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ABSTRACT 

Ever since conventional serial computers were invented, their speed bas steadily increased 

to match the needs of emerging applications. However, the fundamental physical limitation 

imposed by the speed of light makes it impossible to achieve further improvements in the speed 

of such computers indefinitely. Recent trends show that the performance of these computers is 

beginning to saturate. A natural way to circumvent this saturation is to use an ensemble of 

processors to solve problems. 

The transition point has become sharper with the passage of time, primarily as a result of 

advances in very large scale integration (VLSI) technology. It is now possible to construct very 

fast, low-cost processors. This increases the demand for and production of these processors, 

resulting in lower prices. 
Currently, the speed of off-the-shelf microprocessors is within one order of magnitude of 

the speed of the fastest serial computers. However, microprocessors cost many orders of 

magnitude less. This implies that, by connecting only a few microprocessors together to form a 

parallel computer, it is possible to obtain raw computing power comparable to that of the fastest 

serial computers. Typically, the cost of such a parallel computer is considerably less. 

Furthermore, connecting a large number of processors into a parallel computer overcomes the 

saturation point of the computation rates achievable by serial computers. Thus, parallel 

computers can provide much higher raw computation rates than the fastest serial computers as 

long as this power can be translated into high computation rates for actual applications. 
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INTRODUCTION 

The technological driving force behind parallel computing is VLSI, or very large scale 

integration-the same technology that created the personal computer and workstation market over 

the last decade. In 1980, the Intel 8086 used 50,000 transistors; in 1992, the latest Digital alpha 

RISC chip contains 1,680,000 transistors-a factor of 30 increase. The dramatic improvement in 

chip density comes together with an increase in clock speed and improved design so that the 

alpha performs better by a factor of over one thousand on scientific problems than the 8086-8087 

chip pair of the early 1980s. 

High-performance computers are increasingly in demand in the areas of structural 

analysis, weather forecasting, petroleum exploration, medical diagnosis, aerodynamics 

simulation, artificial intelligence, expert systems, genetic engineering, signal and image 

processing, among many other scientific and engineering applications. Without superpower 

computers, many of these challenges to advance human civilization cannot be made within a 

reasonable time period. Achieving high performance depends not only on using faster and more 

reliable hardware devices but also on major improvements in computer architecture and 

processing techniques. 

There are a number of different' ways to characterize the performance of both parallel 

computers and parallel algorithms. Usually, the peak performance of a machine is expressed in 

units of millions of instructions executed per second (MIPS) or millions of floating point 

operations executed per second (MFLOPS). However, in practice, the realizable performance is 

clearly a function of the match between the algorithms and the architecture. 



CHAPTER! 

1 What is Parallel Computing? 

Consider the problem of stacking (reshelving) a set of library books A single worker 

trying to stack all the books in their proper places cannot accomplish the task faster than a certain 

rate. We can speed up this process, however, by employing more than one worker. Assume that 

the books are organized into shelves and that the shelves are grouped into bays. One simple way 

to assign the task to the workers is to divide the books equally among them. Each worker stacks 

the books one at a time. This division of work may not be the most efficient way to accomplish 

the task, since the workers must walk all over the library to stack books. An alternate way to 

divide the work is to assign a fixed and disjoint set of bays to each worker. As before, each 

worker is assigned an equal number of books arbitrarily. If a worker finds a hook that belongs to 

a bay assigned to him or her, he or she places that book in its assigned spot. Otherwise, he or she 

passes it on to the responsible for the hay it belongs to. The second approach requires Jess effort 
from individual workers. 

The preceding example shows how a task can he accomplished foster hy dividing it into a 

set of subtasks assigned to multiple workers. Workers cooperate, pass the books to each other 

when necessary, and accomplish the task in unison. Parallel processing works on precisely the 

same principles. Dividing a task among workers by assigning them a set of books is an instance 

of task partitioning. Passing books to each other is an example of communication between 

subtasks. 

Problems are parallelizable to different degrees. For some problems, assigning partitions 

to other processors might be more time-consuming than performing the processing localJy. Other 

problems may be completely serial. For example, consider the task of digging a post hole. 

Although one person can dig a hole in a certain amount of time, employing more people does not 

reduce this time. Because it is impossible to partition this task, it is poorly suited to parallel 

processing. Therefore, a problem may have different parallel fornmlations, which result in 

ing benefits, and all problems are not equally amenable to parallel processing. 



2 The Scope of Parallel Computing 

Parallel processing is making a tremendous impact on many areas of computer 

application. With the high raw computing power of parallel computers, it is now possible to 

address many applications that were until recently beyond the capability of conventional 

computing techniques. 

Many applications, such as weather prediction, biosphere modeling, and pollution 

monitoring, are modeled by imposing a grid over the domain being modeled. The entities within 

grid elements are simulated with respect to the influence of other entities and their surroundings. 

In many cases, this requires solutions to large systems of differential equations. The granularity 

of the grid determines the accuracy of the model. Since many such systems are evolving with 

time, time forms an additional dimension for these computations. Even for n small number of grid 

points, a three-dimensional coordinate system, and a reasonable discredited time step, this 

modeling process can involve trillions of operations Thus even rnoderate-sized instances of 

these problems take an unacceptably long time to solve on serial computers 

Parallel processing makes it possible to predict the weather not only foster but also more 

accurately. If we have a parallel computer with a thousand workstation-class processors, we can 

partition the 1011 segments of the domain among these processors Each processor computes the 

parameters for I 08 segments. Processors communicate the value of the parameters in their 

segments to other processors. Assuming that the computing power of this computer is 100 million 

instructions per second, and this power is efficiently utilized, the problem can be solved in less 

than 3 hours. The impact of this reduction in processing time is two-fold. First, parallel 

computers make it possible to solve a previously unsolvable problem. Second, with the 

availability of even larger parallel computers, it is possible to model weather using finer grids. 

Thia enables more accurate weather prediction. 
The acquisition and processing of large amounts of data from sources such as satellites and oil 

Us form another class of computationally expensive problems. Conventional satellites collect 

ions of bits per second of data relating to parameters such as pollution levels, the thickness of 

ozone layer, and weather phenomena. Other applications of satellites that require processing 

large amounts of data include remote sensing and telemetry. The computational rates required 

handling this data effectively are well beyond the range of conventional serial computers. 
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Discrete optimization problems include such computationally intensive problems as planning, 

scheduling, VLSI design, logistics, and control. Discrete optimization problems can be solved by 

using state-space search techniques. For many of these problems, the size of the state-space 

increases exponentially with the number of variables. Problems that evaluate trillions of states are 

fairly commonplace in most such applications. Since processing each state requires a nontrivial 

amount of computation, finding solutions to large instances of these problems is beyond the 

scope of conventional sequential computing. Indeed, many practical problems are solved Hsing 
approximate algorithms that provide suboptimal solutions. 

Oilier applications that can benefit significantly from parallel computing are semi-conductor 

material modeling, ocean modeling, computer tomography, quantum chrornodynarnics, vehicle 

design and dynamics, analysis of protein structures, study of chemical phenomena, imaging, 

ozone layer monitoring, petroleum exploration, natural language understanding, speech 

recognition, neural network: learning, machine vision, database query processing, and automated 

discovery of concepts and patterns from large databases. Many of the applications mentioned are 

considered grand challenge problems. A grand challenge is a fundamental problem in science or 

engineering that has a broad economic and scientific impact, and whose solution could be 

advanced by applying high perfonnance computing techniques and resources. 

3 Issues in Parallel Computing 

To use parallel computing effectively, we need to examine the following issues: 

3.1 Design of Parallel Computers 

It is important to design parallel computers that can scale up to a large number of 

processors and are capable of supporting fast communication and data sharing among processors. 

This is one aspect of parallel computing that has seen the most advances and is the most mature. 

,.l Design of Efficient Algorithms 

A parallel computer is of little use unless efficient parallel algorithms are available. The 

s in designing parallel algorithms are very different from those in designing their sequential 
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counterparts. A significant amount of won: is being done to develop efficient parallel algorithms 
for a variety of parallel architecmrea 

3.3 Methods for Evaluating Parallel Algorithms 

Given a parallel computer and a parallel algorithm running on it, we need to evaluate the 

performance of the resulting system. Performance analysis allows us to answer questions such as 

How fast can a problem be solved using parallel processing? and How efficiently are the 
processors used? 

3.4 Parallel Computer Languages 

Parallel algorithms are implemented on parallel computers using a programming 

language. This language must be flexible enough to allow efficient implementation and must be 

easy to program in. New languages and programming paradigms are being developed that try to 
achieve these goals. 

3.5 Parallel Programming Tools 

To facilitate the programming of parallel computers, it is important to develop 

comprehensive programming environments and tools. These must serve the dual purpose of 

shielding users from low-level machine characteristics and providing them with design and 
development tools such as debuggers and simulators, 

3.6 Portable Parallel Programs 

Portability is one of the main problems with current parallel computers. Typically, a 

program written for one parallel computer requires extensive modification to make it run on 

another parallel computer. This is an important issue that is receiving considerable attention. 

3.7 Automatic Programming of Parallel Computers 

Much won: is being done on the design of parallelizing compilers, which extract implicit 

elism from programs that have not been parallelized explicitly. Such compilers are expected 
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to allow us to program a parallel computer like a serial computer. We speculate that this approach 

has limited potential for exploiting the power of large-scale parallel computers. 
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CHAPJ'ER2 

1 Parallelism and Computing 

A parallel computer is a set of processors that are able to work cooperatively to solve a 
computational problem. This definition is broad enough to include parallel supercomputers that 

have hundreds or thousands of processors, networks of workstations, multiple-processor 
workstations, and embedded systems. Parallel computers are interesting because they offer the 

potential to concentrate computational resources-whether processors, memory, or J/0 bandwidth 
on important computational problems. 

Parallelism has sometimes been viewed as a rare and exotic sub area of computing, 

interesting but of little relevance to the average programmer. A study of trends in applications, 

computer architecture, and networking shows that this view is no longer tenable. Parallelism is 

becoming ubiquitous, and parallel programming is becoming central to the programming 
enterprise. 

2 The National Vision for 

Parallel Computation 

The technological driving force behind parallel computing is VLSI, or very large scale 

integration-the same technology that created the personal computer and workstation market over 

last decade. In 1980, the Intel 8086 used 50,000 transistors; in 1992, the latest Digital alpha 

C chip contains 1,680,000 transistors-a factor of 30 increase. The dramatic improvement in 
ip density comes together with an increase in clock speed and improved design so that the 

performs better by a factor of over one thousand on scientific problems than the 8086-8087 

The increasing density of transistors on a chip follows directly from a decreasing feature 

which is now for the alpha. Feature size will continue to decrease and by the year 2000, 

with 50 million transistors are expected to be available. What can we do with all these 
-.ilrtnrs? 

6 



With around a million transistors on a chip, designers were able to move full mainframe 

functionality to about of a chip. This enabled the personal computing and workstation 

, revolutions. The next factors of ten increase in transistor density must go into some form of 

parallelism by replicating several CPUs on a single chip. 

By the year 2000, parallelism is thus inevitable to all computers, from your children's 

video game to personal computers. workstations, and supercomputers. Today we see it in the 

larger machines as we replicate many chips and printed circuit hoards to build systems as arrays 

of nodes, each unit of which is some variant of the microprocessor. An nCUBE parallel 

supercomputer with 64 identical nodes on each board-each node is a single-chip CPU with 

additional memory chips. To be useful, these nodes must be linked in some way and this is still a 

matter of much research and experimentation. Further, we can argue as to the most appropriate 

node to replicate; is it a "small" node as in the nCUBE, or more powerful "fat" nodes such as 

those offered in CM-5 and Intel Touchstone, where each node is a sophisticated multichip printed 

circuit board. However, these details should not obscure the basic point: Parallelism allows one to 

build the world's fastest and most cost-effective supercomputers. 

Parallelism may only be critical today for supercomputer vendors and users. By the year 

2000, all computers will have to address the hardware, algorithmic, and software issues implied 

by parallelism. The reward will be amazing performance and the opening up of new fields; the 

pice will be a major rethinking and reimplementation of software, algorithms, and applications. 

· vision and its consequent issues are now well understood and generally agreed. They 

vided the motivation in 1981 when CP's first roots were formed, In those days, the vision was 

mllrTel1 and controversial. Many believed that parallel computing would not work. 

President Bush instituted, in 1992, the five-year federal High Performance Computing and 

Dllmnunications (HPCC) Program. The activities of several federal agencies have been 

.-ntioated in this program. The Advanced Research Projects Agency (ARPA) is developing the 

technologies which is applied to the grand challenges by the Department of Energy (DOE), 

ional Aeronautics and Space Agency (NASA), the National Science Foundation (NSF), 

ional Institute of Health (NIH), the Environmental Protection Agency (EPA), and the 

Oceanographic and Atmospheric Agency (NOAA). Selected activities include the 

of the human genome in DOE, climate modeling in DOE and NOAA, coupled structural 

,w simulations of advanced powered lift and a high-speed civil transport by NASA. 
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More generally, it is clear that parallel computing can only realize its full potential and be 

commercially successful if it is accepted in the real world of industry and government 

applications. The clear U.S. leadership over Europe and Japan in high-performance computing 

offers the rest of the U.S. industry the opportunity of gaining global competitive advantage. 

We note some interesting possibilities which include: use in the oil industry for both seismic 

analysis of new oil fields and the reservoir simulation of existing fields; environmental modeling 

of past and potential pollution in air and ground; fluid flow simulations of aircraft, and general 

vehicles, engines, air-conditioners. and other turbornachinery; integration of structural analysis 

with the computational fluid dynamics of airflow, car crash simulation; integrated design and 

manufacturing systems; design of new drugs for the pharmaceutical industry by modeling new 

compounds; simulation of electromagnetic and network properties of electronic systems-from 

new components to full printed circuit boards; identification of new materials with interesting 

properties such as superconductivity; simulation of electrical and gas distribution systems to 

optimize production and response to failures; production of animated films and educational and 

entertainment uses such as simulation of virtual worlds in theme parks and other virtual reality 

applications; support of geographic information systems including real-time analysis of data from 

satellite sensors in NASA's "Mission to Planet Earth." 

A relatively unexplored area is known as "command and control" in the military area and 

"decision support' or "information processing" in the civilian applications. These combine large 
' databases with extensive computation. In the military, the database could be sensor information 

and the processing a multitrack Kalman filter. Commercially, the database could be the nation's 

medicaid records and the processing would aim at cost containment by identifying anomalies mid 
inconsistencies. 

Servers in multimedia networks set up by cable and telecommunication companies. These 
servers will provide video, information, and simulation on demand to home, education, and 

industrial users. CP did not address such large-scale problems. Rather, we concentrated on major 

academic applications. This fit the experience of the Caltech faculty who led most of the CP 

teams, and further academic applications are smaller and cleaner than large-scale industrial 

problems. One important large-scale CP application was a military simulation and produced by 

Caltech's Jet Propulsion Laboratory. CP chose the correct and only computations on which to cut 

its parallel computing teeth. In spite of the focus on different applications, there are many 
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similarities between the vision and structure of CP and today's national effort. It may even he that 

today's grand challenge teams can learn from CP's experience. 

3 Trends in Applications 

As computers become ever faster, it can be tempting to suppose that they will eventually 

become "fast enough" and that appetite for increased computing power will be sated. However, 

history suggests that as a particular technology satisfies known applications, new applications 

will arise that are enabled by that technology and that will demand the development of new 

technology. As an amusing illustration of this phenomenon, a report prepared for the British 

government in the late 1940s concluded that Great Britain's computational requirements could be 

met by two or perhaps three computers. In those days, computers were used primarily for 

computing ballistics tables. The authors of the report did not consider other applications in 

science and engineering, let alone the commercial applications that would soon come to dominate 

computing. Similarly, the initial prospectus for Cray Research predicted a market for ten 

supercomputers; many hundreds have since been sold. 

Traditionally, developments at the high end of computing have been motivated by 

numerical simulations of complex systems such as weather, climate, mechanical devices, 

electronic circuits, manufacturing processes, and chemical reactions. However, the most 

significant forces driving the development of faster computers today are emerging commercial 

applications that require a computer to be able to process large amounts of da111 in sophisticated 

ways. These applications include video conferencing, collaborative work environments, 

computer-aided diagnosis in medicine, parallel databases used for decision support, and advanced 

graphics and virtual reality, particularly in the entertainment industry. For example, the 

integration of parallel computation, high-performance networking, and multimedia technologies 

· leading to the development of video servers, computers designed to serve hundreds or 

thousands of simultaneous requests for real-time video. Each video stream can involve both data 

sfer rates of many megabytes per second and large amounts of processing for encoding and 

decoding. In graphics, three-dimensional data sets are now approaching volume elements (1024 

a side). At 200 operations per element, a display updated 30 times per second requires a 

put.er capable of 6.4 operations per second. 
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Although commercial applications may define the architecture of most future parallel 

computers, traditional scientific applications will remain important users of parallel computing 

technology. Indeed, as nonlinear effects place limits on the insights ottered by purely theoretical 

investigations and as experimentation becomes more costly or impractical, computational studies 

of complex systems are becoming ever more important. Computational costs typically increase as 

the fourth power or more of the •• resolution" that determines accuracy, so these studies have a 

seemingly insatiable demand for more computer power. They are also often characterized by 

large memory and inputJoutput requirements. For example, a ten-year simulation of the earth's 

climate using a state-of-the-art model may involve floating-point operations, ten days at an 

execution speed of floating-point operations per second (10 gigaflops). This same simulation can 

easily generate a hundred gigabytes ( bytes) or more of data. Yet scientists can easily imagine 

refinements to these models that would increase these computational requirements 10,000 times. 

In summary, the need for faster computers is driven by the demands of both data 

intensive applications in commerce and computation-intensive applications in science and 

engineering. Increasingly, the requirements of these fields am merging, as scientific and 

engineering applications become more data intensive and commercial applications perform more 

sophisticated computations. 

4 Trends in Computer Design 

Tue performance of the fastest computers has grown exponentially from 1945 to the 

present, averaging a factor of 10 every five years. While the first computers performed a few tens 

of floating-point operations per second, the parallel computers of the mid-1990s achieve tens of 

billions of operations per second. Similar trends can be observed in the low-end computers of 

different eras: the calculators, personal computers, and workstations. There is little to suggest that 

this growth will not continue. However, the computer architectures used to sustain this growth 

are changing radically from sequential to parallel. 
Tue performance of a computer depends directly on the time required to perform a basic 

operation and the number of these basic operations that can be performed concurrently. Toe time 

to perform a basic operation is ultimately limited by the '' clock cycle' of the processor, that is, 

the time required to perform the most primitive operation. However, clock cycle times are 
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decreasing slowly and appear to be approaching physical limits such as the speed of Jight. We 

cannot depend on faster processors to provide increased computational performance. 

To circumvent these limitations, the designer may attempt to utilize internal concurrency 

in a chip, for example, by operating simultaneously on all 64 bits of two numbers that are to be 

multiplied. However, a fundamental result in Very Large Scale Integration (VLSI) complexity 

theory says that this strategy is expensive. This result states that for certain transitive 

computations (in which any output may depend on any input), the chip area A and the time T 

required to perform this computation are related so that must exceed some problem-dependent 

function of problem size. This result can be explained informally by assuming that a computation 

must move a certain amount of information from one side of a square chip to the other. The 

amount of information that can be moved in a time unit is limited by the cross section of the chip. 

This gives a transfer rate of, from which the relation is obtained. To decrease the time required to 

move the information by a certain factor, the cross section must be increased by the same factor, 

and hence the total area must be increased by the square of that factor. 

TI1is result means that not only is it difficult to build individual components that operate 

faster, it may not even be desirable to do so. It may be cheaper to use more, slower components. 

For example, if we have an area of silicon to use in a computer, we can either build components, 

each of size A and able to perform an operation in time T, or build a single component able to 

perform the same operation in time T/n. The multicomponent system is potentially n times faster. 

Computer designers use a variety of techniques to overcome these limitations on single computer 

performance, including pipelining (different stages of several instructions execute concurrently) 

and multiple function units ( several multipliers, adders, etc., are controlled by a single instruction 

stream). Increasingly, designers are incorporating multiple "computers,' each with its own 

processor, memory, and associated interconnection logic. This approach is facilitated by 

advances in VLSI technology that continue to decrease the number of components required to 

implement a computer. As the cost of a computer is (very approximately) proportional to the 

number of components that it contains, increased integration also increases the number of 

processors that can be included in a computer for a particular cost. The result is continued growth 

in processor counts. 
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5 Trends in Networking 

Another important trend changing the face of computing is an enormous increase in the 

capabilities of the networks that connect computers. Not long ago, high-speed networks ran at 1.5 

Mbits per second; by the end of the 1990s, bandwidths in excess of 1000 Mbits per second will 

be commonplace. Significant improvements in reliability are also expected. These trends make it 

feasible to develop applications that use physically distributed. resources as if they were part of 

the same computer. A typical application of this sort may utilize processors on multiple remote 

computers, access a selection of remote databases, perform rendering on one or more graphics 
computers, and provide real-time output and control on a workstation. 

We emphasize that computing on networked computers ("distributed computing") is not just a 

subfield of parallel computing. Distributed computing is deeply concerned with problems such as 

reliability, security, and heterogeneity that are generally regarded as tangential in parallel 

computing. (As Leslie Lamport bas observed, "A distributed system is one in which the failure of 

a computer you didn't even know existed can render your own computer unusable.") Yet the 
basic task of developing programs that can run on many computers at once is a parallel 

computing problem. In this respect, the previously distinct worlds of parallel and distributed 
computing are converging. 

6 Summary of Trends 

This brief survey of trends in applications, computer architecture, and networking 

suggests a future in which parallelism pervades not only supercomputers but also workstations, 
personal computers, and networks. In this future, programs will be required to exploit the 

multiple processors located inside each computer and the additional processors available across a 

network. Because most existing algorithms are specialized for a single processor, this situation 

implies a need for new algorithms and program structures able to perform many operations at 
once. Concurrency becomes a fundamental requirement for algorithms and programs. 

This survey also suggests a second fundamental lesson. It appears likely that processor counts 
will continue to increase perhaps, as they do in some environments at present, by doubling each 
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year or two. Hence, software systems can be expected to experience substantial increases in 

processor count over their lifetime. In this environment, scalability resilience to increasing 

processor counts is as important as portability for protecting software investments. A program 

able to use only a fixed number of processors is a bad program, as is a program able to execute on 

only a single computer. Scalability is a major theme that will be stressed throughout this book. 
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CHAPTER3 

1 Flynn's Taxonomy 

In general, digital computers may be classified into four categories, according to the 

multiplicity of instruction and data streams. This scheme for classifying computer organizations 

was introduced by Michael J. Flynn. The essential computing process is the execution of a 

sequence of instrnctions on a set of data. The term stream is used here to denote a sequence of 

items (instructions or data) as executed or operated upon by a single processor. Instructions or 

data are defined with respect to a referenced machine. An instruction stream is a sequence of 

instructions as executed by the machine; a data stream is a sequence of data including input, 

partial, or temporary results, called for the instruction stream. 

Computer organizations are characterized by the multiplicity of the hardware provided to service 

the instruction and data streams. Listed below are Flynn's four machine organizations: 

1. Single instruction stream single data stream (SISD) 

2. Single instruction stream multiple data stream (SIMD) 

3. Multiple instruction stream single data stream (MISD) 

4. Multiple instruction stream multiple data stream (MIMD) 

1.1 SISD computer organization 

This organization represents most serial computers available today. Jnstructions are 

executed sequentially but may he overlapped in their execution stages 

1.2 SIMD computer organization 

In this organization, there are multiple processing elements supervised by the same 

control unit. All PE's receive the same instruction broadcast from the control unit but operate on 

different data sets from distinct data streams. 
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1.3 MISD computer organization 

There are n processor units. each receiving distinct instructions operating over the same 

data stream and its derivatives. The results (output) of one processor become the input ( operands) 
of the next processor in the macropipe. 

1.4 MIMD computer organization 

Most multiprocessor systems and multiple computer systems can be classified in this 

category. MIMD computer implies interactions among the n processors because all memory 

streams are derived from the same data space shared by all processors. If the n data streams were 

from disjointed subspaces of the shared memories, then we would have the so-called multiple 

SISD (MSISD) operation, which is nothing but a set of n independent SISD uniprocessor 
systems. 

The last three classes of computer organization are the classes of parallel computers. 

2 A Taxonomy of Parallel Architectures 

There are many ways in which parallel computers can be constructed. These computers 
differ along various dimensions . 

. 1 Control Mechanism 

Processing units in parallel computers either operate under the centralized control of a 

.gle control unit or work independently. In architectures referred to as stream, multiple data 

(SIMD), a single control unit dispatches instructions to each processing unit. Figure 2.2(a) 

Alst:rates a typical SIMD architecture. In an SIMD parallel computer. the same instruction is 

ted synchronously by all processing units. Processing units can be selectively switched off 

15 



during an instruction cycle. Examples of SIMD parallel computers include the Illiac IV, MPP, 

DAP. CM-2, MasPar MP- L and Mas.Par MP-2. 

Computers in which each processor is capable of executing a different program 

independent of the oilier processors are called multiple instruction stream, multiple data stream 
(MIMD) computers. Figure 2.2(b) depicts a typical MIMD computer. Examples of MIMD 

computers include the Cosmic Cube. nCUBE 2. iPSC. Symmetry, FX-8, FX-2800, TC-2000, 
CM-5, KSR-1, and Paragon XP/S. 
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Figure 2.2 A typical SIMD architecture (a) and a typical M1MD architecture (b). 

SJMD computers require less hardware than MIMD computers because they have only 
one global control unit. Furthermore, SIMD computers require Jess memory because only one 

copy of the program needs to be stored. In contrast, MIMD computers store the program and 
operating system at each processor. SIMD computers are naturally suited for data-parallel 

programs; that is, programs in which the same set of instructions are executed on a large data set. 

Furthermore, SIMD computers require less startup time for communicating with neighboring 
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processors. This is because the communication of a word of data is just like a register transfer 

( due to the presence of a global clock) with the destination register in the neigh boring processor. 

A drawback of SIMD computers is that different processors cannot execute different instructions 

in the same clock cycle. For instance, in a conditional statement, the code for each condition must 

be executed sequentially. This is illustrated in Figure 2.3. The conditional statement in Figure 

2.3(a) is executed in two steps. In the first step, all processors that have B equal to zero execute 

the instruction C = A. All other processors are idle. In the second step, the 'else' part of the 

instruction (C = AIB) is executed. The processors that were active in the first step now become 

idle. Data-parallel programs in which significant parts of the computation are contained in 

conditional statements are therefore better suited to MIMD computers than to SIMD computers. 

Individual processors in an MIMD computer are more complex, because each processor has its 

own control unit. It may seem that the cost of each processor must be higher than the cost of a 

SIMD processor. However, it is possible to use general-purpose microprocessors as processing 

units in MIMD computers. In contrast, the CPU used in SIMD computers has to be specially 

designed. Hence, due to the economy of scale, processors in MIMD computers may be both 

cheaper and more powerful than processors in SIMD computers. 

SIMD computers offer automatic synchronization among processors after each instuction 

execution cycle. Hence, SIMD computers are better suited to parallel programs that require 

frequent synchronization. Many MIMD computers have extra hardware to provide fast 

synchronization, which enables them to operate in SIMD mode as well. Examples of such 

computers are the DADO and CM-5. 
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Figure 2.3 executing a conditional statement on an Sil\,ID computer with four processors: (a) The 

conditional statement; (b) The execution of the statement in two steps. 
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3. A Parallel Machine 

The Intel Paragon- is a particular form of parallel machine, which makes concurrent computation 

available at relatively low cost It consists of a set of independent processors, each with its own 

memory, capable of operating on its own data. Each processor has its own program to execute 

and processors are linked by communication channels. 

'TI1e hardware consists of a number of nodes, disk systems, communications networks all 

mounted together in one or several cabinets with power supply for the whole system. Each node 

is a separate board, rather like a separate computer. Each node has memory, network interface, 

expansion port, cache and so on. The nodes are Jinked together through a back plane, which 

provides high-speed communications between them. 

Each node has its own operating system, which can be considered as permanently 

resident. It takes care of all the message passing, and also allows more than one executable 

program, or process as they will be called, to be active on each node at any time. Strictly 

speaking, it is node processes that communicate with other node processes rather than the nodes 

themselves. 
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Remember, nodes use their own copy of the program and have their own memory allocation. No 

variables arc shared between nodes or even between processes on the same node. Data can only 

be shared by sending them as messages between processes. 

The Paragon supercomputer is a distributed-memory multicomputer. The system can 

accommodate more than a thousand heterogeneous nodes connected in a two-dimensional 

rectangular mesh. A lightweight MACH 3.0 based microkemel is resident on each node, which 

provides core operating system functions. Transparent access to fiJe systems is also provided. 

Nodes communicate by passing messages over a high-speed internal interconnect network. A 

general-purpose MIMD (Multiple Instruction, Multiple Data) architecture supports a choice of 
programming styles and paradigms, including true MIMD and Single Program Multiple Data 
(SPMD). 

We will adopt the SPMD programming paradigm (Single Program Multiple Data) i.e. 
each process is the same program executing on different processors. Each program executes 

essentially the same algorithms, but different branches of the code may be active in different 

processors. 'The general architecture of the machine is illustrated in figure 1.2 .In the illustration, 

nodes are arranged in a 2D mesh. Each compute node consists of two i860XP processors. One of 

these is an application processor and the other a dedicated communication processor. User 

applications will normally run using the application processor. The figure illustrates that each 

compute node may pass messages to neighbouring nodes through a bi-directional communication 

channel. When messages are to be passed indirectly between non-neighbouring processors, the 

operating system will handle routing the message between intermediate processors. 

File system support and high-speed parallel file access is provided through the nodes labelled 

service and I/0 in the diagram. Access to the parallel file system is made through standard OSF 
library routines ( open(), closer), read(), write(), etc.,). 

When a user is logged in to the Paragon system, the operating system will allocate the login 

session to one of the service nodes. Exactly which service node is in use is totally transparent to 

user. The user will usually edit. files, and compile, link and run applications while logged in to 

e of the service nodes. Note also that. most sites will have available a so-called cross 

vironment which allows most of the program development stages - editing, compiling, linking 

debugging - to be carried out on a workstation away from the paragon system. Using the 
ss-environment is highly recommended, as the available capacity for such operations is 
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usually greater on a workstation than on the service nodes. Consult your local system 

administrator to find out how to use this facility. 

Figure 1~: OverVU"JW of the P.&r~ g_ygtmn 
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CHAPTER4 

1 Parallel Programming 

To nm the algorithms on a parallel computer, we need to implement them ir1 a 

programming language. In addition to providing all the functionality of a sequential language, a 

language for programming parallel computers must provide mechanisms for sharing information 

among processors. It must do so in a way that is clear, concise, and readily accessible to the 

programmer. A variety of parallel programming paradigms have been developed. TI1is chapter 

discusses the strengths and weaknesses of some of these pamdigms, and illustrates them with 

examples. 

2 Parallel Programming Paradigms 

Different parallel programming languages enforce different programming pnmdit,ms The 

variations among paradigms are motivated by several factors. First, there is a difference in the 

amount of effort invested in writing parallel programs Some languages require more work from 

the programmer, while others require less work but yield less efficient code. Second, one 

programming paradigm may be more efficient than others for programming on certain parallel 

computer architectures. Third, various applications have different types of parallelism, so 

different programming languages have been developed to exploit them. This section discusses 

these factors in greater detail. 
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2.1 Explicit versus Implicit Parallel Programming 

One way to develop a parallel program is to code an explicitly parallel algorithm. This approach, 

called explicit parallel programming , requires a para]lel algorithm to explicitly specify how the 

processors will cooperate in order to solve a specific problem. 111e compiler's task is 

straightforward. It simply generates code for the instructions specified by the programmer. The 

programmer's task, however, is quite difficult 

Another way to develop parallel programs is to use a sequential programming language and have 

the compiler insert the constructs necessary to nm the program on a parallel computer. This 

approach, called implicit parallel programming, is easier for the programmer because it places a 

majority of the burden of parallelization on the compiler. 

Unfortunately, the automatic conversion of sequential programs to efficient parallel ones 

is very difficult because the compiler must analyze and understand the dependencies in different 

parts of the sequential code to ensure an efficient mapping onto a parallel computer. 111e 

compiler must partition 1.he sequential program into blocks and analyze dependencies between the 

blocks. 111.e blocks are then converted into independent tasks that are executed on separate 

processors. Dependency analysis is complicated by control structures such as loops, branches, 

and procedure calls. Furthermore, there are often many ways to write a sequential program for a 

given application. Some sequential programs make it easier than others for the compiler to 

generate efficient parallel code. Therefore, the success of automatic parallelization also depends 

on the strncture of the sequential code. Some recent languages, such as Fortran D, allow the 

programmer to specify the decomposition and placement of data among processors. This makes 

the job performed by parallelizing compilers somewhat simpler. 

2.2 Shared-Address-Space versus Message-Passing 

In 1.he shared-address-space programming paradigm, programmers view their programs as 

a collection of processes accessing a central pool of shared variables. The shared-address-space 

programming style is naturally suited to shared-address-space computers. A parallel program on a 

shared-address-space computer shares data by storing it in globally accessible memory. Each 
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processor accesses the shared data by reading from or writing to shared variables. However, more 

than one processor might access the same shared variable at a time, leading to unpredictable and 

undesirable results. For example, assume that x initially contains the value 5 and that processor P 1 

increases the value of x by one while processor P2 decreases it by one. Depending on the 

sequence in which the instructions are executed, the value of x can become 4, 5, or 6. For 

example, if P1 reads the value of x before P2 decreases it, and stores the increased value after P 2 

stores the decreased value, x will become 6. We can conrect the situation by preventing the 

second processor from decreasing x while it is being increased by the first processor. 
Shared-address-space programming languages must provide primitives to resolve such mutual- 

exclusion problems. 
In the message-passing programming paradigm, programmers view their programs as a 

collection of processes with private local variables and the ability to send and receive data 

between processes by passing messages. In this paradigm, there are no shared variables among 

processors. Each processor uses its local variables, and occasionally sends or receives data from 
other processors. The message-passing programming style is naturally suited to message-passing 

computers. 
Shared-address-space computers can also be programmed using the message-passing 

paradigm. Since most practical shared-address-space computers are no uniform memory access 

architecmres, such emulation exploits data locality better and leads to improved performance for 

tnany applications. On shared-address-space computers, in which the local memory of each 

processor is globally accessible to all other processors (Figure 2.5(a)), this emulation is done as 

follows. Part of the local memory of each processor is designated as a communication buffer, and 
the processors read from or write to it when they exchange data. On shared-address-space 

computers in which each processor has local memory in addition to global memory, message 

passing can be done as follows. The local memory becomes the logical local memory, and a 

designated area of the global memory becomes the communication buffer for message passing. 
Many parallel programming languages for shared-address-space or message-passing 

MIMD computers are essentially sequential languages augmented by a set of special system calls. 

These calls provide low-level primitives for message passing, process synchronization, process 
creation, mutual exclusion, and other necessary tuncdons. Extensions to C, Fortran, and C++ 

have been developed for various parallel computers including nCUBE2, iPSC 860, Paragon XP/S 
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CM-5, TC 2000, KSR- 1, and Sequent Symmetry. In order for these programming languages to 

be used on a parallel computer, information stored on different processors must be explicitly 

shared using these primitives. As a result, programs may be efficient, but tend to be difficult to 

understand, debug, and maintain. Moreover, the lack of standards in many of the languages 

makes programs difficult to port between architectures. Parallel programming libraries, such as 

PVM, Parasoft EXPRESS, P4, and PICL, try to address some of these problems by offering 

vendor-independent low-level primitives. These libraries offer better code portability compared 

to earlier vendor-supplied progra.nuning languages. However, programs are usually still difficult 

to understand, dehng, and maintain. 

2.3 Data Parallelism versus Control Parallelism 

In some problems, many data items are subject to identical processing. Such problems can 

be parallelized by assigning data elements to various processors, each of which performs 

identical computations on its data. This type of parallelism is called data parallelism. An example 

of a problem that exhibits data parallelism is matrix multiplication. When multiplying two n x n 

matrices A and B to obtain matrix C = (c, ,j ), each element ci. i is computed by performing a dot 

product of the ith row of A with the l11 column of B. Therefore, each element ci. i is computed by 

performing identical operations on different data, which is data parallel. 

Several programming languages have been developed that make it easy to exploit data 

parallelism. Such languages are called data-parallel programming languages and programs 

written in these languages are called data-parallel programs. A data-parallel program contains a 

single sequence of instructions, each of which is applied to the data elements in lockstep. Data 

parallel programs are naturally suited to SIMD computers. 

A global control unit broadcasts the instructions to the processors, which contain the data. 

Processors execute the instruction stream synchronously. Data-parallel programs can also be 

executed on MINlD computers. However, the strict synchronous execution of a data-parallel 

program on an MIMD computer results in inefficient code since it requires global 

synchronization after each instructions, One solution to this problem is to relax the synchronous 

execution of instructions. In this programming model, called single program, multiple data or 
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SPMD, each processor executes the same program asynchronously. Synchronization takes place 

only when processors need to exchange data. Thus, data parallelism can be exploited on an 

MlNID computer even without using an explicit data-parallel programming language 

Control parallelism refers to the simultaneous execution of different instrnction streams. 

Instructions can be applied lo the same data stream, but more typically they are applied to 

different data streams. An example of control parallelism is pipelining. In pipelining, 

computation is parallelized by executing a different program at each processor Emo sending 

intermediate results to the next processor. The result is a pipeline of data owing between 

processors. Algorithms for problems requiring control parallelism usually map well onto MTMD 

parallel computers because control parallelism requires multiple instruction streams In contrast, 

SIMD computers support only a single instrnction stream and are not able to exploit control 

parallelism efficiently. 

Many problems exhibit a certain amount of both data parallelism and control parallelism 

The amount of control parallelism available in a problem is usually independent of the size of the 

problem and is thus limited. In contrast, the amount of data parallelism in a problem increases 

with the size of the problem. Therefore, in order to use a large umber of processors efficiently, it 

is necessary to exploit the data parallelism inherent in an application. 

Note that not all data-parallel applications can be implemented using data-parallel 

programming languages nor can all data-parallel applications be executed on SThiID computers. 

In fact, many of them are more suited for MIMD computers. For example, the search problem bas 

data parallelism, since successors must eventually be generated for all the nodes in the tree. 

However, the actual code for generating successor nodes contains many conditional statements. 

Thus, depending upon the code being generated, different instructions are executed. As shown in 

igure 2.3, such programs perform poorly on SIMD computers. In some data-parallel 

plications, the data elements are generated dynamically in an unstructured manner, and 

ibution of data lo processors must be done dynamically For example, in the tree-search 

lem, nodes in the tree are generated during the execution of the search algorithm, and the tree 

ws unpredictably. To obtain a good load balance, the search space must be divided 

-,namically among processors. Data-parallel programs can perform data redistribution only on a 

scale; that is, they do not allow some processors to continue working while other 
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processors redistribute data among themselves. Hence, problems requiring dynamic distribution 

are harder to program in the data-parallel paradigm. 

Data-parallel languages offer the programmer high-level constructs for sharing infor 

mation and managing concurrency. Programs using these high-level constrncts are easier to write 

and understand. Some examples of languages in this category are Dataparallel C and C •. 

However, code generated by these high-level constructs is generally not as efficient as 

handcrafted code that uses low-level primitives. In genera], if the communication patterns 

required by the parallel algorithm are not supported by the data-parallel language, then the data 
parallel program will be less efficient. 

3 Primitives for the Message-Passing 

Programming Paradigm 

Existing sequential languages can easily be augmented with library calls to provide 

message-passing services. This section presents the basic extensions that a sequential language 

must have in order to support the message-passing programming paradigm. 

Message passing is often associated with MIMD computers, but SIMD computers can he 

programmed using explicit message passing as well. However, due to the synchronous execution 

of a single instruction stream by SIMD computers, the explicit use of message passing sometimes 

results in inefficient programs. 

3.1 Bnsic Extensions 

The message-passing paradigm is based on just two primitives: SEND and RECEIVE. 

SEND transmits a message from one processor to another, and RECElVE reads a message from 

other processor. 

e genernl form of the SEND primitive is 

(message, messagesize, target. type, flag) 
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Message contains the data to be sent, and message size is its size in bytes. Target is the label of 

the destination processor. Sometimes, target can also specify a. set of processors as the recipient 

of the message. For example, in a hypercube-connected computer, target may specify certain sub 

cubes, and in a mesh-connected computer it may specify certain sub meshes, rows, or columns of 
processors. 

The parameter type is a user-specified constant that distinguishes various types of 

messages. For example, in the matrix multiplication algorithm described in Section there a.re at 

least two distinct types of messages. 

Usually there are two forms of SEND. One allows processing to continue immediately 

after a message is dispatched, whereas the other suspends processing until the message is 

received by the target processor. The latter is called a blocking SEND, and the former a no 

blocking SEND, The flag parameter is sometimes used to indicate whether the SEND operation is 
blocking or no blocking. 

When a SEND operation is executed, the operating system performs the following steps. 

It copies the data stored in message to a separate area in the memory. called the communication 

buffer. It adds an operating-system-specific header to the message that includes type, flag, and 

possibly some routing information, Finally, it sends the message. In newer parallel computers, 

these operations are performed by specialized routing hardware. When the message arrives at the 

destination processor, it is copied into this processors communication buffer and a system 

variable is set indicating that a message has arrived. In some systems, however, the actual 

transfer of data does not occur until the receiving processor executes the corresponding 

RECEIVE operation. 

The RECEIVE operation reads a message from the communication buffer into user memory. 111e 

general form of the RECEIVE primitive is 

RECEIVE( message, message size, source, type, flag) 

There is a great deal of similarity between the RECEIVE and SEND operations because they 

perform complementary operations. The message parameter specifies the location at which the 

ta will be stored and message size indicates the maximum number of bytes to be put into 

ssage. At any time, more than one message may be stored in the communication buffer. These 
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messages may be from the same processor or different processors The source parameter specifies 

the label of the processor whose message is to be read. The source parameter can also be set to 

special values, indicating that a message can be read from any processor or a set of processors. 

After successfully completing the RECEIVE operation, source holds the actual label of the 

processor that sent the message. 

The type parameter specifies the type of the message to be received. There may be more 

than one message in the communication buffer from the source processorts). The type parameter 

selects a particular message to read. It can also take on a special value to indicate that any type of 

message can be read. After the successful completion of the RECEIVE operation, type will store 

the actual type of the message read. 

, As with SEND, the RECEIVE operation can be either blocking or nonblocking. In a 

blocking RECEIVE, the processor suspends execution until a desired message arrives and is read 

from the communication buffer. In contrast, nonblocking RECEJVE returns control to the 

program even if the requested message is not in the communication buffer. The flag parameter 

can be used to specify the type of RECEIVE operation desired. 

Bo1l1 blocking and nonblocking RECEIVE operations are useful. If a specific piece of 

data from a specific processor is needed before the computation can proceed, a blocking 

RECEIVE is used. Otherwise, it is preferable to use a nonblocking receive. For example, if a 

processor must receive data from several processors, and the order in which these data arrive is 

not predetermined, nonblocking RECEIVE is usually better. 

Most message-passing extensions provide other functions in addition to SEND and 

RECEIVE. These functions include system status querying, global synchronization, and setting 

mode for communication. Another important function is WHOAMI. The WHOAJ\,fl function 

returns information about the system and the processor itself TI1e general form of the WHOAMI 
function is: 

OAMI (processorid, numofprocessor s) 

Processorid returns the label of the processor, and numofprocessor s returns the total number of 

essors in the parallel computer. The processarid is the value used for the target and source 

neters of the RECEIVE and SEND operations. The total number of processors helps 
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determine certain characteristics of the topology of the parallel computer (such as the number of 

dimensions in a hypercube or the number of rows and columns in a mesh). 

Most message-passing parallel computers are programmed using either a host--node 

model or a hostless model. In the host-node model. the host is a dedicated processor in charge of 

loading the program onto the remaining processors (the nodes) The host also performs 

housekeeping tasks such as interactive input and output, termination detection, and process 

termination. In contrast. the hostless model has no processor designated for such housekeeping 

tasks. However, the programmer can program one of the processors to perf.orm these tasks as 
required. 

TI1e following sections present the actual functions used by message passing for some 

commercially-available parallel computers. 

3.2 nCUBE 2 

The nCUBE 2 is an MIMD parallel computer developed by nCUBE Corporation. Its processors 

are connected by a hypercube interconnection network. A folly configured nCUBE 2 can have up 

to 8192 processors. Each processor is a 32-bit RJSC processor with np to 64iv1B of local memory. 

Early versions of the nCUBE 2's system software supported the host-node programming model. 

A recent release of the system software primarily supports the hostless model 

Tue nCUBE 2's message-passing primitives are available for both the C and Fortran 

languages, The nCUBE 2 provides nonblocking SEND with the use of the nwrite function 

C int nwrite (char •message, int messagesize, int target, int type, int •fiag) 

Fortran integer fimction nwrite(message, messagesize, target, type, flag) 

dimension message (*) 

integer messagesize, target, type, flag 

Tue functions of nwrite's parameters are similar to those of the SEND operation. The 

main difference is that the flag parameter is unused. TI1e nCUBE 2 does not provide a blocking 
SEND operation. 
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The blocking RECENE operation is performed by the nread function 

C int nread(char •message, int messagesize, int •source, int •type, int •flag) 

Fortran integer function nread (message, messsgesize, source, type, flag) 

dimension reasage c·) 
integer messagesize, source, type, flag 

111e nread function's parameters are similar to those of RECEJVE with the exception of 

the flag parameter, which is unused. The nCUBE 2 emulates a nonblocking RECEIVE by calling 

a function to test for the existence of a message in the communication buffer. If the message is 

present, nread can be called to read it The ntest function tests for the presence of messages in the 

communication buffer. 

C int ntest ( int "source. int •type) 

Fortran integer function ntest (source, type) 

integer source, type 

The ntest function checks to see if there is a message in the communication buffer from 

processor source of type type. If such a message is present, ntest returns a positive value, 

indicating success; otherwise it returns a negative value. When the value of source or type ( or 

both) is set 

to-I, ntest checks for the presence of a message from any processor or of any type. After the 

function is executed, type and source contain the actual source and type of the message in the 

communication buffer. 

The functions npid and ncubesize implement the WHOAMI function. 

C int npid() 

int ncubesize() 

Fortran integer function npid() 
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integer function ncubesizei) 

'TI1e npid function returns the processor's label, and ncubesize returns the number of 

processors in the hypercube. 

3.3 iPSC 860 

Intel's iPSC 860 is an MIMD message-passing computer with a hypercube 

interconnection network:. A fully configured iPSC 860 can have up to 128 processors. Each 

processor is a 32-bit i860 RISC processor with up to 16MB of local memory. One can program 

the iPSC using either the host-node or the hostless programming model. The iPSC provides 

message-passing extensions for the C and Fortran languages. The same message-passing 

extensions are also available for Intel Paragon XP/S. which is a mesh-connected computer. 

The iPSC's nonblocking SEND operation is called csend. 

C csend (long type, char •message, long messagesize, long target, 

long flag) 

Fortran subroutine csend (type, message, messagesize, target, flag) 

integer type 

integer message j+) 

integer messagesize, target, flag 

The parameters of csend are similar to those of SEND. The flag parameter bolds the 

process identification number of the process receiving the message. This is useful when there are 

multiple processes rnnning on the target processor. The IPSC does not provide a blocking SEND 

operation. We can perform blocking RECEIVE by using the crecv function. 
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C crecv (long type, char "message, long messagesize) 

Fortran subroutine crecv (type, message. messagesize) 

integer type 

integer message c•) 
integer messagesize 

Comparing the crecv function with the RECEIVE operation, we see that the source and 

flag parameters are not available in crecv. However, crecv allows information about the source 

processor to be encoded in the type parameter. The iPSC provides nonblocking RECENE by 

using a function called irecv. The arguments of irecv are similar to crecv, with the exception that 

irecv returns a number that is used to check the status of tbe receive operation. The program can 

wait for a nonblocking receive to complete by calling the msgwait function. It takes U1e number 

returned by irecv as its argument and waits until the nonblocking RECENE operation has 

completed. 

TI1e iPSC functions mynade and numnodes are similar to WHOAMI. They return the 

label of the calling processor and the number of processors in the hypercube, respectively. 

C long my.node() 

long nurnnodes() 

integer function mynode() 

integer function nurnnodes() 

Fortran 

3.4 CM-5 

The CM-5, developed by Thinking Machines Corporation, supports both the MIMD and snvm 
models of computation. A fully configured CM-5 can have up to 16384 processors connected by 

a fat tree interconnection network. The CM-5 also bas a control network, used for operations 

involving many or all processors. Each CM-5 node has a SPARC RISC processor and four vector 
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units with up to 32MB of local memory. One can program the CM-5 using either the host-node or 
hostless programming models. 

When the CM-5 is used in MIMD mode, it is programmed with the use of message 

passing primitives that are available for the C, Fortran, and CH languages. 

The CM-5's blocking SEND fimction is CMMD_send_)ack. 

C int CMMD _send_ block (int target, int type, void •message, 

int messagesize) 

Fortran integer function CMMD _send_ block (target, type, message, messagesize) 

integer target, type 

integer message (*) 

integer messagesize 

The parameters of CMMD _send_ block are similar to those for the generic SEND 

primitive. TI1e CM-5's nonblocking SEND operation is CMMD _send_async. 

C CMMD _ mcb CMMD _send_ async (int target, int type, void *message, 

int messagasize, void (*handler) (CMMD_mcb)) 

Fortran integer funotion CMMD _send_asyno (target, type, message, 

messagesize, handler) 

integer target, type 

integer message(*) 

integer messagesize, handler 

Most of the parameters required by CMMD _ send_ async are similar to those required by 

the SEND operation. The CMMD_send_async function returns a pointer to a message control 

block (CMMD_mcb) after it has queued the message for transmission. The programmer is 

responsible for preserving the data in the buffer pointed to by message, and for freeing the 
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CMMD _ mcb when the message has been sent. The parameter handler allows the programmer to 

define a handler routine that is invoked automatically when the message has been sent 

The CM-5 provides blocking RECEIVE with the CMMD _receive_ block function 

C int CMMD _receive_ blook(int source, int type, void •message, 

int messagesize) 

Fortran integer function CMMD_receive_block (source, type, message, 

messagesize) 

integer source, type 

integer message I") 

integer messagesize 

A nonblocking RECEIVE operation is provided by the fimction CMMD _receive_ async. 

C CMMD mcb CMMD receive async (int source, int type, void •message, - - -- 

int messagesize, void (•handler) (CMMD _ mcb )) 

Fortran integer function CMMD _receive_ async ( source, type, message, 

messagesize, handler) 

integer source, type 

integer message r") 
integer messagesize, handler 

The parameters of the CMMD_receive_lock and CMMD_receive_async operations are 

similar to those for the corresponding CMMD _send_ lock and CMMD _send_ async operations. 

On the CM-5, the send function does not actually send the message until the destination 

node invokes a receive function, indicating that it is ready to receive a message. Furthermore, the 

CMMD send functions send no more data than the receiver has signaled it can accept Thus, the 

number of bytes sent is the smaller of the number of bytes requested (that is, the messagesize of 
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the send function) and the number of bytes the receive function allows (that is, the messagesize of 

the receive function). 
The CM-5 provides the functionality of WHOA MI with the functions 

CMMD _self _address and CMMD __partition_size. These functions return the label of the calling 

processor and the total number of processors. 

C int CMMD _ self_ address() 

int CMMI) _partition_size() 

Fortran int function CMMI) self address 

int function CMMI) __partition _size 

4 Data-Parallel Languages 

TI1e main emphasis of data-parallel languages is to make it easier for the programmer to 

express the data parallelism available within a program in a manner that is independent of the 

architectural characteristics of a given parallel computer. A data-parallel language has the 

following characteristics: 

( 1) It generates only a single instruction stream. 

(2) It implies the synchronous execution of instructions. Hence, it is much easier to write and 

debug data-parallel programs, since race conditions and deadlocks are impossible 

It requires the programmer to develop code that explicitly specifies parallelism. 

(3) It associates a virtual processor with the fundamental unit of parallelism. The programmer 

expresses computation in terms of operations performed by virtual processors. TI1e advantage of 

virtual processors is that programmers need not be concerned with the number of physical 

processors available on a parallel computer. They simply specify how many processors they 

need. However, using virtual processors inappropriately may result in inefficient parallel 

programs. 
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(4) It allows each processor to access memory locations in any other processor T11i.s 

characteristic creates the illusion of a shared address-space and simplifies programming since 

programmers do not have to perform explicit message passing. 

Since data-parallel languages hide many architectural characteristics from the pro 

grammer, writing data-parallel programs is generally easier than writing programs for explicit 

message passing. However, the ease of programming comes at the expense of increased compiler 

complexity. Compilers for data-parallel languages must map virtual processors onto physical 

processors, generate code to communicate data, and enforce synchronous instruction execution. 

4.1 Data Partitioning and Virtual Processors 

In a data-parallel language, data are distributed among virtual processors. The virtual 
processors must be mapped onto the physical processors at some point If the number of virtual 

processors is greater than the number of physical processors, then several virtual processors are 

emulated by each physical processor. In that case, each physical processor partitions its memory 
into blocks-one for each virtual processor it emulates-and executes each instrnction in the 

program once for each of the virtual processors. For example, assume that an instruction 
increments the value of a variable by one and that three virtual processors are emulated by each 

physical processor. The physical processors execute the instruction by performing three 

consecutive increment operations, one for each virtual processor. These operations affect the 
memory blocks of each virtual processor. 

TI1e amount of work done by each physical processor depends on the number of virtual 

pmcessors it emulates. If VPR is the ratio of virtual to physical processors. then the work 

performed by each physical processor for each program instruction is greater by a factor of VPR. 

This is because each physical processor has to execute VPR instructions for each program 

instruction. However, the amount of communication performed may be smaller or larger than 

VPR. For instance, if the virtual processors are mapped so that neighboring virtual processors 
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reside on physical processors that are farther away, the communication requirements will be 

higher than VPR. In most cases, however, it is possible to map virtual processors onto physical 

processors so that nearest-neighbor communication is preserved If this is the case some virtual 

processors may need to conununicate with virtual processors mapped onto the same physical 

processor. Depending on how smart the emulation is, this may lead to lower communication 

requirements. 

Some data-parallel languages contain primitives that allow the programmer to specify the 

desired mapping of virtual processors onto physical processors. This is essential in developing 

efficient parallel programs. The efficiency of a mapping depends on both the data communication 

patterns of the algorithm, and the interconnection network of the target computer. For example, a 

mapping suited to a hypercube-connected parallel computer may not be suited to a mesh 

connected parallel computer. 

.2 c>lt 

c• is a data-parallel programming language that is an extension of the C prngrnrnming 

guage. C" was designed by Thinking Machines Corporation for the CM-2 parallel computer. 

The CM-2 is a fine-grain SIMD computer with up to 65,536 processors. Each CM-2 processor is 

e bit wide, and supports up to 1 Mbit of memory. C" is also available for the CM-5. 

c• adheres to the ANSI standard for C, so programs written in ANSI C compile and run 

ctly under C •. In addition, C • provides new features for specifying data parallelism. The 

tures of c• include the following 
) A method to describe die size and the shape of parallel data and to create parallel variables. 

Operators and expressions for parallel data that provide functionality such as data 

dcasting and reduction. Some of these operators require communication. 

Methods to specify data points within selected parallel variables on which C" code is to 

te. 

1 Parallel Vartahles 
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c• has two types of variables. A scalar variable is identical to an ordinary C variable; scalar 
variables are allocated in the host processor. A parallel variable is allocated on all node 

processors. A parallel variable has as many elements as the number of processors. 

A parallel variable has a shape in addition to a type. A shape is a template for parallel data-a way 

to configure data logically. It defines how many parallel elements exist and how they are 

organized. A shape has a specific number of dimensions, referred to as its rank, with a given 

number of processors or positions in each dimension. A dimension is called an axis. For example, 

the following statement declares a shape calJed mesh, of rank two and having 1,048,576 

positions: 

shape [1024) [1024] mesh; 

Similarly, the following statement declares a shape of rank four with two positions along each 

axis: 

shape [ 2 ] [ 2 ] [ 2 ] [ 2 ] fourcube; 

The fourcube shape declaration declares a template containing a total of 2 x 2 x 2 x 2 = 16 
positions. A shape should reflect the most logical organization of the problem's data. For 

example, a graphics program might use the mesh shape to represent the two-dimensional images 

that it is going to process. However, not all possible configurations can be declared using the 

shape primitive. For example, shape does not allow us to declare a triangular-shaped or a 

diamond-shaped mesh. However, we can do this by declaring a larger shape and using only a 

portion of it. For example, we can obtain a triangular shape by declaring a square shape and using 

only half of it. 

C" does not allow the programmer to specify virtual-to-physical processor mappings explicitly. 

c• maps virtual processors onto physical processors so that neighboring virtual processors are 

mapped onto neighboring physical processors. However, C • allows us to specify across which 

· ensions of the shape communication will. be performed more frequently. The compiler uses 

· information to reduce communication cost. 
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After a shape is specified, parallel variables of that shape can be declared. Parallel variables have 

a type, a storage class, and a shape. The following statement declares the parallel variable count 

of type int and shape ring: 

shape [8192) ring; 

int: ring count; 

This declaration creates a parallel variable count with 8192 positions each of which is allocated to 

a different processor. We can access individual elements of the parallel variable count hy using 

left indexing. For example, [l] count accesses the value of the count that resides on the second 

processor (numbering is from O to 8191). Figure 13.1 illustrates the differences between scalar 

and parallel variables. 

Any standard or user-defined data type can be used with parallel variables. For example, an entire 

C structure can be a parallel variable. As another example, int: fourcube a [1000] declares the 16- 

position parallel variable a. in which each element is an array of 1000 integers. 

4.2.2 Parallel Operations 

C" supports all standard C operations and a few new operations for data-parallel programming. 

In addition, c• defines additional semantics for standard C operations when they are used with 

parallel variables. 

If the operands of an operation are scalar, then C" code behaves exactly like standard C code and 

the operation is performed on the host computer. The situation is different when one or more 

operands are parallel variables. For example, consider a simple assignment statement of the form 

+ = y, where both x and y are parallel variables. This assignment adds the value of y at each 

pe position to the value of x at. the corresponding shape position. AJJ additions take place in 

parallel. Note that an expression that evaluates to a parallel variable must contain parallel 

· bles of the same shape as the resulting parallel variable. Hence, in this example, x and y 

ust be of the same shape. In a statement of the form x = a, where a is a scalar variable, the value 

a is st.ored in each position ofx. This is similar to a broadcast operation. 
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A more interesting situation arises when the left side of an assignment operation is a scalar 

variable and the right side is a parallel variable. There are two cases in which this assignment 

makes sense. In the first case, the parallel variable is folly left indexed. For instance, if a is a 

scalar variable and x is a parallel variable of rank one, then a = [4]x is a valid statement and 

assigns to a the value of x at the fifth position of the shape. In the second case, the operation is 

one of those shown in Table 13.1. The result of these operations is a reduction. For instance, a + 
= x sums all the values ofx and stores the result in a. 

shape [1024] ring 

shape [1024) (1024] mesh 

intring:a 

int mesh: b 

int flag 

::;; :~ ::;'. : : 1;:::~:,: : · ::::+::i:::?: :: ::: : i;:;.n ·i~:, ~:: ) •. Il?!'..:•R 
"'"" . 

--~···· 

Figure 13.1 Examples of parallel and scalar variables. a and hare parallel variables of different 

shapes, and flag is a scalar variable. Courtesy of Thinking Machines Corporation. 

Table 13.J c- reduction operations. 

Operator 

+= 
Meaning 

Sum of values of parallel variable elements 
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I= 

Negative of the sum of values 

Bitwise AND of values 

Bitwise XOR of values 

Bitwise OR of values 

Minimum of values 

Maximum of values 

&= 

<?= 

>?'-= 

4.2.3 Choosing a Shape 

The with statement enables operations on parallel data by setting the current shape. Operations 

are performed on parallel variables of the current shape. In the following example, the With 

statement is required for performing the parallel addition: 

shape [8192) ring; 

int: ring x, y,z 
with (ring) 

x= y+z; 

4.2.4 Setting the Context 

C" bas a where statement that restricts the positions of a parallel variable on which operations are 

performed. TI1e positions to be operated on are called active positions. Selecting the active 

positions of a shape is called setting the context. For example, the where statement in the 

following code avoids division by zero: 

with (ring) { 

where (z != 0) 

X =v t z; 
} 
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The where statement can include an else clause. The else clause complements the set of active 

positions. Specifically, the positions that were active when the where statement was executed are 
deactivated, and the inactive positions are activated. For example, 
with (ring) { 

where (z I= 0) 

X = y I z; 
else 

X = y; 

} 

On the CM-2 (since it is an STMD machine) the where and else clauses are executed serially. One 

should limit the use of the where-else clause because multiple context setfings degrade 
performance substantially. 

4.2.5 Communication 

C* supports two methods of interprocessor communication. The first is called grid 

communication, in which parallel variables of the same type can communicate in regular patterns. 

The second method is called general communication, in which the value of any element of a 

parallel variable can be sent to any other element, whether or not the parallel variables are of the 

same shape. The regularity of grid communication makes it considerably faster than general 

communication on many architectures. In particular, on CM-2, grid communication can be 

mapped onto the underlying interconnection network quite efficiently. 

Data communication in C* uses left indexing, but instead of using a scalar value to left-index a 

parallel variable, a parallel variable is used. This operation is called parallel left indexing. A 

parallel left index rearranges the elements of the parallel variable based on the values stored in 

elements of the parallel index. The index must be of the current shape. 

dest = [index] source [index] dest = source 
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A get operation A send operation 

Figure 13.2 Examples of the send and get general communication operations. Courtesy of 
Thinking Machines Corporation. 

c• allows both send and get operations. If index, dest, and source are parallel variables of rank 
one, the general form of the send operation is 

( index [dest = source; 

and the general form of the get operation is 

dest = [ index [source; 

These operations are illustrated in Figure 13 2. 

For general communication, the values of the index variable can he arbitrary. For grid 

communication, C" uses a new function called pcoord to provide a self-index for a parallel 

variable along a specified axis. In grid communication, data can be sent only a fixed distance 

along each dimension. For example, 

destid = [pcoord( 0 )+ 1] source 1 d; 

shifts the elements stored in sourceld by one to the right, 

destid = fpcoord(0)-2]sourceld; 

shifts the elements by two to the left, and 

dest2d = [pcoord(O)+ 1] (pcoord(l }+l [sourcezd; 
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shifts the elements of source2d by one to the left and up. Note that destld and source ld are one 

dimensional shapes, whereas dest2d and source2d are two-dimensional shapes. Wraparound 

shifts are achieved by using the modulus operation. For example, 

dest2d = [(pcoord(O)+ 1 }°/o%4 )[(pcoord(l }1--1 )%%3)source2d; 

shifts the elements by one to the right and down. TI1e elements that fall off the two-dimensional 

shape are wrapped around. Note that the numbers 4 and 3 used in the modulus operation, are the 

number of positions along the corresponding axis. The operator % %' is similar to C's %' 

operator but works with negative values as well. 

To summarize, in general we can say that data-parallel programs tend to be smaller than 

explicit message-passing programs. Furthermore, programs that use the virtual-processor 

paradigm, tend to lie simpler to implement. 

CHEAPTER5 
NETWORK COMPUTING 

Network Structure and the Remote Procedure Call Concept 

Networked computing is characterized by several sequences of jobs, which arrive 

independently at various nodes. The jobs are designed and implemented more or less 

independently of each other and are only loosely coupled. The distributed sys- tern serves 

primarily as a resource-sharing network. 

A very common example of resource sharing is the file server. All files are located on a 

dedicated node in a distributed system. Software components rnnning on other nodes send their 

file access requests to the file server software. The fi.Je server executes these requests and returns 

the results (to the clients). 

In addition to file servers many other kinds of servers such as print servers, compute servers, data 

base servers, and mail servers have been implemented As with the file server, clients send their 

requests to the appropriate server and receive the results for further processing. Servers process 

requests from the various clients more or less independently of each other. The programs 
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running on the clients can be viewed as being designed and developed independently of each 
other. 

The following figure shows the concept of client server systems . 

..................... ....... 

.. . 

In client server system, the clients represent the users of a distributed system and servers 

represent different operating system functions or a commonly used application. 

The following figure shows a simple example of a client server system. 
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111is system bas a print server, a file server and the users which run on workstations and 

personal computers. The server software and the client software can nm on the same type of 

computer. The different nodes are connected by a local area network. 

From a user's point of view a client/server system can hardly be distinguished from a central 

system. e.g. a user cannot see whether a file is located on his local system or on a remote file 

server node. For the user the client/server system appears to be a very convenient and flexible 

central computing system. Mostly the user does not know whether a file is stored on his PC or on 

a file server. To the user the storage capacity of the server appears to be part of the PC storage 

capacity. 

Client/server systems are also very flexible. For a new application a specialized new 

lel'Ver can be added e.g. data base systems run on specialized data base servers, which have short 

.ccess times. The local client primarily controls data base applications; all the data is stored at the 

ta base server and special computations are executed by a compute server (also called number 

chier). The application program running on the client, calls the required functions provided 

the servers. This is done mainly by way of remote procedure calls (RPC). An RPC resembles a 

~-~ure call except that it is used in distributed systems. The following is a description of how 
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the RPC works. The program running on the client looks like a normal sequential program. The 

services of a particular server are invoked vi.a a remote procedure call. TI1e caller of a remote 

procedure is stopped until the invoked remote procedure is finished and the server has provided 

the results to the calling client in the same way that parameters are returned by a procedure. The 

servers are used in the same way that library procedures are used. This means that remote 

procedure calls hide the distribution of the fimctions of the system even at the program level. TI1e 

programmer does not need to concern himself with the system distribution. 

The figure below shows the basic structure of a client/server system. 

::a:::::::.::··::~::·:::,. 
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In the DCB client and server programs are executed by threads i.e. processes. Threads use 

an RPC in order to communicate with each other and binary semaphores and conditional 

variables for synchroniz.ation. In the DCE remote procedure calls are supported by directory 

services (DCE Call Directory Service) and security services O)CE Security Service). Directory 

services map logical names to physical addresses. If a client calls a particular service provided by 

a server, the directory service is used to find the appropriate server. The DCE security service 

provides features for secure communication and controlled access to resources. Distribute Time 

Service provides precise clock synchronization in a distributed system. TI1is is required for event 

logging, error recovery, etc. The distributed file service allows the sharing of files across the 

whole system. Finally the diskless support service allows workstations to use background disk 

es on file servers as if they were local disks 

/SCHILl.,93/, /05F92/. 

In cooperative computing a set of processes runs on several processing nodes. These 

ses cooperate to reach a common goal and together they form a distributed program. This 

ifferent from the client/server systems described above. In cooperative systems the processes 
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which comprise the distributed program are coupled very closely. 

coupled processes are executed on a loosely coupled system. 

In cooperative systems, the distribution of computing capability is not hidden behind 

programming concepts. TI1e different program sections running on different computers comprise 

a single program; but it can be seen at the programming level that the program sections are 

executed concurrently. These different program sections are also processes. Processes form a 

very important concept for central systems, client server systems and cooperative systems. If 

processes have to work together to perform their task, they must exchange data and synchronize 

their execution. Programming Systems for concurrent Systems contain communication and 

synchronization concepts. Cooperative programming resembles a human organization which 

works together to achieve a common goal. Its members must communicate with each other and 
must synchronize their activities. 

The following figure shows the basic structure of cooperative Systems 
............ '' ' ....•............. ' ' . 
. . . . .. . 
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Cooperative systems are mainly used for the automation of technical process and the 

• entation of communication software. Technical process in the mostly part consists of 

parallel activities. This means that several processes, which can be implemented in 
ways, work together to perform their task. 
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mmunication Software Systems 

A communication system consist of a communication network and the conununication 

are which mus on the various processing nodes. The communication software provides a 

are less convenient communication service for the application software. The application 

are on each node uses the communication service to exchange messages with the 
• tion software running on other nodes. 

In order to provide a convenient communication service the conununication software 
also exchange messages. This message exchange is based on the simpler communication 

provided directly by the network. For example the network provides a 
p ication service which only allows the transfer of a single byte. The communication 

provided by the communication software allows byte- strings of a fixed or even an 

length to be sent or received. This can be implemented in the following way: 'The 

software of n host system A wants to send a sequence of bytes to the application 

a host system B. The sequence of bytes is given to the communication system but the 
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application system. The communication system on host system A sends a byte with the length of 

01e byte string (the number of bytes) to the communication system on host system B. The 

communication system on host system B sends back an acknowledgement. This ts a byte with a 

certain value. After the communication software on host system A has received the 

acknowiedgement it starts to transfer the bytes of the byte string. then system B has received the 

number of bytes indicated in the first byte it again sends an ad'Dowledgement. Aft.er sending the 

acknowledgement. the communication software on host system B gives the received byte string 

to the application software .. This communication sequence which implements the transfer of a 

byte string just a simplistic illustration of what communication software can do As the example 

above shows. the communication between the communication software systems follows well 

defined rnles. These rnles are called protocols the need to provide convenient communication 

services for the application software leads to software communication protocols which can he 

extremely complex and must he organized in layers Each layer offers an improved 

communication service to the layer above. The widely used reference model for open system 

interconnection (OSI) defined by the International Standard Organization (ISO) pro- poses seven 

protocol layers /JS07498/. Each layer provides a certain service to the layer above. The service 

provided by a layer is implemented by the protocol specific to its layer and byte services of the 

layer below. In a host system the services specific to the layer are realized by protocol entities. 

The layer protocol is defined between protocol entities of the same layer. These exchange 

information by using the service of the layer below. In each lost system there must he at least one 

entity per layer. The set of entities of different layers in a host system is called a protocol stack. 

The implementation of these protocol stacks is called communication software. Communication 
software has the following execution properties IDROB 86/: 

· Interleaved execution of several entities on the same system 

· Distributed execution of entities of the same layer on different systems. Interleaved 

and distributed computations are usually' modeled as systems of parallel processes. 

Processes executing in parallel nonnaJly have to exchange information if they are to by 

one cooperate in solving a common task. One processes model entities. Representing or 

providing a service means exchanging information with processes representing entities of the 

layer below or above. The figure above shows. 
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Technical Process Control Software Systems 

Another important example of cooperative computing is a distributed technical process 

control system. The basic structure of technical systems controlled systems is shown in the 
following figure INEHM:84/. 

I .;.... . ... 2 .... f :::'.::::::'. .::::'.::::::::::;::::::::: .. 
.............. . . 
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The communication between computer systems and technical systems must meet hard 

real-time requirements, whereas the communication with the user is more or less dialogue- 
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oriented with less emphasis on time conditions (except in the case emergency signals such as fire 

alarms). For the sake of simplicity, we will focus on the relationship between technical Systems 

and real-time computer systems. A technical system consists of several mutually independent 

functional units, which communicate via appropriate interfaces with the computer System. 

Therefore the real time program must react to several simultanous inputs. This implies the 

structuring of a process control software system that takes into account a number of processes. 

Each process handles a certain group of signals. The basic requirement for a process control 

software system is the capability to follow the changes of the technical system as fast as possible. 

TI1e information in the process control software must he as close EIS possible to the state of the 

technical system. TI1e easiest way to achieve this is to design a process for each interface 

element. TI1is leads to the software system structure shown in the following figure INEHM84/ . 

................................. 
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Electronic Data Interchange (EDI) is the computer-to-computer exchange of inter- and 

intracompany technical and business data, based on the use of standards /DIGIT90/ (see figure 

below of the EDI business model). 
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These data can be structured or unstructured. Exchanging unstructured data follows specific 

communication standards although the data content is not in a structured format. More important. 

is the exchange of structured data. Examples of structured data exchange are: 

-Trade Data Interchange 

This type of EDI document exchange is mainly used to automate business processes. 

Examples of trade data interchanges include a request for quotation (RfQ), purchase orders, 

purchase order acknowledgements, etc. Each company and industry bas its own requirements for 

the structure and contents of these documents. A number of specific industry and national bodies 

have been fanned with the intention of standardising the format and content of messages. For the 

chemical industry CEFIC is the EDI standard and for the auto industry the related EDI standard is 

56 



called ODETTE. The standard defined by CCITT is called EDlF ACT. In order lo exchange 

EDlF ACT documents very ofien the CCITT E-Mail standard X.400 is recommended /Lil1L90/. 

- Electronic Funds Transfer Payment against invoices, electronic point of sale (EPOS) and 

clearing systems are examples of electronic funds transfer. 

- Technical Data Interchange 

Improvement in technical communication can play a key role in determining the success 

of a project. There is growing demand from trades for communication between their CAD 

(computer aided design) workstation and the workstations of important vendors. 

The following example shows how the different types of EDI interactions are used to 

handle a business process. 

Groupware 

In organizations people work together to reach a common goal. The formal interaction 

between members of an organization is described by structures and procedures. Additionally 

there exist informal interactions, which are very important.. Both types of interactions can mid 

should be supported by computers. Computer Supported Cooperative Work (CSCW) deals with 

the study and development of computer systems called groupware, which purpose it is 10 

facilitate these formal and informal interactions /ENGLEH88/. 

CSCW projects can be classified into four types /ENGLEHB8/ namely: 

1. Groups which are not geographically distributed and require common access in realtime 

Examples: presentation software, group decision systems 

2. Groups which are geographically distributed and require common access in realtime 

Examples: video conferencing, screen sharing 
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3. Asynchronous collaboration among people who are geographically distributed. Examples; 

notes conferences, joint editing 

4. Asynchronous collaboration among people who are not geographically distributed 

Examples: project management, personal time schedule management 

Groupware requires computers connected by a network. Thus groupware systems are 

distributed systems. Members of a group share data and exchange messages. Therefore 

groupware software systems are combinations of network and cooperative computing. 

Combination of Network Computing and Cooperative Computing 

Cooperative computing can he combined with client server systems. Processes in a 

distributed system can have access to servers. From the standpoint of a client server system the 

processes of a cooperative system can be considered as client processes. ln a technical process 

control soft.ware system a process can collect data from the technical process. This data is stored 

in a file located on a file server node. The following figure shows an example of a combination of 

a cooperative and a client/ server system. Process A. Process 13 and Process C form a 

cooperative software system. Process B and Process C use the server. This means that process B 

and process Care clients of the flle server. 
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Distributed Computing System 

A distributed computing system is not yet Noema. Niany of the component are present but some 

are still missing or not fully integrated. The network would be the communication 

mechanism for the distributed computing Noema supporting message passing, protocols, and 

asynchronous communication. The languages of communication are the protocols built up with 

bytes of data. Replication and groups of services could be made available with special name 

space management services available on the network. Some information may be kept in a data 

warehouse for analysis. Some information could be locally cached. Some functions could be pre 

evaluated and stored in anticipation of usage. Both code and data may have a common 

representation. Thus programs are to be treated as data in some cases and programs in other 

cases. Not all data can be interpreted as a program. The distributed computing Noema would 

need a security system with authentication, authorization, and data privacy. TI1e next chapters 

define how to build a distributed computing Noema. 
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CHEAPTER6 

Distributed Computing System 

In our distributed computing system: 

A "Node" is a Network-User" Interface (Nill) that provides network access to the 

WWW*. This node maybe as simple and economical as a "JavaTenn", which has a decent 

processor. limited memory/cache. I/0 devices and optional pheripherals such as CD ROM, hard 

disk. an input device which handles portable storage etc .. A node could also he a terminal, such 

as a UNIX workstation, PC or Mac with network capabilities". Their processing storage and local 

applications may differ. but their operations should be mostly dependent on their network 

bandwidth (which network service providers. such as Pac'I'el, MCI provide) and the pipe of the 

servers (end-service providers). 

A "Server" is a computer that provides services interactively. Services include providing 

executables (e.g. we may remotely load Word and nm it in our network interface), database or 

search engine (e.g Component library of TD, banks, stockbroker firms or any entity that handles 

and processes requests. 

A "Site" is a network destination that provides non-interactive information. For example, 

most people/organization's home page nowadays which contains visual display only and does not 

accept/require user input is merely a site. 

What differentiates a Server from and a Site is: a server is interactive "active" while a 

site is Serena (aka wleung) argues that the above two could/should he grouped together and 

called sites, while another definition of Server should he formulated. 

During the last group meeting (10/12), Professor Newton mentioned that there could/should he 

something between a node and servers. This intermediary could be: 

l) State Manager 
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State Manager manages things that doesn't fit into the cache, it could be handled by a 

central "Service Provider'?" which interacts with other servers/sites. However, this would present 

a major security problem; that's to believe that a "Service Provider" would ensure security of 
/ 

clients' data from internal and external access. (Maybe digital signatures would be required to 

access and retrieve unscripted data, or maybe inscription could be done at the clients or over the 

network) There would also be a durability problem. What happens when a State Manager goes 

down? If we have mirror images, then consistency and security problems arise and this all leads 

us to the ultimate debate of how distributed systems should be architect. As for network main 

memory and mirror sites, administration problems immediately come up to my mind How can 

they be administered, monitored and by whom? How can data security be provided for this 

virtual object? 

My argument is that none of these intermediate objects should exist, i.e. nodes should 

interact directly with servers (present model of WWW). At today's price and technology curve, 

pockets-sized DRAM or hard disk at an acceptable price, performance and capacity (>=500MB) 

is imminent One might argue that 500MB is not a lot of storage. That's because in today's 

standards, people store executables in their hard disks, but in the future, all people need is their 

personal documents (e.g. word-processing files, database, spread-sheets, etc.) that they 

(regularly) edit as executables will be nm off the Net. As for large audio, video files and 

graphically intense operations such as CAD or games, they should stay at their respective servers 

where an adequate bandwidth and special transmission mechanisms are provided. 

State management in this case is done either on a local storage (cache or hard disk) 

and/or at the server. Less consistency concerns is achieved at the expense of a higher response 

time for applications (updates need to go as far as the server instead of an intermediate node). 

The Future 

Microsoft's dominance of local processing will be displaced by major database and 

database tools (e.g. Oracle, Informix) companies together with software vendors that develop 
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network-based applications that run at the servers, aimed at providing high throughput, 

scalability, etc. 

Hardware vendors. such as Cisco and Bay Networks will be a force as well in helping 

clients design and implement the appropriate network/WAN strategies. 

Footnote 
1) A User may be a human being, processes or other computers. 

2) WWW may include or be a part of the Information Superhighway. 

3) If ''Everything" (from mail to Word, Quicken) is nm within a network interface, 
Would CPU processing power and speed be relevant in the future, or this will be a 

Hardware issue that primarily interests "Server" side of the operations. Primary end-user 

Concern would be network bandwidth and display capabilities. 

4 )"Service Provider" could be network services providers such as Pastels or software 

vendors such as Oracle. 

HORUS: A Flexible Group Communications System 

Computing represents a promising step towards robustness for mission-critical distributed 

applications. Process replicated for availability or as part of a coherent cache. They can been used 

to support highly available security domains. And· groµp mechanisms fit well an emerging 

generation of intelligent network and collaborative work applications. 

Yet there is little agreement concerning how process groups should look or behave. The 

requirements that applications place on a group infrastructure can vary tremendously, and there 

may be fundamental tradeoffs between semantics and performance. Even the most appropriate 

way to present the group abstraction to the application depends on the setting. 

This paper reports on the Homs system, which provides an unusually flexible group 

communication model to application-developers. This flexibility extends t.o system interface the 
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properties provided by a protocol stack, and even the configuration of Horus itself[which can run 

in user space, in an operating system kernel or micro kemel or be split between them. 

Homs can be used through any of several application interfaces. These include too I Kit 

styled interfaces, but also interfaces that bide group functionality behind Unix communication 

system-calls, the TK/TCL programming language, and other distributed computing 

constructs, The intent is that it be possible to be slide Horus beneath an existing system as 

transparently as possible, for example to introduce fault-tolerance or security without requiring 

substantial changes to the system being hardened. 

Homs provides efficient support for the virtually synchronous execution model. This 

model was introduced by the Isis Toolkit, and has been adopted with some changes by such 

systems as Tran sis, Synch, Trans/T otal, and Rampant Rampart. The model is based on group 

membership and communication primitives, and can support a variety of faculty-tolerant tools, 

such as for load-balanced request execution, fault tolerant computation, coherently replicated data 

and security. 

Although oft.en-desirable properties like virtual synchrony may sometimes be unwanted, 

introduce unnecessary overheads, or conflict with oilier objectives such as real-time guarautees. 

Moreover, the optimal implementation of a desired group communication property sometimes 

depends on the runtime environment. In an insecure environment, one might accept the overhead 

of data encryption, but wish to avoid this cost. when running inside a firewall. On a platform tile 

the Il3M SP2, which has reliable message transmission, protocols for message retransmission 

would be superfluous. 

Accordingly, Horus provides an architecture whereby the protocol supporting a group can 

be varied, at runtime, to match the specific requirements of its application and environment. 

It does this using a structured framework for protocol composition, which incorporates 

ideas from systems such as the Unix "streams" framework and the x-kernel, but replaces point-to 

point conununication with group communication as the fundamental abstraction. In horns group 

communication stacking protocol modules that have a regular architecture and in which each 

module has a separate responsibility provides support. Dynamically including or excluding 

particular modules from its protocol stack can optimize a process group. 

Horus also innovates by introducing run-time configuration, group communication 

interfaces full thread-safety, and supporting messages that may span multiple address spaces. 
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Since horns does not provide control operations and has one single address format, protocol 

layers can be mixed and matched freely. In both streams and the x-kernel, the different protocol 

modules supply many different control operations, and design their own address format, both 

severely limiting such configuration flexibility. 

1- A LAYERED PROCESS GROUP ARCIDTECTTJRE 

We find it useful to think of horns central protocol abstraction as resembling a Lego 

block, the hours "system" is thus like a "box" of Lego blocks. Each type of block implements a 

micro protocol that provides a different communication feature. To promote the combination of 

these blocks into macro protocols with desired properties, the blocks have standardized top and 

bottom interfaces that allows them to stacked on top of each other at nm time in a variety of 

ways. Obviously, not every sort of protocol block makes sense above or below every other sort. 

But the conceptual value of the architecture is that where it makes sense to create a new protocol 

by restacking existing blocks in a new way, doing so is straightforward. 

Technically, each horns protocol block is a software module with a set of entry points for 

down call and up call procedures. For example there is a down call to send a message and an up 

call to receive a message. Bach layer is identified hy an ASCTI name and registers its 11p ca 1J and 

down call handlers at initialization time. There is a strong similarity between horns protocol 

blocks 811d object classes in an object-oriented inheritance scheme and readers may wish to think 

of protocol blocks as members of a class hierarchy. 

To see how this works, consider the horns message-send operation. It looks up the 

message send entry in the topmost block and invokes that function. TI1is function may add a 

header to the message 811d will then typically invoke message-send again. This time control 

passes to the message send function in the layer below it. This repeats itself recursively until the 

bottom most block is reached and invokes a driver to actually send the message. 

'The specific layers currently supported by horns solve such problems as interfacing the 

systems to varied communication transport mechanisms overcoming lost packets encryption and 

decryption .maintaining group membership helping a process that joins a group obtain the state of 

the group merging a group that has partitioned, flow control, e.tc. Horus also includes tools to 

assist in the development and debugging of new layers. 
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the group merging a group that has partitioned, flow control, e.tc. Horus also includes tools to 

assist in the development and debugging of new layers. 

Bach stack of block is carefully shielded from other stacks. It has its own prioritized 

threads, and has controlled access to available memory through a mechanism called memory 

channels. Horus has a memory scheduler that dynamically assigns the rate at which each stack 

can allocate memory depending on availability and priority so that no stack can monopolize the 

available memory. This is particularly important inside a kernel, or if one of the stacks has safe 

real-time requirements. 

Besides threads and memory channels each stack deals with three other types of objects: 

end points, groups, and messages. The endpoint object models the communicating entity 

Depending on the application it may correspond to a machine, a process, a thread .a socket, a port 

.and so forth. An endpoint has an address and can send receive messages. However as we will see 

later messages are not addressed to endpoint but to gmnps. The endpoint address is used for 

membership purposes. 

It does this using a structured framework for protocol composition, which incorporates 

idea from systems such as the Unix "streams" framework and the x-kernel, but replaces point-to 

point communication with group communication as the fundamental abstraction. In horns group 

communication support is provided by stacking protocol modules that have a regular architecture 

and in which each module has a separate responsibility. Dynamically including or excluding 

particular modules from its protocol stack can optimize a process group. 

Homs also innovates by introducing run-time configuration, group communication 

interfaces full thread-safety, and supporting messages that may span multiple address spaces. 

Since horns does not provide control operations and has one single address format, protocol 

layers can be mixed and matched freely. In both streams and the x-kernel, the different protocol 

modules supply many different control operations, and design their own address format, both 

severely limiting such configuration flexibility .. 

A group object is used to maintain the local protocol state on an endpoint Associated 

with each group object is the group address to which messages are sent 1111d a view a list of 

destination endpoint addresses that are believed to be accessible group members. Since a group 

object is purely local , horns technically allows different views of the same group. An endpoint 
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may have multiple group objects allowing it to communicate with different groups and views. A 

user can install new views when processes crash or recover and can use one of several 

membership protocols to reach some form of agreement on views between multiple group objects 

in the same group. 

'Horus provides a large collection of micro protocols. Some of the most important ones 

are: 

Proposed Sidebar 

Com TI1e COM layer provides the horns group interface to such low-level protocols as 

IP,UDP, and some ATM interface. 

NAK- 111is layer implements a negative acknowledgement based message retransmission 

protocol. 

CY CLE-Multin1edia message dissemination 

P ARCLD1 Hierarchical message dissemination 

FRA G-Fragmentation/reassembly. 

MBRSHIP- This layer provides each member with a list of end points that are believed to be 

accessible. It runs a consensus protocol to provide it users with a virtually synchronous execution 

model. 

EC-Flow Control 

TOTAL-Totally ordered message delivery. 

STABLE- This layer detect when a message has been delivered to all destination endpoints, and 

can be garbage collected. 

CRYPT- Encryptions/ denyption 

MERGE- Location and merging of multiple group instance. 

The message object is a local storage structure. It is interface includes operations to push 

and pop protocol headers. Message are passed from layer by passing a pointer and ne vcr need be 

copied. 

A thread at the bottom most layers waits for message arriving on the network interface. 

When a message on to the layer above it. This repeat itself recursively. If necessary a layer may 
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drop a message or buffer it for delayed delivery. When multiple messages .However since each 

message is delivered using its own thread, this ordering may be lost depending on the scheduling 

policies used by the thread scheduler. Therefore, horns numbers the message and uses event 

count synchronization variables to reconstruct the order where necessary. 

2-Protocol Stacks 

The micro protocol architecture of horns would not be of great value unless the various 

classes of process group protocols that we might wish to support can he significant functionality 

Our experience in this regard has been very positive. 

The layers FRAG,NAK and COM respectively break large messages into smaller ones, 

overcome packet loss using negative acknowledgements and interface .Hour to the underlying 

transport protocols. The adjacent stack is similar, but provide weaker ordering and inc]udes a 

layer that supports "state transfer "to a process joining a group or when groups merge after a 

network partition To the right is a stack that supports scaling through a hierarchical structure in 

which each parent process is responsible for a set of "child" processes. The dual stack illustrated 

in this case represents a feature whereby a message can be routed down one of several stacks, 

depending on the type of processing required. Additional protocol blocks provide functionality 

such as data encryption packing small messages for efficient communication, isochronously 
communication. 

Layered protocol architectures sometimes perform poorly. Traditional layered systems impose an 

order on which protocols process messages limiting opportunities for optimization and imposing excessive 

overhead. Clack and Tennenhouse have suggested that the key to good performance rests. Systems based 

on the JLP principle avoid inter-layer ordering constraints and can perform as well as monolithically 
structure system. 

67 



3-Using Horus to build n robust groupware application 

Earlier we commented that horns can be hidden behind standard application programmer 

interfaces. A good illustration of how this done arose when we interfaced the graphical 

programming language to horns. 

A challenge posed by running systems like horns side with a package like windows. 

That such packages are rarely designed with threads or horns communication stacks in mind .To 

avoid a complex integration task. 

Architecturally, CMT consists of a multi-media server process that multicasts video and 

audio to a set of clients. We decided to replicate the server using a primary -backup .approach. 

Where the backup servers stand by to back up failed or slow primaries. 

4-Electra 

The information of process groups into CMT required sophistication with horus and its 

intercept proxies. Many potential users would lack the sophistication and knowledge required to 

do this hence we recognized a need for a way to introduce horns functionality in a more 

transparent way. This goal evokes an image of "plug and plug" robustness, and leads one to think 

in terms of an object-oriented approach computing. 

The common object request broker architecture (CORBA) is emerging as a major standard for 

supporting object-oriented distributed environments. Object-oriented distributed applications that comply 

with CORBA can invoke one-another methods with relative ease. Our work resulted in a CORDA 

compliant interface to horns which we call Electra can be used without horns, and vice versa , but the 

combination represents a more complete system. 
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CONCLUSION 

The increasing density of transistors on a chip follows directly from a decreasing feature 

size, which is now for the alpha. Feature size will continue to decrease and by the year 2000, 

chips with 50 million transistors are expected to be available. What can we do with all these 

transistors? With around a rnil1ion transistors on a chip, designers were able to move full 

mainframe functionality to about of a chip. This enabled the personal computing and workstation 

revolutions. The next factors of ten increase in transistor density must go into some form of 

parallelism by replicating several CPUs on a single chip. 
By the year 2000, parallelism is thus inevitable to all computers, from your children's 

video game to personal computers, workstations, and supercomputers. Today we see it in the 

larger machines as we replicate many chips and printed circuit hoards to build systems as arrays 

of nodes, each unit of which is some variant of the microprocessor. Parallelism allows one to 

build the world's fastest and most cost-effective supercomputers 

Parallelism may only be critical today for supercomputer vendors and users. By the year 

2000, all computers will have to address the hardware, algorithmic, and software issues implied 

by parallelism. The reward will be amazing performance and the opening up of new fields; the 

price will he a major rethinking and re-implementation of software, algorithms, and applications. 
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