
ACKNOWLEDGMENTS

The Project be inspired for future idea. While I have the honor of having my name
attached to this work, there are many others who have helped this idea become a reality.

I would first like to thank my adviser, Assoc. Prof. Dr. Doğan İbrahim, This interesting
subject interested by him.Thanks to him.

I would like to thank my father,my mother,my sisters,my brother and I am happy from
theirs' be one of piece.

I would like to thank all my friends, specially my best friends Mehmet Sadık Türüt,
Fatih Van and Metehan Günde.

Finally, I would like to thank God, for this opportunity give to me.

ABSTRACT

This project give to answer what is the micro controllers? How is working the
multitasking?

Microcontrollers had their beginnings in the development of technology of integrated
circuits. We use but how does it works?
This development has made it possible to store hundreds of thousands of transistors into
one chip. That was a prerequisite for production of microprocessors , and the first
computers were made by adding external peripherals such as memory, input-output lines,
timers and other.

Microcontroller differs from a microprocessor in many ways. First and the most important
is its functionality. In order for a microprocessor to be used, other components such as
memory, or components for receiving and sending data must be added to it.

The microprocessors used in the central processing units of computers are the bestknown
types of microprocessors. But there are other kinds of microprocessors as well, most
notably microcontrollers.

ii

PAGES

ACKNOWLEDG1\1ENT i

ABSTRACT .ii

CONTENT iii-iv

1. INTRODUCTION TO MICROCONTROLLERS 1
1.1. Introduction 1
1.2. Microcontrollers versus Microprocessors 3
1.3. The First Microprocessor Family - Intel4000s 3
1.4. First Microcontroller. 4
1.5. The Development of Microcontrollers .4
1.6. Yesterday to Today 5
1.7. Memory Unit 5
1.8. Central Processing Unit. 6
1.9. Bus 7
1.10. Input - Output Unit. 8
1.11. Serial Communication 8
1.12. Timer Unit. 9
1.13. Watchdog 10
1.14. Analog to Digital Converter. 10
1.15. Program 12

2. MICROCONTROLLER PIC16F84 13
2.1. Introduction 13
2.2. erse, Rrsc 14
2.3. Applications 14
2.4. Clock I Instruction Cycle 15
2.5. Pipelining 15
2.6. Pin Description , 16
2.7. Clock Generator - Oscillator 17

2. 7 .1. Types of Oscillators 17
2. 7 .2. XT Oscillator. 17
2.7.3. RC Oscillator 18

2.8. Reset. 19
2.8.1. Reset at Supply Voltage Drop Below the Permissible 20

2.9. Central Processing Unit. 20
2.9.1. STATUS Register 21

2.10. Ports 22
2.10.1. PORTB and TRISB 23
2.10.2. PORTA and TRISA 24

2.11. Memory Organization 25
2.11.1. Program Memory 25
2.11.2. Data Memory 25
2.11.3. SFR Registers 26
2.11.4. Memory Banks 26
2.11.5. Program Counter. 27

lll

2.11 .6. Stack 27
2.11.7. In System Programming 27
2.11.8. Addressing Modes 28
2.11.9. Direct Addressing 28
2.11. 10. Indirect Adressing 28

2. 12. Interrupts 30
2.12.1. INTCON Register. 30
2.12.2. Keeping the Contents oflmportant Registers 32
2.12.3. External Interrupt on RBO/INT Pin of Microcontroller 35
2.12.4. Interrupt During a TMRO Counter Overflow 35
2. 12.5. Interrupt Upon a Change on Pins 4, 5, 6 and 7 of port B 35
2.12.6. Interrupt Upon Finishing Write-Subroutine to EEPROM 35
2.12.7. Interrupt Initialization 35

2.13. Free-run Timer TMRO 36
2.13.1. OPTION Control Register. .40

2.14. EEPROM Data Memory 41
2.14.1. EECONl Register. .41
2.14.2. Reading from EEPROM Memory 42
2.14.3. Writing to EEPROM Memory .43

3. MULTITASKING 44
3.1. Benefits of Multitasking .44
3.2. Multitasking Concurrency : .44
3.3. Task States 45
3 .4. Scheduling 45
3.5. The RTOS Tick 47
3.6. "Execution Context"-a Definition 48

CONCLUSION 57

REFERENCES 57

APENDIX A 58

APENDIX B 62

ıv

CHAPTER ONE
INTRODUCTION TO MICROCONTROLLERS

1.1 Introduction
Circumstances that we find ourselves in today in the field of microcontrollers had their
beginnings in the development of technology of integrated circuits. This development
has made it possible to store hundreds of thousands of transistors into one chip. That
was a prerequisite for production of microprocessors , and the first computers were
made by adding external peripherals such as memory, input-output lines, timers and
other. Further increasing of the volume of the package resulted in creation of integrated
circuits. These integrated circuits contained both processor and peripherals. That is how
the first chip containing a microcomputer, or what would later be known as a
microcontroller came about.
It was year 1969, and a team of Japanese engineers from the BUSICOM company
arrived to United States with a request that a few integrated circuits for calculators be
made using their projects. The proposition was set to INTEL, and Marcian Hoff was
responsible for the project. Since he was the one who has had experience in working
with a computer (PC) PDP8, it occured to him to suggest a fundamentally different
solution instead of the suggested construction. This solution presumed that the function
of the integrated circuit is determined by a program stored in it. That meant that
configuration would be more simple, but that it would require far more memory than the
project that was pr.gposedby Japanese engineers would require. After a while, though
Japanese engineers tried finding an easier solution, Marcian's idea won, and the first
microprocessor was bom. In transforming an idea into a ready made product, Frederico
Faggin was a major help to INTEL. He transferred to INTEL, and in only 9 months had
succeeded in making a product from its first conception. INTEL obtained the rights to
sell this integral block in 1971. First, they bought the license from the BUSICOM
company who had no idea what treasure they had. During that year, there appeared on
the market a microprocessor called 4004. That was the first 4-bit microprocessor with
the speed of 6 000 operations per second. Not long after that, American company CTC
requested from INTEL and Texas Instruments to make an 8-bit microprocessor for use
in terminals. Even though CTC gave up this idea in the end, Intel and Texas Instruments
kept working on the microprocessor and in April of 1972, first 8-bit microprocessor
appeard on the market under a name 8008. It was able to address 16Kb of memory, and
it had 45 instructions and the speed of 300 000 operations per second.

That microprocessor was the predecessor of all today's microprocessors. Intel kept their
developments up in April of 1974, and they put on the market the 8-bit processor under
a name 8080 which was able to address 64Kb of memory, and which had 75
instructions.

In another American company Motorola, they realized quickly what was happening, so
they put out on the market an 8-bit microprocessor 6800. Chief constructor was Chuck
Peddle, and along with the processor itself, Motorola was the first company to make
other peripherals such as 6820 and 6850.
At that time many companies recognized greater importance of microprocessors and
began their own developments.Chuck Peddle leaved Motorola to join MOS Technology
and kept working intensively on developing microprocessors.
At the WESCON exhibit in United States in 1975, a critical event took place in the

1

history of microprocessors. The MOS Technology announced it was marketing
microprocessors 6501 and 6502 at $25 each, which buyers could purchase immediately.
This was so sensational that many thought it was some kind of a scam, considering that
competitors were selling 8080 and 6800 at $179 each. As an answer to its competitor,
both Intel and Motorola lowered their prices on the first day of the exhibit down to
$69.95 per microprocessor. Motorola quickly brought suit against MOS Technology
and Chuck Peddle for copying the protected 6800. MOS Technology stopped making
6501, but kept producing 6502. The 6502 was a 8-bit microprocessor with 56
instructions and a capability of directly addressing 64Kb of memory. Due to low cost ,
6502 becomes very popular, so it was installed into computers such as: KIM-1, Apple I,
Apple II, Atari, Comodore, Acom, Orie, Galeb, Orao, Ultra, and many others.

Soon appeared several makers of 6502 (Rockwell, Sznertek, GTE, NCR, Ricoh, and
Comodore takes over MOS Technology) which was at the time of its prosperity sold at
a rate of 15 million processors a year!

Others were not giving up though. Frederico Faggin leaves Intel, and starts his own
Zilog Inc.In 1976 Zilog announced the Z80. During the making of this microprocessor,
Faggin made a pivotal decision. Knowing that a great deal of programs have been
already developed for 8080, Faggin realized that many would stay faithful to that
microprocessor because of great expenditure which redoing of all of the programs
would result in. Thus he decided that a new processor had to be compatible with 8080,
or that it had to~ capable of performing all of the programs which had already been
written for 8080. Beside these characteristics, many new ones have been added, so that
Z80 was a very powerful microprocessor in its time. It was able to address directly 64
Kb of memory, it had 176 instructions, a large number of registers, a built in option for
refreshing the dynamic RAM memory, single-supply, greater speed of work etc. Z80
was a great success and everybody converted from 8080 to Z80. It could be said that
Z80 was without a doubt commercially most successful 8-bit microprocessor of that
time. Besides Zilog, other new manufacturers like Mostek, NEC, SHARP, and SGS also
appeared. Z80 was the heart of many computers like Spectrum, Partner, TRS703, Z-3 .

In 1976, Intel came up with an improved version of 8-bit microprocessor named 8085.
However, Z80 was so much better that Intel soon lost the battle. Altough a few more
processors appeared on the market (6809, 2650, SC/MP etc.), everything was actually
already decided. There weren't any more great improvements to make manufacturers
convert to something new, so 6502 and Z80 along with 6800 remained as main
representatives of the 8-bit microprocessors of that time.
By 1969, it was generally recognised in electronics industry that it was theoretically
possible to use the new metal-on-silicon (MOS) semiconductor manufacturing
technology to put all of the function of a calculator on a single chip.
Only in retrospect it is the distance form theory to practice a tine gap. At the time,
when you are risking an entire company and its employees, that gap is a frightening
chasm. In the world of MOS, the risk was even greater because the technology was so
new that it was almost impossible to determine who the industry leaders would be.
Certainly, the product choice would have been one of the giant semiconductor
corporations, such as Fairchild or Motorola ... not a tiny, new start-up in Santa Clara,
California named Intel Corp.

2

Busicom that was a young and aggressive Japanese company decided to take that leap
of faith. It wanted to build the first calculator on chips. The decision changed the
world. Its timing was perfect. Just as the idea of integrating the components of a
calculator on one chip was capturing the fancy of the computation industry, a
comparable vision was sweeping the semiconductor business.

1.2 Microcontrollers versus Microprocessors
Microcontroller differs from a microprocessor in many ways. First and the most
important is its functionality. In order for a microprocessor to be used, other
components such as memory, or components for receiving and sending data must be
added to it. In short that means that microprocessor is the very heart of the computer.
On the other hand, microcontroller is designed to be all of that in one. No other external
components are needed for its application because all necessary peripherals are already
built into it. Thus, we save the time and space needed to construct devices.

1.3 The First Microprocessor Family - Intel 4000s
In 1969, some trade magazines and professional conferences had already kicked off a
live debate that focused upon the hot new product of the era, the calculator. One side
argued that the best way to harness the power of semiconductor technology was to
create custom circuitş.gpecifically for each calculator model.

A second, lessinfluential, comp held that, no, the best answer was to imitate at the chip
level thearchitecture of computers - that is, general purpose chips that would then be
programmed for the specific application. In retrospect, it is obvious that the latter
position was better, if for nothing else because it opened the prospect of a long-term
development strategy that would extend this technology to other applications beyond
calculator and watches.

There had even been a few attempts to build such a chip. In Fairchild, there was a
brilliant semiconductor scientist named Federico Faggin had invented a new kind of
MOS process called silicon gate technology that would supplant bipolar technology as
the dominant semiconductor process for advanced circuits. Intel quickly adopted
silicon gate MOS and perfected it, a skill that would play a crucial role in the
company's success.

But we must remember: at the time there were no other applications for these chips
beyond calculators. Busicom thought that building general-purpose chips for a
specific application would not be cost-effective, so it put out for contract on its new
calculator was for ten custom circuits. Meanwhile, Intel was working on the Busicom
chip-set bid, ignored the Busicom specifications and set out to win the contract by
creating new general-purpose calculator chip architecture.

In October 1969, Intel defined a new four chip calculator architecture that include a 4-
bit logic chip (CPU), read only memory (ROM) to store program instructions, random
access memory (RAM) to hold the raw data and the processed results, and a shift

3

register to provide connects (ports) to a keyboard, printer, switches and light emitting
diode (LED) displays. But Intel didn't really know how to translate this architecture
into a working chip design.
In fact, probably only one person in the world did know how to do the next step. That
was Federico Faggin, but he was at Fairchild. In April 1970, Fagginjointed the
younger firm and immediately design the Busicom chip set. Within three months,
Faggin had the design for the four chip set in hand. It was to be called the 4000
Family and it consisted of the 4001, a 2,048-bit ROM memory; the 4002, a 320-bit
RAM memory; the 4003, a l O-bit input-output shift register; and, most memorably,
the 4004, a 4-bit central processor logic chip. In mid-March 1971, Intel shipped the
first 4000 Family chip sets to Busicom. The microprocessor revolution had begun.
In April 1972, the 8008 (8-bit microprocessor) introduced and met with enthusiastic
response and few sales. After two years, Faggin improved his design and finished a
new product - Intel 8080. With the introduction of the 8080, it can truly be said that
mankind changed: Unlike many landmark inventions, the extraordinary nature of the
8080 was recognised almost instantly by thousands of engineers throughout the world
who would been awaiting its arrival. Within a year, it had been designed into
hundreds of different products. Nothing would be the same again.

1.4 First Microcontroller
The microprocessors used in the central processing units of computers are the
bestknown types of microprocessors. But there are other kinds of microprocessors as
well, most notably ınjg:-ocontrollers, which provide digital intelligence for everything
from appliances to engine computers, and which act as the 'engines' for computer
peripherals.

Microcontrollers, beyond the features they share with their central processor
counterparts, also add another important function: digital signal processing (DSP).
DSP can be seen as the way that the microcontroller can deal directly with the messy
and unpredictable natural world. Analogy signals arriving form the outside Often
come in a jumble, distorted and with pieces missing. DSP sorts through this, picking
out what matters using a process called analogy/digital conversion.

Microcontrollers were designed to fulfil a growing market need for the management
of real-time, on-going physical events rather than the number crunching of data
processing where microprocessors had found their home. For example, whereas a
microprocessor might power the engine computer in an automobile, microcontroller

1.5 The Development of Microcontrollers
Dataquest report that from 1993 to 1995, the global demand for l ô-bit microcontroller
grew by an impressive compound annual rate of 86 percent.Withthisdramatic expansion
comes an increasing worldwide demand for higher performance microcontroller, driven
by rapid advances in data processing and telecommunication technology. Traditionally,
applications range from hard dish drivers to scanners, office copiers and fax machines
to digital cameras, modems and feature phones have employed a microcontroller chip to
monitor real-time events and a separated digital signal processor (DSP) chip for
numerical processing and digital filtering. This traditional two-chip solution is not only
relatively costly to implement, but also

4

consumes valuable board space and can add a needless level of complexity to
manufacturing and quality assurance.

1.6 Yesterday to Today
From above general introduction, you can see that each company all has its' own 32-
bit microcontroller. Form the structure, almost 32-bit microcontroller use RISC
technologies , 32 - bit general - purpose registers , and add DSP function in the
microcontroller. The DSP is becoming more ubiquitous since the functionality of
embedded systems now encompasses signal processing in one form or the other.

ı\'li.c-:roproc:t1:ıo·rı.

DSP'~

••
DS.P'o

Ml<rı,rontr.oU:tı·s
.i\Jftn:'oc.o:.ntrolle:r,g

FunetianaHty u;ı••d hy
Embedilead App.lkation,.

the trend of the convergence of architectures in microcontroller and DSP. For instance,
multi-function peripherals, or printer-fax-scanner-copier devices, need DSP capability
to perform the V.17 fax algorithm and also the image processing for scanning. From
here you can see the trend of the convergence of architectures in the form of
microcontroller and DSP.

But there are still some differences between these microcontrollers. In Chapter 3, I will
mainly compare the difference of performance,and DSP function between some
microcontrollers.

1.7 Memory Unit
Memory is part of the microcontroller whose function is to store data.
The easiest way to explain it is to describe it as one big closet with lots of drawers. If
we suppose that we marked the drawers in such a way that they can not be confused,
any of their contents will then be easily accessible. It is enough to know the designation
of the drawer and so its contents will be known to us for sure.

5

mem.lccatıon O

mern.location 1

mern.lccstion 2
Example of simplified model of a
memory unit For a şpecitıc input ·we
get a corresponding outpul. Lirıe RNV
determines vııheather ·we 8U:. re'1dirıg
from or writing to memory

Addresses

I rnern.locatıon 14 I

1- r
VV/R

Memory components are exactly like that. For a certain input we get the contents of a
certain addressed memory location and that's all. Two new concepts are brought to us:
addressing and memory location. Memory consists of all memory locations, and
addressing is nothing but selecting one of them. This means that we need to select the
desired memory location on one hand, and on the other hand we need to wait for the
contents of that location. Beside reading from a memory location, memory must also
provide for writing onto it. This is done by supplying an additional line called control
line. We will designate this line as R/W (read/write). Control line is used in the
following way: if r/w=I, reading is done, and if opposite is true then writing is done on
the memory location. Memory is the first element, and we need a few operation of our
microcontroller.

1.8 Central Processing Unit
Let add 3 more memory locations to a specific block that will have a built in capability
to multiply, divide, subtract, and move its contents from one memory location onto
another. The part we just added in is called "central processing unit" (CPU). Its memory
locations are called registers.

6

regt3ter 1

register 2
Example of snnplıfıed central processing
1Jnit with three registersregıster 3

·~ Addresses

TI
(_ Control lines CPU·,

Registers are therefore memory locations whose role is to help with performing various
mathematical operations or any other operations with data wherever data can be found.
Look at the current situation. We have two independent entities (memory and CPU)
which are interconnected, and thus any exchange of data is hindered, as well as its
functionality. If, for example, we wish to add the contents of two memory locations and
return the result again back to memory, we would need a connection between memory
and CPU. Simply stated, we must have some "way" through data goes from one block
to another.

1.9 Bus
That "way" is called "bus". Physically, it represents a group of 8, 16, or more wires
There are two types of buses: address and data bus. The first one consists of as many
lines as the amount of memory we wish to address, and the other one is as wide as data,
in our case 8 bits or the connection line. First one serves to transmit address from CPU
memory, and the second to connect all blocks inside the microcontroller.

rnem .locatıo Connecting memory and central unit
using husses in order to gain on
functlnnaliwrner-ıı location ·ı

rnsm ıocenon 2

<
[·, .

.,~····......_ _
<

.--1 m-e-m-.1-o<:-_.a-ti u-~ n-.1-4--.I

I menı .loc:ati on '15 I

[register ·ı I
····,,l> lData register 2 ~ j

/11 register 3 I
MEMORY

Addresses

Control lines
Vıi/R CPU

7

I

As far as functionality, the situation has improved, but a new problem has also appeared:
we have a unit that's capable of working by itself, but which does not have any contact
with the outside world, or with us! In order to remove this deficiency, let's add a block
which contains several memory locations whose one end is connected to the data bus,
and the other has connection with the output lines on the microcontroller which can be
seen as pins on the electronic component.

1.10 Input-Output unit
Those locations we've just added are called "ports". There are several types of ports :
input, output or bidiectional ports. When working with ports, first of all it is necessary
to choose which port we need to work with, and then to send data to, or take it from the
port.

/lfrıput </ oaıeı
regısıer 'I,,,
Output ı Data />
regıster I ı.

E xarnple of a simplified
input-output unit that provides
communicationwith external
world

Data)
I k 1/0 unit

I

I

When working with it the port acts like a memory location. Something is simply being
written into or read from it, and it could be noticed on the pins of the microcontroller.

1.11 Serial Communication
Beside stated above we've added to the already exıstıng unit the possibility of
communication with an outside world. However, this way of communicating has its
drawbacks. One of the basic drawbacks is the number of lines which need to be used in
order to transfer data. What if it is being transferred to a distance of several kilometers?
The number of lines times number of kilometers doesn't promise the economy of the
project. It leaves us having to reduce the number of lines in such a way that we don't
lessen its functionality. Suppose we are working with three lines only, and that one line
is used for sending data, other for receiving, and the third one is used as a reference line
for both the input and the output side. In order for this to work, we need to set the rules
of exchange of data. These rules are called protocol. Protocol is therefore defined in
advance so there wouldn't be any misunderstanding between the sides that are
communicating with each other. For example, if one man is speaking in French, and the
other in English, it is highly unlikely that they will quickly and effectively understand
each other. Let's suppose we have the following protocol. The logical unit "1" is set up
on the transmitting line until transfer begins. Once the transfer starts, we lower the
transmission line to logical "O" for a period of time (which we will designate as T), so
the receiving side will know that it is receiving data, and so it will activate its
mechanism for reception. Let's go back now to the transmission side and start putting
logic zeros and ones onto the transmitter line in the order from a bit of the lowest value
to a bit of the highest value. Let each bit stay on line for a time period which is equal to

8

T, and in the end, or after the 8th bit, let us bring the logical unit "1" back on the line
which will mark the end of the transmission of one data. The protocol we've just
described is called in professional literature NRZ (Non-Return to Zero).

Receıveı
transmitter

reıJister

Recerv·irıg linB
Trarısrnittıng line
Reference line

Data ~
"'l 1 l ////

Serial
unit

Serial unit used to send
data, hut only by three
lines

r,

As we have separate lines for receiving and sending, it is possible to receive and send
data (info.) at the same time. So called full-duplex mode block which enables this way
of communication is called a serial communication block. Unlike the parallel
transmission, data moves here bit by bit, or in a series of bits what defines the term
serial communication comes from. After the reception of data we need to read it from
the receiving location and store it in memory as opposed to sending where the process is
reversed. Data goes from memory through the bus to the sending location, and then to
the receiving unit according to the protocol.

1.12 Timer Unit
Since we have the serial communication explained, we can receive, send and process
data.

Free-run
counter

1 ••• Signal

Tuner unit Timeı urn1 gerıer::ıı es sigrıals in
rngular tirne intervals

However, in order to utilize it in industry we need a few additionally blocks. One of
those is the timer block which is significant to us because it can give us information
about time, duration, protocol etc. The basic unit of the timt'(is a free-run counter
which is in fact a register whose numeric value increments by one in even intervals, so
that by taking its value during periods Tl and T2 and on the basis of their difference we
can determine how much time has elapsed. This is a very important part of the
microcontroller whose understanding requires most of our time.

9

1.13 Watchdog
One more thing is requırıng our attention is a flawless functioning of the
microcontroller during its run-time. Suppose that as a result of some interference (which
often does occur in industry) our microcontroller stops executing the program, or worse,
it starts working incorrectly.

Free-run
counter

set
~ Watchdog~

Of course, when this happens with a computer, we simply reset it and it will keep
working. However, there is no reset button we can push on the microcontroller and thus
solve our problem. To overcome this obstacle, we need to introduce one more block
called watchdog. This block is in fact another free-run counter where our program
needs to write a zero in every time it executes correctly. In case that program gets
"stuck", zero will not be written in, and counter alone will reset the microcontroller
upon achieving its maximum value. This will result in executing the program again, and
correctly this time around. That is an important element of every program to be reliable
without man's supervision.

1.14 Analog to Digital Converter
As the peripheral signals usually are substantially different from the ones that
microcontroller can understand (zero and one), they have to be converted into a pattern
which can be comprehended by a microcontroller. This task is performed by a block for
analog to digital conversion or by an ADC. This block is responsible for converting an
information about some analog value to a binary number and for follow it through to a
CPU block so that CPU block can further process it.

I ADC register I < Analog input
'·· ,---....

Block fur cnnvertinq an
analo que to a digital form

AlD convener

Finnaly, the microcontroller is now completed, and all we need to do now is to
assemble it into an electronic component where it will access inner blocks through the
outside pins. The picture below shows what a microcontroller looks like inside.

\

10

Physical configuration of the interior of a microcontroller

Thin lines which lead from the center towards the sides of the microcontroller represent
wires connecting inner blocks with the pins on the housing of the microcontroller so
called bonding lines. Chart on the following page represents the center section of a
microcontroller.

\.
Serial ı-.
unit

. I register J /

J
-___J~ Alo~~put

I I,, converter J
/ . I I I Input J /

register (Data
Output ·,_Lr,
ıegi ster Data ·-,>~ı /

~ ,, J "> I L/

[
1 I/O unit_

I ı register 1 I

Input~
Output -l...

Reference

Receiving
Transmittırıg

register

I rrıern.locgtion O
I nıern locatton -ı
I ıı,em.locatrorı 2]

MEMORIJA < ···~ register 2 I)~.J1 v([register 3 j
<. Addresses

l~-rr-,e-m-.-,c-,c-Jt-H)_n_1_4~J l~ VV/R

I rnern.location 15 I Control

[

I lınes CPU

rnd(;ıp8ndent
counter

Watchdog
timer

Free~run
counter

Timer
unit

Microcontroller outline with its basic elements and internal connections

11

I

For a real application, a microcontroller alone is not enough. Beside a microcontroller,
we need a program that would be executed, and a few more elements which make up a
interface logic towards the elements of regulation (which will be discussed in later
chapters).

1.15 Program
Program writing is a special field of work with microcontrollers and is called
"programming". Try to write a small program in a language that we will make up
ourselves first and then would be understood by anyone.

START
REGISTERl=MEMORY LOCATION_A
REGISTER2=MEMORY LOCATION_B
PORTA=REGISTERl + REGISTER2

END

The program adds the contents of two memory locations, and views their sum on port
A. The first line of the program stands for moving the contents of memory location "A"
into one of the registers of central processing unit. As we need the other data as well, we
will also move it into the other register of the central processing unit. The next
instruction instructs the central processing unit to add the contents of those two
registers and send a result to port A, so that sum of that addition would be visible to the
outside world. For a more complex problem, program that works on its solution will be
bigger.
Programming can be done in several languages such as Assembler, C and Basic which
are most commonly used languages. Assembler belongs to lower level languages that
are programmed slowly, but take up the least amount of space in memory and gives the
best results where the speed of program execution is concerned. As it is the most
commonly used language in programming microcontrollers it will be discussed in a
later chapter. Programs in C language are easier to be written, easier to be understood,
but are slower in executing from assembler programs. Basic is the easiest one to learn,
and its instructions are nearest a man's way of reasoning, but like C programming
language it is also slower than assembler. In any case, before you make up your mind
about one of these languages you need to consider carefully the demands for execution
speed, for the size of memory and for the amount of time available for its assembly.
After the program is written, we would install the microcontroller into a device and run
it. In order to do this we need to add a few more external components necessary for its
work. First we must give life to a microcontroller by connecting it to a power supply
(power needed for operation of all electronic instruments) and oscillator whose role is
similar to the role that heart plays in a human body. Based on its clocks microcontroller
executes instructions of a program. As it receives supply microcontroller will perform a
small check up on itself, look up the beginning of the program and start executing it.
How the device will work depends on many parameters, the most important of which is
the skillfulness of the developer of hardware, and on programmer's expertise in getting
the maximum out of the device with his program.

12

CHAPTER TWO
MICROCONTROLLER PIC16F84

2.1 Introduction
PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Its general
structure is shown on the following map representing basic blocks.

Program memory (FLASH)- for storing a written program.
Since memory made in FLASH technology can be programmed and cleared more than
once, it makes this microcontroller suitable for device development.

EEPROM - data memory that needs to be saved when there is no supply.
It is usually used for storing important data that must not be lost if power supply
suddenly stops. For instance, one such data is an assigned temperature in temperature
regulators. If during a loss of power supply this data was lost, we would have to make
the adjustment once again upon return of supply. Thus our device looses on self
reliance.

RAM - data memory used by a program during its execution.
In RAM are stored all inter-results or temporary data during run-time.

PORTA and PORTB are physical connections between the microcontroller and the
outside world. Port A has five, and port B has eight pins.

FREE-RUN TIMER is an 8-bit register inside a microcontroller that works
independently of the program. On every fourth clock of the oscillator it increments its
value until it reaches the maximum (255), and then it starts counting over again from
zero. As we know the exact timing between each two increments of the timer contents,
timer can be used for measuring time which is very useful with some devices.

CENTRAL PROCESSING UNIT has a role of connective element between other
blocks in the microcontroller. It coordinates the work of other blocks and executes the
user program.

Free-run
coorter

Data
memory

R.1.\M

Dat;,ı
me:mory

EE PROM

Program
merTıory
FLASH

PORTA. PORTB

PIC 16F84 rni crocontroller outline

13

Harvard ven-Neumann

CPU

Harvard vs. von Nauman Block Architectures

2.2 CISC, RISC
It has already been said that PIC16F84 has a RISC architecture. This term is often found
in computer literature, and it needs to be explained here in more detail. Harvard
architecture is a newer concept than von-Neumann's. It rose out of the need to speed up
the work of a microcontroller. In Harvard architecture, data bus and address bus are
separate. Thus a greater flow of data is possible through the central processing unit, and
of course, a greater speed of work. Separating a program from data memory makes it
further possible for instructions not to have to be 8-bit words. PIC16F84 uses 14 bits for
instructions which allows for all instructions to be one word instructions. It is also
typical for Harvard architecture to have fewer instructions than von-Neumann's, and to
have instructions usually executed in one cycle.

Microcontrollers with Harvard architecture are also called "RISC microcontrollers".
RISC stands for Reduced Instruction Set Computer. Microcontrollers with von
Neumann's architecture are called 'CISC microcontrollers'. Title CISC stands for
Complex Instruction Set Computer.

Since PIC16F84 is a RISC microcontroller, that means that it has a reduced set of
instructions, more precisely 35 instructions . (ex. Intel's and Motorola's microcontrollers
have over hundred instructions) All of these instructions are executed in one cycle
except for jump and branch instructions. According to what its maker says, PIC16F84
usually reaches results of 2: 1 in code compression and 4: 1 in speed in relation to other
8-bit microcontrollers in its class.

2.3 Applications
PIC16F84 perfectly fits many uses, from automotive industries and controlling home
appliances to industrial instruments, remote sensors, electrical door locks and safety
devices. It is also ideal for smart cards as well as for battery supplied devices because of
its low consumption.
EEPROM memory makes it easier to apply microcontrollers to devices where
permanent storage of various parameters is needed (codes for transmitters, motor speed,
receiver frequencies, etc.). Low cost, low consumption, easy handling and flexibility
make PIC16F84 applicable even in areas where microcontrollers had not previously
been considered (example: timer functions, interface replacement in larger systems,
coprocessor applications, etc.).
In System Programmability of this chip (along with using only two pins in data transfer)
makes possible the flexibility of a product, after assembling and testing have been

14

completed. This capability can be used to create assembly-line production, to store
calibration data available only after final testing, or it can be used to improve programs
on finished products.

2.4 Clock I Instruction Cycle
Clock is microcontroller's main starter, and is obtained from an external component
called an "oscillator". If we want to compare a microcontroller with a time clock, our
"clock" would then be a ticking sound we hear from the time clock. In that case,
oscillator could be compared to a spring that is wound so time clock can run. Also,
force used to wind the time clock can be compared to an electrical supply.

Clock from the oscillator enters a microcontroller via OSCl pin where internal circuit of
a microcontroller divides the clock into four even clocks Ql, Q2, Q3, and Q4 which do
not overlap. These four clocks make up one instruction cycle (also called machine cycle)
during which one instruction is executed.
Execution of instruction starts by calling an instruction that is next in string. Instruction
is called from program memory on every Ql and is written in instruction register on Q4.
Decoding and execution of instruction are done between the next Ql and Q4 cycles. On
the following diagram we can see the relationship between instruction cycle and clock
of the oscillator (OSCl) as well as that of internal clocks Ql-Q4. Program counter (PC)
holds information about the address of the next instruction.

OSC1

Ol
02

Q4 I
I I I

'I 'I 'I
PC \ ı:;ı_ * ~-ı ~ ~ .• ;t

I I
«~

Clockfnsructi on c::ycle

2.5 Pipelining
Instruction cycle consists of cycles Ql, Q2, Q3 and Q4. Cycles of calling and executing
instructions are connected in such a way that in order to make a call, one instruction
cycle is needed, and one more is needed for decoding and execution. However, due to
pipelining, each instruction is effectively executed in one cycle. If instruction causes a
change on program counter, and PC doesn't point to the following but to some other
address (which can be the case with jumps or with calling subprograms), two cycles are
needed for executing an instruction. This is so because instruction must be processed
again, but this time from the right address. Cycle of calling begins with Ql clock, by
writing into instruction register (IR). Decoding and executing begins with Q2, Q3 and
Q4 clocks.

15

TÇ~' I TCY:): TCY~ TC~'~

1 r-ııovnv !Vin

2. MOV\ıVFPORTB

3. CA.il S1J8_1

4. E-Sf PORTA., 81T3 jFQr·~~

IS. ır,S1wct,.~r; @ ::.ctoı,es s $ U

I Ff.:1th1 I Execlllı:1

I Fetch::> Execute::>
Fetch3 Exec:ute3

Fetch.:ı Flush
Fetch SUEl_1 ıe::xi?c.uteS.uB_1 I

fetchSUB_ı ~ ·1 I
/I.II m:;;trı,ıctions:.;ıre sıngle cycle exe,,t for eny prc,g;.~mbranches ihe:;:;e teke 1 wo cycles since lhe fetch
ırıS1n.ıctıorısıt "11u:.~<!" trom1he PlMlıM ..,,,·'htl~w,cnew ıı",~ruc:1ıonıs beıt"ıg ıe-1ctıe<1 sıt"ıdth~ı"ıe-~ecvted.

Instruction Pipeline flow

TCYO reads in instruction MOVLW 55h (it doesn't matter to us what instruction
was executed, because there is no rectangle pictured on the bottom).
TCYl executes instruction MOVLW 55h and reads in MOVWF PORTB.
TCY2 executes MOVWF PORTB and reads in CALL SUB_l.
TCY3 executes a call of a subprogram CALL SUB_l, and reads in instruction BSF
PORTA, BIT3. As this instruction is not the one we need, or is not the first instruction
of a subprogram SUB_l whose execution is next in order, instruction must be read in
again. This is a good example of an instruction needing more than one cycle.
TCY 4 instruction cycle is totally used up for reading in the first instruction from a
subprogram at address SUB_l.
TCYS executes the first instruction from a subprogram SUB_l and reads in the next
one.

2.6 Pin Description
PIC16F84 has a total of 18 pins. It is most frequently found in a DIP18 type of case but
can also be found in SMD case which is smaller from a DIP. DIP is an abbreviation for
Dual In Package. SMD is an abbreviation for Surface Mount Devices suggesting that
holes for pins to go through when mounting, aren't necessary in soldering this type of a
component.

R!t? RAJ

R.i\.3 F:~J)

~

~ RA.;.rroo:ı OSC1

s w:m PIC OSC2

V5~ 16F84 'tfıN

ROOJtn' F:£17
fJ

P.Sı RS&

R(l:;i' RS:$

RE:s F:B4

Pins on PIC16F84 microcontroller have the following meaning:

Pin no.1 RA2 Second pin on port A. Has no additional function

16

Pin no.2 RA3 Third pin on port A. Has no additional function.
Pin no.3 RA4 Fourth pin on port A. TOCKl which functions as a timer is also found on
this pin
Pin no.4 MCLR Reset input and Vpp programming voltage of a microcontroller
Pin no.5 Vss Ground of power supply.
Pin no.6 RBO Zero pin on port B. Interrupt input is an additional function.
Pin no.7 RB 1 First pin on port B. No additional function.
Pin no.8 RB2 Second pin on port B. No additional function.
Pin no.9 RB3 Third pin on port B. No additional function.
Pin no.10 RB4 Fourth pin on port B. No additional function.
Pin no.11 RBS Fifth pin on port B. No additional function.
Pin no.12 RB6 Sixth pin on port B. 'Clock' line in program mode.
Pin no.13 RB7 Seventh pin on port B. 'Data' line in program mode.
Pin no.14 Vdd Positive power supply pole.
Pin no.15 OSC2 Pin assigned for connecting with an oscillator
Pin no.16 OSCl Pin assigned for connecting with an oscillator
Pin no. 17 RA2 Second pin on port A. No additional function
Pin no. 18 RAl First pin on port A. No additional function.

2.7 Clock Generator - Oscillator

Oscillator circuit is used for providing a microcontroller with a clock. Clock is needed
so that microcontroller could execute a program or program instructions.

2.7.1 Types of Oscillators
PIC16F84 can work with four different configurations of an oscillator. Since
configurations with crystal oscillator and resistor - capacitor (RC) are the ones that are
used most frequently, these are the only ones we will mention here. Microcontroller
type with a crystal oscillator has in its designation XT , and a microcontroller with
resistor-capacitor pair has a designation RC. This is important because you need to
mention the type of oscillator when buying a microcontroller.

2.7.2 XT Oscillator
Crystal oscillator is kept in metal housing with two pins where you have written down
the frequency at which crystal oscillates. One ceramic capacitor of 30pF whose other
end is connected to the ground needs to be connected with each pin.
Oscillator and capacitors can be packed in joint case with three pins. Such element is
called ceramic resonator and is represented in charts like the one below. Center pins of
the element is the ground, while end pins are connected with OSC1 and OSC2 pins on
the microcontroller. When designing a device, the rule is to place an oscillator nearer a
microcontroller, so as to avoid any interference on lines on which microcontroller is
receiving a clock.

17

OSC1 C2

F:BO~NT ~-
_ ____,,.r~

c:onrıecting the quartz oso nator to give
clock to a mi crocontroller

Connectinç a resonator onto a
mı crocontroller

2.7.3 RC Oscillator
In applications where great time precision is not necessary, RC oscillator offers
additional savings during purchase. Resonant frequency of RC oscillator depends on
supply voltage rate, resistance R, capacity C and working temperature. It should be
mentioned here that resonant frequency is also influenced by normal variations in
process parameters, by tolerance of external Rand C components, etc.

voo

T~1.: =;;ç:--- I Cl<>•:!<
P,C1E;F84

OSG2ı'CLt<OUi

Nı:ııe:This p,::0 carı be contiguted ets inpu1 füutpı_..rt: Ptn

Above diagram shows how RC oscillator is connected with PIC16F84. With value of
resistor R being below 2.2k, oscillator can become unstable, or it can even stop the
oscillation. With very high value of R (ex.lM) oscillator becomes very sensitive to
noise and humidity. It is recommended that value of resistor R should be between 3 and
100k. Even though oscillator will work without an external capacitor (C=OpF),capacitor
above 20pF should still be used for noise and stability. No matter which oscillator is
being used, in order to get a clock that microcontroller works upon, a clock of the
oscillator must be divided by 4. Oscillator clock divided by 4 can also be obtained on
OSC2/CLKOUT pin, and can be used for testing or synchronizing other logical circuits.

18

Toso uiJi]lJ~
TCY ·1 TcY2 T•-::..Y 3

Relationship betvveen a crock and a number of ınsrrucnon cycles

Following a supply, oscillator starts oscillating. Oscillation at first has an unstable
period and amplitude, but after some period of time it becomes stabilized.

-sv //~:ıı-r\ r ~11~...
. n ı \ I\ I \ I I i

I I

V V .Ih
0\/

Time

\/olta~ıe

Cıysbl start up time

Sı ıJnal of an osci nator c ıock after receiving ttıe supply of a mi crocootrouer

To prevent such inaccurate clock from influencing microcontroller's performance, we
need to keep the microcontroller in reset state during stabilization of oscillator's clock.
Diagram above shows a typical shape of a signal which microcontroller gets from the
quartz oscillator.

2.8 Reset
Reset is used for putting the microcontroller into a 'known' condition. That practically
means that microcontroller can behave rather inaccurately under certain undesirable
conditions. In order to continue its proper functioning it has to be reset, meaning all
registers would be placed in a starting position. Reset is not only used when
microcontroller doesn't behave the way we want it to, but can also be used when trying
out a device as an interrupt in program execution, or to get a microcontroller ready
when loading a program.
In order to prevent from bringing a logical zero to MCLR pin accidentally (line above it
means that reset is activated by a logical zero), MCLR has to be connected via resistor
to the positive supply pole. Resistor should be between 5 and lOK. This kind of resistor
whose function is to keep a certain line on a logical one as a preventive, is called a pull
up.

Microcontroller PIC16F84 knows several sources of resets:

a) Reset during power on, POR (Power-On Reset)
b) Reset during regular work by bringing logical zero to MCLR microcontroller's pin.
c) Reset during SLEEP regime

19

d) Reset at watchdog timer (WDT) overflow
e) Reset during at WDT overflow during SLEEP work regime.

The most important reset sources are a) and b). The first one occurs each time a power
supply is brought to the microcontroller and serves to bring all registers to a starting
position initial state. The second one is a product of purposeful bringing in of a logical
zero to MCLR pin during normal operation of the microcontroller. This second one is
often used in program development.

During a reset, RAM memory locations are not being reset. They are unknown during a
power up and are not changed at any reset. Unlike these, SFR registers are reset to a
starting position initial state. One of the most important effects of a reset is setting a
program counter (PC) to zero (0000h), which enables the program to start executing
from the first written instruction.

2.8.1 Reset at Supply Voltage Drop Below the Permissible (Brown-out
Reset)
Impulse for resetting during voltage voltage-up is generated by microcontroller itself
when it detects an increase in supply Vdd (in a range from 1.2V to 1.8V). That impulse
lasts 72ms which is enough time for an oscillator to get stabilized. These 72ms are
provided by an internal PWRT timer which has its own RC oscillator. Microcontroller
is in a reset mode as long as PWRT is active. However, as device is working, problem
arises when supply doesn't drop to zero but falls below the limit that guarantees
microcontroller's proper functioning. This is a likely case in practice, especially in
industrial environment where disturbances and instability of supply are an everyday
occurrence. To solve this problem we need to make sure that microcontroller is in a
reset state each time supply falls below the approved limit. If, according to electrical
specification, internal reset circuit of a microcontroller can not satisfy the needs, special
electronic components can be used which are capable of generating the desired reset
signal. Beside this function, they can also function in watching over supply voltage. If
voltage drops below specified level, a logical zero would appear on MCLR pin which
holds the microcontroller in reset state until voltage is not within limits that guarantee
accurate performance.

2.9 Central Processing Unit
Central processing unit (CPU) is the brain of a microcontroller. That part is responsible
for finding and fetching the right instruction which needs to be executed, for decoding
that instruction, and finally for its execution.

Central processing unit connects all parts of the microcontroller into one whole. Surely,
its most important function is to decode program instructions. When programmer writes
a program, instructions have a clear form like MOVLW Ox20. However, in order for a
microcontroller to understand that, this 'letter' form of an instruction must be translated
into a series of zeros and ones which is called an 'opcode'. This transition from a letter
to binary form is done by translators such as assembler translator (also known as an
assembler). Instruction thus fetched from program memory must be decoded by a
central processing unit. We can then select from the table of all the instructions a set of

20

actions which execute a assigned task defined by instruction. As instructions may within
themselves contain assignments which require different transfers of data from one
memory into another, from memory onto ports, or some other calculations, CPU must
be connected with all parts of the microcontroller. This is made possible through a data
bus and an address bus.

Arithmetic logic unit is responsible for performing operations of adding, subtracting,
moving (left or right within a register) and logic operations. Moving data inside a
register is also known as 'shifting'. PIC16F84 contains an 8-bit arithmetic logic unit and
8-bit work registers.
In instructions with two operands, ordinarily one operand is in work register (W
register), and the other is one of the registers or a constant. By operand we mean the
contents on which some operation is being done, and a register is any one of the GPR or
SFR registers. GPR is an abbreviation for 'General Purposes Registers', and SFR for
'Special Function Registers'. In instructions with one operand, an operand is either W
register or one of the registers. As an addition in doing operations in arithmetic and
logic, ALU controls status bits (bits found in STATUS register). Execution of some
instructions affects status bits, which depends on the result itself. Depending on which
instruction is being executed, ALU can affect values of Carry (C), Digit Carry (DC),
and Zero (Z) bits in STATUS register.

2.9.1 STATUS Register

R/•,N-0 RN',/-0 ;.ı.,tı/'./-D R/ıı'V-1 RN\/-1 R/VI/->: RN'./-x RN\i-x

~ RPl DC CRPO z
tın7

Legend:

R = Readeın.le btt W "' We ~eıbfe bit
U ,,_ UnonpleıMnted brt. reM as '(:ıO . rı.,, ·vah.ıe &t power-onr~set

bit 7 IRP (Register Bank Select bit)
Bit whose role is to be an eighth bit for purposes of indirect addressing the internal
RAM.
1 = bank 2 and 3
O= bank O and 1 (from OOh to FFh)

bits 6:5 RPl:RPO (Register Bank Select bits)
These two bits are upper part of the address for direct addressing. As instructions which
address the memory directly have only seven bits, they need one more bit in order to
address all 256 bytes which is how many bytes PIC16F84 has. RPl bit is not used, but
is left for some future expansions of this microcontroller.
O 1 = first bank
00 = zero bank
bit 4 TO Time-out; Watchdog overflow.
Bit is set after turning on the supply and execution of CLRWDT and SLEEP
instructions. Bit is reset when watchdog gets to the end signaling that overflow took
place.

21

I = overflow did not occur
O = overflow did occur
bit 3 PD (Power-down bit)
This bit is set whenever power supply is brought to a microcontroller: as it starts
running, after each regular reset and after execution of instruction CLRWDT.lnstruction
SLEEP resets it when microcontroller falls into low consumption mode. Its repeated
setting is possible via reset or by turning the supply off/on . Setting can be triggered also
by a signal on RBO/INTpin, change on RB port, upon writing to internal DATA
EEPROM, and by a Watchdog.
1 = after supply has been turned on
O = executing SLEEP instruction

bit 2 Z (Zero bit) Indication of a zero result
This bit is set when the result of an executed arithmetic or logic operation is zero.
1 = result equals zero
O= result does not equal zero

bit 1 DC (Digit Carry) DC Transfer
Bit affected by operations of addition, subtraction. Unlike C bit, this bit represents
transfer from the fourth resulting place. It is set in case of subtracting smaller from
greater number and is reset in the other case.
1 = transfer occurred on the fourth bit according to the order of the result
O = transfer did not occur
DC bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

bit O C (Carry) Transfer
Bit that is affected by operations of addition, subtraction and shifting.
1 = transfer occurred from the highest resulting bit
O = transfer did not occur
C bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

2.10 Ports
Term "port" refers to a group of pins on a microcontroller which can be accessed
simultaneously, or on which we can set the desired combination of zeros and ones, or
read from them an existing status. Physically, port is a register inside a microcontroller
which is connected by wires to the pins of a microcontroller. Ports represent physical
connection of Central Processing Unit with an outside world. Microcontroller uses them
in order to monitor or control other components or devices. Due to functionality, some
pins have twofold roles like PA4/TOCKI for instance, which is in the same time the
fourth bit of port A and an external input for free-run counter. Selection of one of these
two pin functions is done in one of the configuration registers. An illustration of this is
the fifth bit TOCS in OPTION register. By selecting one of the functions the other one is
disabled.
All port pins can be designated as input or output, according to the needs of a device
that's being developed. In order to define a pin as input or output pin, the right
combination of zeros and ones must be written in TRIS register. If the appropriate bit of
TRIS register contains logical "1 ", then that pin is an input pin, and if the opposite is
true, it's an output pin. Every port has its proper TRIS register. Thus, port A has TRISA,
and port B has TRISB. Pin direction can be changed during the course of work which is

22

particularly fitting for one-line communication where data flow constantly changes
direction. PORTA and PORTB state registers are located in bank O, while TRISA and
TRISB pin direction registers are located in bank 1.

2.10.1 PORTB and TRISB
PORTB has adjoined 8 pins. The appropriate register for data direction is TRISB.
Setting a bit in TRISB register defines the corresponding port pin as input, and resetting
a bit in TRISB register defines the corresponding port pin as output.

RegisterI'orde:şİl'JMtitıgr
pln Input or output f

I
1 -Input i
o ~ ooıı:rııt , !

f..
!.

Each PORTB pin has a weak internal pull-up resistor (resistor which defines a line to
logic one) which can be activated by resetting the seventh bit RBPU in OPTION
register. These 'pull-up' resistors are automatically being turned off when port pin is
configured as an output. When a microcontroller is started, pull-ups are disabled.

Four pins PORTB, RB7:RB4 can cause an interrupt which occurs when their status
changes from logical one into logical zero and opposite. Only pins configured as input
can cause this interrupt to occur (if any RB7:RB4 pin is configured as an output, an
interrupt won't be generated at the change of status.) This interrupt option along with
internal pull-up resistors makes it easier to solve common problems we find in practice
like for instance that of matrix keyboard. If rows on the keyboard are connected to these
pins, each push on a key will then cause an interrupt. A microcontroller will determine
which key is at hand while processing an interrupt It is not recommended to refer to port
B at the same time that interrupt is being processed.

23

bsf STATUS, RPO ;Bankı
movlw OxOF
movwf TRISB
bcf STATUS, RPO
bsf PORTB,4
bsf PORTB, 5
bsf PORTB, 6
bsf PORTB, 7

The above example shows how pins O, 1, 2, and 3 are designated input, and pins 4, 5, 6,
and 7 for output, after which PORTB output pins are set to one.

;Defining input and output pins
; Writing to TRISB register
;Banko
;PORTB <7:4>=0

2.10.2 PORTA and TRISA
PORTA has 5 adjoining pins. The corresponding register for data direction is TRISA at
address 85h. Like with port B, setting a bit in TRISA register defines also the
corresponding port pin as input, and clearing a bit in TRISA register defines the
corresponding port pin as output.

It is important to note that PORTA pin RA4 can be input only. On that pin is also
situated an external input for timer TMRO. Whether RA4 will be a standard input or an
input for a counter depends on TOCS bit (TMRO Clock Source Select bit). This pin
enables the timer TMRO to increment either from internal oscillator or via external
impulses on RA4/TOCKI pin.

Configuring port A:

bsf STATUS, RPO .Barık l
movlw b'ııııııoo· ;Defining input and output pins
movwf TRISA ;Writing to TRISA register
bcf STATUS, RPO .Bankü

Example shows how pins O, 1, 2, 3, and 4 are designated input, and pins 5, 6, and 7
output. After this, it is possible to read the pins RA2, RA3, RA4, and to set logical zero
or one to pins RAO and RA 1.

24

Port A register
Anythlrıgıwrl:tte:m
lo this registtır
directly affecis
1lı¢ pins d p<>rtA

I
·11.'

PORTA I
0j
©: I®!
@·
®: I
®< IQ) .

. TRJSA @) II ·· ·_ ·-- -··--·---· I
-l. ı
.·_ -··-··-·· ..·-·•.-··-·· .,_..··-~- ~-~

2.11 Memory Organization
PIC16F84 has two separate memory blocks, one for data and the other for program.
EEPROM memory with GPR and SFR registers in RAM memory make up the data
block, while FLASH memory makes up the program block.

2.11.1 Program Memory
Program memory has been carried out in FLASH technology which makes it possible to
program a microcontroller many times before it's installed into a device, and even after
its installment if eventual changes in program or process parameters should occur. The
size of program memory is 1024 locations with 14 bits width where locations zero and
four are reserved for reset and interrupt vector.

2.11.2 Data Memory
Data memory consists of EEPROM and RAM memories. EEPROM memory consists of
64 eight bit locations whose contents is not lost during loosing of power supply.
EEPROM is not directly addressable, but is accessed indirectly through EEADR and
EEDATA registers. As EEPROM memory usually serves for storing important
parameters (for example, of a given temperature in temperature regulators) , there is a
strict procedure for writing in EEPROM which must be followed in order to avoid
accidental writing. RAM memory for data occupies space on a memory map from
location OxOC to Ox4Fwhich comes to 68 locations. Locations of RAM memory are
also called GPR registers which is an abbreviation for General Purpose Registers. GPR
registers can be accessed regardless of which bank is selected at the moment.

25

2.11.3 SFR Registers
Registers which take up first 12 locations in banks O and 1 are registers of specialized
function assigned with certain blocks of the microcontroller. These are called Special
Function Registers.

EED.AJ.A.• I I
'.~8

Addresır
level 1

- I l I l l I OOh
level 2 Ct I I ı I I I 01h .,..

o I T I I I I /"'.,.
.• <st: ,... . ._,,,.,..

w
,.. .

¥w I I I I I I I 3Eh
~vel ô Ptogr-;1rı? - ,, 3Fh

t counter 1
_,,

Dat.ı f3ııs

2:0:o 1(
t Addre:;;;s .t,ddres:;;;

'7
:~:.ı:S::tr-e; 0000h OOh INOF lllOF . ôOrı

01rı HIR~ -OPTIOH 81h
02h Pı.:;L !"CL 82h
03h ZT.4TIJS STATUS 83h

Jr.rli~"S- 0004h 04h FSR FSR 84h
OSh Pı:lRT.4 nrn;ı. :35h
06h PORT9 TR~B 86h
07h 37h

nemory ~ t-+- Ooh t.:O.O.Tf~ [V-Otl1 33h
;{14 - 09h H'.f~Ols EV-Ott.: ' 89rı

OAh Pı.:;LATH l"CLATH 3Ah
OBh IHTCOH IHTCON ·~~v. DC:ri

/ .
63 bytes R.ı\M memory ı,:

//~- :
:

GPR '
registers '

'4Fh CFh :
·söh. ·eıori ·-·

~

1FFFh 7Fh FFh

Slack
Stack

Stacr,
/.lddrlf!S-S

Bıı5

Progrnrn
1024

~.-6.... ······~< j
'--------·------·--·

STATUS register

hl1ernorı organization of rnicrocontroller PIC16F84

EEPROM (or
:iat.ı 64x8

ACCf:S,~i;r,ıg
thlf!S/f!
tocetions
has lfılfl
seme re.su.it
reg.;rdl&s.<.J
ofthlfl bank
trom which

.m;ı.~·ing an
ecceas

Un.imp/emen
tlf!d

toe atior.,.~ .. by
tıJild/ng

Wlf! aı\wıy.s
get '·'O'"

2.11.4 Memory Banks
Beside this 'length' division to SFR and GPR registers, memory map is also divided in
'width' (see preceding map) to two areas called 'banks'. Selecting one of the banks is
done via RPObit in STATUS register.

26

Example:
bcf STATUS, RPO

Instruction BCF clears bit RPO (RPO=O) in STATUS register and thus sets up bank O.

bsf STATUS, RPO
Instruction BSF sets the bit RPO (RPO=l) in STATUS register and thus sets up bankı.

It is useful to consider what would happen if the wrong bank was selected. Let's assume
that we have selected bank O at the beginning of the program, and that we now want to
write to certain register located in bank 1, say TRISB. Although we specified the name
of the register TRISB, data will be actually stored to a bank O register at the appropriate
address, which is PORTB in our example.
BANKO macro

Bcf STATUS, RPO ;Select memory bank O
endm

BANKl macro
Bsf STATUS, RPO ;Select memory bank 1
endm

Bank selection can be also made via directive banksel after which name of the register
to be accessed is specified. In this manner, there is no need to memorize which register
is in which bank.

2.11.5 Program Counter
Program counter (PC) is a 13-bit register that contains the address of the instruction
being executed. It is physically carried out as a combination of a 5-bit register PCLATH
for the five higher bits of the address, and the 8-bit register PCL for the lower 8 bits of
the address.By its incrementing or change (i.e. in case of jumps) microcontroller
executes program instructions step-by-step.

2.11.6 Stack
PIC16F84 has a 13-bit stack with 8 levels, or in other words, a group of 8 memory
locations, 13 bits wide, with special purpose. Its basic role is to keep the value of
program counter after a jump from the main program to an address of a subprogram . In
order for a program to know how to go back to the point where it started from, it has to
return the value of a program counter from a stack. When moving from a program to a
subprogram, program counter is being pushed onto a stack (example of this is CALL
instruction). When executing instructions such as RETURN, RETL W or RETFIE which
were executed at the end of a subprogram, program counter was taken from a stack so
that program could continue where was stopped before it was interrupted. These
operations of placing on and taking off from a program counter stack are called PUSH
and POP, and are named according to similar instructions on some bigger
microcontrollers.

2.11.7 In System Programming
In order to program a program memory, microcontroller must be set to special working
mode by bringing up MCLR pin to 13.5V, and supply voltage Vdd has to be stabilized
between 4.5V to 5.5V. Program memory can be programmed serially using two

27

'data/clock' pins which must previously be separated from device lines, so that errors
wouldn't come up during programming.

2.11.8 Addressing Modes
RAM memory locations can be accessed directly or indirectly.

2.11.9 Direct Addressing
Direct Addressing is done through a 9-bit address. This address is obtained by
connecting 7th bit of direct address of an instruction with two bits (RPl, RPO) from
STATUS register as is shown on the following picture. Any access to SFR registers is
an example of direct addressing.

Bsf STATUS, RPO ;Bankl
movlw OxFF ;w=OxFF
movwf TRISA ;address of TRISA register is taken from

;instruction movwf

5th and 6th
o,ı.s ol

STATUS=r>;
RP1 RP2

r r I

Sever, bitr, trom inslructwrıs

j
+................ ~AA < , > >.AA < I >._>.A < < I , >.AA l t ._AA I I I._ A A t < > ~ ••

setecıed
b&!'!l•;'

4F

00

OB
oc

7F
BankO Bıınfd

2.11.10 Indirect Adressing
Indirect unlike direct addressing does not take an address from an instruction but
derives it from IRP bit of STATUS and FSR registers. Addressed location is accessed
via INDF register which in fact holds the address indicated by a FSR. In other words,
any instruction which uses INDF as its register in reality accesses data indicated by a
FSR register. Let's say, for instance, that one general purpose register (GPR) at address
OFh contains a value of 20. By writing a value of OFh in FSR register we will get a
register indicator at address OFh, and by reading from INDF register, we will get a value
of 20, which means that we have read from the first register its value without accessing
it directly (but via FSR and INDF). It appears that this type of addressing does not have
any advantages over direct addressing, but certain needs do exist during programming
which can be solved smoothly only through indirect addressing.

28

Indirect addressing is very convenient for manipulating data arrays located in GPR
registers. In this case, it is necessary to initialize FSR register with a starting address of
the array, and the rest of the data can be accessed by incrementing the FSR register.

Severıth btt of
STATUS
re_giste,

"-·:. o
FSR

. ' .•• ' •••• .,. ,,.. > •• >',.'I) •••. ,. .• ' ' •• ' .•.••••.•..•.• ' •••. >t-> • ' ••••.•• > ' .,. •••.••••••••• ' ,~

setectea
f)~n,I.:

00 01

4F

?/

Seletted ıocnion

oı:.ı

OB
oc

7F

ındırect aodressi nı]

Such examples include sending a set of data via serial communication, working with
buffers and indicators (which will be discussed further in a chapter with examples), or
erasing a part of RAM memory (16 locations) as in the following instance.

Movlı:ır OxOC
. Movı:ırf FSR

LOOP clrf INDF
incf FSR
btfss FSR,4
goto loop

CONTINUE

;initialization of starting address
;FSR indicates address OxOC
;INDF = O
;address= initial address+ 1
;are all locations erased
;no, go through a loop again

; yes, continue with program

Reading data from INDF register when the contents of FSR register is equal to zero
returns the value of zero, and writing to it results in NOP operation (no operation).

29

2.12 Interrupts
Interrupts are a mechanism of a microcontroller which enables it to respond to some
events at the moment they occur, regardless of what microcontroller is doing at the time.
This is a very important part, because it provides connection between a microcontroller
and environment which surrounds it. Generally, each interrupt changes the program
flow, interrupts it and after executing an interrupt subprogram (interrupt routine) it
continues from that same point on.

One of the possible sources of interrupt and how it affects the main program
Control register of an interrupt is called INTCON and can be accessed regardless of the
bank selected. Its role is to allow or disallowed interrupts, and in case they are not
allowed, it registers single interrupt requests through its own bits.

2.12.1 INTCON Register

Rf\lV-0 R/VV-0 RNV-0 R/ı/'./-0 R/ıJV-0 RNV-0 RN'ı/-0 R/VV-0

GIE I EEIE I TOIE ı IMTE I RBIE ı TOIF I ıNTF ı RBIF
bıt7

Legend:
R "' Readable M W = \Nrılable bıt
U" 1.,Jnimplerrı.errtı;,J bit. read {2$ 'O' • n "'Value~ power-orı reset

30

Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1 = all interrupts are enabled
O = all interrupts are disabled

Bit 6 EEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an
interrupt at the end of a writing routine to EEPROM
1 = interrupt enabled
O = interrupt disabled
If EEIE and EEIF (which is in EECONl register) are set simultaneously, an interrupt
will occur.

bit 5 TOIE (TMRO Overflow Interrupt Enable bit) Bit which enables interrupts during
counter TMROoverflow.
1 = interrupt enabled
O = interrupt disabled
If TOIEand TOIFare set simultaneously, interrupt will occur.

bit 4 INTE (INT External Interrupt Enable bit) Bit which enables external interrupt
from pin RBO/INT.
1 = external interrupt enabled
O = external interrupt disabled
If INTE and INTF are set simultaneously, an interrupt will occur.

bit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts to occur at the
change of status of pins 4, 5, 6, and 7 of port B.
1 = enables interrupts at the change of status
O =interrupts disabled at the change of status
If RBIE and RBIF are simultaneously set, an interrupt will occur.

bit 2 TOIF (TMROOverflow Interrupt Flag bit) Overflow of counter TMRO.
1 = counter changed its status from FFh to OOh
O = overflow did not occur
Bit must be cleared in program in order for an interrupt to be detected.

bit 1 INTF (INT External Interrupt Flag bit) External interrupt occurred.
1 = interrupt occurred
O = interrupt did not occur
If a rising or falling edge was detected on pin RBO/INT,(which is defined with bit
INTEDG in OPTION register), bit INTF is set.

bit O RBIF (RB Port Change Interrupt Flag bit) Bit which informs about changes on
pins 4, 5, 6 and 7 of port B.
1 = at least one pin has changed its status
O = no change occurred on any of the pins
Bit has to be cleared in an interrupt subroutine to be able to detect further interrupts.

31

INTERRUPT
,.,-~""\ EE!F
' lf o '-._j

TDIE /
0
(:ı)/

0TOlf

RBIE/ c Q)/
0RBlf···· ı tN'TE (4'\ IN'Tf'

,/ (: - ct" o '>,..)</ ı·'>--_.,_ __ -ı

EEIE o
GIE

'------11------
Si rnpllfied outline of PIC 'l 6f='84 mi crocornroller interrupt

PIC16F84 has four interrupt sources:

1. Termination of writing data to EEPROM
2. TMRO interrupt caused by timer overflow
3. Interrupt during alteration on RB4, RBS, RB6 and RB7 pins of port B.
4. External interrupt from RBO/INT pin of microcontroller

Generally speaking, each interrupt source has two bits joined to it. One enables
interrupts, and the other detects when interrupts occur. There is one common bit called
GIE which can be used to disallow or enable all interrupts simultaneously. This bit is
very useful when writing a program because it allows for all interrupts to be disabled for
a period of time, so that execution of some important part of a program would not be
interrupted. When instruction which resets GIE bit was executed (GIE=O, all interrupts
disallowed), any interrupt that remained unsolved should be ignored. Interrupts which
remained unsolved and were ignored, are processed when GIE bit (GIE=l, all interrupts
allowed) would be cleared. When interrupt was answered, GIE bit was cleared so that
any additional interrupts would be disabled, return address was pushed onto stack and
address 0004h was written in program counter - only after this does replying to an
interrupt begin! After interrupt is processed, bit whose setting caused an interrupt must
be cleared, or interrupt routine would automatically be processed over again during a
return to the main program.

2.12.2 Keeping the Contents of Important Registers
Only return value of program counter is stored on a stack during an interrupt (by return
value of program counter we mean the address of the instruction which was to be
executed, but wasn't because interrupt occurred). Keeping only the value of program
counter is often not enough. Some registers which are already in use in the main
program can also be in use in interrupt routine. If they were not retained, main program
would during a return from an interrupt routine get completely different values in those
'registers, which would cause an error in the program. One example for such a case is
contents of the work register W. If we suppose that main program was using work
register W for some of its operations, and if it had stored in it some value that's
important for the following instruction, then an interrupt which occurs before that

32

instruction would change the value of work register W which would directly be
influenced the main program.

Procedure of recording important registers before going to an interrupt routine is called
PUSH, while the procedure which brings recorded values back, is called POP. PUSH
and POP are instructions with some other microcontrollers (Intel), but are so widely
accepted that a whole operation is named after them. PIC16F84 does not have
instructions like PUSH and POP, and they have to be programmed.

I rıstrucıiorı rıo. N

Before the interrupt
occured, working

register W had the
valueX'

Interrupt I Interrupt
subprogram

where interrupt
processing has
changed work

register W to 'Y'

Return to l I W=Y
maırı

program

W=X
Following

instruction after an
interrupt checks
out the value of
work register W

lrıstructiorı rıo. N + 1 ---• lsW=X?

Common error: saving the value wasn't done before entering the interrupt routine

Due to simplicity and frequent usage, these parts of the program can be made as macros.
The concept of a Macro is explained in "Program assembly language". In the following
example, contents of W and STATUS registers are stored in W_TEMP and
STATUS_TEMP variables prior to interrupt routine. At the beginning of PUSH routine
we need to check presently selected bank because W_TEMP and STATUS_TEMP are
found in bank O. For exchange of data between these registers, SWAPF instruction is
used instead of MOVF because it does not affect the STATUS register bits.

Example is an assembler program for following steps:

1. Testing the current bank
2. Storing W register regardless of the current bank
3. Storing STATUS register in bank O.
4. Executing interrupt routine for interrupt processing (ISR)
5. Restores STATUS register
6. Restores W register

33

If there are some more variables or registers that need to be stored, then they need to be
kept after storing STATUS register (step 3), and brought back before STATUS register
is restored (step 5).

Push
BTFSS STATUS, RPO
GOTO RPOCLEAR
BCF STATUS, RPO
MOVWF W_TEMP
SWAPF STATUS, W
MOVWF STATUS_TEMP
BSF STATUS_TEMP, 1
GOTO ISR_Code

RPO CLEAR
MOVWF W_TEMP
SWAPF STATUS, W
MOVWF STATUS_TEMP

J

ISR_Code

: (Interrupt subprogram)

Pop

; Banko
; Yes
; NO, go to Banko
; Save W register
; W <- STATUS
; ST.ı'.ı.TUS_TEMP < - W
; RPO(STATUS_TEMP)= 1
; Push completed

; Save W register
; W <- STATUS
; STATUS_TEMP <- W

; W <- STATUS_TEMP
; STATUS <-W
; Bank 1?
; NO,
; YES, go to Banko
; Return contents of W register

SWAPF STATUS_TEMP, W
MOVWF STATUS
BTFSS STATUS, RPO
GOTO Return_WREG
B CF STATUS, RPO
SWAPF W_TEMP, F
SWAPF W_TEMP, W
BSF STATUS, RPO
RETFIE

Return_WREG
SWAPF W_TEMP, F ; Return contents of W register
SWAPF W_TEMP, W ;
RETFIE ; POP completed

The same example can be carried out using macros, thus getting a more legible program.
Macros that are already defined can be used for writing new macros. Macros BANKl
and BANKOwhich are explained in "Memory organization" chapter are used with
macros 'push' and 'pop'.

J

; Return to Bankı
; POP complete

push macro
rnovwf W_Temp
swapf W_Temp,F
B,C.NKl
swapf OPTION_REG,W
movwf Option_ Temp
BANKO
swapf STATUS,W
m OV wf Stat_ Temp
endm

macro
swapf Stat_Temp,W
movwf STATUS
BANKl
swapf Option_Temp,W
movwf OPTION_REG
BANKO
swapf W_Temp,W
endm

pop

;W_Temp <- W
; Swap them
; Macro for switching to Bankı
; W <- OPTION_REG
; Opti on_Temp < - W
; macro for switching to Banko
; W <- STATUS
; Stat_Tem p < -W
; End of push macro

; W < - Stat_ Temp
; STATUS<- W
; M aero for switching to Bank ı
; W <- Option_Temp
; OPTION_REG <- W
; Macro for switching to Banko
;W <- W_Temp
; End of a pop m aero

34

2.12.3 External Interrupt on RBO/INT Pin of Microcontroller
External interrupt on RBO/INTpin is triggered by rising signal edge (if bit INTEDG=l
in OPTION<6> register), or falling edge (if INTEDG=O).When correct signal appears
on INT pin, INTF bit is set in INTCON register. INTF bit (INTCON<l>) must be
cleared in interrupt routine, so that interrupt wouldn't occur again while going back to
the main program. This is an important part of the program which programmer must not
forget, or program will constantly go into interrupt routine. Interrupt can be turned off
by resetting INTE control bit (INTCON<4>). Possible application of this interrupt could
be measuring the impulse width or pause length, i.e. input signal frequency. Impulse
duration can be measured by first enabling the interrupt on rising edge, and upon its
appearing, starting the timer and then enabling the interrupt on falling edge. Timer
should be stopped upon the appearing of falling edge - measured time period represents
the impulse duration.

2.12.4 Interrupt During a TMRO Counter Overflow
Overflow of TMROcounter (from FFh to OOh) will set TOIF (INTCON<2>) bit. This is
very important interrupt because many real problems can be solved using this interrupt.
One of the examples is time measurement. If we know how much time counter needs in
order to complete one cycle from OOh to FFh, then a number of interrupts multiplied by
that amount of time will yield the total of elapsed time. In interrupt routine some
variable would be incremented in RAM memory, value of that variable multiplied by
the amount of time the counter needs to count through a whole cycle, would yield total
elapsed time. Interrupt can be turned on/off by setting/resetting TOIE (INTCON<5>) bit.

2.12.5 Interrupt Upon a Change on Pins 4, 5, 6 and 7 of port B
Change of input signal on PORTB <7:4> sets RBIF (INTCON<O>)bit. Four pins RB7,
RB6, RBS and RB4 of port B, can trigger an interrupt which occurs when status on
them changes from logic one to logic zero, or vice versa. For pins to be sensitive to thi
change, they must be defined as input. If any one of them is defined as output, interrupt
will not be generated at the change of status. If they are defined as input, their current
state is compared to the old value which was stored at the last reading from port B.

2.12.6 Interrupt Upon Finishing Write-Subroutine to EEPROM
This interrupt is of practical nature only. Since writing to one EEPROM location take:
about lüms (which is a long time in the notion of a microcontroller), it doesn't pay off
to a microcontroller to wait for writing to end. Thus interrupt mechanism is added
which allows the microcontroller to continue executing the main program, while writing
in EEPROM is being done in the background. When writing is completed, interrup
informs the microcontroller that writing has ended. EEIF bit, through which ' ·
informing is done, is found in EECONl register. Occurrence of an interrupt can be
disabled by resetting the EEIE bit in INTCON register.

2.12. 7 Interrupt Initialization

In order to use an interrupt mechanism of a microcontroller, some preparata .
need to be performed. These procedures are in short called "initializatio
initialization we define to what interrupts the microcontroller will respond, an
ones it will ignore. If we do not set the bit that allows a certain interrupt, prog

35

not execute an interrupt subprogram. Through this we can obtain control over interrupt
occurrence, which is very useful.

clrf INTCON
movlw B'00010000'
bsf INTCON, GIE

all interrupts disabled
external interrupt only is enabled
occurrence of interrupts allowed

The above example shows initialization of external interrupt on RBO pin of a
microcontroller. Where we see one being set, that means that interrupt is enabled.
Occurrence of other interrupts is not allowed, and interrupts are disabled altogether until
GIE bit is set to one.

The following example shows a typical way of handling interrupts. PIC 16F84 has got a
single location for storing the address of an interrupt subroutine. This means that first
we need to detect which interrupt is at hand (if more than one interrupt source is
available), and then we can execute that part of a program which refers to that interrupt.

2.13 Free-run Timer TMRO
Timers are usually the most complicated parts of a microcontroller, so it is necessary to
set aside more time for understanding them thoroughly. Through their application it is
possible to establish relations between a real dimension such as "time" and a variable
which represents status of a timer within a microcontroller. Physically, timer is a
register whose value is continually increasing to 255, and then it starts all over again: O,
1, 2, 3, 4 255 0,1, 2, 3 etc.

Data Bus

bıt ı TMRO

ft-.:
() 0() ()()O()() I I CD~_)(~(!)(~)@)(~)(V
INTCON TOIF ... 123 .. :255 .. O .1 .. .2 .. .255. O ·ı .

1t I I
Oscıllator clock

PS2 PS1
o I]

o o
o

l l

PSD
O -"'7 Presc&.ler 1 2 ---;.

i---'> Preecsler 1.4---'>

0---+ ,Prescale.r1:8---+
t ;-::ı I

Relation betıNeenll"ıB timer TMRO and prescaler

36

This incrementing is done in the background of everything a microcontroller does. It is
up to programmer to think up a way how he will take advantage of this characteristic for
his needs. One of the ways is increasing some variable on each timer overflow. If we
know how much time a timer needs to make one complete round, then multiplying the
value of a variable by that time will yield the total amount of elapsed time.

PIC16F84 has an 8-bit timer. Number of bits determines what value timer counts to
before starting to count from zero again. In the case of an 8-bit timer, that number is 256.
A simplified scheme of relation between a timer and a prescaler is represented on the
previous diagram. Prescaler is a name for the part of a microcontroller which divides
'oscillator clock before it will reach logic that increases timer status. Number which
divides a clock is defined through first three bits in OPTION register. The highest
divisor is 256. This actually means that only at every 256th clock, timer value would
increase by one. This provides us with the ability to measure longer timer periods.

: Q1 I Q2 I Q'.31 Q4 : Q·1 I Q2 I 031 Q4 j Q1 I QZ I()3 I Q4 : Gt1 I Q2 I Q3 I Q4 : Q1 I (J2 I Q3 I Q4
0$Cı

CLKOUi(i)

TımerfJ

T()IFb~

GIE brt

Note: 1 Werrupt flag bit 1O'.F is examined <l1 lhe new place <ıt eech Gr1 cycle
(:LKOUT e::,:ı::;!s only in RC oscıllı:ılor mode

Time diııgr~mof interrupi cccureneewith lMrul timer

After each count up to 255, timer resets its value to zero and starts with a new cycle of
counting to 255. During each transition from 255 to zero, TOIF bit in INTCOM register
is set. If interrupts are allowed to occur, this can be taken advantage of in generating
interrupts and in processing interrupt routine. It is up to programmer to reset TOIFbit in
interrupt routine, so that new interrupt, or new overflow could be detected. Beside the
internal oscillator clock, timer status can also be increased by the external clock on
RA4/TOCKI pin. Choosing one of these two options is done in OPTION register
through TOCSbit. If this option of external clock was selected, it would be possible to
define the edge of a signal (rising or falling), on which timer would increase its value.

37

Metal bugles

\

\
Inductive sensor

F'IC:16F84

I
RAJ (1:4

.... , .. , .. ,nl rı rr:=:::, lnterıupı,, ,. ~--· '.,,ıs- -~1)
,, (r ı 2ss-..o

l

~
- //1

/

~
·--ı,

\
)

/

f
\
\

rvıotor a,:ıs uf the
·working machine

Data Bus

Deternıi nirıg a number of full axis turns of the motor

In practice, one of the typical example that is solved via external clock and a timer is
counting full turns of an axis of some production machine, like transformer winder for
instance. Let's wind four metal screws on the axis of a winder. These four screws will
represent metal convexity. Let's place now the inductive sensor at a distance of 5mm
from the head of a screw. Inductive sensor will generate the falling signal every time the
head of the screw is parallel with sensor head. Each signal will represent one fourth of a
full tum, and the sum of all full turns will be found in TMROtimer. Program can easily
read this data from the timer through a data bus.

The following example illustrates how to initialize timer to signal falling edges from
external clock source with a prescaler 1 :4. Timer works in "polig" mode.

clrf TMRO ;TMRO=O
clrf INTCON ; Interrupts and TOIF=O disallowed
bsf STATUS,RPO ;Bankl because of OPTION_REG
movlw B'00110001' ;prescaler 1:4, falling edge selected external

;clock source and pull up ;selected resistors
;on port B activated

movwf OPTION REG ;OPTION REG<- W
TO OVFL

btfss INTCON, TOIF
goto TO OVFL

;testing overflow bit
;interrupt has not occured yet, wait

(Part of the program which processes data regarding a nmi'iber of turns)

goto TO OVFL ;waiting for new overflow

38

The same example can be carried out through an interrupt in the following way:

push macro
m ovııvf W_Temp ;W_Temp <- W
swapf W_Temp,F ; Swap them
BANKl ; Macro for switching to Bankı
swapf OPTION_REG, W ; W <- OPTION_REG
m ovwf Option_Temp ; Option_Temp <- W
BANKO ; macro for switching to Banko
swapf STATUS,W ; W <- STATUS
m ovwf Stat_ Temp ; Stat_Tem p < -W
endm ; End of push macro

pop macro
swapf Stat_Temp,W ; W <- Stat_Temp
movııvf STATUS ; STATUS <- W
BANKl ; Macro for switching to Bank 1
swapf Option_Temp,W ; W < - Option_ Temp
m ovııvf OPTION_REG ; OPTION_REG <- W
BANKO ; M aero for switching to Bank O
swapf W_Temp,W ; W <- W_Temp
endm ; End of a pop m aero

Prescaler can be assigned either timer TMRO or a watchdog. Watchdog is a mechanism
which microcontroller uses to defend itself against programs getting stuck. As with any
other electrical circuit, so with a microcontroller too can occur failure, or some work
impairment. Unfortunately, microcontroller also has program where problems can
occur as well. When this happens, microcontroller will stop working and will remain in
that state until someone resets it. Because of this, watchdog mechanism has been
introduced. After a certain period of time, watchdog resets the microcontroller
(microcontroller in fact resets itself). Watchdog works on a simple principle: if timer
overflow occurs, microcontroller is reset, and it starts executing a program all over
again. In this way, reset will occur in case of both correct and incorrect functioning.
Next step is preventing reset in case of correct functioning, which is done by writing
zero in WDT register (instruction CLRWDT) every time it nears its overflow. Thus
program will prevent a reset as long as it's executing correctly. Once it gets stuck, zero
will not be written, overflow of WDT timer and a reset will occur which will bring the
microcontroller back to correct functioning again.

Prescaler is accorded to timer TMRO, or to watchdog timer trough PSA bit in OPTION
register. By clearing PSA bit, prescaler will be accorded to timer TMRO. When
prescaler is accorded to timer TMRO, all instructions of writing to TMRO register
(CLRF TMRO, MOVWF TMRO, BSF TMRO, ...) will clear prescaler. When prescaler is
assigned to a watchdog timer, only CLRWDT instruction will clear a prescaler and
watchdog timer at the same time . Prescaler change is completely under programmer's
control, and can be changed while program is running.

39

2.13.1 OPTION Control Register

RıVV-1 RıVV-1 RıVV-1 RıVV-1 RıVV-1 RıVV-1 RıVV-1 RıVV-1
I R8PU {1 F I INTEDG I TOCS TOSE PSA I PS2 I PS1 I PSO
bit 7 bit o
Legend:
R = Readable bit W = Vı/ritable bit
U = Unimplemented bit, read as 'O' -rı = Value at POR reset

bit 7 RBPU (PORTB Pull-up Enable bit)
This bit turns internal pull-up resistors on port B on or off.
1 = 'pull-up' resistors turned on
O= 'pull-up' resistors turned off

bit 6 INTEDG (Interrupt Edge Select bit)
If occurrence of interrupts was enabled, this bit would determine at what edge interrupt
on RBO/INTpin would occur.
1 = rising edge
O = falling edge

bit 5 TOCS (TMROClock Source Select bit)
This pin enables a free-run timer to increment its value either from an internal oscillator,
i.e. every 1/4 of oscillator clock, or via external impulses on RA4/TOCKIpin.
1 = external impulses
O= 1/4 internal clock

bit 4 TOSE (TMROSource Edge Select bit)

If trigger TMROwas enabled with impulses from a RA4/TOCKIpin, this bit would
determine whether it would be on the rising or falling edge of a signal.
1 = falling edge
O = rising edge

bit 3 PSA (Prescaler Assignment bit)
Bit which assigns prescaler between TMROand watchdog timer.
1 = prescaler is assigned to watchdog timer.
O= prescaler is assigned to free timer TMRO

Bit 0:2 PSO, PS1, PS2 (Prescaler Rate Select bit)
In case of 4MHz oscillator, one instruction cycle (4 internal clocks) lasts lµs. Numbers
in the following table show the time period in µs between incrementing TMR or WDT.

40

Bits Hı1RO VVDT
000 1 : 2 1 : 1
ÖÔ1 1 4 1: 1
OiO 1 · 8 -1 :4
oıı 1 113 1 S
iOO 1 · 32 1 : te
1Ô1 ·1 ô4 1 : 12
i10 1 · 123 1: 54
111 1 25$ 1 : ·t2S

2.14 EEPROM Data Memory
PIC16F84 has 64 bytes of EEPROM memory locations on addresses from Oüh to 63h
that can be written to or read from. The most important characteristic of this memory is
that it does not lose its contents with the loss of power supply. Data can be retained in
EEPROM without power supply for up to 40 years (as manufacturer of PIC16F84
microcontroller states), and up to 1 million cycles of writing can be executed.

In practice, EEPROM memory is used for storing important data or process parameters.
One such parameter is a given temperature, assigned when setting up a temperature
regulator to some process. If that data wasn't retained, it would be necessary to adjust a
given temperature after each loss of supply. Since this is very impractical (and even
dangerous), manufacturers of microcontrollers have began installing one smaller type of
EEPROM memory.

EEPROM memory is placed in a special memory space and can be accessed through
special registers. These registers are:
EEDATA Holds read data or that to be written.

EEADR
EECON1
EECON2

Contains an address of EEPROMlocation being accessed.
Contains control bits.
This register does not exist physically and serves to protect
EEPROMfrom accidental writing.

EECONl register is a control register with five implemented bits. Bits 5, 6 and 7 are not
used, and by reading always are zero. Interpretation of EECONl register bits follows.

2.14.1 EECONl Register

U-0 U-0 U-0 RNV-1 RfV'./-1I EEIF (l) I WRERR

RNV-x R/S-0 R/S-x
ıf.ıREN j \f\!R j RD

bit obit 7
Legend:
R = Readable bit W = Writable bit
U = Unimplemented bit, read as 'O' -n = Value at POR reset

bit 4 EEIF (EEPROM Write Operation Interrupt Flag bit) Bit used to inform that
writing data to EEPROM has ended.
When writing has terminated, this bit would be set automatically. Programmer must
clear EEIF bit in his program in order to detect new termination of writing.

41

1 = writing terminated
O= writing not terminated yet, or has not started

bit 3 WRERR (Write EEPROM Error Flag) Error during writing to EEPROM
This bit was set only in cases when writing to EEPROM had been interrupted by a reset
signal or by running out of time in watchdog timer (if activated).
1 = error occurred
O = error did not occur

bit 2 WREN (EEPROM Write Enable bit) Enables writing to EEPROM
If this bit was not set, microcontroller would not allow writing to EEPROM.
1 = writing allowed
O = writing disallowed

bit 1 WR (Write Control bit)
Setting of this bit initializes writing data from EEDATA register to the address specified
trough EEADR register.
1 = initializes writing
O = does not initialize writing

bit O RD (Read Control bit)
Setting this bit initializes transfer of data from address defined in EEADR to EEDATA
register. Since time is not as essential in reading data as in writing, data from EEDATA
can already be used further in the next instruction.
1 = initializes reading
O = does not initialize reading

2.14.2 Reading from EEPROM Memory
Setting the RD bit initializes transfer of data from address found in EEADR register to
EEDATA register. As in reading data we don't need so much time as in writing, data
taken over from EEDATA register can already be used further in the next instruction.

Sample of the part of a program which reads data in EEPROM, could look something
like the following:

bcf STATUS, RPO ;banko, because EEADR is at 09h

mcv l w Ox O O ;address of location being read
mcvıcf EEADR ;address transferred to EEADR
bsf STATUS, RPO ;bankl because EECONl is at 88h

bsf EECONl, RD ;reading from EEPROM
bcf STATUS, RPO ;Banko because EEDATA is at 08h

rrıovf EEDATA, w ; w <-- EE DATA

After the last program instruction, contents from an EEPROM address zero can be
found in working register w.

42

2.14.3 Writing to EEPROM Memory
In order to write data to EEPROM location, programmer must first write address to
EEADR register and data to EEDATA register. Only then is it useful to set WR bit
which sets the whole action in motion. WR bit will be reset, and EEIF bit set following
a writing what may be used in processing interrupts. Values 55h and AAh are the first
and the second key whose disallow for accidental writing to EEPROM to occur. These
two values are written to EECON2 which serves only that purpose, to receive these two
values and thus prevent any accidental writing to EEPROM memory. Program lines
marked as 1, 2, 3, and 4 must be executed in that order in even time intervals. Therefore,
it is very important to tum off interrupts which could change the timing needed for
executing instructions. After writing, interrupts can be enabled again .

Example of the part of a program which writes data OxEE to first location in EEPROM
memory could look something like the following:

bcf STATUS, RPO
movlw OxOO

movwf EEADR

mov Ltr OxEE
movwf EEDATA
bsf STATUS, RPO
bcf INTCON, GIE
bsf EECONl, liJREN
movlw 55h

1) movwf EECON2
2) movlw AAh
3) movwf EECON2
4) bsf EECONl,liJR

bsf INTCON, GIE

;banko, because EEADR is at 09h
;address of location being
;written to
;address being transferred to
;EEADR
;write the value OxEE
;data goes to EEDATA register
;Bankl because EEADR is at 09h
;all interrupts are disabled
; writing enabled

;first key 55h --> EECON2

;second key AAh --> EECON2
;initializes writing

;interrupts are enabled

43

CHAPTER THREE
MULTITASKING

3.1 Benefits of Multitasking
You can simplify an otherwise complex software application though the use of a
multitasking operating system (OS):

• The multitasking and inter-task communications features of the OS allow the
complex application to be partitioned into a set of smaller and more manageable
programs (or tasks).

• Complex timing and sequencing details can be removed from the application
code and become the responsibility of the OS.

• Testability, work breakdown within teams, code reuse, and so on become more
manageable.

3.2 Multitasking Concurrency
A conventional microcontroller can only execute a single task at a time-but by rapidly
switching between tasks an OS can make it appear as if each task is executing
concurrent!y.

Task 1 Exewting

Task 2 Emcutıng

Figure 1: Rapidly switching between tasks can make it appear as if each task is
executing concurrently

Figure 1 shows the execution pattern of three tasks with respect to time. The task
names are color coded and appear on the left. Time moves from left to right, with the
colored lines showing which task is executing at any particular time. The upper diagram
demonstrates the perceived concurrent execution pattern, and the lower the actual
multitasking execution pattern.

44

3.3 Task States
In addition to being suspended involuntarily by the RTOS kernel a task can choose to
suspend itself. It will do this if it either wants to delay (sleep) for a fixed period, or wait
(block) for a resource to become available or an event to occur.
A blocked or sleeping task is not able to execute, and will not be allocated any
processing time.

3.4Scheduling
The scheduling policy is the algorithm used by the OS to decide which task should be
executing at any moment in time. The scheduling policy is designed to meet the
objectives of the OS-which for an RTOS is to provide a timely response to real world
events.
The application designer must assign a priority to each task. The higher the criticality of
the task (or the shorter its maximum acceptable response time) the higher its relative
priority should be. The scheduling policy of the RTOS is then simply to make sure the
highest priority task that is ready to execute (not blocked or sleeping) is the task given
processing time.

Example Real Time Execution Profile
This section provides a simplistic example that demonstrates the principles of real time
scheduling.
A hypothetical embedded system incorporates a keypad and LCD. A user must receive
the visual feedback of each key press within a reasonable period-if the user cannot see
that the key press has been accepted within this period the product will at best be
awkward to use. If the longest acceptable period is lOOms-any response between O and
lOOms is acceptable. This functionality could be implemented as an autonomous task
with the following structure:
void vKeyHandlerTask(void *pvParameters)
{

/* Key handling is a continuous process and as such the task
is implemented using an infinite loop (as most tasks are). */
for (; ;)
{

[Suspend waiting for a key press]
[Process the key press]

}

Listing 1: Task that records key strokes

Now assume the software is also performing a control function that relies on a digitally
filtered input. The input must be sampled, filtered, and the control cycle executed every
2ms. For correct operation of the filter the temporal regularity of the sample must be
accurate to 0.5ms. This functionality could be implemented as an autonomous task with
the following structure:

void vControlTask(void *pvParameters)
{

for(; ;)
{

[Suspend waiting for 2ms since the start of the previous
cycle]

45

[Sample the input]
[Filter the sampled input]
[Perform control algorithm]
[Output result]

}

Listing 2: Sampling the digitally filtered input

The software engineer must assign the control task the highest priority as:
The deadline for the control task is stricter than that of the key handling task.
The consequence of a missed deadline is greater for the control task than for the key
handler task.

Figure 2 demonstrates how these tasks would be scheduled by a real time operating
system. The RTOS has itself created a task-the idle task-which will execute only
when there are no other tasks able to do so. The idle task is always in a state where it is
able to execute.

vControlT~ık

vKeyHarıdf erTeı~k

' ::;; Key Prıes$:Event
Figure 2: Execution profile of the example tasks

Referring to Figure 2:

• At the start neither of our two tasks are able to run-vControlTask is waiting for
the correct time to start a new control cycle and vKeyHandlerTask is waiting for
a key to be pressed. Processing time is given to the idle task.

• At time tl, a key press occurs. vKeyHandlerTask is now able to execute-it has
a higher priority than the idle task so is given processing time.

• At time t2 vKeyHandlerTask has completed processing the key and updating the
LCD. It cannot continue until another key has been pressed so suspends itself
and the idle task is again resumed.

• At time t3 a timer event indicates that it is time to perform the next control cycle.
vControlTask can now execute and as the highest priority task is scheduled
processing time immediately.

• Between time t3 and t4, while vControlTask is still executing, a key press occurs.
vKeyHandlerTask is now able to execute, but as it has a lower priority than
vControlTask it is not scheduled any processing time.

46

• At t4 vControlTask completes processing the control cycle and cannot restart
until the next timer event-it suspends itself. vKeyHandlerTask is now the task
with the highest priority that is able to run so is scheduled processing time in
order to process the previous key press.

• At t5 the key press has been processed, and vKeyHandlerTask suspends itself to
wait for the next key event. Again neither of our tasks are able to execute and
the idle task is scheduled processing time.

• Between t5 and t6 a timer event is processed, but no further key presses occur.

• The next key press occurs at time t6, but before vKeyHandlerTask has
completed processing the key a timer event occurs. Now both tasks are able to
execute. As vControlTask has the higher priority vKeyHandlerTask is
suspended before it has completed processing the key, and vControlTask is
scheduled processing time.

• At t8 vControlTask completes processing the control cycle and suspends itself to
wait for the next. vKeyHandlerTask is again the highest priority task that is able
to run so is scheduled processing time so the key press processing can be
completed.

Implementation Building Blocks

3.5 The RTOS Tick
When sleeping a task will specify a time after which it requires 'waking'. When
blocking a task can specify a maximum time it wishes to wait.

The FreeRTOS.org kernel measures time using a tick count variable. A timer interrupt
(the RTOS tick interrupt) increments the tick count with strict temporal accuracy
allowing time to be measured to a resolution of the chosen timer interrupt frequency.
Each time the tick count is incremented the RTOS kernel must check to see if it is now
time to unblock or wake a task.
It is possible that a task woken or unblocked during the tick ISR will have a priority
higher than that of the interrupted task. If this is the case the tick ISR should return to
the newly woken/unblocked task-effectively interrupting one task but returning to
another (Figure 3).

47

Figure 3: A context switch occurring in an interrupt service routine

Referring to the circled numbers in Figure 3:

• At (1) the highest priority task (vControlTask) is blocked waiting for a timer to
expire. The next highest priority task (vKeyHandlerTask) is also blocked
waiting for a key press event. This leaves the Idle Task as the highest priority
task that is able to run.

• At (2) the RTOS tick interrupt occurs. The microcontroller stops executing the
Idle Task and starts executing the tick ISR (3).

• The tick ISR increments the tick count which (for the sake of this example)
makes vControlTask ready to run. vControlTask has a higher priority than the
idle task so a context switch is required. A task switch from the Idle Task to
vControlTask occurs within the ISR.

• As the execution context is now that of vControlTask, exiting the ISR (4) returns
control to vControlTask, which starts executing (5). The Idle Task remains
suspended until it is again the highest priority task that is able to execute.

3.6 "Execution Context"-a Definition
As a task executes it utilizes microcontroller registers and accesses RAM and ROM just
as any other program. These resources together (the registers, stack, and so on)
comprise the task execution context.
A task is a sequential piece of code that does not know when it is going to get
suspended (stopped from executing) or resumed (given more processing time) by the
RTOS and does not even know when this has happened. Consider the example of a task
being suspended immediately before executing an instruction that sums the values
contained within two registers.

48

prevıo,us instructions have a!r~ay se,t the regist$rsused
by the ADD. When ttın task is res11med the ADD iııstruction
mll b~ the first ir1s:1ruction to execute. The:task wm not know if
a dirfemnt ta~f< mootfied Rr~gı1 or R~g2 in 1he interim.

Figure 4: A sample task context immediately prior to the task being suspended
While the task is suspended other tasks will execute and may modify the register values.
Upon resumption the task will not know that the registers have been altered-if it used
the modified values the summation would result in an incorrect value.
To prevent this type of error it is essential that upon resumption a task has a context
identical to that immediately prior to its suspension. The RTOS kernel is responsible for
ensuring this is the case-and does so by saving the context of a task as it is suspended.
When the task is resumed its saved context is restored by the RTOS kernel prior to its
execution. The process of saving the context of a task being suspended and restoring the
context of a task being resumed is called context switching.
The A VR Context
On the AVR microcontroller, the context consists of:

• 32 General Purpose Registers
The GCC compiler assumes register R1 is set to zero.

• Status Register
The value of the status register affects instruction execution, and must be
preserved across context switches.

• Program Counter
Upon resumption, a task must continue execution from the instruction that was
about to be executed immediately prior to its suspension.

• The Two Stack Pointer Registers.

49

Writing the Tick ISR-The GCC 'signal' Attribute

The MegaAVR port of FreeRTOS.org generates the periodic tick interrupt from a
compare match event on the MegaAVR timer 1 peripheral. GCC allows the tick ISR
function to be written in C by using the following syntax.
void SIG_OUTPUT_COMPARElA(void) _attribute_ ((signal)) ;
void SIG_OUTPUT_COMPARElA(void)
{

/* ISR C code for RTOS tick. */
vPortYieldFromTick();

}

Listing 3: C code for compare match ISR

The '_attribute_ ((signal))' directive on the function prototype informs the compiler
that the function is an ISR and results in two important changes in the compiler output:

1. The 'signal' attribute ensures that every AVR register that gets modified during
the ISR is restored to its original value when the ISR exits. This is required as
the compiler cannot make any assumptions as to when the interrupt will execute,
and therefore cannot optimize which registers require saving and which don't.

2. The 'signal' attribute also forces a 'return from interrupt' instruction (RETI) to be
used in place of the 'return' instruction (RET) that would otherwise be used. The
AVR disables interrupts upon entering an ISR and the RETI instruction is
required to re-enable them on exiting.

50

Compiling the ISR results in the following output:

;void SIG_OUTPUT_COMPARElA(void)
; {

CODE GENERATED BY THE COMPILER TO SAVE
THE REGISTERS THAT GET ALTERED BY THE
APPLICATION CODE DURING THE ISR.

PUSH Rl
PUSH RO
IN R0,0x3F
PUSH RO
CLR Rl
PUSH R18
PUSH R19
PUSH R20
PUSH R21
PUSH R22
PUSH R23
PUSH R24
PUSH R25
PUSH R26
PUSH R27
PUSH R30
PUSH R31

CODE GENERATED BY THE COMPILER FROM THE
APPLICATION C CODE.

;vTaskincrementTick();
CALL Ox0000029B ;Call subroutine

CODE GENERATED BY THE COMPILER TO
RESTORE THE REGISTERS PREVIOUSLY
SAVED.

POP R31
POP R30
POP R27
POP R26
POP R25
POP R24
POP R23
POP R22
POP R21
POP R20
POP R19
POP R18
POP RO
OUT Ox3F,RO
POP RO
POP Rl
RETI

; }
Listing 4: Compiler output for Listing 3
Organizing the Context-The GCC 'naked' Attribute

The previous section showed how you can use the 'signal' attribute to write an ISR in C
and how this results in part of the execution context being automatically saved (only the

51

microcontroller registers modified by the ISR get saved). Performing a context swı
however requires the entire context to be saved.
The application code could explicitly save all the registers on entering the ISR. Du
doing so would result in some registers being saved twice-once by the compiler
generated code and then again by the application code. This is undesirable and can
avoided by using the 'naked' attribute in addition to the 'signal' attribute.
void SIG_OUTPUT_COMPARElA(void) _attribute_ ((signal, naked));
void SIG_OUTPUT_COMPARElA(void)
{

/* ISR C code for RTOS tick. */
vPortYieldFromTick();

}

Listing 5: Addition of the 'naked' attribute to the compare match ISR
The 'naked' attribute prevents the compiler generating any function entry or exit code.
Now, compiling the ISR results in the much simpler output:
;void SIG_OUTPUT_COMPARElA(void)
; {

NO COMPILER GENERATED CODE HERE TO SAVE
THE REGISTERS THAT GET ALTERED BY THE
ISR.

CODE GENERATED BY THE COMPILER FROM THE
APPLICATION C CODE.

;vTaskincrementTick();
CALL Ox0000029B ;Call subroutine

NO COMPILER GENERATED CODE HERE TO RESTORE
THE REGISTERS OR RETURN FROM THE ISR.

; }

Listing 6: Compiler output from Listing 5
When the 'naked' attribute is used the compiler does not generate any function entry or
exit code so this must now be added explicitly. The macros portSAVE_CONTEXT()
and portRESTORE_CONTEXT() respectively save and restore the entire execution
context.
void SIG_OUTPUT_COMPARElA(void) _attribute_ ((signal, naked));
void SIG_OUTPUT_COMPARElA(void
{

/* Macro that explicitly saves the execution
context. */
portSAVE_CONTEXT();

/* ISR C code for RTOS tick. */
vPortYieldFromTick();

/* Macro that explicitly restores the
execution context. */
portRESTORE_CONTEXT();

/* The return from interrupt call must also
be explicitly added. */
asm volatile ("reti") ;

}

Listing 7: The compare match ISR modified to explicitly save/restore the execution
context

52

,1/~
<''.--.'\..,

" -r, ' ' \
c. a rn \'/:J):>

.. ~--\ CIJ: .-,v -.., I
"" · ı,<::: / -"~ /.,/ .. ' .

·ı -.l J s~ "";i ~~·"
The 'naked' attribute gives the application code complete control over when and h~:;::-./
AVR context is saved. If the application code saves the entire context on entering the
ISR there is no need to save it again before performing a context switch so none of the
microcontroller registers get saved twice.
Saving the Context

Each task has its own stack memory area so the context can be saved by simply pushing
registers onto the task stack. Saving the AVR context is one place where assembly code
is unavoidable.

portSAVE_CONTEXT () is implemented as a macro, the source for which is given below:

#define portSAVE_CONTEXT() \
asm volatile (\

"push rO \n\ t II \ (1)
11in rO, _SREG_ \n \ t II \ (2)

"eli \n \ t II \ (3)

"push rO \n \ t II \ (4)

"push rl \n \ t II \ (5)

"clr rl \n \ t II \ (6)
"push r2 \n \ t II \ (7)

"push r3 \n \ t II \

"push r4 \n \ t II \

"push r5 \n \ t II \

"pushr30 \n \ t II \

"pushr31 \n \ t II \

"lds r26, pxCurrentTCB \n \ t II \ (8)
II lds r27, pxCurrentTCB + 1 \n\t" \ (9)
11in rO, _SP_L_ \n \ t II \ (10)

"st x+, rO \n \ t II \ (11)

"in rO, _SP_H_ \n \ t II \ (12)

"st x+, rO \n \ t II \ (13)
) ;

Listing 8: portSAVE_CONTEXT ()
Referring to the numbers in Listing 8:

• Register RO is saved first (1) as it is used when the status register is saved, and
must be saved with its original value.

• The status register is moved into RO (2) so it can be saved onto the stack (4).

• Interrupts are disabled (3). If portSAVE_CONTEXT () was only called from within
an ISR there would be no need to explicitly disable interrupts as the AVR will
have already done so. As the portSAVE_CONTEXT () macro is also used outside

53

of interrupt service routines (when a task suspends itself) interrupts must be
explicitly cleared as early as possible.

• The code generated by the compiler from the ISR C code assumes Rl is set to
zero. The original value of Rl is saved (5) before Rl is cleared (6).

• Between (7) and (8) all remaining microcontroller registers are saved ın
numerical order.

• The stack of the task being suspended now contains a copy of the tasks
execution context. The kernel stores the tasks stack pointer so the context can be
retrieved and restored when the task is resumed. The x register is loaded with the
address to which the stack pointer is to be saved (8 and 9).

• The stack pointer is saved, first the low byte (10 and 11), then the high nibble
(12 and 13).

Restoring the Context
portRESTORE_CONTEXT () is the reverse of portSAVE_CONTEXT ().

The context of the task being resumed was previously stored in the tasks stack. The
kernel retrieves the stack pointer for the task then POP's the context back into the
correct microcontroller registers.
#define portRESTORE_CONTEXT() \
asrn volatile (

"lds r26, pxCurrentTCB
\

\n \ t" \ (1)

"lds r27, pxCurrentTCB + 1 \n\t" \ (2)
"ld r28, x+ \n\t" \
"out _SP_L_, r28
"ld r29, x+
"out _SP_H_, r29
"pop r31
"pop r30

\n\t" \ (3)
\n \ t" \

\n \ t" \ (4)

\n \ t" \

\n \ t" \

"pop rl \n \ t" \
"pop rO \n \ t" \ (5)

"out _SREG_, rü \n \ t" \ (6)

"pop rü \n\ t" \ (7)

) ;

Listing 9: portRESTORE_CONTEXT (ı

Referring to the numbers in Listing 9:

• pxCurrentTCB holds the. address from where the tasks stack pointer can be
retrieved. This is loaded into the X register (1 and 2).

54

• The stack pointer for the task being resumed is loaded into the AVR stack
pointer, first the low byte (3), then the high nibble (4).

• The microcontroller registers are then popped from the stack in reverse
numerical order, down to Rl.

• The status register stored on the stack between registers Rl and RO, so is
restored (6) before RO (7).

implementation of the RTOS tick is therefore (see the comments within the code for
further details):
void SIG_OUTPUT_COMPARElA(void) _attribute_ ((signal, naked));
void vPortYieldFromTick(void) _attribute_ ((naked));
/*----------------------------------. --------------*/

/* Interrupt service routine for the RTOS tick. */
void SIG_OUTPUT_COMPARElA(void)
{

/* Call the tick function. */
vPort YieldFromTick();

/* Return from the interrupt. If a context
switch has occurred this will return to a
different task. *I
asın volatile ("reti");

}

/*--*/
void vPortYieldFromTick(void)
{

/* This is a naked function so the context
is saved. */
portSA VE_CONTEXT();

/* Increment the tick count and check to see
if the new tick value has caused a delay
period to expire. This function call can
cause a task to become ready to run. */
vTasklncrementTick();

/* See if a context switch is required.
Switch to the context of a task made ready
to run by vTasklncrementTick() if it has a
priority higher than the interrupted task. */
vTaskS witchContex t();

I* Restore the context. If a context switch
has occurred this will restore the context of
the task being resumed. */

55

portRESTORE_ CONTEXT();

/* Return from this naked function. *I
asın volatile ("ret");

}

56

CONCLUSION
Driven both by the economics of super-integration and the performance requirements
of next generation electronic products, system designers are seeking new approaches
to the development of "systems-on-a-chip." The common element in many of these
efforts is the rapid convergence of microcontroller particularly in the field of embedded

system design.

This project is research for those interested in the microcontrollers . I have information
about microcontrollers and microprocessors.There are many course are not covered,
there are simply too many. This knowledges gives very specially view angle to me. I
think to use this knowledges real life.

56

REFERENCES

1. http:\\ www.techonline.com

2. http: \ \ www.microelectronica.co.uk

3. Other internet sites.

57

APPENDIX A
DC Motor Speed Controller

' - ~ +8 V GND
• PIC16FB73 • ~1 Rl-8 :

L~D1-8: 560 x 8 MCLR , +8V -
" , • ' RB7 Vdd , POW

28
RBS R10 ' .--o+

27 lk IRB5 I GT26
~ MlRB4 I

MO RS-380PH25 IRB3
24

RB2 RS TR1
2SC181523

RBl 13 10k
22 CCP1

~
(-j M2- - - - -

21 RBO DSC 1 : : RE-280

IC1
9

:= t:ı
~ /7711 For speedANO OSC2 I : IGL1 I I detection121 " 10'----.! II

IS+ +Xl
10MHz D81 A ,._

DETEC
IIs-

I Cl: o.;ı R12
'~5.Sk

2 3

VR1
10kSpeed Control

Source Code file for DC Motor Speed Controller
·**,001

002
003
004
005
006
007
008
009
010
011
012
013
014 ;**************** Label Definition ********************
015 speed equ d ' 8' ; Reference speed (5x8/256=0.156V)
O 16 change equ d ' l ' ; Change value (2mV/ms)
017

DC motor speed controller

Device PIC16F873
Author Seiichi Inoue

·**,

list p=pic16f873
p16f873.inc
& _wdt_off & _pwrte_on & _lvp_off
-302 ;Suppress bank warning

include
_config _hs osc

errorlevel

018 led
019
020 ;**************** Program Start

equ h I 20 I ;LED control data save area

58

021
022
023
024
025
026

org o ;Reset Vector

goto init
org 4 ;Interrupt Vector

goto int

·****************
'

027 init
028
029 ; ***
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
() 5 ı:ı,
069
()7 ()

071
072
073
074
075
076
077

Initial Process *********************

Port initialization
bsf status,rpO ;Change to Bankl

movlw b'00000001' ;ANO to input mode

movwf trisa ;Set TRISA register

clrf trisb ;Set TRISB to uotput mode

clrf trisc ;Set TRISC to output mode

bcf status,rpO ;Change to BankO

A/D converter initialization
movlw b'10000001' ;ADCS=lO CHS=ANO ADON=ON

;Set ADCONO register
;Change to Bankl
;ADFM=O PCFG=lllO
;Set ADCONl register
;Change to BankO

movwf adconO
bsf status,rpO
movlw b I 00001110 I

movwf adconl
bcf status,rpO

·*** PWM initialization
' clrf tmr2

movlw b I 11111111 I

movwf ccprll
bsf status,rpO
movlw d'255'
movwf pr2
bcf status,rpO
movlw b'00000110'
movwf t2con
movlw b I 00001100 I

movwf ccplcon

Compare mode initialization
clrf tmrlh ;Clear TMRlH register

;Clear TMRlL register
;H'61A8'=25000
;Set CCPR2H register
;25000*0.4usec = lOmsec
;Set CCPR2L register
;Pre=l:l TMRl=Int TMRl=ON
;Set TlCON register
;CCP2M=1011(Compare)
;Set CCP2CON register

·***'

·***'

clrf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
IDOV'Nf

tmrll
h I 61 I

ccpr2h
h'a8'
ccpr21
b'00000001'
tlcon
b'00001011'
cq;ı2con

·***' Interruption control
bsf status,rpO

b'00000001'movlw
movwf
bcf
movlw
movwf

078 wait
079
080

goto

pie2
status,rpO
b'11000000'
int con

$

;Clear TMR2 register
;Max duty (low speed)
;Set CCPRlL register
;Change to Bankl
;Period=1638.4usec(610Hz)
;Set PR2 register
;Change to BankO
;Pst=l:1 TMR2=0N Pre=l:16
;Set T2CON register
;CCPlXY=O CCPlM=llOO(PWM)
;Set CCPlCON register

;Change to Bankı
;CCP2IE=Enable
;Set PIE2 register
;Change to BankO
;GIE=ON PEIE=ON
;Set INTCON register

;Interruption wait

59

btfsc
goto
movfw
sublw
btfsc
goto

091
092 ; ---
093
094
095
096
097
098
099 checkl
100 btfsc
101 goto
102
103
104
105
106
107
108
109
110

*****************Interruption Process

pir2

adconO,go
ad_check
adresh
speed
status,c
checkl

control to low speed
movfw ccprll
addlw change
btfss
movwf
goto

status,c
ccprll
led_cont

status,z
led_cont

control to fast speed
movlw change
subwf ccprll,f
btfsc status,c
goto led_cont
clrf ccprll

;Clear interruption flag

;A/D convert end?
;No. Again
;Read ADRESH register
;Ref speed - Detect speed
;Reference< Detect?
;No. Jump to> or= check

;Read CCPRlL register
;Change value+ CCPRlL
;Overflow?
;No. Write CCPRlL
;Jump to LED control

;Reference= ~etecL?
;Yes. Jump co ~c:> co~~~o~

;Set change va~~e
;CCPRlL - Change val~e
;Underflow?
;Jump to LED control
;Set fastest speed

**************** LED control Process******************

081 ;***************
082 int
083 clrf
084 ad_check
085
086
087
088
089
090

111 led_cont
112 comf ccprll,w ;Complement CCPRlL bit

113 movwf led ;Save LED data

114 movlw b'00010000' ;Set compare data

115 subwf led,w ;LED - data

116 btfsc status,c ;Under?

117 goto ledl ;No.

118 movlw b'OOOOOOOO' ;Set LED control data

119 goto int_end ;Jump to interrupt end

120 ledl movlw b'00100000' ;Set compare data

121 subwf led,w ;LED - data

122 btfsc status,c ;Under?

123 goto led2 ;No.

124 movlw b'00000001' ;Set LED control data

125 goto int_end ;Jump to interrupt end

126 led2 movlw b'OlOOOOOO' ;Set compare data

127 subwf led,w ;LED - data

128 btfsc status,c ;Under?

129 goto led3 ;No.

130 movlw b' 00000011' ;Set LED control data

131 goto int_end ;Jump to interrupt end

132 led3 movlw b' 01100000' ;Set compare data

133 subwf led,w ;LED - data

134 btfsc status,c ; Under ?

135 goto led4 ;No.

136 movlw b' 00000111' ;Set LED control data

137 goto int_end ;Jump to interrupt end

138 led4 movlw b'10000000' ;Set compare data

139 subwf led,w ;LED - data

140 btfsc status,c ;Under?

60

141
142
143
144 led5
145
146
147
148
149
150 led6
151
152
153
154
155
156 led7
157
158
159
160
161
162 led8
163

goto
movlw
goto
movlw
subwf
btfsc
goto
movlw
goto
movlw
subwf
btfsc
goto
movlw
goto
movlw
subwf
btfsc
goto
movlw
goto
movlw

164 ;************
165 int_end
166 movwf
167
168

ret fie

led5
b' 00001111'
int_end
b'10100000'
led,w
status,c
led6
b ' 00011111'
int_end
b'llOOOOOO'
led,w
status,c
led7
b' 00111111'
int_end
b'lllOOOOO'
led,w
status,c
led8
b' 01111111'
int_end
b ' 11111111'

;No.
;Set LED control data
;Jump to interrupt end
;Set compare data
;LED - data
;Under?
;No.
;Set LED control data
;Jump to interrupt end
;Set compare data
;LED - data
;Under?
;No.
;Set LED control data
;Jump to interrupt end
;Set compare data
;LED - data
;Under?
;No.
;Set LED control data
;Jump to interrupt end
;Set LED control data

portb

END of Interruption Process

;Set PROTB

170 ;

169 ;**
END of DC motor speed controller

172
173

171 ;**

end

HEX CODE
:020000000528D 1
:080008002D288316013085004C
:1000100086018701831281309F0083160E309F0076
:1000200083129101FF3095008316FF3092008312F6
:10003000063092000C3097008F018E0161309COOD9
: 10004000A8309B00013090000B309D0083160130DA
: 100050008D008312C0308B002C288D011F192E2893
:100060001E08083C031839281508013E031C95009A
:1000700040280319402801309502031840289501B3
:100080001509A000103020020318482800307328FA
:100090002030200203184E280130732840302002FF
:1000A00003185428033073286030200203185A289C
:1000B0000730732880302002031860280F3073281F
: 1OOOCOOOA0302002031866281F307328C030200299
:1000D00003186C283F307328E03020020318722880
:OAOOE0007F3073 28FF30860009000E
:02400E00723FFF
:0000000 lFF

61

Digital Clock
: I Cl: PI Cl SF873 IC6: S813-50HG Fl+
: -sv IC2: XC9536 IC7: 78L09 I DSC
' IC3: SVM7975 IC8: 78L 12

IC4: LM386
!C5: 78L05

APPENDIXB

R27
220

R3-4
10K

Cl; TRl
O.~lK

1 O MHz c-----t-t
I

GND Q
I

50H2

cs
;:ço.1

TV
+

S\Yl ..ı..
TV
MB2221 127 128 125 126 11.20

!Cl RBl
I

\ I RCS RC5 Rclc3 RC2 scı Rco

RBO RB7 RB5 Vdd
RBS RB4 r;ıcrn

RA2 RA l RAO

17 us 115114113112111

IC2 c B A

o

OSC2 OSCl Vss
8, 18

1 2 3 4

10 j 9
:-Hô- -
I~~~ I

'-~-- .J4;~2

26128 R13-18
/ 5.6K

VR2
10K

g ıf le Id le lb t a

24118120122

R19-25
220

G

fT_V. tuning I ı:ı :T

I - - - - ----- - -- - - --- - - -- - - - -- --- --- - ------ --- - - ---------- ----------

62

-

Source Code file of Digital Clock
001 ;**

002
003 Digital Clock
004 ,
005 Device : PIC16F873
006 Author : Seiichi Inoue
007 ;**

008
009
010
011

list p=pic16f873
include p16f873.inc

~config _hs_osc & _wdt_off & __pwrte_on& _lvp_off

012
013 ;**************** Label Definition ********************

014 cblock h'20'
015 count
016 disp__p
017 disp__pw
018 disp_data
019 disp_hlüw
020 disp_hlO
021 disp_hl
022 disp_mlü
023 disp_ml
024 disp_slO
025 disp_sl
026 mode
027 rb611
028 rb711
029 rb7count
030 digit__posi
031 digit__posiw
O 3 2 digit_save
033 digit_blink
034 blink_cont
O 3 5 change_st
036 change_wk
037
038 seg7_ha
039 seg70
040 seg71
041 seg72
042 seg73
043 seg74
044 seg75
045 seg76
046 seg77
047seg78
048 seg79
049 seg7a
050 seg7b
051 ende
052
053 ral
054 ra2
055 ra3
056 rbl
057 rb4

equ
equ
equ
equ
equ

;Clock counter
;Disply position
;Disply position work
;Disply data save area
;Tens of hour work
;Tens of hour
;Units of hour
;Tens of minute
;Units of minute
;Tens of second
;Units of second
;Mode (0:Adjust l:Clock)
;O sec adjust Last look
;Time adjust Last look
;Time adj guard counter
;Adj digit position data
;Adj digit position work
;Previous adj data save
;Digit blink counter
;Blink (O:ON l:OFF)
;Digit change status
;Digit change work

; 7 segLED table head adr
;Pattern O set adr
;Pattern 1 set adr
;Pattern 2 set adr
;Pattern 3 set adr
;Pattern 4 set adr
;Pattern 5 set adr
;Pattern 6 set adr
;Pattern 7 set adr
;Pattern 8 set adr
;Pattern 9 set adr
;Pattern A set adr
;Pattern B set adr

h'Ol'
h' 02 I

h ' 03 I

h I Ol I

h I 04 I

;RAl port designation
;RA2 port designation
;RA3 port designation
;RB1 port designation
;RB4 port designation

63

058 rb5 equ h'05'

059 rb6 equ h' 06'

060 rb7 equ h' 07'

061
062 seg7 _0 equ b'OlOOOOOO'

063 seg7_1 equ b' 01111001'

064 seg7_2 equ b'00100100'

065 seg7_3 equ b ' 00110000'

066 seg7_4 equ b' 00011001'

067 seg7_5 equ b'00010010'

068 seg7_6 equ b'00000010'

069 seg7 _7 equ b' 01111000'

070 seg7 _8 equ b'OOOOOOOO'

071 seg7_9 equ b'00010000'

072 seg7_a equ b ' 01111111'

073 seg7_b equ b' 00100011'

074
075
076
077
078
079
080
081
082 init
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

·****************
'

Program Start
org o
goto init
org 4
goto int

,.

;RBS port designation
;RB6 port designation
;RB7 port designation

;-gfedcba Pattern O
Pattern 1
Pattern 2
Pattern 3
Pattern 4
Pattern 5
Pattern 6
Pattern 7
Pattern 8
Pattern 9
LED off
Illegal int

;Reset vector

;Interrupt Vector

·****************
'

Initial Process *********************

·***'
Port mode initializing

bsf status,rpO
movlw b'00000110'
movwf adconl
movlw b'OOOOOOOO'
movwf trisa
movlw b'llllllOl'
movwf trisb
movlw b'OOOOOOOO'
movwf trise

;Change to Bankl
;RA port to digital mode
;Set ADCONl register
;RA port to output mode
;Set TRISA register
;RBl:output,OTHER:input
;Set TRISB register
;RC port to output mode
;Set TRISC register

LED disply interval initializing (TimerO)
movlw b'00000010' ;PBPU=on,PSA=O,PS=l:8
movwf option_reg ;Set OPTION_REG register
bcf status,rpO ;Change to BankO
movlw d'131' ; (256-13l)x8=1000usec
movwf tmrO ;Set TMRO register

·***'
Port initializing

clrf porta
clrf portb
movlw b'llllllll'
movwf porte

·***'
Work area initializing

clrf count
movlw
movwf
clrf
clrf
clrf
clrf
clrf
clrf

d ' 6'
disp_p
disp_hlO
disp_hl
disp_mlO
disp_ml
disp_slO
disp_sl

;Clear PORTA
;Clear PORTE
;Set LED off data
;Set PORTC

;Clear Clock counter
;Disply position= 6
;Set disply position
;Clear Tens of hour
;Clear Units of hour
;Clear Tens of minute
;Clear Units of minute
;Clear Tens of second
;Clear Units of second

64

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

clrf
clrf
clrf
clrf
clrf
clrf
clrf
clrf

movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf

mode
rb611
rb711
rb7count
digit_posi
digit_blink
blink_cont
change_st

seg70
seg7_ha
seg7_0
seg70
seg7_1
seg71
seg7_2
seg72
seg7_3
seg73
seg7_4
seg74
seg7_5
seg75
seg7_6
seg76
seg7_7
seg77
seg7_8
seg78
seg7_9
seg79
seg7_a
seg7a
seg7_b
seg7b

153
154 ;*** Interruption control
155 movlw b'lülllOOO'
156 movwf intcon
157
158 wait
159
160
161
162 int
163
164
165
166
167
168
169
170
171

goto

movf
btfsc
goto
btfsc
goto
btfsc
goto

·***************
I

172 illegal
173
174
17 5
176
177

movlw
addwf
movwf
movf
movwf

$

-
;Set Adjust mode
;Clear O sec Last look
;Clear Time adj Last look
;Clear Time adj guard
;Clear Adj digit position
;Clear Digit blink count
;Set Blink on
;Clear Change status

;Set 7seg head address
;Save 7seg head address
;Set 7segment pattern O
;Save pattern O
;Set 7segment pattern 1
;Save pattern 1
;Set 7segment pattern 2
;Save pattern 2
;Set 7segment pattern 3
;Save pattern 3
;Set 7segment pattern 4
;Save pattern 4
;Set 7segment pattern 5
;Save pattern 5
;Set 7segment pattern 6
;Save pattern 6
;Set 7segment pattern 7
;Save pattern 7
;Set 7segment pattern 8
;Save pattern 8
;Set 7segment pattern 9
;Save pattern 9
;Set 7segment pattern A
;Save pattern A
;Set 7segment pattern B
;Save pattern B

;GIE&TOIE&INTE&RBIE=ON
;Set INTCON register

;Interruption wait

Interruption Process *****************

intcon,w
intcon,intf
clock
intcon,tüif
led_disp
intcon,rbif
digit_change

;Read INTCON register
;RBO/INT interrupt?
;Yes. "Clock"
;TMRO overflow?
;Yes. "LED disply"
;RB Port Change?
;Yes. "Digit change"

Illegal interruption *****************

h' Ob'
seg7_ha,w
fsr
indf f W

porte

;Set Illegal disp digit
;Seg7 H.Adr + digit
;Set FSR register
;Read seg7 data
;Set LED data

65

movlw
movwf
goto

178
1 79
180
181
182

b'00000101'
porta
$

I

;Set secl select data
;Write digit select data
;Stop

·************
'

END of Interruption Process **************

183 int_end
184 retfie
185
186 ·*********

'
LED disply Process (lmsec interval} *********

Control UNITS of SECOND
movlw b'00000101'

187 led_disp
188 bcf
189 movlw

movwf
movlw
movwf
movf
movwf
decfsz
goto

190
191
192
193
194
195
196
197
198;***
199
200 movwf
201 movf
202 movwf
203 goto
204 led_dispO
205 decfsz
206 goto
207
208 ;*** Control
209 movlw
210 movwf
211 movf
212 movwf
213 goto
214 led_displ
215 decfsz
216 goto

intcon,tOif
d' 131'
tmrO
b' 11111111'
porte
disp__p,w
disp__pw
disp__pw,f
led_dispO

porta
disp_sl,w
disp_data
led_disp8

disp__pw,f
led_displ

TENS of SECOND
b'00000100'
porta
disp_slO,w
disp_data
led_disp8

disp__pw, f
led_disp2

217
218 ;*** Control UNITS of MINUTE
219 movlw b'00000011'
220 movwf porta
221 movf disp_ml,w
222 movwf disp_data
223 goto led_disp8
224 led_disp2
225 decfsz disp__pw,f

led_disp3226 goto
227
228 ;*** Control
229 movlw
230 movwf
231 movf
232 movwf
233 goto
234 led_disp3
235 decfsz
236
237

goto

TENS of MINUTE
b'00000010'
porta
disp_mlO,w
disp_data
led_disp8

disp__pw, f
led_disp4

;Clear TOIF
;Set Time value (lmsec)
;Write TMRO register
;LED off data
;Clear disply
;Read disply position
;Save position data
;Units of second?
;No. Next

;Set units of second
;Write PORTA register
;Read units of sec data
;Save data
;Jump to LED control

;Tens of second?
;No. Next

;Set tens of second
;Write PORTA register
;Read tens of sec data
;Save data
;Jump to LED control

;Units of minute?
;No. Next

;Set units of minute
;Write PORTA register
;Read units of min data
;Save data
;Jump to LED control

;Tens of minute?
;No. Next

;Set tens of minute
;Write PORTA register
;Read tens of min data
;Save data
;Jump to LED control

;Units of hour?
;No. Next

66

238 ; ***
239
240
241
242
243
244

Control UNITS of HOUR
movlw b'00000001'
movwf porta
movf disp_hl,w
movwf disp_data
goto led_disp8

245 ;*** Control TENS of HOUR
246 led_disp4
247 movlw
248 movwf
249 movlw
250 movwf
251 subwf
252 btfsc

b'OOOOOOOO'
porta
h' Oa'
disp_data
disp_hlO,w

253
254
255
256

goto
movf
movwf
btfss

status,z
led_disp8
disp_hlO,w
disp_hlOw
status,z
led_disp5
b' 11111110'
led_disp9

257 goto
258 movlw
259 goto
260 led_disp5
261 decfsz
262 goto
263 movlw
264 goto
265 led_disp6
266 decfsz
267 goto
268 movlw
269 goto
270 led_disp7
271 movlw
272 goto
273
27 4 led_disp8
275 movf
27 6 addwf
277 movwf
278 movf
279 led_disp9
280 movwf

281
282 led_dispe
283 decfsz

disp_hlOW,f
led_disp6
b' 11111000'
led_disp9

disp_h10W,f
led_disp7
b' 11110111 •
led_disp9

b' 11110001'
led_disp9

disp_data,w
seg7_ha,w
fsr
indf,w

porte

disp___p,f
int_end
d'6'
disp___p
int_end

284
285
286
287
288
289
290

goto
movlw
movwf
goto

;Set units of hour
;Write PORTA register
;Read units of hour data
;Save data
;Jump to LED control

;Set tens of hour
;Write PORTA register
;Set off data
;Save data
;H10 - off data
;H10 = off data?
;Jump to LED control
;Read tens of hour data
;Save tens of hour data
;AM Ox o'clock?
;No. Next
;PM=off,Tens=off,AM=on
;Jump to PORTC write

;AM lx o'clock?
;No. Next
;PM=off,Tens=l,AM=on
;Jump to PORTC write

;PM Ox o'clock?
;No. Next
;PM=on,Tens=off,AM=off
;Jump to PORTC write

;PM=on,Tens=l,AM=off
;Jump to PORTC write

;Read disply digit data
;Seg7 H.Adr + digit
;Set FSR register
;Read seg7 data

;Write LED data

;End of cycle?
;Jump to END of interrupt
;Set initial value
;Write disply position
;Jump to END of interrupt

·******'

Clock count up Process (20msec interval)

291 clock
292
293
294
295
296
297

bcf intcon,intf

Time adjust mode check
movf mode,w
btfsc status,z
goto adjust

;Clear INTF

;Read time adj mode data
;Time adjust mode?
;Yes. Jump to Adjust Proc

67

298
299
300
301
302
303
304
305
306
307

·***I O second
btfss
goto
movf
btfss
goto
incf
clrf
clrf

308 clrf
309 goto
310 checkl
311 clrf
312

adjust check
portb,rb6
checkl
rb611,w
status,z
check2
rb611,f
disp_sl
disp_slO
count
check2

rb611

313 ;*** Time adjust demand check
314 check2
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331 check3
332
333
334 check4
335
336

btfss
goto
movlw
subwf
btfss
goto
clrf
movf
movwf
clrf
clrf
clrf
incf
bsf
clrf
goto

incf
goto

clrf
clrf

portb,rb7
check4
d'lOO'
rb7count,w
status,c
check3
digit__posi
disp_hlO,w
digit_save
disp_sl
disp_slO
count
rb711,f
intcon,rbie
mode
adjust

rb7count,f
clockl

rb7count
rb711

337
338 ;*** Timer count up
339 clockl
340
341
342
343
344
345
346

movlw
subwf
btfsc
goto
incf
goto

d' 49'
count,w
status,c
clock_lsec
count,f
int_end

347 clock_lsec
348 clrf count

349 movlw d'9'

350 subwf disp_sl,w

351 btfsc status,c

352 goto clock_lOsec

3 53 incf disp_sl,f

354 bcf portb,rbl

355 goto int_end

356
357 clock_lOsec

68

;O sec adjust?
;No.
;Yes. Read RB6 last look
;Last look= O?
;No. Last look= 1
;Yes. Set last look
;Clear units of second
;Clear tens of second
;Clear clock counter
;Jump to time adj check

;Clear RB6 last look

;Time adjust?
;No.
;Set guard (2sec)
;Counter - Guard
;Counter>= Guard?
;No. Counter< Guard
;Set position to HlO
;Read tens of hour
;Save previous adj data
;Clear units of second
;Clear tens of second
;Clear clock counter
;Set RB7 last look
;Set RBIE bit
;Set time adjust mode
;Jump to Adjust process

;Counter+ 1
;Jump to clock count up

;Clear counter
;Clear RB7 last look

;Set 1 sec data
;Counter - 1 sec
;Counter>= 1 sec?
;Yes. Counter>= 1 sec
;No. Counter+ 1
;Jump to END of interrupt

;Clear 1 second counter
;Set check data
;Sl - 9
;Sl >= 9 sec?
;Yes. Sl >= 9 sec
;No. Sl + 1
;Clear time signal
;Jump to END of interrupt

clrf
movlw
subwf
btfsc
goto
incf
goto

358
359
360
361
362
363
364
365
366 clock_lmin
367 clrf
368 movlw
369 subwf
370 btfsc

goto
incf

371
372
373
374
375 clock_lOmin
376 clrf
377 movlw
378 subwf
379 btfsc

goto

goto
incf
goto

3 80
381
382
383
384 clock_lhour
385 clrf
386 movf

movwf
btfss
goto

387
388
389
390
391
392
393
394
395
396
397
398 am09
399

AM Ox
movlw
subwf
btfsc
goto
incf
goto
clrf
incf
goto

·***'

400
401 hourl
402
403
404
405
406
407
408

decfsz
goto

AM lx
decfsz
goto
goto·
incf
goto
incf
movlw
movwf
goto

·***'

409 amlO
410
411 amll
412
413
414
415 hour2
416
417

disp_sl
d ' 5'
disp_slO,w
status,c
clock_lmin
disp_slO,f
int_end

disp_slO
d'9'
disp_ml,w
status,c
clock_lOmin
disp_ml,f
int end

disp_ml
d'5'
disp_mlO,w
status,c
clock_lhour
disp_mlO,f
int_end

disp_mlO
disp_hlO,w
disp_hlOw
status,z
hourl

d'9'
disp_hl,w
status,c
am09
disp_hl,f
time_check
disp_hl
disp_hlO,f
time_check

disp_hlOw,f
hour2

disp_hl,w
amlO
amll
disp_hl,f
time_check
disp_hl,f
d'3'
disp_hlO
time_check

decfsz
goto

disp_hlOw,f
hour3

;Set xx:xx:xO
;Set check data
;SlO - 5
;SlO >= 5x sec?
;Yes. SlO >= 5x sec
;No. SlO + 1
;Jump to END of interrupt

;Set xx:xx:Ox
;Set check data
;Ml - 9
;Ml>= 9 min?
;Yes. Ml>= 9 min
;No. Ml+ 1
;Jump to END of interrupt

;Set xx:xO:xx
;Set check data
;MlO - 5
;MlO >= 5x min?
;Yes. MlO >= 5x min
;No. MlO + 1
;Jump to END of interrupt

; Set xx: Ox:xx
;Read tens of hour data
;Save tens of hour data
;AM Ox o'clock?
;No. Next

;Set check data
;Hl - 9
;Hl>= 9 hour?
;Yes. Hl>= 9 hour
;No. Hl+ 1
;Jump to Time Check
;Set xO:xx:xx
;Set AMl0:00:00
;Jump to Time Check

;AM lx o'clock?
;No. Next

;AM 11 o'clock?
;No. AM 10 o'clock
;Yes. AM 11 o'clock
;Hl+ 1
;Jump to Time Check
;Set x2:xx:xx
;Set PM lx
;Set PM12:00:00
;Jump to Time Check

;PM Ox o'clock?
;No. Next

69

418
419
420
421
422
423
424
425
426 pm09
427

·***,

428
429
430 ; *** PM
431 hour3
432
433
434
435
436
437
438
439
440
441
442 pmll
443
444
445 pm12
446
447
448
449
450

PM Ox
movlw
subwf
btfsc
goto
incf
goto
clrf
incf
goto

lx

movlw
subwf
btfsc
goto
movlw
subwf
btfsc
goto
incf
goto
clrf
clrf
goto
movlw
movwf
movlw
movwf
goto

d ' 9 I

disp_hl,w
status,c
pm09
disp_hl,f
time_check
disp_hl
disp_hlO,f
time_check

d'l'
disp_hl,w
status,z
pmll
d'2'
disp_hl,w
status,c
pm12
disp_hl,f
time_check
disp_hl
disp_hlO
time_check
d'l'
disp_hl
d'2'
disp_hlO
time_check

451 ;*** Time signal check
452 time_check
453 btfsc
454
455
456
457
458
459
460 tckl
461
462
463
464
465 tck2
466
467
468
469
4 70 tck3
471
472
473
474
475
476
4 77 tck4

goto
movlw
subwf
btfss
goto
goto
movlw
subwf
btfss
goto
goto
movlw
subwf
btfss
goto
goto
btfss
goto
movf
btfss
goto
goto

movlw

disp_hl0,1
tck4
d'7'
disp_hl,w
status,z
tckl
time_signal
d'8'
disp_hl,w
status,z
tck2
time_signal
d'9'
disp_hl,w
status,z
tck3
time_signal
disp_hlO,O
no_signal
disp_hl,w
status,z
no_signal
time_signal

d I 6 I

;Set check data
;Hl - 9
;Hl>= 9 hour?
;Yes. Hl>= 9 hour
;No. Hl+ 1
;Jump to Time Check
;Set xü:xx:xx
;Set PMl0:00:00
;Jump to Time Check

;Set check data
;Hl - 1
;Hl= 1 hour?
;Yes. PM 11 o'clock
;Set check data
;Hl - 2
;Hl>= 2 hour?
;Yes. PM 12 o'clock
;No. Hl+ 1
;Jump to Time Check
;Set O o'clock
;Set AM00:00:00
;Jump to Time Check
;Set data
;Set 1 o'clock
;Set data
;Set PMOl:00:00
;Jump to Time Check

;AM ?
;No. PM
;Set AM 7:00 data
;Hl - check data
;AM 7:00?
;No. Next
;Yes. Jump to time signal
;Set AM 8:00 data
;Hl - check data
;AM 8:00?
;No. Next
;Yes. Jump to time signal
;Set AM 9:00 data
;Hl - check data
;AM 9:00?
;No. Next
;Yes. Jump to time signal
;AM lx?
;No. End of signal check
;Read Hl
;AM 10:00?
;No. End of signal check
;Yes. Jump to time signal

;Set PM 6:00 data

70

4 7 8 subwf disp_hl,w

479 btfss status,z

480 goto tck5

481 goto time_signal

482 tck5 movlw d'7'

483 subwf disp_hl,W

484 btfss status,z

485 goto tck6

486 goto time_signal

487 tck6 movlw d'8'

488 subwf disp_hl,w

489 btfss status,z

490 goto tck7

491 goto time_signal

492 tck7 movlw d'9'

493 subwf disp_hl,w

494 btfss status,z

495 goto no_signal

496 goto time_signal

497
498 time_signal
499 bsf portb,rbl

500 no_signal
501 goto int_end

;Hl - check data
;PM 6:00?
;No. Next
;Yes. Jump to time signal
;Set PM 7:00 data
;Hl - check data
;PM 7:00?
;No. Next
;Yes. Jump to time signal
;Set PM 8:00 data
;Hl - check data
;PM 8:00?
;No. Next
;Yes. Jump to time signal
;Set PM 9:00 data
;Hl - check data
;PM 9:00?
;No. End of signal check
;Yes. Jump to time signal

;Time signal ON

;Jump to END of interrupt

502
503 ·****** '

Time adjust mode Process (20msec interval) ******

504 adjust
505 ;*** Adjust end
506 btfss
507
508
509
510

goto
movf
movwf
btfss

511 goto
512 movf
513 movwf
514 goto
515 adj_endl
516 decfsz
517 goto
518 movf
519 movwf
520 goto
521 adj_end2
522 decfsz
523
524

goto
movf

525 movwf
526 goto
527 adj_end3
528 movf
529 movwf-
530 adj_end4
531 incf
532 bcf
533 incf
534 goto

check
portb,rb6
adjustl
digit_posi,w
digit_posiw
status,z
adj_endl
digit_save,w
disp_hlO
adj_end4

digit_posiw,f
adj_end2
digit_save,w
disp_hl
adj_end4

digit_posiw,f
adj_end3
digit_save,w
disp_mlO
adj_end4

digit_save,w
disp_ml

rb611 / f
intcon,rbie
mode,f
int_end

535
536 ;*** Adjust position check
537 adjustl

;O sec adjust SW= ON?
;No. Next process
;Yes. Read digit position
;Save digit position
;Position= HlO?
;No. Next
;Yes. Read saved digit
;Recover digit
;Jump to adj mode end

;Position= Hl?
;No. Next
;Yes. Read saved digit
;Recover digit
;Jump to adj mode end

;Position= MlO?
;No. Next
;Yes. Read saved digit
;Recover digit
;Jump to adj mode end

;Read saved digit
;Recover digit

;Set last look ON
;Clear RBIE bit
;Set clock mode
;Jump to END of interrupt

71

538
539
540
541
542
543
544
545
546
547
548
549

btfss
goto
movf
btfss
goto
incf
incf
movlw
subwf
btfss
goto
clrf

550 adj_posil
551 movf
552
553
554
555
556

movwf
btfss
goto
movf
btfsc

557 goto
558 movf
559 movwf
560 adj_posi2
561 movf
562 goto
563 adj_posi3
564 decfsz
565 goto
566 movf
567 btfsc
568 goto
569 movf
570 movwf
571 adj_posi4
572 movf
573 goto
574 adj_posi5
575 decfsz
576 goto
577 movf
578 btfsc
579 goto
580 movf
581 movwf
582 adj_posi6
583 movf
584 goto
585 adj_posi 7
586 movf
587 btfsc
588 goto
589 movf
590 movwf
591 adj_posi8
592 movf
593 adj_posi9
594 movwf
595 goto
596 adj_posilO
597 clrf

portb,rb7
adj_posilO
rb711,w
status,z
adjust2
rb711, f
digit_posi,f
d'4'
digit_posi,w
status,c
adj_posil
digit_posi

digit_posi,w
digit_posiw
status,z
adj_posi3
blink_cont,w
status,z
adj_posi2
digit_save,w
disp_ml

disp_hlO, w
adj_posi9

digit_posiw,f
adj_posi5
blink_cont,w
status,z
adj_posi4
digit_save,w
disp_hlO

disp_hl,w
adj_posi9

digit_posiw,f
adj_posi7
blink_cont,w
status,z
adj_posi6
digit_save,w
disp_hl

disp_mlO,w
adj_posi9

blink_cont,w
status,z
adj_posi8
digit_save,w
disp_mlO

disp_ml,w

digit_save
adjust2

rb711

-
;Position SW= ON?
;No. SW= OFF
;Yes. Read RB7 last look
;Last look= O?
;No. Last look= 1
;Yes. Set last look
;Change position
;Set check data
;Position data - 4
;Position over?
;No. digit proc
;Set position to HlO

;Read digit position
;Save digit position
;Position= HlO?
;No. Next
;Read blink control
;LED OFF?
;No. LED ON
;Yes. Read saved digit
;Set Ml digit

;Read digit
;Jump to digit save

;Position= Hl?
;No. Next
;Read blink control
;LED OFF?
;No. LED ON
;Yes. Read saved digit
;Set HlO digit

;Read digit
;Jump to digit save

;Position= MlO?
;No. Next
;Read blink control
;LED OFF?
;No. LED ON
;Yes. Read saved digit
;Set Hl digit

;Yes. Read digit
;Jump to digit save

;Read blink control
;LED OFF?
;No. LED ON
;Yes. Read saved digit
;Set MlO digit

;Read digit

;Save digit

;Clear RB7 last look

72

598
599 ;*** Adjust digit blink

600 adjust2
601 movlw
602 subwf
603 btfsc
604 goto
605 incf
606 goto
607 adj_blkl
608 clrf
609
610
611
612 ;***
613
614
615

btfsc
goto

process

d ' 10'
digit_blink,w
status,c
adj_blkl
digi t_blink I f
int _end

digit_blink
blink_cont,O
adj_blk5

LED OFF process
incf blink_cont,f
movf
movwf

616 btfss
617 goto
618 movlw
619 movwf
620 goto
621 adj_blk2
622 decfsz
623
624

goto
movlw

625 movwf
626 goto
627 adj_blk3
628 decfsz
629 goto
630 movlw
631 movwf
632 goto
633 adj_blk4
634
635
63 6

movlw
movwf
goto

digit__posi,w
digit__posiw
status,z
adj_blk2
h ' Oa'
disp_hlO
adj_blke

digit__posiw,f
adj_blk3
h' Oa'
disp_hl
adj_blke

digit__posiw,f
adj_blk4
h' Oa'
disp_mlO
adj_blke

h ' Oa'
disp_ml
adj_blke

637
638 ;***LEDON process
63 9 adj_blk5
640 clrf blink_cont
641 movf digit__posi,w

642 movwf digit__posiw

643 btfss status,z

644 goto adj_blk6

645 movf digit_save,w

646 movwf disp_hlO

647 goto adj_blke

648 adj_blk6
649 decfsz digit__posiw,f

650 goto adj_blk7

651 movf digit_save,w

652 movwf disp_hl

653 goto adj_blke

654 adj_blk7
655 decfsz digit__posiw,f

656 goto adj_blk8

657 movf digit_save,w

73

;Set 200 msec data
;Counter - 200 msec
;Counter>= 200 msec?
;Yes. Counter>= 200 msec
;No. Counter+ 1
;Jump to END of interrupt

;Clear Blink counter
;Blink ON?
;No. Jump to ON process

;Set Blink OFF data
;Read digit position
;Save digit position
;Position= HlO?
;No. Next
;Yes. Set LED off digit
;LED off
;Jump to blink end

;Position= Hl?
;No. Next
;Yes. Set LED off digit
;LED off
;Jump to blink end

;Position= MlO?
;No. Next
;Yes. Set LED off digit
;LED off
;Jump to blink end

;Yes. Set LED off digit
;LED off
;Jump to blink end

;Set Blink ON data
;Read digit position
;Save digit position
;Position= HlO?
;No. Next
;Read saved digit
;Set HlO digit
;Jump to blink end

;Position= Hl?
;No. Next
;Read saved digit
;Set Hl digit
;Jump to blink end

;Position= MlO?
;No. Next
;Read saved digit

I

658 movwf disp_mlO ;Set MlO digit

659 goto adj_blke ;Jump to blink end

660 adj_blk8
661 movf digit_save,w ;Read saved digit

662 movwf disp_ml ;Set Ml digit

663 adj_blke
664 goto int_end ;Jump to END of interrupt

665
666 ;**************** Digit
667 digit_change
668 bcf
669
670
671
672
673
674
675
676
677
678
679
680
681
682

movf
andlw
movwf
movf
btfss
goto
movf
xorlw
btfss
goto
movlw
movwf
goto

683 changel
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

movf
xorlw
btfss
goto

intcon,rbif

change process

;Clear REIF

portb,w
b' 00110000'
change_wk
change_st,w
status,z
change2
change_wk,w
b'00100000'
status,z
changel
d'l'
change_st
int end

change_wk,w
b' 00110000'
status,z
int_end

·*** '
Count up process

movlw
movwf
movf
movwf
btfss
goto

movlw
subwf
btfss

700 goto
701 clrf
702 goto
703 count_upl
704 incf
705 goto
706
707 count_up2
708 decfsz
709 goto
710

d'2'
change_st
digit_posi,w
digit_posiw
status,z
count_up2

d'3'
digit_save,w
status,z
count_upl
digit_save
count_hlO

digit_save,f
count_hlO

digit_posiw,f
count_up8

;Read PORTE
;Pick up RE4 and RE5
;Save RE4/RE5 condition
;Read Digit change status
; Status = "O" ?
;No. Next
;Read RE4/RE5 condition
;Check RE4/RE5 condition
;RE5(E)=l RE4(A)=0?
;No. next
;Set status to "1"
;Write status
;Jump to END of interrupt

;Read RE4/RE5 condition
;Check RE4/RE5 condition
;RE5(E)=l RE4(A)=l?
;Jump to END of interrupt

;Set status to "2"
;Write status
;Read digit position
;Save digit position
;Position= HlO?
;No. Next

;Set check data
;HlO - check data
;HlO = 3?
;No.
;Set HlO = O
;Jump to save check

;HlO + 1
;Jump to save check

;Position
;No. Next

Hl?

711 movf disp_hlO,w ;Read HlO digit

712 andlw b'OOOOOOOl' ;Pick up Ox/lx

713 btfss status,z ;HlO = AM Ox or PM Ox?

714 goto count_up4 ;No. AM lx or PM lx

715 movlw d'9' ;Set check data

716 subwf digit_save,w ;Hl - check data

717 btfss status,z ;Hl= 9?

74

718
719

goto
clrf

720 goto
721 count_up3
722 incf
723 goto
724 count_up4
725 movf
726 andlw
727
728
729
730

btfss
goto
movf
btfss

731 goto
732 incf
733 goto
734 count_up5
735 clrf
736 goto
737 count_up6
738 movlw
739 subwf
740 btfss
741
742

goto
clrf

743 goto
744 count_up7
745 incf
746 goto
747
748 count_up8
749 decfsz
750 goto
751
752
753
754
755
756

movlw
subwf
btfss
goto
clrf

757 goto
758 count_up9
759 incf
760 goto
761
762 count_uplO
763 movlw
764 subwf
765 btfss
766 goto
767 clrf
768 goto
769 count_upll
770 incf
771 goto
772
773 change2
774
775
776
777

movlw
subwf
btfss
goto

count_up3
digit_save
count_hl

digit_save,f
count_hl

disp_hlO,w
b'00000010'
status,z
count_up6
digit_save,w
status,z
count_up5
digit_save,f
count_hl

digit_save
count_hl

d'2'
digit_save,w
status,c
count_up7
digit_save
count_hl

digit_save,f
count_hl

digit_posiw,f
count_uplO

d'5'
digit_save,w
status,z
count_up9
digit_save
count_mlO

digit_save,f
count_mlO

d'9'
digit_save,w
status,z
count_upll
digit_save
count_ml

digit_save,f
count_ml

d'l'
change_st,w
status,z
change4

75

;No.
;Set Hl= O
;Jump to save check

;Hl+ 1
;Jump to save check

;Read HlO digit
;Pick up AM/PM
;HlO =AM?
;No. PM
;Read Hl digit
;Hl= O?
;No. Hl> 1
;Hl= 1
;Jump to save check

;Hl= O
;Jump to save check

;Set check data
;Hl - check data
;Hl>= 2 ?
;No.
;Set Hl= O
;Jump to save check

;Hl+ 1
;Jump to save check

;Position
;No. Next

MlO?

;Set check data
;MlO - check data
;MlO = 5?
;No.
;Set MlO = O
;Jump to save check

;MlO + 1
;Jump to save check

;Set check data
;Ml - check data
;Ml= 9?
;No.
;Set Ml= O
;Jump to save check

;Ml+ 1
;Jump to save check

;Set check data
;Status - check data
;Status = "1" ?
;No. Next

778
779
780
781
782
783

movf
xorlw
btfss
goto
clrf
goto

784 change3
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

movf
xorlw
btfss
goto

change_wk,w
b'00010000'
status,z
change3
change_st
int end

change_wk,w
b' 00110000'
status,z
int_end

·*** '
Count down process

movlw
movwf
movf
movwf
btfss
goto

movf
btfss
goto
movlw
movwf
goto

804 count_downl
805 decf
806
807
8 O 8 coun t_down2
809 decfsz

goto

goto 810
811
812
813
814
815
816
817
818
819
820

movf
andlw
btfss
goto
movf
btfss
goto
movlw
movwf

821 goto
822 count_down3
823 decf
824 goto
825 count_down4
826 movf
827 andlw
828 btfss
829
830
831

goto
movf
btfss

832 goto
833 incf
834 goto
835 count_down5
836 clrf
837 goto

d'2'
change_st
digit_posi,w
digit_posiw
status,z
count_down2

digit_save,w
status,z
count_downl
d'3'
digit_save
count_hlO

digit_save,f
count_hlO

digit_posiw,f
count_down9

disp_hlO, w
b'00000001'
status,z
count_down4
digit_save,w
status,z
count_down3
d ' 9'
digit_save
count_hl

digit_save,f
count_hl

disp_hlO,w
b'00000010'
status,z
count_down6
digit_save,w
status,z
count_down5
digit_save,f
count_hl

digit_save
count_hl

-
;Read RB4/RB5 condition
;Check RB4/RB5 condition
;RB5(B)=0 RB4(A)=1?
;No. next
;Set status to "0"
;Jump to END of interrupt

;Read RB4/RB5 condition
;Check RB4/RB5 condition
;RB5(B)=1 RB4(A)=1?
;Jump to END of interrupt

;Set status to "2"
;Write status
;Read digit position
;Save digit position
;Position= HlO?
;No. Next

;Read HlO
;HlO =O?
;No.
;Set data
;Set HlO = 3
;Jump to save check

;HlO - 1
;Jump to save check

;Position
;No. Next

Hl?

;Read HlO digit
;Pick up Ox/lx
;HlO = AM Ox or PM Ox?
;No. AM lx or PM lx
;Read Hl
;Hl= O?
;No.
;Set data
;Set Hl= 9
;Jump to save check

;Hl - 1
;Jump to save check

;Read HlO digit
;Pick up AM/PM
;HlO =AM?
;No. PM
;Read Hl digit
;Hl= O?
;No. Hl= 1
;Hl= 1
;Jump to save check

;Hl= O
;Jump to save check

76

838 count_down6
839 movlw d ' 3' ;Set check data
840 subwf digit_save,w ;Hl - check data
841 btfsc status,c ;Hl>= 3 ?
842 goto count_down7 ;Yes.
843 movf digit_save,w ;read Hl
844 btfss status,z ;Hl = o ?
845 goto count_down8 ;No.
846 count_down7
847 movlw d'2' ;Set data
848 movwf digit_save ;Set Hl= 2
849 goto count_hl ;Jump to save check
850 count_down8
851 decf digit_save,f ;Hl - 1
852 goto count_hl ;Jump to save check
853
854 count_down9
855 decfsz digit_posiw,f ;Position= MlO ?
856 goto count_downll ;No. Next
857
858 movf digit_save,w ;Read MlO
859 btfss status,z ;MlO = O ?
860 goto count downlO ;No.
861 movlw d'5' ;Set data
862 movwf digit_save ;Set MlO = 5
863 goto count_mlO ;Jump to save check
864 count_downlO
865 decf digit_save,f ;Ml O - 1
866 goto count_mlO ;Jump to save check
867
868 count downll
869 movf digit_save,w ;Read Ml
870 btfss status,z ;Ml = o ?
871 goto count_down12 ;No.
872 movlw d'9' ;Set data
873 movwf digit_save ;Set Ml= 9
874 goto count_ml ;Jump to save check
875 count_down12
876 decf digit_save,f ;Ml - 1
877 goto count_ml ;Jump to save check
87 8
879 count_hlO
880 movf blink_cont,w ;Read blink control data
881 btfss status,z ;Blink ON?
882 goto int end ;Jump to END of interrupt
883 movf digit_save,w ;Yes. Read HlO data
884 movwf disp_hlO ;Set HlO data
885 goto int end ;Jump to END of interrupt
886
887 count_hl
888 movf blink_cont,w ;Read blink control data
889 btfss status,z ;Blink ON?
890 goto int_end ;Jump to END of interrupt
891 movf digit_save,w ;Yes. Read Hl data
892 movwf disp_hl ;Set Hl data
893 goto int_end ;Jump to END of interrupt
894
895 count_mlO
896 movf blink_cont,w ;Read blink control data
897 btfss status,z ;Blink ON?

77

898 goto int_end ;Jump to END of interrupt

899 movf digit_save,w ;Yes. Read MlO data

900 movwf disp_mlO ;Set MlO data

901 goto int_end ;Jump to END of interrupt

902
903 count_ml
904 movf blink_cont,w ;Read blink control data

905 btfss status,z ;Blink ON?

906 goto int_end ;Jump to END of interrupt

907 movf digit_save,w ;Yes. Read Ml data

908 movwf disp_ml ;Set Ml data

909 goto int_end ;Jump to END of interrupt

910
911 change4
912 movf change_wk,w ;Read RB4/RB5 condition

913 xorlw b'OOOOOOOO' ;Check RB4/RB5 condition

914 btfss status,z ;RB5(B)=0 RB4(A)=O?

915 goto int_end ;No. END of interrupt

916 clrf change_st ;Yes. Set status to II o II
917 goto int_end ;Jump to END of interrupt
918
919 ;**
920 ; END of Digital Clock
921 **

922
923 end

HEX CODE
:020000000528D 1
:080008004528831606309F0015
:1000100000308500FD30860000308700023081000E
:1000200083128330810085018601FF308700A001A3
:100030000630AlOOA501A601A701A801A901AAOlF6
:10004000AB01AC01AD01AE01AF01B201B301B4012E
: 100050003 730B6004030B 7007930B 8002430B 900EE
: 100060003030BA001930BBOO 1230BC000230BD0085
:100070007830BE000030BF001030C0007F30C100BB
: 100080002330C200B8308B0044280B088B 18A028FE
: 100090000B 1955280B 18C7290B30360784000008A8
:1000A000870005308500532809000B11833081003B
: 1OOOBOOOFF3087002108A200A20B63 2805308500CD
: 1OOOC0002A08A3009628A20B6A2804308500290874
: 1OOOD000A3009628A20B712803 3085002808A300EE
: 1 OOOE0009628A20B 7828023085002708A3009628BE
:1000FOOOA20B7F28013085002608A3009628003037
: 1001000085000A30A3002502031996282508A400BB
: 10011000031D8C28FE309A28A40B9028F8309A28CA
: 10012000A40B9428F7309 A28Fl 309A282308360730
:10013000840000088700A10B54280630A100542831
:100140008B102B0803194929061FAE282C08031D04
:10015000AF28ACOAAA01A901A001AF28AC01861FF3
: 10016000C12864302E02031CBF28AF012508B 1004E
: 10017000AA01A901A001ADOA8B 15AB014929AEOA5C
:10018000C328AE01AD013130200203l8C928AOOAEE

78

: 100190005428AOO 109302A020318D 128AAOA86107F
:1001A0005428AA0l053029020318D828A90A54287E
: 1001B000A90l093028020318DF28A80A5428A80139
: 1001C000053027020318E628A 70A5428A 7012508A6
:1001D000A400031DF428093026020318F128A60AFA
:1001E0001C29A601A50A1C29A40BFF28260BF92807
:1001FOOOFB28A60A1C29A60A0330A5001C29A40B6B
: 100200000A290930260203180729A60A1C29A60173
:10021000A50A1C29013026020319142902302602DE
:1002200003181729A60A1C29A601A5011C290130BB
:10023000A6000230A5001C29A51833290730260284
: 10024000031D23 29472908302602031D2829472991
: 1002500009302602031D2D294729251 C4829260877
:10026000031D4829472906302602031D382947293E
: 1002700007302602031D3D29472908302602031DA9
:100280004229472909302602031D48294729861497
:100290005428061F62292F08B000031D5229310877
: 1002AOOOA5005E29BOOB57293108A6005E29B00BC6
: 1002B0005C293108A 7005E293108A800ACOA8B 11 lF
: 1002COOOAB0A5428861F93292D08031D9429ADOAD3
:1002DOOOAFOA04302F02031C6E29AF012F08BOOOB3
:1002E000031D79293308031977293108A800250847
:1002F0009129BOOB82293308031980293108A50000
:1003000026089129BOOB8B29330803198929310854
: 10031OOOA600270891293308031990293108A 7005E
:100320002808B1009429AD010A30320203189A2935
:10033000B20A5428B2013318B229B30A2F08B00008
: 10034000031DA5290A30A500C629B00BAA290A3029
: 10035000A600C629B00BAF290A30A 700C6290A306B
:10036000A800C629B3012F08B000031DBA2931081F
: 10037000A500C629B00BBF293108A600C629B00BBD
: 10038000C4293108A 700C6293108A80054280B 1039
: 1003900006083039B500340803 lD 1A2A3508203AFA
: 1003A000031DD5290130B40054283508303A031D07
: 1003B00054280230B4002F08B000031DE729033091
: 1003C0003102031DE529B 1016D2AB 10A6D2ABOOB 7 6
: 1003D000082A25080139031DF5290930310203 lDBA
: 1003EOOOF329B 101732AB 10A732A25080239031DC2
: 1003F000002A3108031DFE29B lOA 732AB 101732AAC
: 1004000002303102031C062AB10173 2AB lOA 732A91
: 1004 lOOOBOOB 122A0530310203 lD 102AB 101792ACE
: 10042000B lOA 792A09303102031D182AB 1017F2A45
: 10043000B lOA 7F2A01303402031D852A3508103A9B
: 10044000031D242AB40154283508303A031D5428CA
: 100450000230B4002F08B000031D362A3108031DF6
: 10046000342A0330B 1006D2AB 1036D2ABOOB5B2A28
: 1004700025080139031D442A3108031D422A093089
: 10048000B 100732AB 103732A25080239031D4F2ACC
:100490003108031D4D2AB10A732AB101732A0330B2

79

: 1004A00031020318562A3108031D592A0230B lOOBF
: 1004B000732AB 103732ABOOB652A3108031D632A1E
: 1004C0000530B 100792AB 103792A3108031D6B2A5E
:1004D0000930B1007F2AB1037F2A3308031D542855
: 1004E0003108A50054283308031D54283108A600FC
:1004F00054283308031D54283108A7005428330812
: 10050000031D54283108A80054283508003A031D5B
:060510005428B401542838
:02400E00723FFF
:OOOOOOOlFF

80

	Page 1
	Titles
	ACKNOWLEDGMENTS

	Images
	Image 1

	Page 2
	Titles
	ABSTRACT

	Page 3
	Titles
	2.2. erse, Rrsc 14

	Page 4
	Page 5
	Titles
	CHAPTER ONE
	1.1 Introduction

	Page 6
	Images
	Image 1

	Page 7
	Titles
	1.2 Microcontrollers versus Microprocessors
	1.3 The First Microprocessor Family - Intel 4000s

	Images
	Image 1

	Page 8
	Titles
	1.4 First Microcontroller
	1.5 The Development of Microcontrollers

	Images
	Image 1
	Image 2

	Page 9
	Titles
	1.6 Yesterday to Today
	••
	1.7 Memory Unit
	5

	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Titles
	Addresses
	mem.lccatıon O
	mern.location 1
	I rnern.locatıon 14 I
	1- r
	VV/R
	1.8 Central Processing Unit

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 11
	Titles
	register 2
	regıster 3
	TI
	·,
	1.9 Bus
	rner-ıı location ·ı
	Addresses
	MEMORY
	<
	<
	.--1 m-e-m-.1-o<:-_.a-ti u-~ n-.1-4--.I
	I menı .loc:ati on '15 I

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 12
	Titles
	1.10 Input-Output unit
	frıput </ oaıeı
	regısıer 'I,,,
	Output ı Data />
	Data)
	1/0 unit
	1.11 Serial Communication

	Page 13
	Titles
	Serial
	r,
	Data ~
	1.12 Timer Unit

	Page 14
	Titles
	1.13 Watchdog
	1.14 Analog to Digital Converter
	I ADC register I < Analog input

	\

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 15
	Titles
	~ı /
	\.
	I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 1
	Titles
	1.15 Program

	Images
	Image 1

	Page 2
	Titles
	CHAPTER TWO
	2.1 Introduction
	PORTA.
	PORTB
	PIC 16F84 rni crocontroller outline

	Images
	Image 1
	Image 2

	Page 3
	Titles
	ven-Neumann
	Harvard
	Harvard vs. von Nauman Block Architectures
	2.2 CISC, RISC
	2.3 Applications

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 4
	Titles
	2.4 Clock I Instruction Cycle
	2.5 Pipelining

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 5
	Titles
	2.6 Pin Description

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1
	Table 2

	Page 6
	Titles
	2.7 Clock Generator - Oscillator
	2.7.1 Types of Oscillators
	2.7.2 XT Oscillator

	Images
	Image 1

	Page 7
	Titles
	~1
	.: =;;ç:--- I Cl<>•:!<
	_ ____,,.r~
	c:onrıecti ng the quartz oso nator to give
	2.7.3 RC Oscillator

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Titles
	Relationship betvveen a crock and a number of ınsrrucnon cycles
	Sı ıJnal of an o sci nator c ıock after receiving ttıe supply of a mi crocootrouer
	//~:ıı-r\ r ~11~ ...
	I I
	V V .Ih
	2.8 Reset
	Toso uiJi]lJ~

	Images
	Image 1
	Image 2

	Page 9
	Titles
	2.8.1 Reset at Supply Voltage Drop Below the Permissible (Brown-out
	2.9 Central Processing Unit

	Images
	Image 1

	Page 10
	Titles
	2.9.1 STATUS Register
	z

	Images
	Image 1

	Page 11
	Titles
	2.10 Ports

	Images
	Image 1

	Page 12
	Titles
	2.10.1 PORTB and TRISB
	I
	f
	..

	Images
	Image 1
	Image 2

	Page 13
	Titles
	2.10.2 PORTA and TRISA

	Images
	Image 1
	Image 2

	Page 14
	Titles
	I
	·11.'
	®: I
	®< I
	Q) .
	I ·· ·_ ·-- -··--·---· I
	.·_ -··-··-·· .. ·-· •. -··-·· .,_..··-~- ~-~
	2.11 Memory Organization
	2.11.1 Program Memory
	2.11.2 Data Memory

	Images
	Image 1
	Image 2

	Page 15
	Titles
	2.11.3 SFR Registers
	~.-6 ······~< j
	hl1ernorı organization of rnicrocontroller PIC16F84
	2.11.4 Memory Banks

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 1
	Titles
	2.11.5 Program Counter
	2.11.6 Stack
	2.11.7 In System Programming

	Images
	Image 1

	Page 2
	Titles
	j
	+

	=r>;
	r r I
	2.11.10 Indirect Adressing
	2.11.9 Direct Addressing
	2.11.8 Addressing Modes

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	o
	oc
	ındırect aodressi nı]
	"-·:.

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	2.12 Interrupts
	2.12.1 INTCON Register

	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1

	Page 6
	Titles
	o
	'------11------
	Si rnpllfied outline of PIC 'l 6f='84 mi crocornroller interrupt
	2.12.2 Keeping the Contents of Important Registers

	Images
	Image 1
	Image 2

	Page 7
	Titles
	lsW=X?
	W=X

	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Titles
	2.12.3 External Interrupt on RBO/INT Pin of Microcontroller
	2.12.4 Interrupt During a TMRO Counter Overflow
	2.12. 7 Interrupt Initialization

	Images
	Image 1
	Image 2

	Page 10
	Titles
	2.13 Free-run Timer TMRO
	ft
	-.:
	() 0() ()()O()() I I CD~_)(~(!)(~)@)(~) (V
	1t I I
	Relation betıNeen ll"ıB timer TMRO and prescaler
	;-::ı I
	t

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Titles
)
	/
	f
	I
	,, ,. ~--· '.,,ıs- -~1)
	r ı 2ss-..o
	l
	~- //1
	\
	\

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Images
	Image 1

	Tables
	Table 1

	Page 14
	Titles
	2.13.1 OPTION Control Register

	Images
	Image 1

	Page 15
	Titles
	2.14.1 EECONl Register
	2.14 EEPROM Data Memory

	Images
	Image 1

	Tables
	Table 1

	Page 1
	Titles
	2.14.2 Reading from EEPROM Memory

	Images
	Image 1

	Tables
	Table 1

	Page 2
	Titles
	2.14.3 Writing to EEPROM Memory

	Images
	Image 1

	Tables
	Table 1

	Page 3
	Titles
	CHAPTER THREE
	3.1 Benefits of Multitasking
	3.2 Multitasking Concurrency

	Images
	Image 1
	Image 2

	Page 4
	Titles
	3.3 Task States
	3.4Scheduling

	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Titles
	3.5 The RTOS Tick

	Images
	Image 1
	Image 2

	Page 7
	Titles
	3.6 "Execution Context"-a Definition

	Images
	Image 1

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Titles
	51
	Compiling the ISR results in the following output:
	Listing 4: Compiler output for Listing 3
	Organizing the Context-The GCC 'naked' Attribute
	The previous section showed how you can use the 'signal' attribute to write an ISR in C

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 11
	Images
	Image 1

	Page 12
	Titles
	,1/~
	<''.--.'\
	" -r, '
	' \
	/:J):>
	.-,v -.., I
	"" · ı,
	<::: /
	·ı -.l J s ~ "";i ~~·"
	Saving the Context

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 13
	Images
	Image 1

	Tables
	Table 1

	Page 14
	Titles
	{

	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1

	Page 1
	Titles
	CONCLUSION

	Images
	Image 1

	Page 2
	Titles
	REFERENCES
	57

	Images
	Image 1

	Page 3
	Titles
	Is-

	DC Motor Speed Controller
	: o.;ı
	58
	Source Code file for DC Motor Speed Controller
	APPENDIX A

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Tables
	Table 1

	Page 4
	Titles
	·***
	·***

	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3

	Page 5
	Images
	Image 1

	Tables
	Table 1

	Page 6
	Titles
	HEX CODE

	Page 7
	Titles
	cs
	!Cl
	:-Hô- -
	o
	IC2 c B A
	g ıf le Id le lb t a
	62
	Digital Clock
	APPENDIXB

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 8
	Titles
	63
	Source Code file of Digital Clock
	-

	Images
	Image 1

	Tables
	Table 1

	Page 9
	Titles
	64
	,.

	·***
	·***
	·***

	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3

	Page 10
	Titles
	-
	65

	Images
	Image 1

	Page 11
	Titles
	66
	I

	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3

	Page 12
	Titles
	67

	bcf
	·******

	Images
	Image 1

	Tables
	Table 1

	Page 13
	Titles
	·***

	Images
	Image 1

	Tables
	Table 1

	Page 14
	Titles
	69
	·***
	·***

	Images
	Image 1

	Page 15
	Titles
	70
	·***

	Images
	Image 1

	Page 1
	Titles
	·******
	71

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 2
	Titles
	72
	-

	Images
	Image 1

	Page 3
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2

	Page 4
	Titles
	I
	·***

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 5
	Titles
	75

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 6
	Titles
	-
	76
	·***

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 8
	Images
	Image 1

	Tables
	Table 1

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2
	Image 3
	Image 4

