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Abstract 

At the past U.S. government agencies have realized the importance and potential of 

Internet technology for many years and have been funding research that has made 

possible a global Internet. This project discusses principles and ideas underlying the 

Internet technology that has resulted from research funded by the Advanced Research 

Projects Agency (ARP A). The ARP A technology includes a set of network standards 

that specify the details of how computers communicate, as well as a set of conventions 

for interconnecting networks and routing traffic. Officially named the TCP/IP Internet 

Protocol Suite and commonly referred to as TCP/IP (after the names of its two main 

standards), it can be used to communicate across any set of interconnected networks. 

For example, some corporations use TCP/IP to interconnect all networks within their 

corporation, even though the corporation has no connection to outside networks. Other 

groups use TCP/IP for communication among geographically distant sites. 

Although the TCP/IP technology is noteworthy by itself, it is especially interesting 

because its viability has been demonstrated on a large scale. It forms the base 

technology for a global Internet that connects homes, university campuses and other 

schools, corporations, and government labs in 61 countries. In the U.S., The National 

Science Foundation (NSF), the Department of Energy (DOE), the Department of 

Defense (DOD), the Health and Human Services Agency, (HHS) and the National 

Aeronautics and Space Administration (NASA) have all participated in funding the 

Internet, and use TCP/IP to connect many of their research sites. Known as the 

ARP A/NSF Internet, the TCP/IP Internet, the global Internet, or just the Internet, the 

resulting Internet allows researchers at connected institutions to share information with 

colleagues around the world as easily as they share it with researchers in the next room. 

An outstanding success, the Internet demonstrates the viability of the TCP/IP 

technology and shows how it can accommodate a wide variety of underlying network 

technologies. 
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CHAPTERl 

TCP I IP & THE INTERNET 

1.1 INTRODUCTION 

In 1969 the Defense Advanced Research Projects Agency (DARPA) funded a 

research and development project to create an experimental packet switching network. 

This network called the ARP ANET was built to study techniques for providing robust, 

reliable, vendor - independent data communications. Many techniques of modem data 

communications were developed in the ARP ANET. 

The experimantal ARP ANET was so succesful that many of the 

organizations attached to it began to use it for daily communications . In 1975 

ARP ANET was converted from an experimental network to an operational 

network , and the responsibility for administering the network was ment given to 

the Defense Communications Agency ( DCA) . The basic TCP I IP (Transmission 

Control Protocols & the Internet Protocols ) protocols were developed after the 

ARPANET was operational. 

About the time that TCP I IP was adopted as a standard , the term Internet 

came into common usage. 

1.2 TCP I IP FEATURES 

The popularity of the TCP I IP protocols on the internet did not grow 

rapidly just because the protocols were there , or because military agnecies 

mandated their use . They met an important need ( world - wide data 

communications ) at the right time , and they had several important features that 

allowed them to meet this need . These are : 

• Open protocol standards , freely available and developed independently 

from any specific computer hardware or operating system . Because so 

widely supported , TCP I IP is ideal for uniting different hardware and 

software , even if you don't communicate on the internet . 



• Independence from specific physical network hardware . This allows 

TCP I IP to integrate many different kinds of networks . TCP I IP can 
be run over an Ethernet , a token ring , a dial - up line , an X.25 net , 

and virtually ant other kind of physical transmission media. 

• A common addressing scheme that allows any TCP I IP device to 

uniquely address any other device in the entire network , even if the 

network is as large as the world - wide Internet . 

• Standardized high - level protocols for consistent , widely available for 

user services . 

1.3 PROTOCOL STANDARDS 

Protocols are formal rules of behaviour . When computer communicate, it 

is necessary to define a set of rules to govern their communications . 

In data communications these sets of rules are also called protocols . In 

homogenous networks , a single computer vendor specifies a set of 

communications rules designed to use the strength of the vendor's operating 

system and hardware architecture . - TCP I IP attempts to create heterogenous 

network with open protocols that are independent of operating system and 

architectural differences . TCP I IP protocols are available to everyone , and are 

developed and changed bu consensus . 

1.4 A DATA COMMUNICATIONS MODEL 

To discuss computer networking , it is necessary to use terms that have 

special meaning in data communications . 

An architectural model developed by the International Standards 

Organization (ISO) is frequently used to describe the structure and function of 

data communications protocols . This architectural model , called Open Systems 

Interconnect ( OSI ) Reference Model , provides a common reference for 

discussing communications . The OSI Reference model contains seven layers that 
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define the functions of data communications protocols . Each layer of OSI model 

represents a function performed when data is transferred between cooperating 

applications across an intervening network. (figure 1.1) 

1.5 TCP I IP PROTOCOL ARCHITECTURE 

While there is no universal agreement about how to describew TCP I IP 

with a layered model , it is generally viewed as being composed of fewer layers 

than the seven used in the OSI model . Most descriptions of TCP I IP define 

three to five 

functional levels in protocol architecture . 

7 Application layer 
consists of application 
programs that use the 
network. 

:~ -l'"reseiitanon-:cayer- - - - - 
standardizes data presentation 

-\- ta .the.. applications ·- _ 
sr Session Layer 

manages sessions between 
_ ~Iili<.atw~ . _ 
Transport Layer 
provides end-to-end error 
detection and correction . 

:1- - - - - - - - - - - - - - Network Layer 
manages connections across 
the network for the upper 

, _ l~ers . _ 
21 Data Link Layer 

provides reliable data 
delivery across the physical 
link. 

- PhysfcaT Layer - - - - - - 
defines the physical 
characteristics of the 
network media. 

4 Application Layer 
consists of applications and 
processes that use the 
network. 
':Efost-io-iiost Transport 
Layer 
provides end - to - end data 

_d.e,l~ecy ..se.i.:.vu;e;s, . _ 
21 Internet Layer 

defines the datagram and 
handles the routin_g data . __ 
Network Access Layer 
consists of routines for 
accessing physical networks . 

Layers in the TCP/IP Protocol Arch. The OSI Reference Model 

FIGURE 1.1 the OSI model 

As in the OSI model , data is passed down the stack when it is being 

sent to the net , and up the stack when it is being received from the network . 

The four - layered structure of TCP I IP is seen in the way data is handled as it 
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passes down the protocol stack from the Application Layer to the underlying 

physical network . Each layer in the stack adds control information to ensure 

proper delivery. This control information is called a header because it is placed 

in front of the data to be transmitted . Each layer treats all of the information it 

receives from the layer above as data and places its own header in front of the 

information . The addition of delivery information at every layer is called 

encapsulation (figure 1.2) . When data is received , the opposite happens . Each 

layer strips off its header before passing the data on to the layer above . As 

information flows back up the stack , information received from a layer is 

interpreted as both a header and data . 

------------------------------------ 
Application Layer 

----------------------------- 
Transport Layer 

Header Data 

•...... -. -------------------------~ ~ ---- ;, : 
Internet Layer -: .•.•• :c• 

Header : 
11-•-•-• : : 

-----------------------J L--- : ; . . -.:_ ::• ....... Network Access Layer 

t r··= . ~ . . 
•• ; t; • ...•... 

Header : Header Data 

Receive Send DATA ENCAPSULATION 

Each layer has its own independent data structures . Conceptually a layer 

unaware of the data structures used by the layers above and below it . In 

· y , the data structures of a layer are designed to be compatible with the 
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structures used by surrounding layers for take the sake of more efficient data 

transmission. Still, each layer has its own data structure and its own terminology 
o describe that structure . You can see the 

terms used by different layers of TCP I IP in figure 1.3 

Application Layer 
---------------------------- 

--------- 
I ransport Layer 

--------- 
Internet Layer 

_ Ietwork Access Layer frame 
---------------------------- 

frame 

DATA STRUCTURES 

Applications using TCP refer to data as stream , while applications using the 

User Datagram Protocol (UDP) refer to data as a message . TCP calls data a 

segment , and UDP calls its data structure a packet . The internet layer views all 

data as blocks called datagrams . TCP I IP uses many different types of 

underlying networks . We asssume a network that transmitted data as packets or 
frames. 

1.6 LAYERS OF TCP I IP 

~IBTWORK ACCESS LA YER 
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The Network Access Layer is the lowest layer of the TCP I IP protocol 

hierarchy . The protocols in this layer provide the means for the system to deliver 

data to other devices on a directly attached network . It defines how to use the 

network to transmit an IP datagram . Unlike higher - level protocols , Network 

Access Layer protocols must know the details of the underlying network to 

correctly format the data being transmitted to comply with the network 

constraints . Network Access Layer can encompass the functions of all three 

lower layers of OSI reference model (Network, Data Link, Physical). 

• INTERNET LA YER 

The layer above the Network Access Layer in the protocol hierarchy is the 

Internet Layer. The Internet Protocol, RFC 791 , is the heart of TCP I IP and the 

most important protocol in the Internet Layer . All TCP I IP data flows through 

IP , incoming and outgoing , regardless of its final destination . 

Internet Protocol 

The Internet protocol is the building block of the internet . Its functions 

include: 

• Defining the datagram , which is the basic unit of transmission in the Internet 

• Defining the Internet addressing scheme ; 

• Moving data between the Network Access Layer and the Host - to - Host 

Transport Layer; 

• Routing datagrams to remote hosts ; 

• Performing fragmentation and re - assembly of datagrams . 

IP is a connectionless protocol . This means that IP does not change control 

information to establish an ent - to - end connection before transmitting data . IP 

also relies on protocols in other layers to provide error detection and error 

overy. 
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• Internet Control Message Protocol 

An integral part of IP is the Internet Control Message Protocol ( ICMP) 

defined in RFC 792. This protocol is part of the internet layer and uses the IP 

datagram delivery facility to send its message . ICMP sends messages that 

perform the following control , error reporting and informational functions for 

TCP /IP. 

• Flow Control 

• Detecting unreachable destinations 

• Redirecting routes 

• Checking remote host 

• TRANSPORT LAYER 

The protocol layer just above the Internet Layer is the Host - to - Host 

Transport Layer . The most important protocols in the Transport Layer are 

Transmission Comtrol Protocol (TCP) and the User Datagram Protocol (UDP) . 

TCP provides reliable data delivery service with an end - to - end error detection 

and correction . UDP provides low - overhead , connectionless datagram deivery 

service . Both protocols deliver data between the Application Layer and the 

Internet Layer . Applications programmers can choose whichever service is more 

appropriate for their specific applications . 

• APPLICATION LAYER 

At the top of the TCP I IP protocol architecture is the Application Layer . 

This layer includes all processes that use the Transport Layer protocols to deliver 

data . There are many applications protocols . Most widely known and 

implemented applications protocols are : 

• TELNET , the Network Terminal Protocol , provides remote login 

over the network 

• FTP , the File Transfer Protocol, is used for interactive file transfer 

• SMTP, the Simple Mail Transfer Protocol delivers electronic mail. 
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• DNS, Domain Name Service, this application maps IP addresses to 

the names assigned to network devices . 

• RIP , Routing Information Protocol , is central to the way TCP I IP 

works . It is used by network devices to exchange routing 

information . 

• NFS , Network File System, allows files to be shared by various 

hosts on the network . 

1.7 INTERNET SERVICES 

One cannot appreciate the technical details underlying TCP/IP without understanding 

the services it provides. This section reviews Internet services briefly, highlighting the 

services most users access, and leaves to later chapters the discussion of how computers 

connect toa TCP/IP internet and how the functionality is implemented. 

Much of our discussion of services will focus on standards called protocols. 

Protocols like TCP and IP provide the rules for communication. They contain the details 

of message formats, describe how a computer responds when a message arrives, and 

specify how a computer handles errors or other abnormal conditions. Most important, 

they allow us to discuss computer communication independent of any particular 

vendor's network hardware. In a sense, protocols are to communication what algorithms 

are to computation. An algorithm allows one to specify or understand a computation 

without knowing the details of a particular CPU instruction set. Similarly, a 

communication protocol allows one to specify or understand data communication 

without depending on detailed knowledge of a particular vendor's network hardware. 

Hiding the low-level details of communication helps improve productivity in several 

ways. First, because programmers deal with higher-level protocol abstractions, they do 

not need to learn or remember as many details about a given hardware configuration. 

They can create new programs quickly. Second, because programs built using higher­ 

level abstractions are not restricted to particular machine architecture or particular 

network hardware, they do not need to be changed when macnmes or networks are 

reconfigured. Third, because application programs built using higher-level protocols are 

independent of the underlying hardware, they can provide direct communion for an 

arbitrary pair of machines. Programmers do not need to build special versions of 
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application software to move and translate data between each possible pair of chine 

types. 

We will see that all network services are described by protocols. The next sections 

refer to protocols used to specify application-level services as well as those used to 

define network-level services. Later chapters explain each of these protocols in more 

detail. 

1.8APPLICATION LEVEL INTERNET SERVICES 

From the user is point of view, a TCP/IP Internet appears to be a set of applications 

that uses the network to carry out useful communication tasks. We use the 

interoperability to refer to the ability of diverse computing systems to cooperate in 

solving computational problems. Internet application programs exhibit a high degree of 

interoperability. Most users that access the Internet do so merely by running application 

programs without understanding the TCP/IP technology, the structure of the underlying 

internet, or even the path the data travels to its destination; they rely on the application 

programs and the underlying network software to handle such details. Only 

programmers who write network application programs need to view the Internet as a 

network and need to understand some of the technology. The most popular and 

widespread Internet application services Include: 

• Electronic mail. Electronic mail allows a user to compose memos and send them 

to individuals or groups. Another part of the mail application allows users to read 

memos that they have received. Electronic mail has been so successful that many 

Internet users depend on it for normal business correspondence. Although many 

electronic mail systems exist, using TCP/IP makes mail delivery more reliable 

Because it does not rely on intermediate computers to relay mail messages. A 

TCP/IP mail delivery system operates by having the sender's machine contact the 

receiver s machine directly. Thus, the sender knows that once the message leaves 

the local machine, it has been successfully received at the destination site. 

• File transfer. Although users sometimes transfer files using electronic mail, mail 

is designed primarily for short text messages. The TCP/IP protocols include a file 

transfer application program that allows users to sernl or recei'v'e ar'oitrari\'j \arie 
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files of programs or data. For example, using the file transfer program, one can copy 

from one machine to another a large data base containing satellite images, a program 

written in Pascal or C++, or an English dictionary. The system provides a way to 

check for authorized users, or even to prevent all access. Like mail, file transfer 

across a TCP/IP Internet is reliable because the two machines involved 

communicate directly, without relying on intermediate machines to make copies of 

the file along the way. 

• Remote login. Remote login allows a user sitting at one computer to connect to a 

remote machine and establish an interactive login session. The remote login makes 

it appear that a window on the user's screen connects directly to the remote machine 

by sending each keystroke from the user's keyboard to the remote machine and 

displaying each character the remote computer prints in the user's window. When 

the remote login session terminates, the application returns the user to the local 

system. 

We will return to these and other applications in later chapters to examine them in more 

detail. We will see exactly how they use the underlying TCP/IP protocols, and why 

having standards for application protocols has helped ensure that they are widespread. 

1.9 THE IAB REORGANIZATION 

By the summer of 1989, both the TCP/IP technology and the Internet had grown 

beyond the initial research project into production facilities on which thousands of 

people depended for daily business. It was no longer possible to introduce new ideas by 

changing a few installations overnight. To a large extent, the literally hundreds of 

commercial companies that offer TCP/IP products determined whether products would 

intemperate by deciding when to incorporate changes in their software. Researchers 

who drafted specifications and tested new ideas in laboratories could no longer expect 

instant acceptance and use of the ideas. It was ironic that the researchers who designed 

and watched TCP/IP develop found themselves overcome by the commercial success of 

their brainchild. In short, TCP/IP became a successful, production technology and the 

market place began to dominate its evolution. 
To reflect the political and commercial realities of both TCP/IP and the Internet, the 
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IAB was reorganized in the summer of 1989. The chairmanship changed. Researchers 

were moved from the IAB itself to a subsidiary group and a new IAB board was 

constituted to include representatives from the wider community. 

Figure 1.1 illustrates the new IAB organization and the relationship of subgroups. 

THE IAB ORGANIZATION ··-·- ..•. 

\RTF 

( _ 

______ L_ _ 
, .. --·· . --....-. 

( IRSG ) 

[ ... \ 
THE BOARD 

/ :'>---vv· ~ea 1) . . . (area ~ 

·b cf- b 
-~~rking groups _ 

---------- - -- ,..,. ....•.. ~"" 
-------- 

Figure 1.1 the structure of the IAB after the 1989 reorganization. 

As Figure 1.1 shows, in addition to the board itself, the IAB organization contains 

two major groups: the Internet Research Task Force (IRTF) and the Internet 

Engineering Task Force (IETF). 

As its name implies, the IETF concentrates on short-term or medium-term 

engineering problems. The IETF existed in the original IAB structure, and its success 

provided part of the motivation for reorganization. Unlike most IAB task forces, which 

were limited to a few individuals who focused on one specific issue, the IETF grew to 

include dozens of active members who worked on many problems concurrently. Before 

the reorganization, the IETF was divided into over 20 working groups, each focusing on 

a specific problem. Working groups held individual meetings to formulate problem 

Solutions. In addition, the entire IETF met regularly to hear reports from working 

groups and discuss proposed changes or additions to the TCP/IP technology. Usually 

held three times annually, full IETF meetings attracted hundreds of participants and 

spectators. The IETF had become too large for the chairman to manage. 

Because the IETF was known throughout the Internet, and because its meetings were 

widely recognized and attended, the reorganized IAB structure retains the IETF, but 

splits it into approximately a dozen areas, each with its own manager. The IETF 

chairman and the area managers comprise the Internet Engineering Steering Group 

(IESG), the individuals responsible for coordinating the efforts of IETF working group. 
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The name "IETF" now refers to the entire body, including the chairman, area managers, 
and all members of working groups. 

Created during the reorganization, the Internet Research Task Force is the research 

counterpart to the IETF. The IRTF coordinates research activities related to TCP/IP 

protocols or Internet architecture in general. Like the IETF, the IRTF has a small group 

called the Internet Research Steering Group or IRSG, which sets priorities and 

coordinates research activities. Unlike the IETF, the IRTF is currently a much smaller 

and less active organization. Each member of the IRSG chairs a volunteer Internet 

Research Group analogous to the IETF working groups; the IRTF is not divided into 
areas. 

1.10 INTERNET PROTOCOLS AND STANDARDIZATION 

Readers familiar with data communication networks realize that many 

communication protocol standards exist. Many of them precede the Internet, so the 

question arises, "Why did the Internet designers invent new protocols when so many 

international standards already existed?" The answer is complex, but follows a simple 
maxim: 

Use existing protocol standards whenever such standards apply; invent new 

protocols only when existing standards are insufficient, and be prepared to use new 

standards when they become available and provide equivalent functionality. 

1.11 GENERAL DESCRIPTION OF THE TCP/IP PROTOCOLS 

' TCP/IP is a layered set of protocols. In order to understand what this means, it is 

useful to look at an example. A typical situation is sending mail. First, there is a 

protocol for mail. This defines a set of commands which one machine sends to another, 

e.g. commands to specify who the sender of the message is, who it is being sent to, and 

then the text of the message. However this protocol assumes that there is a way to 

communicate reliably between the two computers. Mail, like other application 

protocols, simply defines a set of commands and messages to be sent. It is designed to 

be used together with TCP and IP. TCP is responsible for making sure that the 

commands get through to the other end. It keeps track of what is sent, and retransmits 
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Anything that did not get through. If any message is too large for one Datagram, e.g. the 

text of the mail, TCP will split it up into several Datagram, and make sure that they all 

arrive correctly. Since these functions are needed for many applications, they are put 

together into a separate protocol, rather than being part of the specifications for sending 

mail. You can think of TCP as forming a library of routines that applications can use 

when they need reliable network communications with another computer. Similarly, 

TCP calls on the services oflP. Although the services that TCP supplies are needed by 

many applications, there are still some kinds of applications that don't need them. 

However there are some services that every application needs. So these services are put 

together into IP. As with TCP, you can think oflP as a library of routines that TCP calls 

on, but which is also available to applications that don't use TCP. This strategy of 

building several levels of protocol is called "layering". We think of the applications 

programs such as mail, TCP, and IP, as being separate "layers", each of which calls on 

the services of the layer below it. Generally, TCP/IP applications use 4 layers: 

• an application protocol such as mail 

• a protocol such as TCP that provides services need by many applications 

• IP, which provides the basic service of getting datagrams to their destination 

• The protocols needed to manage a specific physical medium, such as Ethernet or 

a point to point line. 

TCP/IP is based on the "catenet model". (This is described in more detail in IEN 48.) 

This model assumes that there are a large number of independent networks connected 

together by gateways. The user should be able to access computers or other resources on 

any of these networks. Datagrams will often pass through a dozen different networks 

before getting to their final destination. The routing needed to accomplish this should be 

completely invisible to the user. As far as the user is concerned, all he needs to know in 

order to access another system is an "Internet address". This is an address that looks like 

128.6.4.194. It is actually a 32-bit number. However it is normally written as 4 decimal 

numbers, each representing 8 bits of the address. (The term "octet" is used by Internet 

documentation for such 8-bit chunks. The term "byte" is not used, because some 

computers that have byte sizes other than 8 bits support TCP/IP.) Generally the structure 

of the address gives you some information about how to get to the system. For example, 

128.6 are a network number assigned by a central authority to Rutgers University. 

Rutgers uses the next octet to indicate which of the campus Ethernet is involved. 

128.6.4 happens to be an Ethernet used by the Computer Science Department. The last 

.•. 
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octet allows for up to 254 systems on each Ethernet. (It is 254 because O and 255 are not 

allowed, for reasons that will be discussed later.) Note that 128.6.4.194 and 128.6.5.194 

would be different systems. The structure of an Internet address is described in a bit 

more detail later. 

Of course we normally refer to systems by name, rather than by Internet address. When 

we specify a name, the network software looks it up in a database, and comes up with 

the corresponding Internet address. Most of the network software deals strictly in terms 

of the address. (RFC 882 describes the name server technology used to handle this 

lookup.) 

TCP/IP is built on "connectionless" technology. Information is transferred as a sequence 

of "datagrams". A Datagram is a collection of data that is sent as a single message. Each 

of these datagrams is sent through the network individually. There are provisions to 

open connections (i.e. to start a conversation that will continue for some time). However 

at some level, information from those connections is broken up into datagrams, and the 

network treats those datagrams as completely separate. For example, suppose you want 

to transfer a 15000-octet file. Most networks can't handle a 15000 octet Datagram. So 

the protocols will break this up into something like 30 500-octet datagrams. Each of 

these datagrams will be sent to the other end. At that point, they will be put back 

together into the 15000-octet file. However while those datagrams are in transit, the 

network doesn't know that there is any connection between them. It is perfectly possible 

that Datagram 14 will actually arrive before datagram 13. It is also possible that 

somewhere in the network, an error will occur, and some datagram won't get through at 

all. In that case, that datagram has to be sent again. 

Note by the way that the term's "datagram" and "packet" often seems to be nearly 

interchangeable. Technically, datagram is the right word to use when describing 

TCP/IP. A datagram is a unit of data, which is what the protocols deal with. A packet is 

a physical thing, appearing on an Ethernet or some wire. In most cases a packet simply 

contains a datagram, so there is very little difference. However they can differ. When 

TCP/IP is used on top ofX.25, the X.25 interface breaks the datagrams up into 128-byte 

packets. This is invisible to IP, because the packets are put back together into a single 

datagram at the other end before being processed by TCP /IP. So in this case, several 

packets would carry one IP datagram. However with most media, there are efficiency 

advantages to sending one datagram per packet, and so the distinction tends to vanish. 
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The TCP level 

separate protocols are involved in handling TCP/IP datagrams. TCP (the 

smissicn CQntra\ \)rntQcQ\") is reS\)Qnsib\e for break.mi '1\) the messaie mt() 

-~ornm.::, reassembling them at the other end, resenting anything that gets lost, and 
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routing individual datagrams. It may seem like TCP is doing all the work. And in small 

networks that is true. However in the lntemet, simply getting a datagram to its 

destination can be a complex job. A connection may require the datagram to go through 

several networks at Rutgers, a serial line to the John Von Neuron Supercomputer 

Center, a couple of Ethernet there, a series of 56Kbaud phone lines to another NSFnet 

site, and mQre Ethe.met cin ancither cam\)'1'2.. Kee\)mi track cif the rnute'2. to all cif the 

destinations and handling incompatibilities among different transport media turns out to 

be a complex job. Note that the interface between TCP and IP is fairly simple. TCP 

simply hands IP a datagram with a destination. IP doesn't know how this datagram 

relates to any datagram before it or after it. 
It may have occurred to you that something is missing here. We have talked about 

Internet addresses, but not about how you keep track of multiple connections to a given 

system. Clearly it isn't enough to get a datagram to the right destination. TCP has to 

know which connection this datagram is part of. This task is referred to as 

"demultiplexing." In fact, there are several levels of demultiplexing going on in TCP/IP. 

The information needed to do this demultiplexing is contained in a series of "headers". 

A header is simply a few extra octets tacked onto the beginning of a datagram by some 

protocol in order to keep track of it. It's a lot like putting a letter into an envelope and 

putting an address on the outside of the envelope. Except with modern networks it 

happens several times. It's like you put the letter into a little envelope, your secretary 

puts that into a somewhat bigger envelope, the campus mail center puts that envelope 

into a still bigger one, etc. Here is an overview of the headers that get stuck on a 

message that passes through a typical TCP /IP network: 
We start with a single data stream, say a file you are trying to send to some other 

computer: 
TCP breaks it up into manageable chunks. (In order to do this; TCP has to know how 

large a datagram your network can handle. Actually, the PCP's at each end say how big 

a datagram they can handle, and then they pick the smallest size.) 
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TCP puts a header at the front of each datagram. This header actually contains at 

least 20 octets, but the most important ones are a source and destination "port number" 

and a "sequence number". The port numbers are used to keep track of different 

conversations. Suppose 3 different people are transferring files. Your TCP might 

allocate port numbers 1000, 1001, and 1002 to these transfers. When you are sending a 

datagram, this becomes the "source" port number, since you are the source of the 

datagram. Of course the TCP at the other end has assigned a port number of its own for 

the conversation. Your TCP has to know the port number used by the other end as well. 

(It finds out when the connection starts, as we will explain below.) It puts this in the 

"destination" port field. Of course if the other end sends a datagram back to you, the 

source and destination port numbers will be reversed, since then it will be the source 

and you will be the destination. Each datagram has a sequence number. This is used so 

that the other end can make sure that it gets the datagrams in the right order, and that it 

hasn't missed any. (See the TCP specification for details.) TCP doesn't number the 

datagrams, but the octets. So if there are 500 octets of data in each datagram, the first 

datagram might be numbered 0, the second 500, the next 1000, the next 1500, etc. 

Finally, I will mention the Checksum. This is a number that is computed by adding up 

all the octets in the datagram (more or less - see the TCP spec). The result is put in the 

header. TCP at the other end computes the checksum again. If they disagree, then 

something bad happened to the datagram in transmission, and it is thrown away. So 

here's what the datagram looks like now. 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Source Port I Destination Port 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Sequence Number 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Acknowledgment Number 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I Data I IUIA/P/RISIFI 

I Offset Reserved IRICISISIYIII 

IGIKIHITININI 

Window 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Checksum Urgent Pointer 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
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your data ... next 500 octets 

lfwe abbreviate the TCP header as "T", the whole file now looks like this: 

T.... T.... T.... T.... T.... T.... T .... 

You will note that there are items in the header that l have not described above. They 

are generally involved with managing the connection. In order to make sure the 

datagram has arrived at its destination, the recipient has to send back an 

"acknowledgement". This is a datagram whose "Acknowledgement number" field is 

filled in. For example, sending a packet with an acknowledgement of 1500 indicates 

that you have received all the data up to octet number 1500. If the sender doesn't get an 

acknowledgement within a reasonable amount of time, it sends the data again. The 

window is used to control how much data can be in transit at any one time. It is not 

practical to wait for each datagram to be acknowledged before sending the next one. 

That would slow things down too much. On the other hand, you can't just keep sending, 

or a fast computer might overrun the capacity of a slow one to absorb data. Thus each 

end indicates how much new data it is currently prepared to absorb by putting the 

number of octets in its "Window" field. As the computer receives data, the amount of 

space left in its window decreases. When it goes to zero, the sender has to stop. As the 

receiver processes the data, it increases its window, indicating that it is ready to accept 

more data. Often the same datagram can be used to acknowledge receipt of a set of data 

and to give permission for additional new data (by an updated window). The "Urgent" 

field allows one end to tell the other to skip ahead in its processing to a particular octet. 

This is often useful for handling asynchronous events, for example when you type a 

control character or other command that interrupts output. The other fields are beyond 

the scope of this document. 

The IP level 

TCP sends each of these datagrams to IP. Of course it has to tell IP the Internet address 

of the computer at the other end. Note that this is all IP is concerned about. It doesn't 

care about what is in the datagram, or even in the TCP header. IP's job is simply to find 

a route for the datagram and get it to the other end. In order to allow gateways or other 

intermediate systems to forward the datagram, it adds its own header. The main things 

in this header are the source and destination Internet address (32-bit addresses, like 

128.6.4.194), the protocol number, and another checksum. The source Internet address 
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is simply the address of your machine. (This is necessary so the other end knows where 

the datagram came from.) The destination Internet address is the address of the other 

machine. (This is necessary so any gateways in the middle know where you want the 

datagram to go.) The protocol number tells IP at the other end to send the datagram to 

TCP. Although most IP traffic uses TCP, there are other protocols that can use IP, so 

you have to tell IP which protocol to send the datagram to. Finally, the checksum allows 

IP at the other end to verify that the header wasn't damaged in transit. Note that TCP 

and IP have separate checksums. IP needs to be able to verify that the header didn't get 

damaged in transit, or it could send a message to the wrong place. For reasons not worth 

discussing here, it is both more efficient and safer to have TCP compute a separate 

checksum for the TCP header and data. Once IP has tacked on its header, here's what 

the message looks like: 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

[Version] IHL [Type of Service! Total Length 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Identification [Flags] Fragment Offset I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I Time to Live I Protocol I Header Checksum 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Source Address 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Destination Address 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

TCP header, then your data . 

If we represent the IP header by an "I", your file now looks like this: 

IT.... IT.... IT.... IT.... IT .... IT.... IT .... 

Again, the header contains some additional fields that have not been discussed. Most of 

them are beyond the scope of this document. The flags and fragment offset are used to 

keep track of the pieces when a datagram has to be split up. This can happen when 

datagrams are forwarded through a network for which they are too big. (This will be 

discussed a bit more below.) The time to live is a number that is decremented whenever 

the datagram passes through a system. When it goes to zero, the datagram is discarded. 
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This is done in case a loop develops in the system somehow. Of course this should be 

impossible, but well-designed networks are built to cope with "impossible" conditions. 

At this point, it's possible that no more headers are needed. If your computer happens to 

have a direct phone line connecting it to the destination computer, or to a gateway, it 

may simply send the datagrams out on the line (though likely a synchronous protocol 

such as HDLC would be used, and it would add at least a few octets at the beginning 

and end). 

The Ethernet level 

However most of our networks these days use Ethernet. So now we have to describe 

Ethernet's headers. Unfortunately, Ethernet has its own addresses. The people who 

designed Ethernet wanted to make sure that no two machines would end up with the 

same Ethernet address. Furthermore, they didn't want the user to have to worry about 

assigning addresses. So each Ethernet controller comes with an address built-in from the 

factory. In order to make sure that they would never have to reuse addresses, the 

Ethernet designers allocated 48 bits for the Ethernet address. People who make Ethernet 

equipment have to register with a central authority, to make sure that the numbers they 

assign don't overlap any other manufacturer. Ethernet is a "broadcast medium". That is, 

it is in effect like an old party line telephone. When you send a packet out on the 

Ethernet, every machine on the network sees the packet. So something is needed to 

make sure that the right machine gets it. As you might guess, this involves the Ethernet 

header. Every Ethernet packet has a 14-octet header that includes the source and 

destination Ethernet address, and a type code. Each machine is supposed to pay 

attention only to packets with its own Ethernet address in the destination field. (It's 

perfectly possible to cheat, which is one reason that Ethernet communications are not 

terribly secure.) Note that there is no connection between the Ethernet address and the 

Internet address. Each machine has to have a table of what Ethernet address corresponds 

to what Internet address. (We will describe how this table is constructed a bit later.) In 

addition to the addresses, the header contains a type code. The type code is to allow for 

several different protocol families to be used on the same network. So you can use 

TCP/IP, DECnet, Xerox NS, etc. at the same time. Each of them will put a different 

value in the type field. Finally, there is a checksum. The Ethernet controller computes a 

checksum of the entire packet. When the other end receives the packet, it recomputes 
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the checksum, and throws the packet away if the answer disagrees with the original. The 

checksum is put on the end of the packet, not in the header. The final result is that your 

message looks like this: 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Ethernet destination address (first 32 bits) 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

\ Ethernet dest (last 16 bits) \Ethernet source (first 16 bits)\ 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Ethernet source address (last 32 bits) 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Type code 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

IP header, then TCP header, then your data 

end of your data 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Ethernet Checksum 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

If we represent the Ethernet header with "E", and the Ethernet checksum with "C", your 

file now looks like this: 

EIT .... C EIT .... C EIT .... C EIT .... C EIT .... C 

When the other end receives these packets, of course all the headers are removed. The 

Ethernet interface removes the Ethernet header and the checksum. It looks at the type 

code. Since the type code is the one assigned to IP, the Ethernet device driver passes the 

datagram up to IP. IP removes the IP header. It looks at the IP protocol field. Since the 

protocol type is TCP, it passes the datagram up to TCP. TCP now looks at the sequence 

number. It uses the sequence numbers and other information to combine all the 

datagrams into the original file. 

The ends our initial summary of TCP/IP. There are still some crucial concepts we 

haven't gotten to, so we'll now go back and add details in several areas. (For detailed 

descriptions of the items discussed here see RFC 793 for TCP, RFC 791 for IP, and 

RFC's 894 and 826 for sending IP over Ethernet.) 
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Chapter2 

THE UNDERLYING NETWORK TECHNOLOGIES 

2.1 INTRODUCTION 

It is important to understand that the Internet is not a new kind of physical network. 

It is, instead, a method of interconnecting physical networks and a set of conventions 

for using networks that allow the computers they reach to interact. While network 

hardware plays only a minor role in the overall design, understanding the internet 

technology requires one to distinguish between the low-level mechanisms provided by 

the hardware itself and the higher-level facilities that the TCP/IP protocol software 

provides. It is also important to understand how the facilities supplied by packet­ 

switched Technology affects our choice of high-level abstractions. 

This chapter introduces basic packet-switching concepts and terminology, and then 

reviews some of the underlying network hardware technologies that have been used in 

TCP/IP Internets. Later chapters describe how these networks are interconnected and 

how the TCP/IP protocols accommodate vast differences in the hardware. While the list 

presented here is certainly not comprehensive, it clearly demonstrates the variety among 

physical networks over which TCP/IP operates. The reader can safely skip many of the 

Technical details, but should try to grasp the idea of packet switching and try to imagine 

building a homogeneous communication system using such heterogeneous hardware. 

Most important, the reader should look closely at the details of the physical address 

schemes the various technologies use; later chapters will discuss in detail how high 

level protocols use physical addresses. 
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2.2 TWO APPROACHES TO NETWORK COMMUNICATION 

Whether they provide connections between one computer and another or between 

terminals and computers, communication networks can be divided into two basic types: 

Circuit-switched (sometimes called connection oriented) and packet-switched (some 

times called connectionless). Circuit-switched networks operate by forming a dedicated 

connection (circuit) between two points. The U.S. telephone system uses circuit­ 

switching technology A telephone call establishes a circuit from the originating phone 

Through the local switching office, across trunk lines, to a remote switching office, and 

finally to the destination telephone. While a circuit is in place, the phone equipment 

samples the microphone repeatedly, encodes the samples digitally, and transmits them 

across the circuit to the receiver. The sender is guaranteed that the samples can be 

delivered and reproduced because the circuit provides a guaranteed data path of 64 

Kbps (thousand bits per second), the rate needed to send digitized voice. The advantage 

of circuit switching lies in its guaranteed capacity: once a circuit is established, no other 

network activity will decrease the capacity of the circuit. One disadvantage of circuit 

switching is cost: circuit costs are fixed, independent of traffic. For example, one pays a 

fixed rate for a phone call, even when the two parties do not talk. 

Packet-switched networks, the type usually used to connect computers, take an 

entirely different approach. In a packet-switched network, data to be transferred across a 

network is divided into small pieces called packets that are multiplexed onto high 

capacity intermachine connections. A packet, which usually contains only a few 

hundred bytes of data, carries identification that enables the network hardware to know 

how to send it to the specified destination. For example, a large file to be transmitted 

between two machines must be broken into many packets that are sent across the 

network one at 

A time. The network hardware delivers the packets to the specified destination, where 

software reassembles them into a single file again. The chief advantage of packet­ 

switching is that multiple communications among computers can proceed concurrently, 

With intermachine connections shared by all pairs of machines that are communicating. 

The disadvantage, of course, is that as activity increases, a given pair of communicating 

computers receives less of the network capacity. That is, whenever a packet switched 
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network becomes overloaded, computers using the network must wait before they can 

send additional packets. 

Despite the potential drawback of not being able to guarantee network capacity, 

packet-switched networks have become extremely popular. The motivations for 

adopting packet switching are cost and. performance. Because multiple machines can 

share the network hardware, fewer connections are required and cost is kept low. 

Because engineers have been able to build high-speed network hardware, capacity is not 

usually a problem. So many computer interconnections use packet switching that, 

throughout the remainder of this text, the term network will refer only to packet­ 

switched Networks. 

2.3 WIDE AREA AND LOCAL AREA NETWORKS 

Packet-switched networks that span large geographical distances ( e.g., the 

continental U.S.) are fundamentally different from those that span short distances (e.g., 

a single room). To help characterize the differences in ca\)acit~ and intended \1'2.e, \)acket 

switched technologies are often divided into two broad categories: wide area networks 

(WANS) and Local Area Networks (LANs). The two categories do not have formal 

definitions. Instead, vendors apply the terms loosely to help customers distinguish 
among technologies. 

WAN technologies, sometimes called long haul networks, provide communication 

over large distances. Most WAN technologies do not limit the distance spanned; a 

WAN can allow the endpoints of a communication to be arbitrarily far apart. For 

example, a WAN can span a Continent or can join computers across an ocean. Usually, 

Was operate at slower speeds than LANs, and have much greater delay between 

connections. Typical speeds for a WAN range from 56 Kbps to 155 MBPS (million bits 

per second). Delays across a WAN can vary from a few milliseconds to several tenths 
of a second. 

LAN technologies provide the highest speed connections among computers, but 

sacrifice the ability to span large distances. For example, a typical LAN spans a small 

area like a single building or a small campus and operates between 10 MBPS and 2 GPS 

(billion bits per second). Because LAN technologies cover short distances, they 
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Offer lower delays than WANS. The delay across a LAN can be as short as a few tenths 

of a millisecond, or as long as 10 milliseconds. 

We have already mentioned the general tradeoff between speed and distance: 

technologies that provide higher speed communication operate over shorter distances. 

There are other differences among technologies in the categories as well. In LAN 

technologies, each computer usually contains a network interface device that connects 

the 

Machine directly to the network medium (e.g., a copper wire or coaxial cable). Often, 

the network itself is passive, depending on electronic devices in the attached computers 

to generate and receive the necessary electrical signals. In WAN technologies, a net­ 

Work usually consists of a series of complex computers called packet switches 

interconnected by communication lines and moderns. Adding a new switch and another 

communication line can extend the size of the network. Attaching a user's computer to a 

WAN means connecting it to one of the packet switches. Each switch along a path in 

the WAN introduces a delay when it receives a packet and forwards it to the next 

Switch. Thus, the larger the WAN becomes the longer it takes to route traffic across it. 

This chapter discusses software that hides the technological differences between 

networks and makes interconnection independent of the underlying hardware. To 

appreciate design choices in the software, it is necessary to understand how it relates to 

network hardware. The next sections present examples of network technologies that 

have been used in the Internet, showing some of the differences among them. Later 

chapters show how the TCP/IP software isolates such differences and makes the 

communication system independent of the underlying hardware technology. 

2.3.1 NETWORK HARDWARE ADDRESSES 

Each network hardware technology defines an addressing mechanism that computers 

to specify the destination for each packet. Every computer attached to a network is 

igned a unique address, usually an integer. A packet sent across a network includes a 

destination address field that contains the address of the intended recipient. 

The destination address appears in the same location in all packets, making it possible 

for the network hardware to examine the estimation address easily. A sender must know 
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the address of the intended recipient, and must place the recipient's address in the 

destination address field of a packet before transmitting the packet. 

Each hardware technology specifies how computers are assigned addresses. The 

hardware specifies, for example, the number of bits in the address as well as the location 

of the destination address field in a packet. Although some technologies use compatible 

addressing schemes, many do not. This chapter contains a few examples of hardware 

addressing schemes; later chapters explain how TCP/IP accommodates diverse 

hardware addressing schemes. 

2.4 ETHERNET TECHNOLOGY 

Ethernet is the name given to a popular packet-switched LAN technology invented at 

Xerox PARC in the early 1970s. Xerox Corporation, Intel Corporation, and Digital 

Equipment Corporation standardized Ethernet in 1978; IEEE released a compatible 

version of the standard using the number 802.3. Ethernet has become popular LAN 

technology; most medium or large corporations use Ethernet. Because Ethernet is so 

popular, many variants exist; we will discuss the original design first and then cover 

variants. 

1/2 INCH 1 OUTER INSULATING JACKET 

BRAIDED METAL SHIELD 

POLYETHYLENE FILLER 

CENTER WIRE 

Figure 2.1 A cross-section of the coaxial cable used in the original Ethernet. 

Each Ethernet cable is about 1/2 inch in diameter and up to 500 meters long. A resistor 

is added between the center wire and shield at each end to prevent reflection of 

electrical signals. 
The origmal Ethernet design used a coaxial cable as Figure 2.l illustrates. Called the 

ether, the cable itself is completely passive; all the active electronic components that 

make the network function are associated with computers that are attached to the 

network. 
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ETHERNET 

,. TRANSCEIVER 

AUi CABLE 

/. BUS IN A COMPUTER 

Figure 2.3 the two main electronic components that form a connection between a 

computer's bus and an Ethernet. The AUI cable that connects the host interface 

to the transceiver carries power and Signals to control transceiver operation as 

well as packets being Transmitted or received. 

Each host interface controls the operation of one transceiver according to 

instructions it receives from the computer software. To the operating system software, 

the interface appears to be an input/output device that accepts basic data transfer 

instructions 
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From the computer, controls the transceiver to carry them out, interrupts when the task 

has been completed, and reports status information. Although the transceiver is a simple 

hardware device, the host interface can be complex (e.g., it may contain a 

microprocessor used to control transfers between the computer memory and the ether). 

In practice, organizations that use the original Ethernet in a conventional office 

environment run the Ethernet cable along the ceiling in each hall, and arrange for a 

connection from each office to attach to the cable. Figure 2.4 illustrates the resulting 

physical wiring scheme. 

ETHERNET CABLE (USUALLY IN CEILING) 

l 
TRANSCEIVERS 

AUi CABLE • 

Figure 2.4 the physical connection of two computers to an Ethernet using the original 

wiring scheme. In an office environment, the Ethernet cable is usually placed in 

the hallway ceiling; each office has an AUI cable that connects a computer in the 

office to a transceiver Attached to the Ethernet cable. 
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2.4.1 TIDN-WIRE ETHERNET 

Several components of the original Ethernet technology have undesirable properties. 

For example because a transceiver contains electronic components, it has a nontrivial 

cost. Furthermore, because transceivers are located with the cable and not with 

computers, they can be difficult to access or replace. The coaxial cable that fondness the 

Ether can also be difficult to install. In particular, to provide maximum protection 

against electrical interference from devices like electric motors, the cable contains 

heavy shielding that makes it difficult to bend. Finally, an AUI cable is also thick and 

difficult to bend. 
To reduce costs for environments like offices that do not. Contain much electrical 

interference, engineers developed an alternative Ethernet wiring scheme. Called thin­ 

wire Ethernet or thinnet, the alternative coaxial cable is thinner, less expensive, and, 

more flexible. However, a thin-wire Ethernet has some disadvantages. Because it does 

not provide as much protection from electrical interference, thin-wire Ethernet cannot 

be placed adjacent to powerful electrical equipment like that found in a factory. 

Furthermore, thin-wire Ethernet covers somewhat shorter distances and supports fewer 

computer connections per network than thick Ethernet. 
To further reduce costs with thin-wire Ethernet, engineers replaced the costly 

transceiver with special high-speed digital circuits, and provided a direct connection 

from a computer to the ether. Thus, in a thin-wire scheme, a computer contains both the 

host interface and the circuitry that connects to the cable. Manufacturers of small 

computers 
And workstations find thin-wire Ethernet an especially attractive scheme because they 

can integrate Ethernet hardware into single board computers and mount connectors 

directly on the back of the computer. 
Because a thin-wire Ethernet connects directly from one computer to another, the 

wiring scheme works well when many computers occupy a single room. The thin-wire 

cable runs directly from one computer to the next. To add a new computer, one only 

needs to link it into the chain. Figure 2.5 illustrates the connections used with thin-wire 

"Btnemet. 
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THINNET CABLE 

COMPUTER A COMPUTER B 

Figure 2.5 the physical connection of two computers using the thinnet-wiring scheme. 

The ether passes directly from one computer to another; no external transceiver 

hardware is required. 

Thin-wire Ethernet are designed to be easy to connect and disconnect. Thin-wire 

uses BNC connectors, which do not require tools to attach a computer to the cable. 

Thus, a user can connect a computer to a thin-wire Ethernet without the aid of a 

technician. Of course, allowing users to manipulate the ether has disadvantages: if a 

user disconnects the ether, it prevents all machines on the ether from communicating, ln 

many situations, however, the advantages outweigh the disadvantages. 

2.4.2 TWISTED PAIR ETHERNET 

Advances in technology have made. it possible to build Ethernet that do not need the 

electrical shielding of a coaxial cable. Called twisted pair Ethernet, the technology 

allows a computer to access an Ethernet using a pair of conventional unshielded copper 

wires similar to the wires used to connect telephones. The advantages of using twisted 

pair wiring are that it further reduces costs and protects other computers on the network 

from a user who disconnects a single computer. In some cases, a twisted pair 

technology can make it possible for an organization to use Ethernet over existing 

telephone wiring without adding new cables. 
Known by the technical name lOBase-T, the twisted pair wiring scheme connects 

each computer to an Ethernet hub as Figure 2.6 shows. 
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Figure 2.6 an illustration of Ethernet using twisted pair wiring. Each computer connects 

HUB 
TWISTED PAIR CONNECTIONS TO Hue 

COMPUTER A COMPUTERS 

to a hub over a conventional pair of wires. 

The hub is an electronic device that simulates the signals on an Ethernet cable. 

Physically, a hub consists of a small box that usually resides in a wiring closet; a 

connection between a hub and a computer must be less than 100 meters long. A hub 

requires power, and can allow authorized personnel to monitor and control its operation 

over the network. To the host interface in a computer, a connection to a hub appears to 

operate the same way as a connection to a transceiver. That is, an Ethernet hub provides 

the same communication capability as a thick or thin Ethernet; hubs merely offer an 

alternative-wiring scheme. 

2.4.3 ADAPTERS AND MULTIPLE WIRING SCHEMES 

A connection to thick Ethernet requires an All connector, a connection to thin-wire 

Ethernet requires a BNC connector, and a connection to lOBase-T requires an RJ45 

connector that resembles the modular connectors used with telephones. Many Ethernet 

products allow each customer to choose a wiring scheme. For example, adapter boards 

for personal computers often come with three connectors as Figure 2. 7 illustrates. 

Although only one connector can be used at any time, a computer that has such an 

adapter can's moved from one wiring scheme to another easily. 
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• RJ45 connector 
~ for 1 OBase-T 

AUi connector 
~ tor Thicknet 

BNC connector 
~ for Thlnnet 

Figure 2.7 A typical Ethernet adapter card with three connectors for the three her net 

wiring schemes. Although the adapter contains three connectors, it can only use 

one wiring scheme at any time. 

2.4.4 PROPERTIES OF AN ETHERNET 

The Ethernet is a 10 "MBPS broadcast bus technology with best-effort delivery 

semantics and distributed access control. It is a bus because. All stations share a single 

communication channel; it is broadcast because all transceivers receive every 

transmission. The method used to direct packets from one station to just one other 

station or a subset of all stations will be discussed later. For now, it is enough to 

understand that transceivers do not distinguish among transmissions - a transceiver 

passes all packets from the cable to the host interface, which chooses packets the 

computer should receive and filters out all others. Ethernet is called a best-effort 

delivery mechanism because the hardware provides no information to the sender about 

whether the packet was delivered. For example, if the destination machine happens to 

be powered down, packets sent to it will be lost, and the sender will not be notified. We 

will see later how the TCP/IP protocols accommodate best-effort delivery hardware. 

Ethemet access control is distributed because, unlike some network technologies, 

Ethernet has no central authority to grant access. 1:he Ethemet acces'2> scheme is ca\\eo. 

Carrier Sense Multiple Access with Collision Detect (CSMAICD). It is CSMA because 

multiple machines can access the Ethernet simultaneously and each machine determines 
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Whether the ether is idle by sensing whether a carrier wave is present. When a host 

interface has a packet to transmit, it listens to the ether to see if a message is being 

transmitted (i.e., performs carrier sensing). When no transmission is sensed, the host 

interface starts transmitting. Each transmission is limited in duration (because there is a 

maximum packet size). Furthermore, the hardware must observe a minimum idle time 

between transmissions, which means that no single pair of communicating machines can 

use the network without giving other machines an opportunity for access. 

2.4.5 COLLISION DETECTION AND RECOVERY 

When a transceiver begins transmission, the signal does not reach all parts of the 

network simultaneously. Instead it travels along the cable at approximately 80% of the 

speed of light. Thus, it is possible for two transceivers to both sense that the network is 

idle and begins transmission simultaneously. When the two electrical signals cross they 

Become scrambled, such that neither is meaningful. Such incidents are called collisions. 

The Ethernet handles collisions in an ingenious fashion. Each transceiver monitors 

the cable while it is transmitting to see if a foreign signal interferes with its 

transmission. Technically, the monitoring is called collision detect (CD), making the 

Ethernet a CSMA/CD network. When a collision is detected, the host interface aborts 

transmission, waits for activity to subside, and tries again. Care must be taken or the 

network could wind up with all transceivers busily attempting to transmit and every 

transmission producing a collision. To help avoid such situations, Ethernet uses a binary 

exponential bakeoff policy where a sender delays a random time after the first collision, 

twice as long if a second attempt to transmit also produces a collision, four times as 

long if a third attempt results in a collision, and so on. The motivation. For exponential 

bakeoff is that in the unlikely event many stations attempt to transmit simultaneously, a 

severe 
Traffic jam could occur. In such a jam, there is high probability two stations will choose 

random bakeoffs that are close together. Thus, the probability of another collision is 

high. By doubling the random delay, the exponential back off strategy quickly spreads 

the stations' attempts to retransmit over a reasonably long period of time, making the 

probability of further collisions extremely small. 

.• 
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2.4.6 ETHERNET CAPACITY 

The standard Ethernet is rated at 10 MBPS, which means that data can be transmitted 

onto the cable at 10 million bits per second. Although a computer can generate data at 

Ethernet speed, raw network speed should not be thought of as the rate at which two 

computers can exchange data. Instead, network speed should be thought of as a measure 

of network total traffic capacity. Think of a network as a highway connecting multiple 

cities, and think of packets as cars on the highway. High bandwidth makes it possible to 
< carry heavy traffic loads, while low bandwidth means the highway cannot carry as much 

traffic. A lO'MBPS Ethernet, for example, can handle a few computers that generate 

heavy loads, or many computers that generate light loads. 
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CHAPTER3 

THE DOMAIN NAME SYSTEM 

3.1 INTRODUCTION 

Before 1980, the ARP ANET had only a few hundred networked computers. The 

. computer name-to-address mapping was contained in a single file called Hosts.txt. This 

file was stored on the host computer of the Stanford Research Institute's Network 

Information Center (SRI-NIC) in Menlo Park, California. Other host computers on the 

ARPANET copied the Hosts.txt file from the SRI-NIC to their sites as needed. 

3.2 NAMES FOR MACHINES 

The earliest computer systems forced users to understand numeric addresses for objects 

like system tables and peripheral devices. Timesharing systems advanced computing by 

allowing users to invent meaningful symbolic names for both physical objects (e.g., 

peripheral devices) and abstract objects (e.g., files). A similar pattern has emerged in 

computer networking. Early systems supported point-to-point connections between, 

computers and used low-level hardware addresses to specify machines. Internetworking 

introduced universal addressing as well as protocol software to map universal address 

into low-level hardware addresses. Because most computing environments contain 

multiple machines, users need meaningful, symbolic names to identify them. 

Early machine names reflected the small environment in which they were chosen It 

was quite common for a site with a handful of machines to choose names base the 

machines' purposes. For example, machines often had names like research, production, 

accounting, and development. Users find such names preferable to cumber hardware 

addresses. 
Although the distinction between address and name is intuitively appealing, 

artificial. Any name is merely an identifier that consists of a sequence of chars chosen 

from a finite alphabet. Names are only useful if the system can efficiently them to the 

object they denote. Thus, we think of an IP address as a low-level r, and we say that 

users prefer 

.. 
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High-level names for machines. 

The form of high-level names is important because it determines how name translated 

to lower-level names or bound to objects, as well as how name assignments are 

authorized. When only a few machines interconnect, choosing names is easy any form 

will suffice. On the Internet, to which over four million machines connect choosing 

·s~m1oo\\i.:, \\am~<& \)~i.:,\lm~<& Cl\ll\1.:.\\\\. ~\l't ~~am\l\t, ~\\t\\ \\~ \\\'a.\\\ ~t\l'a.~\\\~\\\a\ c;:,\')\\\\l\\\~'t 

was connected to the Internet in 1980, the Computer Science Department at Purdue 

University chose the name purdue to identify the connected machine. The list of 

potential conflicts contained only a few dozen names. By mid 1986, the official of hosts 

on the Internet contained 3100 officially registered names and 6500 Official aliases. 

Although the list was growing rapidly in the 1980s, most sites had additional machines 

(e.g., personal computers) that were not registered. 

3.3 FLAT NAMESPACE 

.. 
The original set of machine names used throughout the Internet formed namespace in 

which each name consisted of a sequence of characters without any further structure. In 

the original scheme, a central site, the Network Information (NIC), administered the 

namespace and determined whether a new name was app ate (i.e., it prohibited obscene 

names or new names that conflicted with existing names Later, the NIC was replaced by 
the INTERnet Network Information Center (INTR). 

The chief advantage of a flat namespace is that names are convenient and short; the 

chief disadvantage is that a flat namespace cannot generalize to large sets of machines 

for both technical and administrative reasons. First, because names are drawn from a 

single set of identifiers, the potential for conflict increases as the number of site 

increases. Second, because authority for adding new names must rest at a single site, the 

administrative workload at that central site also increases with the number of sites. To 

understand the severity of the problem, imagine a rapidly growing Internet with 

thousands of sites, each of which has hundreds of individual personal computers and 

workstations. Every time someone acquires and connects a new personal computer, the 

central authority must approve its name. Third, because the name-to-address bindings 

change frequently, the cost of maintaining correct copies of the entire list at each site is 
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high and increases as the number of sites increases. Alternatively, if the name database 

resides at a single site, network traffic to that site increases with the number of sites. 

3.4 Hierarchical Names 

How can a naming system accommodate large, rapidly expanding set of names 

without requiring a central site to administer it? The answer lies in decentralizing the 

naming mechanism by delegating authority for parts of the namespace and distributing 

responsibility for the mapping between names and addresses. TCP/IP Intemets use such 

a scheme. Before examining the details of the TCP/IP scheme, we will consider the 

motivation and intuition behind it. 
The partitioning of a namespace must be defined in a way that supports efficient 

name mapping and guarantees autonomous control of name assignment. Optimizing 

only for efficient mapping can lead to solutions that retain a flat namespace and reduce 

traffic by dividing the names among multiple mapping machines. Optimizing only for 

administrative ease can lead to solutions that make delegation of authority easy but 

name mapping expensive or complex. 
To understand how the namespace should be divided, consider the internal structure 

al \ai.ie a1%aill'L'3.\\Ql\.'5. A.\ \\\e \Q\\ a chlef e-x.ec-uti'7e ha'5 cwerall res\)onsibiliW. Because 

the chief executive cannot oversee everything, the organization may be partitioned into 

division autonomy within specified limits. More to the point, the executive m charge ot 
a particular division can hire or fire employees, assign offices, and delegate authority, 

without obtaining direct permission from the chief executive. 

Besides making it easy to delegate authority, the hierarchy of a large organization 

introduces autonomous operation. For example, when an office worker needs 

information like the telephone number of a new employee, he or she begins by asking 

local clerical workers (who may contact clerical workers in other divisions). The point 

is that although authority always passes down the corporate hierarchy, information can 

flow across the hierarchy from one office to another. 
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3.5 DELEGATION OF AUTHORITY FOR NAMES 

A hierarchical naming scheme works like the management of a large organization. 

The namespace is partitioned at the top level, and authority for names in subdivisions is 

passed to designated agents. For example, one might choose to partition the namespace 

based on site name and to delegate to each site responsibility for maintaining names 

within its partition. The topmost level of the hierarchy divides the namespace and 

delegates authority for each division; it need not be bothered by changes within a 

division. 

The syntax of hierarchically assigned names often reflects the hierarchical 

delegation of authority used to assign them. As an example, consider a namespace with 

names of the form: 

Local.site 

Where site is the site name authorized by the central authority, local is the part of a 

name controlled by the site, and the period (". ") is a delimiter used to separate them. 

When the topmost authority approves adding a new site, X, it adds X to the list of valid 

sites and delegates to site X authority for all names that end in". X ". 

3.6 SUBSET AUTHORITY 

In a hierarchical namespace, authority may be further subdivided at each level. In 

our example of partition by sites, the site itself may consist of several administrative 

groups, and the site authority may choose to subdivide its namespace among the groups. 

The idea is to keep subdividing the namespace until each subdivision is small enough to 

be manageable. 

Syntactically, subdividing the namespace introduces another partition of the name. 

For example, adding group subdivision to names already partitioned by site produces 

the following name syntax: Local.group. site 

Because the topmost level delegate's authority, group names do not have to agree 

among all sites. A university site might choose group names like engineering, science, 
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and arts, while a corporate site might choose group names like production, accounting, 

and personnel. 

The U 'S. telephone system provides another example of a hierarchical nammg 

syntax. The 10 digits of a phone number have been partitioned into a 3-digit area code, 

3-digit exchange, and 4-digit subscriber number within the exchange. Each exchange 

has authority for assigning subscriber numbers within its piece of the namespace. 

Although it is possible to group arbitrary subscribers into exchanges and to group 

arbitrary exchanges into area codes, the assignment of telephone numbers is not 

capricious; they are carefully chosen to make it easy to route phone calls across the 

telephone network. 

Local. group. site 

The domain names, the period delimiter is pronounced "dot. 

The telephone example is important because it illustrates a key distinction between 

hierarchical naming scheme used in a TCP/IP internet and other hierarchies: partitioning 

the set of machines owned by an organization along lines of authority does not 

necessarily imply partitioning by physical location. For example, it could be that at 

university, a single building houses the mathematics department as well as the computer 

science department. It might even tum out that although the machines from se two 

groups fall under completely separate administrative domains, they connect to same 

physical network. It also may happen that a single group owns machines on several 

physical networks. For these reasons, the TCP/IP naming scheme allows arbitrary 

delegation of authority for the hierarchical namespace without regard to physical 

connections. The concept can be summarized: 

In a TCP /IP Internet, hierarchical machine names are assigned according to the 

structure of organizations that obtain authority for parts of the namespace, not 

necessarily according to the structure of the physical network interconnections. 

Of course, at many sites the organizational hierarchy corresponds with the structure of 

physical network interconnections. At a large university, for example, most departments 

have their own local area network. If the department is assigned part of the naming 
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hierarchy, all machines that have names in its part of the hierarchy will also connect to a 

single physical network. 

3.7 TCP/IP INTERNET DOMAIN NAMES 

The mechanism that implements a machine name hierarchy for TCP/IP Intemets is 

called the Domain Name System (DNS). DNS has two, conceptually independent 

aspects, The first is abstract: it specifies the name syntax and rules for delegating 

authority over names. The second is concrete: it specifies the implementation of a 

distributed -computing system that efficiently maps names to addresses. This section 

considers the name syntax, and later sections examine the implementation. 

The domain name system uses a hierarchical naming scheme known as domain 

names. As in our earlier examples, a domain name consists of a sequence of subnames 

separated by a delimiter character, the period. In our examples we said that individual 

ions of the name might represent sites or groups, but the domain system simply each 

section a label. Thus, the domain name 

cs. purdue.edu 

Contains three labels: cs, purdue, and edu. Any suffix of a label in a domain name is 

called a domain. In the above example the lowest level domain is cs. purdue. Edu. 

Domain name for the Computer Science Department at Purdue University), the id level 

domain is purdue.edu (the domain name for Purdue University), and the cs.purdue.edu 

top-level domain is edu (the domain name for educational institutions). As the example 

shows, domain names are written with the local label first and the top domain last. As 

we will see, writing them in this order makes it possible to compress messages that 

contain multiple domain names. 
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3.8 OFFICIAL AND UNOFFICIAL INTERNET DOMAIN NAMES 

In theory, the domain name standard specifies an abstract hierarchical namespace 

with arbitrary values for labels. Because the domain system dictates only the form of 

names and not their actual values, it is possible for any group that builds an instance of 

the domain system to choose labels for all parts of its hierarchy. For example, a private 

company can establish a domain hierarchy in which the top-level labels specifies 

corporate subsidiaries, the next level labels specify corporate divisions, and the lowest 

level labels specify departments. 
However, most users of the domain technology follow the hierarchical labels used by 

the official Internet domain system. There are two reasons. First, as we will see, the 

Internet scheme is both comprehensive and flexible. It can accommodate a wide variety 

of organizations, and allows each group to choose between geographical or 

organizational naming hierarchies. Second, most sites follow the Internet scheme so 

they can attach their TCP /IP installations to the global Internet without changing names. 

Because the Internet naming scheme dominates almost all uses of the domain name 

system, examples throughout the remainder of this chapter have labels taken from the 

Internet naming hierarchy. Readers should remember that, although they are most likely 

to en- counter these particular labels, the domain name system technology can be used 

with other labels if desired. The Internet authority has chosen to partition its top level 

into the domains listed in Figure 3.1. 

Domain Name meaning 

Com Commercial organizations 

EDU Educational institutions 

GOV Government institutions 

MIL Military groups 

NET Major network support centers 

ORG Organizations other than those above 

ARPA Temporary ARP ANET 

INT International organizations 

COUNTRY CODE Each country (geographic scheme) 

Figure 3.1 the top-level Internet domains and their meanings. Although labels are 

shown in upper case. Domain name system comparisons 
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Conceptually, the top-level names permit two completely different nammg 

hierarchies: geographic and organizational. The geographic scheme divides the universe 

of machines by country. Machines in the United States fall under the top-level domain 

US; when a foreign country wants to register machines in the domain name system, the 

central authority assigns the country a new top-level domain with the country's 

international standard 2-letter identifier as its label. The authority for the US domain has 

chosen to divide it into one second-level domain per state. For example, the domain for 

the state of Virginia is 
Va.us 

As an alternative to the geographic hierarchy, the top-level domains also allow 

organizations to be grouped by organizational type. When an organization wants to 

participate in the domain naming system, it chooses how it wishes to be registered and 

requests approval. The central authority reviews the application and assigns the 

organization a subdomain under one of the existing top-level domains. For example, it 

is possible for a university to register itself as a second-level domain under EDU (the 

usual practice), or to register itself under the state and country in which it is located. So 

far, few organizations have chosen the geographic hierarchy; most prefer to register 

under COM, EDU, MIL, or GOV. There are two reasons. First, geographic names are 

longer and therefore more difficult to type. Second, geographic names are much more 

difficult to discover or guess. For example, Purdue University is located in West 

Lafayette, Indiana. While a user could easily guess an organizational name, like 

purdue.edu, a geographic name is often difficult to guess because it is usually an 

abbreviation, like 
laf.in. us. 

Another example may help clarify the relationship between the naming hierarchy 

and authority for names. A machine named xinu in the Computer Science Department at 

Purdue University has the official domain name 

xinu.cs. purdue.edu 

The machine name was approved and registered by the local network manager in the 

Computer Science Department. The department manager had previously obtained 

authority for the subdomain cs.purdue. edu from a university network authority, who 
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had obtained permission to manage the subdomain purdue. edu from the Internet 

authority. 

The Internet authority retains co?trol of the edu domain, so new universities can only 

be added with its permission. Similarly, the university network manager at Purdue 

University retains authority for the purdue. edu subdomain, so new third-level domains 

may only be added with the manager's permission. 

Figure 3.2 illustrates a small part of the Internet domain name hierarchy. As the 

figure shows, Digital Equipment Corporation, a commercial organization, registered as 

dee.com, Purdue University registered as purdue.edu, and the National Science 

Foundation, a government agency registered as nsf.gov in corporation for 

Unnamed root 

dee 

cnrr 

Figure 3.2 A small part of the Internet domain name hierarchy (tree). 

In practice, the tree is broad and flat-, most host entries appear by 

The fifth level. 

3.9 ITEMS NAMED AND SYNTAX OF NAMES 

The domain name system is quite general because it allows multiple naming 

hierarchies to be embedded in one system. To allow clients to distinguish among 

multiple kinds of entries, each named item stored in the system is assigned a type that 

specifies whether it is the address of a machine, a mailbox, a user, and so on. When a 

client asks the domain system to resolve a name, it must specify the type of answer 
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red. For example, when an electronic mail application uses the domain system to 

ilve a name, it specifies that the answer should be the address of a mail exchanger. A 

ote login application specifies that it seeks a machine's IP address. It is important to 

erstand the following: 
~iven name may map to more than one item in the domain system. The client 

cities the type of object desired when resolving a name, and the server returns 

ects of that type. 
[he syntax of a name does not determine what type of object it names or the class of 

' rtocol suite. In particular, the number of labels in a name does not determine whether 
: name refers to an individual object (machine) or a domain. Thus, in our example, it 

possible to have a machine named 
gwen.purdue. edu 

en though 
cs. pu.rdue.edu 

ames a subdomain. We can summarize this important point: 
One cannot distinguish the names of subdomains from the names of individual objects 

)r the type of an object using on\J the clomain name sJntax. 

3.10 MAPPING DOMAIN NAMES TO ADDRESSES 

In addition to the rules for name syntax and delegation of authority, the domain name 

scheme includes an efficient, reliable, general purpose, distributed system for mapping 
names to addresses. The system is distributed in the technical sense, meaning that a set 

of servers operating at multiple sites cooperatively solve the mapping problem. It is 

efficient in the sense that most names can be mapped locally; only a few re- quire 

Internet traffic. It is general purpose because it is not restricted to machine names 

(a\thouih we wi\\ use that examp\e for now). l<ina\\~, it is re\iab\e in that no sini\e 

machine failure will prevent the system from operating correctly. 
The domain mechanism for mapping names to addresses consists of independent, 

cooperative sJstems called name servers. A name server is a server program that 

supplies name-to-address translation, mapping from domain names to 11> aclclresses. 

Often, server software executes on a cleclicatecl processor, anel t\\e mac'run.e \.\'2.e\\ '-'2> 
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called the name server. the client software, called a name resolver, uses one or more 

name servers when translating a name. 
The easiest way to understand how domain servers work is to imagine them arranged 

in a tree structure that corresponds to the naming hierarchy, as Figure 3.3 illustrates. 

The root of the tree is a server that recognizes the top-level domains and knows which 

server resolves each domain. Given a name to resolve, the root can choose the correct 

server for the name. 
Correct server for that name. At the next level, a set of name servers each provides 

answers for one top-level domain (e.g., edu). A server at this level knows which servers 

can resolve each of the subdomains under its domain. At the third level of the tree, 

name servers provide answers for subdomains (e.g., purdue under edu). The con- Links 

in the conceptual tree do not indicate physical network connections. Instead, they show 

which other name servers a given server knows and contacts. The servers themselves 

may be located at arbitrary locations on an Internet. Thus the tree of servers is an 

abstraction that uses an Internet for communication. 

Server 
for.com 

Server 
for.com 

Server For 
purdue 
.edu 

.-. 

Figure 3.3 the conceptual arrangement of domain name servers in a tree that 

corresponds to the naming hierarchy, In theory, each server 

Knows the addresses of all lower-level servers for all sub- domains 

Within the domain it handles. 

If servers in the domain system worked exactly as our simplistic model suggests the 

relationship between connectivity and authorization would be quite simple. When 
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authority was granted for a subdomain, the organization requesting it would need to 

establish a domain name server for that subdomain and link it into the tree. 

In practice, the relationship between the naming hierarchy and the tree of servers is 

not as simple as our model implies. The tree of servers has few levels because a single 

physical server can contain all of the information for large parts of the naming 

hierarchy. In particular, organizations often collect information from all of their 

subdomains into a single server. Figure 3.4 shows a more realistic organization of 

servers for the naming hierarchy ofFigure3.2. 
A root server contains information about the root and top-level domains. And each the 

root server for domain purdue.edu (i.e., the root server knows which server handles 

purdue.edu, and the entire domain information for purdue resides server). 

Root 

Server for 
dee.com 

Server for 
nsf.edu reston. va. us 

Figure 3 .4 a realistic organization of servers for the naming hierarchy of figure 3 .2. 

Because the tree is board and flat, few servers need to be contacted when 

resolving a name 
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CHAPTER4 

PROTOCOL LAYERING AND INTERNET PROTOCOL 

4.1 INTRODUCTION 

Previous chapter2 review the architectural foundations of internetworking describe 

how hosts and routers forward Internet datagrams and present mechanisms used to map 

IP addresses to physical network addresses. This chapter considers the structure of the 

software found in hosts and routers that carries out network communication. It presents 

the general principle of layering, shows how layering makes Internet Protocol software 

easier to understand and build, and traces the path of datagrams through the protocol 

software they encounter when traversing a TCP/IP Internet. 

4.2 THE NEED FOR MULTIPLE PROTOCOLS 

We have said that protocols allow one to specify or understand communication 

without knowing the details of a particular vendor's network hardware. They are to 

computer communication what programming languages are to computation. It should be 

apparent by now how closely the analogy fits. Like assembly language, some protocols 

describe communication across a physical network. For example, the details of the 

Ethernet frame format, network access policy, and frame error handling comprise a 

protocol that describes communication on an Ethernet. Similarly, the details of IP 

addresses, the datagram format, and the concept of unreliable, connectionless delivery 

comprise the Internet Protocol. 
Complex data communication systems do not use a single protocol to handle all 

Hardware failure. A host or router may fail either because the hardware fails or because 

the operating system crashes. A network transmission link may fail or accidentally be 

disconnected. The protocol software needs to detect such failures and recover from 

them if possible. 
• Network congestion. Even when all hardware and software operates 

correctly, networks have finite capacity that can be exceeded. The protocol 
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software needs to arrange ways that a congested machine can suppress 

further traffic. 

• Packet delay or loss. Sometimes, packets experience extremely long delays 

or are lost. The protocol software needs to learn about failures or adapt to 

long delays. 

• Data corruption. Electrical or magnetic interference or hardware failures 

can cause transmission errors -that corrupt the contents of transmitted data. 

Protocol software needs to detect and recover from such errors. 

• A Data duplication or sequence errors. Networks that offer multiple routes 

may deliver data out of sequence or may deliver duplicates of packets. The 

protocol software needs to reorder packets and remove any duplicates. 

Taken together, all these problems seem overwhelming. It is difficult to 

understand how to write a single protocol that will handle them all. From the analogy 

with programming languages, we can see how to conquer the complexity. Program 

translation has been partitioned into four conceptual subproblems identified with the 

software that handle each subproblem: compiler, assembler, link editor, and loader. The 

division makes it possible for the designer to concentrate on one subproblem at a time, 

and for the implementor to build and test each piece of software independently. We will 

see that protocol software is partitioned similarly. 

Two final observations about our programming language analogy will help clarify 

the organization of protocols. First, it should be clear that pieces of translation software 

must agree on the exact format of data passed between them. For example, the data 

passed from the compiler to the assembler consists of a program defined by the 

assembly programming language. Thus, we see how the translation process involves 

multiple programming languages. The analogy will hold for communication software, 

where we will see that multiple protocols define the interfaces between the modules of 

communication software. Second, the four parts of the translator form a linear sequence 

in which output from the compiler becomes input to the assembler, and so on. Protocol 

software also uses a linear sequence. 

4.3 THE CONCEPTUAL LAYERS OF PROTOCOL SOFTWARE 

Think of the modules of protocol software on each machine as being stacked 
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Vertically into layers, as in Figure 4.1. Each layer takes responsibility for handling one 

part of the problem. 

Sender Receiver 

Layer n Layer n 

, Layer2 La2:'_er2 

_:Layerl 

Network 

Layerl 

Figure 4.1 the conceptual organization of protocol software in layers. 

Conceptually, sending a message from an application program on one machine to an 

application program on another means transferring the message down through 

successive layers of protocol software on the sender's machine, transferring the message 

across the network, and transferring the message up through successive layers of 

protocol software on the receiver's machine. 
In practice, the protocol software is much more complex than the simple model of 

Figure 4. I indicate. Each layer makes decisions about the correctness of the message 

and chooses an appropriate action based on the message type or destination address. 

For example, one layer on the receiving machine must decide whether to keep the 

message or forward it to another machine. Another layer must decide which application 

program should receive the message. 
To understand the difference between the conceptual organization of protocol 

software and the implementation details, consider the comparison shown in Figure 4.2. 

The conceptual diagram in Figure 4.2a shows an Internet layer between a high-level 

protocol layer and a network interface layer. The realistic diagram in Figure 4.2b shows 

that the IP software may communicate with multiple high-level protocol modules and 

with multiple network interfaces. 
Although a diagram of conceptual protocol layering does not show all details, it does 

help explain the general ideas. For example, Figure 11.3 shows the layers of protocol 

software used by a message that traverses three networks. The diagram shows only the 
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network interface and Internet Protocol layers in routers because only those layers are 

needed to receive, route, and then send datagrams. We understand that any machine 

attached to two networks must have two network interface modules, even 

Conceptual layers software organization 

High level protocol layer 
P2 PROTOCOL I 

a) b) 
Internet protocol layer IP MODULE 

Network interface layer 

P2 PROTOCOL I 

Figure 4.2 A comparison of (a) conceptual protocol layering and (b) a realistic 

view of software organization showing multiple network Interfaces below IP and 

multiple protocols above it. 
As Figure 4.3 shows, a sender on the original machine transmits a message, which 

the IP layer places in a datagram, and sends across network 1. On intermediate 

machines the datagram passes up to the IP layer which routes it back out again ( on a 

different network). Only when it reaches the final destination machine does IP extract 

the Message and pass it up to higher layers of protocol software. 

Sender Receiver 

Other ... Other ... 

IP layer IP layer IP layer IP layer 

Interface Interface Interface Interface 

Figure 4.3 the path of a message traversing the Internet from the sender Through two 

intermediate machines to the receiver, intermediate Machines only send the 

datagram to the IP software layer. 
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4.4 FUNCTIONALITY OF THE LAYERS 

\)'t\~~ ~~ ~~i\i\\)\\ ~"b.~ ~~\\ ~"b.~~ \~ ~"b.~~\.~~ ~ "~~~~"~~~ 1\.~~\.~~ ~~ 
subproblem and organize the protocol software into modules that each handles one 

subproblem, the question arises: "what functionality should reside in each module?" The 

question is not easy to answer for several reasons. First, given a set of goals and 

· constraints governing a particular communication problem, it is possible to choose an 

organization that will optimize protocol software for that problem. 

4.4.1 ISO 7-LAYER REFERENCE MODEL 
Two ideas about protocol layering dominate the field. The first, based on work done 

by the International Organization for Standardization (ISO), is known as ISO's 

Reference Model of Open 

System Interconnection often referred to as the ISO model. 

The ISO model contains 7 conceptual layers organized as Figure 4.4 shows. 

LAYER 

7 

Functionality 

5 

APPLICATION 

PRESENTATION 
I I SESSION > 

I 
~ l 

'TRAN'i:i1'0"R'1: 

NETWORK 

DATALINK 

PHYSICAL HARDWARE 
CONNECTION 

3 

2 

1 

Figure 4.4 the ISO model, built to describe protocols for a single network, does not 

contain a specific level for internetwork routing in the same way TCP protocols 

do. 
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unreliable, the level 2 protocol specifies an exchange of acknowledgements 

that allows the two machines to know when a frame has been transferred 

successfully. 

One commonly used level 2 protocol, named the High Level Data Link 

Communication, and is best known by its acronym, HDLC. Several versions of HDLC 

exist, with the most recent known as HDLC/LAPB. It is important to remember that 

successful transfer at level 2 means a frame has been passed to the network packet 

switch for delivery; it does not guarantee that the packet switch accepted the packet was 

able to. 

• Network Layer. The ISO reference model specifies that the third 

level contains functionality that completes the definition of the 

interaction between host and network. Called the network or 

communication subnet layer. This level defines the basic unit of 

Transfer across the network and includes the concepts of 

Destination addressing and routing. Remember that in the X.25 

World, communication between host and packet switch is 

conceptually isolated from the traffic that is being passed. Thus, the 

network might allow packets defined by level 3 protocols to 'be 

larger than the size of frames that can form the network expects and 

uses level 2 to transfer it (possibly in pieces) to the packet switch. 

Level 3 must also respond to network congestion problems. 

• Transport Layer. Level 4 provides end-to-end reliability by having 

the destination host communicate with the source host. The idea 

here is that even though lower layers of protocols provide reliable 

checks at each transfer, the end-to-end layer double checks to make 

sure that no machine in the middle failed. 

• Session Layer. Higher levels of the ISO model describe how 

protocol software can be organized to handle all the functionality 

needed by application programs. The ISO committee considered 

the problem of remote terminal access so fundamental that they 

assigned layer 5 to handle it. In fact, the central service offered by 

early public data networks consisted of terminal to host 

interconnection. The carrier provides a special purpose host 
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Conceptual layer 

Application 

objects passed between layers 

Messages or streams 

Transport Transport protocol packets 

Internet 

IP datagram 
4'-------- 

Network interface 

Network-specific frames 
--------- 

Hardware 

Figure 4.5 the 4 conceptual layers of TCP/IP software and the form of 

Objects passed between layers. The layer labeled network interface is sometimes 

called the data link layer. 

• Application Layer. At the highest level, users invoke application programs that 

access services available 'across a TCP/IP Internet. An application interacts 

with one of the transport level protocols to send or receive data. Each 

application program chooses the style of transport needed, which can be either a 

sequence of individual messages or a continuous stream of bytes. The 

application program passes data in the required form to the transport level for 

delivery. 

• Transport Layer. The primary duty of the transport layer is to provide 

communication from one application program to another. Such communication 

is often called end-to-end. The transport layer may regulate flow of information. 

It may also provide reliable transport, ensuring that data arrives without error 

and in sequence. To do so, transport protocol software arranges to have the 

receiving side send back acknowledgements and the sending side retransmit lost 

packets. The transport software divides the stream of data being transmitted into 

small pieces (sometimes called packets) and passes each packet along with a 

destination address to the next layer for transmission .to the next lower layer. 

To do so, it adds additional information to each packet, including codes that 
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identify which application program sent it and which application program 

should receive it, as well as a checksum. The receiving machine uses the 

checksum to verify that the packet arrived intact, and uses the destination code 

to identify the application program to which it should be delivered. 

• Internet Layer. As we have already seen, the Internet layer handles 

communication from one machine to another. It accepts a request to send a 

packet from the transport layer along with an identification of the machine to 

which the packet should be sent. It encapsulates the packet in an IP datagram, 

fills in the datagram header, uses the routing algorithm to determine whether to 

deliver the datagram directly or send it to a router, and passes the datagram to 

the appropriate network interface for transmission. 

• The Internet layer also handles incoming datagrams, checking their validity, and 

uses the routing algorithm to decide whether the datagram should be processed 

locally or for-warded. For datagrams addressed to the local machine, software 

in the internet layer deletes the datagram header, and chooses from among 

several transport protocols the one that will handle the packet. Finally, the 

Internet layer sends IC:MP error and control messages as needed and handles all 

incoming ICNLP messages. 

• Network Interface Layer, The lowest level TCP/IP software comprises a 

network interface layer, responsible for accepting IP datagrams and transmitting 

them over a specific network. A network interface may consist of a device 

driver ( e.g., when the network is a local area network to which the machine 

attaches directly) or a complex subsystem that uses its own data link protocol 

( e.g., when the network consists of packet switches that communicate with 

hosts using HDLC). 

4.6 DIFFERENCES BETWEEN X.25 AND INTERNET LAYERING 

There are two subtle and important differences between the TCP/IP layering scheme 

and the X.25 scheme. The first difference revolves around the focus of attention on 

reliability, while the second involves the location of intelligence in the overall system. 
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4.7 THE PROTOCOL LAYERING PRINCIPLE 

Independent of the particular layering scheme used, or the function of the layers the 

operation of layered protocols is based on a fundamental idea. The idea, called the 

layering principle, can be summarized succinctly: 

Layered protocols are designed so that layers n at the destination 

Receives exactly the same object sent by layer n at the source. 

The layering principle explains why layering is such a powerful idea. It allows the 

protocol designer to focus attention on one layer at a time, without worrying about how 

lower layers perform. For example, when building a file transfer application, the 

designer thinks only of two copies of the application program executing on two 

machines and concentrates on the messages they need to exchange for file transfer. The 

designer assumes that the application on one host receives exactly what the application 

on the other host sends. 

Host A HostB 

APPLICATION APPLICATION 

' ....•... ...• '""" 

TRANSPORT TRANSPORT 

Identical message .......•... ..••............... 

INTERNET INTERNET 
Identical message 

•••• 
NETWORK 
INTERFACE 

NETWORK 
INTERFACE 

PHYSICAL NET 

Figure 4.6 
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4 .8 INTERNET PROTOCOL: ROUTING IP DATAGRAMS 

4.8.1 INTRODUCTION 

We have seen that all Internet services use an underlying, connectionless packet 

delivery system, and that the basic unit of transfer in a TCP/IP Internet is the IP 

datagram. This chapter adds to the description of connectionless service by describing 

how routers forward IP datagrams and deliver them to their final destinations. We think 

of the datagram format from Chapter 7 as characterizing the static aspects of the Inter 

net Protocol. The description of routing in this chapter characterizes the operational 

aspects. The next chapter concludes our presentation of IP by describing how errors are 

handled; later chapters show how other protocols use IP to provide higher-level 

services. 

4.8.2 ROUTING IN AN INTERNET 

In a packet switching system, routing refers to the process of choosing a path over 

which to send packets, and router refers to a computer making such a choice. Routing 

occurs at several levels. For example, within a wide area network that has multiple 

physical connections between packet switches, the network itself is responsible for 

routing packets from the time they enter until they leave. Such internal routing is 

completely self-contained inside the wide area network. Machines on the outside cannot 

participate in decisions; they merely view the network as an entity that delivers packets. 

Remember that the goal of IP is to provide a virtual network that encompasses 

multiple physical networks and offers a connectionless datagram delivery service. Thus, 

we will focus on Internet routing or IP routing. Analogous to routing within a physical 

network, IP routing chooses a path over which a datagram should be sent. The IP 

routing algorithm must choose how to send a datagram across multiple physical 

networks. 
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Routing in an Internet can be difficult, especially among computers that have 

multiple physical network connections. Ideally, the routing software would examine 

such things as network load, datagram length, or the type of service specified in the 

datagram header, when selecting the best path. Most Internet routing software is much 

less sophisticated, however, and selects routes based on fixed assumptions about 

shortest paths. 

To understand IP routing completely, we must go back and look at the architecture 

of a TCP/IP Internet. First, recall that an Internet is composed of multiple physical 

networks interconnected by computers called routers. Each router has direct connections 

to two or more networks. By contrast, a host computer usually connects directly to one 

physical network. We know that it is possible, however, to have a multi-homed host 

connected directly to multiple networks. 

Both hosts and routers participate in routing an IP datagram to its destination. 

When an application program on a host attempts to communicate, the TCP/IP protocols 

eventually generate one or more IP datagrams. The host must make a routing decision 

when it chooses where to send the datagrams. As Figure 4.6 shows, hosts must make 

routing decisions even if they have only one network connection. 

Path to some path to other 

Destinations 

Rl R2 

Host 

Figure 4.6 an example of a singly homed host that must route Datagrams. The host 

must choose to send a datagram either to router Rl, or to router R2, because each 

router provides the best path to some destinations. 
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Of course, routers also make IP routing decisions (that is their primary purpose and 

the motivation for calling them routers). What about multi homed hosts? Any computer 

with multiple network connections can act as a router, and as we will see, multi homed 

hosts running TCP/IP have all the software needed for routing. Furthermore, sites that 

cannot afford separate routers sometimes use general-purpose timesharing machines as 

both hosts and routers (the practice is usually limited to university sites). And those of a 

router and sites that try to mix host and router functions on a single machine sometimes 

find that their multi-homed hosts engage in unexpected interactions. For now, we will 

distinguish hosts from routers and assume that hosts do not perform the router's function 

of transferring packets from one network to another. 

4.8.3 DIRECT AND INDIRECT DELIVERY 

Loosely speaking, we can divide routing into two forms: direct delivery and in direct 

delivery. Direct delivery, the transmission of a datagram from one machine across a 

single physical network directly to another, is the basis on which all Internet 

communication rests. Two machines can engage in direct delivery only if they both 

attach directly to the same underlying physical transmission system (e.g., a single 

Ethernet). Indirect delivery occurs when the destination is not on a directly attached 

network, forcing the sender to pass the datagram to a router for delivery. 

4.8.4 DATAGRAM DELIVERY OVER A SINGLE NETWORK 

We know that one machine on a given physical network can send a physical frame 

directly to another machine on the same network. To transfer an IP datagram, the sender 

encapsulates the datagram in a physical frame, maps the destination IP address into a 

physical address, and uses the network hardware to deliver it. Thus, we have reviewed 

all the pieces needed to understand direct delivery. To summarize: 

Transmission of an IP datagram between two machines on a single physical network 

does not involve routers. The sender encapsulates the datagram in a physical frame, 

binds the destination IP address to a physical hardware address, and sends the resulting 

frame directly to the destination. 
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How does the sender know whether the destination lies on a directly connected 

network? The test is straightforward. We know that IP addresses are divided into a 

network-specific prefix and a host-specific suffix. To see if a destination lies on one of 

the directly connected networks, the sender extracts the network portion of the 

destination IP address and compares it to the network portion of its own IP addressees). 

A match means the datagram can be sent directly. Here we see one of the advantages of 

the Internet address scheme, namely: 
Because the Internet addresses of all machines on a single network in- 

Include a common network prefix, and because extracting that prefix 

Can be done in a few machine instructions, testing whether a machine 

Can be reached directly is extremely efficient. 
From an Internet perspective, it is easiest to think of direct delivery as the final Step in 

any datagram transmission, even if the datagram traverses many networks and 

Intermediate routers. The final router along the path between the datagram source and 

its destination will connect directly to the same physical network as the destination. 

Thus, the final router will deliver the datagram using direct delivery. We can think of 

direct delivery between the source and destination as a special case of general purpose 

routing - in a direct route the datagram does not happen to pass through any intervening 

routers. 

4.8.5 INDIRECT DELIVERY 

Indirect delivery is more difficult than direct delivery because the sender must identify a 

router to which the datagram can be sent. The router must then forward the datagram on 

toward its destination network. 
To visualize how indirect routing works, imagine a large Internet with many networks 

interconnected by routers but with only two hosts at the far ends. When one host wants 

to send to the other, it encapsulates the datagram and sends it to the nearest router. We 

know that it can reach a router because all physical networks are interconnected, so 

there must be a router attached to each one. Thus, the originating host can reach a router 

using a single physical network. Once the frame reaches the router, software extracts the 

encapsulated datagram, and the IP software selects the next router along the path 

towards the destination. The datagram is again placed in a frame and 
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Sent over the next physical network to a second router, and so on, until it can be 

delivered directly. These ideas can be summarized: 

Routers in a TCPIIP Internet form a cooperative, interconnected Structure. Datagrams 

pass from router to router until they reach a Router that can deliver the datagram 

directly. 

How can a router know where to send each datagram? How can a host know which 

router to use for a given destination? The two questions are related because they both 

involve IP routing. We will answer them in two stages, considering the basic table­ 

driven routing algorithm in this chapter and postponing a discussion of how routers 

learn new routes until later. 
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CHAPTERS 

TCP/IP OVER ATM NETWORKS 

5.1 INTRODUCTION 

This chapter explores how TCP/IP design for connectionless networks, can be used 

over connection-oriented technology. We will see that TCP/IP is extremely flexible 

although a few of the address binding details change, most protocols remain unchanged. 

To make the discussion concrete and relate it to available hardware, we will use 

Asynchronous Transfer Mode (ATM) in all examples. ATM offers high speed can be 

used for both local area and wide area networks, and supports a variety of applications 

including real-time audio and video as well as a conventional data communication. This 

chapter expands the brief description in chapters, and covers additional details. In 

particular, the next sections describe the physical topology of an ATM network, the 

logical connectivity provided, ATM's connection paradigm, and the ATM protocol for 

data transfer. •.. Later sections explain the relationship between ATM and TCP/IP. They show an 

ATM host address relates to the host's IP address. They describe a modified form of the 

address resolution protocol (ARP) used to resolve an IP address to an ATM connection, 

and a modified form of inverse ARP used to help manage address bindings in a server. 

Most important, we will see how IP datagrams travel across an ATM network without 

IP fragmentation. 

5.2 ATM HARDWARE 

The basic component of an ATM network is a special-purpose electronic switch 

design to transfer data at extremely high speed. A typical small switch can connect 

between 16 and 32 computers. To permit data communication at high speeds, each 

connection between a computer and an ATM switch uses a pair of optical fibers. 
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Figure 5 .1 illustrates the connection between a computer and an ATM switch. 

Computer 

Attached To switch 
fro ATM SWITCH 

To switch 

Figure 5.1 diagram of single ATM switch with four computers attached, and the details 

of a single Connection. A pair of optical fibers carries data to and from the switch 

Physically, a host interfaces board plugs into a computer's bus. The interface 

hardware includes a light emitting diode (LED) or a 
Miniature laser along with the circuitry needed to convert data into pulses of light that 

travel down the fiber to the switch. The interface also contains the hardware needed to 

sense pulses of light coming from the switch and converts them back into data bits in 

electronic form. Because a given fiber can carry light in only one direction, 
a connection requires a pair of fibers to allow the computer to both send and receive 

data. 

5.3 LARGE ATM NETWORKS 

Although a single ATM switch has finite capacity, multiple switches can be 

interconnected to form a larger network. In particular, to connect computers at two sites 

to the same network, a switch can be installed at each site, and the two switches can 

then be connected. The connection between two switches differs slightly from the 

connection between a host computer and a switch. For example, interswitch connections 

can operate at higher speeds, and can use slightly modified protocols. Figure 5.2 

illustrates the topology, and shows the difference between a network to network 

interface (NNI) and a user to network interfaces (UNI). 
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NN1 or UNI used between 

Two ATM switches 

UNI used between 

switch and computer 

ATM SWITCH ATM 
SWITCH 

Figure 5 .2 three ATM switches combined to form a large network. Although an NN1 

interface is designed for use between Switches, UNI connections can be used 

between ATM switches in a private network. 

The destination between UNI and NN1 arises because telephone companies designed 

ATM technology using the same paradigm as they use for the voice network. In general, 

a phone company that offers ATM data services to customers will also interconnect 

with other phone companies. The designers envisioned UNI as the interface between 

equipment at a customer's site and the switching equipment owned by the common 

carrier, and NN1 as the interface between switches owned and operated by two different 

phone companies. 

5.4 THE LOGICAL VIEW OF AN ATM NETWORK 

To a computer attached to an ATM network, an entire fabric of ATM switches 

appears to be a homogenous network. Like the voice telephone system or a bridged 

Ethernet, A TM hides the details of physical hardware and gives the appearance of a 

single, physical network with many computers attached. For example, figure 5.3 

illustrates how the ATM switching system in figure 5.3 appears logically to the eight 

Computers that are attached to it. 
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ATM SWITCHING SYSTEM 

FIGURE 5.3 the logical view of the ATM switches in figure 5.3. ATM gives the 

appearance of a uniform network; any computer can communicate with any 

other computer. 

Thus ATM provides the same general abstraction across homogenous ATM hardware 

that TCP/IP provides for heterogeneous system: 

Despite a physical architecture that permits a switching fabric to contain 

Multiple switches, ATM hardware provides attached computers with the Appearance of 

a single, physical network. Any computer on the ATM Network can communicate 

directly with any other; the computers remain Unaware of the physical network 

structure. 

5.5 THE TWO ATM CONNECTION PARADIGMS 

ATM provides a connection-oriented interface to attached hosts. To reach a remote 

destination over an ATM network, a host must establish a connection, an abstraction 

that resembles a telephone call. ATM offers two forms of connections. The first is 

known as a Switched Virtual Circuit (SVC), and the second is known as a Permanent 

Virtual Circuit (PVC). 
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5.5.1 SWITCHED VIRTUAL CIRCUITS 

A switched virtual circuit operates like a conventional voice telephone call. A host 

communicates with its local ATM switch to request that the switch establish an SVC. 

The host specifies the complete address of a remote host computer and the quality of 

Service required. The host then waits for the ATM network to create a circuit. The 

ATM signaling system takes over and establishes a path from the originating host, 

across the ATM network (possibly through multiple switches), to the remote host 

computer. The remote computer must agree to accept the virtual circuit. 
, During signaling, each ATM switch along the path examines the quality of service 

requested for the circuit. If it agrees to forward data, a switch records information about 

the circuit and sends the request to the next switch along the path. Such an agreement 

requires a commitment of hardware and software resources at each switch. 
When signaling completes, the local ATM switch reports success to both ends of the 

switched virtual circuit. 
The ATM UNI interface uses a 24-bit integer to identify each virtual circuit. When 

a host creates or accepts a new virtual circuit, the local A TM switch assigns an identifier 

to the circuit. A packet transmitted across an ATM network contains neither a source 

nor destination address. Instead, a host labels each outgoing packet and the 

Switch labels each incoming packet with a circuit identifier. 
Note that we have skipped over several details of signaling, including the protocol a 

host uses to request a new circuit and the protocol a switch uses to inform the host that 

a connection request has arrived from a remote host. Furthermore, we have omitted a 

few details that are important in practice. For example, two-way communication 

requires resources to be reserved along the reverse path as well as the forward path. 

5.6 PATHS, CIRCUITS, AND IDENTIFIERS 

ATM assigns a unique integer identifier to each circuit a host has open; the host uses 

the identifier when performing 1/0 operations or when closing the circuit. A circuit 

identifier is analogous to a descriptor that a program uses to perform 1/0. Like an 1/0 

descriptor, a circuit identifier is short compared to the information needed to create a 

circuit. Also like an 1/0 descriptor, a circuit identifier only remains valid while the 
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circuit is open. Furthermore, a circuit identifier is meaningful only across a single hop - 

the circuit identifiers obtained by hosts at the two ends of a given virtual circuit usually 

differ. For example, the sender may be using identifier 17 while the receiver uses 

identifier 49; each ATM switch translates the circuit identifier in a packet as the packet 

flows from one host to the other. 
Technically, a circuit identifier used with the UNI interface consists of a 24-bit 

integer divided into two fields. Figure 5.4 shows how ATM partitions the 24 bits into an 

8-bit virtual Path identifier- (VPI) and a 16-bit virtual circuit identifier (VCI). Often, the 

entire identifier is referred to as a VPIIVCI pair. 

VPI FIELD VCIFILED 

8 BITS 16BITS 

• 24- BIT CONNETION ID 

Figure 18.4 the 24-bit connection identifier used with UNI. The 

Identifier is divided into virtual path and virtual circuit parts. 

The motivation for dividing a connection identifier into VPI and VCI fields is similar 

to the reasons for dividing an IP address into network fields. 
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Conclusion 

In my project I have reviewed Internetworking with TCP/IP protocol, the TCP/IP 

protocols are extremely flexible in that almost any underlying technology can be used to 

transfer TCP/IP traffic. 
TCP/IP protocols are as language between the computers in the world, the 

fundamental service provided by TCP/IP Internet software is connectionless unreliable, 

best-effort pack~t delivery. The Internet protocol (IP) formally specifies the format of 

Internet packets, also we can have several network hardware technologies used by the 

TCP/IP protocols, ranging from high speed, like local area network as Ethernet to 

slower speed, long haul networks like ARPANT and ANSNET. We have also seen that 

it is possible to run the TCP/IP protocols over other general-purpose network protocols. 

Also we have seen TCP/IP over ATM technology, because ATM is a connection­ 

Oriented technology now when we want to do connection between two computers must 

establish virtual circuit through the network before they can transfer data; that means to 

Install TCP/IP protocol to the network. 
TCP/IP uses 32-bit binary addresses as universal machine identifiers. This called 

internet or IP address, because the IP address encodes network identification as well as 

the identification of a specific host on that network also an important property of IP 

address is that they refer to network connection. The Internet addressing scheme is that 

the form includes an address for a specific host. 
Now, there are also standards protocols that specify how data is represented when 

being transferred from one machine to another. Protocols specify how the transfer 

occurs, the idea of protocols layering is fundamental because it provides a conceptual 

framework for protocol design. 

68 



Conclusion 

In my project I have reviewed Internetworking with TCP/IP protocol, the TCP/IP 

protocols are extremely flexible in that almost any underlying technology can be used to 

transfer TCP/IP traffic. 
TCP/IP protocols are as language between the computers in the world, the 

fundamental service provided by TCP/IP Internet software is connectionless unreliable, 

best-effort packet delivery. The Internet protocol (IP) formally specifies the format of 

Internet packets, also we can have several network hardware technologies used by the 

TCP/IP protocols, ranging from high speed, like local area network as Ethernet to 

slower speed, long haul networks like ARPANT and ANSNET. We have also seen that 

it is possible to run the TCP/IP protocols over other general-purpose network protocols. 

Also we have seen TCP/IP over ATM technology, because ATM is a connection­ 

Oriented technology now when we want to do connection between two computers must 

establish virtual circuit through the network before they can transfer data; that means to 

Install TCP/IP protocol to the network. 
TCP/IP uses 32-bit binary addresses as universal machine identifiers. This called 

internet or IP address, because the IP address encodes network identification as well as 

the identification of a specific host on that network also an important property of IP 

address is that they refer to network connection. The Internet addressing scheme is that 

the form includes an address for a specific host. 

Now, there are also standards protocols that specify how data is represented when 

being transferred from one machine to another. Protocols specify how the transfer 

occurs, the idea of protocols layering is fundamental because it provides a conceptual 

framework for protocol design. 
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