
FACULTY OF ENGINEERING

Department of Computer
Engineering

GllADUATION PRO.JE(~l'
COM400

SlTR.JJICT:Parallel I'rugramming

Supervisor
Submitted by
Number
Department

:Bcsiine Erin
.Ahmet Bin ici
:980262
:Computer Engineer

JlfNlf 2002

ACKNOWLEDGEMENT

I would like to thank Miss. Besime Erin for accepting to be my supervisor and her support

for this project

I am so grateful to my parents who bad always shown patience and understanding to me.

Also, I would like to tkank all the lecturers for helping me see this graduation term.

And finally, I would like to thank all my friends for their support in school and in social

life.

ABSTRACT

Ever since conventional serial computers were invented, their speed bas steadily increased

to match the needs of emerging applications. However, the fundamental physical limitation

imposed by the speed of light makes it impossible to achieve further improvements in the speed

of such computers indefinitely. Recent trends show that the performance of these computers is

beginning to saturate. A natural way to circumvent this saturation is to use an ensemble of

processors to solve problems.

The transition point has become sharper with the passage of time, primarily as a result of

advances in very large scale integration (VLSI) technology. It is now possible to construct very

fast, low-cost processors. This increases the demand for and production of these processors,

resulting in lower prices.
Currently, the speed of off-the-shelf microprocessors is within one order of magnitude of

the speed of the fastest serial computers. However, microprocessors cost many orders of

magnitude less. This implies that, by connecting only a few microprocessors together to form a

parallel computer, it is possible to obtain raw computing power comparable to that of the fastest

serial computers. Typically, the cost of such a parallel computer is considerably less.

Furthermore, connecting a large number of processors into a parallel computer overcomes the

saturation point of the computation rates achievable by serial computers. Thus, parallel

computers can provide much higher raw computation rates than the fastest serial computers as

long as this power can be translated into high computation rates for actual applications.

TABLE OF CONTENTS

ACKNOWLEDGEMENT

ABSRACT

TABLE OF CONTENTS

INTRODUCTION

CHAPTER!

1 What is Parallel Computing2 The Scope of Parallel Computing

3 Issues in Parallel Computing

3.1 Design of Parallel Computers

3.2 Design of Efficient Algorithms

3.3 Methods for Evaluating Parallel Algorithms

3.4 Parallel Computer Languages

3.5 Parallel Programming Tools.

3.6 Portable Parallel Programs

3. 7 Automatic Programming of Parallel Computers

CHAPTER2

1 Parallelism and Computing

2 The National Vision for

Parallel Computation

3 Trends in Applications

4 Trends in Computer Design

5 Trends in Networking

6 Summary of Trends

CHAPTER3

1

1

2

3

3

3

4

4

4

4

4

6

6

6

6

9

10

12

12

1 Flynn's Taxonomy

1 . l SISD computer organization

1.2 SJMD computer organization

1.3 MISD computer organization

1.4 MIMD computer organization

2 A Taxonomy of Parallel Architectures

2.1 Control Mechanism

3 A Parallel Machine

CHAPTER4

1 Parallel Programming

2 Parallel Programming Paradigms

2.1 Explicit versus Implicit Parallel Programming

2.2 Shared-Address-Space versus Message-Passing

2.3 Data Parallelism versus Control Parallelism

3 Primitives for the Message-Passing

Programming Paradigm

3 .1 Basic Extensions

3.2 nCUBE 2

3.3 IPSC 860

3.4 CM-5

4 Data-Parallel Languages

4.1 Data Partitioning and Virtual Processors

4.2 C*

14

14

14

15

15

15

15

19

22

22

22

22

23

25

27

27

30

32

33

36

37

38

4.2.1 Parallel Variables

4.2.2 Parallel Operations

4.2.3 Choosing a Shape

4.2.4 Setting the Context

4. 2. 5 Communication

PTER5

NETWORKCOMPUTING

I.Network Structure and the Remote Procedure Call Concept

2.Cooperative Computing

3.Communication Software System

4.Tcchnical Process Control Software System

5.Tcchnical Data Interchange

6.Combination of Network Computing and Cooperative Computing

CHAJYfER6

l.Distrubuted Computing System

2.Horus: A Flexible Group Communication System

2.1 A Layered Process Group Architecture

2.2 Protocol Stacks

2.3 Using Horus to Build a Robust Groupware Application

2.4 Electra

CONCLUSION

REFERANCES

38

40

42

42

43

45

45

49

51

53

57

58

60

60

62

64

67

68

68

INTRODUCTION

The technological driving force behind parallel computing is VLSI, or very large scale

integration-the same technology that created the personal computer and workstation market over

the last decade. In 1980, the Intel 8086 used 50,000 transistors; in 1992, the latest Digital alpha

RISC chip contains 1,680,000 transistors-a factor of 30 increase. The dramatic improvement in

chip density comes together with an increase in clock speed and improved design so that the

alpha performs better by a factor of over one thousand on scientific problems than the 8086-8087

chip pair of the early 1980s.

High-performance computers are increasingly in demand in the areas of structural

analysis, weather forecasting, petroleum exploration, medical diagnosis, aerodynamics

simulation, artificial intelligence, expert systems, genetic engineering, signal and image

processing, among many other scientific and engineering applications. Without superpower

computers, many of these challenges to advance human civilization cannot be made within a

reasonable time period. Achieving high performance depends not only on using faster and more

reliable hardware devices but also on major improvements in computer architecture and

processing techniques.

There are a number of different' ways to characterize the performance of both parallel

computers and parallel algorithms. Usually, the peak performance of a machine is expressed in

units of millions of instructions executed per second (MIPS) or millions of floating point

operations executed per second (MFLOPS). However, in practice, the realizable performance is

clearly a function of the match between the algorithms and the architecture.

CHAPTER!

1 What is Parallel Computing?

Consider the problem of stacking (reshelving) a set of library books A single worker

trying to stack all the books in their proper places cannot accomplish the task faster than a certain

rate. We can speed up this process, however, by employing more than one worker. Assume that

the books are organized into shelves and that the shelves are grouped into bays. One simple way

to assign the task to the workers is to divide the books equally among them. Each worker stacks

the books one at a time. This division of work may not be the most efficient way to accomplish

the task, since the workers must walk all over the library to stack books. An alternate way to

divide the work is to assign a fixed and disjoint set of bays to each worker. As before, each

worker is assigned an equal number of books arbitrarily. If a worker finds a hook that belongs to

a bay assigned to him or her, he or she places that book in its assigned spot. Otherwise, he or she

passes it on to the responsible for the hay it belongs to. The second approach requires Jess effort
from individual workers.

The preceding example shows how a task can he accomplished foster hy dividing it into a

set of subtasks assigned to multiple workers. Workers cooperate, pass the books to each other

when necessary, and accomplish the task in unison. Parallel processing works on precisely the

same principles. Dividing a task among workers by assigning them a set of books is an instance

of task partitioning. Passing books to each other is an example of communication between

subtasks.

Problems are parallelizable to different degrees. For some problems, assigning partitions

to other processors might be more time-consuming than performing the processing localJy. Other

problems may be completely serial. For example, consider the task of digging a post hole.

Although one person can dig a hole in a certain amount of time, employing more people does not

reduce this time. Because it is impossible to partition this task, it is poorly suited to parallel

processing. Therefore, a problem may have different parallel fornmlations, which result in

ing benefits, and all problems are not equally amenable to parallel processing.

2 The Scope of Parallel Computing

Parallel processing is making a tremendous impact on many areas of computer

application. With the high raw computing power of parallel computers, it is now possible to

address many applications that were until recently beyond the capability of conventional

computing techniques.

Many applications, such as weather prediction, biosphere modeling, and pollution

monitoring, are modeled by imposing a grid over the domain being modeled. The entities within

grid elements are simulated with respect to the influence of other entities and their surroundings.

In many cases, this requires solutions to large systems of differential equations. The granularity

of the grid determines the accuracy of the model. Since many such systems are evolving with

time, time forms an additional dimension for these computations. Even for n small number of grid

points, a three-dimensional coordinate system, and a reasonable discredited time step, this

modeling process can involve trillions of operations Thus even rnoderate-sized instances of

these problems take an unacceptably long time to solve on serial computers

Parallel processing makes it possible to predict the weather not only foster but also more

accurately. If we have a parallel computer with a thousand workstation-class processors, we can

partition the 1011 segments of the domain among these processors Each processor computes the

parameters for I 08 segments. Processors communicate the value of the parameters in their

segments to other processors. Assuming that the computing power of this computer is 100 million

instructions per second, and this power is efficiently utilized, the problem can be solved in less

than 3 hours. The impact of this reduction in processing time is two-fold. First, parallel

computers make it possible to solve a previously unsolvable problem. Second, with the

availability of even larger parallel computers, it is possible to model weather using finer grids.

Thia enables more accurate weather prediction.
The acquisition and processing of large amounts of data from sources such as satellites and oil

Us form another class of computationally expensive problems. Conventional satellites collect

ions of bits per second of data relating to parameters such as pollution levels, the thickness of

ozone layer, and weather phenomena. Other applications of satellites that require processing

large amounts of data include remote sensing and telemetry. The computational rates required

handling this data effectively are well beyond the range of conventional serial computers.

2

Discrete optimization problems include such computationally intensive problems as planning,

scheduling, VLSI design, logistics, and control. Discrete optimization problems can be solved by

using state-space search techniques. For many of these problems, the size of the state-space

increases exponentially with the number of variables. Problems that evaluate trillions of states are

fairly commonplace in most such applications. Since processing each state requires a nontrivial

amount of computation, finding solutions to large instances of these problems is beyond the

scope of conventional sequential computing. Indeed, many practical problems are solved Hsing
approximate algorithms that provide suboptimal solutions.

Oilier applications that can benefit significantly from parallel computing are semi-conductor

material modeling, ocean modeling, computer tomography, quantum chrornodynarnics, vehicle

design and dynamics, analysis of protein structures, study of chemical phenomena, imaging,

ozone layer monitoring, petroleum exploration, natural language understanding, speech

recognition, neural network: learning, machine vision, database query processing, and automated

discovery of concepts and patterns from large databases. Many of the applications mentioned are

considered grand challenge problems. A grand challenge is a fundamental problem in science or

engineering that has a broad economic and scientific impact, and whose solution could be

advanced by applying high perfonnance computing techniques and resources.

3 Issues in Parallel Computing

To use parallel computing effectively, we need to examine the following issues:

3.1 Design of Parallel Computers

It is important to design parallel computers that can scale up to a large number of

processors and are capable of supporting fast communication and data sharing among processors.

This is one aspect of parallel computing that has seen the most advances and is the most mature.

,.l Design of Efficient Algorithms

A parallel computer is of little use unless efficient parallel algorithms are available. The

s in designing parallel algorithms are very different from those in designing their sequential

3

counterparts. A significant amount of won: is being done to develop efficient parallel algorithms
for a variety of parallel architecmrea

3.3 Methods for Evaluating Parallel Algorithms

Given a parallel computer and a parallel algorithm running on it, we need to evaluate the

performance of the resulting system. Performance analysis allows us to answer questions such as

How fast can a problem be solved using parallel processing? and How efficiently are the
processors used?

3.4 Parallel Computer Languages

Parallel algorithms are implemented on parallel computers using a programming

language. This language must be flexible enough to allow efficient implementation and must be

easy to program in. New languages and programming paradigms are being developed that try to
achieve these goals.

3.5 Parallel Programming Tools

To facilitate the programming of parallel computers, it is important to develop

comprehensive programming environments and tools. These must serve the dual purpose of

shielding users from low-level machine characteristics and providing them with design and
development tools such as debuggers and simulators,

3.6 Portable Parallel Programs

Portability is one of the main problems with current parallel computers. Typically, a

program written for one parallel computer requires extensive modification to make it run on

another parallel computer. This is an important issue that is receiving considerable attention.

3.7 Automatic Programming of Parallel Computers

Much won: is being done on the design of parallelizing compilers, which extract implicit

elism from programs that have not been parallelized explicitly. Such compilers are expected

4

to allow us to program a parallel computer like a serial computer. We speculate that this approach

has limited potential for exploiting the power of large-scale parallel computers.

5

CHAPJ'ER2

1 Parallelism and Computing

A parallel computer is a set of processors that are able to work cooperatively to solve a
computational problem. This definition is broad enough to include parallel supercomputers that

have hundreds or thousands of processors, networks of workstations, multiple-processor
workstations, and embedded systems. Parallel computers are interesting because they offer the

potential to concentrate computational resources-whether processors, memory, or J/0 bandwidth
on important computational problems.

Parallelism has sometimes been viewed as a rare and exotic sub area of computing,

interesting but of little relevance to the average programmer. A study of trends in applications,

computer architecture, and networking shows that this view is no longer tenable. Parallelism is

becoming ubiquitous, and parallel programming is becoming central to the programming
enterprise.

2 The National Vision for

Parallel Computation

The technological driving force behind parallel computing is VLSI, or very large scale

integration-the same technology that created the personal computer and workstation market over

last decade. In 1980, the Intel 8086 used 50,000 transistors; in 1992, the latest Digital alpha

C chip contains 1,680,000 transistors-a factor of 30 increase. The dramatic improvement in
ip density comes together with an increase in clock speed and improved design so that the

performs better by a factor of over one thousand on scientific problems than the 8086-8087

The increasing density of transistors on a chip follows directly from a decreasing feature

which is now for the alpha. Feature size will continue to decrease and by the year 2000,

with 50 million transistors are expected to be available. What can we do with all these
-.ilrtnrs?

6

With around a million transistors on a chip, designers were able to move full mainframe

functionality to about of a chip. This enabled the personal computing and workstation

, revolutions. The next factors of ten increase in transistor density must go into some form of

parallelism by replicating several CPUs on a single chip.

By the year 2000, parallelism is thus inevitable to all computers, from your children's

video game to personal computers. workstations, and supercomputers. Today we see it in the

larger machines as we replicate many chips and printed circuit hoards to build systems as arrays

of nodes, each unit of which is some variant of the microprocessor. An nCUBE parallel

supercomputer with 64 identical nodes on each board-each node is a single-chip CPU with

additional memory chips. To be useful, these nodes must be linked in some way and this is still a

matter of much research and experimentation. Further, we can argue as to the most appropriate

node to replicate; is it a "small" node as in the nCUBE, or more powerful "fat" nodes such as

those offered in CM-5 and Intel Touchstone, where each node is a sophisticated multichip printed

circuit board. However, these details should not obscure the basic point: Parallelism allows one to

build the world's fastest and most cost-effective supercomputers.

Parallelism may only be critical today for supercomputer vendors and users. By the year

2000, all computers will have to address the hardware, algorithmic, and software issues implied

by parallelism. The reward will be amazing performance and the opening up of new fields; the

pice will be a major rethinking and reimplementation of software, algorithms, and applications.

· vision and its consequent issues are now well understood and generally agreed. They

vided the motivation in 1981 when CP's first roots were formed, In those days, the vision was

mllrTel1 and controversial. Many believed that parallel computing would not work.

President Bush instituted, in 1992, the five-year federal High Performance Computing and

Dllmnunications (HPCC) Program. The activities of several federal agencies have been

.-ntioated in this program. The Advanced Research Projects Agency (ARPA) is developing the

technologies which is applied to the grand challenges by the Department of Energy (DOE),

ional Aeronautics and Space Agency (NASA), the National Science Foundation (NSF),

ional Institute of Health (NIH), the Environmental Protection Agency (EPA), and the

Oceanographic and Atmospheric Agency (NOAA). Selected activities include the

of the human genome in DOE, climate modeling in DOE and NOAA, coupled structural

,w simulations of advanced powered lift and a high-speed civil transport by NASA.

7

More generally, it is clear that parallel computing can only realize its full potential and be

commercially successful if it is accepted in the real world of industry and government

applications. The clear U.S. leadership over Europe and Japan in high-performance computing

offers the rest of the U.S. industry the opportunity of gaining global competitive advantage.

We note some interesting possibilities which include: use in the oil industry for both seismic

analysis of new oil fields and the reservoir simulation of existing fields; environmental modeling

of past and potential pollution in air and ground; fluid flow simulations of aircraft, and general

vehicles, engines, air-conditioners. and other turbornachinery; integration of structural analysis

with the computational fluid dynamics of airflow, car crash simulation; integrated design and

manufacturing systems; design of new drugs for the pharmaceutical industry by modeling new

compounds; simulation of electromagnetic and network properties of electronic systems-from

new components to full printed circuit boards; identification of new materials with interesting

properties such as superconductivity; simulation of electrical and gas distribution systems to

optimize production and response to failures; production of animated films and educational and

entertainment uses such as simulation of virtual worlds in theme parks and other virtual reality

applications; support of geographic information systems including real-time analysis of data from

satellite sensors in NASA's "Mission to Planet Earth."

A relatively unexplored area is known as "command and control" in the military area and

"decision support' or "information processing" in the civilian applications. These combine large
' databases with extensive computation. In the military, the database could be sensor information

and the processing a multitrack Kalman filter. Commercially, the database could be the nation's

medicaid records and the processing would aim at cost containment by identifying anomalies mid
inconsistencies.

Servers in multimedia networks set up by cable and telecommunication companies. These
servers will provide video, information, and simulation on demand to home, education, and

industrial users. CP did not address such large-scale problems. Rather, we concentrated on major

academic applications. This fit the experience of the Caltech faculty who led most of the CP

teams, and further academic applications are smaller and cleaner than large-scale industrial

problems. One important large-scale CP application was a military simulation and produced by

Caltech's Jet Propulsion Laboratory. CP chose the correct and only computations on which to cut

its parallel computing teeth. In spite of the focus on different applications, there are many

8

similarities between the vision and structure of CP and today's national effort. It may even he that

today's grand challenge teams can learn from CP's experience.

3 Trends in Applications

As computers become ever faster, it can be tempting to suppose that they will eventually

become "fast enough" and that appetite for increased computing power will be sated. However,

history suggests that as a particular technology satisfies known applications, new applications

will arise that are enabled by that technology and that will demand the development of new

technology. As an amusing illustration of this phenomenon, a report prepared for the British

government in the late 1940s concluded that Great Britain's computational requirements could be

met by two or perhaps three computers. In those days, computers were used primarily for

computing ballistics tables. The authors of the report did not consider other applications in

science and engineering, let alone the commercial applications that would soon come to dominate

computing. Similarly, the initial prospectus for Cray Research predicted a market for ten

supercomputers; many hundreds have since been sold.

Traditionally, developments at the high end of computing have been motivated by

numerical simulations of complex systems such as weather, climate, mechanical devices,

electronic circuits, manufacturing processes, and chemical reactions. However, the most

significant forces driving the development of faster computers today are emerging commercial

applications that require a computer to be able to process large amounts of da111 in sophisticated

ways. These applications include video conferencing, collaborative work environments,

computer-aided diagnosis in medicine, parallel databases used for decision support, and advanced

graphics and virtual reality, particularly in the entertainment industry. For example, the

integration of parallel computation, high-performance networking, and multimedia technologies

· leading to the development of video servers, computers designed to serve hundreds or

thousands of simultaneous requests for real-time video. Each video stream can involve both data

sfer rates of many megabytes per second and large amounts of processing for encoding and

decoding. In graphics, three-dimensional data sets are now approaching volume elements (1024

a side). At 200 operations per element, a display updated 30 times per second requires a

put.er capable of 6.4 operations per second.

9

Although commercial applications may define the architecture of most future parallel

computers, traditional scientific applications will remain important users of parallel computing

technology. Indeed, as nonlinear effects place limits on the insights ottered by purely theoretical

investigations and as experimentation becomes more costly or impractical, computational studies

of complex systems are becoming ever more important. Computational costs typically increase as

the fourth power or more of the •• resolution" that determines accuracy, so these studies have a

seemingly insatiable demand for more computer power. They are also often characterized by

large memory and inputJoutput requirements. For example, a ten-year simulation of the earth's

climate using a state-of-the-art model may involve floating-point operations, ten days at an

execution speed of floating-point operations per second (10 gigaflops). This same simulation can

easily generate a hundred gigabytes (bytes) or more of data. Yet scientists can easily imagine

refinements to these models that would increase these computational requirements 10,000 times.

In summary, the need for faster computers is driven by the demands of both data

intensive applications in commerce and computation-intensive applications in science and

engineering. Increasingly, the requirements of these fields am merging, as scientific and

engineering applications become more data intensive and commercial applications perform more

sophisticated computations.

4 Trends in Computer Design

Tue performance of the fastest computers has grown exponentially from 1945 to the

present, averaging a factor of 10 every five years. While the first computers performed a few tens

of floating-point operations per second, the parallel computers of the mid-1990s achieve tens of

billions of operations per second. Similar trends can be observed in the low-end computers of

different eras: the calculators, personal computers, and workstations. There is little to suggest that

this growth will not continue. However, the computer architectures used to sustain this growth

are changing radically from sequential to parallel.
Tue performance of a computer depends directly on the time required to perform a basic

operation and the number of these basic operations that can be performed concurrently. Toe time

to perform a basic operation is ultimately limited by the '' clock cycle' of the processor, that is,

the time required to perform the most primitive operation. However, clock cycle times are

10

decreasing slowly and appear to be approaching physical limits such as the speed of Jight. We

cannot depend on faster processors to provide increased computational performance.

To circumvent these limitations, the designer may attempt to utilize internal concurrency

in a chip, for example, by operating simultaneously on all 64 bits of two numbers that are to be

multiplied. However, a fundamental result in Very Large Scale Integration (VLSI) complexity

theory says that this strategy is expensive. This result states that for certain transitive

computations (in which any output may depend on any input), the chip area A and the time T

required to perform this computation are related so that must exceed some problem-dependent

function of problem size. This result can be explained informally by assuming that a computation

must move a certain amount of information from one side of a square chip to the other. The

amount of information that can be moved in a time unit is limited by the cross section of the chip.

This gives a transfer rate of, from which the relation is obtained. To decrease the time required to

move the information by a certain factor, the cross section must be increased by the same factor,

and hence the total area must be increased by the square of that factor.

TI1is result means that not only is it difficult to build individual components that operate

faster, it may not even be desirable to do so. It may be cheaper to use more, slower components.

For example, if we have an area of silicon to use in a computer, we can either build components,

each of size A and able to perform an operation in time T, or build a single component able to

perform the same operation in time T/n. The multicomponent system is potentially n times faster.

Computer designers use a variety of techniques to overcome these limitations on single computer

performance, including pipelining (different stages of several instructions execute concurrently)

and multiple function units (several multipliers, adders, etc., are controlled by a single instruction

stream). Increasingly, designers are incorporating multiple "computers,' each with its own

processor, memory, and associated interconnection logic. This approach is facilitated by

advances in VLSI technology that continue to decrease the number of components required to

implement a computer. As the cost of a computer is (very approximately) proportional to the

number of components that it contains, increased integration also increases the number of

processors that can be included in a computer for a particular cost. The result is continued growth

in processor counts.

11

5 Trends in Networking

Another important trend changing the face of computing is an enormous increase in the

capabilities of the networks that connect computers. Not long ago, high-speed networks ran at 1.5

Mbits per second; by the end of the 1990s, bandwidths in excess of 1000 Mbits per second will

be commonplace. Significant improvements in reliability are also expected. These trends make it

feasible to develop applications that use physically distributed. resources as if they were part of

the same computer. A typical application of this sort may utilize processors on multiple remote

computers, access a selection of remote databases, perform rendering on one or more graphics
computers, and provide real-time output and control on a workstation.

We emphasize that computing on networked computers ("distributed computing") is not just a

subfield of parallel computing. Distributed computing is deeply concerned with problems such as

reliability, security, and heterogeneity that are generally regarded as tangential in parallel

computing. (As Leslie Lamport bas observed, "A distributed system is one in which the failure of

a computer you didn't even know existed can render your own computer unusable.") Yet the
basic task of developing programs that can run on many computers at once is a parallel

computing problem. In this respect, the previously distinct worlds of parallel and distributed
computing are converging.

6 Summary of Trends

This brief survey of trends in applications, computer architecture, and networking

suggests a future in which parallelism pervades not only supercomputers but also workstations,
personal computers, and networks. In this future, programs will be required to exploit the

multiple processors located inside each computer and the additional processors available across a

network. Because most existing algorithms are specialized for a single processor, this situation

implies a need for new algorithms and program structures able to perform many operations at
once. Concurrency becomes a fundamental requirement for algorithms and programs.

This survey also suggests a second fundamental lesson. It appears likely that processor counts
will continue to increase perhaps, as they do in some environments at present, by doubling each

12

year or two. Hence, software systems can be expected to experience substantial increases in

processor count over their lifetime. In this environment, scalability resilience to increasing

processor counts is as important as portability for protecting software investments. A program

able to use only a fixed number of processors is a bad program, as is a program able to execute on

only a single computer. Scalability is a major theme that will be stressed throughout this book.

13

CHAPTER3

1 Flynn's Taxonomy

In general, digital computers may be classified into four categories, according to the

multiplicity of instruction and data streams. This scheme for classifying computer organizations

was introduced by Michael J. Flynn. The essential computing process is the execution of a

sequence of instrnctions on a set of data. The term stream is used here to denote a sequence of

items (instructions or data) as executed or operated upon by a single processor. Instructions or

data are defined with respect to a referenced machine. An instruction stream is a sequence of

instructions as executed by the machine; a data stream is a sequence of data including input,

partial, or temporary results, called for the instruction stream.

Computer organizations are characterized by the multiplicity of the hardware provided to service

the instruction and data streams. Listed below are Flynn's four machine organizations:

1. Single instruction stream single data stream (SISD)

2. Single instruction stream multiple data stream (SIMD)

3. Multiple instruction stream single data stream (MISD)

4. Multiple instruction stream multiple data stream (MIMD)

1.1 SISD computer organization

This organization represents most serial computers available today. Jnstructions are

executed sequentially but may he overlapped in their execution stages

1.2 SIMD computer organization

In this organization, there are multiple processing elements supervised by the same

control unit. All PE's receive the same instruction broadcast from the control unit but operate on

different data sets from distinct data streams.

14

1.3 MISD computer organization

There are n processor units. each receiving distinct instructions operating over the same

data stream and its derivatives. The results (output) of one processor become the input (operands)
of the next processor in the macropipe.

1.4 MIMD computer organization

Most multiprocessor systems and multiple computer systems can be classified in this

category. MIMD computer implies interactions among the n processors because all memory

streams are derived from the same data space shared by all processors. If the n data streams were

from disjointed subspaces of the shared memories, then we would have the so-called multiple

SISD (MSISD) operation, which is nothing but a set of n independent SISD uniprocessor
systems.

The last three classes of computer organization are the classes of parallel computers.

2 A Taxonomy of Parallel Architectures

There are many ways in which parallel computers can be constructed. These computers
differ along various dimensions .

. 1 Control Mechanism

Processing units in parallel computers either operate under the centralized control of a

.gle control unit or work independently. In architectures referred to as stream, multiple data

(SIMD), a single control unit dispatches instructions to each processing unit. Figure 2.2(a)

Alst:rates a typical SIMD architecture. In an SIMD parallel computer. the same instruction is

ted synchronously by all processing units. Processing units can be selectively switched off

15

during an instruction cycle. Examples of SIMD parallel computers include the Illiac IV, MPP,

DAP. CM-2, MasPar MP- L and Mas.Par MP-2.

Computers in which each processor is capable of executing a different program

independent of the oilier processors are called multiple instruction stream, multiple data stream
(MIMD) computers. Figure 2.2(b) depicts a typical MIMD computer. Examples of MIMD

computers include the Cosmic Cube. nCUBE 2. iPSC. Symmetry, FX-8, FX-2800, TC-2000,
CM-5, KSR-1, and Paragon XP/S.

Pf?: Proceul111 l:lemenr

------ I

I ;
~ z :z § Olobal .: ~ ~ ! : I

control ~ i
Ulli(z \ z

~ PE
~ 0 +

~ control unh ;.,:i
,it

(a) {b)

Figure 2.2 A typical SIMD architecture (a) and a typical M1MD architecture (b).

SJMD computers require less hardware than MIMD computers because they have only
one global control unit. Furthermore, SIMD computers require Jess memory because only one

copy of the program needs to be stored. In contrast, MIMD computers store the program and
operating system at each processor. SIMD computers are naturally suited for data-parallel

programs; that is, programs in which the same set of instructions are executed on a large data set.

Furthermore, SIMD computers require less startup time for communicating with neighboring

16

processors. This is because the communication of a word of data is just like a register transfer

(due to the presence of a global clock) with the destination register in the neigh boring processor.

A drawback of SIMD computers is that different processors cannot execute different instructions

in the same clock cycle. For instance, in a conditional statement, the code for each condition must

be executed sequentially. This is illustrated in Figure 2.3. The conditional statement in Figure

2.3(a) is executed in two steps. In the first step, all processors that have B equal to zero execute

the instruction C = A. All other processors are idle. In the second step, the 'else' part of the

instruction (C = AIB) is executed. The processors that were active in the first step now become

idle. Data-parallel programs in which significant parts of the computation are contained in

conditional statements are therefore better suited to MIMD computers than to SIMD computers.

Individual processors in an MIMD computer are more complex, because each processor has its

own control unit. It may seem that the cost of each processor must be higher than the cost of a

SIMD processor. However, it is possible to use general-purpose microprocessors as processing

units in MIMD computers. In contrast, the CPU used in SIMD computers has to be specially

designed. Hence, due to the economy of scale, processors in MIMD computers may be both

cheaper and more powerful than processors in SIMD computers.

SIMD computers offer automatic synchronization among processors after each instuction

execution cycle. Hence, SIMD computers are better suited to parallel programs that require

frequent synchronization. Many MIMD computers have extra hardware to provide fast

synchronization, which enables them to operate in SIMD mode as well. Examples of such

computers are the DADO and CM-5.

17

lf(B ••OJ
C•A:

c-lac
C•AIB; -
(a)

Ac=I) Ac=J] A~ Al ol
nCJJ - n CI) B I ii Bl 0}
cCJ] cCJJ c I o] cl ol
PIOCeUOf 0 Pmcasor I Proceasor 2 Processoe 3

lnllial values

ldlo Idle o-· - ,. c=IJ ... q Al I I
~I oCJJ CI) aCJl I O I

cc=I] C [0 j cl ~I I o I
Proc1lli0f 0 Pl'OCIUOr I i'l'Oceuot 2 Proce"°' J

Siep I

ldk Id~

ACI) ACJ] Al I I Us nCJJ BC!] B I I I I O I
cCI) cc::=.}] C I I I I o i
PromsorO Proceuor I Processor 2 Processor J

Stt'pl

(b)

Figure 2.3 executing a conditional statement on an Sil\,ID computer with four processors: (a) The

conditional statement; (b) The execution of the statement in two steps.

18

3. A Parallel Machine

The Intel Paragon- is a particular form of parallel machine, which makes concurrent computation

available at relatively low cost It consists of a set of independent processors, each with its own

memory, capable of operating on its own data. Each processor has its own program to execute

and processors are linked by communication channels.

'TI1e hardware consists of a number of nodes, disk systems, communications networks all

mounted together in one or several cabinets with power supply for the whole system. Each node

is a separate board, rather like a separate computer. Each node has memory, network interface,

expansion port, cache and so on. The nodes are Jinked together through a back plane, which

provides high-speed communications between them.

Each node has its own operating system, which can be considered as permanently

resident. It takes care of all the message passing, and also allows more than one executable

program, or process as they will be called, to be active on each node at any time. Strictly

speaking, it is node processes that communicate with other node processes rather than the nodes

themselves.

Nod~O Nod~l5

I Ucmm::J·············-···-·-············· { M=my I
~

Prue l - Proe l

Prue 2 - Pree 2

M.N18Bf'C

Fi.gum 1.1: Pro('glll CCEilmtnr.lklion on thn uodP.11

19

Remember, nodes use their own copy of the program and have their own memory allocation. No

variables arc shared between nodes or even between processes on the same node. Data can only

be shared by sending them as messages between processes.

The Paragon supercomputer is a distributed-memory multicomputer. The system can

accommodate more than a thousand heterogeneous nodes connected in a two-dimensional

rectangular mesh. A lightweight MACH 3.0 based microkemel is resident on each node, which

provides core operating system functions. Transparent access to fiJe systems is also provided.

Nodes communicate by passing messages over a high-speed internal interconnect network. A

general-purpose MIMD (Multiple Instruction, Multiple Data) architecture supports a choice of
programming styles and paradigms, including true MIMD and Single Program Multiple Data
(SPMD).

We will adopt the SPMD programming paradigm (Single Program Multiple Data) i.e.
each process is the same program executing on different processors. Each program executes

essentially the same algorithms, but different branches of the code may be active in different

processors. 'The general architecture of the machine is illustrated in figure 1.2 .In the illustration,

nodes are arranged in a 2D mesh. Each compute node consists of two i860XP processors. One of

these is an application processor and the other a dedicated communication processor. User

applications will normally run using the application processor. The figure illustrates that each

compute node may pass messages to neighbouring nodes through a bi-directional communication

channel. When messages are to be passed indirectly between non-neighbouring processors, the

operating system will handle routing the message between intermediate processors.

File system support and high-speed parallel file access is provided through the nodes labelled

service and I/0 in the diagram. Access to the parallel file system is made through standard OSF
library routines (open(), closer), read(), write(), etc.,).

When a user is logged in to the Paragon system, the operating system will allocate the login

session to one of the service nodes. Exactly which service node is in use is totally transparent to

user. The user will usually edit. files, and compile, link and run applications while logged in to

e of the service nodes. Note also that. most sites will have available a so-called cross

vironment which allows most of the program development stages - editing, compiling, linking

debugging - to be carried out on a workstation away from the paragon system. Using the
ss-environment is highly recommended, as the available capacity for such operations is

20

usually greater on a workstation than on the service nodes. Consult your local system

administrator to find out how to use this facility.

Figure 1~: OverVU"JW of the P.&r~ g_ygtmn

21

CHAPTER4

1 Parallel Programming

To nm the algorithms on a parallel computer, we need to implement them ir1 a

programming language. In addition to providing all the functionality of a sequential language, a

language for programming parallel computers must provide mechanisms for sharing information

among processors. It must do so in a way that is clear, concise, and readily accessible to the

programmer. A variety of parallel programming paradigms have been developed. TI1is chapter

discusses the strengths and weaknesses of some of these pamdigms, and illustrates them with

examples.

2 Parallel Programming Paradigms

Different parallel programming languages enforce different programming pnmdit,ms The

variations among paradigms are motivated by several factors. First, there is a difference in the

amount of effort invested in writing parallel programs Some languages require more work from

the programmer, while others require less work but yield less efficient code. Second, one

programming paradigm may be more efficient than others for programming on certain parallel

computer architectures. Third, various applications have different types of parallelism, so

different programming languages have been developed to exploit them. This section discusses

these factors in greater detail.

22

2.1 Explicit versus Implicit Parallel Programming

One way to develop a parallel program is to code an explicitly parallel algorithm. This approach,

called explicit parallel programming , requires a para]lel algorithm to explicitly specify how the

processors will cooperate in order to solve a specific problem. 111e compiler's task is

straightforward. It simply generates code for the instructions specified by the programmer. The

programmer's task, however, is quite difficult

Another way to develop parallel programs is to use a sequential programming language and have

the compiler insert the constructs necessary to nm the program on a parallel computer. This

approach, called implicit parallel programming, is easier for the programmer because it places a

majority of the burden of parallelization on the compiler.

Unfortunately, the automatic conversion of sequential programs to efficient parallel ones

is very difficult because the compiler must analyze and understand the dependencies in different

parts of the sequential code to ensure an efficient mapping onto a parallel computer. 111e

compiler must partition 1.he sequential program into blocks and analyze dependencies between the

blocks. 111.e blocks are then converted into independent tasks that are executed on separate

processors. Dependency analysis is complicated by control structures such as loops, branches,

and procedure calls. Furthermore, there are often many ways to write a sequential program for a

given application. Some sequential programs make it easier than others for the compiler to

generate efficient parallel code. Therefore, the success of automatic parallelization also depends

on the strncture of the sequential code. Some recent languages, such as Fortran D, allow the

programmer to specify the decomposition and placement of data among processors. This makes

the job performed by parallelizing compilers somewhat simpler.

2.2 Shared-Address-Space versus Message-Passing

In 1.he shared-address-space programming paradigm, programmers view their programs as

a collection of processes accessing a central pool of shared variables. The shared-address-space

programming style is naturally suited to shared-address-space computers. A parallel program on a

shared-address-space computer shares data by storing it in globally accessible memory. Each

23

processor accesses the shared data by reading from or writing to shared variables. However, more

than one processor might access the same shared variable at a time, leading to unpredictable and

undesirable results. For example, assume that x initially contains the value 5 and that processor P 1

increases the value of x by one while processor P2 decreases it by one. Depending on the

sequence in which the instructions are executed, the value of x can become 4, 5, or 6. For

example, if P1 reads the value of x before P2 decreases it, and stores the increased value after P 2

stores the decreased value, x will become 6. We can conrect the situation by preventing the

second processor from decreasing x while it is being increased by the first processor.
Shared-address-space programming languages must provide primitives to resolve such mutual-

exclusion problems.
In the message-passing programming paradigm, programmers view their programs as a

collection of processes with private local variables and the ability to send and receive data

between processes by passing messages. In this paradigm, there are no shared variables among

processors. Each processor uses its local variables, and occasionally sends or receives data from
other processors. The message-passing programming style is naturally suited to message-passing

computers.
Shared-address-space computers can also be programmed using the message-passing

paradigm. Since most practical shared-address-space computers are no uniform memory access

architecmres, such emulation exploits data locality better and leads to improved performance for

tnany applications. On shared-address-space computers, in which the local memory of each

processor is globally accessible to all other processors (Figure 2.5(a)), this emulation is done as

follows. Part of the local memory of each processor is designated as a communication buffer, and
the processors read from or write to it when they exchange data. On shared-address-space

computers in which each processor has local memory in addition to global memory, message

passing can be done as follows. The local memory becomes the logical local memory, and a

designated area of the global memory becomes the communication buffer for message passing.
Many parallel programming languages for shared-address-space or message-passing

MIMD computers are essentially sequential languages augmented by a set of special system calls.

These calls provide low-level primitives for message passing, process synchronization, process
creation, mutual exclusion, and other necessary tuncdons. Extensions to C, Fortran, and C++

have been developed for various parallel computers including nCUBE2, iPSC 860, Paragon XP/S

24

CM-5, TC 2000, KSR- 1, and Sequent Symmetry. In order for these programming languages to

be used on a parallel computer, information stored on different processors must be explicitly

shared using these primitives. As a result, programs may be efficient, but tend to be difficult to

understand, debug, and maintain. Moreover, the lack of standards in many of the languages

makes programs difficult to port between architectures. Parallel programming libraries, such as

PVM, Parasoft EXPRESS, P4, and PICL, try to address some of these problems by offering

vendor-independent low-level primitives. These libraries offer better code portability compared

to earlier vendor-supplied progra.nuning languages. However, programs are usually still difficult

to understand, dehng, and maintain.

2.3 Data Parallelism versus Control Parallelism

In some problems, many data items are subject to identical processing. Such problems can

be parallelized by assigning data elements to various processors, each of which performs

identical computations on its data. This type of parallelism is called data parallelism. An example

of a problem that exhibits data parallelism is matrix multiplication. When multiplying two n x n

matrices A and B to obtain matrix C = (c, ,j), each element ci. i is computed by performing a dot

product of the ith row of A with the l11 column of B. Therefore, each element ci. i is computed by

performing identical operations on different data, which is data parallel.

Several programming languages have been developed that make it easy to exploit data

parallelism. Such languages are called data-parallel programming languages and programs

written in these languages are called data-parallel programs. A data-parallel program contains a

single sequence of instructions, each of which is applied to the data elements in lockstep. Data

parallel programs are naturally suited to SIMD computers.

A global control unit broadcasts the instructions to the processors, which contain the data.

Processors execute the instruction stream synchronously. Data-parallel programs can also be

executed on MINlD computers. However, the strict synchronous execution of a data-parallel

program on an MIMD computer results in inefficient code since it requires global

synchronization after each instructions, One solution to this problem is to relax the synchronous

execution of instructions. In this programming model, called single program, multiple data or

25

SPMD, each processor executes the same program asynchronously. Synchronization takes place

only when processors need to exchange data. Thus, data parallelism can be exploited on an

MlNID computer even without using an explicit data-parallel programming language

Control parallelism refers to the simultaneous execution of different instrnction streams.

Instructions can be applied lo the same data stream, but more typically they are applied to

different data streams. An example of control parallelism is pipelining. In pipelining,

computation is parallelized by executing a different program at each processor Emo sending

intermediate results to the next processor. The result is a pipeline of data owing between

processors. Algorithms for problems requiring control parallelism usually map well onto MTMD

parallel computers because control parallelism requires multiple instruction streams In contrast,

SIMD computers support only a single instrnction stream and are not able to exploit control

parallelism efficiently.

Many problems exhibit a certain amount of both data parallelism and control parallelism

The amount of control parallelism available in a problem is usually independent of the size of the

problem and is thus limited. In contrast, the amount of data parallelism in a problem increases

with the size of the problem. Therefore, in order to use a large umber of processors efficiently, it

is necessary to exploit the data parallelism inherent in an application.

Note that not all data-parallel applications can be implemented using data-parallel

programming languages nor can all data-parallel applications be executed on SThiID computers.

In fact, many of them are more suited for MIMD computers. For example, the search problem bas

data parallelism, since successors must eventually be generated for all the nodes in the tree.

However, the actual code for generating successor nodes contains many conditional statements.

Thus, depending upon the code being generated, different instructions are executed. As shown in

igure 2.3, such programs perform poorly on SIMD computers. In some data-parallel

plications, the data elements are generated dynamically in an unstructured manner, and

ibution of data lo processors must be done dynamically For example, in the tree-search

lem, nodes in the tree are generated during the execution of the search algorithm, and the tree

ws unpredictably. To obtain a good load balance, the search space must be divided

-,namically among processors. Data-parallel programs can perform data redistribution only on a

scale; that is, they do not allow some processors to continue working while other

26

processors redistribute data among themselves. Hence, problems requiring dynamic distribution

are harder to program in the data-parallel paradigm.

Data-parallel languages offer the programmer high-level constructs for sharing infor

mation and managing concurrency. Programs using these high-level constrncts are easier to write

and understand. Some examples of languages in this category are Dataparallel C and C •.

However, code generated by these high-level constructs is generally not as efficient as

handcrafted code that uses low-level primitives. In genera], if the communication patterns

required by the parallel algorithm are not supported by the data-parallel language, then the data
parallel program will be less efficient.

3 Primitives for the Message-Passing

Programming Paradigm

Existing sequential languages can easily be augmented with library calls to provide

message-passing services. This section presents the basic extensions that a sequential language

must have in order to support the message-passing programming paradigm.

Message passing is often associated with MIMD computers, but SIMD computers can he

programmed using explicit message passing as well. However, due to the synchronous execution

of a single instruction stream by SIMD computers, the explicit use of message passing sometimes

results in inefficient programs.

3.1 Bnsic Extensions

The message-passing paradigm is based on just two primitives: SEND and RECEIVE.

SEND transmits a message from one processor to another, and RECElVE reads a message from

other processor.

e genernl form of the SEND primitive is

(message, messagesize, target. type, flag)

27

Message contains the data to be sent, and message size is its size in bytes. Target is the label of

the destination processor. Sometimes, target can also specify a. set of processors as the recipient

of the message. For example, in a hypercube-connected computer, target may specify certain sub

cubes, and in a mesh-connected computer it may specify certain sub meshes, rows, or columns of
processors.

The parameter type is a user-specified constant that distinguishes various types of

messages. For example, in the matrix multiplication algorithm described in Section there a.re at

least two distinct types of messages.

Usually there are two forms of SEND. One allows processing to continue immediately

after a message is dispatched, whereas the other suspends processing until the message is

received by the target processor. The latter is called a blocking SEND, and the former a no

blocking SEND, The flag parameter is sometimes used to indicate whether the SEND operation is
blocking or no blocking.

When a SEND operation is executed, the operating system performs the following steps.

It copies the data stored in message to a separate area in the memory. called the communication

buffer. It adds an operating-system-specific header to the message that includes type, flag, and

possibly some routing information, Finally, it sends the message. In newer parallel computers,

these operations are performed by specialized routing hardware. When the message arrives at the

destination processor, it is copied into this processors communication buffer and a system

variable is set indicating that a message has arrived. In some systems, however, the actual

transfer of data does not occur until the receiving processor executes the corresponding

RECEIVE operation.

The RECEIVE operation reads a message from the communication buffer into user memory. 111e

general form of the RECEIVE primitive is

RECEIVE(message, message size, source, type, flag)

There is a great deal of similarity between the RECEIVE and SEND operations because they

perform complementary operations. The message parameter specifies the location at which the

ta will be stored and message size indicates the maximum number of bytes to be put into

ssage. At any time, more than one message may be stored in the communication buffer. These

28

messages may be from the same processor or different processors The source parameter specifies

the label of the processor whose message is to be read. The source parameter can also be set to

special values, indicating that a message can be read from any processor or a set of processors.

After successfully completing the RECEIVE operation, source holds the actual label of the

processor that sent the message.

The type parameter specifies the type of the message to be received. There may be more

than one message in the communication buffer from the source processorts). The type parameter

selects a particular message to read. It can also take on a special value to indicate that any type of

message can be read. After the successful completion of the RECEIVE operation, type will store

the actual type of the message read.

, As with SEND, the RECEIVE operation can be either blocking or nonblocking. In a

blocking RECEIVE, the processor suspends execution until a desired message arrives and is read

from the communication buffer. In contrast, nonblocking RECEJVE returns control to the

program even if the requested message is not in the communication buffer. The flag parameter

can be used to specify the type of RECEIVE operation desired.

Bo1l1 blocking and nonblocking RECEIVE operations are useful. If a specific piece of

data from a specific processor is needed before the computation can proceed, a blocking

RECEIVE is used. Otherwise, it is preferable to use a nonblocking receive. For example, if a

processor must receive data from several processors, and the order in which these data arrive is

not predetermined, nonblocking RECEIVE is usually better.

Most message-passing extensions provide other functions in addition to SEND and

RECEIVE. These functions include system status querying, global synchronization, and setting

mode for communication. Another important function is WHOAMI. The WHOAJ\,fl function

returns information about the system and the processor itself TI1e general form of the WHOAMI
function is:

OAMI (processorid, numofprocessor s)

Processorid returns the label of the processor, and numofprocessor s returns the total number of

essors in the parallel computer. The processarid is the value used for the target and source

neters of the RECEIVE and SEND operations. The total number of processors helps

29

determine certain characteristics of the topology of the parallel computer (such as the number of

dimensions in a hypercube or the number of rows and columns in a mesh).

Most message-passing parallel computers are programmed using either a host--node

model or a hostless model. In the host-node model. the host is a dedicated processor in charge of

loading the program onto the remaining processors (the nodes) The host also performs

housekeeping tasks such as interactive input and output, termination detection, and process

termination. In contrast. the hostless model has no processor designated for such housekeeping

tasks. However, the programmer can program one of the processors to perf.orm these tasks as
required.

TI1e following sections present the actual functions used by message passing for some

commercially-available parallel computers.

3.2 nCUBE 2

The nCUBE 2 is an MIMD parallel computer developed by nCUBE Corporation. Its processors

are connected by a hypercube interconnection network. A folly configured nCUBE 2 can have up

to 8192 processors. Each processor is a 32-bit RJSC processor with np to 64iv1B of local memory.

Early versions of the nCUBE 2's system software supported the host-node programming model.

A recent release of the system software primarily supports the hostless model

Tue nCUBE 2's message-passing primitives are available for both the C and Fortran

languages, The nCUBE 2 provides nonblocking SEND with the use of the nwrite function

C int nwrite (char •message, int messagesize, int target, int type, int •fiag)

Fortran integer fimction nwrite(message, messagesize, target, type, flag)

dimension message (*)

integer messagesize, target, type, flag

Tue functions of nwrite's parameters are similar to those of the SEND operation. The

main difference is that the flag parameter is unused. TI1e nCUBE 2 does not provide a blocking
SEND operation.

30

The blocking RECENE operation is performed by the nread function

C int nread(char •message, int messagesize, int •source, int •type, int •flag)

Fortran integer function nread (message, messsgesize, source, type, flag)

dimension reasage c·)
integer messagesize, source, type, flag

111e nread function's parameters are similar to those of RECEJVE with the exception of

the flag parameter, which is unused. The nCUBE 2 emulates a nonblocking RECEIVE by calling

a function to test for the existence of a message in the communication buffer. If the message is

present, nread can be called to read it The ntest function tests for the presence of messages in the

communication buffer.

C int ntest (int "source. int •type)

Fortran integer function ntest (source, type)

integer source, type

The ntest function checks to see if there is a message in the communication buffer from

processor source of type type. If such a message is present, ntest returns a positive value,

indicating success; otherwise it returns a negative value. When the value of source or type (or

both) is set

to-I, ntest checks for the presence of a message from any processor or of any type. After the

function is executed, type and source contain the actual source and type of the message in the

communication buffer.

The functions npid and ncubesize implement the WHOAMI function.

C int npid()

int ncubesize()

Fortran integer function npid()

31

integer function ncubesizei)

'TI1e npid function returns the processor's label, and ncubesize returns the number of

processors in the hypercube.

3.3 iPSC 860

Intel's iPSC 860 is an MIMD message-passing computer with a hypercube

interconnection network:. A fully configured iPSC 860 can have up to 128 processors. Each

processor is a 32-bit i860 RISC processor with up to 16MB of local memory. One can program

the iPSC using either the host-node or the hostless programming model. The iPSC provides

message-passing extensions for the C and Fortran languages. The same message-passing

extensions are also available for Intel Paragon XP/S. which is a mesh-connected computer.

The iPSC's nonblocking SEND operation is called csend.

C csend (long type, char •message, long messagesize, long target,

long flag)

Fortran subroutine csend (type, message, messagesize, target, flag)

integer type

integer message j+)

integer messagesize, target, flag

The parameters of csend are similar to those of SEND. The flag parameter bolds the

process identification number of the process receiving the message. This is useful when there are

multiple processes rnnning on the target processor. The IPSC does not provide a blocking SEND

operation. We can perform blocking RECEIVE by using the crecv function.

32

C crecv (long type, char "message, long messagesize)

Fortran subroutine crecv (type, message. messagesize)

integer type

integer message c•)
integer messagesize

Comparing the crecv function with the RECEIVE operation, we see that the source and

flag parameters are not available in crecv. However, crecv allows information about the source

processor to be encoded in the type parameter. The iPSC provides nonblocking RECENE by

using a function called irecv. The arguments of irecv are similar to crecv, with the exception that

irecv returns a number that is used to check the status of tbe receive operation. The program can

wait for a nonblocking receive to complete by calling the msgwait function. It takes U1e number

returned by irecv as its argument and waits until the nonblocking RECENE operation has

completed.

TI1e iPSC functions mynade and numnodes are similar to WHOAMI. They return the

label of the calling processor and the number of processors in the hypercube, respectively.

C long my.node()

long nurnnodes()

integer function mynode()

integer function nurnnodes()

Fortran

3.4 CM-5

The CM-5, developed by Thinking Machines Corporation, supports both the MIMD and snvm
models of computation. A fully configured CM-5 can have up to 16384 processors connected by

a fat tree interconnection network. The CM-5 also bas a control network, used for operations

involving many or all processors. Each CM-5 node has a SPARC RISC processor and four vector

33

units with up to 32MB of local memory. One can program the CM-5 using either the host-node or
hostless programming models.

When the CM-5 is used in MIMD mode, it is programmed with the use of message

passing primitives that are available for the C, Fortran, and CH languages.

The CM-5's blocking SEND fimction is CMMD_send_)ack.

C int CMMD _send_ block (int target, int type, void •message,

int messagesize)

Fortran integer function CMMD _send_ block (target, type, message, messagesize)

integer target, type

integer message (*)

integer messagesize

The parameters of CMMD _send_ block are similar to those for the generic SEND

primitive. TI1e CM-5's nonblocking SEND operation is CMMD _send_async.

C CMMD _ mcb CMMD _send_ async (int target, int type, void *message,

int messagasize, void (*handler) (CMMD_mcb))

Fortran integer funotion CMMD _send_asyno (target, type, message,

messagesize, handler)

integer target, type

integer message(*)

integer messagesize, handler

Most of the parameters required by CMMD _ send_ async are similar to those required by

the SEND operation. The CMMD_send_async function returns a pointer to a message control

block (CMMD_mcb) after it has queued the message for transmission. The programmer is

responsible for preserving the data in the buffer pointed to by message, and for freeing the

34

CMMD _ mcb when the message has been sent. The parameter handler allows the programmer to

define a handler routine that is invoked automatically when the message has been sent

The CM-5 provides blocking RECEIVE with the CMMD _receive_ block function

C int CMMD _receive_ blook(int source, int type, void •message,

int messagesize)

Fortran integer function CMMD_receive_block (source, type, message,

messagesize)

integer source, type

integer message I")

integer messagesize

A nonblocking RECEIVE operation is provided by the fimction CMMD _receive_ async.

C CMMD mcb CMMD receive async (int source, int type, void •message, - - --

int messagesize, void (•handler) (CMMD _ mcb))

Fortran integer function CMMD _receive_ async (source, type, message,

messagesize, handler)

integer source, type

integer message r")
integer messagesize, handler

The parameters of the CMMD_receive_lock and CMMD_receive_async operations are

similar to those for the corresponding CMMD _send_ lock and CMMD _send_ async operations.

On the CM-5, the send function does not actually send the message until the destination

node invokes a receive function, indicating that it is ready to receive a message. Furthermore, the

CMMD send functions send no more data than the receiver has signaled it can accept Thus, the

number of bytes sent is the smaller of the number of bytes requested (that is, the messagesize of

35

the send function) and the number of bytes the receive function allows (that is, the messagesize of

the receive function).
The CM-5 provides the functionality of WHOA MI with the functions

CMMD _self _address and CMMD __partition_size. These functions return the label of the calling

processor and the total number of processors.

C int CMMD _ self_ address()

int CMMI) _partition_size()

Fortran int function CMMI) self address

int function CMMI) __partition _size

4 Data-Parallel Languages

TI1e main emphasis of data-parallel languages is to make it easier for the programmer to

express the data parallelism available within a program in a manner that is independent of the

architectural characteristics of a given parallel computer. A data-parallel language has the

following characteristics:

(1) It generates only a single instruction stream.

(2) It implies the synchronous execution of instructions. Hence, it is much easier to write and

debug data-parallel programs, since race conditions and deadlocks are impossible

It requires the programmer to develop code that explicitly specifies parallelism.

(3) It associates a virtual processor with the fundamental unit of parallelism. The programmer

expresses computation in terms of operations performed by virtual processors. TI1e advantage of

virtual processors is that programmers need not be concerned with the number of physical

processors available on a parallel computer. They simply specify how many processors they

need. However, using virtual processors inappropriately may result in inefficient parallel

programs.

36

(4) It allows each processor to access memory locations in any other processor T11i.s

characteristic creates the illusion of a shared address-space and simplifies programming since

programmers do not have to perform explicit message passing.

Since data-parallel languages hide many architectural characteristics from the pro

grammer, writing data-parallel programs is generally easier than writing programs for explicit

message passing. However, the ease of programming comes at the expense of increased compiler

complexity. Compilers for data-parallel languages must map virtual processors onto physical

processors, generate code to communicate data, and enforce synchronous instruction execution.

4.1 Data Partitioning and Virtual Processors

In a data-parallel language, data are distributed among virtual processors. The virtual
processors must be mapped onto the physical processors at some point If the number of virtual

processors is greater than the number of physical processors, then several virtual processors are

emulated by each physical processor. In that case, each physical processor partitions its memory
into blocks-one for each virtual processor it emulates-and executes each instrnction in the

program once for each of the virtual processors. For example, assume that an instruction
increments the value of a variable by one and that three virtual processors are emulated by each

physical processor. The physical processors execute the instruction by performing three

consecutive increment operations, one for each virtual processor. These operations affect the
memory blocks of each virtual processor.

TI1e amount of work done by each physical processor depends on the number of virtual

pmcessors it emulates. If VPR is the ratio of virtual to physical processors. then the work

performed by each physical processor for each program instruction is greater by a factor of VPR.

This is because each physical processor has to execute VPR instructions for each program

instruction. However, the amount of communication performed may be smaller or larger than

VPR. For instance, if the virtual processors are mapped so that neighboring virtual processors

37

reside on physical processors that are farther away, the communication requirements will be

higher than VPR. In most cases, however, it is possible to map virtual processors onto physical

processors so that nearest-neighbor communication is preserved If this is the case some virtual

processors may need to conununicate with virtual processors mapped onto the same physical

processor. Depending on how smart the emulation is, this may lead to lower communication

requirements.

Some data-parallel languages contain primitives that allow the programmer to specify the

desired mapping of virtual processors onto physical processors. This is essential in developing

efficient parallel programs. The efficiency of a mapping depends on both the data communication

patterns of the algorithm, and the interconnection network of the target computer. For example, a

mapping suited to a hypercube-connected parallel computer may not be suited to a mesh

connected parallel computer.

.2 c>lt

c• is a data-parallel programming language that is an extension of the C prngrnrnming

guage. C" was designed by Thinking Machines Corporation for the CM-2 parallel computer.

The CM-2 is a fine-grain SIMD computer with up to 65,536 processors. Each CM-2 processor is

e bit wide, and supports up to 1 Mbit of memory. C" is also available for the CM-5.

c• adheres to the ANSI standard for C, so programs written in ANSI C compile and run

ctly under C •. In addition, C • provides new features for specifying data parallelism. The

tures of c• include the following
) A method to describe die size and the shape of parallel data and to create parallel variables.

Operators and expressions for parallel data that provide functionality such as data

dcasting and reduction. Some of these operators require communication.

Methods to specify data points within selected parallel variables on which C" code is to

te.

1 Parallel Vartahles

38

c• has two types of variables. A scalar variable is identical to an ordinary C variable; scalar
variables are allocated in the host processor. A parallel variable is allocated on all node

processors. A parallel variable has as many elements as the number of processors.

A parallel variable has a shape in addition to a type. A shape is a template for parallel data-a way

to configure data logically. It defines how many parallel elements exist and how they are

organized. A shape has a specific number of dimensions, referred to as its rank, with a given

number of processors or positions in each dimension. A dimension is called an axis. For example,

the following statement declares a shape calJed mesh, of rank two and having 1,048,576

positions:

shape [1024) [1024] mesh;

Similarly, the following statement declares a shape of rank four with two positions along each

axis:

shape [2] [2] [2] [2] fourcube;

The fourcube shape declaration declares a template containing a total of 2 x 2 x 2 x 2 = 16
positions. A shape should reflect the most logical organization of the problem's data. For

example, a graphics program might use the mesh shape to represent the two-dimensional images

that it is going to process. However, not all possible configurations can be declared using the

shape primitive. For example, shape does not allow us to declare a triangular-shaped or a

diamond-shaped mesh. However, we can do this by declaring a larger shape and using only a

portion of it. For example, we can obtain a triangular shape by declaring a square shape and using

only half of it.

C" does not allow the programmer to specify virtual-to-physical processor mappings explicitly.

c• maps virtual processors onto physical processors so that neighboring virtual processors are

mapped onto neighboring physical processors. However, C • allows us to specify across which

· ensions of the shape communication will. be performed more frequently. The compiler uses

· information to reduce communication cost.

39

After a shape is specified, parallel variables of that shape can be declared. Parallel variables have

a type, a storage class, and a shape. The following statement declares the parallel variable count

of type int and shape ring:

shape [8192) ring;

int: ring count;

This declaration creates a parallel variable count with 8192 positions each of which is allocated to

a different processor. We can access individual elements of the parallel variable count hy using

left indexing. For example, [l] count accesses the value of the count that resides on the second

processor (numbering is from O to 8191). Figure 13.1 illustrates the differences between scalar

and parallel variables.

Any standard or user-defined data type can be used with parallel variables. For example, an entire

C structure can be a parallel variable. As another example, int: fourcube a [1000] declares the 16-

position parallel variable a. in which each element is an array of 1000 integers.

4.2.2 Parallel Operations

C" supports all standard C operations and a few new operations for data-parallel programming.

In addition, c• defines additional semantics for standard C operations when they are used with

parallel variables.

If the operands of an operation are scalar, then C" code behaves exactly like standard C code and

the operation is performed on the host computer. The situation is different when one or more

operands are parallel variables. For example, consider a simple assignment statement of the form

+ = y, where both x and y are parallel variables. This assignment adds the value of y at each

pe position to the value of x at. the corresponding shape position. AJJ additions take place in

parallel. Note that an expression that evaluates to a parallel variable must contain parallel

· bles of the same shape as the resulting parallel variable. Hence, in this example, x and y

ust be of the same shape. In a statement of the form x = a, where a is a scalar variable, the value

a is st.ored in each position ofx. This is similar to a broadcast operation.

40

A more interesting situation arises when the left side of an assignment operation is a scalar

variable and the right side is a parallel variable. There are two cases in which this assignment

makes sense. In the first case, the parallel variable is folly left indexed. For instance, if a is a

scalar variable and x is a parallel variable of rank one, then a = [4]x is a valid statement and

assigns to a the value of x at the fifth position of the shape. In the second case, the operation is

one of those shown in Table 13.1. The result of these operations is a reduction. For instance, a +
= x sums all the values ofx and stores the result in a.

shape [1024] ring

shape [1024) (1024] mesh

intring:a

int mesh: b

int flag

::;; :~ ::;'. : : 1;:::~:,: : · ::::+::i:::?: :: ::: : i;:;.n ·i~:, ~::) •. Il?!'..:•R
"'"" .

--~····

Figure 13.1 Examples of parallel and scalar variables. a and hare parallel variables of different

shapes, and flag is a scalar variable. Courtesy of Thinking Machines Corporation.

Table 13.J c- reduction operations.

Operator

+=
Meaning

Sum of values of parallel variable elements

41

I=

Negative of the sum of values

Bitwise AND of values

Bitwise XOR of values

Bitwise OR of values

Minimum of values

Maximum of values

&=

<?=

>?'-=

4.2.3 Choosing a Shape

The with statement enables operations on parallel data by setting the current shape. Operations

are performed on parallel variables of the current shape. In the following example, the With

statement is required for performing the parallel addition:

shape [8192) ring;

int: ring x, y,z
with (ring)

x= y+z;

4.2.4 Setting the Context

C" bas a where statement that restricts the positions of a parallel variable on which operations are

performed. TI1e positions to be operated on are called active positions. Selecting the active

positions of a shape is called setting the context. For example, the where statement in the

following code avoids division by zero:

with (ring) {

where (z != 0)

X =v t z;
}

42

The where statement can include an else clause. The else clause complements the set of active

positions. Specifically, the positions that were active when the where statement was executed are
deactivated, and the inactive positions are activated. For example,
with (ring) {

where (z I= 0)

X = y I z;
else

X = y;

}

On the CM-2 (since it is an STMD machine) the where and else clauses are executed serially. One

should limit the use of the where-else clause because multiple context setfings degrade
performance substantially.

4.2.5 Communication

C* supports two methods of interprocessor communication. The first is called grid

communication, in which parallel variables of the same type can communicate in regular patterns.

The second method is called general communication, in which the value of any element of a

parallel variable can be sent to any other element, whether or not the parallel variables are of the

same shape. The regularity of grid communication makes it considerably faster than general

communication on many architectures. In particular, on CM-2, grid communication can be

mapped onto the underlying interconnection network quite efficiently.

Data communication in C* uses left indexing, but instead of using a scalar value to left-index a

parallel variable, a parallel variable is used. This operation is called parallel left indexing. A

parallel left index rearranges the elements of the parallel variable based on the values stored in

elements of the parallel index. The index must be of the current shape.

dest = [index] source [index] dest = source

43

.. , .. '"·••1Gtf ~pf J~~J~i••• · · ···••••:i: ··.•••,;;s~,rilrt:T:iJ ..
. , ,,, SHH]I~~ ,,~, f¥~J,[J[~If 1i
....... ,... f 'lJ .. , j-t"f) ·.r ,j T.,; .,:..,,,, .. ~· j·i;::::::V>fi,'
: ,:'!:"~ · · 1:- . .:.:'. ;, : .. -~.:.,.......i";"! : : ~;~;1:;,.:.: : :i ,i-;J~;i;~~ I

...... . .

A get operation A send operation

Figure 13.2 Examples of the send and get general communication operations. Courtesy of
Thinking Machines Corporation.

c• allows both send and get operations. If index, dest, and source are parallel variables of rank
one, the general form of the send operation is

(index [dest = source;

and the general form of the get operation is

dest = [index [source;

These operations are illustrated in Figure 13 2.

For general communication, the values of the index variable can he arbitrary. For grid

communication, C" uses a new function called pcoord to provide a self-index for a parallel

variable along a specified axis. In grid communication, data can be sent only a fixed distance

along each dimension. For example,

destid = [pcoord(0)+ 1] source 1 d;

shifts the elements stored in sourceld by one to the right,

destid = fpcoord(0)-2]sourceld;

shifts the elements by two to the left, and

dest2d = [pcoord(O)+ 1] (pcoord(l }+l [sourcezd;

44

shifts the elements of source2d by one to the left and up. Note that destld and source ld are one

dimensional shapes, whereas dest2d and source2d are two-dimensional shapes. Wraparound

shifts are achieved by using the modulus operation. For example,

dest2d = [(pcoord(O)+ 1 }°/o%4)[(pcoord(l }1--1)%%3)source2d;

shifts the elements by one to the right and down. TI1e elements that fall off the two-dimensional

shape are wrapped around. Note that the numbers 4 and 3 used in the modulus operation, are the

number of positions along the corresponding axis. The operator % %' is similar to C's %'

operator but works with negative values as well.

To summarize, in general we can say that data-parallel programs tend to be smaller than

explicit message-passing programs. Furthermore, programs that use the virtual-processor

paradigm, tend to lie simpler to implement.

CHEAPTER5
NETWORK COMPUTING

Network Structure and the Remote Procedure Call Concept

Networked computing is characterized by several sequences of jobs, which arrive

independently at various nodes. The jobs are designed and implemented more or less

independently of each other and are only loosely coupled. The distributed sys- tern serves

primarily as a resource-sharing network.

A very common example of resource sharing is the file server. All files are located on a

dedicated node in a distributed system. Software components rnnning on other nodes send their

file access requests to the file server software. The fi.Je server executes these requests and returns

the results (to the clients).

In addition to file servers many other kinds of servers such as print servers, compute servers, data

base servers, and mail servers have been implemented As with the file server, clients send their

requests to the appropriate server and receive the results for further processing. Servers process

requests from the various clients more or less independently of each other. The programs

45

running on the clients can be viewed as being designed and developed independently of each
other.

The following figure shows the concept of client server systems .

.....................

.. .

In client server system, the clients represent the users of a distributed system and servers

represent different operating system functions or a commonly used application.

The following figure shows a simple example of a client server system.

46

......... ., . .. N t k .. .• · ea wor •

........... . .

......

...........................

111is system bas a print server, a file server and the users which run on workstations and

personal computers. The server software and the client software can nm on the same type of

computer. The different nodes are connected by a local area network.

From a user's point of view a client/server system can hardly be distinguished from a central

system. e.g. a user cannot see whether a file is located on his local system or on a remote file

server node. For the user the client/server system appears to be a very convenient and flexible

central computing system. Mostly the user does not know whether a file is stored on his PC or on

a file server. To the user the storage capacity of the server appears to be part of the PC storage

capacity.

Client/server systems are also very flexible. For a new application a specialized new

lel'Ver can be added e.g. data base systems run on specialized data base servers, which have short

.ccess times. The local client primarily controls data base applications; all the data is stored at the

ta base server and special computations are executed by a compute server (also called number

chier). The application program running on the client, calls the required functions provided

the servers. This is done mainly by way of remote procedure calls (RPC). An RPC resembles a

~-~ure call except that it is used in distributed systems. The following is a description of how

47

the RPC works. The program running on the client looks like a normal sequential program. The

services of a particular server are invoked vi.a a remote procedure call. TI1e caller of a remote

procedure is stopped until the invoked remote procedure is finished and the server has provided

the results to the calling client in the same way that parameters are returned by a procedure. The

servers are used in the same way that library procedures are used. This means that remote

procedure calls hide the distribution of the fimctions of the system even at the program level. TI1e

programmer does not need to concern himself with the system distribution.

The figure below shows the basic structure of a client/server system.

::a:::::::.::··::~::·:::,.

48

...

. ·1· ············ ············ . : : l: :··. ·········: ·························:·····:·:: : . ·::: ::::::: D'lr''.IU'Q".n!' .'DnQ'l'.'LY:r~rt·.&:T T· . '. ' .. ~T..f. ~:~.~~ ~~.~:Sil:.frl.~~lrl , '

::::r ·: ::::::......... ··········::::·:·::::::::::··::: :::::::::::::::::::;·:::::: ::::::::::::i . I

:1• · :t1mEADs ··········
''
. ' ' . ' ' ' ' . . '

ITuTIS~:~m~im'~~iITF~~AFTlf~~~: :;:;; ii I ..

In the DCB client and server programs are executed by threads i.e. processes. Threads use

an RPC in order to communicate with each other and binary semaphores and conditional

variables for synchroniz.ation. In the DCE remote procedure calls are supported by directory

services (DCE Call Directory Service) and security services O)CE Security Service). Directory

services map logical names to physical addresses. If a client calls a particular service provided by

a server, the directory service is used to find the appropriate server. The DCE security service

provides features for secure communication and controlled access to resources. Distribute Time

Service provides precise clock synchronization in a distributed system. TI1is is required for event

logging, error recovery, etc. The distributed file service allows the sharing of files across the

whole system. Finally the diskless support service allows workstations to use background disk

es on file servers as if they were local disks

/SCHILl.,93/, /05F92/.

In cooperative computing a set of processes runs on several processing nodes. These

ses cooperate to reach a common goal and together they form a distributed program. This

ifferent from the client/server systems described above. In cooperative systems the processes

49

which comprise the distributed program are coupled very closely.

coupled processes are executed on a loosely coupled system.

In cooperative systems, the distribution of computing capability is not hidden behind

programming concepts. TI1e different program sections running on different computers comprise

a single program; but it can be seen at the programming level that the program sections are

executed concurrently. These different program sections are also processes. Processes form a

very important concept for central systems, client server systems and cooperative systems. If

processes have to work together to perform their task, they must exchange data and synchronize

their execution. Programming Systems for concurrent Systems contain communication and

synchronization concepts. Cooperative programming resembles a human organization which

works together to achieve a common goal. Its members must communicate with each other and
must synchronize their activities.

The following figure shows the basic structure of cooperative Systems
............ '' '•............. ' ' .
.

. . :;:{p::::::(:f}i>t:::~;~::{
::1 · · J 1 wl .J uh
:'.":: •. ::f/:::::::::::: ::::: :·: : : :

.............. . . ····•·•····••· .. ,,,,1, •• , .•...•.•.•..

..

.. X:l""""'. ··1----· .. \ J~ijt\V(ltC :•

Cooperative systems are mainly used for the automation of technical process and the

• entation of communication software. Technical process in the mostly part consists of

parallel activities. This means that several processes, which can be implemented in
ways, work together to perform their task.

50

. : : .. --~; ~ ~~~~~~~~.;..:~v-:.w-~,:,.:..,;,-.;..;.,:~.;,,yr,~: ..
' I

......• > ...
. L.

...... :t ?,;ppti~~uon ··
................ /. ,. , .

......••..••. l .. ··············· .. , ... ~- .

H6its st~m .. . Y ...

... ~ ...

mmunication Software Systems

A communication system consist of a communication network and the conununication

are which mus on the various processing nodes. The communication software provides a

are less convenient communication service for the application software. The application

are on each node uses the communication service to exchange messages with the
• tion software running on other nodes.

In order to provide a convenient communication service the conununication software
also exchange messages. This message exchange is based on the simpler communication

provided directly by the network. For example the network provides a
p ication service which only allows the transfer of a single byte. The communication

provided by the communication software allows byte- strings of a fixed or even an

length to be sent or received. This can be implemented in the following way: 'The

software of n host system A wants to send a sequence of bytes to the application

a host system B. The sequence of bytes is given to the communication system but the

51

application system. The communication system on host system A sends a byte with the length of

01e byte string (the number of bytes) to the communication system on host system B. The

communication system on host system B sends back an acknowledgement. This ts a byte with a

certain value. After the communication software on host system A has received the

acknowiedgement it starts to transfer the bytes of the byte string. then system B has received the

number of bytes indicated in the first byte it again sends an ad'Dowledgement. Aft.er sending the

acknowledgement. the communication software on host system B gives the received byte string

to the application software .. This communication sequence which implements the transfer of a

byte string just a simplistic illustration of what communication software can do As the example

above shows. the communication between the communication software systems follows well

defined rnles. These rnles are called protocols the need to provide convenient communication

services for the application software leads to software communication protocols which can he

extremely complex and must he organized in layers Each layer offers an improved

communication service to the layer above. The widely used reference model for open system

interconnection (OSI) defined by the International Standard Organization (ISO) pro- poses seven

protocol layers /JS07498/. Each layer provides a certain service to the layer above. The service

provided by a layer is implemented by the protocol specific to its layer and byte services of the

layer below. In a host system the services specific to the layer are realized by protocol entities.

The layer protocol is defined between protocol entities of the same layer. These exchange

information by using the service of the layer below. In each lost system there must he at least one

entity per layer. The set of entities of different layers in a host system is called a protocol stack.

The implementation of these protocol stacks is called communication software. Communication
software has the following execution properties IDROB 86/:

· Interleaved execution of several entities on the same system

· Distributed execution of entities of the same layer on different systems. Interleaved

and distributed computations are usually' modeled as systems of parallel processes.

Processes executing in parallel nonnaJly have to exchange information if they are to by

one cooperate in solving a common task. One processes model entities. Representing or

providing a service means exchanging information with processes representing entities of the

layer below or above. The figure above shows.

52

Technical Process Control Software Systems

Another important example of cooperative computing is a distributed technical process

control system. The basic structure of technical systems controlled systems is shown in the
following figure INEHM:84/.

I .;.... 2 f :::'.::::::'. .::::'.::::::::::;::::::::: ..
.............. . .

:::iil<JTl l</H !f! :~. if:] F2H • :~;~~AM YQ P$.V:t~S

The communication between computer systems and technical systems must meet hard

real-time requirements, whereas the communication with the user is more or less dialogue-

53

oriented with less emphasis on time conditions (except in the case emergency signals such as fire

alarms). For the sake of simplicity, we will focus on the relationship between technical Systems

and real-time computer systems. A technical system consists of several mutually independent

functional units, which communicate via appropriate interfaces with the computer System.

Therefore the real time program must react to several simultanous inputs. This implies the

structuring of a process control software system that takes into account a number of processes.

Each process handles a certain group of signals. The basic requirement for a process control

software system is the capability to follow the changes of the technical system as fast as possible.

TI1e information in the process control software must he as close EIS possible to the state of the

technical system. TI1e easiest way to achieve this is to design a process for each interface

element. TI1is leads to the software system structure shown in the following figure INEHM84/ .

.................................

54

·:I
:::~:::.

·~····· i I

········· .

55

Electronic Data Interchange (EDI) is the computer-to-computer exchange of inter- and

intracompany technical and business data, based on the use of standards /DIGIT90/ (see figure

below of the EDI business model).

......... " . " ' : : : ~ : : : : : : : : : : : : . : : : : : : : : : : :

..................

...................... ,.

••••••••••••• •••••••• , •• 1 ••• ,,- .. ---------•·::.:::::::::::;::::.:

·············· .
····················

············· ····································

........... . .
............ .. .

These data can be structured or unstructured. Exchanging unstructured data follows specific

communication standards although the data content is not in a structured format. More important.

is the exchange of structured data. Examples of structured data exchange are:

-Trade Data Interchange

This type of EDI document exchange is mainly used to automate business processes.

Examples of trade data interchanges include a request for quotation (RfQ), purchase orders,

purchase order acknowledgements, etc. Each company and industry bas its own requirements for

the structure and contents of these documents. A number of specific industry and national bodies

have been fanned with the intention of standardising the format and content of messages. For the

chemical industry CEFIC is the EDI standard and for the auto industry the related EDI standard is

56

called ODETTE. The standard defined by CCITT is called EDlF ACT. In order lo exchange

EDlF ACT documents very ofien the CCITT E-Mail standard X.400 is recommended /Lil1L90/.

- Electronic Funds Transfer Payment against invoices, electronic point of sale (EPOS) and

clearing systems are examples of electronic funds transfer.

- Technical Data Interchange

Improvement in technical communication can play a key role in determining the success

of a project. There is growing demand from trades for communication between their CAD

(computer aided design) workstation and the workstations of important vendors.

The following example shows how the different types of EDI interactions are used to

handle a business process.

Groupware

In organizations people work together to reach a common goal. The formal interaction

between members of an organization is described by structures and procedures. Additionally

there exist informal interactions, which are very important.. Both types of interactions can mid

should be supported by computers. Computer Supported Cooperative Work (CSCW) deals with

the study and development of computer systems called groupware, which purpose it is 10

facilitate these formal and informal interactions /ENGLEH88/.

CSCW projects can be classified into four types /ENGLEHB8/ namely:

1. Groups which are not geographically distributed and require common access in realtime

Examples: presentation software, group decision systems

2. Groups which are geographically distributed and require common access in realtime

Examples: video conferencing, screen sharing

57

3. Asynchronous collaboration among people who are geographically distributed. Examples;

notes conferences, joint editing

4. Asynchronous collaboration among people who are not geographically distributed

Examples: project management, personal time schedule management

Groupware requires computers connected by a network. Thus groupware systems are

distributed systems. Members of a group share data and exchange messages. Therefore

groupware software systems are combinations of network and cooperative computing.

Combination of Network Computing and Cooperative Computing

Cooperative computing can he combined with client server systems. Processes in a

distributed system can have access to servers. From the standpoint of a client server system the

processes of a cooperative system can be considered as client processes. ln a technical process

control soft.ware system a process can collect data from the technical process. This data is stored

in a file located on a file server node. The following figure shows an example of a combination of

a cooperative and a client/ server system. Process A. Process 13 and Process C form a

cooperative software system. Process B and Process C use the server. This means that process B

and process Care clients of the flle server.

58

::·: conummlciitfonfor :
"' .

::::::: .. C:O()Jttnntve co~uttng
I fl iii 111 If It · · · · · .. • .. ·

.......

·~··········· ' . . ' ' . . .)::::::::::::: :: > • ; ; • : ..
iisc of

. rue senrer.

...........
· · · .. ••· · :prijt~,trn,flf:•

Distributed Computing System

A distributed computing system is not yet Noema. Niany of the component are present but some

are still missing or not fully integrated. The network would be the communication

mechanism for the distributed computing Noema supporting message passing, protocols, and

asynchronous communication. The languages of communication are the protocols built up with

bytes of data. Replication and groups of services could be made available with special name

space management services available on the network. Some information may be kept in a data

warehouse for analysis. Some information could be locally cached. Some functions could be pre

evaluated and stored in anticipation of usage. Both code and data may have a common

representation. Thus programs are to be treated as data in some cases and programs in other

cases. Not all data can be interpreted as a program. The distributed computing Noema would

need a security system with authentication, authorization, and data privacy. TI1e next chapters

define how to build a distributed computing Noema.

59

CHEAPTER6

Distributed Computing System

In our distributed computing system:

A "Node" is a Network-User" Interface (Nill) that provides network access to the

WWW*. This node maybe as simple and economical as a "JavaTenn", which has a decent

processor. limited memory/cache. I/0 devices and optional pheripherals such as CD ROM, hard

disk. an input device which handles portable storage etc .. A node could also he a terminal, such

as a UNIX workstation, PC or Mac with network capabilities". Their processing storage and local

applications may differ. but their operations should be mostly dependent on their network

bandwidth (which network service providers. such as Pac'I'el, MCI provide) and the pipe of the

servers (end-service providers).

A "Server" is a computer that provides services interactively. Services include providing

executables (e.g. we may remotely load Word and nm it in our network interface), database or

search engine (e.g Component library of TD, banks, stockbroker firms or any entity that handles

and processes requests.

A "Site" is a network destination that provides non-interactive information. For example,

most people/organization's home page nowadays which contains visual display only and does not

accept/require user input is merely a site.

What differentiates a Server from and a Site is: a server is interactive "active" while a

site is Serena (aka wleung) argues that the above two could/should he grouped together and

called sites, while another definition of Server should he formulated.

During the last group meeting (10/12), Professor Newton mentioned that there could/should he

something between a node and servers. This intermediary could be:

l) State Manager

60

State Manager manages things that doesn't fit into the cache, it could be handled by a

central "Service Provider'?" which interacts with other servers/sites. However, this would present

a major security problem; that's to believe that a "Service Provider" would ensure security of
/

clients' data from internal and external access. (Maybe digital signatures would be required to

access and retrieve unscripted data, or maybe inscription could be done at the clients or over the

network) There would also be a durability problem. What happens when a State Manager goes

down? If we have mirror images, then consistency and security problems arise and this all leads

us to the ultimate debate of how distributed systems should be architect. As for network main

memory and mirror sites, administration problems immediately come up to my mind How can

they be administered, monitored and by whom? How can data security be provided for this

virtual object?

My argument is that none of these intermediate objects should exist, i.e. nodes should

interact directly with servers (present model of WWW). At today's price and technology curve,

pockets-sized DRAM or hard disk at an acceptable price, performance and capacity (>=500MB)

is imminent One might argue that 500MB is not a lot of storage. That's because in today's

standards, people store executables in their hard disks, but in the future, all people need is their

personal documents (e.g. word-processing files, database, spread-sheets, etc.) that they

(regularly) edit as executables will be nm off the Net. As for large audio, video files and

graphically intense operations such as CAD or games, they should stay at their respective servers

where an adequate bandwidth and special transmission mechanisms are provided.

State management in this case is done either on a local storage (cache or hard disk)

and/or at the server. Less consistency concerns is achieved at the expense of a higher response

time for applications (updates need to go as far as the server instead of an intermediate node).

The Future

Microsoft's dominance of local processing will be displaced by major database and

database tools (e.g. Oracle, Informix) companies together with software vendors that develop

61

network-based applications that run at the servers, aimed at providing high throughput,

scalability, etc.

Hardware vendors. such as Cisco and Bay Networks will be a force as well in helping

clients design and implement the appropriate network/WAN strategies.

Footnote
1) A User may be a human being, processes or other computers.

2) WWW may include or be a part of the Information Superhighway.

3) If ''Everything" (from mail to Word, Quicken) is nm within a network interface,
Would CPU processing power and speed be relevant in the future, or this will be a

Hardware issue that primarily interests "Server" side of the operations. Primary end-user

Concern would be network bandwidth and display capabilities.

4)"Service Provider" could be network services providers such as Pastels or software

vendors such as Oracle.

HORUS: A Flexible Group Communications System

Computing represents a promising step towards robustness for mission-critical distributed

applications. Process replicated for availability or as part of a coherent cache. They can been used

to support highly available security domains. And· groµp mechanisms fit well an emerging

generation of intelligent network and collaborative work applications.

Yet there is little agreement concerning how process groups should look or behave. The

requirements that applications place on a group infrastructure can vary tremendously, and there

may be fundamental tradeoffs between semantics and performance. Even the most appropriate

way to present the group abstraction to the application depends on the setting.

This paper reports on the Homs system, which provides an unusually flexible group

communication model to application-developers. This flexibility extends t.o system interface the

62

properties provided by a protocol stack, and even the configuration of Horus itself[which can run

in user space, in an operating system kernel or micro kemel or be split between them.

Homs can be used through any of several application interfaces. These include too I Kit

styled interfaces, but also interfaces that bide group functionality behind Unix communication

system-calls, the TK/TCL programming language, and other distributed computing

constructs, The intent is that it be possible to be slide Horus beneath an existing system as

transparently as possible, for example to introduce fault-tolerance or security without requiring

substantial changes to the system being hardened.

Homs provides efficient support for the virtually synchronous execution model. This

model was introduced by the Isis Toolkit, and has been adopted with some changes by such

systems as Tran sis, Synch, Trans/T otal, and Rampant Rampart. The model is based on group

membership and communication primitives, and can support a variety of faculty-tolerant tools,

such as for load-balanced request execution, fault tolerant computation, coherently replicated data

and security.

Although oft.en-desirable properties like virtual synchrony may sometimes be unwanted,

introduce unnecessary overheads, or conflict with oilier objectives such as real-time guarautees.

Moreover, the optimal implementation of a desired group communication property sometimes

depends on the runtime environment. In an insecure environment, one might accept the overhead

of data encryption, but wish to avoid this cost. when running inside a firewall. On a platform tile

the Il3M SP2, which has reliable message transmission, protocols for message retransmission

would be superfluous.

Accordingly, Horus provides an architecture whereby the protocol supporting a group can

be varied, at runtime, to match the specific requirements of its application and environment.

It does this using a structured framework for protocol composition, which incorporates

ideas from systems such as the Unix "streams" framework and the x-kernel, but replaces point-to

point conununication with group communication as the fundamental abstraction. In horns group

communication stacking protocol modules that have a regular architecture and in which each

module has a separate responsibility provides support. Dynamically including or excluding

particular modules from its protocol stack can optimize a process group.

Horus also innovates by introducing run-time configuration, group communication

interfaces full thread-safety, and supporting messages that may span multiple address spaces.

63

Since horns does not provide control operations and has one single address format, protocol

layers can be mixed and matched freely. In both streams and the x-kernel, the different protocol

modules supply many different control operations, and design their own address format, both

severely limiting such configuration flexibility.

1- A LAYERED PROCESS GROUP ARCIDTECTTJRE

We find it useful to think of horns central protocol abstraction as resembling a Lego

block, the hours "system" is thus like a "box" of Lego blocks. Each type of block implements a

micro protocol that provides a different communication feature. To promote the combination of

these blocks into macro protocols with desired properties, the blocks have standardized top and

bottom interfaces that allows them to stacked on top of each other at nm time in a variety of

ways. Obviously, not every sort of protocol block makes sense above or below every other sort.

But the conceptual value of the architecture is that where it makes sense to create a new protocol

by restacking existing blocks in a new way, doing so is straightforward.

Technically, each horns protocol block is a software module with a set of entry points for

down call and up call procedures. For example there is a down call to send a message and an up

call to receive a message. Bach layer is identified hy an ASCTI name and registers its 11p ca 1J and

down call handlers at initialization time. There is a strong similarity between horns protocol

blocks 811d object classes in an object-oriented inheritance scheme and readers may wish to think

of protocol blocks as members of a class hierarchy.

To see how this works, consider the horns message-send operation. It looks up the

message send entry in the topmost block and invokes that function. TI1is function may add a

header to the message 811d will then typically invoke message-send again. This time control

passes to the message send function in the layer below it. This repeats itself recursively until the

bottom most block is reached and invokes a driver to actually send the message.

'The specific layers currently supported by horns solve such problems as interfacing the

systems to varied communication transport mechanisms overcoming lost packets encryption and

decryption .maintaining group membership helping a process that joins a group obtain the state of

the group merging a group that has partitioned, flow control, e.tc. Horus also includes tools to

assist in the development and debugging of new layers.

64

the group merging a group that has partitioned, flow control, e.tc. Horus also includes tools to

assist in the development and debugging of new layers.

Bach stack of block is carefully shielded from other stacks. It has its own prioritized

threads, and has controlled access to available memory through a mechanism called memory

channels. Horus has a memory scheduler that dynamically assigns the rate at which each stack

can allocate memory depending on availability and priority so that no stack can monopolize the

available memory. This is particularly important inside a kernel, or if one of the stacks has safe

real-time requirements.

Besides threads and memory channels each stack deals with three other types of objects:

end points, groups, and messages. The endpoint object models the communicating entity

Depending on the application it may correspond to a machine, a process, a thread .a socket, a port

.and so forth. An endpoint has an address and can send receive messages. However as we will see

later messages are not addressed to endpoint but to gmnps. The endpoint address is used for

membership purposes.

It does this using a structured framework for protocol composition, which incorporates

idea from systems such as the Unix "streams" framework and the x-kernel, but replaces point-to

point communication with group communication as the fundamental abstraction. In horns group

communication support is provided by stacking protocol modules that have a regular architecture

and in which each module has a separate responsibility. Dynamically including or excluding

particular modules from its protocol stack can optimize a process group.

Homs also innovates by introducing run-time configuration, group communication

interfaces full thread-safety, and supporting messages that may span multiple address spaces.

Since horns does not provide control operations and has one single address format, protocol

layers can be mixed and matched freely. In both streams and the x-kernel, the different protocol

modules supply many different control operations, and design their own address format, both

severely limiting such configuration flexibility ..

A group object is used to maintain the local protocol state on an endpoint Associated

with each group object is the group address to which messages are sent 1111d a view a list of

destination endpoint addresses that are believed to be accessible group members. Since a group

object is purely local , horns technically allows different views of the same group. An endpoint

65

may have multiple group objects allowing it to communicate with different groups and views. A

user can install new views when processes crash or recover and can use one of several

membership protocols to reach some form of agreement on views between multiple group objects

in the same group.

'Horus provides a large collection of micro protocols. Some of the most important ones

are:

Proposed Sidebar

Com TI1e COM layer provides the horns group interface to such low-level protocols as

IP,UDP, and some ATM interface.

NAK- 111is layer implements a negative acknowledgement based message retransmission

protocol.

CY CLE-Multin1edia message dissemination

P ARCLD1 Hierarchical message dissemination

FRA G-Fragmentation/reassembly.

MBRSHIP- This layer provides each member with a list of end points that are believed to be

accessible. It runs a consensus protocol to provide it users with a virtually synchronous execution

model.

EC-Flow Control

TOTAL-Totally ordered message delivery.

STABLE- This layer detect when a message has been delivered to all destination endpoints, and

can be garbage collected.

CRYPT- Encryptions/ denyption

MERGE- Location and merging of multiple group instance.

The message object is a local storage structure. It is interface includes operations to push

and pop protocol headers. Message are passed from layer by passing a pointer and ne vcr need be

copied.

A thread at the bottom most layers waits for message arriving on the network interface.

When a message on to the layer above it. This repeat itself recursively. If necessary a layer may

66

drop a message or buffer it for delayed delivery. When multiple messages .However since each

message is delivered using its own thread, this ordering may be lost depending on the scheduling

policies used by the thread scheduler. Therefore, horns numbers the message and uses event

count synchronization variables to reconstruct the order where necessary.

2-Protocol Stacks

The micro protocol architecture of horns would not be of great value unless the various

classes of process group protocols that we might wish to support can he significant functionality

Our experience in this regard has been very positive.

The layers FRAG,NAK and COM respectively break large messages into smaller ones,

overcome packet loss using negative acknowledgements and interface .Hour to the underlying

transport protocols. The adjacent stack is similar, but provide weaker ordering and inc]udes a

layer that supports "state transfer "to a process joining a group or when groups merge after a

network partition To the right is a stack that supports scaling through a hierarchical structure in

which each parent process is responsible for a set of "child" processes. The dual stack illustrated

in this case represents a feature whereby a message can be routed down one of several stacks,

depending on the type of processing required. Additional protocol blocks provide functionality

such as data encryption packing small messages for efficient communication, isochronously
communication.

Layered protocol architectures sometimes perform poorly. Traditional layered systems impose an

order on which protocols process messages limiting opportunities for optimization and imposing excessive

overhead. Clack and Tennenhouse have suggested that the key to good performance rests. Systems based

on the JLP principle avoid inter-layer ordering constraints and can perform as well as monolithically
structure system.

67

3-Using Horus to build n robust groupware application

Earlier we commented that horns can be hidden behind standard application programmer

interfaces. A good illustration of how this done arose when we interfaced the graphical

programming language to horns.

A challenge posed by running systems like horns side with a package like windows.

That such packages are rarely designed with threads or horns communication stacks in mind .To

avoid a complex integration task.

Architecturally, CMT consists of a multi-media server process that multicasts video and

audio to a set of clients. We decided to replicate the server using a primary -backup .approach.

Where the backup servers stand by to back up failed or slow primaries.

4-Electra

The information of process groups into CMT required sophistication with horus and its

intercept proxies. Many potential users would lack the sophistication and knowledge required to

do this hence we recognized a need for a way to introduce horns functionality in a more

transparent way. This goal evokes an image of "plug and plug" robustness, and leads one to think

in terms of an object-oriented approach computing.

The common object request broker architecture (CORBA) is emerging as a major standard for

supporting object-oriented distributed environments. Object-oriented distributed applications that comply

with CORBA can invoke one-another methods with relative ease. Our work resulted in a CORDA

compliant interface to horns which we call Electra can be used without horns, and vice versa , but the

combination represents a more complete system.

68

CONCLUSION

The increasing density of transistors on a chip follows directly from a decreasing feature

size, which is now for the alpha. Feature size will continue to decrease and by the year 2000,

chips with 50 million transistors are expected to be available. What can we do with all these

transistors? With around a rnil1ion transistors on a chip, designers were able to move full

mainframe functionality to about of a chip. This enabled the personal computing and workstation

revolutions. The next factors of ten increase in transistor density must go into some form of

parallelism by replicating several CPUs on a single chip.
By the year 2000, parallelism is thus inevitable to all computers, from your children's

video game to personal computers, workstations, and supercomputers. Today we see it in the

larger machines as we replicate many chips and printed circuit hoards to build systems as arrays

of nodes, each unit of which is some variant of the microprocessor. Parallelism allows one to

build the world's fastest and most cost-effective supercomputers

Parallelism may only be critical today for supercomputer vendors and users. By the year

2000, all computers will have to address the hardware, algorithmic, and software issues implied

by parallelism. The reward will be amazing performance and the opening up of new fields; the

price will he a major rethinking and re-implementation of software, algorithms, and applications.

REFERENCES

NETWORK COMPUTING
(Joel M. Crichlow/Springer-Verlag)

" INTRODUCTION TO PARALLEL COl\fPUTING "
[(Vipin Kumar, Ananth Orama, Anshul Gupta, George Karypis I Univ. of Minnesota)

The Benjamin/Cummings Publishing Company Inc.

Copyrights» 1994 by The Benjamin/Cummings Publishing Company Inc.]

" PARALLEL PROCESSING''
[(M.E.C. Hull I Univ. of Ulster, D. Crookes I The Queen's Univ., Belfast, P.J. Sweeney I Univ. of

Ulster) Addison-Wesley Publishing Company

Copyright© 1994 Addison-Wesley Publishers Ltd.

Copyrightro Addison-Wesley Publishing Company Joe.

•~ LECTURE NOTES ON PARALLEL PROCESSING"
(Rza E. Bashirov/Eastern Mediterranean Univ.)

"www.parallel+programming.com

Internet

	Page 1
	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Page 3
	Titles
	ABSTRACT

	Page 4
	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	INTRODUCTION

	Page 8
	Titles
	CHAPTER!
	1 What is Parallel Computing?

	Images
	Image 1

	Page 9
	Titles
	2 The Scope of Parallel Computing

	Images
	Image 1

	Page 10
	Titles
	3 Issues in Parallel Computing
	3.1 Design of Parallel Computers
	,.l Design of Efficient Algorithms
	A parallel computer is of little use unless efficient parallel algorithms are available. The

	Images
	Image 1

	Page 11
	Titles
	3.3 Methods for Evaluating Parallel Algorithms
	3.4 Parallel Computer Languages
	3.5 Parallel Programming Tools
	3.6 Portable Parallel Programs
	3.7 Automatic Programming of Parallel Computers

	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Titles
	CHAPJ'ER2

	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Page 16
	Titles
	3 Trends in Applications

	Images
	Image 1

	Page 17
	Titles
	4 Trends in Computer Design

	Page 18
	Page 19
	Titles
	5 Trends in Networking
	6 Summary of Trends

	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 21
	Titles
	CHAPTER3
	1 Flynn's Taxonomy
	1.1 SISD computer organization
	1.2 SIMD computer organization

	Page 22
	Titles
	1.3 MISD computer organization
	1.4 MIMD computer organization
	2 A Taxonomy of Parallel Architectures
	. 1 Control Mechanism

	Images
	Image 1

	Page 23
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Tables
	Table 1

	Page 26
	Titles
	3. A Parallel Machine
	-
	-

	Images
	Image 1
	Image 2
	Image 3

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Titles
	CHAPTER4
	1 Parallel Programming
	2 Parallel Programming Paradigms

	Page 30
	Titles
	2.1 Explicit versus Implicit Parallel Programming
	2.2 Shared-Address-Space versus Message-Passing

	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Titles
	2.3 Data Parallelism versus Control Parallelism

	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Titles
	3 Primitives for the Message-Passing
	3.1 Bnsic Extensions

	Images
	Image 1

	Page 35
	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Titles
	3.2 nCUBE 2

	Page 38
	Images
	Image 1

	Page 39
	Titles
	3.3 iPSC 860
	32

	Images
	Image 1

	Page 40
	Titles
	3.4 CM-5

	Images
	Image 1
	Image 2

	Page 41
	Page 42
	Images
	Image 1

	Page 43
	Titles
	4 Data-Parallel Languages

	Images
	Image 1

	Page 44
	Titles
	4.1 Data Partitioning and Virtual Processors

	Images
	Image 1
	Image 2

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Titles
	·i~:, ~::) �. Il?!'..:�R
	Operator

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 49
	Titles
	I=
	x= y+z;
	}

	Images
	Image 1

	Page 50
	Titles
	43

	Images
	Image 1

	Page 51
	Titles
	.. , .. '"·��1Gtf ~pf J~~J~i��� · · ···����:i: ··.���,;;s~,rilrt:T:iJ ..

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 52
	Titles
	CHEAPTER5

	Images
	Image 1

	Page 53
	Titles

	Images
	Image 1
	Image 2

	Page 54
	Titles
	.. N t k ..
	.� · ea wor �

	Images
	Image 1
	Image 2
	Image 3

	Page 55
	Images
	Image 1

	Page 56
	Titles
	. : : l: :··. ·········: ·························:·····:·:: : . ·::: :::::::
	:1� · :t1mEADs ··········
	ITuTIS~:~m~im'~~iITF~~AFTlf~~~: :;:;; ii I

	Images
	Image 1
	Image 2
	Image 3

	Page 57
	Titles
	. . :;:{p::::::(:f}i>t:::~;~::{
	.. X:l""""'. ··1----· ..
	\ J~ijt\V(ltC :�

	Images
	Image 1
	Image 2

	Page 58
	Titles
	H6its st~m
 :t ?,;ppti~~uon ··
	, .

	Images
	Image 1
	Image 2

	Page 59
	Page 60
	Titles
	Technical Process Control Software Systems
	:::iil<JTl l</H !f! :~. if:] F2H � :~;~~AM YQ P$.V:t~S

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 61
	Images
	Image 1

	Page 62
	Titles
	·~····· i I

	Images
	Image 1
	Image 2

	Page 63
	Titles
	. .

	·············· .

	Images
	Image 1
	Image 2
	Image 3

	Page 64
	Titles
	- Technical Data Interchange
	Groupware

	Page 65
	Titles
	Combination of Network Computing and Cooperative Computing

	Page 66
	Titles

	::·: conummlciitfonfor :
)::::::::::::: :: > � ; ; � : ..
	iisc of
	. rue senrer.

	· · · .. ��· · :prijt~,trn,flf:�

	Images
	Image 1
	Image 2
	Image 3

	Page 67
	Titles
	CHEAPTER6
	Distributed Computing System
	In our distributed computing system:
	l) State Manager

	Images
	Image 1

	Page 68
	Titles
	The Future

	Images
	Image 1

	Page 69
	Titles
	Footnote
	HORUS:
	A Flexible Group Communications System

	Images
	Image 1

	Page 70
	Images
	Image 1

	Page 71
	Titles
	1- A LAYERED PROCESS GROUP ARCIDTECTTJRE

	Images
	Image 1

	Page 72
	Page 73
	Page 74
	Page 75
	Titles
	3-Using Horus to build n robust groupware application

	Page 76
	Titles
	CONCLUSION

	Page 77
	Titles
	REFERENCES
	" INTRODUCTION TO PARALLEL COl\fPUTING "
	" PARALLEL PROCESSING''
	�~ LECTURE NOTES ON PARALLEL PROCESSING"
	"www.parallel+programming.com

