
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

MESSAGE AUTHENTICATION
AND

DIGITAL SIGNATURE

Graudation Project
COM-400

Student: Tekin Tekin (20010672)

Supervisor: Prof. Dr. Fahreddin
Mamedov SADIKOGLU

Nicosia - 2004

t,

ACKNOWLEDGEMENTS

First of all, I would like to thank every one for their support and help they gave me

during my preparation of these thesis.

I would like to thank my supervisor Prof. Dr. Fahreddin Mamedov Sadikoglu. Under his

guidance, I successfully overcome many difficulties and learn a lot about Cryptography

and Cryptosystems. I asked him many questions in Cryptography, he explained my

questions patiently.

I would like to express my gratitude to Vice-President Prof. Dr. Senol Bektas, because

he helped to me at each stage of my Undergraduate Education in Near East University.

I also wish to thank Mr. Umit Ilhan at my Undergraduate Education for his invaluable

advices, for his help and for his patience also for his support.

I would like to say how grateful I am to Osman Tekin and Onur Taha Cananer for their

help and support.

Finally, I want to thank especially to the people I have mentioned above and to my

family, to Cemal Kavalcioglu, Ali Ozgen and Omer Gumus for their endless support. I

could never have prepared this thesis without the encouragement and support.

AECA:

AES

CA

CBC

CFB

CRL

DES

DSA

DSS

EAR

ECB

ECC

FCS

IDEA:

ITAR:

KDC

MAC

NIST

NSA

ODTC:

OFB

PKI

RA

SHA

SMTP:

SNMP:

USML:

LIST OF ABBREVIATIONS

Arms Export Control Act

Advanced Encryption Standard

Certificate Authorities

Cipher Block Chaining

Cipher Feedback

Certificate Revocation List

Digital Encryption Standard

Digital Signature Algorithm

Digital Signature Standard

Export Administration Regulations

Electronic Code Book

Elliptic Curve Cryptosystem

Frame Check Sequence

International Data Encryption Method

International Traffic in Arms Regulations

Key Distribution Center

Message Authentication Code

National Institute of Standards and Technology

National Security Agency

Office of Defense Trade Controls

Output Feedback

Public Key Infrastructure

Registration Authorities

Secure Hash Algorithm

Simple Mail Transfer Protocol

Simple Network Management Protocol

United States Munitions

11

ABSTRACT

People mean different things when they talk about cryptography. Children play with toy

ciphers and secret languages. However, these have little to do with real security and

strong encryption. Strong encryption is the kind of encryption that can be used to

protect information of real value against organized criminals, multinational

corporations, and major governments. Strong encryption used to be only military

business; however, in the information society it has become one of the central tools for

maintaining privacy and confidentiality.

As we move into an information society, the technological means for global

surveillance of millions of individual people are becoming available to major

governments. Cryptography has become one of the main tools for privacy, trust, access

control, electronic payments, corporate security, and countless other fields.

Cryptography is no longer a military thing that should not be messed with. It is time to

de-mystify cryptography and make full use of the advantages it provides for the modem

society.

In the following, basic terminology and the main methods of cryptography are

presented. Any opinions and evaluations neither presented here are speculative, and

neither the authors nor SSH can be held responsible for their correctness although every

attempt is made to make sure that this information is as correct and up-to-date as

possible.

111

TABLE OF CONTENTS

ACKNOWLEDGMENT

LIST OF ABBREVATIONS

ABSTRACT

CONTENTS

11

111

lV

INTRODUCTION

1. CONSTITUTIONAL CHALLENGES

TO CRYPTOGRAPHIC REGULATIONS

1

2

2. CRYPTOGRAPHY AND CRYPTOSYSTEMS 4

2.1. What Is Cryptography? 4

2.2. Who Uses Cryptography? 5

2.3. The Government's View of Cryptography 6

2.4. Cryptosystems 7

2.4.1. Cryptanalysis and Attacks on Cryptosystems 8

2.5. Basic Terminology 11

2.6. Basic Cryptographic Algorithms 12

2.6.1. Types of Ciphers 13

2.6.2. Strength of Cryptographic Algorithms 13

2.6.3. Key Exchange Algorithm 15

2.7. Cryptographic Hash Functions 18

2.8. Encryption Methods 19

2.8.1. Symmetric (Secret key) 19

2.8.2. Asymmetric (Public key) 21

2.9. What are the Advantages and Disadvantages

Of Public-Key Cryptography Compared

With Secret-Key Cryptography 22

lV

2.10. Public Key Infrastructure (PKI)

2.10.1 Message Integrity

24

25

3. MESSAGE AUTHENTICATION AND HASH

FUNCTIONS 26

3.1. Overview 26

3.2. Authentication Requirements 26

3.3. Authentication Functions 27

3.4. Message Authentication Codes 41

3.5. Hash Functions 44

3.6. Security of Hash Functions and MACs 46

4. DIGITAL SIGNATURE AND AUTHENTICATION

PROTOCOLS 51

4.1. Overview 51

4.2. Digital Signature 51

4.3. Authentication Protocols 57

4.4. Digital Signature Standard 61

CONCLUSION

REFERENCES

APPENDIX A

66

67

Comparison of Asymmetric, Symmetric and

Hash Algorithm Methods 68

V

INTRODUCTION

Encryption is the transformation of data into some unreadable form. Its purpose is to

ensure privacy by keeping the information hidden from anyone for whom it is not

intended, even those who can see the encrypted data. Decryption is the reverse of

encryption; it is the transformation of encrypted data back into some intelligible form.

But today's cryptography is more than secret writing, more than encryption and

decryption. Authentication is as fundamental a part of our lives as privacy.

The Thesis Consists oflntroduction, Four chapter and Conclusion:

The Chapter one; Cryptography, to most people, is concerned with keeping

communications private. Indeed, the protection of sensitive communications has been

the emphasis of cryptography throughout much of its history.

Chapter two; Traditional cryptography is based on the sender and receiver of a message

knowing and using the same secret key: the sender uses the secret key to encrypt the

message, and the receiver uses the same secret key to decrypt the message. Asymmetric

cryptosystems use one key (the public key) to encrypt a message and a different key

(the private key) to decrypt it.

Chapter three; This chapter begins with an introduction to the requirements for

authentication and digital signature and the types of attacks to be countered. Then the

basic approaches are surveyed, including the increasingly important area of source hash

functions.

Chapter four; This chapter begins with an overview of digital signatures. Then we look

at authentication protocols, many of which depend on the use of the digital signature.

Finally, we introduce the Digital Signature Standard (DSS).

1

1. CONSTITUTIONAL CHALLENGES TO CRYPTOGRAPHIC

REGULATIONS

Our Founding Fathers penned the First Amendment over two hundred years ago,

and its speech protections are applicable today to regulations of electronic speech.

Although technology has radically changed since 1791, the Speech Clause has always

kept pace with new technology and the free exchange of ideas and information. It is

fitting that as we approach the twenty-first century--an era denoted as the Information

Age that the First Amendment be given the opportunity to flex its muscles with regard

to the Internet.

The Internet is a vast wealth of ideas and expression which draws its strength

from its diversity. The Internet allows people from across the globe to come together to

do business, debate worldly events, and share discoveries without regard to distances or

borders. The accessibility of cyberspace has enabled more people to take active roles in

communication because of the ease in placing information at the fingertips of others.

Thus, people have become active producers and publishers of information on practically

any topic imaginable.

Although technology has opened new First Amendment doors to promote free

speech, it has also created new privacy concerns. Because much of today's electronic

communication occurs in the form of e-mail, modem technology allows those messages

to be tracked and stored by unintended recipients--namely the government. In addition,

as more commerce takes place online, vital information about personal financial

condition or personal tastes and preferences may become available to anyone with the

motive to take advantage of the unsuspecting. To prevent Internet communication and

commerce from becoming no more private than mailing a post card, technology has yet

again delivered an answer.

Encryption technologies serve as the locks and keys of cyberspace. Cryptography

has created new opportunities to protect our private communications and intimate

information so that this electronic medium can continue to grow. Industry and

commerce can prosper with the assurance that information and trade secrets can be

transferred electronically with security. However, the increasing popularity of

2

encryption technology has raised the ire of the government in the name of national

security. In an effort to control the rapid growth of cryptography, the government has

enacted laws controlling cryptography's development and dissemination. The laws have

the effect of inhibiting the free flow of ideas among people who wish to communicate in

this manner. The existing laws remove an entire area of communication from public

debate and pose the potential to bar the First Amendment from electronic

communication.

This Article focuses on the constitutional issues surrounding the development of

cryptographic technology and suggests that existing regulations fail to pass

constitutional muster. Three cases have arisen in the federal courts challenging

governmental restrictions on the development and dissemination of cryptography, and

the courts have taken contrasting views of the First Amendment issues involved.

Because of the importance of these issues and the potential effects of divergent rulings

in lower courts, the Supreme Court may have to make the final decision. This Article

asserts that if this issue reaches the Supreme Court, the Court should find the

cryptographic regulations to be an unconstitutional suppression of free speech.

Moreover, this Article proposes that the current regulations be stricken in favor of

pending legislation before Congress.

3

2. CRYPTOGRAPHY ANUCRYPTOSYSTEMS

2.1 What Is Cryptography?

Cryptography is the art of creating and using methods of disguising messages,

using codes, ciphers, and other methods, so that only certain people can see the real

message. The process of disguising the substance of messages into incomprehensible

data is called encryption. The encryption process converts the undisguised message, or

plaintext, into unintelligible cipher text. After the message has been encrypted, it may

be transformed back to plaintext in a process called decryption. The tool which

performs the conversion is a cipher, which is a method of encryption that utilizes a

mathematical algorithm to convert any text regardless of its content. As an added level

of security, today's algorithms use a key which consists of a sequence of computer code

to activate the algorithm to encrypt and decrypt messages. The key is input into the

algorithm to successfully perform the desired conversion.

The strength of a coded communication is greatly dependent upon the key, for the

algorithm itself is worthless without the key to decrypt the message. Early encryption

techniques employed a single key system that was required to both encrypt and decrypt

the message. This type of system was vulnerable because a separate key was needed for

each pair of users who exchanged messages, and both sides had to keep the key secret to

keep the system secure.

In the mid 1980s, a more secure key system was developed to solve the single key

exchange problem. The system of public key cryptography was created to utilize a

public and a private key to encrypt and decrypt messages. Under this scheme, each

party establishes a unique private key which only the owner knows and a unique public

key which everyone knows. Public keys may be published freely in directories similar

to phone books to aid senders in locating a potential recipient's public key, but private

keys must be kept secret by their owner.

Consider the following example: Sam completes a message to Ruth in plaintext

form. Upon completion, Sam encodes the message with Ruth's public key. When Ruth

receives the message in cipher text from Sam, she uses her private key to decode the

4

message into plaintext. To send a message back to Sam, Ruth encodes her message with

the use of Sam's public key. Sam then uses his private key to decode the message.

Ruth and Sam have not compromised their private keys. Knowledge of the public

ey in no way compromises the identity of the private key. The system is extremely

secure, as virtually the only way to break security is for either Ruth or Sam to give away

their private keys. Public key cryptographic technology has delivered military-grade

ayptography with the level of security so high that even the ultra-secret, code-breaking

computers at the National Security Agency cannot decipher the encrypted messages.

2.2 Who Uses Cryptography?

One of the earliest examples of cryptography was used by Julius Caesar when he

sent military messages to his armies. Perhaps since that time, people have also tried to

decode encrypted messages. Allies in World War II were able to break a secret German

code called Enigma. This discovery enabled Allied forces to locate and sink many

German U-boats; moreover, they were able to obtain advanced information about

German military operations that was critical to the campaign in Europe. Similar code­

breaking ability also allowed the United States Navy to intercept the Japanese fleet in

one of the most decisive battles in the Pacific--The Battle of Midway. These are just a

few examples of how cryptographic technology has played an important role in history.

Until recently, cryptography has primarily been the vital and exclusive tool of

governments, not the public; however, a demand for private encryption technology has

arisen with the growth of advanced computer technology. Today, many individuals and

businesses want or need secure communications. For example, encryption is heavily

used in the banking industry to ensure the security of electronic fund transfers. In 1994,

an international group of criminals attempted to electronically steal twelve million

dollars from Citicorp. As a result of the attempted heist, financial institutions around the

world increased their authentication capabilities for electronic fund transfers. Banks also

encrypt ATM customer identification numbers and the data on the cards to prevent

unauthorized modification and forgery. As targets of industrial espionage, many U.S.

corporations seek to secure communications to protect their intellectual property and

other sensitive market information. Exponential growths in the Internet and the

5

popularity of e-mail have given rise to encryption needs. Because cryptography can

deliver secure transactions and communications on an unsecured worldwide computer

network, the technology is essential to the commercial expansion of the Internet.

2.3 The Government's View of Cryptography

The early uses of cryptography were primarily for intelligence gathering and

securing military communications, the Defense Department, through the National

Security Agency (NSA), has played a key role in developing the science and controlling

its use in the United States and abroad. The NSA has continuously attempted to control

the development and expansion of cryptography in the private sector because it views

the technology as a threat to national security. The NSA has tried to slow the growth

and dissemination of cryptography by controlling public funding, patent publications,

and presentation of scientific papers at academic conferences. To accomplish the NSA's

task, the government has enacted export control laws to restrict the exportation and

dissemination of encryption software.

One of the first laws enacted to regulate cryptography authorized the President,

under the Arms Export Control Act (AECA), to control the export and import of

defense articles and services by designating them as munitions on the United States

Munitions List (USML). Regulatory responsibility for the AECA was vested in the

Department of State, which instituted the International Traffic in Arms Regulations

(IT AR) for administration of this task.

Once an item is placed on the USML, it must be licensed before it can be imported

or exported. Requests to license items listed on the USML are made to the Office of

Defense Trade Controls (ODTC), which considers requests on a case-by-case-basis. The

IT AR provides for a commodity jurisdiction procedure allowing the ODTC to

determine whether an article or service is covered by the USML. If an article is not

listed on the USML, then it can be freely exported.

The USML's scope includes articles such as "military tanks, combat engineer

vehicles, bridge launching vehicles, half-tracks and gun carriers." The USML also

considers encryption technology as a "monition" having been "specifically designed,

developed, configured, adapted, or modified for a military application "

6

The IT AR is not the only law controlling the development and dissemination of

cryptography. In November 1996, President Clinton by Executive Order transferred

jurisdiction over the export of nonmilitary encryption products to the Department of

Commerce. The order removed encryption products that would qualify as defense

articles under the USML and placed them on the Commerce Control List under the

authority of the Export Administration Regulations (EAR).

Shortly after the President signed the order, the Commerce Department issued an

interim rule regulating the export of encryption products. The Commerce Department

declared that encryption items include all "encryption commodities, software, and

technology that contain encryption features and are subject to the EAR." The EAR

considers export as the downloading, or causing the downloading of software through

Internet file transfer protocol locations, to bulletin boards, and on World Wide Web

sites. To disseminate information subject to the EAR, one must obtain a license prior to

any transmission.

Even with the EAR, encryption products with military application remain under the

power of the ITAR. Because both the ITAR and EAR have control over cryptography, it

is necessary to examine the constitutional ramifications of each to discover potential

problems in the two laws.

2.4 Cryptosystems

There are two kinds of cryptosystems: symmetric and asymmetric. Symmetric

cryptosystems use the same key (the secret key) to encrypt and decrypt a message, and

asymmetric cryptosystems use one key (the public key) to encrypt a message and a

different key (the private key) to decrypt it. Asymmetric cryptosystems are also called

public key cryptosystems.

Symmetric cryptosystems have a problem: how do you transport the secret key

from the sender to the recipient securely and in a tamperproof fashion? If you could

send the secret key securely, then, in theory, you wouldn't need the symmetric

cryptosystem in the first place because you would simply use that secure channel to

send your message. Frequently, trusted couriers are used as a solution to this problem.

7

Another, more efficient and reliable solution is a public key cryptosystem, such as

A, which is used in the popular security tool PGP .

. 1 Cryptanalysis and Attacks on Cryptosystems

Cryptanalysis is the art of deciphering encrypted communications without

,wing the proper keys. There are many cryptanalytic techniques. Some of the more

rtant ones for a system implementer are described below.

text-only attack: This is the situation where the attacker does not know

mntbing about the contents of the message, and must work from cipher text only. In

ice it is quite often possible to make guesses about the plaintext, as many types of

messages have fixed format headers. Even ordinary letters and documents begin in a

predictable way. For example, many classical attacks use frequency analysis of the

....._.. text; however, this does not work well against modem ciphers.

Modem cryptosystems are not weak against cipher text-only attacks, although

smietimes they are considered with the added assumption that the message contains

statistical bias.

,wn-plaintext attack: The attacker knows or can guess the plaintext for some parts

the cipher text. The task is to decrypt the rest of the cipher text blocks using this

••• 11. mation. This may be done by determining the key used to encrypt the data, or via

shortcut.

One of the best known modern known-plaintext attacks is linear cryptanalysis

~ block ciphers.

~n-plaintext attack: The attacker is able to have any text he likes encrypted with

unknown key. The task is to determine the key used for encryption. A good example

this attack is the differential cryptanalysis which can be applied against block

· hers.

Some cryptosystems, particularly RSA, are vulnerable to chosen-plaintext attacks.

such algorithms are used, care must be taken to design the application so that an

er can never have chosen plaintext encrypted.

8

Man-in-the-middle attack: This attack is relevant for cryptographic communication

and key exchange protocols. The idea is that when two parties, A and B, are exchanging

keys for secure communication, an adversary positions himself between A and B on the

communication line. The adversary then intercepts the signals that A and B send to each

other, and performs a key exchange with A and B separately. A and B will end up using

a different key, each of which is known to the adversary (hacker). The adversary can

then decrypt any communication from A with the key he shares with A, and then

resends the communication to B by encrypting it again with the key he shares with B.

Both A and B will think that they are communicating securely, but in fact the adversary

is hearing everything.

Figure 2.1 Man in the middle attack

The usual way to prevent the man-in-the-middle attack is to use a public key

cryptosystem capable of providing digital signatures. For set up, the parties must know

each others public keys in advance. After the shared secret has been generated, the

· es send digital signatures of it to each other. The man-in-the-middle can attempt to

e these signatures, but fails because he cannot fake the signatures.

Correlation between the secret key and the output of the cryptosystem is the main

source of information to the cryptanalyst. In the easiest case, the information about the

secret key is directly leaked by the cryptosystem. More complicated cases require

studying the correlation between the observed information about tne cryptosy::,tem anu

the guessed key information.

For example, in linear attacks against block ciphers the cryptanalyst studies the

known plain text and the observed cipher text. Guessing some of the key bits of the

cryptosystem the analyst determines by correlation between the plaintext and the cipher
text whether she guessed correctly. This can be repeated, and has many variations.

9

The differential cryptanalysis introduced by Eli Biham and Adi Shamir in late

l 980's was the first attack that fully utilized this idea against block ciphers. Later

Mitsuru Matsui came up with linear cryptanalysis which was even more effective

against DES. More recently, new attacks using similar ideas have been developed.

The correlation idea is fundamental to cryptography and several researchers have

tried to construct cryptosystems which are provably secure against such attacks.

Attack against or using the underlying hardware: in the last few years as more and

smaller mobile crypto devices have come into widespread use, a new category of attacks

has become relevant which aim directly at the hardware implementation of the

cryptosystem.

The attacks use the data from very fine measurements of the crypto device doing,

say, encryption and compute key information from these measurements. The basic ideas

are then closely related to those in other correlation attacks. For instance, the attacker

guesses some key bits and attempts to verify the correctness of the guess by studying

correlation against her measurements.

Several attacks have been proposed such as using careful timings of the device,

fine measurements of the power consumption, and radiation patterns. These

measurements can be used to obtain the secret key or other kinds information stored on

the device.

This attack is generally independent of the used crypto graphical algorithms and

can be applied to any device that is not explicitly protected against it.

Faults in cryptosystems can lead to cryptanalysis and even the discovery of the

secret key. The interests in crypto graphical devices lead to the discovery that some

algorithms behaved very badly with the introduction of small faults in the internal

computation.

For example, the usual implementations of RSA private key operations are very

susceptible to fault attacks. It has been shown that by causing one bit of error at a

suitable point can reveal the factorization of the modulus.

10

Similar ideas have been applied to a wide range of algorithms and devices. It is

thus necessary that crypto graphical devices are designed to be highly resistant against

faults.

DNA cryptography: Leonard Adleman (one of the inventors of RSA) came up with the

idea of using DNA as computers. DNA molecules could be viewed as a very large

computer capable of parallel execution. This parallel nature could give DNA computers

exponential speed-up against modern serial computers.

There are unfortunately problems with DNA computers, one being that the

exponential speed-up requires also exponential growth in the volume of the material

needed. Thus in practice DNA computers would have limits on their performance. Also,

it is not very easy to build one.

There are many other cryptographic attacks and cryptanalysis techniques.

However, these are probably the most important ones for an application designer.

Anyone contemplating to design a new cryptosystem should have a much deeper

understanding of these issues.

2.5 Basic Terminology

Suppose that someone wants to send a message to a receiver, and wants to be sure

that no-one else can read the message. However, there is the possibility that someone

else opens the letter or hears the electronic communication.

In cryptographic terminology, the message is called plaintext or clear text.

Encoding the contents of the message in such a way that hides its contents from

outsiders is called encryption. The encrypted message is called the cipher text. The

process of retrieving the plaintext from the cipher text is called decryption. Encryption

and decryption usually make use of a key, and the coding method is such that

decryption can be performed only by knowing the proper key.

11

Cryptography is the art or science of keeping messages secret. Cryptanalysis is the

art of breaking ciphers, i.e. retrieving_ the plaintext without knowing the proper key.

People who do cryptography are cryptographers, and practitioners of cryptanalysis are

cryptanal ysts.

Cryptography deals with all aspects of secure messaging, authentication, digital

signatures, electronic money, and other applications. Cryptology is the branch of

mathematics that studies the mathematical foundations of cryptographic methods.

2.6 Basic Cryptographic Algorithms

A method of encryption and decryption is called a cipher. Some cryptographic

methods rely on the secrecy of the algorithms; such algorithms are only of historical

interest and are not adequate for real-world needs. All modern algorithms use a key to

control encryption and decryption; a message can be decrypted only if the key matches

the encryption key.

There are two classes of key-based encryption algorithms, symmetric (or secret­

key) and asymmetric (or public-key) algorithms. The difference is that symmetric

algorithms use the same key for encryption and decryption (or the decryption key is

easily derived from the encryption key), whereas asymmetric algorithms use a different

key for encryption and decryption, and the decryption key cannot be derived from the

encryption key.

Symmetric algorithms can be divided into stream ciphers and block ciphers.

Stream ciphers can encrypt a single bit of plaintext at a time, whereas block ciphers take

a number of bits (typically 64 bits in modern ciphers), and encrypt them as a single unit.

Many symmetric ciphers are described on the algorithms page. Asymmetric ciphers

(also called public-key algorithms or generally public-key cryptography) permit the

encryption key to be public, allowing anyone to encrypt with the key, whereas only the

proper recipient can decrypt the message. The encryption key is also called the public

key and the decryption key the private key or secret key.

12

Modem cryptographic algorithms are no longer pencil-and-paper ciphers. Strong

cryptographic algorithms are designed to be executed by computers or specialized

hardware devices. In most applications, cryptography is done in computer software.

Generally, symmetric algorithms are much faster to execute on a computer than

asymmetric ones. In practice they are often used together, so that a public-key algorithm

is used to encrypt a randomly generated encryption key, and the random key is used to

encrypt the actual message using a symmetric algorithm. This is sometimes called

hybrid encryption.

2.6.1 Types of Ciphers

Block cipher: Manipulate a group of bits. Typically implemented with software using

substitution-box (S-box),

Stream cipher: Manipulate bit or byte. Typically in hardware.

Typically, a block-cipher method is implemented with software while a stream-cipher is

in hardware format.

Here we will talk about some basic cipher types. Be aware that any simple ciphers

are vulnerable to frequency analysis, which means often used words are easy to be

guesses out. As a result, a polyalphabetic cipher is better than one alphabetic cipher to

defeat frequency analysis

A strong cipher algorithm;

• Long period of no repeating pattern within key stream values,

• Statically unpredictable,

• The key stream is not linearly related to the key,

• Statically unbiased key stream (as many O's as l's)

Substitution cipher: It replaces the original information with other in formations

13

2.6.2 Strength of Cryptographic Algorithms

Good cryptographic systems should always be designed so that they are as

difficult to break as possible. It is _possible to build systems that cannot be broken in

practice. This does not significantly increase system implementation effort; however,

some care and expertise is required. There is no excuse for a system designer to leave

the system breakable. Any mechanisms that can be used to circumvent security must be

made explicit, documented, and brought into the attention of the end users.

In theory, any cryptographic method with a key can be broken by trying all

possible keys in sequence. If using brute force to try all keys is the only option, the

required computing power increases exponentially with the length of the key. A 32 bit

key takes 232 (about 109) steps. This is something anyone can do on his/her home

computer. A system with 40 bit keys takes 240 steps - this kind of computation requires

something like a week (depending on the efficiency of the algorithm) on a modern

home computer. A system with 56 bit keys (such as DES) takes a substantial effort, but

is easily breakable with special hardware. The cost of the special hardware is substantial

but easily within reach of organized criminals, major companies, and governments.

Keys with 64 bits are probably breakable now by major governments, and within reach

of organized criminals, major companies, and lesser governments in few years. Keys

with 80 bits appear good for a few years, and keys with 128 bits will probably remain

unbreakable by brute force for the foreseeable future. Even larger keys are sometimes

used.

However, key length is not the only relevant issue. Many ciphers can be broken

without trying all possible keys. In general, it is very difficult to design ciphers that

could not be broken more effectively using other methods. Designing your own ciphers

may be fun, but it is not recommended for real applications unless you are a true expert

and know exactly what you are doing.

One should generally be very wary of unpublished or secret algorithms. Quite

often the designer is then not sure of the security of the algorithm, or its security

depends on the secrecy of the algorithm. Generally, no algorithm that depends on the

secrecy of the algorithm is secure. Particularly in software, anyone can hire someone to

14

disassemble and reverse-engineer the algorithm. Experience has shown that the vast

majority of secret algorithms that have become public knowledge later have been

pitifully weak in reality.

The key lengths used in public-key cryptography are usually much longer than

those used in symmetric ciphers. This is caused by the extra structure that is available to

the cryptanalyst. There the problem is not that of guessing the right key, but deriving the

matching secret key from the public key. In the case of RSA, this could be done by

factoring a large integer that has two large prime factors. In the case of some other

cryptosystems it is equivalent to computing the discrete logarithm modulo a large

integer (which is believed to be roughly comparable to factoring when the module is a

large prime number). There are public key cryptosystems based on yet other problems.

To give some idea of the complexity for the RSA cryptosystem, a 256 bit modulus

is easily factored at home, and 512 bit keys can be broken by university research groups

within a few months. Keys with 768 bits are probably not secure in the long term. Keys

with 1024 bits and more should be safe for now unless major crypto graphical advances

are made against RSA; keys of 2048 bits are considered by many to be secure for

decades.

It should be emphasized that the strength of a cryptographic system is usually

equal to its weakest link. No aspect of the system design should be overlooked, from the

choice algorithms to the key distribution and usage policies.

2.6.3 Key Exchange Algorithm

Sometimes, people need secure communication to exchange keys. A couple of

suggested algorithms is listed below.

Algorithm 1: Diffie-Hellman,

This is the first public-key algorithm. It involves exchanging keys. Alice and Bob know

a large integer n and g (less then n, greater then 1). Assume these numbers are known

by anyone.

15

1. Alice- generates large integer x, solves A=g/\x mod n, sends A to Bob.

2. Bob- generates large integer y, solves B=g/\y mod n, sends B to Alice.

3. Alice- solves K(A)=B/\x mod n.

4. Bob- solves K(B)=A/\y mod n

5. Both Alice and Bob have K(A)=K(B)

One thing to remember is that n has to be no smaller then 512 bits.

Algorithm 2: Public-key cryptography

This is an easy algorithm, and Alice can either ask Bob for his public key or get it from

a database.

1. Alice- asks Bob for his public key (or gets it from a database), generates a

session key, encrypts it with Bob's public key, sends it to Bob

2. Bob decrypts the session key with his private key
3. Alice and Bob share the same session key with which they can encrypt messages

to each other

Algorithm 3: Public-key cryptography

This is probably the easiest public-key exchange algorithm created. It does not involve

any session keys and is really straightforward.

1. Alice- Asks Bob for his public key

2. Bob- Asks Alice for her public key
3. Alice- Encrypts her message with Bob's public key, sends it to Bob
4. Bob decrypts Alice's message using his private key, encrypts his reply with

Alice's public key
5. Alice decrypts Bob's reply with her private key and reads the message

WARNING: Although, this is an easy algorithm, it is not at all safe. There is an attack

that can destroy this algorithm's purpose. It is called man-in-the-middle attack. In a

nutshell, when Alice and Bob exchange their public keys, the interceptor can substitute

their public keys for his own.

16

Algorithm 4: Fooling man-in-the-middle attack

There is one algorithm created by Ron Rivest and Adi Shamir that prevents the man-in­

the-middle attack. It is called the interlock protocol. Although not fully secure, this

algorithm has a good chance to prevent the man-in-the-middle.

1. Alice- Sends Bob her public key

2. Bob- Sends Alice his public key

3. Alice- Encrypts her message with Bob's private key, sends half of the message

to Bob

4. Bob- Encrypts his message sends half of it to Alice.

5. Alice- Sends second part of her message to Bob

6. Bob- Decrypts Alice's message sends second half of his message to Alice

7. Alice- Decrypts Bob's message

Algorithm 5: Symmetric Cryptography

This algorithm requires a Key Distribution Center (KDC) to generate a random session

key for Bob and Alice.

1. Alice- requests a session key from KDC
2. KDC- generates a session key, encrypts it with Alice's and Bob's public keys,

sends both copies to Alice
3. Alice- decrypts her session key with her private key, sends Bob's copy to Bob

4. Bob- decrypts the received session key with his private key

5. Now Alice and Bob have the same session key to communicate with

Considering that Bob does not know Alice, she might want to include some info about

her in Bob's copy of the session key.

17

Algorithm 6: Message + key sending

Alice can send Bob her message and the key in the same message.

1. Alice- Generates a random session key, encrypts her message with it, finds

Bob's public key, encrypts session key with Bob's public key. Sends all of it to

Bob.

2. Bob- decrypts the session key, decrypts message.

This algorithm can fall to a man-in-the-middle attack, if Alice gets the key of not Bob,

but an impostor.

2. 7 Cryptographic Hash Functions

Cryptographic hash functions are used in various contexts, for example to

compute the message digest when making a digital signature. A hash function

compresses the bits of a message to a fixed-size hash value in a way that distributes the

possible messages evenly among the possible hash values. A cryptographic hash

function does this in a way that makes it extremely difficult to come up with a message

that would hash to a particular hash value.

Cryptographic hash functions typically produce hash values of 128 or more bits.

This number (2128) is vastly larger than the number of different messages likely to ever

be exchanged in the world. The reason for requiring more than 128 bits is based on the

birthday paradox. The birthday paradox roughly states that given a hash function

mapping any message to an 128-bit hash digest, we can expect that the same digest will

be computed twice when 264 randomly selected messages have been hashed. As cheaper

memory chips for computers become available it may become necessary to require

larger than 128 bit message digests (such as 160 bits as has become standard recently).

Many good cryptographic hash functions are freely available. The most famous

cryptographic hash functions are those of the MD family, in particular MD4 and MOS.

MD4 has been broken, and MOS, although still in widespread use, should be considered

insecure as well.

18

2.8 Encryption Methods

2.8.1 Symmetric (secret key)

Symmetric encryption means a secret key is shared by a peer. It is faster than the

asymmetric methods and is hard to break if the key size is large. But it has some

weaknesses:

• Key distribution: how to deliver the secret keys? It might be very unsafe

• Scalability: if a person has lots of person to talk to, he has to maintain a large

key data set

• Limited security: no way to do authentication and no repudiation.

Often used symmetric algorithms include:

• DES (64 bits block, 64 bits key (56 bits - 8 bits parity), 16 rounds of

transposition and substitution)

• 2DES(l 12 bit key, same work factor as DES)

• 3DES (168 bits key, 48 rounds, it takes 3 times longer than DES to encrypt and

decrypt, 256 times stronger than DES)

• AES (128, 192 or 256-bit key)

• Blowfish

• IDEA

• RC4, RCS, RC6

DES, Double DES, 3DES

DES originated from IBM, which was known as the Lucifer project, it became the

data encryption standard in 1978 and was broken in 1998 in 3 days with a $250,000

computer. After that, the algorithm has been evolved to double-DES and 3DES. But the

new versions are not admitted as standard, which is replaced by Rijndael algorithm, and

is known as Advanced Encryption Standard (AES).

19

DES has four operation modes:

• Electronic Code Book (ECB) mode:

o It is the native method for DES

o It adds padding to neat and tidy 64-bit blocks

o Code book provides the recipe of substitution and permutation

o It doesn't require encrypt on order, the part after another part could be

encrypted first
o Not for large file, because it could reveal the encryption pattern, same

plaintext--> same cipher text
o Usually used for challenge-response operation and key management, PIN

in ATM machine

• Cipher Block Chaining (CBC) mode

o Not reveal pattern
o The encryption of each block is dependent on all the blocks before it

o It uses key and a value generated by previous blocks to calculate

• Cipher Feedback (CFB) mode
o like CBC, but the previous cipher block is used to calculate the new

cipher text

• Output Feedback (OFB) mode
o Like CBC, but treat new block as stream

AES

• block cipher
• used to protect unclassified US government information

IDEA (International Data Encryption Algorithm)

• block cipher
• 64-bit block is divided into 16 sub-blocks, each with 8 rounds

• used in PGP

20

Blowfish

• 64 bit block, key length up to 448 bits, 16 rounds

RCS

• changeable block size and key size

• block size: 32, 64 or 128

• key size up to 2048

2.8.2 Asymmetric (public key)

It is the well known public key and private key method. Although it is slower than

the symmetric method, but it does provide better key distribution security

(confidentiality, authentication, no repudiation), and it is more scalable. It has three

formats:

• Secure message format: Encrypted with receiver's public key, so only the

receiver can decrypt it. It protect the confidentiality of a message, but not

authentication.

• Open Message format: Encrypted with sender's private key, so anybody who

has his public key can decrypt the message. So it provides authentication but no

connuent1ah\.,r
• Secure and signed format: It is a double encryption method which encrypts a

message with the sender's private key at first then with the receiver's public key.

Some algorithms falls into this category are:

• RSA

• ECC

• Diffie-Hellman

• EL Gamal

• Digital Signature Standard (DSS)

21

RSA

• A pair of large prime numbers

• Used for encryption and digital signature

• Running in SSL in web browser

• PGP also uses it

El Gamal: Digital signature key exchange

Elliptic Curve Cryptosystems (ECCs): Same functionality with RSA, more efficient

DitTe-Hellman

• It is the first algorithm came up with public key I private key concepts

• It is used only for key distribution, not encrypting message

2.9 What are the Advantages and Disadvantages of Public-Key
Cryptography Compared with Secret-Key Cryptography?

The primary advantage of public-key cryptography is increased security and

convenience: private keys never need to transmitted or revealed to anyone. In a secret­

key system, by contrast, the secret keys must be transmitted, and there may be a chance

that an enemy can discover the secret keys during their transmission.

Another major advantage of public-key systems is that they can provide a method

for digital signatures. Authentication via secret-key systems requires the sharing of

some secret and sometimes requires trust of a third party as well. As a result, a sender

can repudiate a previously authenticated message by claiming that the shared secret was

somehow compromised by one of the parties sharing the secret. For example, the

Kerberos secret-key authentication system involves a central database that keeps copies

of the secret keys of all users; an attack on the database would allow widespread

forgery. Public-key authentication, on the other hand, prevents this type of repudiation;

each user has sole responsibility for protecting his or her private key. This property of

public-key authentication is often called non-repudiation.

22

A disadvantage of using public-key cryptography for encryption is speed: there

are popular secret-key encryption methods that are significantly faster than any

currently available public-key encryption method. Nevertheless, public-key

cryptography can be used with secret-key cryptography to get the best of both worlds.

For encryption, the best solution is to combine public- and secret-key systems in order

to get both the security advantages of public-key systems and the speed advantages of

secret-key systems. The public-key system can be used to encrypt a secret key which is

used to encrypt the bulk of a file or 'message. Such a protocol is called a digital

envelope, which is explained in more detail in the case of RSA.

Public-key cryptography may be vulnerable to impersonation, however, even if

users' private keys are not available. A successful attack on a certification authority will

allow an adversary to impersonate whomever the adversary chooses to by using a

public-key certificate from the compromised authority to bind a key of the adversary's

choice to the name of another user.

In some situations, public-key cryptography is not necessary and secret-key

cryptography alone is sufficient. This includes environments where secure secret-key

agreement can take place, for example by users meeting in private. It also includes

environments where a single authority knows and manages all the keys, e.g., a closed

banking system. Since the authority knows everyone's keys already, there is not much

advantage for some to be "public" arid others "private." Also, public-key cryptography

is usually not necessary in a single-user environment. For example, if you want to keep

your personal files encrypted, you can do so with any secret-key encryption algorithm

using, say, your personal password as the secret key. In general, public-key

cryptography is best suited for an open multi-user environment.

Public-key cryptography is not meant to replace secret-key cryptography, but

rather to supplement it, to make it more secure. The first use of public-key techniques

was for secure key exchange in an otherwise secret-key system; this is still one of its

primary functions. Secret-key cryptography remains extremely important and is the

subject of much ongoing study and research. Some secret-key cryptosystems are

discussed in the sections on block ciphers and stream ciphers.

23

2.10 Public Key Infrastructure (PKI)

Rather than being an encryption algorithm, PKI is a framework that uses public

key cryptography and X. 509 standard protocols.

CA CertifJCate
Authorities

,·
,>'

.• ..
Registration
Authorities

· .•.
.. -,.

Figure 2.2 X.509 Standard Protocols

Only a CA can issue certificate to user, a RA can hand out the certificate on

behalf of a CA Currently, most of the certificates are X. 509 V3.

• Encrypt -+ confidentiality

• Hash -+ integrity

• Digital sign ---... integrity + authentication
• Encrypt + Digital sign ---... confidentiality + integrity + authentication

A certificate could be revoked under some circumstance. Revoked certificates are

kept on the Certificate Revocation List (CRL). One user can have multiple keys under

PKI for different levels strength.

Some other terms

• One-way function: a function computer easier in one way than its opposite

direction. i.e., encryption is easier than decryption;

• Trap door one-way function: It is almost impossible to do the calculation in

the opposite way unless you have a trapdoor, i.e., a private key

24

2.10.1 Message Integrity

Parity is used to deal with unintentional modification, such as disturbance in

wire ... Hash is used to protect message's integrity.

By hash algorithms, different message should produce different hash value; this is

called collision free, repetitive free or resistant to birthday attack.

One-way hash: Takes a file and transfers it into a fixed-length value, aka, hash value,

or message digest.

Message Authentication Code (MAC): One-way hash value that is encrypted with a

symmetric key. It is expected to be never performed in reverse.

One-time pad random number used only once, same length with message. It is

impractical.

Rules for key management;

• Key should be long enough

• Stored and transmitted by secure means

• Extremely random and use full spectrum of the key space

• key lifetime is corresponded with message sensitivity

• The more a key is used, the shorter its life should be

• Backup or escrowed

• Destroyed after lifetime

25

3. MESSAGE AUTHENTICATION AND HASH FUNCTIONS

3.1 Overview
Perhaps the most confusing area of network security is that of message

authentication and the related topics of digital signatures. The attacks and

countermeasures become so convoluted that practitioners in this area begin to remind

one of the astronomers of old, who built epicycles on top epicycles in an attempt to

account for all contingencies. Fortunately, it appears that today's designers of

cryptographic protocols, unlike those long-forgotten astronomers, are working from a

fundamentally sound model.

It would be impossible, in anything less than book length, to exhaust all the

cryptographic functions and protocols that have been proposed or implemented for

message authentication and digital signatures. Instead, the purpose of this chapter and

the next two is to provide a broad overview of the subject and to a develop a systematic

means of describing the various approaches.

3.2 Authentication Requirements
In the context of communications across a network, the following attacks can be

identified:

1. Disclosure: Release of message contents to any person or process not

possessing the appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a

connection-oriented application, the frequency and duration of connections

could be determined. In either a connection-oriented or connectionless

environment, the number and length of messages between parties could be

determined,

3. Masquerade: Insertion of messages into the network from a fraudulent source.

This includes the creation of messages by an opponent that are purported to

come from an authorized entity. Also included are fraudulent acknowledgements

of messages receipt or no receipt by someone other than the message recipient.

26

4. Content modification: Changes to the contents of a message, including

insertion, deletion, transposition and modification.

5. Sequence modification: Any modification to a sequence of messages between

parties, including insertion, deletion and reordering.

6. Timing modification: Delay or replay of messages. In a connection-oriented

application, an entire session or sequence of messages could be a replay of some

previous valid session, or individual messages in the sequence could be delayed

or replayed. In a connectionless application, an individual message

(e.g., datagram) could be delayed or replayed.

7. Repudiation: Denial of receipt of message by destination or denial of

transmission of message by source.

Measured to deal with the first two attacks are in the realm of message

confidentiality and are dealt with in Part One. Measures to deal with items 3 through 6

in the foregoing list are generally regarded as message authentication. Mechanisms for

dealing specifically with item 7 come under the heading of digital signatures. Generally,

a digital signature technique will also counter some or all the attacks listed under items

3 through 6.

3.3 Authentication Functions
Any message authentication or digital signature mechanism can be viewed as

having fundamentally two levels. At the lower level, there must be some sort of

function that produces an authenticator: a value to be used to authenticate a message.

This lower level function is then used as primitive in a higher-level authentication

protocol that enables a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to produce

an authenticator. These may be grouped into three classes, as follows:

• Message encryption: The cipher text of the entire message serves as its

authenticator

• Message authentication code (MAC): A public function of the message and a

secret key that produces a fixed-length value that serves as the authenticator

27

• Hash function: A public function that maps a message of any length into a

fixed-length hash value, which serves as the authenticator

We now briefly examine each of these topics; MACs and hash functions are

examined in greater detail in Section 3. 3 and 3 .4.

Message Encryption
Message encryption by itself can provide a measure of authentication. The analysis

differs for conventional and public-key encryption schemes.

Conventional Encryption
Consider the straightforward use of conventional encryption (Figure 3. la). A message

transmitted from source A to destination B is encrypted using a secret key K shared by

A and B. If no other party knows the key, then confidentiality is provided: No other

party can recover the plaintext of the message.

In addition, we may say that B is assured that the message came was generated by

A. Why? The message must have come from A because A is the only other party that

possesses K and therefore the only other party with the information is recovered, B

knows that none of the bits of M have been altered, because an opponent that does not

know K would not know how to alter bits in the cipher text to produce desired changes

in the plaintext.

So we may say that conventional encryption provides authentication as well as

confidentiality. However, this flat statement needs to be qualified. Consider exactly

what is happening at B. Given a decryption function D and secret key K, the destination

will accept any input X and produce output Y = DK(X). If X is the cipher text of a
legitimate message M produced by the corresponding encryption function, then Y is

some plaintext message M. Otherwise, Y will be meaningless sequence of bits. There

may need to be some automated means of determining at B whether Y is legitimate

plaintext and therefore must have come from A.

28

The implications of the line of reasoning in the preceding paragraph are profound

from the point of view of authentication. Suppose the message M can be any arbitrary

bit pattern. In that case, there is no way to determine automatically, at the destination,

whether an incontrovertible: IfM can be any bit pattern, then regardless of the value of

X, Y = DK(X) is some bit pattern and therefore must be accepted as authentic plaintext.

••• Source ••• •• Destination--.

B ·er fl ·r ·G ·!~~.
,\'

K .Ex(M) K

(a) Conventional encryption: confidentiality and authentication

(b) Public-key encryption: confidentiality

M1 •I

(c) Public-key encryption: authentication and signature

M
M

(d) Public-key encryption: confidentiality, authentication, and signature

Figure 3.1 Basics Uses of Message Encryption

Thus, in general, we require that only a small subset of all possible bit patterns is

considered legitimate plaintext. In that case, any spurious cipher text is unlikely to

29

produce legitimate plaintext. For example, suppose that only one bit pattern in 106 is

legitimate plaintext. Then the probability that any randomly chosen bit pattern, treated

as cipher text, will produce a legitimate plaintext message is only 10-6.

For a number of applications and encryption schemes, the desired conditions prevail as

a matter of course. For example, suppose that we are transmitting English-language

messages using a Ceaser cipher with a shift of one (K = 1). A sends the following

legitimate cipher text:

nbsftfbupbutboeepftfbupbutboemjuumfmbnctfbujwz

B decrypts to produce the following plaintext:

mareseatoatsanddoeseatoatsandlittlelambseatitvy

A simple frequency analysis confirms that this message has the profile of ordinary

English. On the other hand, if an opponent generates the following random sequence of

letters:

zuvrsoevgqxlzwigamdvnmhpmccxiuureosfbcebtqxsxq

this decrypts to

ytuqrndufpwkyvhfzlcumlgolbbwhttqdnreabdaspwrwp

which does not fit the profile of ordinary English.

It may be difficult to determine automatically if incoming cipher text decrypts to

intelligible plaintext. If the plaintext is, say, a binary object file or digitized X-rays,

determination of properly formed and therefore authentic plaintext may be difficult.

Thus, an opponent could achieve a certain level of disruption simply by issuing

messages with random content purporting to come from a legitimate user.

One solution to this problem is to force the plaintext to have some structure that is

easily recognized but that cannot be replicated without recourse to the encryption

function. We could, for example, append an error-detecting code, also known as a frame

check sequence (FCS) or checksum, to each message before encryption, as illustrated in

Figure 3 .2a. A prepares a plaintext message M and then provides this as input to a

function F that produces an FCS. The FCS is appended to Mand the entire block is then

30

encrypted. At the destination, B decrypts the incoming block and treats the results as a

message with an appended FCS. B applies the same function F to attempt to reproduce

the FCS. If the calculated FCS is equal to the incoming FCS, then the message is

considered authentic. It is unlikely that any random sequence of bits would exhibit the

desired relationship.

(a) Internal error control

(b) External error control

Figure 3.2 Internal and External Error Control

Note that the order in which the FCS and encryption functions are performed is

critical. The sequence illustrated in Figure 3 .2a is referred to as internal error control,

which the authors contrast with external error control (Figure 3.2b). With internal error

control, authentication m-provided because an opponent would have difficulty

generating cipher text that, when decrypted, would have valid error control bits. If

instead the FCS is the outer code, an opponent can construct messages with valid error

control codes. Although the opponent cannot know what the decrypted plaintext will be,

he or she can still hope to create confusion and disrupt operations.

An error-control code is just one example; in fact, any sort of structuring added to

the transmitted message serves to strengthen the authentication capability. Such

structure is provided by the use of a communications architecture consisting of layered

31

protocols. As an example, consider the structure of messages transmitted using the

TCPI/IP protocol architecture. Figure 3.3 shows the format of a TCP segment,

illustrating the TCP header. Now suppose that each pair of hosts shared a unique secret

key, so that all exchanges between a pair of hosts used the same key, regardless of

application. Then one could simply encrypt all of the data- gram except the IP header

Again, if an opponent substituted some arbitrary bit pattern for the encrypted TCP

segment, the resulting plaintext would not include a meaningful header. In this case, the

header includes not only a check-sum (which covers the header) but other useful

information, such as the sequence number. Because successive TCP segments on a

given connection are numbered sequentially, encryption assures that an opponent does

not delay, misorder, or delete any segments.

'Bit: 0 4 10 16 31

.,,, ''Vi

Source port Destination port

Sequeuce uamber

Admf>wledgment,mniibe.r
Data l Reserved 1- Flags Window·

• •i' offset

Ch~ksum Urgent pointer

Options+ padding

1
j

'•--

Figure 3.3 TCP Segment

Public-Key Encryption
The straightforward use of public-key encryption (Figure 3 .1 b) provides confidentiality

but not authentication. The source (A) uses the public key KUb of the destination (B) to

encrypt M. Because only B has the corresponding private key KRt,, only B can decrypt

the message. This scheme provides no authentication because any opponent could also

use B's public key to encrypt a message, claiming to be A.

32

To provide authentication, A uses its private key to encrypt the message, and B

uses A's public key to decrypt (Figure 3 .1 c). This provides a measure of authentication

using the same type of reasoning as in the conventional encryption case: The message

must have come from A because A is the only party that possesses KRa and therefore

the only party with the information necessary to construct cipher text that can be

decrypted with KUa. Again, the same reasoning as before applies: There must be some

internal structure to the plaintext so that the receiver can distinguish between well

formed plaintext and random bits.

Assuming there is such structure, then the scheme of Figure 3. le does provide

authentication. It also provides what is known as digital signature. Only A could have

constructed the cipher text because only A possesses KRa. Not even B, the recipient,

could have constructed the cipher text. Therefore, if B is in possession of the cipher

text, B has the means to prove that the message must have come from A. In effect, A

has "signed" the message by using its private key to encrypt.

Note that this scheme does not provide confidentiality. Anyone in possession of

A's public key can decrypt the cipher text.

To provide both confidentiality and authentication, A can encrypt M first using its

private key, which provides the digital signature, and then using B's public key, which

provides confidentiality (Figure 3 .1 d). The disadvantage of this approach is that the

public-key algorithm, which is complex, must be exercised four times rather than two in

each communication.

Table 3 .1 summarizes the confidentiality and authentication implications of these

various approaches to message encryption.

Message Authentication Code
An alternative authentication technique involves the use of a secret key to generate a

small fixed-size block of data, known as a cryptographic checksum or MAC that is

appended to the message. This technique assumes that two communicating parties, say

A and B, share a common secret key K. When A has a message to send to B, it

33

calculates the MAC as a function of the message and the key: MAC = CK(M). The

message plus MAC are transmitted to the intended recipient. The recipient performs the

same calculation on the received message, using the same secret key, to generate a new

MAC. The received MAC is compared to the calculated MAC (Figure 3 .4a). if we

assume that only the receiver and the sender know the identity of the secret key, and if

the received MAC matches the calculated MAC, then

Table 3.1 Confidentiality and Authentication Implications of Messages Encryption

(a) Conventional (symmetric) Encryption

A~B:EK[M]

• Provides confidentiality

- Only A and B share K

• Provides a degree of authentication

- Could come only from A

- Has not been altered in transit

- Requires some formatting/redundancy

• Dose not provide signature

- Receiver could forge message

- Sender could deny message

(b) Public-Key (asymmetric) Encryption

A~ B: EKUb[M]

• Provides confidentiality

- Only B has KRb to decrypt

• Provides no authentication

- Any party could use KUb to encrypt message and claim to

be A

A ~ B: EKRa[M]

• Provides authentication and signature

- Only A has KR. to encrypt

- Has not been altered in transit

- Requires some formatting/redundancy

- Any party can use KU. to verify signature

A~ B: EKUb(EKRa(M)]

• Provides confidentiality because of KUb

• Provides authentication and signature because of KR.

34

1. The receiver is assured that the message has not been altered. If an attacker

alters the message but does not alter the MAC, then the receiver's calculation of

the MAC will differ from the received MAC. Because the attacker is assumed

not to know the secret key, the attacker cannot alter the MAC to correspond to

the alterations in the message.

2. The receiver is assured that the message is from the alleged sender .Because no

one else knows the secret key, no one else could prepare a message with a

proper MAC.

3. If the message includes a sequence number, then the receiver can be assured of

the proper sequence because an attacker cannot successfully alter the sequence

number.

A MAC function is similar to encryption. One difference is that the MAC algorithm

need not be reversible, as it must for decryption. It turns out that because of the

mathematical properties of the authentication function, it is less vulnerable to being

broken than encryption.

-------Source • ------Destination,---_..

?ll ;-------.,_,

I
K Compare

I
I

CJ((M)

(a) Message authentication

(b) Message authenticationarsfconfidentiahty; authentication tied to plaintext

(c) Message authentication and confidentiality; authentication tied to cipher text

Figure 3.4 Basic Uses of Message Authentication Code (MAC)

35

The process just described provides authentication but not confidentiality, because

the message as a whole is transmitted in.the clear .Confidentiality can be provided by

performing message encryption either after (Figure 3.4b) or before (Figure 3.4c) the

MAC algorithm. In both these cases, tw.o separate keys are needed, each of which is

shared by the sender and the receiver. In the first case, the MAC is calculated with the

message as input and is then concatenated to the message. The entire block is then

encrypted. In the second case, the message is encrypted first. Then the MAC is

calculated using the resulting cipher text and is concatenated to the cipher text to form

the transmitted block. Typically, it is preferable to tie the authentication directly to the

plaintext, so the method of Figure 3 .4b is used.

Because conventional encryption will provide authentication and because it is

widely used with readily available products, why not simply use this instead of a

separate message authentication code? Three situations in which a message

authentication code is used:

1. There are a number of applications which the same message is broadcast to a

number of destinations. Examples are notification to users that the network is

now unavailable or an alarm signal in a military control center. It is cheaper and

more reliable to have only one destination responsible for monitoring

authenticity. Thus, the message must be broadcast in plaintext with an associated

message authentication code. The responsible system has the secret key and

performs authentication. If a violation occurs, the other destination systems are

alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and

cannot afford the time to decrypt all incoming messages. Authentication is

carried out on a selective basis, messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The

computer program can be executed without having to decrypt it every time;

which would be wasteful of processor resources. However, if a message

authentication code were attached to the program, it could be checked whenever

assurance was required of the integrity of the program.

36

Three other rationales may be added, as follows:

4. For-some applications, it may not be of concern to keep messages secret, but it is

important to authenticate messages. An example is the Simple Network

Management Protocol Version 3 (SNMPv3), which separates the functions of

confidentiality and authentication. For this application, it is usually important for

a managed system to authenticate incoming SNMP messages, particularly if the

message contains a command to change parameters at the managed system. On

the other hand, it may not be necessary to conceal the SNMP traffic.

5. Separation of authentication and confidentiality functions affords architectural

flexibility. For example, it may be desired to perform authentication at the

application level but to provide confidentiality at a lower level, such as the

transport layer.

6. A user may wish to prolong the period of protection beyond the time of

reception and yet allow processing of message contents. With message

encryption, the protection is lost when the message is decrypted, so the message

is protected against fraudulent modifications only in transit but not within the

target system.

Finally, note that the MAC does not provide a digital signature because both sender

and receiver share the same key.

Table 3-2 summarizes the confidentiality and authentication implications of the

approaches illustrated in Figure 3 .4.

A variation on the message authentication code is the one-way hash function. As

with the message authentication code, a hash function accepts a variable-size message

Mas input and produces a fixed-size hash code H(l\.{}, sometimes called a message

digest, as output. The hash code is a function of all the bits of the message and provides

an error-detection capability: A change to any bit or bits in the message results in a

change to the hash code.

Figure 3.5 illustrates a variety of ways in which a hash code can be used to provide

message authentication, as follows:

37

Table 3.2 Basic Uses of Message Authentication Code C

(a) A-+ B: M 11 CK (M)

• Provides authentication

- Only A and B share K

(b) A---+ B: EK2 [M 11 CK] (M)]

• Provides authentication

- Only A and B share K1

• Provides confidentiality

- Only A and B share K2

(c) A---+ B: EK2 [M] 11 CK1 (EK2[M])

• Provides authentication

- Using Ki

• Provides confidentiality

- Using K,

a. The message plus concatenated hash code is encrypted using conventional

encryption. This is identical in structure to the internal error-control strategy

shown in Figure 3 .2a. The same line of reasoning applies: Because only A and B

share the secret key, the message must have come from A and has not been

altered. The hash code provides the structure or redundancy required to achieve

authentication. Because encryption is applied to the entire message plus hash

code, confidentiality is also provided.

b. Only the hash code is encrypted, using conventional encryption. This reduces

the processing burden for those applications that do not require confidentiality.

Note that the combination of hashing and encryption results in an overall

function that is, in fact, a MAC (Figure 3.4a). That is, EK[H(M)] is a function of

a variable-length message Mand a secret key K, and it produces a fixed-size

output that is secure against an opponent who does not know the secret key.

38

c. Only the hash code is encrypted, using public-key encryption and using the

sender's private key. As with (b), this provides authentication. It also provides a

digital signature, because only the sender could have produced the encrypted

hash code. In fact, this is the essence of the digital signature technique.

d. If confidentiality as well as a digital signature is desired, then the message plus

the public-key-encrypted hash code can be encrypted using a conventional secret

key.

e. This technique uses a hash function but no encryption for message

authentication. The technique assumes that the two communicating parties share

a common secret value S. A computes the hash value over the concatenation of

M and S and appends the resulting hash value to M. Because B possesses S, it

can recomputed the hash value to verify. Because the secret value itself is not

sent, an opponent cannot modify an intercepted message and cannot generate a

false message.
f. Confidentiality can be added to the approach of (e) by encrypting the entire

message plus the hash code.

When confidentiality is not required, methods (b) and (c) have an advantage over

those that encrypt the entire message in that less computation is required. Nevertheless,

there has been growing interest in techniques that avoid encryption (Figure 3.5e).

Several reasons for this interest are pointed out in:

• Encryption software is quite slow. Even though the amount of data to be

encrypted per message is small, there may be a steady stream of messages into

and out of a system.

• Encryption hardware costs are not negligible. Low-cost chip implementations of

DES (Digital Encryption Standard) are available, but the cost adds up if all

nodes in a network must have this capability.

• Encryption hardware is optimized toward large data sizes. For small blocks of

data, a high proportion of the time is spent in initialization/invocation overhead.

• Encryption algorithms may be covered by patents. Some encryption algorithms,

such as the RSA public-key algorithm, are patented and must be licensed,

adding a cost.

• Encryption algorithms are subject to U.S. export control.

39

Table 3.3 summarizes the confidentiality and authentication implications of the

approaches illustrated in Figure 3. 5.

I
H(M)

II

K
I

(b)

II

KRa

(c)

Figure 3.5 Basic Uses of Hash Function

40

3.4 Message Authentication Codes
A MAC, also known as a cryptographic, checksum, is generated by a function C of

the form

MAC=CK(M)

Table 3.3 Basic Uses of Hash Function H

(a) A-+B: EK [M II H(M)] (d) A-+ B: EK [MIi EK.Ra [H(M)]]

• Provides confidentiality • Provides authentication and digital

- Only A and B share K signature

• Provides authentication • Provides confidentiality

- H(M) is cryptographically protected - Only A and B share K

(b) A-+ B: MIIEK [H(M)] (e) A-+B:MIIEKH(MIIS)

• Provides authentication • Provides authentication

- H(M) is cryptographically protected - Only A and B share S

(c) A-+B: MIIEKRa [H(M)] (f) A-+B:MIIEdM II H(M) IIS]

• Provides authentication and digital signature • Provides authentication

- H(M) is cryptographically protected - Only A and B share S

- Only A could create EK.Ra [H(M)] • Provides confidentiality

- Only A and B share K

Where M is a variable-length message, K is a secret key shared only by sender and

receiver, and CK(M) is the fixed-length authenticator. The MAC is appended to the

message at the source at a time when the message is assumed or known to be correct.

The receiver authenticates that message by recomputing the MAC.

41

Requirements for MACs

When an entire message is encrypted for confidentiality, using either symmetric or

asymmetric encryption, the security of-the scheme generally depends on the bit length

of the key. Barring some weakness in the algorithm, the opponent must resort to a brute­

force attack using all possible keys. On average, such an attack will require 2 (k-l)

attempts for a k-bit key .In particular, for a cipher text-only attack, the opponent, given

cipher text C, would perform Pi= DKi (C) for all possible key values Ki until a Pi was

produced that matched the form of acceptable plaintext.

In the case of a MAC, the considerations are entirely different. In general, the

MAC function is a many-to-one function. The domain of the function consists of

messages of some arbitrary length, whereas the range consists of all possible MACs and

all possible keys. If an n-bit MAC is used, then there are 2n possible MACs, whereas

there are N possible messages with N >> 2n. Furthermore, with a k-bit key, there are 2k

possible keys.

Using brute-force methods, how would an opponent attempt to discover a key? If

confidentiality is not employed, the opponent has access to plaintext messages and their

associated MACs. Suppose k > n; that is, suppose that the key size is greater than the

MAC size, Then, given a known M1 and MAC1, with MAC1 = CK1 (M1), the

cryptanalyst can perform MACi = CK i (M1)for all possible key values Ki, At least one

key is guaranteed to produce a match of MAC= MAC1. Note that a total of 2k MACs

will be produced but there are only 2° < 2k different MAC values. Thus, a number of

keys will produce the correct MAC, and the opponent has no way of knowing which the

correct key. On average, a total of 2k I 2n = 2 (k-n) keys will produce a match. Thus, the

opponent must iterate the attack:

• Round 1

o Given: M1, MAC! = CK (M1)

o Compute MACi = CKi (M1)

o Number of matches ;:::; iCk-n)

for all 2k keys

42

• Round 2

o Given: M2, MAC2 = CK._(:Mi_)
o Compute MAC = CKi (M2)
o Number of matches ~ -2 (k-2 x n)

for the remaining 2 (k-n) keys

and so on. On average, a rounds will be needed if k = a X n. For example, if an 80-bit

key is used and the MAC is 32 bits long, then the first round will produce about 248

possible keys. The second round will narrow the possible keys to about 216 possibilities.

The third round should produce only a single key, which must be the one used by the

sender.

If the key length is less than or equal to the MAC length, then it is likely that a

first round will produce a single match. It is possible that more than one key will

produce such a match, in which case the opponent would need to perform the same test

on a new (message, MAC) pair.

Thus, a brute-force attempt to discover the authentication key is no less effort and

may be more effort than that required to discover a decryption key of the same length.

However, other attacks that do not require the discovery of the key are possible.

Message Authentication Code Based on DES

One of the most widely used MACs, referred to as the Data Authentication Algorithm,

and is based on DES. The algorithm is both a FIPS publication (FIPS PUB 113) and an

ANSI standard (X9 .17).

The algorithm can be defined as using the cipher block chaining (CBC) mode of

operation of DES with an initialization vector of zero. The data (e.g., message, record,

file, or program) to be authenticated is grouped into contiguous 64-bit blocks:

D1, D2, DN. If necessary, the final block is padded on the right with zeroes to form

a full 64-bit block. Using the DES encryption algorithm, E, and a secret key, K, a data

authentication code (DAC) is calculated as follows (Figure 3.6):

43

Ti.me=l
b1

(64 hils) -.--
Time=2

~

K
·s6 bits}

.K • • •K

Tin,e-N
O;v

K

O.t
(64 hits.

l -----v--­
t>AC

<16 10 64 b,t.,.\

Figure 3.6 Data Authentication Algorithm

The DAC consists of either the entire block Oe or the leftmost M bits of the block, with

16::; M ::S 64.

3.5 Hash Functions
A hash value is generated by a function h of the form

h=H(M)

where Mis a variable-length message and H(M) is the fixed-length hash value. The hash

value is appended to the message at the source at a time when the message is assumed

or known to be correct. The. receiver authenticates that message by recomputing the

hash value. Because the hash function itself is not considered to be secret, some means

is required to protect the hash value (Figure 3. 5).

We begin by examining the requirements for a hash function to be used for

message authentication. Because hash functions are, typically, quite complex, it is

useful to examine next some very simple. hash functions to get a feel for the issues

involved. We then look at several approaches to hash function design.

Requirements for a Hash Function
The purpose of a hash function is to produce a "fingerprint" of a file, message, or other

block of data. To be useful for message authentication, a hash function H must have the

following properties:

44

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.
3. H(x) is relatively easy to compute for any given x, making both hardware and

software implementations practical.
4. For any given code h, it is computationally infeasible to find x such that

H(x) = h. This is sometimes referred to in the literature as the one-way property.

5. For any given block x, it is computationally infeasible to find y i= x with
H(y) = H(x). This is sometimes referred to as weak collision resistance.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(Y).

This is sometimes referred .to as strong collision resistance.

The first three properties are requirements for the practical application of a hash

function to message authentication.

The fourth property is the one-way property: It is easy to generate a code given a

message but virtually impossible to generate a message given a code. This property is

important if the authentication technique involves the use of a secret value

(Figure 3.Se). The secret value itself is not sent; however, if the hash function is not one

way, an attacker can easily discover the secret value: If the attacker can observe or

intercept a transmission, the attacker obtains the message M and the hash code
C = H (SAB II M). The attacker then inverts the hash function to obtain

SAB II M = H"1(C). Because the attacker now has both M and SAB II M, it is a trivial

matter to recover SAB.

The fifth property guarantees that an alternative message hashing to the same

value as a given message cannot be found. This prevents forgery when an encrypted

hash code is used (Figure 3.Sb and 3.Sc). For these cases, the opponent can read the

message and therefore generate its hash code. However, because the opponent does not

have the secret key, the opponent should not be able to alter the message without

detection. If this property were not true, an attacker would be capable of the following

sequence: First, observe or intercept a message plus its encrypted hash code; second,

generate an unencrypted hash code from the message; third, generate an alternate

message with the same hash code.

45

The sixth property refers to how resistant the hash function is to a class of attack

known as the birthday attack, which we examine shortly.

3.6 Security of Hash Functions and MA Cs
Just as with conventional and public-key encryption, we can group attacks on

hash functions and MACs into two categories: brute-force attacks and cryptanalysis.

Brute-Force Attacks
The nature of brute-force attacks differs somewhat for hash functions and MACS.

Bash Functions
The strength of a hash function against brute-force attacks depends solely on the

length of the hash code produced by the algorithm. Recall from our discussion of hash

functions that there are three desirable properties:
• One-way: For any given code h, it is computationally infeasible to find x such

that H (x) =h.
• Weak collision resistance: For any given block x, it is computationally

infeasible to find y f. x with H(y) = H(x).

• Strong collision resistance: It is computationally infeasible to find any pair

(x,y) such that H(x) = H(y).
For a code of length n, the level of effort required, as we have seen, is proportional to

the following:

One way 2n

Weak collision resistance 2n

Strong collision resistance 2nu.

If strong collision resistance is required (and this is desirable for a general­

purpose secure hash code), then the value 2 en determines the strength of the hash code

against brute-force attacks. Oorschot and Wiener presented a design for a $10 million

collision search machine for MD5, which has a 128-bit hash length that could find a

collision in 24 days. Thus a 128-bit code may be viewed as inadequate. The next step

up, if a hash code is treated as a sequence of 32 bits, is a 160-bit hash length. With a

46

hash length of 160 bits, the same search machine would require four thousand years to

find a collision.

Message Authentication Codes

A brute-force attack on a MAC is a more difficult undertaking because it requires

known message-MAC pairs. Let us see why this is so. To attack a hash code, one can

proceed in the following way. Given a fixed message x with n-bit hash code

h = H(x), a brute-force method of finding a collision is to pick a random bit string y and

check if H(y) = H(x). The attacker can do this repeatedly off line. Whether an off-line

attack can be used on a MAC algorithm depends on the relative size of the key and the

MAC.

To proceed, we need to state the desired security property of MAC algorithm,

which can be expressed as follows:

• Computation resistance: Given one or more text-MAC pairs (Xi , CK(Xi)),

it is computationally infeasible to compute any text-MAC pair (x, CK(x))

for any new input x -::j:. Xi.

In other words, the attacker would like to come up with the valid MAC, code for a

given message x. There are two lines of attack possible: Attack the key space and attack

the MAC value. We examine each of these in turn.

If an attacker can determine the MAC key, then it is possible to generate a valid

MAC value for any input x. suppose the key size is k bits and that the attacker has one

known text-MAC pair. Then the attacker can compute the n-bit MAC on the known text

for all possible keys. At least one key is guaranteed to produce the correct MAC -

namely, the valid key that was initially used to produce the known text-MAC pair. This

phase of the attack takes a level of effort proportional to 2k (that is, one operation for

each of the 2k possible key values). However, as was described earlier, because the

MAC is a many-to-one mapping, there may be other keys that produce the correct

value. Thus, if more than one key is found to produce the correct value, additional

47

text-MAC pairs must be tested. It can be shown that the level of effort drops off rapidly

with each additional text-MAC pair and that. the overall level of effort is roughly 2k.

An attacker can also work on the MAC value without attempting to recover the

key. Here, the objective is to generate a valid MAC value for a given message or to find

a message that matches a given MAC value. In either case, the level of effort is

comparable to that for attacking the one-way or weak collision resistant property of a

hash code, or 2n. In the case of the MAC, the attack cannot be conducted off line

without further input; the attacker will require chosen text-MAC pairs or knowledge of

the key.

To summarize, the level of effort for brute-force attack on a MAC algorithm can

be expressed as min(2k, 2n). The assessment of strength is similar to that for symmetric

encryption algorithms. It would appear reasonable to require that the key length and

MAC length satisfy a relationship such as min(k, n) - N, where N is perhaps in the

range of 128 bits.

Cryptanalysis
As with encryption algorithms, cryptanalytic attacks on hash functions and MAC

algorithms seek to exploit some property of the algorithm to perform some attack other

than an exhaustive search. The way to measure the resistance of a hash or MAC

algorithm to cryptanalysis is to compare its strength to the effort required for a brute

force attack. That is, an ideal hash of MAC algorithm will require a cryptanalytic effort

greater than or equal to the brute-force effort.

Hash Function

In recent years, there has been considerable effort, and some successes, in

developing cryptanalytic attacks on hash functions. To understand these, we need to

look at the overall structure of a typical secure hash function, indicated in Figure 3 .10.

48

\,
\

Ye
I

/,

"· n.

IV
Y1
L
n
b

initial value CV
i th input block f
number of input blocks
length of hash function
length of input block

chaining variable
compression algorithm

Figure 3.10 General Structure of Secure Hash Function

This structure, referred to as an iterated hash function, was proposed by Merkle

and is the structure of most hash functions in use today, including MOS, SHA-1, and

RIPEMD-160. The hash function takes an input message and partitions it into L - 1

fixed-sized block of b bits each. If necessary, the final block is padded to b bits. The

final block also includes the value of the .total length of the input to the hash function.

The inclusion of the length makes the job of the opponent more difficult. Either the

opponent must find two messages of equal length that hash to the same value or two

messages of differing lengths that, together with their length values, hash to the same

value.

The hash algorithm involves repeated use of a compression function, f that takes

two inputs (an n-bit input from the previous step, called the chaining variable, and a

b-bit block) and produces an n-bit output. At the start of hashing, the chaining variable

has an initial value that is specified as part of the algorithm. The final value of the

chaining variable is the hash value. Usually, b > n; hence the term compression. The

hash function can be summarized as follows:

CVo =
CV1 =

H(M)=

initial n-bit value IV =
f (cvi -1 , Yi-1)

CV1

1 ::Si::SL

49

where the input to the hash function is a message M consisting of the blocks

Yo,Y1 , ,YL-1·

The motivation for this iterative structure stems from the observation by Merkle
l

and Damgard that if the compression functions is collision resistant, then so is the

resultant iterated hash function. Therefore, the structure can be used produce a secure

hash function to operate on a message of any length. The problem of designing a secure

hash function reduces to that of designing a collision-resistant compression function that

operates on inputs of some fixed size.

Cryptanalysis of hash functions focuses on the internal structure off and is based

on attempts to find efficient techniques for producing collisions for a single execution of

f Once that is done, the attack must take into account the fixed value of IV . The attack

on f depends on exploiting its internal structure. Typically, as with symmetric block

ciphers, f consists of a series of rounds of processing, so that the attack involves

analysis of the pattern of bit changes from round to round.

Keep in mind that for any hash function there must exist collisions, because we

are mapping a message of length at least equal to the block size b into a hash code of

length n, where b < n. What is required is that it is computationally infeasible to find

collisions. The attacks that have been mounted on hash functions are rather complex

and, beyond our scope here.

50

4. DIGITAL SIGNATURE AND AUTHENTICATION

PROTOCOL£

4.1 Overview
As the Internet becomes more and more a part of our everyday lives and as online

commerce continues to grow, Internet security becomes more of an issue. One of the

great features of the Internet is also its greatest drawback, anonymity. You can pretend

to be anyone that you want to be when you are in a chat room, posting messages to a

message board, or even when sending email. The person reading your information on

the other end does not need to know who you really are. However, when you want to

purchase something online, whether it be a book or a stereo, being able to verify who

you say you are is very important for the company that you are buying from.

The most important development from the work on public-key cryptography is the

digital signature. The digital signature provides a set of security capabilities that would

be difficult to implement in any other way.

The best and most common way to provide this sort of verification is via the

concept of a digital signature. This signature works the same way as your real signature

does. It is unique to you, and no one else has it.

4.2 Digital Signatures
Requirements

Message authentication protects two parties who exchange messages from any

third party. However, it does not protect the two parties against each other. Several

forms of dispute between the two are possible.

For example, suppose that John sends an authenticated message to Mary, using one

of the schemes of Figure 3.4. Consider the following disputes that could arise:

1. Mary may forge a different message and claim that it came from John. Mary

would simply have to create a message and append an authentication code using

the key that John and Mary share.

51

2. John can deny sending the message. Because it is possible for Mary to forge a

message, there is no way to prove that John did in fact send the message.

Both scenarios are of legitimate concern. Here is an example of the first scenario:

An electronic funds transfer takes place, and the receiver increases the amount of funds

transferred and claims that the larger amount had arrived from the sender. An example

of the second scenario is that an electronic mail message contains instructions to a

stockbroker for a transaction that subsequently turns out badly . The sender pretends that

the message was never sent:.

In situations where there is not complete trust between sender and receiver,

something more than authentication is needed. The most attractive solution to this

problem is the digital signature. The digital signature is analogous to the handwritten

signature. It must have the following properties:

• It must be able to verify the author and the date and time of the signature.

• It must be able to authenticate the contents at the time of the signature.

• The signature must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.

On the basis of these properties, we can formulate the following requirements for

a digital signature:

• The signature must be a bit pattern that depends on the message being signed.

• The signature must use some information unique to the sender, to prevent both

forgery and denial.

• It must be relatively easy to produce the digital signature.

• It must be relatively easy to recognize and verify the digital signature.

• It must be computationally infeasible to forge a digital signature, either by

constructing a new message for an existing digital signature or by constructing a

fraudulent digital signature for a given message.

• It must be practical to retain a copy of the digital signature in storage.

52

A secure hash function, embedded in a scheme such as that of Figure 3.5c or 3.5d,

satisfies these requirements.

A variety of approaches has been proposed for the digital signature function. These

approaches fall into two categories: direct and arbitrated.

Direct Digital Signature
The direct digital signature involves only the communicating parties (source,

destination). It is assumed that the destination knows the public key of the source. A

digital signature may be formed by encrypting the entire message with the sender's

private key (Figure 3 .1 c) or by encrypting a hash code of the message with the sender's

private key (Figure 3.5c).

Confidentiality can be provided by further encrypting the entire message plus

signature with either the receiver's public key (public-key encryption) or a shared secret

key (conventional encryption); for example, see Figures 3.ld and 3.5d. Note that it is

important to perform the signature function first and then an outer confidentiality

function. In case of dispute, some third party must view the message and its signature. If

the signature is calculated on an encrypted message, then the third party also needs

access to the decryption key to read the original message. However, if the signature is

the inner operation, then the recipient can store the plaintext message and its signature

for later use in dispute resolution.

All direct schemes described so far share a common weakness: The validity of the

scheme depends on the security of the sender's private key. If a sender later wishes to

deny sending a particular message, the sender can claim that the private key was lost or

stolen and that someone else forged his or her signature. Administrative controls

relating to the security of private keys can be employed to thwart or at least weaken this

ploy, but the threat is still there, at least to some degree. One example is to require every

signed message to include a timestamp (date and time) and to require prompt reporting

of compromised keys to a central authority.

53

Another threat is that some private key might actually be stolen from X at time T.

The opponent can then send a messag_e signed with X's signature and stamped with a

time before or equal to T.

Arbitrated Digital Signature

The problems associated with direct digital signatures can be addressed by using an

arbiter.

As with direct signature schemes, there is a variety of arbitrated signature

schemes. In general terms, they all operate as follows: Every signed message from a

sender X to a receiver Y goes first to an arbiter A, who subjects the message and its

signature to a number of tests to check its origin and content. The message is then dated

and sent to Y with an indication that it has been verified to the satisfaction of the arbiter.

The presence of A solves the problem faced by direct signature schemes: that X might

disown the message.

The arbiter plays a sensitive and crucial role in this sort of scheme, and all parties

must have a great deal of trust that the arbitration mechanism is working properly.

Table 4.1, gives several examples of arbitrated digital signatures. In the first,

conventional encryption is used. It is assumed that the sender X and the arbiter A share

a secret key Kxa and that A and Y share secret key Kay- X constructs a message M and

computes its hash value H(M). Then X transmits the message plus a signature to A The

signature consists of an identifier of X plus the hash value, all encrypted using Kxa- A

decrypts the signature and checks the hash value to validate the message. Then A

transmits a message to Y, encrypted with Kay- The message includes IDx, the original

message

54

Table 4.1 Arbitrated Digital Signature Techniques

{a) Conventional Encryption, Arbiter Sees Messag

(I.J X -1- A: M 1 E~.\.,. l IDx i H(M) J
(2) A -f Y: EKay[IDx M Er.,t;, (fDx H(M)J , T]

(b) Convpnlional Encryption, ·.A:rhite,: Do~ Not See Message

(l.} X ~ A: ID,.,, EKxv [Ml I EKn fIDx
1,1 H(Er.xy[MJ)}

(2) A~ Y: EKaylfDXl Ex1y[M] ,; Ex.xa [IDX ;i H(EKxy(1'r1J)] II TJ
., {c} Public-Key Encry'Ption', Arbiter Does Not See Message

(1) X -) A: io, ,. EKR~[lDx I: Exu,.(EKJ4[M])J
(2) A -) Y: EK1ttllDx ! E10.:y[EKRxfM]] , T]

from X, the signature, and a timestamp. Y can decrypt this to recover the message and

the signature. The timestamp informs Y that this message is timely and not a replay.

Y can store M and the signature. In case of dispute, Y, who claims to have received M

from X, sends the following message. to A:

EKay [IDx II M n EKxa [IDx II H(M)]]

The arbiter uses Kay to recover IDx, M, and the signature, and then uses Kxa to decrypt

the signature and verify the hash code. In this scheme, Y cannot directly check X's

signature; the signature is there solely to settle disputes. Y considers the message from

X authentic because it comes through A. In this scenario, both sides must have a high

degree of trust in A:

• X must trust A not to reveal Kxa and not to generate false signatures of the form

EKxa [IDx II H(M)).

• Y must trust A to send EKay [IDx II M II EKxa (IDx II H(M)] II T] only if the hash
value is correct and the signature was generated by X.

• Both sides must trust A to resolve disputes fairly.

55

If the arbiter does live up to this trust, then X is assured that no one can forge his

signature and Y ~is assured that X cannot disavow his signature.

The preceding scenario also implies that A is able to read messages from X to Y

and, indeed, that any eavesdropper is able to do so. Table 10. lb shows a scenario that

provides the arbitration as before but also assures confidentiality. In this case it is

assumed that X and Y share the secret key Kxy. Now X transmits an identifier, a copy of

the message encrypted with Kxy, and a signature to A The signature consists of the

identifier plus the hash value of the .encrypted message, all encrypted using Kxa­

As before, A decrypts the signature and checks the hash value to validate the message.

In this case, A is working only with the encrypted version of the message and is

prevented from reading it. A then transmits everything that it received from X, plus a

timestamp, all encrypted with Kay, to Y.

Although unable to read the message, the arbiter is still in a position to prevent

fraud on the part of either X or Y. A remaining problem, one shared with the first

scenario, is that the arbiter could form an alliance with the sender to deny a signed

message, or with the receiver to forge the sender's signature.

All the problems just discussed can be resolved by going to a public-key scheme,

one version of which is shown in Table 10. lc. In this case, X double encrypts a message

M first with X's private key, KRx, and then with Y's public key, KUy. This is a signed,

secret version of the message. This signed message, together with X's identifier, is

encrypted again with KRx and, together with IDx, is sent to A The inner, double

encrypted message is secure from the arbiter (and everyone else except Y). However, A

can decrypt the outer encryption to assure that the message must have come from X

(because only X has KRx). A checks to make sure that X's private/public key pair is still

valid and, if so, verifies the message. Then A transmits a message to Y, encrypted with

KRa. The message includes IDx, the double-encrypted message, and a timestamp.

This scheme has a number of advantages over the preceding two schemes. First,

no information is shared among the parties before communication, preventing alliances

to defraud. Second, no incorrectly dated message can be sent, even if KRx is

56

compromised, assuming that KRa is not compromised. Finally, the content of the

message from X to Y is secret from A and anyone else.

4.3 Authentication Protocols
The basic tools described in Chapter 3 are used in a variety of applications,

including the digital signature discussed in Section 4.1. Other uses are numerous and

growing. In this section, we focus on two general areas (mutual authentication and

one-way authentication) and examine some of the implications of authentication

techniques in both.

Mutual Authentication

An important application area is that of mutual authentication protocols. Such

protocols enable communicating parties to satisfy themselves mutually about each

other's identity and to exchange session keys. There, the focus was key distribution. We

return to this topic here to consider the wider implications of authentication.

Central to the problem of authenticated key exchange are two issues:

confidentiality and timeliness. To prevent masquerade and to prevent compromise of

session keys, essential identification and session key information must be

communicated in encrypted form. This requires the prior existence of secret or public

keys that can be used for this purpose. The second issue, timeliness, is important

because of the threat of message replays. Such replays, at worst, could allow an

opponent to compromise a session key or successfully impersonate another party. At

minimum, a successful replay can disrupt operations by presenting parties with

messages that appear genuine but are not.

The following examples of replay attacks:

• Simple replay: The opponent simply copies a message and replays it later.

• Repetition that can be logged: An opponent can replay a timestamp message

within the valid time window.

57

• Repetition that cannot be detected: This situation could arise because the

original message could have been suppressed and thus did not arrive at its

destination; only the replay message arrives.

• Backward replay without modification: This is a replay back to the message

sender. This attack is possible if conventional encryption is used and the sender

cannot easily recognize the difference between messages sent and messages

received on the basis of content.

One approach to coping with replay attacks is to attach a sequence number to each

message used in an authentication exchange. A new message is accepted only if its

sequence number is in the proper order. The difficulty with this approach is that it

requires each party to keep track of the last sequence number for each claimant it has

dealt with. Because of this overhead, sequence numbers are generally not used for

authentication and key exchange. Instead, one of the following two general approaches

is used:

• Timestamps: Party A accepts a message as fresh only if the message contains a

timestamp that, in A's judgment, is close enough to A's knowledge of current

time. This approach requires that clocks among the various participants be

synchronized.

• Challenge/response: Party A, expecting a fresh message from B, first sends B a

nonce (challenge) and requires that the subsequent message (response) received

from B contain the correct nonce value.

It can be argued that the timestamp approach should not be used for connection­

oriented applications because of the inherent difficulties with this technique. First, some

sort of protocol is needed to maintain synchronization among the various processor

clocks. This protocol must be both fault tolerant, to cope with network errors, and

secure, to cope with hostile attacks. Second, the opportunity for a successful attack will

arise if there is a temporary loss of synchronization resulting from a fault in the clock

mechanism of one of the parties. Finally, because of the variable and unpredictable

nature of network delays, distributed clocks cannot be expected to maintain, precise

synchronization. Therefore, any timestamp-based procedure must allow for a window of

58

time sufficiently large to accommodate network delays yet sufficiently small to

minimize the opportunity for attack.

On the other hand, the challenge-response approach is unsuitable for a

connectionless type of application because it requires the overhead of a handshake

before any connectionless transmission, effectively negating the chief characteristic of a

connectionless transaction. For such applications, reliance on some sort of secure time

server and a consistent attempt by each party to keep its clocks in synchronization may

be the best approach.

One-Way Authentication

One application for which encryption is growing in popularity is electronic mail

(e-mail). The very nature of electronic mail, and its chief benefit, is that it is not

necessary for the sender and receiver to be on line at the same time. Instead, the e-mail

message is forwarded to the receiver's electronic mailbox, where it is buffered until the

receiver is available to read it.

The "envelope' or header of the e-mail message must be in the clear so that the

message can be handled by the store-and-forward e-mail protocol, such as the Simple

Mail Transfer Protocol (SMTP) or X.400. However, it often desirable that the mail­

handling protocol not require access to the plaintext forms of the message, because that

would require trusting the mail-handling mechanism. Accordingly, the e-mail message

should be encrypted such that the mail-handling system is not in possession of the

decryption key.

A second requirement is that of authentication. Typically, the recipient wants

some assurance that the message is from the alleged sender.

Public-Key Encryption Approaches

We have already presented public-key encryption approaches that are suited to

electronic mai 1, including the straightforward encryption of the entire message for

confidentiality (Figure 4 .1 b), authentication (Figure 4 .1 c), or both (Figure 4 .1 d). These

approaches require that either the sender know the recipient's public key

59

(confidentiality) or that the recipient know the sender's public key (authentication) or

both (confidentiality plus authentication). In addition, the public-key algorithm must be

applied once or twice to what may be a long message.

If confidentiality is the primary concern, then the following may be more

efficient:

EKub [Ks] II EKs [M]

In this case, the message is encrypted with a one-time secret key. A also encrypts

this one-time key with B's public key. Only B will be able to use the corresponding

private key to recover the one-time key and then use that key to decrypt the message.

This scheme is more efficient than simply encrypting the entire message with B's public

key.

If authentication is the primary concern, then a digital signature may suffice, as

was illustrated in Figure 3.5c:

M II EKRa [H (M)]

This method guarantees that A cannot later deny having sent the message.

However, this technique is open to another kind of fraud. Bob composes a message to

his boss Alice that contains an idea that will save the company money. He appends his

digital signature and sends it into the e-mail system. Eventually, the message will get

delivered to Alice's mailbox. But suppose that Max has heard of Bob's idea and gains

access to the mail queue before delivery. He finds Bob's message, strips off his

signature, appends his, and requires the message to be delivered to Alice. Max gets

credit for Bob's idea.

To counter such a scheme, both the message and signature can be encrypted with

the recipient's public key:

EKUb [MIIEKRa [H(M)]]

60

The latter two schemes require that B know A's public key and be convinced that

it is timely. An effective way to provide this assurance is the digital certificate. Now we

have

M II EKRa [H(M)] II EKRas [T II ID A II Kua]

In addition to the message, A sends B the signature, encrypted with A's private

key, and A's certificate, encrypted with the private key of the authentication server . The

recipient of the message first uses the certificate to obtain the sender's public key and

verify that it is authentic and then uses the public key to verify the message itself If

confidentiality is required, then the entire message can be encrypted with B's public key.

Alternatively, the entire message can be encrypted with a one-time secret key; the secret

key is also transmitted, encrypted with B's public key.

4.4 Digital Signature Standard
The National Institute of Standards and Technology (NIST) have published

Federal Information Processing Standard FIPS PUB 186, known as the Digital

Signature Standard (DSS). The DSS makes use of the Secure Hash Algorithm (SHA)

and presents a new digital signature technique, the Digital Signature Algorithm (DSA).

The DSS was originally proposed in 1991 and revised in 1993 in response to public

feedback concerning the security of the scheme. A further minor revision occurred in

1996.

The DSS Approach

The DSS uses an algorithm that is designed to provide only the digital signature

function. Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless,

it is a public-key technique.

Figure 4.1 contrasts the DSS approach for generating digital signatures to that used

with RSA In the RSA approach, the message to be signed is input to a hash function

that produces a secure hash code of fixed length. This hash code is then encrypted using

the sender's private key to form the signature. Both the message and the signature are

then transmitted. The recipient takes the message and produces a hash code. The

61

recipient also decrypts the signature using the sender's public key. If the calculated hash

code matches the decrypted signature, the signature is accepted as valid. Because only

the sender knows the private key, only the sender could have produced a valid

signature.

(a) RSA Approach

II;;,--------+<

Compare

(b) DSS Approach

Figure 4.1 Two Approaches to Digital Signatures

The DSS approach also makes use of a hash function. The hash code is provided

as input to a signature function along with a random number k generated for this

particular signature. The signature function also depends on the sender's private key

(!(Ra) and a set of parameters known to a group of communicating principals. We can

consider this set to constitute a global public key (KUo). The result is a signature is

consisting of two components, labeled sand r.

At the receiving end, the hash code of the incoming message is generated. This

plus the signature is input to a verification function. The verification function also
' depends on the global public key as well as the sender's public key (KUa), which is

paired with the sender's private key. The output of the verification function is a value

that is equal to the signature component r if the signature is valid. The signature

62

function is such that only the sender, with knowledge of the private key, could have

produced the valid signature.

The Digital Signature Algorithm
The DSA is based on the difficulty of computing discrete logarithms and is based

on schemes originally presented by ElGamal and Schnorr.

Global Public~Key Componentr;
p prime number wn~re 2L"t « p < 'J/-

for 512 :f L ~· 1024 and L a multiple <lf64;
i.e., bit length o{ between 512 and 1024 bits
in incremen ts of 64 bits

({ prime divisor of (p .•. 1), where 21~ < q ~ 21~:
i,e., bit {ength of 160 bi~

g .-:;:; hrrr)11/ l)lodp,
where h is any integer with I < Ii < (p - 1)
such that. 1i1p-iJ!q rnodp> l

Signing
t = (t mod p) mod q

t ""{!,:rl1 (H(M) + xr)J mod q

Sig.nature"" (r, s)

Vtrifying
w '"" (s'f i mod q
a, ;:: fH. (M1,)wl mod q

~ ~1 .

u2 7 ('r')w mod q

v "'l(g"\"2) mod pJ mod q

TEST: v =o r'

User's Priv!lte Kel
x random or pscudorandom integer with O < x < q

User's Publit Key M = message to be signed

H(M) ·""' hash of Musing SHA-1 y = f m.odp

Jt,f. t', s' "' received versions of M., r. s
User's Per-Message Se~t ~mnber.

"' . " . ., .. :
k ='ra11dom or pseudoraadom integer with O < k < lJ

Figure 4.2 The Digital Signature Algorithm (DSA)

Figure 4.2 summarizes the algorithm. There are three parameters that are public

and can be common to a group of users. A 160-bit prime number q is chosen. Next, a

prime number p is selected with a length between 512 and 1024 bits such that q divides

(p-1). Finally, g is chosen to be of the form h (p-l)!q mod p, where his an integer between

1 and (p-1) with the restriction that g must be greater than 1.

63

With these numbers in hand, each user selects a private key and generates a public

key. The private key x must be a number from 1 to (q-1) and should be chosen

randomly or pseudo randomly. The public key is calculated from the private key as

y = g" mod p. The calculation ofy given xis relatively straightforward. However, given

the public key y, it is believed to be computationally infeasible to determine x, which is

the discrete logarithm of y to the base g, mod p.

To create a signature, a user calculates two quantities, rands, that are functions of

the public key components (p, q, g), the user's private key (x), the hash code of the

message, H(M), and an additional integer k that should be generated randomly or

pseudo randomly and be unique. for each signing.

At the receiving end, verification is performed using the formulas shown in Figure

4.2. The receiver generates a quantity v that is a function of the public-key components,

the sender's public key, and the hash code of the incoming message. If this quantity

matches the r component of the signature, then the signature is validated.

1--T----......,r :r q g

k ------.
V

s
Compare

s = f1(H(M)), k, x, r, q) = (k-1(H(M) + xr)) mod q

r = f2(k,p,q,g) = <tf mod p) mod q

W = f3(S', q) = (s')" mod Q

v = f4(y, q, g, H(M)'), w, r')

(a) Signing (b) Verifying

Figure 4.3 DSS Signing and Verifying

64

The structure of the algorithm, as revealed in Figure 4.3, is quite interesting. Note

that the test at the end is on the value r, which does not depend on the message at all.

Instead, r is a function of k and the three global public-key components. The

multiplicative inverse of k (mod p) is passed to a function that also has as inputs the

message hash code and the user's private key. The structure of this function is such that

the receiver can recover r using the incoming message and signature, the public key of

the user, and the global public key. It is certainly not obvious from Figure 4.2 or Figure

4.3 that such a scheme would work.

Given the difficulty of taking discrete logarithms, it is infeasible for an opponent

to recover k from r or to recover x from s.

Another point worth noting is that the only computationally demanding task in

signature generation is the exponential calculation gk mod p. Because this value does

not depend on the message to be signed, it can be computed ahead of time. Indeed, a

user could precalculate a number of values of r to be used to sign documents as needed.

The only other somewhat demanding task is the determination of a multiplicative

inverse, k". Again, a number of these values can be precalculated.

65

CONCLUSION

Authentication is any process through which one proves and verifies certain

information. Sometimes one may want to verify the origin of a document, the identity

of the sender, the time and date a document was sent and I or signed, the identity of a

computer or user, and so on. A digital signature is a cryptographic means through

which many of these may be verified. The digital signature of a document is a piece of

information based on both the document and the signer's private key. It is typically

created through the use of a hash function and a private signing function (encrypting

with the signer's private key), but there are other methods.

Digital signatures and hand-written signatures both rely on the fact that it is very hard

to find two people with the same signature. People use public-key cryptography to

compute digital signatures by associating something unique with each person. When

public-key cryptography is used to encrypt a message, the sender encrypts the message

with the public key of the intended recipient. When public-key cryptography is used to

calculate a digital signature, the sender encrypts the "digital fingerprint" of the

document with his or her own private key. Anyone with access to the public key of the

signer may verify the signature.

66

REFERENCES

[1] Stalling, Williams, "Cryptography and Network Security Principles and

Practice", ISBN: 0-13-869017-0, Prentice-Hall Inc., 1999

[2] Trappe, Wade & Washington, C., Lawrence, "Introduction to Cryptography with

coding theory", ISNB: 0-13-061814-4, Prentice-Hall Inc., 2002

[3] Bernstein, Karn, and Junger, Constitutional Challenges to Cryptographic

Regulations, "http :/lwww.law.ua. edu/lawreview/crain. htm "

[4] SSH Communications Security, Cryptography A-Z,

"http://www. ssh. com/support/cryptography/index. html"

[5] The Security Portal for Information System Security Professionals, Cryptographic

Algorithms, "http :l/www. ghostship. com/infosyssec/cryptalgorithms. html"

67

APPENDIX A
Comparison of Asymmetric, Symmetric and Hash Algorithm Methods

-~-al Key-I . • D1g1t hin
Encryption . Has g Distribution Signature

- -- lr-x-_ - X X X I

I

I X

l,
X X

ECC

[X Diffie-Hellman

X X
IEl Gamal

~ ~Lr _Ll-
---'---"------L x-t-L -I

-,

r3DES
CJ

·~ {Blowfish
e
~ \IDEA

jRC4

\SAFER

jRsA message dige-st used

\RSA operation
1Ronald Rivest family of hashing

X

X

X

x-·~

;-~
l

function MD2, :MD4, ~IDS I
.c= Secure Hash Algorithm (SHA) (
r,J = = used with Digital Signature I

Algorithm (DSA)
I

I
HA VAL (variable lemzth hash!

values using a one-wav function

design)

--

X X

I -- I X
I

-~
_J

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering
	t,

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Page 3
	Titles
	LIST OF ABBREVIATIONS

	Page 4
	Titles
	ABSTRACT

	Page 5
	Titles
	TABLE OF CONTENTS

	Tables
	Table 1

	Page 6
	Tables
	Table 1
	Table 2

	Page 7
	Titles
	INTRODUCTION

	Page 8
	Titles
	1. CONSTITUTIONAL CHALLENGES TO CRYPTOGRAPHIC

	Page 9
	Page 10
	Titles
	2. CRYPTOGRAPHY ANUCRYPTOSYSTEMS
	2.1 What Is Cryptography?

	Page 11
	Titles
	2.2 Who Uses Cryptography?

	Images
	Image 1
	Image 2

	Page 12
	Titles
	2.3 The Government's View of Cryptography

	Images
	Image 1

	Page 13
	Titles
	2.4 Cryptosystems

	Images
	Image 1
	Image 2

	Page 14
	Titles
	. 1 Cryptanalysis and Attacks on Cryptosystems

	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Images
	Image 1

	Page 17
	Titles
	2.5 Basic Terminology

	Images
	Image 1

	Page 18
	Titles
	2.6 Basic Cryptographic Algorithms

	Images
	Image 1

	Page 19
	Titles
	2.6.1 Types of Ciphers

	Images
	Image 1

	Page 20
	Titles
	2.6.2 Strength of Cryptographic Algorithms

	Images
	Image 1

	Page 21
	Titles
	2.6.3 Key Exchange Algorithm

	Images
	Image 1

	Page 22
	Images
	Image 1

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Titles
	2.8.2 Asymmetric (public key)

	Images
	Image 1

	Page 28
	Titles
	2.9 What are the Advantages and Disadvantages of Public-Key

	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Titles
	· .�.
	..
	2.10 Public Key Infrastructure (PKI)

	Images
	Image 1
	Image 2

	Page 31
	Titles
	Message Integrity
	2.10.1

	Images
	Image 1

	Page 32
	Titles
	3. MESSAGE AUTHENTICATION AND HASH FUNCTIONS
	3.2 Authentication Requirements

	Images
	Image 1

	Page 33
	Titles
	3.3 Authentication Functions

	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1
	Image 2
	Image 3

	Page 38
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 39
	Images
	Image 1

	Page 40
	Titles
	34

	Images
	Image 1

	Tables
	Table 1

	Page 41
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 42
	Images
	Image 1

	Page 43
	Images
	Image 1

	Page 44
	Images
	Image 1

	Tables
	Table 1

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 47
	Titles
	3.4 Message Authentication Codes
	41

	Images
	Image 1

	Tables
	Table 1

	Page 48
	Images
	Image 1
	Image 2

	Page 49
	Images
	Image 1

	Page 50
	Titles
	-.--
	3.5 Hash Functions

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 51
	Images
	Image 1

	Page 52
	Titles
	3.6 Security of Hash Functions and MA Cs

	Images
	Image 1

	Tables
	Table 1

	Page 53
	Images
	Image 1
	Image 2

	Page 54
	Images
	Image 1
	Image 2

	Page 55
	Images
	Image 1
	Image 2
	Image 3

	Page 56
	Images
	Image 1

	Page 57
	Titles
	4. DIGITAL SIGNATURE AND AUTHENTICATION
	4.1 Overview
	4.2 Digital Signatures

	Images
	Image 1
	Image 2

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1
	Image 2

	Page 60
	Images
	Image 1

	Page 61
	Titles
	., {c} Public-Key Encry'Ption', Arbiter Does Not See Message
	{a) Conventional Encryption, Arbiter Sees Messag
	(b) Convpnlional Encryption, ·.A:rhite,: Do~ Not See Message

	Images
	Image 1
	Image 2
	Image 3

	Page 62
	Images
	Image 1

	Page 63
	Titles
	4.3 Authentication Protocols

	Images
	Image 1

	Page 64
	Images
	Image 1
	Image 2

	Page 65
	Images
	Image 1

	Page 66
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 67
	Titles
	4.4 Digital Signature Standard

	Images
	Image 1
	Image 2

	Page 68
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 69
	Titles
	"' . " . ., .. :

	Images
	Image 1
	Image 2

	Page 70
	Titles
	1--T----......,r
	k ------.
	s
	:r q g

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 71
	Images
	Image 1

	Page 72
	Titles
	CONCLUSION

	Images
	Image 1

	Page 73
	Titles
	REFERENCES

	Images
	Image 1
	Image 2
	Image 3

	Page 74
	Titles
	l
	l,

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1
	Table 2

