
NEAR EAST UNIVERSITY
~

Faculty of Engineering

Department of Computer Engineering

ONLINE COURSE REGISTRATION

Graduation Project
COM-400

Student: Ahmad Salman (20021194)

Supervisor: Assist. Prof. Dr Adil Amirjanov

Nicosia - 2006

ACKNOWLEDGMENTS

First of all I would like to thank my supervisor Assist. Prof Dr. Adil Amirjanov

advisor for intellectual support, encouragement, and enthusiasm, which made this

project possible.
Second, I thank my dearest family for their constant encouragement and support

during the completion of my study
Third, my sincerest thanks go to my friend, Salem Al- Marashdah, Mohammad

Alsheyab and Alaa Abu- hadbh and all friends who shared their suggestion throughout

the completion of my project.
And above, I thank Godfor giving me stamina and courage to achieve my

objectives.

ABSTRACT

With all the developments and the technology which grows up every year in our

university and we are all witness's on these improvements, the idea of this project was

decided trying to push up the improvements performance and give some hand to whom

it may concern.

In the past, most computer applications ran on stand-alone computers but today's

application can be written to communicate with millions of computers, the question

comes here, why don't we use these application's power?

The main aim of the project is the development of system for course registration

which enables the students to register their courses online so to eliminate the traffic of

student registration process on the advisors doors. Other benefits of the system are:

allows for distributing instructor's announcement, instructor's office hour's view and edit,

displaying each course student list, provides the students with each term offered courses

and what courses they are currently taking as well as course grades, GPA and CGPA.

11

TABLE OF CONTENTS

~
ACKNOWLEDGMENT

ABSTRACT

TABLE OF CONTENTS

INTRODUCTIONS

CHAPTER 1: JAVA PROGRAMMING

1. 1 What is Java

1.2 Java as a Language

1 .3 Java is Platform Independence

1.4 Java as an Application Development Platform

1.5 Java Applets

1.6 Java Adjectives

1.6.1 Java is Simple

1.6.2 Java is Object Oriented

1.6.3 Java is Distributed

1 .6.4 Java is Interpreted

1.6.5 Java is Robust

1.6.6 Java is Secure

1.6.7 Java is Architecturally Neutral

1.6.8 Java is Portable

1.6.9 Java is High-Performance

1.6. 1 O Java is MultiThreaded

1.6.11 Java is a Dynamic Language

1. 7 What Is a Class?

1.8 What Is an Object?

CHAPTER 2: JAVA SERVER PAGES (JSP)

2.1 What is JSP

2.2 How JSP Works

2.3 How JSP Requests Are Handled

lll

i

ii

iii

vi

1

1

1

2

3
4

5

5

5

5

5
6

6

6

6

6

7

7

7

8

11

11

11

12

2.4 Servlets Advantages 13

2.5 JSP Syntax 13

2.5.1 Directives 13

2.5.2 Declarations 13

2.5.3 Scriptlets 14

2.5 .4 Expressions 14

CHAPER 3: HTML & JAVASCRIPT 15

15

16

16

17

18

18

18

18

19

19

19

19

20

20

20

21

21

21

21

21

22

3. 1 Introduction to HTML

3.2 Introduction to JavaScript

3.2. 1 What Do I Need?

3.2.2 Declaring JavaScıipt

CHAPTER 4: DATABASE DESIGN

4. 1 Introduction

4.2 The Relational Database Model

4.3 The Entity-Relationship Model

4.3.1 Basic Constructs of E-R Modeling

4.3.1.1 Entities

4.3. 1.2 Special Entity Types

4.3. 1 .3 Relationships

4.3. 1.4 Attributes

4.3. 1 .5 Classifying Relationships

4.3. 1.6 Degree of a Relationship

4. 3. 1. 7 Connectivity and Cardinality

4.3. 1.8 Direction

4.3. 1 .9 Type

4.3. 1. 1 O Existence

4.3 .2 ER Notation

4.4 Relational Database of Online Course Registration:

CHAPTER 5: ONLİNE COURSE REGİSTRAION SOFTWARE

DESİGN 26

26 5. 1 Introduction

ıv

5.2 What is UML?

5 .2.1 GoalsofUML

S.2.2 Use Case

5.2.3 Use Case Diagrams Depict:

5.2.3.1 Project Use Case Diagrams

5.2.4 Class Diagrams

5.2.4.1 Project Class Diagrams

5.2.5 Sequence Diagrams

5.2.5.1 Project Sequence Diagrams

5.3 Project Files Diagram

5.4 Project Graphical User Interface (GUI)

CONCLUSION

REFERENCES

V

26

26

27

27

27

28

30

31

32

35

36

45

46

INTRODUCTION

In the past, most computer applications ran on stand-alone computers but today's

application (web application) can be written to communicate with millions of

computers, the question comes here, why don't we use these application's power?

The objective of the project is to enable students to register their courses online,

so to eliminate student's traffic on the advisors doors while trying to register their

courses and to make this process possible where ever the student is. Other benefits of

the system are: allows staffs for distributing announcement, office hour's view and edit,

displaying and controlling each course student list, provides students with information

about the offered courses and what courses they are currently taking as well as courses

grades, GPA and CGPA. The project consists of introduction, five chapters and

conclusion.

Chapter One introduces the Java language, explains its adjectives and gives

some related definitions.

Chapter Two presents java server Pages (JSP) fundamental, has an explanation

about JSP files and how JSP works. JSP files technique was used to make dynamic

pages which serve both student and staff with the information they need, what is the

mechanism of handling JSP requests is explained in this chapter.

Chapter Three introduces JavaScript and explains some of its fundamental

concepts.
Chapter Four describes the relational database model and explains how the data

base of the project was analyzed and created. The full entity relationship diagram is

represented and explained. The structure and description of each table is given.

Chapter Five is devoted to the development of "On Line Course Registration"

system. The structure of the system described by the unified modeling language (UML)

is given (use case diagrams, class diagrams and sequence diagrams). Some graphical

user interfaces (GUI) of the system are represented and illustrated.

VI

CHAPTER 1: JAVA PROGRAMMING

1.1 What is Java

Defining Java is not easy because it is actually many things. According to the

Sun white paper on Java, "Java is a simple, object-oriented, distributed, interpreted,

robust, secure, architecture neutral, portable, high-performance, multithreaded, and

dynamic language." Remove all the adjectives and you are left with the essence of the

definition: "Java is a ... language."

However, Java is more than just another programming language. It is both a

language and a platform for developing applications to run on the Internet or in

corporate intranet environments.

1.2 Java as a Language
Java was designed as a language for object-oriented programming. Unlike

procedural programming, where functions are coded to follow step-by-step algorithms,

object-oriented programming revolves around data structures known as objects. For all

objects that belong to a particular class, there is a well-defined set of routines, or

"methods," for operating on the data contained within the object. This defines the

interface for working with the object. As long as the interface remains the same,

programmers can write the code that implements the methods however they want.

C++ added object-oriented capabilities to the procedural style of C, but it is a

difficult language to learn. Its many complicated features and constructs have tended to

produce unreliable, buggy applications, even in the hands of fairly competent

programmers. On a superficial level, Java is similar to C++ in that the syntax for

expressions and control statements is almost the same in the two languages. However,

Java is neither a superset nor a subset of C++. Its designers wanted a new language that

was easier to learn and use.

Java is more purely object-oriented than C++ in that it requires the use of

objects. There are no global variables or functions; al1 interfaces with an object's data

must be defined in the class libraries, Java's creators threw out some of the C++

features that were confusing to developers, such as multiple inheritance (inheriting

properties and methods from more than one object) and operator overloading (using

one identifier to refer to multiple items in the same scope). To be able to securely

1

execute code that has been downloaded from a network, they eliminated explicit

memory pointers so that a Java program cannot access memory addresses it doesn't

own. They also added some things C++ doesn't have, such as multithreading (the

ability to execute multiple processes concurrently) and garbage collection

(automatically recovering previously used memory for reuse by other applications).

1.3 Java is Platform Independence
C and C++ code is cross-platform in source form, but has to be specially

compiled to form binary files that will run on different processors (see Figure 1.1).

Figure 1.1: Traditional Compilers

Java, on the other hand, is designed to be cross-platform in both source and

compiled binary form. Of course, it is impossible to run the same binary file on

Windows, Unix, and Macintosh machines. So what Java does is compile its source

code into an intermediate, platform-independent byte code. The byte code is then

interpreted at execution time by a platform-specific interpreter called a Java Virtual

Machine (JVM), as shown in Figure 1 .2.

2

Java.axe

Javo &yteçod(!··
p!atf:orm independent

Figure 1.2: Java Compilers and Byte Code.

The interpreted, dynamic nature of the Java language is what allows Java-based

applications to be platform-independent. The source and byte code can be written once,

and only the JVM needs to be ported to each platform. Currently supported platforms

include Windows 95 and Windows NT, Windows 3.x, OS/2, Macintosh, Unix, and the

new Network Computer (NC). Thus Java brings software developers closer to the

elusive ideal of "write once, run anywhere" code--so much so that JavaSoft has

trademarked the phrase!

1.4 Java as an Application Development Platform
The Java language can be used to create standalone applications that run outside

of a web browser. All a developer needs is the JVM for the desired platform and the

appropriate class libraries (.class files) for the functions to be performed. The

advantages of using Java are portability and smaller code size, since byte code is

usually much smaller than the equivalent native code. However, because Java code is

interpreted, it runs far slower than native code.
There are basically two ways to speed up Java applications. One way is for

vendors to write their own Java compilers that generate native machine code instead of

byte code. While this does bring the speed of Java applications in par with traditional

applications, you lose the advantage of portability. The second way to speed up Java is

by using "just-in-time" (JIT) compilation. With a JIT compiler, the Java Virtual

Machine translates the byte code into native code just before the application is

executed. This improves performance over the interpreted method, but since JIT

3

compilers can't do much in the way of code optimization, the resulting code still runs

slower than equivalent native code.

1.5 Java Applets

Most of the excitement surrounding Java centers around its ability to create

small programs called "applets". A Java applet is a Java program designed to be

included in a HyperText Markup Language (HTML) document and run inside a web

browser. The applet code is embedded in an HTML page via an <APPLET> tag that

references the applet's .class file. The applet is then downloaded and executed by an

integrated byte code interpreter within the browser (see Figure 1 .3).

V-leb
Server

Apple!
Syıecode

1 , User te!e,:Js HiML page with embedded applet
2. fava bft~ode ls dı;wrıl<ı-nded by brnwset and ;;xecvıed by iıücgroı-0cl

byi.m::ode inlerp,eter

Figure 1.3: Java Applets.

Besides telling the browser what code to retrieve, the <APPLET> tag also

defines how large the applet's display area will be through the width and height

parameters. The applet controls everything that happens within its own display area. It

can create menus, scroll bars, push buttons, and other means of interacting with the

user. It can also communicate with other applets running on the same page, or cause the

browser to load a new page. But an applet cannot affect any page contents that are

specified by HTML tags.

4

1.6 Java Adjectives

1.6.1 Java is Simple
Simple to learn in that it has much in common with C++. It is also simple to

understand, since many of the difficult features of C++ are absent from Java: Multiple

inheritance, automatic casting, hidden constructor and destructor calls, and operator

overloading.

Simple can also mean small. Java was developed to run in very little memory, such as

embedded controllers.

1.6.2 Java is Object Oriented
C++ is a hybrid language. C++ maintains compatibility with C, which is a

traditional imperative language. This has been augmented with classes, an

implementation of objects. A C++ programmer can operate in either style.

Java is much more pure object-oriented, in that no Java application or applet lacks

objects. The objects are very similar to that of C++ but more prevalent.

1.6.3 Java is Distributed
Java is web and internet-oriented. Java applications and applets can be scattered

across different sites on the net. It accesses items across the web as easily as local file

items.

Java accepts the client-server model nicely, and has built in support for web protocols

like HTTP or FTP.

1.6.4 Java is Interpreted
Java is both interpreted and compiled. The javac compiler converts Java source

into byte code. Byte code is the machine language for the Java Virtual Machine. Byte

code is more compact and much faster to interpret than the Java source code. Byte code

can be interpreted on any machine or architecture.

There is nothing about Java that demands interpretation. Native code compilers exist,

but there are some advantages to interpretation, as well.

5

1.6.5 Java is Robust
The type checking of Java is at least as strong as that of C++, so that Java

programs are well-checked at compile-time. Strong run-time checking by the

interpreter catches many other errors. Type checking and interpretation make Java

programs crash-proof. The program can fail, but not crash the rest of the system. Many

of the errors that hang systems, such as bad subscripts and bad pointers, are specifically

detected, preventing a Java program from damaging the rest of the system.

1.6.6 Java is Secure
Security is a byproduct of interpretation. Java programs have definite limits of

what they can access on the computer. Applets are even more secure than applications,

since they cannot even access files on the system they are running on.

1.6.7 Java is Architecturally Neutral
Java byte code makes no unusual assumptions about the underlying hardware.

Any type of computer should be able to implement a Java Virtual Machine, that is, the

byte code interpreter. There are no machine dependencies and no machine variants.

1.6.8 Java is Portable
Portability is a consequence of good design and the architecture-neutral

approach. Every machine has its own unique byte code interpreter, since that must be

coded for each platform. However, they all accept the same byte code. There are

standards for the suitable values of the simple types. For example, an int must be a 32

bit 2's complement binary integer on all machines, regardless of how the local machine

implements integers. The Java compiler is itself written in Java, as are most of the other

tools, so they are exactly the same for all platforms. Thus, Java is portable.

1.6.9 Java is High-Performance
Historically, interpreted languages have been much slower than compiled

languages. For example, a BASIC interpreter has to parse each line each time it is

executed. Java compiles the source into byte code. The overhead of interpretation is the

time it takes to look up the byte code and find the right subroutine. On some

architectures, that may be very small. The other overhead is that of the run-time

6

checking of the operands, which is not, strictly speaking, an interpretation problem.

The byte code keeps the parsing costs low, so that Java code is only somewhat slower

than native code. However, that somewhat slower is in the range 1. 1 to 1 O times slower.

1.6.10 Java is MultiThreaded
Java has support for multiple threads or concurrent execution. A thread or a

process is a line of execution that executes independently or concurrently with other

threads. Most languages have no provision for concurrent execution. Some like C++

have it as an add on, through library function calls. Java has built it in, since it is so

needed in the language. The two main areas where threads are useful are the ability to

do something while waiting for results shipped over the net, and animations in web

applets. There are also a number of synchronization items. These allow two or more

threads to communicate reliably.

1.6.11 Java is a Dynamic Language
Java links (or binds) things later than C, more like LISP. Most languages like C

or Pascal use static binding to attach subroutines to the main program. Static binding

occurs at compile time. Java and LISP use dynamic binding. In dynamic binding, the

needed routine is not found until it is needed, at run-time. Some languages like C++ use

both. This makes the updating of libraries easier to accomplish, without recompilation.

Thus, should a new library version occur as soon as it's installed, all Java programs will

use it rather than the earlier version.

1.7 What Is a Class?
In the real world, you often have many objects of the same kind. For example,

your bicycle is just one of many bicycles in the world. Using object-oriented

terminology, we say that your bicycle object is an instance of the class of objects

known as bicycles. Bicycles have some state (current gear, current cadence, two

wheels) and behavior (change gears, brake) in common. However, each bicycle's state

is independent of and can be different from that of other bicycles.

When building them, manufacturers take advantage of the fact that bicycles

share characteristics, building many bicycles from the same blueprint. It would be very

inefficient to produce a new blueprint for every bicycle manufactured.

7

In object-oriented software, it's also possible to have many objects of the same

kind that share characteristics: rectangles, employee records, video clips, and so on.

Like bicycle manufacturers, you can take advantage of the fact that objects of the same

kind are similar and you can create a blueprint for those objects. A software blueprint

for objects is called a class (see figure 1.4).

Public AP!

Privtlte
lmplemerıtallcın
Details

Figure 1 .4: A Visual representation of a Class.

1.8 What Is an Object?
Objects are key to understanding object-oriented technology. You can look

around you now and see many examples of real-world objects: your dog, your desk,

your television set, your bicycle.

Real-world objects share two characteristics: They all have state and behavior.

For example, dogs have state (name, color, breed, hungry) and behavior (barking,

fetching, wagging tail). Bicycles have state (current gear, current pedal cadence, two

wheels, number of gears) and behavior (braking, accelerating, slowing down, changing

gears).

Software objects are modeled after real-world objects in that they too have state

and behavior. A software object maintains its state in one or more variables. A variable

is an item of data named by an identifier. A software object implements its behavior

with methods. A method is a function (subroutine) associated with an object.

You can represent real-world objects by using software objects. You might

want to represent real-world dogs as software objects in an animation program or a

real-world bicycle as a software object in the program that controls an electronic

exercise bike. You can also use software objects to model abstract concepts. For

example, an event is a common object used in window systems to represent the action

8

of as user pressing a mouse button or a key on the keyboard. The following illustration

(figure 1.5) is a common visual representation of a software object.

Methods
(b(!)htıı.vıor)

Vartables
(State)

Figure 1.5: A Software Object.

Everything the software object knows (state) and can do (behavior) is expressed

by the variables and the methods within that object. A software object that models your

real-world bicycle would have variables that indicate the bicycle's current state: Its

speed is 18 mph, its pedal cadence is 90 rpm, and its current gear is 5th. These

variables are formally known as instance variables because they contain the state for a

particular bicycle object; in object-oriented terminology, a particular object is called an

instance. The following figure (figure 1.6) illustrates a bicycle modeled as a software

object.

Figure 1.6: A Bicycle Modeled as a Software Object.

In addition to its variables, the software bicycle would also have methods to

brake, change the pedal cadence, and change gears. (It would not have a method for

changing its speed because the bike's speed is just a side effect of which gear it's in and

how fast the rider is pedaling.) These methods are known formally as instance methods

because they inspect or change the state of a particular bicycle instance.

9

Object diagrams show that an object's variables make up the center, or nucleus,

of the object. Methods surround and hide the object's nucleus from other objects in the

program. Packaging an object's variables within the protective custody of its methods is

called encapsulation. This conceptual picture of an object - a nucleus of variables

packaged within a protective membrane of methods - is an ideal representation of an

object and is the ideal that designers of object-oriented systems strive for. However, it's

not the whole story.
Often, for practical reasons, an object may expose some of its variables or hide

some of its methods. In the Java programming language, an object can specify one of

four access levels for each of its variables and methods. The access level determines

which other objects and classes can access that variable or method.

Encapsulating related variables and methods into a neat software bundle is a

simple yet powerful idea that provides two primary benefits to software developers:

• Modularity: The source code for an object can be written and maintained

independently of the source code for other objects. Also, an object can be easily

passed around in the system. You can give your bicycle to someone else, and it

will still work.
• Information-hiding: An object has a public interface that other objects can use

to communicate with it. The object can maintain private infoımation and

methods that can be changed at any time without affecting other objects that

depend on it. You don't need to understand a bike's gear mechanism to use it.

10

CHAPTER 2: JAVA SERVER PAGES (JSP)

2.1 What is JSP

Java Server Pages (JSP) provide a facility whereby you can write sever-side

scripted pages using the full power of the Java programming language and the rich set

of class libraries associated with Java. However there is a price to pay in that JSP, like

most things to do with Java, is significantly more complex than other techniques.

Java Server Pages (JSP) is a Sun Microsystems specification for combining

Java with HTML to provide dynamic content for Web pages. When you create dynamic

content, JSPs are more convenient to write than HTTP servlets because they allow you

to embed Java code directly into your HTML pages, in contrast with HTTP servlets, in

which you embed HTML inside Java code. JSP is part of the Java 2 Enterprise Edition

(J2EE).

JSP enables you to separate the dynamic content of a Web page from its

presentation. It caters to two different types of developers: HTML developers, who are

responsible for the graphical design of the page, and Java developers, who handle the

development of software to create the dynamic content.

Because JSP is part of the J2EE standard, you can deploy JSPs on a variety of

platforms, including WebLogic Server. In addition, third-party vendors and application

developers can provide JavaBean components and define custom JSP tags that can be

referenced from a JSP page to provide dynamic content.

2.2 How JSP Works
JSP pages are, at first glance, rather similar to ASP and PHP pages in that

special pseudo-tags are used to mark out parts of otherwise normal HTML pages that

are to handled specially. The difference is that, whereas ASP and PHP are processed by

a server plug-in, JSP is handled by a separate server process. For JSP this process runs

software known as Tomcat which takes the JSP page and converts the entire page into a

Java programme which is then compiled. The raw HTML in the original page is

wrapped in Java output methods. On requesting a JSP page, the request is transferred

from the normal WWW server (e.g. Apache) to Tomcat which first checks whether it

has cached an already compiled version of the Java programme associated with the

11

page. Recompilation takes place if the last modification date stamp on the JSP page is

more recent than the last modification date stamp on any cached compiled version.

JSP
Pages

Java
Compiler

V\/eb Server

Data
Files

Programme

Figure 2.1: How JSP Request Pages are Handled.

2.3 How JSP Requests Are Handled
WebLogic Server handles JSP requests in the following sequence:

1. A browser requests a page with a .jsp file extension from WebLogic Server.

2. WebLogic Server reads the request.

3. Using the JSP compiler, WebLogic Server converts the JSP into a servlet

class that implements the javax.servlet.jsp.JspPage interface. The JSP file is

compiled only when the page is first requested, or when the JSP file has been

changed. Otherwise, the previously compiled JSP servlet class is re-used,

making subsequent responses much quicker.

4. The generated JspPage servlet class is invoked to handle the browser request.

It is also possible to invoke the JSP compiler directly without making a request

from a browser. For details, see Using the WebLogic JSP Compiler. Because the JSP

compiler creates a Java servlet as its first step, you can look at the Java files it

produces, or even register the generated JspPage servlet class as an HTTP servlet.

12

2.4 Servlets Advantages

There are five main advantages of servlets:

1. It's efficient: the java virtual machine stays up, and each request is handled

by lightweight java thread, not a heavyweight operating system process.

2. It's convenient: you are able to use java rather than learn perl too.

3. It's powerful: you can easily do several things that are difficult or impossible

with regular CGI.

4. It's portable: follows a well standardized APL

5. It's inexpensive: there are a number of free or very inexpensive web servers

available that are good for "personal" use or low-volume Web sites.

•!• Since java server pages (ISP) are servlets, all the benefits of servlets pertain

to JSP.

2.5 JSP Syntax

2.5.1 Directives
JSPs live in an object called a container, which is essentially a server. JSPs can

define information for the container with directives.

Here is what directives look like in a general form:

<%@ directive attribute="someValue" attribute="anotherValue" ... %>

There are three directives:

• <%@ page ... %> specifies information that affects the page

• <%@ include ... %> includes a file at the location of the include directive

(parsed)

• <%@ taglib ... %> allows the use of custom tags in the page

• <%@ page language="java" %> will always be the first line of every JSP

file.

2.5.2 Declarations
Declarations are used to specify supplemental methods and variables. You can

think of these are the page's private functions; they can only be called by the JSP where

they are defined, or by another JSP that includes it (using the <@ include >

directive).

13

Here is a sample declaration:

<%!

II this integer can be used anywhere in this JSP page

private int myVariable = - 1;

II this function can be called from anywhere in this JSP page

public boolean isPositive() {

return (myVariable > O);

}

%>

2.5.3 Scriptlets
Scriptlets are bits of Java code. They can do anything (the full power of Java is

available in every JSP), but they will most likely concentrate on generating HTML.

2.5.4 Expressions
Expressions are special-purpose mini-scriptlets used for evaluating expressions.

This could be something as simple as outputting the value of a variable, or a more

complicated Java expression, like calling a function and outputting the result.

Table 2.1 JSP Syntax Summary

JSP
lUeınent

Syntax Interpretation

JSP
Expression

<'i= express ion 9s> I Expression is evaluated and placed in
output. out.pıintln{expressiont

<>/c; oocle ô)s> I Java Code is inserted in serviceJSP
,Seriptkt
JSP l <%, ! code fi;>

method.. ---·-··-····--· ···-······---·--·-···· ·······---·-·····-····-····--- ······--··---·

inserted in body of servlet class,
outside of service method.Declaration

JSPpage l<'~.(9 pa9e
Directive att="val" %>

Directions to the servlet engine about
general setup.

JSP I<~;-- comment --Ii;>

Comment
Comment; ignored when JSP is
translated into servleı.

Js_·~p-. i.n~lude I ':_0~;('.l incl~1de
Directive :tılr:,="ur.ı" %>

A file on the local system to be
included when the JSP page is
translated into a servlet.

14

CHAPER 3: HTML & JAVASCRIPT

3.1 Introduction to HTML
(HyperText Markup Language) The document format used on the Web. Web

pages are built with HTML tags (codes) embedded in the text. HTML defines the page

layout, fonts and graphic elements as well as the hypertext links to other documents on

the Web. Each link contains the URL, or address, of a Web page residing on the same

server or any server worldwide, hence "World Wide" Web.

HTML 2.0 was defined by the Internet Engineering Task Force (IETF) with a

basic set of features, including interactive forms capability. Subsequent versions added

more features such as blinking text, custom backgrounds and tables of contents.

However, each new version requires agreement on the tags used, and browsers must be

modified to implement those tags.

HTML Itself Is Not a Programming Language; HTML is a markup language

(the ML in HTML) that uses a fixed set of markup tags. A markup language can also be

thought of as a "presentation language," but it is not a programming language. You

cannot "if this-do that" like you can in Java, JavaScript or C++. However, in order to

make pages interactive, programming code can be embedded in an HTML page. For

example, JavaScript is widely interspersed in Web pages (HTML pages) for that

purpose.

_,
Visitor's .ıı.. · 11::-._
browser

Return pag,e to
3 £:irowser for

display

Figure 3.1: Html Pages are transferred by HTTP Protocol.

HTML was conceived as a simple markup language to render research

documents. No one envisioned Web pages turning into multimedia extravaganzas.

15

3.2 Introduction to JavaScript
Thousands of sites around the world use JavaScript but it is still not a

particularly well known programming language (compared to HTML). If you have seen

anything interactive on a website like a calculation, pop-up-window, some web

counters and even some navigation systems then you have probably seen JavaScript.

Unfortunately, JavaScript has changed from being a language which improves web

sites to a language which destroys them. This is because there are huge JavaScript sites

which have thousands of scripts for download. These usually involve things which do

not benefit a website at all, like status bar effects and scrolling text which do not add

muchtoawebsite.
JavaScript must not be confused with Java. Java is a completely different

programming language. It is usually used for text effects and games, although there are

some JavaScript games around.
So why should you use JavaScript? Well, JavaScript can allow you to create

new things on your website that are both dynamic and interactive, allowing you to do

things like find out some information about a user (like monitor resolution and

browser), check that forms have been filled in correctly, rotate images, make random

text do calculations and many other things.

HTML pages have been reworked, jury-rigged and extended into full-blown

applications. As a result, the source code behind today's Web pages is often a hideous

concoction of tags and scripting.

3.2.1 What Do I Need?
You will not need any special hardware or software to write JavaScript, you can

just use Notepad or any other text editor. You do not even need to have any special

software on your webserver. JavaScript will run on any webserver anywhere! All you

will need to do is make sure that you have at least a version 3 browser, as versions of

Internet Explorer and Netscape Navigator before this do not support JavaScript, so you

will not be able to see your creations.

16

3.2.2 Declaring JavaScript
Adding JavaScript to a web page is actually surprisingly easy! To add a JavaScript all

you need to add is the following (either between the <head></head> tags or between

the <body></body> tags.

<script language="JavaScript">

JavaScript

</script>

As you can see the JavaScript is just contained in a normal HTML tag set. The

next thing you must do is make sure that the older browsers ignore it. If you don't do

this the code for the JavaScript will be shown which will look awful.

There are two things you must do to hide the code from older browsers and

show something instead:

<script language="JavaScript">

<!-Begin Hide

JavaScript

//End Hide-->

</script>

<noscript>

HTML Code

</noscript>

As you can see this makes the code look a lot more complex, but it is really quite

simple. If you look closely you can see that all that has been done is that the JavaScript

. is now contained in an HTML comment tag. This is so that any old browsers which do

not understand <script> will just think it is an HTML comment and ignore it.

Because of this the <noscript> tag was created. This will be ignored by

browsers which understand <script> but will be read by the older browsers. All you

need to do is put between <noscript> and </noscıipt> what you want to appear if the

browser does not support JavaScript. This could be an alternative feature or just a

message saying it is not available. You do not have to include the tag if you don't want

anything shown instead.

17

CHAPTER 4: DATABASE DESIGN

4.1 Introduction
Many web developers are self-taught, learning HTML, then moving on to a

programming language such as JSP. From there, they often learn to integrate this with a

database. Too few though have a good theoretical knowledge of databases. Mention foreign

keys, or referential integrity, and you're met with a blank stare. Small databases can be easily

designed with little database theory knowledge. But large databases can easily get out of hand

when badly designed, leading to poor performance, and resulting in the whole database

needing to be rebuilt later. This article is a brief introduction to the topic of relational

databases, and will hopefully whet your appetite for further exploration.

4.2 The Relational Database Model
A database can be understood as a collection of related files. How those files are

related depends on the model used. Early models.included the hierarchical model (where files
are related in a parent/child manner, with each child file having at most one parent file), and

the network model (where files are related as owners and members, similar to the network

model except that each member file can have more than one owner).
The relational database model was a huge step forward, as it allowed files to be

related by means of a common field. In order to relate any two files, they simply need to have

a common field, which makes the model extremely flexible.

4.3 The Entity-Relationship Model
The Entity-Relationship (ER) model was originally proposed by Peter in 1976

[Chen76] as a way to unify the network and relational database views. Simply stated the ER

model is a conceptual data model that views the real world as entities and relationships. A

basic 'Componentof the model is the Entity-Relationship diagram which is used to visually

represent data objects. Since Chen wrote his paper the model has been extended and today it

is commonly used for database design for the database designer, the utility of the ER model

ıs:
• It maps well to the relational model. The constructs used in the ER model can

easily be transformed into relational tables.

18

• It is simple and easy to understand with a minimum of training. Therefore, the

model can pe used by the database designer to communicate the design to the end

user.
• In addition, the model can be used as a design plan by the database developer to

implement a data model in a specific database management software.

4.3.1 Basic Constructs of E-R Modeling
The ER model views the real world as a construct of entities and association between

entities.

4.3.1.1 Entities
Entities are the principal data object about which information is to be collected.

Entities are usually recognizable concepts, either concrete or abstract, such as person, places,

things, or events which have relevance to the database. Some specific examples of entities are

EMPLOYEES, PROJECTS, INVOICES. An entity is analogous to a table in the relational

model.
Entities are classified as independent or dependent (in some methodologies, the terms

used are strong and weak, respectively). An independent entity is one that does not rely on

another for identification. A dependent entity is one that relies on another for identification.

An entity occurrence (also called an instance) is an individual occurrence of an entity.

An occurrence is analogous to a row in the relational table.

4.3.1.2 Special Entity Types
Associative entities (also known as intersection entities) are entities used to associate

two or more entities in order to reconcile a many-to-many relationship.

Subtypes entities are used in generalization hierarchies to represent a subset of

instances of their parent entity, called the supertype, but which have attributes or

relationships that apply only to the subset.

4.3.1.3 Relationships
A Relationship represents an association between two or more entities. An example of

a relationship would be:

19

• employees are assigned to projects

• projects have subtasks

• departments manage one or more projects

Relationships are classified in terms of degree, connectivity, cardinality, and

existence. These concepts will be discussed below.

4.3.1.4 Attributes
Attributes describe the entity of which they are associated. A particular instance of an

attribute is a value, For example, "Jane R. Hathaway" is one value of the attribute Name. The

domain of an attribute is the collection of all possible values an attribute can have. The

domain of Name is a character string.
Attributes can be classified as identifiers or descriptors. Identifiers, more commonly

called keys, uniquely identify an instance of an entity. A descriptor describes a non-unique

characteristic of an entity instance.

4.3.1.5 Classifying Relationships
Relationships are classified by their degree, connectivity, cardinality, direction, type,

and existence. Not all modeling methodologies use all these classifications.

4.3.1.6 Degree of a Relationship
The degree of a relationship is the number of entities associated with the relationship.

The n-ary relationship is the general form for degree n. Special cases are the binary, and

ternary, where the degree is 2, and 3, respectively.
Binary relationships, the association between two entities is the most common type in

the real world. A recursive binary relationship occurs when an entity is related to itself. An

example might be "some employees are married to other employees".

A ternary relationship involves three entities and is used when a binary relationship is

inadequate. Many modeling approaches recognize only binary relationships. Ternary or n-ary

relationships are decomposed into two or more binary relationships.

20

4.3.1.8 Direction
The direction of a relationship indicates the originating entity of a binary relationship.

The entity from which a relationship originates is the parent entity; the entity where the

relationship terminates is the child entity.
The direction of a relationship is determined by its connectivity. In a one-to-one

relationship the direction is from the independent entity to a dependent entity. If both entities

are independent, the direction is arbitrary. With one-to-many relationships, the entity

occurring once is the parent. The direction of many-to-many relationships is arbitrary.

4.3.1.7 Connectivity and Cardinality
The connectivity of a relationship describes the mapping of associated entity instances

in the relationship. The values of connectivity are "one" or "many". The cardinality of a

relationship is the actual number of related occurrences for each of the two entities. The basic

types of connectivity for relations are: one-to-one, one-to-many, and many-to-many.

4.3.2 ER Notation
There is no standard for representing data objects in ER diagrams. Each modeling

methodology uses its own notation. The original notation used by Chen is widely used in

academics texts and journals but rarely seen in either CASE tools or publications by non-

4.3.1.9 Type
An identifying relationship is one in which one of the child entities is also a

dependent entity. A non-identifying relationship is one in which both entities are

independent.

4.3.1.10 Existence
Existence denotes whether the existence of an entity instance is dependent upon the

existence of another, related, entity instance. The existence of an entity in a relationship is

defined as, either mandatory or optional. If an instance of an entity must always occur for an

entity to be included in a relationship, then it is mandatory.

21

academics. Today, there are a number of notations used; among the more common are

Bachman, crow's foot, and IDEFIX.

Here are the notations (crow's foot notation) used in the E-R diagram of the project

(see figure 4.1):

• Entities are represented by labeled rectangles. The label is the name of the entity.

Entity names should be singular nouns.

• Relationships are represented by a solid line connecting two entities. The name of the

relationship is written above the line. Relationship names should be verbs.

• Attributes, when included, are listed inside the entity rectangle. Attributes which are

identifiers are underlined. Attribute names should be singular nouns.

• Cardinality of many is represented by a line ending in a crow's foot. If the crow's foot

is omitted, the cardinality is one.

4.4 Relational Database of Online Course Registration:
After talking about E-R model and having some knowledge about it, now it is the time

to implement the shown E-R diagram (figure 4.1) so to obtain the real model(the needed

database).
The aimed database is needed for the faculty of computer engineering at our

university, information about students, staffs, courses, terms and some process which belongs

either to student or to staff are to be stored into the database.
There are 1 O tables which were implemented on Ms. Access to cover the need of

storing the necessary information.
The Student table contains student information. studentld is the primary key to

uniquely identity each student. firstName and surname fields keep the student full name. The

table contains advisorld as foreign key to reference the Staff table so to keep track of student

advisor's information. password field is used to verify the student while trying to log into his

account.
The Staff table contains staffld field as the primary key. name and surName fields

save the staff full name. Staff degree is obtained by the foreign key degreeld field which

references the staffDegree table. The roomld field is used to get the room number of the staff.

password field is added to achieve what the Student table's password field does.

22

surName
Password
advisorld [FK]

I
....L
-L

I
I
I
I
I
I

Has paidı
I
I
I
I
I
I
I

--~~~=----H
~~---

Has course Information

studentld [PK1) [FK]
courseld [PK2) [FK]
termld [PK3) [FK]
groupNo
csStatus
midterm
final
csGrade

staffld [PK1)
name
surName
degreeld [FK]
room Id
Password

. _ + ~ __~~r~~t:s_

-L
-+-

I-,
T

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Iı ls a
L------------------

Announcement
'"

ann Id [PK1)
staffld [FK]
courseld [FK]
ann_date
ann_body

I
I

I
I
I
I
I
I
I
1 Has an
L---------------

Teaches

r-------
ı
I
I
I
I
I
I
I
I-----------------------

I

: Were taken in
I
I-,

T

termld [PK1]
termDesc
term Type
start Term
endRegist
endTerm

Based on

courseld rPK1)
title
cs Level
csCredit
cs Type
pre_Req1 [[FK]]
pre_Req2 [FK]

courseld [PK1) [FKJ
groupNo [PK2)
instructorld [FK]
studentCount

Figure 4.1: Project's E-R Diagram

23

The Announcement table records are identified by the primary key ann_Id. The

foreign keys staffld and courseld fields are to reference the staff who did added the

announcement and the course- which the announcement does belong respectively. ann_date

column marks the date on which the announcement was added. The body of the

announcement is kept within the column ann_body.

The Offıce_Hours table is structured with three columns. staffld and dayld together

eliminate the possibility of the duplication (composite primary key). Each day of the week is

assigned with an Id (day Id field). Staff office hours for each day are defined within the

off hour field.

The StaffDegree table contains all possible degree classification (Mr., Dr.,

Prof. .. etc) with the primary key degreeld. Degree with full string representation is hold

within degreeDesc field.

The StudentPayment table keeps a track of student term's fee payment. This table

most probably is a view, so it takes the records from the university main database. studentld

and tennld are composite primary key and on the same time foreign keys that reference

Student and Term tables respectively. Term fee payment status (paid, not paid) is determined

by the column payStatus.

The Term table (primary key termld) contains term information. termDesc field holds

the term title (e.g. Fall 2005/2006). The fields start'Term, endRegist, endTerm are used to

define the start date of the term, the dead date for course registration and the end date of the

term respectively.

The Course table contains the courses which the university offers. courseld is the

primary key. The title of the course is saved in the field title. csLevel field specify at what

term level the course is scheduled to be taken. csCredit defines what credit the course does

has. csType determines the course type (elective, technical, non-technical). The prerequisites

information are kept in the pre_Reql and pre_Req2 columns which serve as foreign keys and

reference the primary key of the same Course Table.

The Registration table contains each student's schedule for every registration term.

studentld, courseld and termld are the composite primary key. The table contains two

"lookup" tables which are Course and Term. The course status (failed, passed, currently

taken) can be obtained from csStatus column. The table provides each taken course's

midterm, final and grade results.

24

The OpenedCoursesAndGroups table contains the offered courses and groups in every

term. courseld and groupNo do uniquely identify each record. The table contains a single

foreign key "instructorld" column which references the Staff table so to keep a track of

course group instructor information,

The following figure shows the entities relationships implemented on Ms.

Figure 4.2: The Database of the Project was created on MS Access.

25

CHAPTER 5: Online Course Registration Software Design

5.1 Introduction
In The previous four chapters were introduced the techniques (Java, JSP,

HTML, JavaScript and RDBMS applied on Ms. Database) which were used for

implementing the project.
This chapter has two' main sections: first section talks about the UML which

were used during project designing phase; the second section shows some system

graphical pages and explains what technical functions each page was designed to

accomplish.

5.2 What is UML?
The Unified Modeling Language (UML) is a standard language for specifying,

visualizing, constructing, and documenting the artifacts of software systems, as well as

for business modeling and other non-software systems. The UML represents a

collection of best engineering practices that have proven successful in the modeling of

large and complex systems. The UML is a very important part of developing object

oriented software and the software development process. The UML uses mostly

graphical notations to express the design of software projects. Using the UML helps

project teams communicate, explore potential designs, and validate the architectural

design of the software.

5.2.1 Goals of UML
The primary goals in the design of the UML were:

1. Provide users with a ready-to-use, expressive visual modeling language

so they can develop and exchange meaningful models.

2. Provide extensibility and specialization mechanisms to extend the core

concepts.
3. Be independent of particular programming languages and development

processes.
4. Provide a formal basis for understanding the modeling language.

5. Encourage the growth of the 00 tools market.

26

6. Support higher-level development concepts such as collaborations,

frameworks, patterns and components.

7. Integrate best practices.

5.2.2 Use Case
A use case is a set of scenarios that describing an interaction between a user and

a system. A use case diagram displays the relationship among actors and use cases.

The two main components of a use case diagram are use cases and actors.

o-t-
,..... ~

....~- .•

Actor Use Case

Figure 5.1

5.2.3 Use Case Diagrams Depict:
• Use cases. A use case describes a sequence of actions that provide

something of measurable value to an actor and is drawn as a horizontal

ellipse.

• Actors. An actor is a person, organization, or external system that plays

a role in one or more interactions with your system. Actors are drawn as

stick figures.

• Associations. Associations between actors and use cases are indicated

in use case diagrams by solid lines. An association exists whenever an

actor is involved with an interaction described by a use case.

Associations are modeled as lines connecting use cases and actors to one

another, with an optional arrowhead on one end of the line. The

arrowhead is often used to indicating the direction of the initial

invocation of the relationship or to indicate the primary actor within the

use case. (It is possible to have association between tow use cases)

In the next section it is shown the use cases of the project. (Figure 5.2)

27

5.2.3.1 Project Use Case Diagrams
Since the system (project) belongs to both students and staffs, all possible

actions are initiated and/or participated by them, therefore the system has tow actors,

student and instructor see figure 5.2.

/ r
\._ _

---.._
)

/

Courses Registration
A Processs

!ıl
ı/
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I

I

«extend»

Regisration Out Of
Period

I~ , ,\
I
I
I
I
I
I
I
I
I
: «extend»
I
I
I
I
I
I

~·' \
\
\
\
\
\
\
\
\
\ «extend»

\
\
\
\
\
\

// ---- ... ··--· ----"
' I
\...,___ •.. -//

-----"\
__ j

Student Not Registed

Control Class Markes and
Grades

Set AnnouncemenlCGPA ls Low

Figure 5.2: Project Use Case Diagrams

28

Class diagrams are widely used to describe the types of objects in a system and

their relationships; Class' diagrams model class structure and contents using design

elements such as classes, packages and objects. Class diagrams describe three different

perspectives when designing a system, conceptual, specification, and implementation

(figure 5.3). These perspectives become evident as the diagram is created and help

solidify the design.
Class diagrams also display relationships such as containment, inheritance,

associations and others. The association relationship is the most common relationship

in a class diagram. The association shows the relationship between instances of

classes.

5.2.4 Class Diagrams

Class Name •• I Sta ff Ann ounce ment

~annContent: String
Attributes •• I ~annDate: Date

.StaffAn no.uncemeni()

.getAn nounc emeni()

Operations •• I .add New Announcement(

Figure 5.3: Class Diagram Description

The following figure shows the class "StaffAnnouncement" source code.

package neu facult:ie s. c omEng;
import j ava. s ql. *;
import j ava. util. *;
import java.io. *;
public class StaffA.rınouncement
{ II attribute definitions
private String annContent;
private j ava. util Date annD ate;
public StaffA.rınouncementO { }

II set announcement Body
public void setAnnBody(String annBdy)
{annContent = annlsdy.}

29

II set aruıouncement Date
public void setAnnDateuava.utilDate aruı_Date)
{ annDate = aruı_Date;)

public String getAnııBodyQ
{ return aruıContent; }

public java.util.Date get.AnnDateO
{ return annDate; }

II method is to handle the decleration of a new aruıouncement
public boolean addNew.Announcement(Stafilnfo sf, Courseinfo cs, String aruıouncement) throws SQLException

{ String aruıUpdate = 11INSERT INTO aruıouncement(staffld, courseid, am_body/
+ 11 VALUESÇU + sfgetstaffidQ.trimO + 111,111 + cs.getCourseidQ.trimO + 111,111 + aruıouncement.trimQ + 111/;

DomainDB.handleUpdate(aruıUpdate);
return true; } II end method addNew.AnnouncementO

II the method returns all aruıouncement that belongs to the staff of the specified course
public Vector get.Announcement(Stafilnfo sf, Courseinfo cs) throws SQLException

{ String aruıQuery = 11SELECT ann_body, am_Date FROM aruıouncement WHERE staffld = 111 + sfgetstaffld
Q.trimO + 11111 + 11 AND courseid = 111 + cs.getCourseidQ.trimO + 11111

;

ResultSet aruıSet = DomainDB.handleQuery(aruıQuery);
boolean more.Ann= aruıSet.nextQ;
if(more.Ann)
{ Vector annVector = new Vector0;

wlıile(more.Ann)
{ StafEAnnouncement stfAnn = new Sta££Announcement0;

stfAnn. setAnııBody(aruıSet.getString(l));
stfAnn. set.AnnDate(aruıSet.getDate(2));
amVector. add(stfAnn);
more.Ann= aruıSet.nextQ; }II end while
return aruıVector; }II end if II Staff has not declared any aruıounement for the specified course.
return null } II end method get.AnnouncementO}

II END Class StafEAnnouncement

J

Figure 5.4: StaffAnnouncement Class Source Code

30

NEAR EAST UNIVERSITY
~

Faculty of Engineering

Department of Computer Engineering

ONLINE COURSE REGISTRATION

Graduation Project
COM-400

Student: Ahmad Salman (20021194)

Supervisor: Assist. Prof. Dr Adil Amirjanov

Nicosia - 2006

ACKNOWLEDGMENTS

First of all I would like to thank my supervisor Assist. Prof Dr. Adil Amirjanov

advisor for intellectual support, encouragement, and enthusiasm, which made this

project possible.
Second, I thank my dearest family for their constant encouragement and support

during the completion of my study
Third, my sincerest thanks go to my friend, Salem Al- Marashdah, Mohammad

Alsheyab and Alaa Abu- hadbh and all friends who shared their suggestion throughout

the completion of my project.
And above, I thank Godfor giving me stamina and courage to achieve my

objectives.

ABSTRACT

With all the developments and the technology which grows up every year in our

university and we are all witness's on these improvements, the idea of this project was

decided trying to push up the improvements performance and give some hand to whom

it may concern.

In the past, most computer applications ran on stand-alone computers but today's

application can be written to communicate with millions of computers, the question

comes here, why don't we use these application's power?

The main aim of the project is the development of system for course registration

which enables the students to register their courses online so to eliminate the traffic of

student registration process on the advisors doors. Other benefits of the system are:

allows for distributing instructor's announcement, instructor's office hour's view and edit,

displaying each course student list, provides the students with each term offered courses

and what courses they are currently taking as well as course grades, GPA and CGPA.

11

TABLE OF CONTENTS

~
ACKNOWLEDGMENT

ABSTRACT

TABLE OF CONTENTS

INTRODUCTIONS

CHAPTER 1: JAVA PROGRAMMING

1. 1 What is Java

1.2 Java as a Language

1 .3 Java is Platform Independence

1.4 Java as an Application Development Platform

1.5 Java Applets

1.6 Java Adjectives

1.6.1 Java is Simple

1.6.2 Java is Object Oriented

1.6.3 Java is Distributed

1 .6.4 Java is Interpreted

1.6.5 Java is Robust

1.6.6 Java is Secure

1.6.7 Java is Architecturally Neutral

1.6.8 Java is Portable

1.6.9 Java is High-Performance

1.6. 1 O Java is MultiThreaded

1.6.11 Java is a Dynamic Language

1. 7 What Is a Class?

1.8 What Is an Object?

CHAPTER 2: JAVA SERVER PAGES (JSP)

2.1 What is JSP

2.2 How JSP Works

2.3 How JSP Requests Are Handled

lll

i

ii

iii

vi

1

1

1

2

3
4

5

5

5

5

5
6

6

6

6

6

7

7

7

8

11

11

11

12

2.4 Servlets Advantages 13

2.5 JSP Syntax 13

2.5.1 Directives 13

2.5.2 Declarations 13

2.5.3 Scriptlets 14

2.5 .4 Expressions 14

CHAPER 3: HTML & JAVASCRIPT 15

15

16

16

17

18

18

18

18

19

19

19

19

20

20

20

21

21

21

21

21

22

3. 1 Introduction to HTML

3.2 Introduction to JavaScript

3.2. 1 What Do I Need?

3.2.2 Declaring JavaScıipt

CHAPTER 4: DATABASE DESIGN

4. 1 Introduction

4.2 The Relational Database Model

4.3 The Entity-Relationship Model

4.3.1 Basic Constructs of E-R Modeling

4.3.1.1 Entities

4.3. 1.2 Special Entity Types

4.3. 1 .3 Relationships

4.3. 1.4 Attributes

4.3. 1 .5 Classifying Relationships

4.3. 1.6 Degree of a Relationship

4. 3. 1. 7 Connectivity and Cardinality

4.3. 1.8 Direction

4.3. 1 .9 Type

4.3. 1. 1 O Existence

4.3 .2 ER Notation

4.4 Relational Database of Online Course Registration:

CHAPTER 5: ONLİNE COURSE REGİSTRAION SOFTWARE

DESİGN 26

26 5. 1 Introduction

ıv

5.2 What is UML?

5 .2.1 GoalsofUML

S.2.2 Use Case

5.2.3 Use Case Diagrams Depict:

5.2.3.1 Project Use Case Diagrams

5.2.4 Class Diagrams

5.2.4.1 Project Class Diagrams

5.2.5 Sequence Diagrams

5.2.5.1 Project Sequence Diagrams

5.3 Project Files Diagram

5.4 Project Graphical User Interface (GUI)

CONCLUSION

REFERENCES

V

26

26

27

27

27

28

30

31

32

35

36

45

46

INTRODUCTION

In the past, most computer applications ran on stand-alone computers but today's

application (web application) can be written to communicate with millions of

computers, the question comes here, why don't we use these application's power?

The objective of the project is to enable students to register their courses online,

so to eliminate student's traffic on the advisors doors while trying to register their

courses and to make this process possible where ever the student is. Other benefits of

the system are: allows staffs for distributing announcement, office hour's view and edit,

displaying and controlling each course student list, provides students with information

about the offered courses and what courses they are currently taking as well as courses

grades, GPA and CGPA. The project consists of introduction, five chapters and

conclusion.

Chapter One introduces the Java language, explains its adjectives and gives

some related definitions.

Chapter Two presents java server Pages (JSP) fundamental, has an explanation

about JSP files and how JSP works. JSP files technique was used to make dynamic

pages which serve both student and staff with the information they need, what is the

mechanism of handling JSP requests is explained in this chapter.

Chapter Three introduces JavaScript and explains some of its fundamental

concepts.
Chapter Four describes the relational database model and explains how the data

base of the project was analyzed and created. The full entity relationship diagram is

represented and explained. The structure and description of each table is given.

Chapter Five is devoted to the development of "On Line Course Registration"

system. The structure of the system described by the unified modeling language (UML)

is given (use case diagrams, class diagrams and sequence diagrams). Some graphical

user interfaces (GUI) of the system are represented and illustrated.

VI

CHAPTER 1: JAVA PROGRAMMING

1.1 What is Java

Defining Java is not easy because it is actually many things. According to the

Sun white paper on Java, "Java is a simple, object-oriented, distributed, interpreted,

robust, secure, architecture neutral, portable, high-performance, multithreaded, and

dynamic language." Remove all the adjectives and you are left with the essence of the

definition: "Java is a ... language."

However, Java is more than just another programming language. It is both a

language and a platform for developing applications to run on the Internet or in

corporate intranet environments.

1.2 Java as a Language
Java was designed as a language for object-oriented programming. Unlike

procedural programming, where functions are coded to follow step-by-step algorithms,

object-oriented programming revolves around data structures known as objects. For all

objects that belong to a particular class, there is a well-defined set of routines, or

"methods," for operating on the data contained within the object. This defines the

interface for working with the object. As long as the interface remains the same,

programmers can write the code that implements the methods however they want.

C++ added object-oriented capabilities to the procedural style of C, but it is a

difficult language to learn. Its many complicated features and constructs have tended to

produce unreliable, buggy applications, even in the hands of fairly competent

programmers. On a superficial level, Java is similar to C++ in that the syntax for

expressions and control statements is almost the same in the two languages. However,

Java is neither a superset nor a subset of C++. Its designers wanted a new language that

was easier to learn and use.

Java is more purely object-oriented than C++ in that it requires the use of

objects. There are no global variables or functions; al1 interfaces with an object's data

must be defined in the class libraries, Java's creators threw out some of the C++

features that were confusing to developers, such as multiple inheritance (inheriting

properties and methods from more than one object) and operator overloading (using

one identifier to refer to multiple items in the same scope). To be able to securely

1

execute code that has been downloaded from a network, they eliminated explicit

memory pointers so that a Java program cannot access memory addresses it doesn't

own. They also added some things C++ doesn't have, such as multithreading (the

ability to execute multiple processes concurrently) and garbage collection

(automatically recovering previously used memory for reuse by other applications).

1.3 Java is Platform Independence
C and C++ code is cross-platform in source form, but has to be specially

compiled to form binary files that will run on different processors (see Figure 1.1).

Figure 1.1: Traditional Compilers

Java, on the other hand, is designed to be cross-platform in both source and

compiled binary form. Of course, it is impossible to run the same binary file on

Windows, Unix, and Macintosh machines. So what Java does is compile its source

code into an intermediate, platform-independent byte code. The byte code is then

interpreted at execution time by a platform-specific interpreter called a Java Virtual

Machine (JVM), as shown in Figure 1 .2.

2

Java.axe

Javo &yteçod(!··
p!atf:orm independent

Figure 1.2: Java Compilers and Byte Code.

The interpreted, dynamic nature of the Java language is what allows Java-based

applications to be platform-independent. The source and byte code can be written once,

and only the JVM needs to be ported to each platform. Currently supported platforms

include Windows 95 and Windows NT, Windows 3.x, OS/2, Macintosh, Unix, and the

new Network Computer (NC). Thus Java brings software developers closer to the

elusive ideal of "write once, run anywhere" code--so much so that JavaSoft has

trademarked the phrase!

1.4 Java as an Application Development Platform
The Java language can be used to create standalone applications that run outside

of a web browser. All a developer needs is the JVM for the desired platform and the

appropriate class libraries (.class files) for the functions to be performed. The

advantages of using Java are portability and smaller code size, since byte code is

usually much smaller than the equivalent native code. However, because Java code is

interpreted, it runs far slower than native code.
There are basically two ways to speed up Java applications. One way is for

vendors to write their own Java compilers that generate native machine code instead of

byte code. While this does bring the speed of Java applications in par with traditional

applications, you lose the advantage of portability. The second way to speed up Java is

by using "just-in-time" (JIT) compilation. With a JIT compiler, the Java Virtual

Machine translates the byte code into native code just before the application is

executed. This improves performance over the interpreted method, but since JIT

3

compilers can't do much in the way of code optimization, the resulting code still runs

slower than equivalent native code.

1.5 Java Applets

Most of the excitement surrounding Java centers around its ability to create

small programs called "applets". A Java applet is a Java program designed to be

included in a HyperText Markup Language (HTML) document and run inside a web

browser. The applet code is embedded in an HTML page via an <APPLET> tag that

references the applet's .class file. The applet is then downloaded and executed by an

integrated byte code interpreter within the browser (see Figure 1 .3).

V-leb
Server

Apple!
Syıecode

1 , User te!e,:Js HiML page with embedded applet
2. fava bft~ode ls dı;wrıl<ı-nded by brnwset and ;;xecvıed by iıücgroı-0cl

byi.m::ode inlerp,eter

Figure 1.3: Java Applets.

Besides telling the browser what code to retrieve, the <APPLET> tag also

defines how large the applet's display area will be through the width and height

parameters. The applet controls everything that happens within its own display area. It

can create menus, scroll bars, push buttons, and other means of interacting with the

user. It can also communicate with other applets running on the same page, or cause the

browser to load a new page. But an applet cannot affect any page contents that are

specified by HTML tags.

4

1.6 Java Adjectives

1.6.1 Java is Simple
Simple to learn in that it has much in common with C++. It is also simple to

understand, since many of the difficult features of C++ are absent from Java: Multiple

inheritance, automatic casting, hidden constructor and destructor calls, and operator

overloading.

Simple can also mean small. Java was developed to run in very little memory, such as

embedded controllers.

1.6.2 Java is Object Oriented
C++ is a hybrid language. C++ maintains compatibility with C, which is a

traditional imperative language. This has been augmented with classes, an

implementation of objects. A C++ programmer can operate in either style.

Java is much more pure object-oriented, in that no Java application or applet lacks

objects. The objects are very similar to that of C++ but more prevalent.

1.6.3 Java is Distributed
Java is web and internet-oriented. Java applications and applets can be scattered

across different sites on the net. It accesses items across the web as easily as local file

items.

Java accepts the client-server model nicely, and has built in support for web protocols

like HTTP or FTP.

1.6.4 Java is Interpreted
Java is both interpreted and compiled. The javac compiler converts Java source

into byte code. Byte code is the machine language for the Java Virtual Machine. Byte

code is more compact and much faster to interpret than the Java source code. Byte code

can be interpreted on any machine or architecture.

There is nothing about Java that demands interpretation. Native code compilers exist,

but there are some advantages to interpretation, as well.

5

1.6.5 Java is Robust
The type checking of Java is at least as strong as that of C++, so that Java

programs are well-checked at compile-time. Strong run-time checking by the

interpreter catches many other errors. Type checking and interpretation make Java

programs crash-proof. The program can fail, but not crash the rest of the system. Many

of the errors that hang systems, such as bad subscripts and bad pointers, are specifically

detected, preventing a Java program from damaging the rest of the system.

1.6.6 Java is Secure
Security is a byproduct of interpretation. Java programs have definite limits of

what they can access on the computer. Applets are even more secure than applications,

since they cannot even access files on the system they are running on.

1.6.7 Java is Architecturally Neutral
Java byte code makes no unusual assumptions about the underlying hardware.

Any type of computer should be able to implement a Java Virtual Machine, that is, the

byte code interpreter. There are no machine dependencies and no machine variants.

1.6.8 Java is Portable
Portability is a consequence of good design and the architecture-neutral

approach. Every machine has its own unique byte code interpreter, since that must be

coded for each platform. However, they all accept the same byte code. There are

standards for the suitable values of the simple types. For example, an int must be a 32

bit 2's complement binary integer on all machines, regardless of how the local machine

implements integers. The Java compiler is itself written in Java, as are most of the other

tools, so they are exactly the same for all platforms. Thus, Java is portable.

1.6.9 Java is High-Performance
Historically, interpreted languages have been much slower than compiled

languages. For example, a BASIC interpreter has to parse each line each time it is

executed. Java compiles the source into byte code. The overhead of interpretation is the

time it takes to look up the byte code and find the right subroutine. On some

architectures, that may be very small. The other overhead is that of the run-time

6

checking of the operands, which is not, strictly speaking, an interpretation problem.

The byte code keeps the parsing costs low, so that Java code is only somewhat slower

than native code. However, that somewhat slower is in the range 1. 1 to 1 O times slower.

1.6.10 Java is MultiThreaded
Java has support for multiple threads or concurrent execution. A thread or a

process is a line of execution that executes independently or concurrently with other

threads. Most languages have no provision for concurrent execution. Some like C++

have it as an add on, through library function calls. Java has built it in, since it is so

needed in the language. The two main areas where threads are useful are the ability to

do something while waiting for results shipped over the net, and animations in web

applets. There are also a number of synchronization items. These allow two or more

threads to communicate reliably.

1.6.11 Java is a Dynamic Language
Java links (or binds) things later than C, more like LISP. Most languages like C

or Pascal use static binding to attach subroutines to the main program. Static binding

occurs at compile time. Java and LISP use dynamic binding. In dynamic binding, the

needed routine is not found until it is needed, at run-time. Some languages like C++ use

both. This makes the updating of libraries easier to accomplish, without recompilation.

Thus, should a new library version occur as soon as it's installed, all Java programs will

use it rather than the earlier version.

1.7 What Is a Class?
In the real world, you often have many objects of the same kind. For example,

your bicycle is just one of many bicycles in the world. Using object-oriented

terminology, we say that your bicycle object is an instance of the class of objects

known as bicycles. Bicycles have some state (current gear, current cadence, two

wheels) and behavior (change gears, brake) in common. However, each bicycle's state

is independent of and can be different from that of other bicycles.

When building them, manufacturers take advantage of the fact that bicycles

share characteristics, building many bicycles from the same blueprint. It would be very

inefficient to produce a new blueprint for every bicycle manufactured.

7

In object-oriented software, it's also possible to have many objects of the same

kind that share characteristics: rectangles, employee records, video clips, and so on.

Like bicycle manufacturers, you can take advantage of the fact that objects of the same

kind are similar and you can create a blueprint for those objects. A software blueprint

for objects is called a class (see figure 1.4).

Public AP!

Privtlte
lmplemerıtallcın
Details

Figure 1 .4: A Visual representation of a Class.

1.8 What Is an Object?
Objects are key to understanding object-oriented technology. You can look

around you now and see many examples of real-world objects: your dog, your desk,

your television set, your bicycle.

Real-world objects share two characteristics: They all have state and behavior.

For example, dogs have state (name, color, breed, hungry) and behavior (barking,

fetching, wagging tail). Bicycles have state (current gear, current pedal cadence, two

wheels, number of gears) and behavior (braking, accelerating, slowing down, changing

gears).

Software objects are modeled after real-world objects in that they too have state

and behavior. A software object maintains its state in one or more variables. A variable

is an item of data named by an identifier. A software object implements its behavior

with methods. A method is a function (subroutine) associated with an object.

You can represent real-world objects by using software objects. You might

want to represent real-world dogs as software objects in an animation program or a

real-world bicycle as a software object in the program that controls an electronic

exercise bike. You can also use software objects to model abstract concepts. For

example, an event is a common object used in window systems to represent the action

8

of as user pressing a mouse button or a key on the keyboard. The following illustration

(figure 1.5) is a common visual representation of a software object.

Methods
(b(!)htıı.vıor)

Vartables
(State)

Figure 1.5: A Software Object.

Everything the software object knows (state) and can do (behavior) is expressed

by the variables and the methods within that object. A software object that models your

real-world bicycle would have variables that indicate the bicycle's current state: Its

speed is 18 mph, its pedal cadence is 90 rpm, and its current gear is 5th. These

variables are formally known as instance variables because they contain the state for a

particular bicycle object; in object-oriented terminology, a particular object is called an

instance. The following figure (figure 1.6) illustrates a bicycle modeled as a software

object.

Figure 1.6: A Bicycle Modeled as a Software Object.

In addition to its variables, the software bicycle would also have methods to

brake, change the pedal cadence, and change gears. (It would not have a method for

changing its speed because the bike's speed is just a side effect of which gear it's in and

how fast the rider is pedaling.) These methods are known formally as instance methods

because they inspect or change the state of a particular bicycle instance.

9

Object diagrams show that an object's variables make up the center, or nucleus,

of the object. Methods surround and hide the object's nucleus from other objects in the

program. Packaging an object's variables within the protective custody of its methods is

called encapsulation. This conceptual picture of an object - a nucleus of variables

packaged within a protective membrane of methods - is an ideal representation of an

object and is the ideal that designers of object-oriented systems strive for. However, it's

not the whole story.
Often, for practical reasons, an object may expose some of its variables or hide

some of its methods. In the Java programming language, an object can specify one of

four access levels for each of its variables and methods. The access level determines

which other objects and classes can access that variable or method.

Encapsulating related variables and methods into a neat software bundle is a

simple yet powerful idea that provides two primary benefits to software developers:

• Modularity: The source code for an object can be written and maintained

independently of the source code for other objects. Also, an object can be easily

passed around in the system. You can give your bicycle to someone else, and it

will still work.
• Information-hiding: An object has a public interface that other objects can use

to communicate with it. The object can maintain private infoımation and

methods that can be changed at any time without affecting other objects that

depend on it. You don't need to understand a bike's gear mechanism to use it.

10

CHAPTER 2: JAVA SERVER PAGES (JSP)

2.1 What is JSP

Java Server Pages (JSP) provide a facility whereby you can write sever-side

scripted pages using the full power of the Java programming language and the rich set

of class libraries associated with Java. However there is a price to pay in that JSP, like

most things to do with Java, is significantly more complex than other techniques.

Java Server Pages (JSP) is a Sun Microsystems specification for combining

Java with HTML to provide dynamic content for Web pages. When you create dynamic

content, JSPs are more convenient to write than HTTP servlets because they allow you

to embed Java code directly into your HTML pages, in contrast with HTTP servlets, in

which you embed HTML inside Java code. JSP is part of the Java 2 Enterprise Edition

(J2EE).

JSP enables you to separate the dynamic content of a Web page from its

presentation. It caters to two different types of developers: HTML developers, who are

responsible for the graphical design of the page, and Java developers, who handle the

development of software to create the dynamic content.

Because JSP is part of the J2EE standard, you can deploy JSPs on a variety of

platforms, including WebLogic Server. In addition, third-party vendors and application

developers can provide JavaBean components and define custom JSP tags that can be

referenced from a JSP page to provide dynamic content.

2.2 How JSP Works
JSP pages are, at first glance, rather similar to ASP and PHP pages in that

special pseudo-tags are used to mark out parts of otherwise normal HTML pages that

are to handled specially. The difference is that, whereas ASP and PHP are processed by

a server plug-in, JSP is handled by a separate server process. For JSP this process runs

software known as Tomcat which takes the JSP page and converts the entire page into a

Java programme which is then compiled. The raw HTML in the original page is

wrapped in Java output methods. On requesting a JSP page, the request is transferred

from the normal WWW server (e.g. Apache) to Tomcat which first checks whether it

has cached an already compiled version of the Java programme associated with the

11

page. Recompilation takes place if the last modification date stamp on the JSP page is

more recent than the last modification date stamp on any cached compiled version.

JSP
Pages

Java
Compiler

V\/eb Server

Data
Files

Programme

Figure 2.1: How JSP Request Pages are Handled.

2.3 How JSP Requests Are Handled
WebLogic Server handles JSP requests in the following sequence:

1. A browser requests a page with a .jsp file extension from WebLogic Server.

2. WebLogic Server reads the request.

3. Using the JSP compiler, WebLogic Server converts the JSP into a servlet

class that implements the javax.servlet.jsp.JspPage interface. The JSP file is

compiled only when the page is first requested, or when the JSP file has been

changed. Otherwise, the previously compiled JSP servlet class is re-used,

making subsequent responses much quicker.

4. The generated JspPage servlet class is invoked to handle the browser request.

It is also possible to invoke the JSP compiler directly without making a request

from a browser. For details, see Using the WebLogic JSP Compiler. Because the JSP

compiler creates a Java servlet as its first step, you can look at the Java files it

produces, or even register the generated JspPage servlet class as an HTTP servlet.

12

2.4 Servlets Advantages

There are five main advantages of servlets:

1. It's efficient: the java virtual machine stays up, and each request is handled

by lightweight java thread, not a heavyweight operating system process.

2. It's convenient: you are able to use java rather than learn perl too.

3. It's powerful: you can easily do several things that are difficult or impossible

with regular CGI.

4. It's portable: follows a well standardized APL

5. It's inexpensive: there are a number of free or very inexpensive web servers

available that are good for "personal" use or low-volume Web sites.

•!• Since java server pages (ISP) are servlets, all the benefits of servlets pertain

to JSP.

2.5 JSP Syntax

2.5.1 Directives
JSPs live in an object called a container, which is essentially a server. JSPs can

define information for the container with directives.

Here is what directives look like in a general form:

<%@ directive attribute="someValue" attribute="anotherValue" ... %>

There are three directives:

• <%@ page ... %> specifies information that affects the page

• <%@ include ... %> includes a file at the location of the include directive

(parsed)

• <%@ taglib ... %> allows the use of custom tags in the page

• <%@ page language="java" %> will always be the first line of every JSP

file.

2.5.2 Declarations
Declarations are used to specify supplemental methods and variables. You can

think of these are the page's private functions; they can only be called by the JSP where

they are defined, or by another JSP that includes it (using the <@ include >

directive).

13

Here is a sample declaration:

<%!

II this integer can be used anywhere in this JSP page

private int myVariable = - 1;

II this function can be called from anywhere in this JSP page

public boolean isPositive() {

return (myVariable > O);

}

%>

2.5.3 Scriptlets
Scriptlets are bits of Java code. They can do anything (the full power of Java is

available in every JSP), but they will most likely concentrate on generating HTML.

2.5.4 Expressions
Expressions are special-purpose mini-scriptlets used for evaluating expressions.

This could be something as simple as outputting the value of a variable, or a more

complicated Java expression, like calling a function and outputting the result.

Table 2.1 JSP Syntax Summary

JSP
lUeınent

Syntax Interpretation

JSP
Expression

<'i= express ion 9s> I Expression is evaluated and placed in
output. out.pıintln{expressiont

<>/c; oocle ô)s> I Java Code is inserted in serviceJSP
,Seriptkt
JSP l <%, ! code fi;>

method.. ---·-··-····--· ···-······---·--·-···· ·······---·-·····-····-····--- ······--··---·

inserted in body of servlet class,
outside of service method.Declaration

JSPpage l<'~.(9 pa9e
Directive att="val" %>

Directions to the servlet engine about
general setup.

JSP I<~;-- comment --Ii;>

Comment
Comment; ignored when JSP is
translated into servleı.

Js_·~p-. i.n~lude I ':_0~;('.l incl~1de
Directive :tılr:,="ur.ı" %>

A file on the local system to be
included when the JSP page is
translated into a servlet.

14

CHAPER 3: HTML & JAVASCRIPT

3.1 Introduction to HTML
(HyperText Markup Language) The document format used on the Web. Web

pages are built with HTML tags (codes) embedded in the text. HTML defines the page

layout, fonts and graphic elements as well as the hypertext links to other documents on

the Web. Each link contains the URL, or address, of a Web page residing on the same

server or any server worldwide, hence "World Wide" Web.

HTML 2.0 was defined by the Internet Engineering Task Force (IETF) with a

basic set of features, including interactive forms capability. Subsequent versions added

more features such as blinking text, custom backgrounds and tables of contents.

However, each new version requires agreement on the tags used, and browsers must be

modified to implement those tags.

HTML Itself Is Not a Programming Language; HTML is a markup language

(the ML in HTML) that uses a fixed set of markup tags. A markup language can also be

thought of as a "presentation language," but it is not a programming language. You

cannot "if this-do that" like you can in Java, JavaScript or C++. However, in order to

make pages interactive, programming code can be embedded in an HTML page. For

example, JavaScript is widely interspersed in Web pages (HTML pages) for that

purpose.

_,
Visitor's .ıı.. · 11::-._
browser

Return pag,e to
3 £:irowser for

display

Figure 3.1: Html Pages are transferred by HTTP Protocol.

HTML was conceived as a simple markup language to render research

documents. No one envisioned Web pages turning into multimedia extravaganzas.

15

3.2 Introduction to JavaScript
Thousands of sites around the world use JavaScript but it is still not a

particularly well known programming language (compared to HTML). If you have seen

anything interactive on a website like a calculation, pop-up-window, some web

counters and even some navigation systems then you have probably seen JavaScript.

Unfortunately, JavaScript has changed from being a language which improves web

sites to a language which destroys them. This is because there are huge JavaScript sites

which have thousands of scripts for download. These usually involve things which do

not benefit a website at all, like status bar effects and scrolling text which do not add

muchtoawebsite.
JavaScript must not be confused with Java. Java is a completely different

programming language. It is usually used for text effects and games, although there are

some JavaScript games around.
So why should you use JavaScript? Well, JavaScript can allow you to create

new things on your website that are both dynamic and interactive, allowing you to do

things like find out some information about a user (like monitor resolution and

browser), check that forms have been filled in correctly, rotate images, make random

text do calculations and many other things.

HTML pages have been reworked, jury-rigged and extended into full-blown

applications. As a result, the source code behind today's Web pages is often a hideous

concoction of tags and scripting.

3.2.1 What Do I Need?
You will not need any special hardware or software to write JavaScript, you can

just use Notepad or any other text editor. You do not even need to have any special

software on your webserver. JavaScript will run on any webserver anywhere! All you

will need to do is make sure that you have at least a version 3 browser, as versions of

Internet Explorer and Netscape Navigator before this do not support JavaScript, so you

will not be able to see your creations.

16

3.2.2 Declaring JavaScript
Adding JavaScript to a web page is actually surprisingly easy! To add a JavaScript all

you need to add is the following (either between the <head></head> tags or between

the <body></body> tags.

<script language="JavaScript">

JavaScript

</script>

As you can see the JavaScript is just contained in a normal HTML tag set. The

next thing you must do is make sure that the older browsers ignore it. If you don't do

this the code for the JavaScript will be shown which will look awful.

There are two things you must do to hide the code from older browsers and

show something instead:

<script language="JavaScript">

<!-Begin Hide

JavaScript

//End Hide-->

</script>

<noscript>

HTML Code

</noscript>

As you can see this makes the code look a lot more complex, but it is really quite

simple. If you look closely you can see that all that has been done is that the JavaScript

. is now contained in an HTML comment tag. This is so that any old browsers which do

not understand <script> will just think it is an HTML comment and ignore it.

Because of this the <noscript> tag was created. This will be ignored by

browsers which understand <script> but will be read by the older browsers. All you

need to do is put between <noscript> and </noscıipt> what you want to appear if the

browser does not support JavaScript. This could be an alternative feature or just a

message saying it is not available. You do not have to include the tag if you don't want

anything shown instead.

17

CHAPTER 4: DATABASE DESIGN

4.1 Introduction
Many web developers are self-taught, learning HTML, then moving on to a

programming language such as JSP. From there, they often learn to integrate this with a

database. Too few though have a good theoretical knowledge of databases. Mention foreign

keys, or referential integrity, and you're met with a blank stare. Small databases can be easily

designed with little database theory knowledge. But large databases can easily get out of hand

when badly designed, leading to poor performance, and resulting in the whole database

needing to be rebuilt later. This article is a brief introduction to the topic of relational

databases, and will hopefully whet your appetite for further exploration.

4.2 The Relational Database Model
A database can be understood as a collection of related files. How those files are

related depends on the model used. Early models.included the hierarchical model (where files
are related in a parent/child manner, with each child file having at most one parent file), and

the network model (where files are related as owners and members, similar to the network

model except that each member file can have more than one owner).
The relational database model was a huge step forward, as it allowed files to be

related by means of a common field. In order to relate any two files, they simply need to have

a common field, which makes the model extremely flexible.

4.3 The Entity-Relationship Model
The Entity-Relationship (ER) model was originally proposed by Peter in 1976

[Chen76] as a way to unify the network and relational database views. Simply stated the ER

model is a conceptual data model that views the real world as entities and relationships. A

basic 'Componentof the model is the Entity-Relationship diagram which is used to visually

represent data objects. Since Chen wrote his paper the model has been extended and today it

is commonly used for database design for the database designer, the utility of the ER model

ıs:
• It maps well to the relational model. The constructs used in the ER model can

easily be transformed into relational tables.

18

• It is simple and easy to understand with a minimum of training. Therefore, the

model can pe used by the database designer to communicate the design to the end

user.
• In addition, the model can be used as a design plan by the database developer to

implement a data model in a specific database management software.

4.3.1 Basic Constructs of E-R Modeling
The ER model views the real world as a construct of entities and association between

entities.

4.3.1.1 Entities
Entities are the principal data object about which information is to be collected.

Entities are usually recognizable concepts, either concrete or abstract, such as person, places,

things, or events which have relevance to the database. Some specific examples of entities are

EMPLOYEES, PROJECTS, INVOICES. An entity is analogous to a table in the relational

model.
Entities are classified as independent or dependent (in some methodologies, the terms

used are strong and weak, respectively). An independent entity is one that does not rely on

another for identification. A dependent entity is one that relies on another for identification.

An entity occurrence (also called an instance) is an individual occurrence of an entity.

An occurrence is analogous to a row in the relational table.

4.3.1.2 Special Entity Types
Associative entities (also known as intersection entities) are entities used to associate

two or more entities in order to reconcile a many-to-many relationship.

Subtypes entities are used in generalization hierarchies to represent a subset of

instances of their parent entity, called the supertype, but which have attributes or

relationships that apply only to the subset.

4.3.1.3 Relationships
A Relationship represents an association between two or more entities. An example of

a relationship would be:

19

• employees are assigned to projects

• projects have subtasks

• departments manage one or more projects

Relationships are classified in terms of degree, connectivity, cardinality, and

existence. These concepts will be discussed below.

4.3.1.4 Attributes
Attributes describe the entity of which they are associated. A particular instance of an

attribute is a value, For example, "Jane R. Hathaway" is one value of the attribute Name. The

domain of an attribute is the collection of all possible values an attribute can have. The

domain of Name is a character string.
Attributes can be classified as identifiers or descriptors. Identifiers, more commonly

called keys, uniquely identify an instance of an entity. A descriptor describes a non-unique

characteristic of an entity instance.

4.3.1.5 Classifying Relationships
Relationships are classified by their degree, connectivity, cardinality, direction, type,

and existence. Not all modeling methodologies use all these classifications.

4.3.1.6 Degree of a Relationship
The degree of a relationship is the number of entities associated with the relationship.

The n-ary relationship is the general form for degree n. Special cases are the binary, and

ternary, where the degree is 2, and 3, respectively.
Binary relationships, the association between two entities is the most common type in

the real world. A recursive binary relationship occurs when an entity is related to itself. An

example might be "some employees are married to other employees".

A ternary relationship involves three entities and is used when a binary relationship is

inadequate. Many modeling approaches recognize only binary relationships. Ternary or n-ary

relationships are decomposed into two or more binary relationships.

20

4.3.1.8 Direction
The direction of a relationship indicates the originating entity of a binary relationship.

The entity from which a relationship originates is the parent entity; the entity where the

relationship terminates is the child entity.
The direction of a relationship is determined by its connectivity. In a one-to-one

relationship the direction is from the independent entity to a dependent entity. If both entities

are independent, the direction is arbitrary. With one-to-many relationships, the entity

occurring once is the parent. The direction of many-to-many relationships is arbitrary.

4.3.1.7 Connectivity and Cardinality
The connectivity of a relationship describes the mapping of associated entity instances

in the relationship. The values of connectivity are "one" or "many". The cardinality of a

relationship is the actual number of related occurrences for each of the two entities. The basic

types of connectivity for relations are: one-to-one, one-to-many, and many-to-many.

4.3.2 ER Notation
There is no standard for representing data objects in ER diagrams. Each modeling

methodology uses its own notation. The original notation used by Chen is widely used in

academics texts and journals but rarely seen in either CASE tools or publications by non-

4.3.1.9 Type
An identifying relationship is one in which one of the child entities is also a

dependent entity. A non-identifying relationship is one in which both entities are

independent.

4.3.1.10 Existence
Existence denotes whether the existence of an entity instance is dependent upon the

existence of another, related, entity instance. The existence of an entity in a relationship is

defined as, either mandatory or optional. If an instance of an entity must always occur for an

entity to be included in a relationship, then it is mandatory.

21

academics. Today, there are a number of notations used; among the more common are

Bachman, crow's foot, and IDEFIX.

Here are the notations (crow's foot notation) used in the E-R diagram of the project

(see figure 4.1):

• Entities are represented by labeled rectangles. The label is the name of the entity.

Entity names should be singular nouns.

• Relationships are represented by a solid line connecting two entities. The name of the

relationship is written above the line. Relationship names should be verbs.

• Attributes, when included, are listed inside the entity rectangle. Attributes which are

identifiers are underlined. Attribute names should be singular nouns.

• Cardinality of many is represented by a line ending in a crow's foot. If the crow's foot

is omitted, the cardinality is one.

4.4 Relational Database of Online Course Registration:
After talking about E-R model and having some knowledge about it, now it is the time

to implement the shown E-R diagram (figure 4.1) so to obtain the real model(the needed

database).
The aimed database is needed for the faculty of computer engineering at our

university, information about students, staffs, courses, terms and some process which belongs

either to student or to staff are to be stored into the database.
There are 1 O tables which were implemented on Ms. Access to cover the need of

storing the necessary information.
The Student table contains student information. studentld is the primary key to

uniquely identity each student. firstName and surname fields keep the student full name. The

table contains advisorld as foreign key to reference the Staff table so to keep track of student

advisor's information. password field is used to verify the student while trying to log into his

account.
The Staff table contains staffld field as the primary key. name and surName fields

save the staff full name. Staff degree is obtained by the foreign key degreeld field which

references the staffDegree table. The roomld field is used to get the room number of the staff.

password field is added to achieve what the Student table's password field does.

22

surName
Password
advisorld [FK]

I
....L
-L

I
I
I
I
I
I

Has paidı
I
I
I
I
I
I
I

--~~~=----H
~~---

Has course Information

studentld [PK1) [FK]
courseld [PK2) [FK]
termld [PK3) [FK]
groupNo
csStatus
midterm
final
csGrade

staffld [PK1)
name
surName
degreeld [FK]
room Id
Password

. _ + ~ __~~r~~t:s_

-L
-+-

I-,
T

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Iı ls a
L------------------

Announcement
'"

ann Id [PK1)
staffld [FK]
courseld [FK]
ann_date
ann_body

I
I

I
I
I
I
I
I
I
1 Has an
L---------------

Teaches

r-------
ı
I
I
I
I
I
I
I
I-----------------------

I

: Were taken in
I
I-,

T

termld [PK1]
termDesc
term Type
start Term
endRegist
endTerm

Based on

courseld rPK1)
title
cs Level
csCredit
cs Type
pre_Req1 [[FK]]
pre_Req2 [FK]

courseld [PK1) [FKJ
groupNo [PK2)
instructorld [FK]
studentCount

Figure 4.1: Project's E-R Diagram

23

The Announcement table records are identified by the primary key ann_Id. The

foreign keys staffld and courseld fields are to reference the staff who did added the

announcement and the course- which the announcement does belong respectively. ann_date

column marks the date on which the announcement was added. The body of the

announcement is kept within the column ann_body.

The Offıce_Hours table is structured with three columns. staffld and dayld together

eliminate the possibility of the duplication (composite primary key). Each day of the week is

assigned with an Id (day Id field). Staff office hours for each day are defined within the

off hour field.

The StaffDegree table contains all possible degree classification (Mr., Dr.,

Prof. .. etc) with the primary key degreeld. Degree with full string representation is hold

within degreeDesc field.

The StudentPayment table keeps a track of student term's fee payment. This table

most probably is a view, so it takes the records from the university main database. studentld

and tennld are composite primary key and on the same time foreign keys that reference

Student and Term tables respectively. Term fee payment status (paid, not paid) is determined

by the column payStatus.

The Term table (primary key termld) contains term information. termDesc field holds

the term title (e.g. Fall 2005/2006). The fields start'Term, endRegist, endTerm are used to

define the start date of the term, the dead date for course registration and the end date of the

term respectively.

The Course table contains the courses which the university offers. courseld is the

primary key. The title of the course is saved in the field title. csLevel field specify at what

term level the course is scheduled to be taken. csCredit defines what credit the course does

has. csType determines the course type (elective, technical, non-technical). The prerequisites

information are kept in the pre_Reql and pre_Req2 columns which serve as foreign keys and

reference the primary key of the same Course Table.

The Registration table contains each student's schedule for every registration term.

studentld, courseld and termld are the composite primary key. The table contains two

"lookup" tables which are Course and Term. The course status (failed, passed, currently

taken) can be obtained from csStatus column. The table provides each taken course's

midterm, final and grade results.

24

The OpenedCoursesAndGroups table contains the offered courses and groups in every

term. courseld and groupNo do uniquely identify each record. The table contains a single

foreign key "instructorld" column which references the Staff table so to keep a track of

course group instructor information,

The following figure shows the entities relationships implemented on Ms.

Figure 4.2: The Database of the Project was created on MS Access.

25

CHAPTER 5: Online Course Registration Software Design

5.1 Introduction
In The previous four chapters were introduced the techniques (Java, JSP,

HTML, JavaScript and RDBMS applied on Ms. Database) which were used for

implementing the project.
This chapter has two' main sections: first section talks about the UML which

were used during project designing phase; the second section shows some system

graphical pages and explains what technical functions each page was designed to

accomplish.

5.2 What is UML?
The Unified Modeling Language (UML) is a standard language for specifying,

visualizing, constructing, and documenting the artifacts of software systems, as well as

for business modeling and other non-software systems. The UML represents a

collection of best engineering practices that have proven successful in the modeling of

large and complex systems. The UML is a very important part of developing object

oriented software and the software development process. The UML uses mostly

graphical notations to express the design of software projects. Using the UML helps

project teams communicate, explore potential designs, and validate the architectural

design of the software.

5.2.1 Goals of UML
The primary goals in the design of the UML were:

1. Provide users with a ready-to-use, expressive visual modeling language

so they can develop and exchange meaningful models.

2. Provide extensibility and specialization mechanisms to extend the core

concepts.
3. Be independent of particular programming languages and development

processes.
4. Provide a formal basis for understanding the modeling language.

5. Encourage the growth of the 00 tools market.

26

6. Support higher-level development concepts such as collaborations,

frameworks, patterns and components.

7. Integrate best practices.

5.2.2 Use Case
A use case is a set of scenarios that describing an interaction between a user and

a system. A use case diagram displays the relationship among actors and use cases.

The two main components of a use case diagram are use cases and actors.

o-t-
,..... ~

....~- .•

Actor Use Case

Figure 5.1

5.2.3 Use Case Diagrams Depict:
• Use cases. A use case describes a sequence of actions that provide

something of measurable value to an actor and is drawn as a horizontal

ellipse.

• Actors. An actor is a person, organization, or external system that plays

a role in one or more interactions with your system. Actors are drawn as

stick figures.

• Associations. Associations between actors and use cases are indicated

in use case diagrams by solid lines. An association exists whenever an

actor is involved with an interaction described by a use case.

Associations are modeled as lines connecting use cases and actors to one

another, with an optional arrowhead on one end of the line. The

arrowhead is often used to indicating the direction of the initial

invocation of the relationship or to indicate the primary actor within the

use case. (It is possible to have association between tow use cases)

In the next section it is shown the use cases of the project. (Figure 5.2)

27

5.2.3.1 Project Use Case Diagrams
Since the system (project) belongs to both students and staffs, all possible

actions are initiated and/or participated by them, therefore the system has tow actors,

student and instructor see figure 5.2.

/ r
\._ _

---.._
)

/

Courses Registration
A Processs

!ıl
ı/
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I

I

«extend»

Regisration Out Of
Period

I~ , ,\
I
I
I
I
I
I
I
I
I
: «extend»
I
I
I
I
I
I

~·' \
\
\
\
\
\
\
\
\
\ «extend»

\
\
\
\
\
\

// ---- ... ··--· ----"
' I
\...,___ •.. -//

-----"\
__ j

Student Not Registed

Control Class Markes and
Grades

Set AnnouncemenlCGPA ls Low

Figure 5.2: Project Use Case Diagrams

28

Class diagrams are widely used to describe the types of objects in a system and

their relationships; Class' diagrams model class structure and contents using design

elements such as classes, packages and objects. Class diagrams describe three different

perspectives when designing a system, conceptual, specification, and implementation

(figure 5.3). These perspectives become evident as the diagram is created and help

solidify the design.
Class diagrams also display relationships such as containment, inheritance,

associations and others. The association relationship is the most common relationship

in a class diagram. The association shows the relationship between instances of

classes.

5.2.4 Class Diagrams

Class Name •• I Sta ff Ann ounce ment

~annContent: String
Attributes •• I ~annDate: Date

.StaffAn no.uncemeni()

.getAn nounc emeni()

Operations •• I .add New Announcement(

Figure 5.3: Class Diagram Description

The following figure shows the class "StaffAnnouncement" source code.

package neu facult:ie s. c omEng;
import j ava. s ql. *;
import j ava. util. *;
import java.io. *;
public class StaffA.rınouncement
{ II attribute definitions
private String annContent;
private j ava. util Date annD ate;
public StaffA.rınouncementO { }

II set announcement Body
public void setAnnBody(String annBdy)
{annContent = annlsdy.}

29

II set aruıouncement Date
public void setAnnDateuava.utilDate aruı_Date)
{ annDate = aruı_Date;)

public String getAnııBodyQ
{ return aruıContent; }

public java.util.Date get.AnnDateO
{ return annDate; }

II method is to handle the decleration of a new aruıouncement
public boolean addNew.Announcement(Stafilnfo sf, Courseinfo cs, String aruıouncement) throws SQLException

{ String aruıUpdate = 11INSERT INTO aruıouncement(staffld, courseid, am_body/
+ 11 VALUESÇU + sfgetstaffidQ.trimO + 111,111 + cs.getCourseidQ.trimO + 111,111 + aruıouncement.trimQ + 111/;

DomainDB.handleUpdate(aruıUpdate);
return true; } II end method addNew.AnnouncementO

II the method returns all aruıouncement that belongs to the staff of the specified course
public Vector get.Announcement(Stafilnfo sf, Courseinfo cs) throws SQLException

{ String aruıQuery = 11SELECT ann_body, am_Date FROM aruıouncement WHERE staffld = 111 + sfgetstaffld
Q.trimO + 11111 + 11 AND courseid = 111 + cs.getCourseidQ.trimO + 11111

;

ResultSet aruıSet = DomainDB.handleQuery(aruıQuery);
boolean more.Ann= aruıSet.nextQ;
if(more.Ann)
{ Vector annVector = new Vector0;

wlıile(more.Ann)
{ StafEAnnouncement stfAnn = new Sta££Announcement0;

stfAnn. setAnııBody(aruıSet.getString(l));
stfAnn. set.AnnDate(aruıSet.getDate(2));
amVector. add(stfAnn);
more.Ann= aruıSet.nextQ; }II end while
return aruıVector; }II end if II Staff has not declared any aruıounement for the specified course.
return null } II end method get.AnnouncementO}

II END Class StafEAnnouncement

J

Figure 5.4: StaffAnnouncement Class Source Code

30

Paymentlnfo ·········ı
';

paymenı informal;~, has

"~-
,_.\--'-----

a student\

0
, I StaffAnnouncement

distribute: //7

5.2.4.1 Project Class Diagrams
Now let us take a look on the project class diagrams which only shows the

classes and theclass's relationships for simplicity:

Studentlhfo
a sıudent a ıtaff'

\-···-·· ·----------··-··----·---····---·--·~
· advised , ı

by

Stafflnfc

/./ announcement~

(r;-s;~
! '

............... !0-.._
~ a staff -- ---- -- has

· \ a staff ---
\
\
\
\

is given by \
\
\ \, a course group

\ı
''1

o.'· 1r
8 .. ' I d/ a stu ent

I
were taken by /

I
I

I
'* I.. I
j registered Courses

(i.. :.< .
CourseRegistration ıc>-·--····-······-·-··-·-···············-···········-···-····-··· --···-·· ················-···--···-···-···-·····-·····-··-············-········"

current!~ registerec Courses course group
CourseGroups

belongs to
\'\

registerec Courses"-\ , ,
\\\

\
\ k .\were ta en ın

'\
\
\
\
\

a terrr \ · . .'
~

I ;.~,~, I

Grau~

has

Course Info

Figure 5.5: Project Class Diagram

5.2.5 Sequence Diagrams
UML Sequence diagrams are a dynamic modeling technique, as are

collaboration diagrams and activity diagrams. UML sequence diagrams are typically

used to:

31

1. Validate and flesh out the logic of a usage scenario. A usage scenario is

exactly what its name indicates - the description of a potential way that your

system is used.. The logic of a usage scenario may be part of a use case,

perhaps an alternate course; one entire pass through a use case, such as the

logic described by the basic course of action or a portion of the basic course

of action plus one or more alternate scenarios;or a pass through the logic

contained in several use cases, for example a student enrolls in the university

then immediately enrolls in three seminars.

2. Explore your design because they provide a way for you to visually step

through invocation of the operations defined by your classes.

3. To detect bottlenecks within an object-oriented design. By looking at what

messages are being sent to an object, and by looking at roughly how long it

takes to run the invoked method, you quickly get an understanding of where

you need to change your design to distribute the load within your system. In

fact some CASE tools even enable you to simulate this aspect of your

software.

4. Give you a feel for which classes in your application are going to be

complex, which in turn is an indication that you may need to draw state chart

diagrams for those classes.

5.2.5.1 Project Sequence Diagrams
Here is some sequence diagrams of the system which describe how requests

(invocations) are sent and handled between various classes:

student : Student

1: CoursesRegistration >I csReq Co~rseReqjstration
[.

2: getPreviousTermsCou rses

2.1: gradeList

Figure 5.6: "Display Course Grades" Sequence Diagram.

32

student : Student

1: CourseGroups
courseGroup : CourseGroups

2: getOfferedCourses

2.1: courselist [1
<:J

Figure 5.7: "Display Offered Courses" Sequence Diagram.

~
I \

instructor Instructor

1 createAnnouncemenl 1 1

r············.
StaffAnnouncement\ announc StaffAnnou~~;~~~t1

;

<)
1 2

2 1 addNewAnnouncement
C-, ---o··ı

22 211 --1
2 declareAnnouncement

Figure 5.8: "Set Announcements" Sequence Diagram.

33

'I\ I\

I \ I .

2 getCurrentTermCourses

...... TI2 · courses List Info
<l ··· courseGroup

CourseGroups3 CourseGroups

D
Staff Stafflnfo4

<} .. - .

5 createAnnouncement 5 . arinounc ··············ı................ ıJ StaffAnnouncemenı StaffA~~~~~~~t
<1 ··· 5 2

6 · getAnnouncement
l>n

6 · · announlist l.J

7 createOfficeHours
sfOffHur

StaffOfficeHours

<}
7 2

,D 7 · StaffOfficeHours 'I

8 getStaffOfficeHours
8 · getOfficeHours)n

<} - __ ... ~ ~ _o~~e_H_ourlist -· _l}:- 8 · · officeHourslist

Figure 5.9: "Display Course Information" Sequence Diagram.

34

5.3 Project Files Diagram

The following diagram shows how the project's files are related to each other.

The diagram illustrates how the program structure looks like. Some files will be

discussed in the next section.

Figure 5.10: Project Files Association Diagram.

35

5.4 Project Graphical User Interface (GUI)
A graphical user interface is the part which gives a sense and presents a user -..

friendly mechanism for interacting with a program.

This section presents some pages (GUI) of the project and gives a brief

description of the technical purposes of each page.

The figure below shows the system home page, it enables both students and

staffs (instructors) to log into their accounts.

Figure 5.11: Home Page Enables Both Student and Instructor to Log into their

Accounts.

36

When the student login, his home page will be displayed (figure 5.11).

Figure 5.12: Student Home Page.

The page has four links: View Grades, Offered Courses, Course Registration

and Current Term Courses. The first link allows the student to check his grades, GPA

and CGP A. The second link provides information about the offered courses and groups

as well as the instructor of each course group.

Course Registration link directs the student to the page which provides the courses

that are available and can be registered by the student (See figure 5.13).

The available courses are decided by taking into the consideration many points,

student passed courses, CGPA and student achieved term level are the main restrictions

that find out the available courses for each student.

37

The available courses are marked with "New", "R" or "NT". The word "New" stand

to mention that the course has not been taken before. The letter R (repeat) says that this

course has to be repeated (student has failed this course) and it is the time to do it. Finally

NT (non technical) forces the student to register one of the non technical courses. "New",

"R" and "NT" courses decision making depends on some course registration algorithms.

Figure 5.13: Student Available Courses during Registration Process.

38

After selecting the term courses, the student can select the group number of each

course like the following:

Figure 5.14: Student can select his Term Courses Groups.

At the end, student will be shown his courses and groups' selection and other

related information. Course title, credit, type as well as the instructor name will be

displayed. (See figure 5. 14)

39

Figure 5.15: Summary of Courses Selection.

During the term, students need to check for instructor office hours,

announcement and exam result; these needs are covered by the fourth link "Current

Term Courses".
This link will direct the student to the page which contains the registered

courses each represented by a button (figure 5.15). Course information can be viewed

by clicking on that course button (figure 5.16).

40

Figure 5. 16: Student Currently Taken Courses.

Figure 5.17: Requested Course Information

41

On the other, when the instructor login then the following page will be displayed:

Figure 5.18: Instructor Home Page.

As the page shows, staff home page contains tow links: Term Courses and

Office Hours. Office hour's link, briefly, enables the staff to display and quickly change

his office hours, so students well know when to make a visit to the instructor's office.

If it comes true of being instructors start forgetting what courses they are

giving, then the second link would be helpful. As shown in figure 5.18, Term Courses

link provides the instructor with the courses he is currently responsible about.

42

Figure 5.19: Instructor's Term Courses.

For each course, announcements can be distributed and student's list and marks

be viewed and controlled.

Figure 5.19 shows course students list, every student's marks (midterm, final)

and grade are modifiable and that is done by the provided page of figure 5.20.

Keep in mind that these changes directly affect on the students web pages which

provide them with their marks, so from now on there is no need to distribute the marks

list and announcements on any board, therefore to whom it may concern: you can take

your boards off.

43

Figure 5.20: Course Students List.

Figure 5.21: Student Marks and Grade are Under Controlled

44

CONCLUSION

During the point at the end of the project that using clever programming

techniques and simple design, we can make a very well organized web page so that the

user can be interact easily. There are many techniques for the web designing, that

technique used is Java Server Page (JSP) and JavaScript.

The advantage of JSP file can contain text, HTML tags and scripts. Scripts in an

JSP file are executed on the.server. In addition, we can do to execute the connection

with the server and send only report to the browser.

The advantage of JavaScript, we can call simple functions in head section and

body section to make our web site like clock, date and animation, ect.

From the Database, ODBC can be used to access databases from our web pages.

The ODBC Connection Object is used to create an open connection to a data

source. Through this connection, we can access and manipulate a database. We can save

the memory, that is we use simple database, that using many information to making

connection. We come across the use of database in web site.

45

REFERENCES

[1] Internet aııd World Wide web, How Toprogram. Third edition, Deitel, H. M

[2] Database System Using Oracle, Second edition, Nilesh Shah

[3] Java How To Program, fıfvth edition,H.M.Deitel

[4] http://perseus.herts.ac.uk

[5] http://ei.cs.vt.edu/book/chapl/refs.html

[6] http://euler.vcsu.edu:7000/329/

[7] http://www.scit.wlv.ac.uk/-jphb/

[8] http://edocs.bea.com/wls/docs81/jsp/intro.html#49333

[9] http://directory.google.com/Top/Computers/Programıning/ JavaScript

46

