
Important considerations such as operator controls need to be established at this stage
.Ambiguous descriptions should be resolved.

Of all the stages, analysis is the most difficult, as the ultimate end-user and the
other contractors probably have not considered the intricacy of the control stategy, and
do not have the experience to decide if an item of plant is bestcontrolled with joysticks,
pushbuttons or a touchscreen VDU.

An important point which is often overlooked at this stage is the need to provide
some form The output from tq.e analysis stage should be a description of how the
plant work, what operator stations and controls are needed, what maintenance/fault
finding aids and facilities are tobe included and finally a complete list of the I/O signals
with voltage /current specifications and their locations on the plant.
of manual 'maintenance' controls to test, or rescue, afully automated plant or sequence
which has failed in some obscure manner.

19

Analysis

Specification
And planning

Design

Program and
build

Test and
commission

Maintenance

Figure 4.1 The stages of a project

The difficulties of this first stage cannot be overemphasized. If the ambiguities
and problems are resolved at the start, the following stages are easy. Finding out at the
comrnisioning stage that the user wanted variable speed fans and an underpressure alarm
and 'thought you knew that' is not the way to ensure a smooth plant start-up. If in doubt
ask; even if you are not in doubt, still ask, and assume nothing.

At this stage, the final testing requirements should also be defined. If you do not
know how you are going to test it, how will you know if the plant meets the user's
requirements.

Wh the worst stage over, the designer should produce a description of what the
control system contains, how it is going to perform and how it will be tested.This is really
recording what was agreed at stag~ 1.

The next stage is to design the system ; the cubicles, desk, and the stracture of the
program. This latter action, known as top-down design.

At the last the programming can be done, built around the structure laid down at
the design stage. No program should be constructed adhoc at the keyboard; that way lies
spaghetti programming. Commercial programmers estimate that this stage generally
involves no more than 10% of the total effort.

20

· ...••

21

i),_, _

With the programming completede and the plant built, testing and commisionning
can start. The operation should be checked against the spesificationsproduced stage two.
With all bar the simplest system, it can be very time consuming to check all routes and
actions given in the specifications. There is generally pressure to 'handover' the plant
when the basic operation has been tested but the ancillary, rarely used, options are
untried.Too often these tests are skipped, and the first time a 'firkling fault' mode is
tested is when the 'firkling fault' first occurs, possibly years after the plant has started
up.Inevitably, commissioning of the control system will always be the last stage in a new
plant, so the control engineer ends up carrying everyone elses delay. It is therefore
important to establish what testing must be carried out before a plant can start and what
can be tested lated later, on line. On line testing, however, can be very difficult and time
consuming.

Safity-related checks should never be skipped; finding out that an emergency stop
sequence does not work when it is used for the first time Health and Safety Executive.

The final stage is usually overlooked. Once the plant is handed over,its control
ststem must be maintained, a term used here not to mean serviced in the mechanical sense
but covering fault finding, resolving of bugs and changes arising from modifications in
the way the plant operates. No plant is fixed, all change during their life in response to
market or technology changes, and these modifications require· changes in the control
strategy.

In commercial programming it is generall thought that maintenancetakes over
50% of the effort in a project's life cycle. It is therefore essential that the control strategy
and program are constructed and documented so they can be changed and modified easily
at a later stage, possibly by people who had no involvement whith the previous five
stages.

4.1: PLC Operating System

In all PLC operating systems similar operating systems are used. These programs
are in ROM and they are loaded into the system while manifucturing.

In general a PLC operating system does the following :

• Operates the user program.
• Event and time dependend service programs are operated by operation system.
• Orginize the communication of PLC and controls the operation of the system.

4.2 :General Physical Build Mechanism

PLCs are seperated in to two according to their bulding mechanism
• Compact PLCs : Are manufactured such that all units forming the PLC are

placed in a casp they are low price PLC with lower capacıty they are usually
prepared by small or medium size machine manufactures. In some types
compact enlargement module is present.

e.g. Siemens S7 -200 , Omron SK-20

22

• Model PLCs : They are formed by combining separate modules (called
RACK) together in a board. They can have different memory capacitiy, I/O
numbers, power supply up to necessary units.
e.g. Siemens S5-115U, Omron C200H

4.3: User Program Operation

A user program loaded to program memory of PLC starting from the first
instruction untill the last instruction executes the instructions step by step. If there is a
jump or branching in the program the instructions until the jump address are not
executed. When the last instruction is reached it automatically turns to first instruction.
This operation is like an infinite loop.

The time taken by the PLC to turn back to the same instruction is called the
canning period. The scanning period of a PLC is depending upon I/O number, programs

length and operating frequency of the CPU.
e.g. A PLC with 500 word program capacity and with 1 O ınput and output signal

is 2.6 ms and program execution time is 12 ms. In general scanning time of PLCs differ
from 2-200 ms. Scanning velocity is usually operating velocity per 1024 bytes.

4.4 : Flow Diagram for Executing the Program

Write the values
At input unit to
Display memory

Calculate (find) the
Output values according
To user program.

Write the results to
Output display memory
And transfer the results
To output unite.

23

In some PLCs the output data are send to output units (DSP : Direct Pocessing
• tem) Hitachi H200.

In some PLCs you can reach real input and real outputs directly by some
tructions (immediate 1/0 instructions) Simatic S7.

:Internal Structure of PLCs

ey have three main units
• Input unıt
• Processing unit
• Output unit

BLOCK DIAGRAM REPRESANTATION:

Input
Unıt

Switches, Sensors, Main switch

Input Interface

Terminal I Galvanized izolation

A

System memory

Processing
Unit

CPU

D

System modules
Arithmatic Processor

A

Program memory

Data memory

Output
Unit Terminal

T
MICROPROCESSOR

Instruction set
Ladder diagram
User programs B

u
Display Memory, Flag s

Galvanized Isolation

Output Interface

Contactors, Solenoid valve
Lamp

24

INPUT UNIT: Is the unıt that converts the signal coming from the control elements
of the system in to logic levels. The analog and/or digital signals coming from the sensors
witches showing the system pressure, humidity etc. enters the PLC throuhg the input

unit.Digital input signals are usually 24V de or according to the medium can be 48V de,
I I OV de or 240V de.

Analog signals are standart O lOV, -5V 0 +5V, -lOV O +lOV or
0/4 20 mA.

Digital signals are converted to 5V de by this unıt which is the internal voltage
level of the device Analog signal on the other hand according to the type of ADC are
converted to 8,12,14 or 16 bit numerical valve.

The parasitic signals are first filtered by RC passive filter and then they pass
through optocoupler that has the property to supply galvinized isolation. As the result of
this process the signals are send to input display memory. Analog signals pacs through
frequency in some PLC. In this way they gain important noise immunity.

4.5 : A ccessing Data Memory

Data memory for S?-200 consısts of five areas.

I INPUT

Q OUTPUT

M INTERNAL MEMORY BİT

SM SPECIAL MEMORY BIT

V VARIABLE MEMORY
To use a memory locatıon, address that location using memoy type and number.

Memory areas can be accesed either as a bit, a byte, a word, or a double word.

BIT ACCESS:
To access a bit, specify the address of the bit which consists of an area identifier

and the byte or bit number. Zero is the first address for all data areas.
e.g : I O.O Bits address is a decimal number from O through 7.

BYTE. WORD or DOUBLE WORD ,tccESS:

To access a byte, word specify, the address, which consist of an area identifier, a
letter signifying data size and the address number. '

e.g: VB200 access V memory locatıon byte 200.

25

: PROGRAMMING TECHNIQUES

There are three programming techniques for PLCs.

• Statement list or instruction list programming.
• Ladder programming.
• Other programming techniques (Logic gates , symbolic)

EXAMPLE:

LOGIC EXPRESSION: All the programs above are about the logic expression

Y ı= (Xı + X2) * X3

possible to use all.
LOGIC GATES: First two techniques are for hand programmers but with PCs it is

Yı

STATEMENT LIST:
LD Xl
OR X2

AND X3
OUT Yl

LADDER PROGRAMMING:

xı ~ X3 YI

X2~

26

Programming methods are divided into two (two main; groups according to the
ay they are writen)

Step by step programming: In step by step programming instructions are written one
after the other and they executed in the same way. In one cycle all instructions are
executed and all instructions are in the main program.
Structure programming: Programs are written in blocks and by the help of orginizing
block the other blocks that are going to be executed in one cycle are executed.

It is not necessary for all the instructions in a structure programming to be executed.
Depennding upon the instructions in organizing block some blocks cannot be
executed. The data for the blocks that are not executed are kept in the memory.

Orginizing Block PB 1

JUPB3 PB3
JUPBl

BE

BE

PB2
JUPB2 JUFB2

BE FB2

JUPBl FBl

JUFB2 BE

BE BE

Structure programming

27

1: Programming:

Usually basic logic instructions are enough construct a control panel and if timer
tructions are added to these basic logic instructions then it is very easy to construct any
ntactor panel.

The instructions necessary to implement a logic function with PLC can be divided
to three groups.

GROUP 1 : Starting instruction like LOAD , LOAD NOT

GROUP 2 : Basic logic function instruction,like, AND, OR , NOT, AND NOT, OR NOT
OR NOT, end of function instruction like , AND BLOCK, OR BLOCK

GROUP 3: The output assigment instructions, OUT

INSTRUCTION LADDERSYM HITACHI OMRON MITSUMI TEXAS SIMATIC
INST S7

LOAD H ~ LD LD LD STR LD

AND
~ ~ AND AND AND AND A,,

11

OR y ~ OR OR OR OR o
II

NOT / NOT NOT I NOT NOT
. LOAD NOT H/1- LDI LDNOT LDI STRNOT LDN
: AND NOT -v1-! ANI AND NOT ANI AND NOT AN
I

I OR NOT 41---JI ı. ORI ORN OT ORI ORN OT ON
AND BLOCK

ANB ANLD ANB ANDSTR ALD~
OR BLOCK

ORB ORLD ORB ORSTR OLD
OUT -oi OUT OUT OUT OUT =
END

END END END END MEND

28

In additional to these TIMER , COUNTER and CONTROL STATEMENTs are
vailable.

In all PLCs basic logic functions does the job and they are programmed similary.
There may be some difference in timer, counter and control statement.

An assumption is going to be made while considering PLC programs. The
umption is that while PLC programs are used to execute the logic functions,

cumulation memory is used and the top level of the memory is going to be assumed as
cumulation.

S.1.1 :LOGIC FUNCTION START INSTRUCTION

When these instructions are executed the data is load to accumulator or to the first
vel of the memory.

In the following example the execution of the load instruction in a four
cumulatıon memory is shown.

WAD XI
(After execution of inst. Xl is loaded

the first level of the acc.
Memory and the rest of the data is
hifted below.)

LOAD NOT XI
(ls not applicaple to SIMATIC S5PLC)

BEFORE AFTER
BEFORE AFTER DO Xl'

Dl DO
D2 Dl
D3 D2
D4 D3

DO x1
Dl DO
D2 Dl
D3 D2

5.1.2 : BASIC LOGIC FUNCTION INSTRUCTIONS

For these instructions the logic function stated by the instruction is performed by
the data given by the instruction and the data at the first level of the memory.
(AND, OR, AND NOT,OR NOT)

AND XI ORXI

BEFORE AFTER AFTERBEFORE
DO XI.DO
Dl Dl
D2 D2
D3 D3

DO Xl+DO
Dl Dl
D2 D2
D3 D3

29

When statement is executed the data at (first level of memory) and the data in the
nd level are used to execute the statement. And the result is 'written to the first level.

AND BLOCK

BEFORE AFTER
DO DO.Dl
Dl D2
D2 D3
D3 -------

1.4 : ASSIGMENT TO OUTPUT STATEMENT

OR BLOCK

BEFORE AFTER
DO DO+Dl
Dl D2
D2 D3
D3 -------

When executed data at accumulator is send to output OUT YI.

EXAMPLE:

'
TEXAS INST. SIMATIC S7

,I

·I STR X9 LD X9
OR Cl o Cl

STRNOT XlO LDN x10

I:

AND xıı A xıı
AND STR A LD

j: OUT Cl - Cl
1, STR Xl2 LD Xl2
ı OR C2 o C2

STR C3 LD C3
AND STR A ~LD
OUT C4 - C4
END MEND

ACC. r' level ACC. 2nd level

X9 -
CI+X9 " -
XIO' I~ Cl+X9

XIO'. XII V CI+X9
(XJO'. Xll).(Cl+X9.,. -
(XJO'. Xll).(CJ+X9~ -

XI2 .,.~ (XJO'. Xll).(CJ+X9)

C2+X12 <, (XJO'. Xll).(CJ+X9

C3 ı:a C2+X12
/

C3.(C2+Xl2) ¥ -
C3.(C2+X12) -.•

30

ecial Memory (SM) Bits

Special memory bits provide a variety of status and control functions, and also serve as a
means of communicating information between the CPU and your program. Special memory,
bits can be used as bits, bytes, words, or double words.

: Status Bits

As described in Table D-1, SMBOcontains eight status bits that are updated by the S7-200CPU at the end of each scan cycle.

Table D-1
Special Memory Byte SMBO(SMO.O to SM0.7)

SM Bits
Description

SMO.O This bit is always on.
SMO.l

This bit is on for the first scan. One use is to call an initialization subroutine.
SM0.2

This bit is turned on for one scan if retentive data was lost. This bit may be used as
either an error memory bit or as a mechanism to invoke a special start-up sequence.SM0.3
This bit is turned on for one scan when RUN mode is entered from a power up
condition. This bit may be used to provide machine warm-up time before starting anoperation.

SM0.4
This bit provides a clock pulse that is on for 30 seconds and off for 30 seconds, for a
cycle time of 1 minute. It provides an easy-to-use delay,or a 1-minute clock pulse.SM0.5
This bit provides a clock pulse that is on for 0.5 seconds and then off for 0.5 seconds
for a cycle time of 1 second. It provides either an easy-to-use delay or a I-second clockpulse.

SM0.6
This bit is a scan clock which is on for one scan and then off for the next scan. This bit
can be used as a scan counter input.

SM0.7
This bit reflects the position of the Mode switch (off is TERM position, andon is RUN
position). If you use this bit to enable freeport mode when the switch is in the RUN
position, normal communicationwith the programming device can be enabled by
switching to the TERM position.

31

: Input/Output Numbering

Different PLC manufactures use different numbering systems for input/output
ts and for other functions within the controller.

From now on we will use the following assigment.

Input IO.O---------------- I0.8)
Output QO.O --------------- Q0.8

Siemens
Simatic S7-200

Implementation of logic gates in PLC.

: Some Special Ladder Instructions With Examples:

.1: AND GATE
In order to activate the output QO.O all contants should be activated.

e.g.:
LADDER PROGRAM. STATEMENT LIST

(Simatic S7) (Texas Inst.)

LD IO.O STR IO.O
A IO.I AND IO.I

A I0.2 AND I0.2
A I0.3 AND I0.3
= QO.O OUT QO.O

IO.O IO. I I0.2 I0.3 QO.O

H H H H)

5.3.2: OR GATE
If any of the contants is activated then the output QO.O is activated.

e.g.:
LADDER PROGRAM. STATEMENT LIST

IO.O QO.O (Simatic S7) (Texas Inst.)
)

IO.I I LD IO.O STR IO.O
o IO.I OR IO.I

I0.2 I o I0.2 OR' I0.2
o I0.3 OR I0.3

I0.3 I = QO.O OUT QO.O

32

: NANO GATE If all contacts are opened QO.O is deactivated.

LADDER PROGRAM. STATEMENT LIST

IO.O QO.O
)

(Simatic S7) (Texas Inst.)

LDN IO.O STRNOT IO.O
ON IO.l ORN OT IO.l
ON I0.2 ORN OT I0.2
ON I0.3 ORN OT I0.3
= QO.O OUT QO.O

:NOR GATE If any contact is open then the output QO. 1 is deenergized.

LADDER PROGRAM. STATEMENT LIST
(Simatic S7) (Texas Inst.)

LDN IO.O STRNOT IO.O
IO.O I0.1 I0.2 I0.3 QO.O AN I0.1 AND NOT IO.l

) AN I0.2 AND NOT I0.2
AN I0.3 AND NOT I0.3

= QO.O OUT QO.O

5.3.5 : XOR GATE (EXCULUSİVE OR}
e.g.:

LADDER PROGRAM. STATEMENT LIST
(Simatic S7) (Texas Inst.)

IO. 1 I0.2 QO.l LD I0.1 STR I0.1

~(
) AN I0.2 AND NOT I0.2

IO.IH LDN IO.l STRNOT I0.1
A I0.2 AND I0.2
OLD ORS TR
= Q0.1 OUT QO.l

5.3.6 : XNOR GATE (EXCULUSİVE NOR}
e.g.:

LADDER PROGRAM. STATEMENT LIST
(Simatic S7) (Texas Inst.)

IO.I I0.2 Q0.1 LD I0.1 STR I0.1

H tf<-) A I0.2 AND I0.2
IO.l I0.2 LDN I0.1 STRNOT IO.l

AN I0.2 AND NOT I0.2
OLD ORS TR

= QO.l OUT QO.l

33

.7: TIMER (SIMATIC S7-200)

Simatic S7-200 timers are controlled with a singel enabling input and have a
ent value that maintains the elapsed time since the timer was enabled.

The timers also have a present time value (PT) that is compared to the current
alue each time the current value is updated and a timer bit is set/reset based upon the

ult of the comparision of current value to the present time value. When the current
alue is greater then or equal to the present time value the timer bit (T) is turned on.

Otherwice the T bit is turned off. Timing stop when the corrent value reachas a max
alue.

When a timer is reset, it is current value is set to zero and it is T bit turned off.
Timers can be reset with using the RESET instruction (This is the only way to reset a
Timer on Retentive Delay TONR timer).

:ı TİMER ON DELAY (TON)
The on delay timer (TON) box times up the maximum value when the enabling

input comes on (activated). When the current value of the timer > the present time
(PT) the timer bit turns on. ltresets when the enabling input goes off. Timing stops
upon reaching the maximum value.

TXXX CPU 212/214 CPU 214

IN TON 1 ms
IO ms

100 ms

T32
T33-T36
T37-T63

T96
T97-Tl00
Tl01-Tl27

PT

e.g.:
STATEMENT LIST
(Simatic S7)

LADDER PROGRAM.

LD IO.O
TON T37,+30
LD T37
= QO.O

MEND

NFTWnRK 1
T37

IO.O I IN TON

PT
--I

+30
--

NFTWnRK 7.

T37 QO.O

I ()

-
NFTWnRK,

END)

IO.O activates T37 after
30*100 ms = 3 sec. T37 will be on
and QO.O will be activated.

34

TIMER RETENTIVE ON DELAY

Description of operating on delay timer, times up to the max value when the
enabling input is activated when the current value of the timer is greater than of
equal to the present time value the timer bit turns on.Timing stops when the
enabling input goes off or upon reaching maximum value.

Tx:xx CPU 212/214 CPU 214
IN TONR

1 ms
10 ms

lOOms

TO
Tl-T4

T5-T31

T64
T65-T68
T69-T95

PT

LADDER PROGRAM. STATEMENT LIST
(Simatic S7)

LD SM0.5
TONR T5,+30
LD T5
= Q0.1

MEND

NETWORK 1
T5

SM0.5 I IN TONR

PT
--I

+30
NETWORK?.

T5 QO.l
ı · ()

--
NETWORK,

END) ('

Due to the delay caused by SM0.5
T5 bit will be activated after 6 sec
And QO. l will be activeted.

The two timers (TON-TONR) differ in the ways that they react to the state of the
enabling input. Both TON and TONR time up while the enabling input is off. A TON
timer will automatically reset and TONR timer will not reset. It is converient to use TONR
when it is necessary to accumulate a number of timed intervals.

35

.8: COUNTER

COUNTER UP COUNTER

The count up (CTU) box counts up to maximum value on the rising edge of the
count up input.When the current value (xxx) is > to the present value (PV) the
counter bit (Cxxx) tum on.It stops counting upon reaching value (32,767)

Cx:xx CPU 212 CPU 214
CTU

C0-63 C0-127
R

PV

COUNTER UP/DOWN COUNTER

(CTUD) box counters up on rising edge of the count up (CU) input or it count down
on the rising edge of the count down (CD) input when the current value of (Cxxx)
is> the present value (PV) the counter bit turns on.

Cxxx CPU 212 CPU 214
CTUD

C0-63 C0-127
CD
R

PV

LADDER PROGRAM. STATEMENT LIST
(Simatic S7)

NFTWORK 1

SM0.5 CO LD SM0.5
LD IO. I

CTU C0,+10
LD co
= Q0.2
MEND

ı----, CU CTU
or

R

lOPV
NFTWORK?

At the beginning order to reset the counter
IO. 1 input should be activated SM0.5
clock sends pulses and above the CO
normally open control is activated as
the PV(lO) is reached and CO normally
open contact activates the output Q0.2
and the program ends.

Q0.2
ı-----()

NFTWORK,

ı-------+ END)

36

5A:ACCESSING DATA MEMORY

To use a memory location, address that location using memory type and number
ory areas can be accessed either, as a bit, byte, word, double word.

: BIT ACCESS

To access a bit, specify the address of the bit which consits of area identified and
yte, bit number. Zero is the first address for all data areas.

e.g.: IO.O bit address is a decimal number from O-7

SA.2: BYTE. WORD or DOUBLE WORD ACCESS

To access a byte, word or double word specify the address which consist of and
identifier, a letter signifiying data size and the address number.

e.g.: VB200 access V memory location.

: ADDRESSING MODES

When wrıtıng the program you can use either of two modes of addressing
truction operands direct or indirect.

Ş.S.1: DIRECT ADDRESSING

Specifies the memory area and the address

e.g.: VW 790 refers to location 790 in V memory.

.2: INDIRECT ADDRESS

You can address indirectly the data types I,Q,M,T,C and V to the this create a
pointer to the location.

e.g.: use a memory Double word (MOVD) insruction to move the address of a
location (pointer) to the desired destination. Used only V memory location or
accumulator for register AC1, AC2 & AC3 as the detiration address.

Place an ampersand(*) at the beginning of the pointer address.
Use and asterigk (*) befose the destiration address to indicate the address to

indicated in this location is to be used instead of two value. ·
All pointer are double word values. We them to access byte, word and double

word values. "
You can not indirectly accress bit values.
e.g.: MOVD. & VB200, ACI

MOVW * ACI, ACO
INCD ACI

37

Event

Interrupts
~Ion

Port O: Receive character []]12JllJ0
Port O: Transmit mını:ıını
Port O: Receive message ı:ıını
Pon 1: Receive message 0
Port 1: Receive character 0
Port 1: Transmit complete 0
Rising edge~·ıo.o• [l]i2JllJ0
Rising edge, 10.1 ını:ıı0
Rising edge. 10.2 eeım
Rising edge. 10.3 ını:ıı0
Falling edge. JO.O* mını:ıı0
Falling edge. 10.1 nırn0
Falling edge. 10.2 nıı:ıı0
Falling edge. ıo.3 12llll0
HSCO = preset varue- mnıı:ıı0
HSC 1 = preset value nırnnı
HSC 1 di,recıionchange 12llll0
HSC1 exıernaı reset ını:ıını
HSC2 = preset value '.Zllll@J
HSC2 directicn change 'Z)[l][j]

HSC2 external reset '!illi@
PLSO illlll@J
PLS1 'lllll0
limed O iJNJ[J}@
nmed 1 ~:!]@]

T32 = preset ,"]@

T96 = preset :lJ''!J Twc phase

Priority In Group SIMATIC S7-200
Quick Reference Card

23

24

25

26

SpecialMemoryBits

12

SMO.O Always On SMl.O Result ol operation " O
SM0.1 First Scan SM1.1 Overflow or iflegaf value
SM0.2 Retentive data Joss SM1.2 Negative result

/io
SM0.3 Power up SM13 Division b"yl'
SM0.4 30sotf/30son SMl.4 Table full f

SM0.5 0.5 s off/ 0.5 son SMl.5 Table empty
SM0.6 Off 1 scan I on 1 scan SM1.6 BCD to bınary conversion error
SM0.7 Switch in RUN position SM1.7 ASCII ıo hex conversıon error

14
High-SpeedCounter Modes

13

16 Inputs
15 10 Counter

11 HSCO Maximum 2 kHz [!JtIJ]l@
12 HSC1 7 kHz ,iJ 20 kHz fjj8:
13 HSC2 7 kHz iI1 20 kHz al~
14 Mode Description
15

Single phase with internalO to 2 dırectıon

3 to 5 I ~hase wıth extemar
direction

Dtrectrorr
3. 4. 5 4 3

17 IO .O

I0.6 IO. 7

Start

18
11. 2 I l. 319

! ı , o [1. ~

11. 4

20 Clock

10 Up/Down·
O. 1. 2

11
UpıOown
3, 4. 521

Reset

1. 2

Up:
13. 1, a

22 Down
6. '· 8

,,
6 [O 8

-s attached ıo an inıerruot. then event O and event 1 cannot be attached to
9 to 11 I Quadrature NB A

3. ıo, 11
3
n. ıo. ıi

1) CPU 214 IJ] CPU 215 @:ı CPU 216 OJ CPU 212 iZ] CPIJ214 Ill CPU 215 GJ CPU 216

/. 8

10. \1

Bit

T RangeLimit
212 . 214 ~· 215 216

512W 2048W 4096W 4096W
512W 2048 W 2560 W 2560 W
0-1023 0-4095 0-5119 0-5119
0-7 0-7 0-7 0-7
0-7 0-7 0-7 0-7
0-30 0-30 0-30 0-30
0-30 0-30 0-30 0-30
0-15 0-31 0-31 0-31
0-45 0-85 0-194 0-194

0,64 0,64 0,64
1-4 1-4, 65-68 1-4, 65-68 1·4, 65-68
5-31 5-31, 69-95 5-31, 69-95 5-31, 69-95
32 32, 96 32. 96 32, 96
33-38 33-36, 97-100 33-36, 97-100 33-36, 97-100
37-63 37-63, 101-1~7 37-63, 101-255 37-63, 101-255
0-63 0-127 0-255 0-255

0-2 0-2 0-2
0-3 0-3 0-3 0-3
0-7 0-15 0-31 0-31
0-63 0-255 0-255 0-255
0-15 0-63 •• 0-63 0-63
0-31 0-127 0-127 0-127
0,1,8-10, 12 0-20 0-23 0-26
N/A N/A 0-7 0-7
Porto Porto Port O DP Prırt Port O, Port 1

Accessible 'lS ...

-Byte -ir-ward·-T DWord-·

Vx.y VBx I VWx

ıx.y !Bx IWx

Qx.y OBx OWx

AlWx

AOWx
Mx.y MBx MWx

SMx.y SMBx SMWx

Tx Tx

Tx Tx

Tx Tx

Tx Tx

Tx Tx

Cx Cx

ACx ACx

Sx.y SBx SWx

38

VOx

~i ·!
i
i
'MDx ı-i

SM6;

HCx

ACx

SDx

Boolean Instructions
Load

Load Immediate

Load Not

Load Not Immediate

AND

ANO Immediate

AND Not

ANO Not Immediate

OR

OR Immediate

OR Not

OR Not Immediate

Load result of Byte Compare
N1 (:, >:ı:, or<:) N2

ANO result of Byte Compare
Nl (=,>=,or<=) N2

OR result of Byte Compare
N1 (:::,>=,or<=) N2

Load result of Word Compare
N1 (=,>=.or<::) N2

AND result of Word Compare
N1 (=.>:.or<=) N2

OR result of Word Compare
N1 (:::,>:.or <:ı::) N2

Load result or DWord Compare
N1 (e., >=. or c:=) N2

AND result of DWord Compare
N1 ("".>"'.or<=) N2

OR result of DWord Compare
N1 (=,>"'.or<=) N2

m
m
[l)

Load result of Real Compare
N1 t=. >=,or<=) N2

SORT IN. OUT m Square Root
INCB OUT iZi
INCW OUT Increment Byte, Word or

DWord
INCD OUT

DECB OUT iZi
DECW OUT Decrement Byte. Word, or

OWord
DECO OUT

PIO Table, Loop iZi PIO Loop

Timerand Counter Instructions
TON Txxx. PT On Delay Tlmer
TONA Txxx. PT Retentive On Delay Timer
CTU Cxxx. PV Count Up
CTUD Cxxx. PV Count Up/Down

RealTime Clock Instructions
TODA T nı Read Time of Day clock
TODW T uı Write Time of Day clock

ProgramControl Instructions
END Conditional End of Program
MEND Main Program End of Program
STOP Transition to STOP Mode
WDR WatchDog Reset (300 ms)
JMP N Jump to defined Label
LBL N Define a Label to Jump to

CALL N Ca.II a Subroutine
SBA N Define a Subroutine to be
CRET Called

RET Conditional Return from SBA

Unconditional Return from
SBA

FOR Index, Initial.
Final DJ For/Next loop

NEXT oı
LSCR N

load. Transition. and End
SCAT N Seouence Control Relay
SCRE Seqment

Move,Shift, Rotate,and Filı'Instructions
MOVB lN, OUT
MOVW IN, OUT

MOVD IN. OUT Move Byte. Word. DWord. Real

MOVA IN. OUT :J
BMB IN. OUT. N
BMW IN. OUT, N Block Move Byte, Word.

DWord
BMD IN, OUT, N iZi
SWAP IN Swap Bytes
SHRB Data. S_bit. N Shift Register Bit
SRB OUT, N iZi
SAW OUT, N Shift Right Byte. Word. OWord
SAD OUT, N

SLB OUT, N m
SLW OUT. N Shift Left Byte, Word, OWord
SLD OUT. N

RAB OUT. N m
RAW OUT, N Rotate Right Byte, Word.

DWord
ARD OUT, N

RU! OUT, N m
RLW OUT, N Rotate Left Byte, Word, DWord
ALO OUT, N

FILL IN, OUT, N Fill memory space with pattern

J,;.oglc Operations
ALD And for combinations
OLD Or for combinations

LPS Logic Push (stack control)
LAD Logic Read (stack control)
LPP Logic Pop (stack control)

ANDB IN1,0UT iZi
ANDW IN1,0UT Logical And of Byte, Word, and

OWord
ANDO IN1,0UT

ORB IN1,0UT iZi
ORW IN1, OUT Logical Or of Byte. Word. and
ORD IN1,0UT DWord

5_11T, N

5_11T, N

S_IIT, N

rn
rn
m

AND result of Real Compare
N1 ("',>=,or<=) N2

rn
rn
m.

OR result of Real Compare
N1 (=,>=,or<=) N2

Stack Negation

Oeıectton of Rising Edge

Detection of Falling Edge

Assign Value

Assign Value lmmedlaı8

Set bit Range

Reset bit Range

Set bit Range Immediate

S_IIT, N I Reset bit Range Immediate

llııii;' Increment,and Decrement
Instructions

rn
Add Integer, OWord or Real

IN1+OUT.OUT

39

XORB IN1, OUT iZi
XORW IN1, OUT Logical XOr of Byte, Word. and

DWord
XORD IN1, OUT

INVB OUT m
INVW OUT Invert Byte, Word and DWord

INVD OUT
(1 's complement)

Table,Find, and ConversionInstructions
ATI Data. Table m Add data to table
LIFO Table. Data rn

Get data from table
Fl~O Table. Data [D
FND=Scr. Patrn, lndx m
FNDoScr. Palm. lndx OJ Find data value in table that
FND< Ser. Patrn. lndx m matches comparison

FND> Ser. Patm. lndx m "'BCDI OUT Conve~CD to Integer
IBCD OUT Convert Integer to BCD
DTR IN. OUT I] Convert OWorcı\o Real
TRUNC IN, OUT !I] Convert Real to,OWord
ATH IN, OUT, LEN Convert ASCII to HEX
HTA IN, OUT. LEN Convert HEX to ASCII

DECO IN. OUT Decode
ENCO IN. OUT Encode

SEG IN. OUT Generate 7-segmenr pattern

Interrupt
INT N Begınning ot lmerruoı routine _ ·•
CRETI Conditional Return iorm ·,
AETI Interrupt

Return from !nterruot
ENI Enable Interrupts
DISI Disable Interrupts
ATCH INT. EVE!ı.lT Attach lnterruoı rcuuns tc
DTCH EVENT event

Detach event

Communication
<XMT TABLE. PORT .

Freeport transmıssicn
RCV TABLE. !

PORT iZi Freeport receive message

NETA TABLE.PORT W Network Read
NETW TABLE.PORT[l) Network Write

High SpeedInstructions
HDEF HSC. Mode Define High Speed Counter

mode
HSC N Activate High Speed Counter

PLS X m Pulse Output l
;

:

'

Instructionsare valld for the lndlvldual
S7-200PLCsas markedaccording to the
lollowlng key:
[I] 214,215,and 216only
iZi 215snd 216only
If not marked,the Instructions arevalld
lor all S7-200PLCs.

'Subtract Integer, OWord. or
Real

[TI I OUT~N1=0UT

Multiply Integer or AeaJ

[D I 1N1 -our , OUT

Divide Integer or Real

rn I our ı 1N1 • our

1
2
3

34
35
36
37
38
39
40
41
42
43
44
45
46
47

.6 : Sample Programs

LE PROGRAM 1: (POINT MIXER)

LADDER PROGRAM

IO.O 10.2 I0.4 QO.Oh1 ~()
QO.O~

10.1 10.3 I0.4 Q0.1

~--}W ~)
IO.t__ M0.1

~(S)
1

M0.1 T37

~
T

+10

o.tQo.2
()
Q0.3
()

TEMENTLIST (SIMATIC S7)

NETWORK 1
LD IO.O
O QO.O
A 10.2
AN 10.4
= QO.O

NETWORK 2
LD 10.1
O Q0.1
A 10.3
AN I0.4
= QO.l

NETWORK 3
LD I0.4
S M0.1, 1

NETWORK 4
LD M0.1
TON T37, +100

NETWORK 5
LDN T37
A M0.1
= Q0.2
= Q0.3

NETWORK 6
LD T37
AN 10.5
= Q0.4

Q0.5

NETWORK 7
LD 10.5
A T37
LD 10.7
CTU C30, +12

NETWORK 8
LD 10.5
A T37
R MO.l, 1

NETWORK 9
MEND

T3~0.5 Q0.4
()
Q0.5
()

CU CTU

R

+12 PV

ı--~~~~~-(END)

40

,AMPLE PROGRAM 2:

STATEMENTLIST (SIMATIC S7) LADDER PROGRAM

NETWORK 1
LD IO.O
O QO.O
AN I0.7
AN C3

QO.O

IO.O QO.O
()

NETWORK 2
LD IO.I
AN QO.O
LD Cl
CTU CO, 200

IO. I QO.O co
CU CTUIO

Cl
R

PVNETWORK 3
LD CO
A Q0.2
A Q0.3

Q0.1

+200

NETWORK4
LO IO.I
A QO.O
LD C2
CTU Cl, 400

IO.I QO.O

H
Cl

CU CTU
23 C2. R

25
PVNETWORK 5

LO Cl
AN Q0.1
AN Q0.3

Q0.2

+400

C11 ~OJ 90.Jı Q0.2--~ ı--v IV ı---c >

NETWORK 6
LO IO.I
A QO.O
LO C3
CTU C2,600

IO.HO.OH cu
CTU

.C31 IR

PV
+600 --t_

C2 Q0.1 Q0.2 Q0.3

~
)

0.2HQO. ı-----ı cu CTU

T35 1·

+600 ~ :v
C3 T37

~IN
TON

+50 PT

(END)

NETWORK 7
39 LO C2

AN QO.l
AN Q0.2

Q0.3

NETWORK 8
LO I0.2
A QO.O
LD T35
CTU C3, 600

51 NETWORK 9
52 LO C3
53 TON T35, +50
54
~5 NETWORK 10
6 MEND

41

MPLE PROGRAM 3:

"A.TEMENTLIST (SIMATIC S7) LADDER PROGRAM

NETWORK 1
LD IO.O
AN T37
AN T39
LD T37
AN T39
OLD
A
LON
A

T37 T39 I I Q0.4
()

SM0-5
IO.O
IO.O
SM0.5 IO.O T37

~
+50 --t:.__J

OLD
QO.O
Q0.4

NETWORK 2
LD IO.O
TON T37, +50

T37 L_J T~ _ QO.l
f---~ ~ ı--c)

NETWORK 3
LD T37
AN T39
= QO.l
NETWORK 4
LD T37
TON T38, +30

T37 T38

~+30

T39 T40 Q0.2

T~~MO~

)

T39 T40

IN TON

+50. I PT

T40 T41--
IN TON

"
+30 I PT

T41 T42
IN TON

+80---l:

T41 T37 T39
~(R.)_______(R)

i 1

'n.ıo)
42

NETWORK 5
LD T39
AN T40
LD T40
A SM0.5
AN T41

33 OLD
Q0.2

NETWORK 6
LD T39
TON T40, +50

NETWORK 7
LD T40
TON T41, +30

NETWORK 8
LD T41
TON T42, +80

NETWORK 9
LD T41
R T37, 1
R T39, 1

NETWORK 10
MEND

AMPLE PROGRAM 4:
STATEMENT LIST (SIMATIC S7)

NETWORK 1
LD IO.O
A I0.2
A I0.4

5 S QO.O,I
S MO.O, I

LADDER PROGRAM

IO.O I0.2 I0.4 QO.O

HH ~t:
(s)

I
NETWORK 2
LD IO.I
A MO.O
R QO.O
S MO.I, 1
TON T37, +30

NETWORK 3
LD MO.I
AN T37
AN M0.2
AN M0.3
S QO.l

IO. I MO.O QO.O

H ~R)
I

MO.I
s ı
I

T37

IN TON

+30 I PT

NETWORK 4
LD T37
S Q0.2, I
R MO.O, I

Mq.I T37.ı1 t,10;,t I M5l.3 QO. Iı---v ıV ıV ı----t s)
I

T3~Qı·f

l_Jo.o
(R)

I
I0.2 MO.l Q0.3

H ~<~)
Q0.2

R)
Q0.3 MO.I I

f---<R)
I

NETWORKS

LD I0.2
A MO.I
S Q0.3, I
R Q0.2, I

NETWORK 6
LD Q0.3
R MO.I, I

NETWORK 7
LD I0.3
R Q0.3, I
S M0.2, I

I0.3TQ0.3
.(R)
M0.2
(s)

1

I0.5 M0.2 QO.OH f---q)

NETWORK 8
LD I0.5
A M0.2
S QO.O, I

NETWORK 9
LD IO.I
A M0.2
R QO.O, I
R Q0.1, I
S M0.3, I
TON T38, +30

IO) ¥0·~ QO.O
ı---ı ı------1 ~ R)

Q0.1
R)

M0.3
s)
1 T38

NETWORK 10
LD T38
S Q0.2
R M0.2

T38~~)2
M0.2

R)
1

+

IN TON
PT

43

Ladder Instruction Set:

ormally Open Contact
Operands:
n (bit): I, Q, M, SM, T, C, V
Description of operation:
The Normally Open Contact is closed when the scanned bit value stored
at address n is equal to 1 . Power flows through a normally open contact
when closed (activated).
Used in series, a normally open contact is linked to the next LAD
element by AND logic. Used in parallel, it is linked by OR logic.

Operands:
n (bit): I, Q, M, SM, T, C, V
Description of operation:
The Normally Closed Contact is closed when the bit value stored at
address n is equal to O . Power flows through the contact when closed
(deactivated).
Used in series, a normally closed contact is linked to the next LAD
element by AND logic. Used in parallel, it is linked by OR logic.

,rmally Open Immediate Contact

Operands:
n (bit)
Description of operation:
The Normally Open Immediate Contact is closed when the Bit value
stored at address n is equal to 1 . Power flows through the contact when
closed (activated). A physical input read occurs immediately after the
coil is scanned without waiting for scan cycle completion. The image
register is not updated.
Used in series, a normally open immediate contact is linked to the next
LAD element by AND logic. Used in parallel, it is linked by OR logic

rmally Closed Immediate Contact

Operands:
n (bit): I
Description of operation:
The Normally Closed Immediate Contact is closed when the Bit value
stored at address n is equal to O . Power flows through the contact when
closed (deactivated). A physical input read occurs immediately after the
coil is scanned without waiting for scan cycle completion. The image
register is not updated.
Used in series, a normally closed immediate contact is linked to the next
LAD element by AND logic. Used in parallel, it is linked by OR logic.

44

ual Contact
Operands:
nl, n2 (unsigned byte): VB, IB, QB, MB, SMB, AC,

Constant, *VD, *AC
Description of operation:
The Compare Byte Equal Contact is closed when the byte value stored
at address nl is equal to the byte value stored at address n2 . Power
flows through the contact when closed.

te Greater Than Or Equal Contact

Operands:
nl, n2 (unsigned byte): VB, IB,QB,

MB,SMB,AC,
Constant, *VD,
*AC

Description of operation:
The Compare Byte Greater Than or Equal Contact is closed when the
byte value stored at address nl is greater than or equal to the byte value
stored at address n2 . Power flows through the contact when closed.

pare Byte Less Than Or Equal Contact
Operands:
nl, n2 (unsigned byte): VB, IB, QB,.

MB,SMB,AC,
Constant, *VD,
*AC

Description of operation:
The Compare Byte Less Than or Equal Contact is closed when the byte
value stored at address nl is less than or equal to the byte value stored at
address n2 . Power flows through the contact when closed

pare Integer Equal Contact
~Operands:

nl, n2 (signed integer word): VW, T,C,IW, QW,
MW,SMW,AC,
AIW, Constant, *-VD, *AC

Description of operation:
The Compare Integer Equal Contact is closed when the signed integer
word value stored at address nl is equal to the signed integer word
value stored at address n2 . Power flows through the contact when
closed.

45

Operands:
nl, n2 (signed integer word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:
The Compare Integer Greater Than or Equal Contact is closed when the
signed integer word value stored at address nl is greater than or equal to
the signed integer word value stored at address n2 Power flows
through the contact when closed

er Less Than Or Equal Contact
Operands:
Nl, n2 (signed integer word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:
The Compare Integer Less Than or Equal Contact is closed when the
signed integer word value stored at address nl is less than or equal to
the signed integer word value stored at address n2 . Power flows
throughthecontactwhenclosed.

pare Double Integer Equal Contact
Operands:
nl, n2 (signed
integer double word):

VD,ID, QD,
MD,SMD,AC,
HC, Constant,
*VD, *AC

Description of operation:
The Compare Double Integer Equal Contact is closed when the double
word value stored at address nl is equal to the double word value stored
at address n2 . Power flows through the contact when closed

,mpareDouble Integer Greater Than Or Equal Contact
Operands:
nl, n2 (signed VD, ID, QD, MD, SMD,AC
integer double word): HC, Constant, *VD, *AC

Description of operation:
Compare Double Integer Greater Than Or Equal Contact is closed when
the double word value stored at address n 1 is greater than or equal to the
double word value stored at address n2 . Power flows through the
contact when closed.

Compare Real Equal Contact
CPU 214 only.
,l:

n1 --i==Rr-
n2

Operands:
nl, n2 (real): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC
Description of operation:
The Compare Real Equal Contact is closed when the real value stored at
address nl is equal to the real value stored at address n2 . Power flows
through the contact when closed.

46

pare Real Greater Than Or Equal Contact
Operands:
nl, n2 (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC
Description of operation:
Compare Real Greater Than Or Equal Contact is closed when the real
value stored at address nl is greater than or equal to the real value
stored at address n2 . Power flows through the contact when closed.

are Real Less Than Or Equal Contact
Operands:
nl, n2 (Dword): VD, ID, QD, MD,

SMD, AC, HC, Constant,
*VD, *AC

Description of operation:
The Compare Real Less Than Or Equal Contact is closed when the real
value stored at address nl is less than or equal to the real value stored at
address n2 . Power flows through the contact when closed.

ert Power Flow Contact
Operands:
(none)
Description of operation:
The NOT (Invert Power Flow) contact changes the state of power flow.
If power flow reaches the Not contact, then it stops. When power flow
does not reach the Not contact, it sources power flow

itive Transition Contact
Operands:
(none)"
Description of operation:
The Positive Transition Contact allows power to flow for one scan, for
each off-to-on transition .

Negative Transition Contact
Operands:
(none)
Description of operation:
The Negative Transition Contact allows power to flow for one scan, for
each on-to-off transition .

47

o Read Real Time Clock
Note: Real Time Clock instructions are supported
by the CPU 214 only.
Symbol:r---

READ_RTC
EN

T

Operands:
T (byte): VB, IB, QB, MB, SMB, *VD,

*AC
Description of operation:
The Read Real Time Clock (READ_RTC) box
reads the current time and date from the clock and
loads it in an 8-byte buffer (T).

::ı Set Real Time Clock
.Vote: Real Time Clock instructions are supported
by the CPU 214 only.

ymbol:

SET RTC
--'EN -

-ıT

Operands:
(byte): VB, IB, QB, MB, SMB, *VD, *

Description of operation:
The Set Real Time Clock (SET_RTC) box writes

current time and date loaded in an 8-byte buffer
1) to the clock.

Example Memory Data Starting at VB400:
READ_RTC (Clock is read)
VB400
VB401

VB402
VB403
VB404
VB405
VB406

VB407

95
03

24

08
00
00
00

06

Year
Month
Day
Hour
Minute
Second

Day of Week

24-Mar-95
8:00:00
Friday

Note:The time of day clock initializes the following
date and time after extended power outages or
memory has been lost:

Date: 01-Jan-90
00:00:00
Sunday

Example Memory Data Starting at VB400:
SET_RTC (New value is written to clock)

Year
Month
Day
Hour
Minute
Second

Day of Week

24-Mar-96
8:00:00
Friday

Note:The time of day clock initializes the following
date and time after extended power outages or
memory has been lost:

Date: 01-Jan-90
Time: 00:00:00
Day of Week Sunday

Note:Do not use the READ_RTC I SET_RTC
instructions in both the main program and in an
interrupt routine. If you do this and the clock
instruction is executing when the the interrupt that

c also executes the clock instruction occurs, then the
clock instruction in the interrupt routine is not
executed. SM4.5 is. then set, indicating that two
simultaneous accesses to the clock were attempted

Time:
Day of Week

VB400
VB401

VB402

VB403
VB404
VB405
VB406

VB407

96
03
24

08
00
00
00

06

48

BCD to Integer
Operands:
IN (word): VW, T, C, IW, QW, MW, SMW,

AC, AIW, Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

OUT (word):

OUT

Description of operation:
The Convert BCD to Integer (BCD_I) box converts the BCD value (IN)
to an integer value (OUT). If the input value contains an invalid BCD
digit, the BCD/BIN memory bit (SMl.6) is set.

Integer to BCD
Operands:
IN (word):

OUT

VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC .
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of operation:
The Convert Integer to BCD (I_BCD) box converts the integer value
(IN) to the BCD value (OUT). If the conversion produces a BCD
number greater than 9999, the BCD/BIN memory bit (SMl.6) is set.

OUT (word):

Integer Double Word to Real

Operands:
IN (Dword): VD, ID, QD, MD, SMD,

AC, HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

OUT (Dword):

IN OUT

Description of operation:
The Integer Double Word to Real (Dl_REAL) instruction converts a 32-
bit, signed integer (IN) into a 32-bit real number (OUT).

Truncate
: CPU 214 only.

I:
Operands:
IN (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC, *VD,
*AC

TRUNC
EN OUT (Dword):

IN OUT

Description of operation:
The Truncate (TRUNC) instruction converts a 32-bit real number (IN)
into a 32-bit signed integer (OUT). Only the whole number portion of
the real number is converted (round-to-zero).

49

Operands:
IN (byte):

OUT (word):

VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, AQW, *VD, *AC

Description of operation:
The Decode (DECO) box sets the bit in the output word (OUT) that
corresponds to the bit number represented by the least-significant nibble
(LSN) of the input byte (IN). All other bits of the output word are set to
O.

e
Operands:
IN (word):

OUT (byte):

VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC
VB, IB, QB, MB, SMB, AC,
*VD, *AC

Description of operation:
The Encode (ENCO) box writes the bit number (bit #) of the least-
significant bit set of the input word (IN)° into the least-significant nibble
(LSN) of the output byte (OUT).

Operands:
IN (byte):

OUT (byte):

VB, IB, QB, MB, SMB,
AC, Constant, *VD, *AC
VB, IB, QB, MB, SMB, AC,
*VD, *AC

Description of operation:
The Segment (SEG) box generates a bit pattern (OUT) that illuminates
the segments of a seven-segment display. The illuminated segments
represent the character in the least-significant digit of the input byte
(IN).

to Hex

Operands:
LEN (byte): VB, IB, •QB, MB, SMB, sc:

Constant, *VD, *AC
IN (byte): VB, IB, QB, MB, SMB, *VD, *AC
OUT (byte): VB, IB, QB, MB, SMB, *VD, *AC
Description of operation:
The ASCII to HEX (ATH) box converts the ASCII string of length
LEN, starting with the character IN, to hexadecimal digits starting at the
location OUT. The maximum length of the ASCII string is 255
characters.
Legal ASCII characters are the hexadecimal values 30-39, and 41-46. If
an illegal ASCII character is encountered, the conversion is terminated,
and the NOT_ASCII memory bit (SMl.7) is set.

50

HTA

OUT

HDEF

High Speed Counter

HBC

N

Pulse Output

PLS

QO.x

Operands:
LEN (byte): VB, IB, QB, MB, SMB, AC,

Constant, *VD, *AC
IN (byte): VB, IB, QB, MB, SMB, *VD, *AC
OUT (byte): VB, IB, QB, MB, SMB, *VD, *AC
Description of operation:
The HEX to ASCII (HTA) box converts the hexadecimal digits, starting
with the input byte IN, to an ASCII string starting at the location OUT.
The number of hexadecimal digits to be converted is specified by length
LEN. The maximum number of the hexadecimal digits that can be
converted is 255.

Operands:
HSC (byte): CPU 212: O

CPU 214: 0-2
CPU 212: O
CPU 214: O (HSCO),0-11 (HSCl-2)

MODE (byte):

Description of operation:
When the High-speed Counter Definition (HDEF) box is enabled, the
referenced counter (HSC) is assigned a high-speed counter type or
MODE. Only one HDEF box may be used per counter.

Operands:
N (word): CPU 212: O

CPU 214: 0-2
Description of operation:
When the High-speed Counter (HSC) box is enabled, the state of the
HSC special memory bits are examined. The HSC operation defined by
the special memory bits is then invoked. The parameter N specifies the
High-speed Counter number.

Operands:
QO.x (word): CPU 214: 0-1
Description of operation:
The Pulse Output (PLS) box examines the special memory bits for that
pulse output (QO.x). The pulse operation defined by the special memory
bits is then invoked.

51

Ladder High-speed Operation Instruction Examples

Attach Interrupts

,ymbol:
ATCH

Operands:
INT (byte): CPU 212: 0-31

CPU 214: 0-127
CPU 212: O, l, 8-10, 12
CPU 214: 0-20

EN

INT

EVENT

Detach Interrupts

ymbol:

DTCH
---.EN

-EVENT

::ı Interrupt Routine

ymbol:

::ı Enable Interrupts
Symbol:

o Disable Interrupts
Symbol:

---ı($rsy

EVENT (byte):

Description of operation:
The Attach Interrupts (ATCH) box associates an interrupt event
(EVENT) with an interrupt routine number (INT), and enables the
interrupt event.

Operands:
EVENT (byte): CPU 212: O, 1, 8-10, 12

CPU 214: 0-20
Description of operation:
The Detach Interrupts (DTCH) box disassociates an interrupt event
(EVENT) from all interrupt routines, and disables the interrupt event.

Operands:
n (word): CPU 212: 0-31

CPU 214: 0-127
Description of operation:
The Interrupt Routine (INT) label marks the beginning of the interrupt
routine (n). The maximum number of interrupts supported by the CPU
212 is 32, and by the CPU 214, 128.

Operands:
(none)
Description:
The Enable Interrupts (ENI) coil globally enables processing of all
attached interrupt events.

Operands:
(none)
Description:
The Disable Interrupts (DISI) coil globally disables processing of all
interruptevents.

52

Return from Interrupts
1:

Conditional
from Interrupts

Return from

Network Read
: CPU 214 only.
ol:

NETR
EN

TABLE

PORT

Network Write
_iote: CPU 214 only.
ymbol:

NETW
EN

TABLE

PORT

::ı Transmit
Symbol:,---

XMT
EN

TABLE

PORT

Operands:
(none)
Description:
The Conditional Return from Interrupts (RETI) coil returns from an
interrupt based upon the condition of the preceding logic.
The Unconditional Return from Interrupts (RETI) coil must be used to
terminateeachinterruptroutine.

Operands:
TABLE:
PORT:

VB, MB, *VD, *AC
Constant
(CPU 214: O)

Description of operation:

The Network Read (NETR) instruction initiates a communication
operation to gather data from a remote device through the specified port
(PORT), as defined in the description table (TABLE).
You can use the NETR instruction to read up to 16 bytes of information
from a remote station, and use the NETW instruction to write up to 16
bytes of information to a remote station. A maximum of eight NETR
and NETW instructions may be activated at any one time. For example,
you can have four NETR and four NETW instructions, or two NETR
andsixNETWinstructions.

Operands:
TABLE:
PORT:

VB, MB, *VD, *AC
Constant
(CPU 214: O)

Description of operation:
The Network Write (NETW) instruction ınıtıates a communication
operation to write data to a remote device through the specified port
(PORT), as defined in the description table (TABLE).
You C<ijl use the NETR instruction to read up to 16 bytes of information
from a remote station, and use the NETW instruction to write up to 16
bytes of information to a remote station. A maximum of eight NETR
and NETW instructions may be activated at any one time. For example,
you can have four NETR and four NETW instructions, or two NETR
andsixNETWinstructions.

Operands:
TABLE (byte): VB, IB, QB, MB, SMB, *VD,

*AC
PORT (byte): O
Description of operation:
The Transmit (XMT) box invokes the transmission of the data buffer
(TABLE). The first entry in the data buffer specifies the number of
bytes to be transmitted. PORT specifies the communication port to be
used for transmission. It must always be O.

53

Sharing with Interrupt Events

interrupt events are asynchronous to the main user-program, they can occur at any point during
ion of the main user-program. When the main program and an interrupt routine share data, you must

~nd the nature of the problems that can arise and how to avoid such problems.

sharing problems can occur in situation where a sequence of operations are performed in the main program
data stored in a memory location shared by the main program and an interrupt routine. If an intermediate

is stored in the shared memory location, then an interrupt event occurring before the sequence is complete
cause the interrupt routine to be executed with invalid data, or it will corrupt an intermediate value in the
program.

situations described above apply whether you write your programs in STL or LAD. If you write your
pı,grams in LAD, you should also be aware that many LAD instructions produce a sequence of STL

lions. If the LAD instruction is located in the main program and is operating on data stored in a shared
ry location, an interrupt event can occur between the execution of the STL instructions, altering

mRımediate values and making it appear that the LAD instruction executed incorrectly. For techniques to avoid
lems with data sharing, see Programming Techniques for Data Sharing .

gram ming Techniquesfor Data Sharing

following programming techniques should be followed to avoid problems with data sharing between your
program and interrupt routines. These techniques either restrict the way access is made to shared memory

ions, or they make instruction sequences using shared memory locations uninterruptible. The appropriate
ique depends upon the size of the data being shared (simple elements such as a byte, word, or double-word
ble or complex elements such as multiple variables) and the programming language (STL or LAD).

the shared data is a single byte, word, or double-word variable and your program is written in STL, then make
that intermediate or temporary values are not stored in shared memory locations. A shared location should

accessed in the main program only as the initial source value or the final destination value in a sequence of
ations.

the shared data is a single byte, word, or double-word variable and your program is written in LAD, then
s shared memory locations using a Move instruction. If the main program performs one or more operations

a data value provided by an interrupt routine, the Move instruction must be used to move the data value from
shared memory location to a non-shared memory location or to an accumulator. If the main program

performs one or more operations on data in order to provide a value to an interrupt routine, then the last
operation must be a Move instruction that moves the data value from an accumulator or non-shared memory

tion to the shared memory location. Other instructions in the sequence must not directly access the shared
mory location. ~

the shared data is composed of related bytes, words, or double-words whose values must agree; for example,
e pressure and temperature of a gas in a tank, then the interrupt disable/enable instructions, DISI and ENI, must

be used to control interrupt routine execution. At the point in your main program (STL or LAD) where
operations on shared memory locations are to begin, interrupts must be disabled. Once all actions affecting
shared locations are complete, interrupts must be re-enabled. During the time that interrupts are disabled,
interrupt routines cannot execute and access shared memory locations.

54

terrupt Event Priority Table

Event
#

In·
Group
Priority

8 o
--r 9 O*

rete (Middle Priority)
Rising edge, IO.O** o o
Rising edge, 10.1 2 1
Rising edge, 10.2 4 2
Rising edge, 10.3 6 3
Falling edge, IO.O** 1 4
Falling edge, 10.1 3 5
Falling edge, 10.2 5 6
Falling edge, 10.3 7 7
HSCO CV=PV** 12 o

(current value = preset value)
HSCl CV=PV 13 8

(current value = preset value)
HSC1 direction input changed 14 9
HSC1 external reset 15 10
HSC2CV=PV 16 11

(current value= preset value)
HSC2 direction input changed 17 12
HSC2 external reset 18 13

PLSO pulse count complete 19 14

interrupt
PLSl pulse count complete 20 15

interrupt

Suppor
ted in
CPU 212

y
y

y

y

y

Tımed (Lowest Priority)
Timed interrupt O 10 O Y
Timed interrupt 1 11 1

• Since communication is inherently half-duplex, both transmit and receive are the same priority.
-*If event 12 (HSCOCV=PV) is attached to an interrupt, then neither event O nor event 1 can be attached to

rrupts. Likewise, if either event O or 1 is attached to an interrupt, then event 12 cannot be attached to an

rrupt.

VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of operation:
The AND Word (WAND_W) box ANDs the corresponding bits of the
input words INl and IN2, and loads the result (OUT) in a word.
Note:When INl :t= OUT and IN2 :t= OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
isinvalid.

:ı ANDWord
,ymbol: Operands:

INl, IN2 (word):

WAND_W
EN OUT (word):

INl

IN2 OUT

55

AND Double Word
,ymbol:

WAND_DW
EN

INl

IN2 OUT

:::ı ORWord
ymbol:

WOR_W
EN

INl

IN2 OUT

:ı OR Double Word
Symbol:

WOR_DW
EN

INl

IN2 OUT

Operands:
INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:
The AND Double Word (WAND_DW) box ANDs the corresponding
bits of the input double words INl and IN2, and loads the result (OUT)
in a double word.
Note:When INl ::f. OUT and IN2 ::f. OUT:

OUT (Dword):

• If IN2 and OUT are direct-addressed operands, and if OUT
contains one of the bytes of IN2, then the instruction is invalid.

• If IN2 is an indirect address and OUT is a direct address containing
one of the bytes of the indirect address pointer, then the instruction
isinvalid.

Operands:
INl, IN2 (word): VW, T, C, IW, QW, MW, SMW,

AC, AIW, Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:
The OR Word (WOR_W) box ORs the corresponding bits of the input
words INl and IN2, and loads the result (OUT) in a word.
Note:When INl ::f. OUT and IN2 ::f. OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
isinvalid.

OUT (word):

Operands:
INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD,,*AC '

Description of operation:
The OR Double Word (WOR_DW) box ORs the corresponding bits of
the input double words INl and IN2, and loads the result (OUT) in a
double word.
Note:When INl ::f. OUT and IN2 ::f. OUT:

OUT (Dword):

• If IN2 and OUT are direct-addressed operands, and if OUT
contains one of the bytes of IN2, then the instruction is invalid.

• If IN2 is an indirect address and OUT is a direct address containing
one of the bytes of the indirect address pointer, then the instruction
isinvalid.

56

::ı XORWord
Symbol:

WXOR_W
EN

INl

IN2 OUT

::ı XOR Double Word
Symbol:

WXOR_DW
EN

INl

IN2 OUT

o Invert Word
Symbol:

INV_W
EN

IN OUT

Operands:
INl, IN2 (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of operation:
The Exclusive OR Word (WXOR_W) box XORs the corresponding bits
of the input words INl and IN2, and loads the result (OUT) in a word.
Note:When INl =t- OUT and IN2 =t- OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
isinvalid.

OUT (word):

Operands:
INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC, *VD,
*AC

Description of operation:
The Exclusive OR Double Word (WXOR_DW) box XORs the
corresponding bits of the input double words INl and IN2, and loads the
result (OUT) in a double word.
Note:When INl =t- OUT and IN2 =t- OUT;

OUT (Dword):

• If IN2 and OUT are direct-addressed operands, and if OUT
contains one of the bytes of IN2, then the instruction is invalid.
If IN2 is an indirect address and OUT is a direct address containing
one of the bytes of the indirect address pointer, then the instruction
isinvalid.

•

Operands:
IN (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:
The Invert Word (INV_W) box takes the ones complement of the input
word value (IN) and loads the result in a word value (OUT).

OUT (word):

57

:J Invert Double Word
,ymbol:

INV_DW
EN

IN OUT

':J Add Double Integer
ymbol:

ADD_DI
EN

INl

IN2 OUT

:J Add Real
Note: CPU 214 only.
Symbol:

ADD_R
EN

INl

IN2 OUT

Operands:
IN (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:
The Invert Double Word (INV_DW) box takes the ones complement of
the input double word value (IN) and loads the result in a double word
value (OUT).

OUT (Dword):

Operands:
INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:
The Add Double Integer (ADD_DI) box adds two 32-bit integers (INl,
IN2), and produces a 32-bit result (OUT), as is shown in the equation:
INl + IN2 = OUT

OUT (Dword):

Note:When INl * OUT and IN2 * OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
isinvalid.

Operands:
INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC
VD, ID, QD, SMD, AC, *VD, *ACOUT (Dword):

Description of operation:
The Add Real (ADD_R) box adds two 32-bit real numbers (INl, IN2),
and produces a 32-bit real number result (OUT), as is shown in the
equation: •
INl + IN2 = OUT
Note:When INl * OUT and IN2 * OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
is invalid.

58

ıı Subtract Integer

ymbol:
Operands:
INl, IN2 (word):

EN OUT (word):

VW, T, C, IW, QW, MW,
)SMW, AC, AIW, Constant,

*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of operation:
The Subtract Integer (SUB_I) box subtracts two Iô-bit integers (INl,
IN2), and produces a l ô-bit result (OUT), as is shown in the equation:
INl - IN2 = OUT

SUB_I

INl

IN2 OUT

Note:When INl * OUT and IN2 * OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
isinvalid.

:::ı Subtract Double Integer

ymbol:
Operands:
INl, IN2 (Dword):

SUB_DI OUT (Dword):

VD, ID, QD, MD, SMD,
AC, HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:
The Subtract Double Integer (SUB_DI) box subtracts two 32-bit
integers (INl, IN2), and produces a 32-bit result (OUT), as is shown in
the equation:
INl - IN2 = OUT
Note:When INl * OUT and IN2 * OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
isinvalid.

EN

INl

IN2 OUT

:::ı Subtract Real
Note: CPU 214 only.
Symbol:

Operands:
INl, IN2 (Dword):

SUB_R OUT (Dword):

VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, *AC
VD, ID, QD, SMD, AC, *VD, *AC

IN2 OUT

Description of operation:
The Sutract Real (SUB_R) box subtracts two 32-bit real numbers (INl,
IN2), and produces a 32-bit real number result (OUT), as is shown in
the equation: ·
INl - IN2 = OUT
Note:When INl * OUT and IN2 * OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
isinvalid.

EN

INl

59

VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:
The Multiply Integer (MUL) box multiplies two 16-bit integers (INl,
IN2), and produces a 32-bit result (OUT), as is shown in the equation:
INl * IN2 = OUT
Note:Some overlapping input and output operands are invalid

Description of operation:
The Multiply Real (MUL_R) box multiplies two 32-bit real numbers
(INl, IN2), and produces a 32-bit real number result (OUT), as is shown
in the equation:
INl * IN2 = OUT
Note:When INl * OUT and IN2 * OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
isinvalid.

Description of operation:
The Divide Integer (DIV) box divides two 16-bit integers (INl, IN2),
and produces a 32-bit result (OUT) composed of of a 16-bit quotient
and a 16-bit remainder, as is shown in the equation:
INl I IN2 = OUT
Notes:
• Some overlapping input and output operands are invalid.
• The 32-bit result (OUT) cannot be the same as the second input

(IN2).

::J Multiply Integer

Symbol:
Operands:
INl, IN2 (word):

MUL
EN OUT (Dword):

INl

IN2 OUT

u Multiply Real
Note: CPU 214 only.
Symbol:

Operands:
INl, IN2 (Dword):MUL_R

EN
OUT (Dword):

INl

IN2 OUT

o Divide Integer

Symbol:
Operands:
INl, IN2 (word):

DIV
EN OUT (Dword):

INl

IN2 OUT

VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC
VD, ID, QD, SMD, AC, *VD,
*AC

VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

VD, ID, QD, MD, SMD, AC, *VD,
*AC

60

ymbol:

Operands:
INl, IN2 (Dword):

OUT (Dword):DIV_R

VD, ID, QD, MD, SMD,
AC, HC, Constant, *VD, *AC
VD, ID, QD, SMD, AC, *VD,
*AC

Description of operation:
The Divide Real (DIV_R) box divides two 32-bit real numbers (INl,
IN2), and produces a 32-bit real number quotient (OUT), as is shown in
the equation: .
INl I IN2~=OUT
Note:When INl -:t; OUT and IN2 "* OUT:
• If IN2 and OUT are direct-addressed operands, and if OUT

contains one of the bytes of IN2, then the instruction is invalid.
• If IN2 is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
is invalid.

Note:IN2 = OUT is not valid for Ladder programming.

Description of operation:
The Square Root of Real Numbers (SQRT) box takes the square root of
a 32-bit real number (IN) and produces a 32-bit real number result
(OUT), as is shown in the equation:

OUT

Square Root Real
Operands:
IN (Dword):

OUT (Dword):SQR'l'

IN OUT

.JiN = OUT

Increment Word

Operands:
IN (word):

INC_W
EN OUT (word):

VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

IN OUT

Description of operation:
The Increment Word (INC_W) box adds 1 to the input word value (IN)
and loads the result in a word value (OUT), as is shown in the equation:
IN+l=OUT

::ı Increment Double Word

Symbol:.---
INC_DW

EN

Operands:
IN (Dword):

Description of operation:
The Increment Double Word (INC_DW) box adds 1 to the input double
word value (IN) and loads the result in a double word value (OUT), as
is shown in the equation:

OUT (Dword):

IN OUT

VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC, *VD,
*AC

61

~ Decrement Word

Symbol:
Operands:
IN (word):

EN OUT (word):

VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

DEC_W

IN OUT

Description of operation:
The Decrement Word (DEC_W) box subtracts 1 from the input word
value (IN) and loads the result in a word value (OUT), as is shown in
the equation:
IN-l=OUT

~ Decrement Double Word

Symbol:
Operands:
IN (Dword):

DEC_DW
EN

OUT (Dword):

VD, ID, QD, MD, SMD,AC
, HC, Constant, *VD,*AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

IN OUT

Description of operation:
The Decrement Double Word (DEC_DW) box subtracts 1 from the
input double word value (IN) and loads the result in a double word
value (OUT), as is shown in the equation:
IN-1 =OUT

Math/Inc/Dec Examples

DIVI0.2

IO.O

When 10.0 or 10.1 is on then AC
the sum of IN1 and IN2.

ADD_I

EN

VW200~ INl

vwıo~ IN2 OUT~VD200

!Network 1

EN

3 IINl

5 -l IN2 OUT~ACO !Network 4 When 10.3 is on, then the value in ACO
is incremented by 1 and stored in ACO.

!Network 2 ill

If ACO equals 8, turn on QO.O . INC_W
I0.3 jENI

ACO -i IN OUT t- ACO

!Network 3
VW200 is divided by VW10. Thtquo~~~lwork

5

is put in VW202, and the remai de~·s put
in VW200. (Note: VD200 contaı s 20 ::"\
and VW202.) END,ı

End of the main user program.

62

MOV_B

OUT

IN OUT

Move Double Word

bol:

MOV_DW
EN

IN OUT

:::ı Move Real
Note: CPU 214 only.
Symbol:

MOV_R
EN

IN OUT

Operands:
IN (byte): VB, IB, QB, MB, SMB,

AC, Constant, *VD, *AC
VB, IB, QB, MB, SMB, AC,
*VD, *AC

Description of operation:
The Move Byte (MOY_B) box moves the input byte (IN) to the output
byte (OUT). The input byte is not altered by the move

OUT (byte):

Operands:
IN (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, AQW, *VD, *AC

Description of operation:
The Move Word (MOY_W) box moves the input word (IN) to the
output word (OUT). The input word is not altered by the move.

OUT (word):

Operands:
IN (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC, &VB, &IB,
&QB, &MB, &T, &C
VD, ID, QD, Mp, SMD, AC, *VD,
*AC

OUT (Dword):

Description of operation:
The Move Double Word (MOV_DW) box moves the input double word
(IN) to the output double word (OUT). The input double word is not
altered by the move.

Operands:
IN (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC
VD, m, QD, MD, SMD, AC, *VD,
*AC

OUT (Dword):

Description of operation:

The Move Real (MOY_R) box moves a 32-bit real input double word
(IN) to the output double word (OUT). The input double word is not
altered by the move.

63

:::ı Block Move Byte

Symbol:

BLKMOV_B
EN

IN

N OUT

o Block Move Word

Symbol:

BLKMOV_W
EN

IN

N OUT

o Swap

Symbol:

SWAP
EN

IN

Operands:
IN (byte): VB, IB, QB, MB, SMB *VD,

*AC
VB, IB, QB, MB, SMB, *VD,
*AC
VB, IB, QB, MB, SMB,
AC, Constant, *VD, *AC

Description of operation:
The Block Move Byte (BLKMOV_B) box moves the number of bytes
specified (N), from the input array starting at IN, to the output array
starting at OUT.N has a range of 1 to 255.

OUT (byte):

N (byte):

Operands:
IN (word): VW, T, C, IW, QW, MW,

SMW, AIW, *VD, *AC
VW, T, C, IW, QW, MW,
SMW, AQW, *VD, *AC
VB, IB, QB, MB·, SMB,
AC, Constant, *VD, *AC

OUT (word):

N (byte):

Description of operation:
The Block Move Word (BLKMOV_B) box moves the number of words
specified (N), from the input array starting at IN, to the output array
starting at OUT. N has a range of 1 to 255.

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:
The Swap Byte box exchanges the most-significant byte with the least-
significant byte • of the 'word (IN).

64

::ı Shift Right Word
Symbol:

ı----
SHR_W

EN

IN

N OUT

o Shift Left Word
Symbol:

SHL_W
EN

IN

N OUT

Operands:
IN (word): VW, T, C, IW, QW, MW, SMW,

AC, AIW, Constant, *VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:
The Shift Right Word (SHR_W) box shifts the word value (IN) right by
the shift count (N), and loads the result in the output word (OUT).

SMl.O (zero)= 1 if OUT= O
SMl.1 (overflow) = 1 if last bit shifted out= O

Note:When IN* OUT:
• If N and OUT are direct-addressed operands, and if OUT contains

N, then the instruction is invalid.
• If N is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
is invalid.

• If N and OUT are indirect address pointers and the pointers are
equal, then the instruction is invalid.

N (byte):

OUT (word):

Operands:
IN (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC
VB, IB, QB, MB, SMB,
AC, Constant, *VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD; *AC

N (byte):

OUT (word):

Description of operation:
The Shift Left Word (SHL_W) box shifts the word value (IN) left by
the shift count (N), and loads the result in the output word (OUT).

SMl.O (zero)= 1 if OUT= O
SM1.1 (overflow) = 1 if last bit shifted out = O

Note:When IN* OUT:
• If N and OUT are direct-addressed operands, and if OUT contains

N, then the instruction is invalid.
• If N is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
is invalid.

• If N and OUT are indirect address pointers and the pointers are
equal, then the instruction is invalid.

65

:ı Shift Left Double Word
ymbol:

~HL_DW

Operands:
IN (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC, *VD,
*AC

EN N (byte):

IN OUT (Dword):
N OUT

Description of operation:
The Shift Left Double Word (SHL_DW) box shifts the double word
value (IN) left by the shift count (N), and loads the result in the output
double word (OUT).

SMl.O (zero)= 1 if OUT= O
SMl.1 (overflow) = 1 if last bit shifted out= O

Note:When IN"# OUT:
• If N and OUT are direct-addressed operands, and if OUT contains

N, then the instruction is invalid.
• If N is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
is invalid.

• If N and OUT are indirect address pointers and the pointers are
equal, then the instruction is invalid.

o Shift Right Double Word

Symbol: Operands:

~

IN (Dword): VD, ID, QD, MD, SMD, AC,

EN
HC, Constant, *VD, *AC

N (byte): VB, IB, QB, MB, SMB,

IN I I OUT (Dword):
AC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,

N OUTı- I a *VD, *AC

Description of operation:
The Shift Right Double Word (SHR_DW) box shifts the double word
value (IN) right by the shift count (N), and loads the result in the output
double word (OUT).

SMl.O (zero)= 1 if OUT= O
SM1.1 (overflow) = 1 if last bit shifted out = O

Note:When IN"* OUT:
• If N and OUT are direct-addressed operands, and if OUT contains

N, then the instruction is invalid.
• If N is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
is invalid.

• If N and OUT are indirect address pointers and the pointers are
equal, then the instruction is invalid.

66

Rotate Right Word

,ymbol:
ROR_W

EN

IN

N OUT

Operands:
IN (word): VW, T, C, IW, QW, MW, SMW,

AC, AIW, Constant, *VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:
The Rotate Right Word (ROR_W) box rotates the word value (IN) right
by the shift count (N), and loads the result in the output word (OUT).

SMl.O (zero)= 1 if OUT= O
SM1.1 (overflow) = 1 if last bit rotated = O

Note:When IN*- OUT:

N (byte):

OUT (word):

• If N and OUT are direct-addressed operands, and if OUT contains
N, then the instruction is invalid. ·

• If N is an indirect address and OUT is a direct address containing
one of the bytes of the indirect address pointer, then the instruction
is invalid.

• If N and OUT are indirect address pointers and the pointers are
equal, then the instruction is invalid.

::ı Rotate Right Double Word
Symbol:

ROR_DW
EN

IN

N OUT

Operands:
IN (Dword): VD, ID, QD, MD, SMD,

AC, HC, Constant, *VD, *AC
VB, IB, QB, MB, SMB,
AC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

N (byte):

OUT (Dword):

Description of operation:
The Rotate Right Double Word (ROR_DW) box rotates the double
word v;lue (IN) right by the shift count (N), and loads the result in the
output double word (OUT).

SMl.O (zero)= 1 if OUT= O
SMl.1 (overflow) = 1 if last bit rotated= O

Note:When IN*- OUT: .,.
• If N and OUT are direct-addressed operands, and if OUT contains

N, then the instruction is invalid.
• If N is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
is invalid.

• If N and OUT are indirect address pointers and the pointers are
equal, then the instruction is invalid.

67

Rotate Left Word

ol: Operands:
IN (word): VW,T,C,IW,QW,MW,SMW,

AC,AIW, Constant, *VD,*AC
VB, IB, QB, MB, SMB,
AC, Constant, *VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of operation:
The Rotate Left Word (ROL_W) box rotates the word value (IN) left by
the shift count (N), and loads the result in the output word (OUT).

SMl.O (zero)= 1 if OUT= O
SM1.1 (overflow) = 1 if last bit rotated = O

Note:When IN ,ı,. OUT:

ROL_W

N (byte):

IN OUT (word):
N OUT

• If N and OUT are direct-addressed operands, and if OUT contains
N, then the instruction is invalid.

• If N is an indirect address and OUT is a direct address containing
one of the bytes of the indirect address pointer, then the instruction
is invalid.

• If N and OUT are indirect address pointers and the pointers are
equal, then the instruction is invalid.

::ı Rotate Left Double Word
ymbol: Operands:

ROL_DW IN (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

EN

IN
N (byte):

N OUT OUT (Dword): VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:

The Rotate Left Double Word (ROL_DW) box rotates the double word
value (IN) left by the shift count (N), and loads the result in the output
double word (OUT).

SMl.O (zero)= 1 if OUT= O
SMl.1 (overflow) = 1 if last bit rotated= O

Note:
When IN ,ı,. OUT:
• If N and OUT are direct-addressed operands, and if OUT contains

N, then the instruction is invalid.
• If N is an indirect address and OUT is a direct address containing

one of the bytes of the indirect address pointer, then the instruction
is invalid.

• If N and OUT are indirect address pointers and the pointers are
equal, then the instruction is invalid.

68

Shift Register Bit

,ymbol:

SHRB
EN

DATA

S_BIT

N

:ı Fill Memory
,ymbol:

FILL_N
EN

IN

N OUT

:ı End
Symbols:

-(END)
End

Conditional

kEND)
Unconditional End

:::ı Stop
Symbol:

Operands:
DATA, S_BIT (bit):
N (byte):

I, Q, M, SM, T, C, V
VB, IB, QB, MB, SMB, AC,
Constant, *VD,.*AC

Description of operation:
The Shift Register Bit (SHRB) instruction shifts the value of DATA
into the shift register. S_BIT specifies the least-significant bit of the
shift register. N specifies the length of the shift register and the direction
of the shift (shift plus= N, shift minus= -N).

Operands:

IN (word): VW, T, C, IW, QW, MW,
SMW, AIW, Constant, *VD,
*AC

OUT (word): VW, T, C, IW, QW, MW,
SMW, AQW, *VD, *AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

Description of operation:
The Fill Memory Box (FILL_N) fills the memory starting at the output
word (OUT) with the word input pattern (IN) for the number of words
specified by N. N has a range of 1 to 255.

Operands:
(none)
Descri~tion of operation:
The Conditional End coil terminates the main user program based on
the condition of the preceding logic. ·
The Unconditional End coil must be used to terminate the user program.

Operands:
(none)
Description of operation:

The Stop coil terminates execution of the user program by causing a
transitiontothestopmode.

69

ove I Shift I Rotate I Fill Examples

[Network 1 When 10.0 and 10.1 are on then
move VB50 to ACO,and swap
the most significant byte (MSB)
of VWOwith the LSB of VWO.

IO.O IO.
1---i ,ı MOV_B

I EN

VBSO- IN OUT

SWAP
EN

vwo- IN

·ACO

[Network 2 When 10.2 is on then move
VB20-VB23 toVB100-VB103.

I0.2 BLKMOV_B
EN

VB20~ IN

4'""'1N OUTt-VB100

[Network 3 When 10.3 is on then fill
VW200-VW218 with O's.

I0.3 FILL_N
EN

Ol IN

lO~N OUT t-VW200

[Network4 When 10.4 is on, then the word
value in ACOis rotated right
twice and stored in ACO,and
the word value in VW200 is
shifted left 3 times and stored
in VW200.

IO. 4 ROR_W
I

ENI

Aco- IN

2- N OUT

SHL_W
EN

vw200- IN

3- N OUT VW200

ACO

[Network 5 Upon every O to 1 transition of
10.5, the value of 10.6 is shifted
into the shift register starting
at V100.0 and of length 4.

Io.ı5 IPI IEN
SHRB

IO. 6ıDATA

vıoo. o1s_BIT

4~N

[Network 6 Main end of the user program.

70

~ Output

Symbol:

n-c)

::ı Output Immediate Coil
Symbol:

n
----ı(I)

Symbol:

S BIT

-Cs)
N

o Set Immediate Coil

Symbol:
S BIT

-----ı(;_ı)
N

o Reset Coil

Symbol:
S_BIT

--'(R)
N

Operands:
n (bit): I, Q, M, SM, T, C, V

Description of operation:
An Output coil is turned on and the Bit stored at address n is set to 1
when power flows to the coil.
A negated output can be created by placing a NQI (Invert Power Flow)
contact before an output coil.

Operands:
n (bit): Q

Description of operation:
An Output Immediate Coil is turned on and the Bit at output address n
is set to 1 when power flows to the coil. An update of the addressed
image register output Bit and also the corresponding physical output Bit
occurs immediately after the coil is scanned without waiting for scan
cyclecompletion.

Operands:
S_BIT (bit):
N (byte):

I, Q, M, SM, T, C, V
IB, QB, MB, SMB, VB, AC, Constant,
*VD, *AC

Description of operation:
The Set Coil sets the range of points starting at S_BIT for the number of
pointsspecifiedbyN

Operands:
S_BIT (bit):
N (byte):

Q
IB, QB, MB, SMB, VB, AC,
Constant, *VD,.*AC

Description of operation:
The Set-lmmediate Coil immediately sets the range of points starting at
S_BIT for the number of points specified by N

Operands:
S_BIT (bit):
N (byte):

I, Q, M, SM, T, C, V
IB, QB, MB, SMB, VB,
AC, Constant, *VD, *AC

Description of operation:
The Reset Coil resets the range of points starting at S_BIT for the
number of points specified by N. If S_BIT is specified to be either a T
or a C bit, then both the timer/counter bit and the timer/counter current
valuearereset.

71

:::ı Reset Immediate Coil

S BIT

-(R_ı)
N

Operands:
S_BIT (bit):
N (byte):

Q
IB, QB, MB', SMB,
VB, AC, Constant, *VD,
*AC

Description of operation:
The Reset Immediate Coil immediately resets the range of points
starting at S_BIT for the number of points specified by N .

Ladder Output Coil Examples

!Network 1 When 10.0 is on, then output oq.1 is I Network 3
turned on.

When 10.2 is turned on, then outputs
01 .O, 01 .1 and 01 .2 are reset (turned 01

IO.O Q0.1
I C)

!Network 2
!Network 4 I End of the main user program.

When 10.1 is on, then outputs * .O, 01 .1
and 01 .2 are set (turned on).
These outputs will remain on, e en i~END)
is turned off, until they are rese r

:::ı Watchdog Reset
Symbol:

--(wDR)
Operands:
(none)

Description of operation:
The Watchdog Reset (WDR) coil allows the watchdog timer to be
retriggered. This extends the time the scan takes without getting a
watchdog error.

o Jump
Symbol:

n--(JMP)

Operands:
n: CPU 212: 0-63

CPU 214: 0-255
Description of operation:
The Jump to Label (JMP) coil performs a branch to the specified label
(n)withintheprogram

72

:ı Label
,ymbol: Operands:

n: CPU 212: 0-63
CPU 214: 0-255

Description of operation:
The Label (LBL) instruction marks the location of the jump destination
(n). The CPU 212 allows 64 labels, and the CPU 214 allows 256.

:ı Call
,ymbol:

n
~AL0

Operands:
n: CPU 212: 0-15

CPU 214: 0-63
Description of operation:
The Subroutine Call (CALL) coil transfers control to the subroutine (n).

:ı Subroutine
ymbol: Operands:

n: CPU 212: 0-15
CPU 214: 0-63

Description of operation:
The Subroutine (SBR) label marks the beginning of the subroutine (n).
The CPU 212 supports 16 subroutines, and the CPU 214 supports 64.

:ı Return

Conditional
Operands:
(none)
Description of operation:
The Conditional Return from Subroutine coil may be used to terminate
a subroutine, based on the condition of the preceding logic.
The Unconditional Return from Subroutine coil must be used to
terminate each subroutine.

Return from Subroutine

HET)
Unconditional

Return from Subroutine

~ Next
Symbol:HEX~

Operands:
(none) ~
Description of operation:
The NEXT coil marks the end of the FOR loop, and sets the top of stack
tol.

o No Operation
Symbol:

HN~P)
Operands:
n: 0-255
Description of operation:
The No Operation (NOP) coil has no effect on the user program
execution. The operand n is a number from 0-255.

73

Symbol:

FOR
EN

INDEX

INITIAL

FINAL

o Add to Table
Note: Table and Find
instructions are supported by
the CPU 214 only.

Symbol:

AD_T_TBL
EN

DATA

TABLE

Operands:
INDEX (word): VW, T, C, IW, QW, MW,

SMW, AC, *VD1 *AC
VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:
The FOR box executes the code between the FOR and the NEXT. You
must specify the current loop count (INDEX), the starting value
(INITIAL), and the ending value (FINAL). If the starting value is
greater than the final value, the loop is not executed. After each
execution of the instructions between the FOR and the NEXT
instruction, the INDEX value is incremented and the result is compared
to the final value. If the INDEX is greater than the final value, the loop
is terminated.
For example, given an INITIAL value of 1, and a FINAL value of 10,
the instructions between the FOR and the NEXT are executed 10 times
with the INDEX value incrementing 1,2,3, 10.

INITIAL (word):

FINAL (word):

Operands:
DATA (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, *VD, *AC

TABLE (word):

Description of operation:
The Add To Table (AD_T_TBL) box adds word values (DATA) to the
table (TABLE). The first value of the table is the maximum table length
(TL). The second value is the entry count (EC) that specifies the number
of entries·in the table. New data are added to the table after the last
entry. Each time new data are added to the table, the entry count (EC) is
incremented. If you try to overfill the table, the Table Full memory bit
(SM1.4)isset.

74

er Program Control Examples
ork 1

When 10.0 is on, execute
Subroutine O.

o
I ~ALİ)

When 10.1 is on, jump to
Label 1.

twork 2

When 10.2 is on, execute the
For/Next loop 1 O times.

etwork 3

I0.2
I IEN

FOR

VWl O O "1 INDEX

1 lINITIAL

101 FINAL

If VB10 = VB20, then
increment ACOby 1.

!Network 4

VBlOr---ı==B I I EN
VB20

INC_W

ACO "'1 IN OUT t""ACO

This network does nothing.!Network 5

SMO.O is always on, therefore
the Watchdog Timer is
extended to allow a longer
scan.

!Network 6

~ojo (wnR)

This is the end of the For/Next
loop.

!Network 7

If 10.3 comes on, then the CPU goes to
Stop mode.

!Network 8

l_jo.3
\~ HTOV

I Network 9 I The Jump in Network #2 jumps to this
location.

When 10.5 is on, turn on Q0.2.!Network 10

End of the main user program.!Network 11

Start of Subroutine O.!Network 12

If 10.4 is on, then turn on QO.O and Q0.1.!Network 13

ro.~· o.)
0.1

)

End of Subroutine O.!Network 14

75

n LIFO (Last In First Out)
_iote: Table and Find
instructions are supported by
the CPU 214 only.

ymbol:

LIFO
EN

TABLE

DATA

:ı FIFO (First In First Out)
.Vote: Table and Find
instructions are supported by
he CPU 214 only.

Symbol:

FIFO

EN

TABLE

DATA

::ı Find Table
Note: Table and Find
instructions are supported by
the CPU 214 only.

Symbol:

TBL_FIND
EN

SRC

PATRN

INDX

CMD

Operands:
TABLE (word): VW, T, C, IW, QW, MW,

SMW, *VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, AQW, *VD, *AC

Description of operation:
The Last In First Out (LIFO) box removes the last entry in the table
(TABLE), and outputs the value to the location (DATA). The entry
count (EC) in the table is decremented for each instruction execution. If
you try to remove an entry from an empty table, the Table Empty
memory bit (SMl.5) is set.

DATA (word):

Operands:
TABLE (word): VW, T, C, IW, QW, MW, SMW,

*VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, AQW, *VD, *AC

Description of operation:
The First In First Out (FIFO) box removes the first entry in the table
(TABLE), and outputs the value to the location (DATA). All other
entries of the table are shifted up one location. The entry count (EC) in
the table is decremented for each instruction execution. If you try to
remove an entry from an empty table, the Table Empty memory bit
(SMl .5)isset.

DATA (word):

Operands:
SRC (word): VW, T, C, IW, QW, MW,

SMW, *VD, *AC
VW, T, C, IW, QW, MW,
SMW, AIW, AC, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC
1-4

PATRN (word):

IND1 (word):

CMD:
Description of operation:

The Find Table (TBL_FIND) box searches the table (SRC), starting
with the table entry specified by INDX, for the data value (PATRN) that
matches the criteria (CMD). The CMD parameter is given a numeric
value 1-4 that corresponds to=,<>,<, and>, respectively.
If a match is found, the INDX points to the matching entry in the table.
If a match is not found, the INDX has a value equal to the entry count.
To find the next matching entry, the INDX must be incremented before
invokingtheTBL_FINDagain.

76

Ladder Table I Find Instruction Examples
!Network 1 I When 13.0 is on, the value VW1POi

added to the table starting at VW20
The EC (entry count) is increm
one.

FIFO
EN

VW200 !TABLE

DATA~VW300I3.0 IAD_T_TBL I EN

vw100

VW200
!Network 4 When 13.3 is on, the table VW202 is

searched for a value equal to 3130 Hex.

!Network 2 When 13.1 is on, the last data vİue
the table starting at VW200 is o tpu
to the data location VW300. Th EClis
decremented by one.

TBL_FIND
ı---------ı EN

LIFO

VW202jSRC
16#3130 PATRN

ACl INDXL-_~--,IEN
VW200 lTABLE I

DATAr" VW3 O O•....••

1-191£

!Network 3

!Network 5

When 13.2 is on, the first data v~lue of
the table starting at VW200 is o tpu~o
the data location VW300. The C is END)
decremented by one.

End of the main user program.

~ Timer - On Delay

Symbol:
Operands:
Txx (word):

~-k__J
PT (word):

CPU 212: 32-63
CPU 214: 32-63, 96-127
VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

Description of operation:
The On-Delay Timer (TON) boxtimes up to the maximum value when
the enabling Input (IN) comes on. When the current value (Txxx) is >=
the Preset Time (PT), the timer bit turns on. It resets when the enabling
input goes off. Timing stops upon reaching the maximum value.

CPU 212/214 CPU 214
T32 T96
T33-T36 T97-T100
T37-T63 T101-Tl27

1 ms
lüms
lOOms

77

:J Timer - Retentive On Delay
Symbol:

~-k_J

Operands:
Txxx (word): CPU 212: 0-31

CPU 214: 0-31, 64-95
VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

Description of operation:
The Retentive On Delay Timer (TONR) box times up to the maximum
value when the enabling Input (IN) comes on. When the current value
(Txxx) is >= the Preset Time (PT), the timer bit turns on. Timing stops
when the enabling input goes off, or upon reaching the maximum value.

CPU 212/214 CPU 214
TO T64
Tl-T4 T65-T68
T5-T31 T69-T95

PT (word):

1 ms
lOms
lOOms

:J Count Up
Symbol:

Cxxx
Operands:
Cxxx (word): CPU 212: 0-63

CPU 214: 0-127
VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

Description of operation:
The Count Up (CTU) box counts up to the maximum value on the rising
edges of the Count Up (CU) input. When the current value (Cxxx) is >=
to the Preset Value (PV), the counter bit (Cxxx) turns on. It resets when
the Reset (R) input turns on. It stops counting upon reaching the
maximum value (32,767).

CU CTU

PV (word):

R

PV

a Count Up/Down
Symbol:

Cxxx

Operands:

Cxxx (word): CPU 212: 0-63
CPU 214: 0-127---tCU CTUD

-r co PV (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

-ı R Description of operation:
The Count Up/Down (CTUD) box counts up on rising edges of the
Count Up (CU) input. It counts down on the rising edges of the Count
Down (CD) input. When the current value (Cxxx) is >= to the Preset
Value (PV), the counter bit (Cxxx) turns on. It stops counting up upon
reaching the maximum value (32,767), and stops counting down upon
reaching the minimum value (-32,768). It resets when the Reset (R)
inputturnson.

-Ifill

78

Ladder Timer I Counter Examples

!Network 1

IO.O
I

!Network 2

When IO.O is on then the
timer will start. After 3 seconds
(30 X lOOms)T37 bit will

come on.

When Timer 37 reaches its
preset, turn on QO.O.

!Network 3

r'j'
When SM0.5 (1 sec. clock
pulse, .5 sec. on and .5 sec.
off) is ON, then the timer
will time. The TS bit will come
on after 6 seconds.

r==30-hı_J

[Network 4 ı · When Timer 5 reaches its
preset, turn on QO. 1 .

~T5 Q0.11 ı ()

!Networks By using SM0.5 (1 sec. clock
pulse) the counter will count
pulses and turn on the CO bit
when a count of 10 is reached.
IO.O resets the counter.

SM0.5 COI lcu C'I'U

I0.1
I

Rr

· 10-1Pv I

!Network 6 When CO reaches its preset, turn on Q0.2 .

~co Qo.21 ı ()

[Network 7 End of the main user program.

~END)

79

.. Statement List Instruction Set:

Out (STL)
t:

= n

Out Immediate (STL)
Format:

=I n

Operands:

:ı And (STL)
Format:

A n

o And Immediate (STL)
Format:

AI n

Operands:
n (bit): I, Q, M, SM, T, C, V

Description of operation:
The Out (=) instruction copies the bit value on the top of the logic stack
to address n.
Example:

LD
=

n (bit):

IO.O
Q2.0

Q
Description of operation:
The Out Immediate (=I) instruction copies the bit value on the top of
the logic stack to address n. An update of the addressed image register
output bit and also the corresponding physical output bit occurs
immediately after =I execution without waiting for scan cycle
completion.
Example:

LDI

Operands:
n (bit):

IO.O
Q2.0

I, Q, M, SM, T, C, V
Description of operation:
The And (A) instruction performs a logical And of the bit value at
address n with the top of logic stack value. The result becomes the new
top of logic stack value.
Example:

LD
A

Operands:
n (bit):

I0.1
I0.2
Ql.O

I
Description of operation:
The And Immediate (AI) instruction performs a logical And of the bit
value at address n with the top of logic stack value. The result becomes
the new top of stack value. A physical input read and stack operation
occurs immediately after AI execution without waiting for scan cycle
completion. The image register is not updated.
Example:

LDI
AI
=I

I0.1
I0.2
Ql.O

80

And Load (STL)
t: I Example:

LD IO.O
LD IO.l
LD I2.0
A I2.l
OLD
ALD

LD IO.O
LPS
LD I0.5

ription of operation: o I0.6
And Load (ALD) ALD
ction performs a logical = Q7.0

on the bit values in the LRD

(top) and second levels of LD I2.l

logic stack. The result is o r ı . 3

ed to the top of stack and ALD

k depth is reduced by one. = Q6.0
LPP
A Il. O

Q3.0

:ı And Not (STL)
Format: Operands:

n (bit): I,Q,M, SM,T,C, Vn
Description of operation:
The And Not (AN) instruction performs a logical And Not of the bit
value at address n with the top of stack value. The result becomes the
new top of stack value.
Example:

LD
AN

IO.l
ro .2
Ql. o

o And Not Immediate (STL)
Format:

ANI n Operands:
n (bit): I

Description of operation:
The And Not Immediate (ANI) instruction performs a logical And Not
of the bit value at address n with the top of stack value. The result
becomes the new top of stack value. A physical input read and stack
operation occurs immediately after ANI execution without waiting for
scan cycle completion. The image register is not updated.
Example:

LDI
ANI:
=I

IO.l
ro .2
Ql. o

81

iption of operation:
Edge Down (ED)

tion detects a scan-to-

,rands:

Load (STL)

n

rands:

Load Immediate (STL)
ormat:

Ll)I n

Operands:

::ı Load Not (STL)
Format:

LDN n

top of stack bit value. Upon detection of such a transition, the top of
stack value is set to 1; otherwise it is set to O.

Example:

LD
ED

I0.2

Q2.2

(none)
Description of operation:
The Edge Up (EU) instruction detects a scan-to-scan transition from O to
1 in top of stack bit value. Upon detection of such a transition, the top of
stack value is set to 1; otherwise it is set to O.
Example:

LD IO.l
EU

Q2.1

n (bit): I, Q, M, SM, T, C, V
Description of operation:
The Load (LD) instruction copies the bit value at address n to the top of
the logic stack. Other stack bit values move down one level.
Example:

LD
A
=

n (bit):

I0.1
I0.2
Ql. o

I
Description of operation:
The Load Immediate (LDI) instruction copies the bit value at address n
to the top of the logic stack immediately after execution without waiting
for scan cycle completion. The image register is not updated. Other
stack bit values move down one level. ·
Example:

LDI
AI
=I

I0.1
I0.2
Ql.O

Operands:
n (bit): I, Q, M, SM, T, C, V

Description of operation:
The Load Not (LDN) instruction copies the logical Not of the bit value
at image register address n to the top of the logic stack. Other stack bit
values move down one level.
Example:

LDN
AN

I0.1
I0.2
Ql.O

82

Load Not Immediate (STL)

n

ription of operation:
Logic Pop (LPP)
ction pops one value off

the stack. The second level
value becomes the new top

Logic Push (STL)
ormat:

.•..PS

Operands:
none)

Description of operation:
The Logic Push (LPS)
- truction duplicates the top of
stack bit value and pushes this
'alue onto the stack. The

Operands:
n (bit): I

Description of operation:
The Load Not Immediate (LDNI) instruction copies the logical Not of
the bit value at address n to the top of the logic stack immediately after
execution without waiting for scan cycle completion. Other stack bit
values move down one level.
Example:

LDNI I0.1
ANI I0.2
=I Ql. O

of stack value. Other stack bit values move up one level.
Example:

LD IO.O
LPS
LD I0.5
o I0.6
ALD

Q7.0
LRD
LD I2.l
o I1. 3
ALD

Q6.0
LPP
A Il. O

Q3.0

bottom of the stack is pushed off and lost.
ii

Example:
LD IO.O
LPS
LD I0.5
o I0.6
ALD

Q7.0
LRD
LD I2.l
o I1. 3
ALD

Q6.0
LPP
A Il. O

Q3.0

83

Logical Negation (STL)

Or (STL)
omıat:

n

Operands:
(none)
Description of operation:
The Logic Read (LRD) instruction copies the second stack value to the
top of stack. The stack is not pushed or popped, but the old top of stack
value is destroyed by the copy.
Example:

LD IO.O
LPS
LD I0.5
o I0.6
ALD

Q7.0
LRD
LD 12.1
o I1. 3
ALD

Q6.0
LPP
A Il. O
= Q3.0

Operands:
(none)
Description of operation:
The Logical Negation (NOT) instruction changes the top of stack bit
value from O to l, or from 1 to O.
Example:

LD IO.O
NOT

Q2.0

Operands:
n (bit): I, Q, M, SM, T, C, V

Description of operation:
The Or (O) instruction performs a logical Or of the bit value at address n
with the top of logic stack value. The result becomes the new top of
stack value.
Example:

LD
o

I1 .1
Il.2
Ql. 1

84

t: Operands:
n (bit):n I

Description of operation:
The Or Immediate (OI) instruction performs a logical Or of the bit
value at input module address n with the top of stack value. The result
becomes the new top of stack value. A physical input read and stack
operation occurs immediately after OI execution without waiting for
scan cycle completion. The image register is not updated.
Example:

LDI
OI

Operands:
(none)
Description of operation:
The Or Load (OLD) instruction performs a logical Or with the bit values
in the first (top) and second levels of the stack. The result is loaded to
the top of stack. After execution of OLD, stack depth is reduced by one.
Example:

LD

=I

t:

LD
LD
A
OLD
ALD

Or Not (STL)
Operands:
n (bit):

Il.1
Il.2
Ql. 1

IO.O
I0.1
I2.0
I2.l

I, Q, M, SM, T, C, V
Description of operation:
The Or Not (ON) instruction performs a logical Or Not of the bit value
at address n with the top of logic stack value.

n

Or Not Immediate (STL)
Format: It

Operands:
n (bit):I n

Description of operation:
The Or Not Immediate (ONI) instruction immediately performs a
logical Or Not of the bit value at physical input address n with the top
of logic stack value. The result becomes the new top of stack value. A
physical input read and stack operation occurs immediately after ONI
execution without waiting for scan cycle completion.
Example:

LDI
ONI
=I

I1 .1
Il.2
Ql. 1

85

Reset (STL)
t:

S_BIT, N

Reset Immediate (STL)
onnat:

I S_BIT, N

o Set (STL)
Format:

s S_BIT, N

Operands:
S_BIT (bit):
N (byte):

I, Q, M, SM, T, C, V
IB, QB, MB, SMB, VB, AC,
Constant, *VD, *AC

Description of operation:
The Reset (R) instruction resets a range of bit values. Bit values of O are
written to a range starting at address S_BIT for the number of bits
specified by N. If S_BIT is specified to be either a T or a C bit, then
both the timer/counter bit and the timer/counter current value are reset
to O.
Example:

LD

s
R
R

Operands:
S_BIT (bit):
N (byte):

IO.O
Q2.0
Q2.l, 1
Q2.2, 1
Ql. O, 3

Q
IB, QB, MB, SMB, VB, AC,
Constant, *VD, *AC

Description of operation:
The Reset Immediate (RI) instruction immediately resets a range of bit
values. Bit values of O are written to a range starting at S_BIT for the
number of bits specified by N. Specified bits in the image register and
corresponding physical outputs are updated at execution time without
waiting for scan cycle completion.
Example:

LDI
=I
SI
RI
R:I

Operands:
S_BIT (bit):
N (byte):

IO.O
Q2.0
Q2.l, 1
Q2.2, 1
Ql.O, 3

I, Q, M, SM, T, C, V
IB, QB, MB, SMB, VB, AC,
Constant, *VD, *AC

Description of operation:
The Set (S) instruction sets a range of bit values. Bit values of 1 are
written to a range starting at address S_BIT for the number of bits
specified by N.

86

o Set Immediate (STL)
Format:
SI S_BIT, N

:ı Read Time of Day (STL)
soıe: Real Time Clock
instructions are supported by
he CPU 214 only.

Format:

TODR T

Operands:
T (byte): VB, IB, QB, M

Description of STL
operation:
Read Time of Day (TODR)
reads the current date and time
from the Real Time Clock. The

bytes of time data are written
to memory with the area and
tarting address specified by T.

Operands:
S_BIT (bit):
N (byte):

Q
IB, QB, MB, SMB, VB, AC,
Constant, *VD, *AC

Description of operation:
The Set Immediate (SI) instruction immediately resets a range of bit
values. A bit value of 1 is written to a range starting at S_BIT for the
number of bits specified by N. Specified bits in the image register and
physical output modules are updated at execution time without waiting
for scan cycle completion.
Example:

LDI
=I
SI
RI

Year/Month
Day/Hour
Minute/Second
Day of week

IO.O
Q2.0
Q2.1, 1
Q2.2, 1

yymm
ddhh

yy - O to 99
dd - 1 to 31
mm - O to 59
d - 1 to 7
d-0

mm - 1 to 12
hh - O to 23
ss - O to 59
1 = Sunday
Day of week
remains O

mmss
OOOd

Example:
LD I2.1
TODR VB400

//Enable READ_RTC
//Read clock

MOVB VB400, ACO //Move year value
//to accumulator

Example Memory Data Starting at VB400:
Note:The time of day clock initializes the following date and time after
extended power outages or memory has been lost:

, SMB, *VD,1'S;€; Ol-Jan-90
Time: 00:00:00
Day of Week Sunday

Note:Do not use the TODR/TODW instructions in both the main
program and in an interrupt routine. If you do this and the TOD
instruction is executing when the the interrupt that also executes the
TOD instruction occurs, then the TOD instruction in the interrupt
routine-is not executed. SM4.5 is then set, indicating that two
simultaneous accesses to the clock were attempted.

:ı Write Time of Day (STL)
••ote: Real Time Clock instructions are supported
by the CPU 214 only.
Format:
TODW T

Operands:
T (byte): VB, IB, QB, MB, SMB, *VD, *AC

Description of STL operation:
Write Time of Day (TODW) sets a date and time into
the Real Time Clock. The 8 bytes of time data are

read from a memory area with the starting address
specified by T.
The Date and Time setting data must be in BCD
format (4 bits per digit; decimal digits 0-9 only) and
previously stored in the specified memory location
before execution of TODW.
Year/Month yymm yy - O to 99
Day/Hour ddhh dd - 1 to 31
Min/Sec mmss mm - O to 59 ss - O to 59
Day of week OOOd d - 1 to 7

d-0

mm - 1 to 12
hh - O to 23

1 = Sunday
Day of week
remains O

87

Compare Byte Equal Instructions (STL)
'ennat:

nl, n2
= nl, n2

nl, n2

Operands:
nl, n2 (byte): VB, IB, QB, MB, SMB, AC, Constant,

*VD, *AC
Description of operation:
The Load Byte (LDB), And Byte (AB), and Or Byte (OB) Compare
Equal instructions Load, And, or Or a 1 with the top of the stack when
nl = n2.
Example:

LD
AB=

QO.O
VB4, VBS
Q2.0

Compare Byte Greater Than or Equal Instructions (STL)
ormat: Operands:

nl, n2 (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

Description of operation:
The Load Byte (LDB), And Byte (AB), and Or Byte (OB) Compare
Greater Than or Equal instructions Load, And, or Or a 1 with the top
of the stack when n 1 ~ n2.
Example:

LD QO.O
AB>= VB4, VBS

Q2.0

nl, n2
nl, n2
nl, n2

Compare Byte Less Than or Equal Instructions (STL)
Operands:
nl, n2 (byte):

ormat:

:.DB<= nl, n2
AB<= nl, n2

B<= nl, n2

VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

Description of operation:
The Load Byte (LDB), And Byte (AB), and Or Byte (OB) Compare
Less Than or Equal instructions Load, And, or Or a 1 with the top of
the stack when n 1 ::; n2.
Example:

LD QO.O
AB<= VB4, VBS

Q2.0

Compare Word Equal Instructions (STL)
Format:

:.DW= nl, n2 Operands:
nl, n2 (word): VW, T, C, IW, QW, MW, SMW, AC, AI

Constant, *VD, *AC
Description of operation:

= nl, n2
nl, n2

The Load Word (LDW), And Word (AW), and
Or Word (OW) Compare Equal instructions
Load, And, or Or a 1 with the top of the stack when
nl = n2.

88

Compare Word Greater Than or Equal Instructions (STL)
Operands:
nl, n2 (word): VW, T, C, IW, QW, MW, SMW, AC, AIW,

>= nl, n2
nl, n2
nl, n2

Constant, *VD, *AC
Description of operation:
The Load Word (LOW), And Word (AW), and Or Word (OW)

· Compare Greater Than or Equal instructions Load, And, or Or a 1
with the top of the stack when n 1 ~ n2.
Example:

LD QO.O
AW~= VW4, VWS

Q2.0

Compare Word Less Than or Equal Instructions (STL)
onnat:

<= nl, n2
nl, n2
nl, n2

Operands:
nl, n2 (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:
The Load Word (LOW), And Word (AW), and Or Word (OW)
Compare Less Than or Equal instructions Load, And, or Or a l with
the top of the stack when nl ~ n2.
Example:

LD Q0.0
AW<= VW4, VWS
= Q2.0

::ı Compare Double Word Equal Instructions (STL)
Format:

:.DD= nl, n2
i\I)- nl, n2 . -
D= nl, n2

Operands:
nl, n2 (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC
Description of operation:
The Load Double Word (LDD), And Double Word (AD), and Or
Double Word (OD) Compare Equal instructions Load, And, or Or a 1
with the top of the stack when nl = n2.
Example:

" LD
OD= VD6, VD2O

Q2.0

QO.O

'
:::ı Compare Double Word Greater Than or Equal Instructions (STL)
Format: Operands:

nl, n2 (Dword): VD, ID, QD, MD, SMD, AC, HC,
LDD>= nl, n2
AD>= nl, n2

D>= nl, n2

Constant, *VD, *AC
Description of operation:
The Load Double Word (LDD), And Double Word (AD), and Or
Double Word (OD) Compare Greater Than or Equal instructions
Load, And, or Or a I with the top of the stack when nl ~ n2.
Example:

LD
OD>=

QO.O
VD6, VD20
Q2.0

89

Compare Double Word Less Than or Equal Instructions {STL)
Operands:
nl, n2 (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC
Description of operation:
The Load Double Word (LOO), And Double Word (AD), and Or
Double Word (OD) Compare Less Than or Equal instructions Load,
And, or Or a 1 with the top of the stack when nl ~ n2.
Example:

LD QO.O
OD<= VD6, VD20

Q2.0

t:

nl, n2
nl, n2
iı I , n2

Compare Real Equal Instructions {STL)
· : Compare Real

mstructions are supported by
CPU 214 only.

ennat:

:..:)R= nl, n2
L~= nl, n2
-~= nl, n2

Operands:
nl, n2 (Dword): VD, ID, QD, MD, SMD, SD,

AC, HC, Constant, *VD, *AC
Description of operation:
The Load Real (LOR), And Real (AR), and Or Real (OR) Compare
Equal instructions Load, And, or Or a 1 with the top of the stack when
nl = n2.
Example:

LD
OR=

QO.O
VD6, VD20
Q2.0

Compare Real Greater Than or Equal Instructions {STL)
·oıe: Compare Real

ııı.structionsare supported by
CPU 214 only.

format:

:.DR>= nl, n2
~R>= nl, n2

R>= nl, n2

Operands:
nl, n2 (Dword): VD, ID, QD, MD, SMD, SD,

AC, HC, Constant, *VD, *AC
Description of operation:
The Load Real (LOR), And Real (AR), and Or Real (OR) Compare
Greater Than or Equal instructions Load, And, or Or a 1 with the top
of the stack when nl ~ n2. ·
Example:

LD QO. O
OR>= VD6, VD20

Q2.0

::ı Compare Real Less Than or Equal Instructions {STL)
• iote: Compare Real
instructions are supported by
1ıe CPU 214 only.

Format:

:.DR<= nl, n2
.!,R<= nl, n2

R<= nl, n2

Operands:
nl, n2 (Dword): VD, ID, QD, MD, SMD, SD, AC, HC,

Constant, *VD, *AC
Description of operation:
The Load Real (LOR), And Real (AR), and Or Real (OR) Compare
Less Than or Equal instructions Load, And, or Or a 1 with the top of
the stack when nl ~ n2 .
Example:

LD QO. O
OR<= VD6, VD20

Q2.0

90

t:

IN, OUT, LEN

Operands:
IN (byte):
OUT (byte):
LEN (byte):

VB, IB, QB, MB, SMB, *VD, *AC
VB, IB, QB, MB, SMB, *VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:
The ASCII to HEX (ATH) instruction converts the ASCII string of
length LEN, starting with the character IN, to hexadecimal digits
starting at the location OUT. The maximum length of the ASCII string
is 255 characters.
Legal ASCII characters are the hexadecimal values 30-39, and 41-46. If
an illegal ASCII character is encountered, the conversion is terminated,
and the NOT_ASCII memory bit (SMl.7) is set.
Example:

LD I3 .2
ATH VB30, VB40, 3

Convert BCD to Integer (STL)

IN

:J Decode (STL)
format:

:JECO IN, OUT

o Encode (STL)
Format:

ENCO IN, OUT

Operands:
IN (word): VW, T, C, IW, QW, MW,

SMW, AC, *VD, *AC
Description of operation:
The Convert BCD to Integer (BCDI) instruction converts the BCD
value (IN) to an integer value. The result replaces the original input
value. If the input value contains an invalid BCD digit, the BCD/BIN
memory bit (SMl.6) is set.
Example:

LD I3.0
BCDI ACO

Operands:
IN (byte): VB, IB, QB, MB., SMB, AC,

Constant, *VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

OUT (word):

Description of operation:
The Decode (DECO) instruction sets the bit in the output word (OUT)
that côrresponds to the bit number represented by the least-significant
nibble (LSN) of the input byte (IN). All other bits of the output word are
set to O.
Example:

LD I3. 1
DECO AC2, VW40

Operands:
IN (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC
VB, IB, QB, MB, SMB, AC,
*VD, *AC

OUT (byte):

91

::ı Integer Double Word to Real(STL)
• sote: Real Conversion r'

instructions are supported by
ehe CPU 214 only.

Format:

YI'R IN, OUT

o Segment (STL)
Format:

SEG IN, OUT

::ı Hex to ASCII (STL)
Format:

='TA IN, OUT, LEN

Operands:
IN (Dword): VD, ID, QD, MD, SMD, SD, AC,

HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, SD, AC,
*VD, *AC

Description of operation:
The Integer Double Word to Real (DTR) instruction converts a 32-bit
signed integer (IN) into a 32bit real number (OUT).
Example:

LD

OUT (Dword):

DTR
I3. 1
ACl, VD40

Operands:
IN (byte): VB, IB, QB, MB, SMB, AC,

Constant, *VD, *AC
VB, IB, QB, MB, SMB, AC, *VD,
*AC .

OUT (byte):

Description of operation:
The Segment (SEG) instruction generates a bit pattern (OUT) that
illuminates the segments of a seven-segment display. The illuminated
segments represent the character in the least-significant digit of the
input byte (IN).
Example:

LD I3.1
SEG VB48, ACl

Operands:
IN (byte): VB, IB, QB, MB, SMB, *VD,

*AC
VB, IB, QB, MB, SMB, *VD,
*AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, 'ı:AC

Description of operation:
The HEX to ASCII (HTA) instruction converts the hexadecimal digits,
starting with the input byte IN, to an ASCII string starting at the
location OUT. The number of hexadecimal digits to be converted is
specified by length LEN. The maximum number of the hexadecimal
digits that can be converted is 255.
Example:

LD

OUT (byte):

LEN (byte):

I3 .2
HTA VB30, VB40, 3

Note: CPU 214 only.

:ı Convert Integer to BCD (STL)

Format:

IBCD IN

Operands:
IN (word): VW, T, C, IW, QW, MW, SMW,

AC, *VD, *AC
Description of operation:
The Convert Integer to BCD (IBCD) instruction converts the integer
value (IN) to a BCD value (OUT). The result replaces the original input
value. If the conversion produces a BCD number greater than 9999, the
BCD/BIN memory bit (SMI.6) is set.

92

Truncate (STL)

t:

IN, OUT

Count Up (STL)

Cxxx, PV

:ı Count Up/Down (STL)
Format:

::TUD Cxxx, PV

VD, ID, QD, MD, SMD, SD, AC,
HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, SD, AC,
*VD, *AC

Description of operation:
The Truncate (TRUNC) instruction converts a 32-bit real number (IN)
into a 32-bit signed integer (OUT). Only the whole-number portion of
the real number is converted.
Example:

LD

Operands:
IN (Dword):

OUT (Dword):

TRUNC ACl, VD40
I3. 1

Operands:
Cxxx (word):

PV (word):

CPU 212: 0-63
CPU 214: 0-127
VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

Description of operation:
The Count Up (CTU) instruction counts up to the maximum value on
the rising edges of the Count Up (CU) input (the value loaded in the
second stack location). The counter resets when the reset input turns on.
The reset input is the top of stack value. When the current value (Cxxx)
is>= to the Preset Value (PV), the counter bit (Cxxx) turns on. The
counter stops counting upon reaching the maximum value (32,767).
Example:

LD
LD
CTU

Description of operation:
The Count Up/Down (CTUD) instruction counts up on rising edges of
the count-up input. The count-up input is the value loaded in the third
stack location. The counter counts down on the rising edges of the
count-down input. The count-down input is the value loaded in the
second stack location. The counter resets when the reset input turns on.
The reset input is the top of stack value or the first stack location. When
the current value (Cxxx) is>= to the Preset Value (PV), the counter bit
(Cxxx) turns on. The counter stops counting up upon reaching the
maximum value (32,767), and stops counting down upon reaching the
minimum value (-32,768).
Example:

LD
LD

Operands:
Cxxx (word):

PV (word):

LD
CTUD

I4.0 //Count up input
I2.0 //Reset input
48, 4

CPU 212: 0-63
CPU 214: 0-127
VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

I4.0
I3. o
I2.0

//Count
//Count
I /Reset

4

Up Clock
Down Clock

C48,

93

ttach Interrupt (STL)

INT, EVENT

Operands:
INT (byte):

EVENT (byte):

CPU 212: 0-31
CPU 214: 0-127
CPU 212: O, l, 8-10, 12
CPU 214: 0-20 ·

Description of operation:
The Attach Interrupt (ATCH) instruction associates an interrupt event
(EVENT) with an interrupt routine number (INT), and enables the
interrupt event.
Example:

LD SMO.l
ATCH 4, O
ENI

Detach Interrupt (STL)
Operands:
EVENT (byte): CPU 212: O, 1, 8-10, 12

CPU 214: 0-20EVENT
Description of operation:
The Detach Interrupt (DTCH) instruction dissociates an interrupt event
(EVENT) from all interrupt routines, and disables the interrupt event.
Example:

LD SM5.0
DTCH O

Interrupt Routine (STL)
Operands:
n (word): CPU 212: 0-31

CPU 214: 0-127
n

Description of operation:
The Interrupt Routine (INT) instruction marks the beginning of the
interrupt routine (n). The maximum number of interrupts supported by
the CPU 212 is 32, and by the CPU 214, 128.
Example:

J:NT 4

Enable Interrupt (STL)
format: (None)

Description of operation:
The Enable Interrupt (ENI) instruction globally enables processing of
all attached interrupt events.
Example:

LD SMO.l
ATCH 4, O
ENJ:

::NI

Operands:

:::ı Disable Interrupt (STL)
Format: Operands:

(None)
Description of operation:
The Disable Interrupt (DISI) instruction globally disables processing of
all interrupt events.
Example:

LD M5.0
DJ:SJ:

DISI

94

~~---------------1111111111111111111111111111111111111

ditional Return from Interrupt (STL
Operands:
(None)
Description of operation:
The Conditional Return from Interrupt (CRETI) instruction may be used
to return from an interrupt, based upon the condition of the preceding
logic.
Example:

LD SM5.0
CRETI

t:

Return from Interrupt (STL)
Operands:
(None)
Description of operation:
The Return from Interrupt (RETI) instruction is an unconditional return
and must be used to terminate each interrupt routine.
Example:

LD SM5.0

t:

CRETI

High-speed Counter Definition (STL)
t: Operands:

HSC (byte):

MODE (byte):

RETI

CPU 212: O
CPU 214: 0-2
CPU 212: O
CPU 214: O (HSCO), 0-11 (HSCl-2)

Description of operation:
The High-speed Counter Definition (HDEF) instruction assigns a
MODE to the referenced high-speed counter (HSC). Only one HDEF
box may be used per counter.
Example:

LD SMO.O
16#F8, SMB47
1, 11
O, SMD48
50, SMD52
o, 13

CPU 212: O
CPU 214: 0-2

Description of operation:
The High-speed Counter (HSC) instruction invokes the operation
defined by the special memory bit for the referenced high-speed
counter. The parameter N specifies the high-speed counter number.
Example:

LD SMO.O
16#F8, SMB47
ı, 11
O, SMD48
50, SMD52
o, 13

95

~EF HSC, MODE

MOVB
HDEF
MOVD
MOVD
ATCH
ENI
HSC 1

:ı High-speed Counter (STL)
Format: Operands:

N (word):
3SC N

MOVB
HDEF
MOVD
MOVD
ATCH
ENI
HSC 1

Pulse (STL)
ormat:

LS X

Operands:
x (word): CPU 214: 0-1
Description of operation:
The Pulse (PLS) instruction examines the special memory bits for that
pulse output (x). The pulse operation defined by the special memory bits
is then invoked.
Example:

LD
MOVB
MOVW
MOVD
ATCH
ENI
PLS O

Operands:
TABLE (byte):

SMO.O
16#85, SMB67
500, SMW68
4, SMD72
3 / 19

VB, IB, QB, MB, SMB, *VD,
*AC

PORT (byte): O
Description of operation:
The Transmit (XMT) instruction invokes the transmission of the data
buffer (TABLE). The first entry in the data buffer specifies the number
of bytes to be transmitted. PORT specifies the communication port to be
used for transmission. It must always be O.
Example:

LD
A
XMT *VDlOO, O

M6.3
SM4.5

INl (word):

IN2 (word):

VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:
The Add Integer (+I) instruction adds two 16-bit integers (INl, IN2),
and produces a 16-bit result (IN2), as is shown in the equation:
INl + IN2 = IN2
Example:

LD I4.0
+I ACl, ACO
MUL ACl, VDlOO
DIV VWlO, VD200

Operands:
INl (word): VW, T, C, IW, QW, MW, SMW,

AC, AIW, Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

:J Transmit (STL)
Format:

XMT TABLE, PORT

;::ı Add Integer (STL)
Format:

+I INl, IN2

Operands:

o Subtract Integer (STL)
Format:

-I INl, IN2

IN2 (word):

Description of operation:
The Subtract Integer (-1) instruction subtracts two
l ô-bit integers (INl, IN2), and produces a l ô-bit
result (IN2), as is shown in the equation:
IN2 - INl = IN2

96

:J Add Double Integer (STL)
format: Operands:

INl (Dword):
D INl, IN2

VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:
The Add Double Integer (+D) instruction adds two 32-bit integers (INl,
IN2), and produces a 32bit result (IN2), as is shown in the equation:
INl + IN2 = IN2

IN2 (Dword):

Example:
LD I4.0
+D ACl, ACO
MUL ACl, VDlOO
DIV vwıo, VD200

:J Subtract Double Integer (STL)
Format:

-D INl, IN2
Operands:
INl (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:
The Subtract Double Integer (-D) instruction subtracts two 32-bit
integers (INl, IN2), and produces a 32-bit result (IN2), as is shown in
the equation:
IN2 - INl = IN2

IN2 (Dword):

Example:
LD I4.0
-D ACl, ACO
MUL ACl, VDlOO
DIV vwıo, VD200

o Add Real (STL)
Note: CPU 214 only.

Format: Operands:
INl (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC
VD, ID, QD, SMD, AC, *VD, *AC

+R INl, IN2
IN2 (Dword):
Description of operation:
The Add Real (+R) instruction adds two 32-bit real numbers (iNi, IN2),
and produces a 32-bit real number result (IN2), as is shown in the
equation:
INl + IN2 = IN2
Example:

LD I4.0
+R ACl, ACO
MUL ACl, VD100
DIV vwıo, VD200

97

ubtract Real (STL)

INl, IN2

Multiply Real (STL)

INl, IN2

rands:

Divide Real (STL)
-oıe: CPU 214 only.

ormat:

~ INl, IN2

~ Multiply Integer (STL)
Format:

!ıruL INl, IN2

Operands:

Operands:
INl (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC
IN2 (Dword): VD, ID, QD, SMD, AC, *VD, *AC
Description of operation:
The Subtract Real (-R) instruction subtracts two 32-bit real numbers
(INl, IN2), and produces a 32-bit real number result (IN2), as is shown
in the equation:

INl (Dword):

IN2 (Dword):

VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC
VD, ID, QD, SMD, AC, *VD,
*AC

Description of operation:
The Multiply Real (*R) instruction multiplies two 32-bit real numbers
(INl, IN2), and produces a 32-bit real number product (IN2), as is
shown in the equation:
INl * IN2 = IN2
Example:

LD 14.0
*R ACl, ACO
MUL ACl, VDlOO
DIV vwıo, VD200

Operands:
INl (Dword):

IN2 (Dword):

VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC
VD, ID, QD, SMD, AC, *VD,
*AC

Description of operation:
The Divide Real (/R) instruction divides two 32-bit real numbers (INl,
IN2), and produces a 32-bit real number quotient (IN2), as is shown in
the equation:
IN2 I INl = IN2
Example:

LD
/R
MUL
DIV

INl (word):

IN2 (Dword):

14.0
ACl, ACO
ACl, VDlOO
vwıo, vo200

VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC, *VD,
*AC

Description of operation:
The Multiply Integer (MUL) instruction multiplies a 16-bit integer
(INl) by the least-significant 16 bits of a 32-bit integer (IN2) and
produces a 32-bit result (IN2), as is shown in the equation:
INl * IN2 = IN2
Example:

LD
+D
MUL
DIV

14.0
ACl, ACO
ACl, VDlOO
vwıo, vo200

98

o Divide Integer (STL)
Format:

DIV INl, IN2

zı Square Root (STL)
.,ote: CPU 214 only.

Format:

SORT IN, OUT

IN, OUT, N

ock Move Word (STL)

IN, OUT, N

Operands:
INI (word): VW, T, C, IW, QW, MW, SMW,

AC, AIW, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC, *VD,
*AC

IN2 (Dword):

Description of operation:
The Divide Integer (DIV) instruction divides a 16-bit integer (INI) into
the least-significant 16 bits of a 32-bit integer (IN2) and produces a 32-
bit result (IN2) composed of a 16-bit quotient (least significant) and a
16-bit remainder (most significant), as is·shown in the equation:

IN (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

OUT (Dword):

Description of operation:
The Square Root (SQRT) instruction takes the square root of a 32-bit
real number (IN) and produces a 32-bit real number result (OUT), as is
shown in the equation:
Example:

LD
SQRT
MUL

I4.0

DIV

ACl, ACO
ACl, VDlOO
vw10, vo200

Operands:
IN (byte): VB, IB, QB, MB, SMB, *VD,

*AC
VB, IB, QB, MB, SMB, *VD,
*AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

OUT (byte):

N (byte):

Description of operation:
The Block Move Byte (BMB) instruction moves the number of bytes
specified (N) from the input array starting at IN to the output array
starting at OUT. N has a range of I to 255.
Example:

LD I2.l
BMB VB20, VBlOO, 4
FILL O, VW200, 10

Operands:
IN (word): VW, T, C, IW, QW, MW, SMW,

AIW, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AQW, *VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

OUT (word):

N (byte):

Description of operation:
The Block Move Word (BMW) instruction moves the number of words
specified (N) from the input array starting at IN to the output array
starting at OUT. N has a range of I to 255.
Example:

LD I2.1
BMW VW20, VWlOO, 4
FILL O, VW200, 10

gg

emory Fill (STL)

IN, OUT, N

ove Byte (STL)

IN, OUT

Operands:
IN (word): VW, T, C, IW, QW, MW, SMW,

AIW, Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AQW, *VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

Description of operation:
The Memory Fill (FILL) instruction fills the memory starting at the
output word (OUT) with the word input pattern (IN) for the number of
words specified by N. N has a range of 1 to 255.

OUT (word):

N (byte):

Operands:
IN (byte): VB, IB, QB, MB, SMB, AC,

Constant, *VD, *AC
VB, IB, QB, MB, SMB, AC,
*VD, *AC

OUT (byte):

Description of operation:
The Move Byte (MOVB) instruction moves the input byte (IN) to the
output byte (OUT). The input byte is not altered by the move.
Example:

LD I2.1
MOVB VBSO, ACO
SWAP ACO

Move Double Word (STL)

IN, OUT

Move Real (STL)
-ote: CPU 214 only.

format:

VR IN, OUT

Operands:
IN (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC,
&VB, &IB, &QB, &MB, &T,
&C
OUT: VD, ID, QD, MD, SMD,
AC, *VD, *AC

OUT (Dword):

Description of operation:
The Move Double Word (MOYD) instruction moves the input double
word (IN) to the output double word (OUT). The input double word is
not altered by the move.
Example:

LD I2.1
MOVD VDSO, ACO
SWAP ACO

Operands:
IN (Dword): VD, ID, QD, MD, SMD, AC, HC,

Constant, *VD, *AC
VD, ID, QD, MD, SMD, AC, *VD,
*AC

OUT (Dword):

Description of operation:
The Move Real (MOVR) instruction moves a 32-bit real input double
word (IN) to the output double word (OUT). The input double word is
not altered by the move.
Example:

LD I2.1
MOVR VDSO, ACO
SWAP ACO

ftO

:ı Move Word (STL)
Format:

OVW IN, OUT

Swap Bytes (STL)
Format:

SWAP IN

:ı Network Read (STL)
Note: Network
instructions are supported
by the CPU 214 only.

Format:

NETR t, P

Operands:
t: VB, MB, *VD, *A
p: Constant

(CPU 214: O)
Description of
operation:

Operands:
IN (word): VW, T, C, ıw, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, AQW, *VD, *AC

Description of operation:
The Move Word (MOVW) instruction moves the input
word (IN) to the output word (OUT). The input word is not
altered by the move.
Example:

LD I2.l
MOVW VWSO, ACO
SWAP ACO

OUT (word):

Operands:
IN (word): VW, T, C, IW., QW, MW,

SMW, AC, *VD, *AC
Description of operation:
The Swap Bytes (SWAP) instruction exchanges the most-
significant byte with the least-significant byte of the word
(IN).
Example:

LD I2.l
MOVR VD50, ACO
SWAP ACO

The Network Read (NETR) instruction initiates a
communication operation to gather data from a remote
device through the specified port (p), as defined in the
description table (t). The format of the description table is
CPU-specific.
You can use the NETR instruction to read up to 16 bytes of
information from a remote station, and use the NETW
instruction to write up to 16 bytes of mtormation to a
remote station. A maximum of eight NETR and NETW
instructions may be activated at any one time. For example,
you can have four NETR and four NETW instructions, or
two NETR and six NETW instructions.
Example:

LDN
AN
AN
MOVB

SM0.1
V200.6
V200.5
2, VB201

MOVD &VB100, VD20~
MOVB 3, VB206

101

etwork Write (STL)

t, p

Operands:
::ı Subroutine Call (STL)
Format:

CALL n

t: VB, MB, *VD, *AC
p: Constant

(CPU 214: O)
Description of operation:
The Network Write (NETW) instruction initiates a
communication operation to write-data to a remote device
through the specified port (p), as defined in the description
table (t).
You can use the NETR instruction to read up to 16 bytes of
information from a remote station, and use the NETW
instruction to write up to 16 bytes of information to a
remote station. A maximum of eight NETR and NETW
instructions may be activated at any one time. For example,
you can have four NETR and four NETW instructions, or
two NETR and six NETW instructions.
Example:

LD V200.7
AW= VW208, 100
MOVB 2, VB301
MOVD &VB101, VD302
MOVB 2, VB306
MOVW O, VW307
NETW VB300, O

Operands:
n: CPU 212: 0-15

CPU 214: 0-63
Description of operation:
The Subroutine Call (CALL) instruction transfers control to
the subroutine (n).
Example:

LD SM0.1
CALL 10

o Conditional Return from Subroutine (STL)
Format:

CRET

Operands:
(none)
Description of operation:
The Conditional Return from Subroutine (CRET)
instruction may be used to terminate a subroutine, based on
the condition of the preceding logic.
Example:

LD M14.3
CRET

102

o Conditional End (STL)
Format:

END

For (STL)
ormat:

FOR INDEX,
::NITIAL, FINAL

Operands:
INDEX (word):

ITIAL (word):

FINAL (word):

Operands:
(none)
Description of operation:
The Conditional End (END) instruction terminates the main
user program based on the condition of the preceding logic.
Example:

LD SMS.O
STOP
END

Description of operation:
The FOR instruction executes the code between the FOR
and the NEXT. You must specify the current loop count
(INDEX), the starting value (INITIAL), and the ending
value (FINAL). If the starting value is greater than the final
value, the loop is not executed. After each execution of the
instructions between the FOR and the NEXT instruction,
the INDEX value is incremented and the result is compared
to the final value. If the INDEX is greater than the final
value, the loop is terminated.

VW, T, C IWF&l-WxMı~e, given an INITIAL value of 1, and a FINAL
SMW, A , *\{Qu~lO, the instructions between the FOR and the
VW, T, C IW~Wr\1-Wexecuted 10 times with the INDEX value
SMW, A , Afilcr&ttooti\\lg, 1,2,3, .. 10.
*VD, *A Example:
VW, T, C IW, QW, MW, I2 . 1
SMW, A , AIW, CoıBOBl.t, VW225, 1, 2

~ Jump to Label (STL)
Format:

JMP n
Operands:
n: CPU 212: 0-63

CPU 214: 0-255
Description of operation:
The Jump to Label (JMP) instruction performs a branch to
the specified label within the program.
Example:

LDN SM0.2
JMP 4

LBL 4

103

Label (STL)
ormat:

!.BL n
Operands:
n: CPU 212: 0-63

CPU 214: 0-255
Description of operation:
The Label (LBL) instruction marks the location of the jump
destination (n). The CPU 212 allows 64 labels, and the CPU
214 allows 256.
Example:

LDN SM0.2
JMP 4

LBL 4

Main Program End (STL)
ormat:

Operands:
(none)
Description of operation:
The Main Program End (MEND) instruction must be used
to terminate the main user program.
Example:

MEND

SBR 10

LD Ml4.3
CRET

:J Next (STL)
Format:

NEXT

Operands:
(none)
Description of operation: ...
The NEXT instruction marks the end of the FOR loop, and
sets the top of stack to 1.
Example:

LD
FOR

I2.l
VW225, 1, 2

NEXT

104

STL
Operands:

N N: 0-255
Description of operation:
The No Operation (NOP) instruction has no effect on the
user program execution. The operand N is a number from O
- 255.
Example:

LDN SMO .2
JMP 4

NOP

LBL 4

Unconditional Return from Subroutine (STL)
ormat:

Operands:
(none)
Description of operation:
The Unconditional Return from Subroutine (RET)
instruction must be used to terminate each subroutine.
Example:

SBR 10

LD M14.3
CRET

RET

::J Subroutine (STL)
Format: Operands:

n: CPU 212: 0-15
CPU 214: 0-63SBR n

Description of operation:
The Subroutine (SBR) instruction marks the beginning of
the subroutine (n). The CPU 212 supports 16 subroutines,
and the CPU 214 supports 64.
Example:

MEND

SBR 10

LD M14.3
CRET

105

Stop (STL)
at: Operands:

(none)
Description of operation:
The Stop (STOP) instruction terminates execution of the
user program by causing a transition to the Stop mode.
Example:

LD SM5.0
STOP

atchdog Reset (STL)
Operands:
(none)
Description of operation:
The Watchdog Reset (WDR) instruction allows the
watchdog timer to be retriggered. This extends the time the
scan is allowed to take without getting a watchdog error.
Example:

LD M5.6
WDR

I

Rotate Left Double Word (STL)

R

ormat: Operands:
IN (Dword):

RLD IN, N
VD, ID, QD, MD, SMD, AC,
*VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

Description of operation:
The Rotate Left Double Word (RLD) instruction rotates the
double word value (IN) left by the shift count (N), and loads
the result in IN.

SMl.O (zero) = 1 if IN= O
SM1.1 (overflow) = 1 if last bit rotated = 1

Example:
LD

N (byte):

I4.0
RLD ACO, 2
SLW VW200, 3

,rı Rotate Left Word (STL)
Format: Description of operation:

The Rotate Left Word (RLW) instruction rotates the word
value (IN) left by the shift count (N), and loads the result in
IN.

RLW IN, N

Operands:
IN (word):
~, (byte):

SMl.O (zero) = 1 if OUT= O
SM1.1 (overflow) = 1 if last bit rotated = 1

Example:
LD
RLD
RLWVW,T,

VB,IB,

I4.0
ACO, 2
VW200, 3

106

VD, ID, QD, MD, SMD, AC,
*VD, *AC .
VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:
The Rotate Right Double Word (RRD) instruction rotates
the double word value (IN) right by the shift count (N), and
loads the result in IN.

SMl.O (zero) = 1 if IN= O
SMl.1 (overflow)= 1 iflastbitrotated= 1

Example:
LD

Rotate Right Double Word (STL)
at: Operands:

IN (Dword):
IN, N

N (byte):

14.0
RRD ACO, 2
SLW VW200, 3

VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:
The Rotate Right Word (RRW) instruction rotates the word
value (IN) right by the shift count (N), and loads the result
in IN.

SMl.O (zero) = 1 if OUT= O
SM 1. 1 (overflow) = 1 if last bit rotated = 1

Example:
LD

Rotate Right Word (STL)
ormat: Operands:

IN (word):
.W IN, N

N (byte):

14.0
RRW ACO, 2
SLW VW200, 3

;J Shift Register Bit (STL)
Format:

SHRB DATA, S_BIT, N

Operands:
DATA, S_BIT

it):
N (byte):

I,Q,M,SM, T,C, V

VB, IB, QB, MB,
SMB,Constant, *VD, *

Description of operation:
The Shift Register Bit (SHRB) instruction
shifts the value of DATA into the shift
register. S_BIT specifies the least
significant bit of the shift register. N
specifies the length of the shift register and
the direction of the shift (shift plus = N,
shift minus= -N).

107

VD, ID, QD, MD, SMD, AC,
*VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

Description of operation:
The Shift Left Double Word (SLD) instruction shifts the
double word value (IN) left by the shift count (N), and loads
the result in IN.

SMl.O (zero) = 1 if IN= O
SM 1.1 (overflow) = 1 if last bit shifted out = 1

Example:
LD

hift Left Double Word {STL)
Operands:
IN (Dword):

IN, N
N (byte):

I4.0
SLD ACO, 2
SLW VW200, 3

VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC
VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

Description of operation:
The Shift Left Word (SLW) instruction shifts the word
value (IN) left by the shift count (N), and loads the result in
IN.

Shift Left Word {STL)
ormat: Operands:

IN (word):

SMl.O (zero) = 1 if OUT= O
SM 1. 1 (overflow) = 1 if last bit shifted out = 1

I4.0

108

VD, ID, QD, MD, SMD, AC,
*VD, *AC
VB, IB, QB, MB, SMB~ AC,
Constant, *VD, *AC

Description of operation:
The Shift Right Double Word (SRD) instruction shifts the
double word value (IN) right by the shift count (N), and
loads the result in IN.

SMl.O(zero) = 1 iflN=O
SM 1. 1 (overflow) = 1 if last bit shifted out = 1

Example:
LD
SRD ACO, 2
SLW VW200, 3

,W IN, N
N (byte):

n Shift Right Double Word {STL)
Format: Operands:

IN (Dword):
SRD IN, N

N (byte):

Shift Right Word (STL)
at:

IN, N

Add To Table (STL)

ructions are supported
_., the CPU 214 only.

ormat:

~TT DATA, TABLE

Operands:

DATA (word):
TABLE (word):

VW,T
VW,T

:ı First In First Out (STL)
ote: Table and Find

instructions are supported
_ the CPU 214 only.

Format:

FIFO TABLE, DATA

Operands:
IN (word): VW, T, C, IW, QW,

MW,*VD, *AC
VB, IB, QB, MB, SMB,N (byte):

Description of operation:
The Shift Right Word (SRW) instruction
shifts the word value (IN) right by the shift
count (N), and loads the result in IN.

SMl.O (zero) = 1 if OUT= O
SM 1.1 (overflow) = 1 if last bit shifted
out= 1

Description of operation:
The Add To Table (ATT) instruction adds word values
(DATA) to the table (TABLE). The first value of the table
is the maximum table length (TL). The second value is the
entry count (EC) that specifies the number of entries in the
table. New data are added to the table after the last entry.
Each time new data are added to the table, the entry count
(EC) is incremented. If you try to overfill the table, the
Table Full memory bit (SM 1.4) is set.

Example:
LD I3.0
ATT vwıoo, VW200

Operands:
TABLE (word):

~
VW, T, C, IW, QW, MW,
SMW, *VD, *AC
VW, T, C, IW, QW, MW,
SMW,AC,AQW, *VD, *AC

Description of operation: '
The First In First Out (FIFO) instruction removes the first
entry in the table (TABLE), and outputs the value to the
location DAT A. All other entries of the table are shifted up
one location. The entry count (EC) in the table is
decremented for each instruction execution. If you try to
remove an entry from an empty table, the Table Empty
memory bit (SMl .5) is set.
Example:

LD

DATA (word):

I3.0
FIFO VW200, VW300

109

Find Less Than (STL)

mııructions are supported
~e CPU 214 only.

at:

SRC, PATRN,

Operands:
SRC (word): VW, T, C, IW, QW, MW,

SMW, *VD, * AC
PATRN (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC

INDX (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of operation:
The Find Less Than (FND<) instruction searches the table
(SRC), starting with the table entry specified by INDX, for
the data value (PATRN) that matches the find criteria.
If a match is found, the INDX points to the matching entry
in the table. If a match is not found, the INDX has a value
equal to the entry count. To find the next matching entry,
the INDX must be incremented before the Find instruction
is invoked again.
Example:

LD I3.0
FND< VW202, 16#3130, ACl

Find Not Equal To (STL)
.,·ote: Table and Find
· tructions are supported
_.' the CPU 214 only.

Format:

FND<> SRC,
PATRN, INDX

Operands:
SRC (word): VW, T, C, IW, QW, MW,

SMW, *VD, *AC
PATRN (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

Description of operation:
The Find Not Equal To (FND<>) instruction searches the
table (SRC), starting with the table entry specified by
INDX, for the data value (PATRN) that matches the find
criteria.
If a match is found, the INDX points to the matching entry
in the table. If a match is not found, the INDX has a value
equal to the entry count. To find the next matching entry,
the INDX must be incremented before the Find instruction

INDX (word):

is invoked again.
Example:

LD I3.0
FND<> VW202, 16#3130, ACl

110

VW, T, C, IW, QW, MW,
SMW, *VD, *AC

PATRN (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of operation:
The Find Equal To (FND=) instruction searches the table
(SRC), starting with the table entry specified by INDX, for
the data value (PATRN) that matches the find criteria.
If a match is found, the INDX points to the matching entry
in the table. If a match is not found, the INDX has a value
equal to the entry count. To find the next matching entry,
the INDX must be incremented before the Find instruction

tions are supported
CPU 214 only.

Operands:
SRC (word):

SRC, PATRN,

INDX (word):

is invoked again.
Example:

LD I3.0
FND= VW202, 16#3130, ACl

Find Greater Than (STL)
ote: Table and Find

ıııstructionsare supported
_ the CPU 214 only.

Operands:
SRC (word):

ormat:

?ND> SRC, PATRN,
::NDX

PATRN (word):

INDX (word):

VW, T, C, IW, QW, MW,
SMW, *VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of operation:
The Find Greater Than (FND>) instruction searches the
table (SRC), starting with the table entry specified by
INDX, for the data value (PATRN) that matches the find
criteria.
If a match is found, the INDX points to the matching entry
in the table. If a match is not found, the INDX has a value
equal to the entry count. To find the next matching entry,
the INDX must be incremented before the Find instruction
is invoked again.

111

Last In First Out (STL)

DATA

On Delay Timer (STL)

ormat:

N Txxx, PT

Operands:
TABLE (word): VW, T, C, IW, QW, MW,

SMW, *VD, * AC
DATA (word): VW, T, C, IW, QW, MW,

SMW, AC, AQW, *VD, *AC
Description of operation:
The Last In First Out (LIFO) instruction removes the last
entry in the table (TABLE), and outputs the value to the
location DAT A. The entry count (EC) in the table is
decremented for each instruction execution. If you try to
remove an entry from an empty table, the Table Empty
memory bit (SMl.5) is set.
Example:

LD I3.0
LIFO VW200, VW300

Operands:
Txxx
(word):
PT (word):

CPU 212: 32-63
CPU 214: 32-63, 96-127
VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:
The On-Delay Timer (TON) times up to the maximum
value when the top of stack =1. When the current value
(Txxx) is>= the Preset Time (PT), the timer bit (Txxx)
turns on. It resets when the top of stack =0. Timing stops
upon reaching the maximum value.

CPU 212/214 CPU 214
T32 T96
T33-T36 T97-Tl00
T37-T63 Tl01-Tl27

1 ms
l O ms
lOOms
Example:

LD I2.0
TON T33, 3

112

.etentive On Delay Timer (STL)
t:

Txxx, PT
Operands:
Txxx
(word):
PT (word):

CPU 212: 0-31
CPU 214: 0-31, 64-95
VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:
The Retentive On Delay Timer (TONR) times up to the
maximum value when the top of stack =1. When the current
value (Txxx) is>= the Preset Time (PT), the timer bit
(Txxx) turns on. Timing stops when the top of stack =0, or
upon reaching the maximum value.

CPU 212/214 CPU 214
TO T64
Tl-T4 T65-T68
T5-T31 T69-'f95

1 ms
lüms
lOOms
Example:

LD I2.1
TONR T2, 1

AND Word (STL)

IN2

INl (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

IN2 (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of STL operation:
The AND Word (ANDW) instruction logically ANDs the
corresponding bits of two words INl, IN2, and loads the
result in the word IN2.
Example:

LD I4.0
ANDWACl, ACO

Operands:

o OR Word (STL)
Format: INl (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC

IN2 (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of STL operation:
The OR Word (ORW) instruction logically ORs the
corresponding bits of two words IN1, IN2, and loads the
result in the word IN2.
Example:

LD I4.0
ORW ACl, vwıoo

ORW INl, IN2

Operands:

113

Exclusive OR Word (STL)
Operands:
INl (word):

IN2
VW, T, C, IW, QW, MW,
SMW,
AC, AIW, Constant, *VD, *AC
VW, T, C, IW, QW, MW,
SMW,
AC, *VD, *AC

Description of STL operation:
The Exclusive OR Word (XORW) instruction logically
XORs the corresponding bits of two words INl, IN2, and
loads the result in the word IN2.
Example:

LD

IN2 (word):

I4.0
XORW ACl, vwıoo

AND Double Word (STL)
ormat: Operands:

INl (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC

IN2 (Dword): VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of STL operation: .
The AND Dword (ANDD) instruction logically ANDs the
corresponding bits of two double words IN 1, IN2, and loads
the result in the double word IN2.
Example:

LD I4.0
ANDD ACl, ACO

ANDD INl, IN2

:J OR Double Word (STL)

ORD INl, IN2

Operands:
INl (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AÇ
IN2 (Dword): VD, ID, QD, MD, SMD, AC,

*VD, *AC
Description of STL operation: .
The OR Dword (ORD) instruction logically ORs the
corresponding bits of two double words IN 1, IN2, and loads
the result in the double word IN2.
Example:

LD I4.0
ORD ACl, VD100

Format:

114

Exclusive OR Double Word (STL)

INl, IN2

Operands:
INl (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC
IN2 (Dword): VD, ID, QD, MD, SMD, AC,

*VD, *AC
Description of STL operation:
The Exclusive OR Dword (XORD) instruction logically
XORs the corresponding bits of two double words IN1,
IN2, and loads the result in the double word IN2.
Example:

LD I4.0
XORD ACl, VDlOO

at:

Increment Word (STL)
ormat:

CW IN

IN (word): VW, T, C, IW, QW, MW,
SMW,
AC, *VD, *AC

Description of STL operation:
The Increment Word (INCW) instruction adds 1 to the input
word value IN, and loads the result in that word.
IN+l=IN
Example:

LD I4.0
INCW ACOOperands:

:ı Decrement Word (STL)
Format:

ECW IN
Operands:
IN (word): VW, T, C, IW, QW, MW,

SMW,
AC, *VD, *AC

Description of STL operation:
The Decrement Word (DECW) instruction subtracts 1 from
the input word value IN, and loads the result in that word.
IN-l=IN
Example:

LD I4.0
DECW vwıoo

:ı Increment Double Word (STL)

INCD IN

Description of STL operation:
The Increment Dword (INCD) instruction adds 1 to the
input double word value IN, and loads the result in that
double word.
IN+l=IN
Example:

LD I4.0
INCD ACO

Format:

Operands:
IN (Dword): VD,ID

115

rement Double Word (STL)
Operands:
IN (Dword): VD, ID, QD, MD, SMD, AC,

*VD, *AC
Description of STL operation:
The Decrement Dword (DECD) instruction subtracts 1 from
the input double word value IN, and loads the result in that
double word.
IN-l=IN
Example:

LD 14.0
DECD VDlOO

IN

Operands:
IN (word): VW, T, C, IW, QW, MW,

SMW, AC, *VD, *AC
Description of STL operation:
The Invert Word (INVW) instruction takes the Ones
Complement of the input word value IN, and loads the
result in that word.
Example:

LD 14.0
INVW ACO

Invert Double Word (STL)
Operands:
IN (Dword): VD, ID, QD, MD, SMD, AC,

*VD, *AC
Description of STL operation:
The Invert Dword (INVD) instruction takes the ones
complement of the input double word value IN, and loads
the result in that double word.

IN

Example: ıo

LD 14.0
INVD ACO

116

Reference

1. Programmable Logic Controllers and their Engineering Applications
ALAN J. CRISPIN

2. Programmable Controllers Operation and Application
IAN G. WARNOCK

3. Programmable Controllers an Engineer's Guide
E. A. PARR

4. Lecture Notes
ÖZGÜR ÖZERDEM

117

