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ABSTRACT

By increasing complexity ofprocesses, it has become very difficult to control them on

the base of traditional methods.In such condition it is necessary to use modem methods for

solving these problems.One of such is global optimization algorithm based on mechanics of

natural selection and natural genetics,which is called Genetic Algorithm. In this project the

application problems of genetic algorithms for optimization problems, its specific characters

and structures are given. The basic genetic operation : Selection, reproduction, crossover and

mutation operations ae widely described the affectivity of genetic algorithms for

optimization problem solving is shown. After the representation of optimization problem,

structural optimization.

"'The practical application for selection , reproductio, crossover, and mutation are

shown.Also the multi-objective optimization problem, some methods for global

optimization are discussed.
\
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INTRODUCTION

This is an introduction to genetic algorithm methods for optimization. Genetic

Algorithms were formally introduced in the United States in the 1970s by John Holland

at University of Michigan. The continuing price/performance improvements of

computational systems has made them attractive for some types of optimization. In

Particular, genetic algorithms work very well on mixed (continuous and discrete),

Combinatorial problems. They are less susceptible to getting 'stuck' at local optima than

gradient search methods. But they tend to be computationally expensive.

To use a genetic algorithm, you must represent a solution to your problem as a

genome (or chromosome). The genetic algorithm then creates a population of solutions

and applies genetic operators such as mutation and crossover to evolve the solutions in

order to find the best one(s).

This presentation outlines some of the basics of genetic algorithms. The three most

important aspects of using genetic algorithms are: (1) definition of the objective

function, (2) definition and implementation of the genetic representation, and (3)

definition and implementation of the genetic operators. Once these three have been

defined, the generic genetic algorithm should work fairly well. Beyond that you can try

many different variations to improve performance, find multiple optima (species - if

they exist), or parallelize the algorithms.

The genetic algorithm uses stochastic processes, but the result is distinctly non

random (better than random).

GENETIC Algorithms are used for a number of different application areas. An

example of this would be multidimensional OPTIMIZATION problems in which the

character string oft he CHROMOSOME can be used to encode the values fort he

differentparameters being optimized.

In practice, therefore, we can implement thisg enetic model of'c amputation by

having arrays of bits or characters to represent the Chromosomes. Simple bit

manipulation operations allow the implementation of CROSSOVER, MUTATION and

other operations. Although a substantial amount of research has been performed on

variable- length strings and other structures, the majority of work with GENETIC

Algorithms is focused on fixed-length character strings. We should focus on both this

aspect of fixed-length ness and the need to encode the representation of the solution



being sought as a character string, since these are crucial aspects that distinguish

GENETIC PROGRAMMING, which does not have a fixed length representation and

there is typically no encoding of the problem.

When the GENETIC ALGORITHM is implemented it is usually done in a manner

that involves the following cycle: Evaluate the FITNESS of all of the Individuals in the

POPULATION. Create a new population by performing operations such as

CROSSOVER, fitness-proportionate REPRODUCTION and MUTATION on the

individuals whose fitness has just been measured. Discard the old population and iterate

using the new population.

One iteration of this loop is referred to as a GENERATION. There is no

theoretical reason for this as an implementation model. Indeed, we do not see this

punctuated behavior in Populations in nature as a whole, but it is a convenient

implementation model.

The first GENERATION (generation O) of this process operates on a

POPULATION of randomly generated Individuals. From there on, the genetic

operations, in concert with the FITNESS measure, operate to improve the population.

History
Evolutionary computing was introduced in the 1960sby I. Rechenberg in his work

"Evolution strategies" (Evolutionsstrategie in original). His idea was then developed by
other researchers. Genetic Algorithms (GAs) were invented by John Holland and
developed by him and his students and colleagues. This lead to Holland's book
"Adaption in Natural and Artificial Systems" published in 1975.

In 1992 John Koza has used genetic algorithm to evolve programs to perform
certain tasks. He called his method "genetic programming" (GP). LISP programs were•
used, because programs in this language can expressed in the form of a "parse tree",
which is the object the GA works on. •
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CHAPTER ONE

WHAT ARE GENETIC ALGORITHMS (GAs)?

1.1 The Genetic Algorithm and data mining

The Genetic Algorithm can be used to produce a variety of objects, as long as it is
possible to somehow evaluate their quality (or "fitness"). More specifically, it is
possible to build statistical predictors, not by regular computation from the data as in
traditional statistics, but by evolving a predictor that is closest to (has the smallest
deviation from) reality.

For classifiers, fitness is just the rate of correct predicted memberships on validation
data. The genetic process favours emergence of those predictors that correctly predict
the most examples;- they are fitter than inferior ones. No knowledge of statistics is

necessary!
This process of generating useful knowledge from raw data is name induction.This

belongs to the realm of data mining.

1.2 What the Genetic Algorithm is useful for ?
The Genetic Algorithm can solve problems that do not have a precisely-defined

solving method, or if they do, when following the exact solving method would take far
too much time. There are many such problems; actually, all still-open, interesting
problems are like that.

Such problems are often characterised by multiple and complex, sometimes even
contradictory constraints, that must be all satisfied at the same time. Examples are crew
and team planning, delivery itineraries, finding the most beneficial locations for stores
or warehouses, building statistical models, etc.

"
1.3 How the Genetic Algorithm works ?

• •
The Genetic Algorithm works by creating many random "solutions" to the

problem at hand.Being random, these starting "solutions" are not very good: schedules
overlap and itineraries do not traverse every necessary location. This "population" of
many solutions will then be subjected to an imitation of the evolution of species.

All of these solutions are coded the only way computers know: as a series of zeroes
and ones. The evolution-like process consists in considering these Os and ls as genetic
"chromosomes" that, like their real-life, biological equivalents, will be made to "mate"
by hybridisation, also throwing in the occasional spontaneous mutation. The "offspring"

3



generated will include some solutions that are better than the original,

purely randomones.
The best offspring are added to the population while inferior ones are eliminated.

By repeating this process among the better elements, repeated improvements will occur

in the population, survive and generate their own offspring.

1.4 Why the Genetic Algorithm is a good idea ?

This crossover-then-selection process favours the apparition ofbetter and bette
solutions. By encouraging the best solutions generated and throwing away the worst
ones ("only the fittest survive"), the original population keeps improving as a whole.
This is called" selective pressure".

We are not actually calculating a solution to the problem being treated; we are
merely selecting and encouraging the best emerging ones after certain, random
operations. This is why we actually do not need to know how to solve the problem; we
just have to be able to evaluate the quality of the generated solutions coming our way.

All we have to do to let a Genetic Algorithm solve our problem is write a "fitness
function";- nothing else! This very surprising mechanism has been mathematically
shown to eventually "converge" to the best possible solution. Of course, "eventually"
comes much faster using skilfully written implementations.

The evolution and selection procedure is problem-independent; only the fitness
function and one that decodes the chromosomes into a readable form are problem
-specific. Once again, these functions do not require us to know how to solve the

problem.

1.5 Why this technique is interesting ?

This is a rather brutal approach, requiring large amounts of processing power, but
with the immense advantage of supplying solutions to things we don't know how to
solve, or don't know how to solve qÜickly.For instance, what is the shortest path linking

a number of cities ?
The only exact solution to this is to try them aII and compare;- this win take.

geological time on any real-world problem. The Genetic Algorithm provides excellent,

fast approximations to that.
No knowledge of how to solve the problem is needed: you only need to be able to

assess the fitness of any given solution. This means implementation is easy and can rely
on a problem-independent "engine", requiring little problem-related work.

The difference in computing speed between an ad hoc approach (specific, very
fast) anda Genetic Algorithm-based solution (general but slower) is but one of the
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differences between the two approaches:

' Ad hoc approach ( analytical, Genetic 
specific) approach 

Speed Depending on solution, generally good Median or low

Performance Depending on solution Fair to excellent

Problem Necessary Not necessary
understanding 

Human work A few minutes to a few theses A few days
needed 

Applicability Low: Most interesting problems have no General
usable mathematical expression, or are non-
computable, or "NP-complete" (too many
solutions to try them all)

Intermediary are not solutions (you must wait until the end are solutions (the
steps of computation) solving process can be

interrupted at any
time, though the later
the better)

1.6 Biology
Genetic algorithms are used in search and optimization, such as finding the

maximum of a function over some domain space.

1. In contrast to deterministic methods like hill climbing or brute force complete

enumeration, genetic algorithms use randomization.

2. Points in the domain space of the search, usually real numbers over some range, are

encoded as bit strings, called chromosomes.

3. Each bit position in the string is called a gene.
4. Chromosomes may also be composed over some other alphabet than {O, 1}, such as

integers or real numbers, particularly if the search domain is multidimensional

5. GAs are called "blind" because they have no knowledge of the problem.

5



1. 7 The Iteration Loop of a Basic Genetic Algorithm

Randomly created
Initial population

Selection
(Whole population)

Pc 1-Pc

Recombination

No

Yes

End

1.8 Search Space ..
If we are solving a problem, we are usually looking for some solutiof which will be the

best among others. The space of all feasible solutions (the set of solutions among which the

desired solution resides) is called search space (also state space). Each point

in the search space represents one possible solution. Each possible solution can be "marked"

by its value (or fitness) for the problem. With GA we look for the best

solution among among a number of possible solutions - represented by one point in the

search space.
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Looking for a solution is then equal to looking for some extreme value (minimum
or maximum) in the search space. At times the search space may be well defined, but

usually we know only a few points in the search space. In the process of using GA, the

process of finding solutions generates other points (possible solutions) as evolution

proceeds.

The problem is that the search can be very complicated. One may not know where

to look for a solution or where to start. There are many methods one can use for finding

a suitable solution, but these methods do not necessarily provide the best solution. Some

of these methods are hill climbing, tabu search, simulated annealing and the genetic

algorithm.

The solutions found by these methods are often considered as good solutions,

because it is not often possible to prove what the optimum is.

1.8.1 NP-hard Problems

One example of a class ofproblems which cannot be solved in the "traditional" way,

areNP problems. There are many tasks for which we may apply fast (polynomial) algorithms.

There are also some problems that cannot be solved algorithmicall. There are many

importantproblems in which it is very difficult to find a solution, but once we have it, it is

easy to check thesolution. This fact led to NP-complete problems. NP stands for

nondeterministic polynomial and it means that it is possible to "guess" the solution (by some

nondeterministic algorithm) and then check it.

Ifwe had a guessing machine, we might be able to find a solution in some reasonable

time. Studying ofNP-complete problems is, for simplicity, restricted to the problems where

the answer can be yes or no. Because there are tasks with complicated outputs, a class of

problems called NP-hard problems has been introduced. This class is not as limited as class of
~

NP-complete problems. A characteristic ofNP-problems is that a simple algorithm, perhaps

obvious at a fırstsight, can be used to find usable solutions.But this approach generally
•

provides many possible solutions - just trying all possible solutions is very slow process (e.g.

0(2ı\n)). For even slightly bigger instances of these type ofproblems this approach is not

usable at all. Examples of the NP problems are satisfiability problem, travelling salesman

problem or knapsack problem.

7
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1.9 Operators of GA

1.9.1 Overview

The crossover and mutation are the most important parts of the genetic algorithm.The

performance is influenced mainly by these two operators. Before we can explain more about

crossover and mutation, some information about chromosomes will be given.

1.9.2 Encoding of a Chromosome
A chromosome should in some way contain information about solution that it

represents.
The most used way of encoding is a binary string. A chromosome then could look

like this:

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Each chromosome is represented by a binary string. Each bit in the string can
represent some characteristics of the solution. Another possibility is that the whole
string can represent a number - this has been used in the basic GA applet.

Of course, there are many other ways of encoding. The encoding depends mainly on
the solved problem. For example, one can encode directly integer or real numbers,
sometimes it is useful to encode some permutations and so on.

1.9.3Crossover

After we have decided what encoding we will use, we can proceed to crossover

operation. Crossover operates on selected genes from parent chromosomes and creates

newoffspring. The simplest way how to do that is to choose randomly some crossover point
~

and copy everything before this point from the first parent and then copy everything after the

crossover point from the other parent. Crossover can be illustrated as follows: ( I is the
" .

crossover point):

Chromosome 1 11011 I 00100110110

Chromosome 2 11011 I 11000011110

Offspring 1 11011 I 11000011110

Offspring 2 11011 I 00100110110

8



There are other ways how to make crossover, for example we can choose more

crossover points. Crossover can be quite complicated and depends mainly on the

encoding ofchromosomes. Specific crossover made for a specific problem can improve

performance of the genetic algorithm.

1.9.4 Mutation

After a crossover is performed, mutation takes place. Mutation is intended to prevent

falling of all solutions in the population into a local optimum of the solved problem.

Mutation operation randomly changes the offspring resulted from crossover. In case of

binary encoding we can switch a few randomly chosen bits from 1 to O or from O to 1.

Mutation can be then illustrated as follows:

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110

Mutated offspring 2 1101101100110110

The technique of mutation (as well as crossover) depends mainly on the encoding of
chromosomes. For example when we are encoding permutations, mutation could be

performed as an exchange of two genes.

1.9.5 Selection

A simple method of implementing fitness-proportionate selection is "Roulettewheel

sampling", which is conceptually equivalent to giving each individual a slice of a roulette

wheel equal in area to the individual's fitness. The wheel is spun and the ball comes to rest on
"the wedge shaped slice, and the corresponding individual is selected.

One of the most common methods is the binary tournament mating subset selection
• •

method. In this mating selection method, each chromosome in the population competes for a

position in the mating subset. Two chromosomes are drawn at random from the population,

the chromosome with the highest fitness score is placed in the mating subset.

Both chromosomes are returned to the population and another tournament
begins. This procedure continues until the mating subset is full. A characteristic of this
scheme is that the worst chromosome in the population will never be selected for

inclusion in the mating subset.

9



1.9.6 Fitness Landscapes

The Basic Genetic Algorithm

Given a clearly defined problem to be solved and a bit string representation for
candidate solutions , a simple genetic algorithm works as:

1. Start with a randomly generated population of n L-bit chromosomes(candidate
solutions to a problem).OR the initial population of chromosomes is created by
perturbing an input chromosome. How the initialization is done is not critical as long as
the initial population spans a wide range of variable settings (i.e., has a diverse
population). Thus, if we have explicit knowledge about the system being optimized that
information can be included in the initial population.

2. In the second step, evaluation, the fitness f(x) of each chromosome xis
computed. The goal of the fitness function is to numerically encode the performance of
the chromosome. For real-world applications of optimization methods such as GAs the
choice of the fitness function is the most critical step.

3. The third step is the exploitation or natural selection step. In this step, the
chromosomes with the largest fitness scores are placed one or more times into a mating
subset in a semi-random fashion. Chromosomes with low fitness scores are removed
from the population. There are several methods for performing selection.

4. The fourth step, exploration, consists of the recombination and mutation
operators.

Two chromosomes (parents) from the mating subset are randomly selected to be
mated. The probability (Pc-Crossover Probability) that these chromosomes are
recombined is a user-controlled option and is usually set to a high value (e.g., 0.95). If
the parents are allowed to mate, a recombination operator is employed to exchange
genes between the two parents to produce two children. If they are not allowed to mate,
the parents are placed into the next generation unchanged.

The probability that a mutation,will occur is another user-controlled option and is
usually set to a low value (e.g., O.Ol) so that good chromosomes are not destroyed. A
mutation simply changes the value for a particular gene.

"After the exploration step, the population is full of newly created chromosomes
(children) and steps two through four are repeated. This process continues for a fixed

•

number of generations.
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1.1O Parameters of GA
1.10.1 Crossover and Mutation Probability

There are two basic parameters of GA - crossover probability and mutation

probability.
Crossover probability: how often crossover will be performed. Ifthere is no crossover,
offspring are exact copies of parents. If there is crossover, offspring are made from parts

~
ofboth parent's chromosome. If crossover probability is 100%, then all offspring are
made by crossover. If it is 0%, whole new generation is made from exact copies of
chromosomes from old population (but this does not mean that the new generation is the

same!).
Crossover is made in hope that new chromosomes will contain good parts of old

chromosomes and therefore the new chromosomes will be better. However, it is good to
leave some part of old population survive to next generation.

Mutation probability: how often parts of chromosome will be mutated. If there is
no mutation, offspring are generated immediately after crossover (or directly copied)
without any change. If mutation is performed, one or more parts of a chromosome are
changed. If mutation probability is 100%,whole chromosome is changed, if it is 0%,

nothing is changed.
Mutation generally prevents the GA from falling into local extremes. Mutation

should not occur very often, because then GA will in fact change to random search.

1.10.2 Other Parameters

There are also some other parameters of GA. One another particularly important

parameter is population size.
Population size: how many chromosomes are in population (in one generation). If

"'there are too few chromosomes, GA have few possibilities to perform crossover and
only a small part of search space is explored. On the other hand, if there are too many
chromosomes, GA slows down. Research shows that after some limit (which depends
mainly on encoding and the problem) it is not useful to use very large populations
because it does not solve the problem faster than moderate sized populations.

1.11 Encoding of GA

Introduction
Encoding of chromosomes is the first question to ask when starting to solve a

problem with GA. Encoding depends on the problem heavily.
In this section some encodings will be introduced that have been already used with

11



some success.

1.11.1 Binary Encoding
Binary encoding is the most common one, mainly because the first research of GA

used this type of encoding and because of its relative simplicity.
In binary encoding, every chromosome is a string ofbits - O or 1.

Chromosome A 101100101100101011100101 

Chromosome B 111111100000110000011111 

Example of chromosomes with binary encoding 

Binary encoding gives many possible chromosomes even with a small number of
alleles.On the other hand, this encoding is often not natural for many problems and
sometimes corrections must be made after crossover and/or mutation.

1.11.2 Permutation Encoding
Perınutation encoding can be used in ordering problems, such as travelling

salesman problem or task ordering problem.
In permutation encoding, every chromosome is a string of numbers that represent a

position in a sequence.

Chromosome A 153264798 

Chromosome B 856723149 

Example of chromosomes with permutation encoding 

Permutation encoding is useful for ordering problems. For some types of
crossover and mutation corrections must be made to leave the chromosome consistent
((e. have real sequence in it) for some problems.

1.11.3 Value Encoding

• •

Direct value encoding can be used in problems where some more complicated
values such as real numbers are used. Use ofbinary encoding for this type ofproblems
would be difficult.

In the value encoding, every chromosome is a sequence of some values. Values
can be anything connected to the problem, such as (real) numbers, chars or any objects.

12



Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT

Chromosome C (back), (back), (right), (forward), (left)

Example of chromosomes with value encoding 

Value encoding is a good choice for some special problems. However, for this
encoding it is often necessary to develop some new crossover and mutation specific for

the problem.

1.ll.4 Tree Encoding

Tree encoding is used mainly for evolving programs or expressions, i.e. for genetic
programmıng.

In the tree encoding every chromosome is a tree of some objects, such as functions
or commands in programming language.

Example of chromosomes with tree encoding 
Tree encoding is useful for evolving programs or any other structures that can be

encoded in trees. Programing language LISP is often used for this purpose, since
programs in LISP are represented directly in the form of tree and can be easily parsed as
a tree, so the crossover and mutation can be done relatively easily.

13



1.12 Genetic Algorithms Vs Traditional methods

Traditional Methods

Calculus-based Search The main disadvantages of Calculus-based Search are,

firstly,a tendency for the search to get trapped on local maxima - even a though a better

solution may exist, all moves from the local maxima seem to decrease the fitness of the

solution.
b 

Secondly, the application of such searches depends on the existence of derivatives,

for example the gradient of the graph under investigation.

Dynamic Programming This is a method for solving multi-step control problems,

but can only be used where the overall fitness function is the sum of the fitness

functions for each stage of the problem, and there is no interaction between stages.

Random Search This is a brute force approach to difficult functions, also called

an enumerated search. Points in the search space are selected randomly. This is a very

unintelligent strategy.

Gradient Methods Such methods are generally referred to as hill-climbing, and

perform well on functions with only one peak. However, on functions with many peaks,

the first peak found will be climbed, whether is it the highest peak or not, and no further

program will be made.

Iterated Hillclimbing This is a combination ofrandom search and gradient

search. Once one peak has been located, the hillclimb is started again, but with another

randomly chosen starting point. However, since each random trial is performed in

isolation, no overall idea of the shape of the domain is obtained; also trials are randomly

allocated over the entire search space and as many points in regions of low fitness will

be evaluated as points in high fitness regions. A Genetic Algorithm, however, starts with

an initial random population, and allocated more trials to regions of the search space

found to have high fitness.
"Simulated AnnealingThis was invented by Kirkpatrick in 1982, it is essentially

a modified version of hill-climbing. Starting from a random point in the search space, a

random move is made. If this move takes us to a higher point, it is accepted, ~therwise it

is accepted only with probability p(t), where tis time. The function p(t) begins close to

1, but gradually reduces towards zero - an analogy with the cooling of a solid.

Therefore, initially, any movesare accepted, but as the "temperature" reduces,

the probability of accepting a negative move is lowered. Negative moves are essential

sometimes, if local maxim are to be escaped, but too many negative moves would lead

the search away from the maxima.

Simulated annealing deals with only one candidate at a time, so like random

search, does not build an overall picture of the search space, and no information from

14



previous moves is used to guide the selection of new moves. This technique has been

successful in many applications, for example VLSI circuit layout.

1.13 Four differences that separate genetic algorithms from conventional
optimization techniques:

Direct manipulation of a coding. Genetic algorithms manipulate decision or
control variable representations at a string level to exploit similarities among high­

performance strings. Other methods usually deal with functions and their control
variables directly.

GAs deal with parameters of finite length, which are coded using a finite alphabet,
rather than directly manipulating the parameters themselves. This means that the search
is unconstrained neither by the continuity of the function under investigation, nor the
existence of a derivative function. Moreover, by exploring similarities in coding, Gas
can deal effectively with a broader class of functions than can many other procedures
(see Building Block Hypothesis).

Evaluation of the performance of candidate solutions is found using objective,
Payoff information. While this makes the search domain transparent to the algorithm
and frees it from the constraint of having to use auxiliary or derivative information, it
also means that there is an upper bound to its performance potential.

Search from a population, not a single point. In this way, GAs find safety in
numbers. By maintaining a population ofwell-adapted sample points, the probability of

reaching a false peak is reduced.
The search starts from a population ofmany points, rather than starting from just

one point. This parallelism means that the search will not become trapped on a local
maxima - especially if a measure of diversity-maintenance is incorporated into the
algorithm, for then, one candidate may become trapped on a local maxima, but the need
to maintain diverity in the search population means that other candidates will therefore
avoid that particular area of the sea;ch space trapped on a local maxima - especially if a
measure of diversity-maintenance is incorporated into the algorithm, for then, one
C!3-ndidate may become trapped on a local maxima, but-the need to maintain diverity in
the search population means that other candidates will therefore avoid that particular

area of the search space.
Search via sampling, a blind search. GAs achieve much of their breadth by

ignoring information except that concerning payoff. Other methods rely heavily on such
information, and in problems where the necessary information is not available or
difficult to obtain, these other techniques break down. GAs remain general by exploiting
information available in any search problem. GAs process similarities in the underlying
coding together with information ranking the structures according to their survival
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capability in the current environment. By exploiting such widely-available information,

GAs may be applied to virtually any problem.

Search using stochastic operators, not deterministic rules. The transition
rules used by genetic algorithms are probabilistic, not deterministic.

A distinction, however, exists between the randomised operators of GAs and
other methods that are simple random walks. GAs use random choice to guide a highly
exploitative search.

1.14 Advantages of using genetic algorithms
· They require no knowledge or gradient information about the response surface
· Discontinuities present on the response surface have little effect on overall optimization

performance
· They are resistant to becoming trapped in local optima
· They perform very well for large-scale optimization problems
· Can be employed for a wide variety of optimization problems

1.15 Disadvantages of using genetic algorithms
· Have trouble finding the exact global optimum
· Require large number ofresponse (fitness) function evaluations
· Configuration is not straightforward

•
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CHAPTER TWO

OPTIMIZATION PROBLEM

2.1 Definition for Optimization

A series of operations that can be performed periodically to keep a computer in

optimum shape. Optimization is done by running a maintenance check, scanning for viruses,

and defragmenting the hard disk. Norton Utilities is one program used for optimizing.

2.1.1 Optimization problems are made up of three basic ingredients:
• An objective function which we want to minimize or maximize. For instance, in a

manufacturing process, we might want to maximize the profit or minimize the cost. In
fitting experimental data to a user-defined model, we might minimize the total deviation
of observed data from predictions based on the model. In designing an automobile
panel, we might want to maximize the strength.

• A set of unknowns or variables which affect the value of the objective function.
In the manufacturing problem, the variables might include the amounts of different
resources used or the time spent on each activity. In fitting-the-data problem, the
unknowns are the parameters that define the model. In the panel design problem, the
variables used define the shape and dimensions of the panel.

• A set of constraints that allow the unknowns to take on certain values but exclude
others. For the manufacturing problem, it does not make sense to spend a negative
amount of time on any activity, so we constrain all the "time" variables to be non­

negative. In the panel design problem, we would probably want to limit the weight of the

product and to constrain its shape.

Find values of the variables that minimize or maximize the objective
. function while satisfying the constraints. " •

2.1.2 Are All these ingredients necessary?
Objective Function

Almost all optimization problems have a single objective function. (When they
don't they can often be reformulated so that they do!) The two interesting exceptions are:

• No objective function. In some cases (for example, design of integrated circuit
layouts), the goal is to find a set of variables that satisfies the constraints of the model.
The user does not particularly want to optimize anything so there is no reason to define
an objective function. This type ofproblems is usually called afeasibility problem. 
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• Multiple objective functions. Often, the user would actually like to optimize a
number of different objectives at once. For instance, in the panel design problem,
it would be nice to minimize weight and maximize strength simultaneously. Usually, the
different objectives are not compatible; the variables that optimize one objective may be
far from optimal for the others. In practice, problems with multiple objectives are
reformulated as single-objective problems by either forming a weighted combination of
the different objectives or else replacing some of the objectives by constraints. These
approaches and others are described in our section on multi-objective optimization.

Variables
These are essential. Ifthere are no variables, we cannot define the objective

function and the problem constraints.

Constraints
Constraints are not essential. In fact, the field of unconstrained optimization is a

large and important one for which a lot of algorithms and software are available. It's
been argued that almost all problems really do have constraints. For example, any
variable denoting the "number of objects" in a system can only be useful if it is less than
the number of elementary particles in the known universe! In practice though, answers
that make good sense in terms of the underlying physical or economic problem can
often be obtained without putting constraints on the variables.

2.2 The Optimization Problem
The gradient-based optimization algorithms most often used with structural equation

models (Levenberg-Marquardt, Newton-Raphson, quasi-Newton) are inadequate because

they too often fail to find the global maximum of the likelihood function. The discrepancy

function is not globally convex. Multiple- local minima and saddle points often exist, so that

there is no guarantee that gradient-based methods will converge to the global maximum.
II!,

Indeed, saddle points and other complexities in the curvature of the likelihood function can

make it difficult for gradient-based optimization methods to find any maximum at all. Such

difficulties are intrinsic to linear structure models for two reasons. First, the LISREL

likelihood is not globally concave. Second,

linear structure models' identification conditions do not require and do not guarantee that

the model (as a function of the data) will determine a unique set of parameter values

outside a neighborhood of the true values. The derivatives of the likelihood function with

respect to the parameters are not well defined outside of the neighborhood of the solution.
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Therefore, outside of the neighborhood of the solution, derivative based methods often have

little or no information upon which to advance to the global maximum.

Bootstrap methodology accentuates optimization difficulties, because the bootstrap

resampling distribution draws from the entire distribution of the parameter estimates. Even

if optimization in the original sample is not problematic, one can expect to encounter

difficulties in a significant number of bootstrap resamples. Even if the model being estimated

is correctly specified, problematic resamples contain crucial information about the tails

of the distribution of the parameter estimates. Indeed, what

otstrap methods primarily do is make corrections for skewness-for asymmetry between

the tails of the distribution of each parameter estimate-that is ignored by normal-theory

confidence limit estimates. Tossing out the tail information basically defeats the purpose of

using the bootstrap to improve estimated confidence intervals. In general, any procedure of

replacing problematic resamples with new resampling draws until optimization is easy

must fail, as making such replacements would induce incomplete coverage of the

parameter estimates 1 sampling distribution and therefore incorrect inferences. Ichikawa and

Konishi (1995) make this mistake.

Because the nonexistence of good MLEs in bootstrap resamples is evidence of

misspecification and because the occurrence of failures affects the coverage of the

bootstrap confidence intervals, it is crucial to use an optimization method that finds the

global minimum of the discrepancy function if one exists. In order to overcome the

problems of local minima and nonconvergence from poor starting values., GENBLIS

combines a gradient-based method with an evolutionary programming (EP) algorithm. Our

EP algorithm uses a collection of random and homotopy search operators that combine

members of a population of candidate solutions to produce a population that on average better

fits the current data. Nix and Vose (1992; Vose 1993) prove that genetic algorithms are

asymptotically correct, in the sense that the probability of converging to the best possible
•population o f candidate solutions goes to o ne as the' population size increases to infinity.

Because they have a similar Markov chain structure, EP algorithms of the kind we use are

asymptotically correct in the same sense. For a linear structure model and a data set for

which a good MLE (global minimum) exists, the best possible population is the one in which

all but a small fraction of the candidate solutions have that value. A fraction of the

population will have different values because the algorithm must include certain random

variations in order to have effective global search properties. The probability of not

finding a good MLE when one exists can be made arbitrarily small by increasing the
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population size used in the algorithm.
~

The EP is very good at finding a neighborhood of the global minimum in which the

discrepancy function is convex. But the search operators, which do not use derivatives, are

quite slow at getting from an arbitrary point in that neighborhood to the global minimum

value. We add the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton optimizer as an

operator to do the final hill-climbing. We developed and implemented a general form of this

EP-BFGS algorithm in a C program called Genetic Optimization

Using Derivatives (GENOUD). GENBLIS is a version of GENOUD specifically tuned to

estimate linear structure models.

In our experience the program finds the global minimum solution for the LISREL
estimation problem in all cases where the most widely used software fails, except where
extensive examination suggests that a solution does not exist.

2.3 Genetic Algorithm Optimization

Genetic algorithm optimization is a theoretical improvement over the traditional hill­

climb optimization technique that has b een e mployed by TRANS YT- 7F for many years,

The genetic algorithm has the ability to avoid becoming trapped in a "local optimum"

solution, and is mathematically best qualified to locate the "global optimum" solution.

Releases 9 features genetic algorithm optimization of offsets and yields points,
using either TRANSYT-7F or CORSIM as the simulation engine. Phasing sequence
optimization was introduced in release 9.4 (January 2002), and requires TRANSYT-7F'
as the simulation engine. Genetic algorithm optimization of cycle length and splits was
introduced in release 9.6 (September 2002), and also requires TRANSYT-7F as the
simulationengine,

•
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For years, signal timing designers have known that they could often come up with a

better control plan by making minor modifications to the so-called "optimal

result"recommended by a computer program. This is a byproduct of the hill-climb

optimization process, where most timing plan candidates are not examined, in an effort to

save time. Unfortunately, the global optimum solution is often skipped over during the hill­

climb optimizationprocess.

Fortunately, with genetic algo"rithm optimization, the user may have a much more

difficult time in coming up with a better solution than the computer program. The genetic
•algorithm does not examine every single timing plan candidate either, but is a random

guided search, capable of intelligently tracking down the global optimum solution. As

with the human race, the weakest candidates are eliminated from the gene pool, and each

successive generation of individuals contains stronger and stronger characteristics. It's

survival of the fittest, and the unique processes of crossover and mutation conspire to keep

the species as strong as possible.
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Figure 2.3
Although it produces the best timing plans, a potential drawback of the genetic

algorithm is increased program running times on the computer when optimizing large
networks. Fortunately the drawback of increased program running times continues to
be minimized by the ever-increasing processing speeds of today's computers. In
addition, the TRANSYT-7F electronic Help system offers practical suggestions for
reducing the genetic algorithm running times associated with large traffic networks.

2.4 Continuous Optimization

2.4.1 Constrained Optimization
CO is an applications module written in the GAUSS programming language. It solves

eı
the Nonlinear Programming problem, subject to general constraints on the parameters -

linear or nonlinear, equality or inequality, using the Sequential Quadratic Programming••
method in combination with several descent methods selectable by the user - Newton-

Raphson, quasi-Newton (BFGS and DFP), and scaled quasi-Newton. There are also several

selectable line search methods. A Trust Region method is also available which prevents

saddle point solutions. Gradients can be user-provided or numerically calculated.

CO is fast and can handle large, time-consuming problems because it takes advantage
-t

of the speed and number-crunching capabilities of GAUSS. It is thus ideal for large scale

Monte Carlo or bootstrap simulations.
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Example

A Markowitz mean/variance portfolio allocation analysis on a thousand or more

securities would be an example of a large-scale problem CO could handle (about 20 minutes

on a 133 Mhz Pentium-based PC).

CO also contains a special technique for semi-definite problems, and thus it will solve

the Markowitz portfolio allocation problem for a thousand stocks even when the covariance

matrix is computed on fewer observations than there are securities.

In summary, CO is well-suited for a variety of financial applications from the

ordinary to the highly sophisticated, and the speed of GAUSS makes large and time­

consuming problems feasible.

CO comes as source code and requires the GAUSS programming language

software. It is available for Windows 95, OS/2, DOS, and major UNIX platforms.

Available for both PC and UNIX system versions of GAUSS and GAUSS Light,

CO is an advanced GAUSS Application.

GAUSS Applications are modules written in GAUSS for performing specific

modeling and analysis tasks. They are designed to minimize or eliminate the need for

user programming while maintaining flexibility for non-standard problems.

CO requires GAUSS version 3.2.19 or higher (3.2. 15+ for DOS version).

GAUSS program source code is included.

CO is available for DOS, OS/2, Windows NT, Windows 95, and UNIX versions of

GAUSS.

2.4.2 Unconstrained optimization

The unconstrained optimization problem is central to the development of

optimization software. Constrained eptimization algorithms are often extensions of

unconstrained algorithms, while nonlinear least squares and nonlinear equation

algorithms tend to be specializations. In the unconstrained optimization problem, we
••

seek a local minimizer of a real-valued function, f(x), where xis a vector of real

variables. In other words, we seek a vector, x*, such that f(x*) <= f(x) for all x close to

x*.
Global optimization algorithms try to find an x* that minimizes f over all possible

vectors x. This is a much harder problem to solve. We do not discuss it here because, at

present, no efficient algorithm is known for performing this task. For many applications,

local minima are good enough, particularly when the user can draw on his/her own

experience and provide a good starting point for the algorithm.
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Newton's method gives rise to a wide and important class of algorithms that

require computation of the gradient vector V f(x)=( ô 1f (x))

And the Hessian matrix, V 2 f(x)=( ô j ô i(x)).

Although the computation or approximation of the Hessian can be a time-consuming

operation, there are many problems for which this computation is justified.We describe

algorithms in which the user supplies the Hessian explicitly before moving on to a discussion

of algorithms that don't require the Hessian.Newton's method forms a quadratic model of the

objective function around thecurrent iterate Xk, The model function is defined:

In the basic Newton method, the next iterate is obtained from the minimizer of

qk, When the Hessian matrix, V 2 f(xk) , is positive definite, the quadratic model has a

unique minimizer that can be obtained by solving the symmetric m x n linear system:

V 2 .fi:Xk) ak = - V fixk), The next iterate is then Xk + 1 =xk +ak

Convergence is guaranteed if the starting point is sufficiently close to a local

minimizer x* at which the Hessian is positive definite. Moreover, the rate of

convergence is quadratic, that is, II Xk + 1-x* II ::;; /311 xk -x *112 ,for some positive constant

/J.
In most circumstances, however, the basic Newton method has to be modified to

achieve convergence. Versions of Newton's method are implemented in the following

software packages:
BTN, GAUSS, IMSL, LANCELOT, NAG, OPTIMA, PORT 3, PROC NLP,

TENMIN, TN, TNP ACK, UNCMIN, and VE08.
The NEOS Server also has an unconstrained minimization facility to solve these

problems remotely over the Internet!
These codes obtain convergence when the starting point is not close to a minimize.

by using either a line-search or a trust-region approach, •.
The line-search variant modifies the search direction to obtain another a downhill,

or descent direction for f. It then tries different step lengths along this direction until it

finds a step that not only decreases f, but also achieves at least a small fraction of this

direction's potential.
The trust-region variant uses the original quadratic model function, but they

constrain the new iterate to stay in a local neighborhood of the current iterate. To find

the step, then, we have to minimize the quadratic subject to staying in this
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neighborhood, which is generally ellipsoidal in shape.
Line-search and trust-region techniques are suitable if the number of variables n is

not too large, because the cost per iteration is of order rr'. Codes for problems with a

\arge mım'oer ot vaüa'o\es \en.ı:ı \o wse \mn.ca\eı:ı "Ne-w\on. me\\\oı:ı'2., -wb.ıcb. \\S\\a\\')T '2.e\\\e

for an approximate minimizer of the quadratic model.

So far, we have assumed that the Hessian matrix is available, but the algorithms

are unchanged if the Hessian matrix is replaced by a reasonable approximation. Two

kinds of methods use approximate Hessians in place of the real thing: The first

possibility is to use difference approximations to the exact Hessian. We exploit the fact

that each column of the Hessian can be approximated by taking the difference between

two instances of the gradient vector evaluated at two nearby points. For sparse Hessians,

we can often approximate many columns of the Hessian with a single gradient

evaluation by choosing the evaluation points judiciously.
Quasi-Newton Methods buildup an approximation to the Hessian by keeping track

of the gradient differences along each step taken by the algorithm. Various conditions

are imposed on the approximate Hessian. For example, its behavior along the step just

taken is forced to mimic the behavior of the exact Hessian, and it is usually kept positive

definite.
Finally, we mention two other approaches for unconstrained problems that are not

so closely related to Newton's method:
Nonlinear conjugate gradient methods are motivated by the success of the linear

conjugate gradient method in minimizing quadratic functions with positive definite

Hessians. They use search directions that combine the negative gradient direction with

another direction, chosen so that the search will take place along a direction not

previously explored by the algorithm. At least, this property holds for the quadratic case,

for which the minimizer is found exactly within just n iterations. For nonlinear

problems, performace is problematic, but these methods do have the advantage that they

require only gradient evaluations and do not use much storage.
The nonlinear Simplex method (not to be confused with the simplex method for

lip.ear programming) requires neither gradient nor Hessian evaluations. Instead, it

performs a pattern search based only on function values. Because it makes little use of

information about f, it typically requires a great many iterations to find a solution that is

even in the ballpark. It can be useful when f is nonsmooth or when derivatives are

impossible to find, but it is unfortunately often used when one of the algorithms above

would be more appropriate.
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2.4.2.1 Systems of Nonlinear Equations

Systems of nonlinear equations arise as constraints in optimization problems, but also
arise, for example, when differential and integral equations are discretized. In
solving a system ofnonlinear equations, we seek a vector such that f(x)=Owhere xis a

n n-dimensional of n variables. Most algorithms in this section are closely related to
algorithms for unconstrained optimization and nonlinear least squares. Indeed,
algorithms for systems of nonlinear equations usually proceed by seeking a local
minimizer to the problem

min {II f(x)ll:xERn } for some norm 11-11 ,usually the 2-norm. This strategy is
reasonable, since any solution of the nonlinear equations is a global solution of the
minimization problem.

Oflinear equations f (x, )8k= -f(xk),(1.1)
Newton's method, modified and enhanced, forms the basis for most of the

software used to solve systems ofnonlinear equations. Given an iterate, Newton's
method computes f(x) and its Jacobian matrix, finds a step by solving the system of
linear and then sets Xk +1 =xk+ak·

Most of the computational cost ofNewton's method is associated with two
operations: evaluation of the function and the Jacobian matrix, and the solution of the
linear system (1.1 ). Since the Jacobian is f (x)=( a ıf(x),.... , a nf(x)),

The computation of the ith column requires the partial derivative off with respect
to the ith variable, while the solution of the linear system (1.1) requires order n3 when
the Jacobian is dense.

Convergence ofNewton's method is guaranteed if the starting is sufficiently close
to the solution and the Jacobian at the solution is nonsingular. Under these conditions
the rate of convergence is quadratic; that is, II Xk +1-x• II ~ /311 Xk -x ·112,for some

positive constant . This rapid local convergence is the main advantage ofNewton's
method. The disadvantages include the need to calculate the Jacobian matrix and the
lack of guaranteed global convergence; that is, convergence from remote starting points.

The following software attempts to overcome these two disadvantages of..
Newton's method by allowing approximations to be used in place of the exact Jacobian
matrix and by using two basic strategies-trust region and line search-to improve global
convergence behavior: GAUSS, IMSL, LANCELOT, MATLAB, MINPACK-1,
NAG(FORTRAN), NAG(C), NITSOL, and OPTIMA.
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2.5 Global Optimization (GO)

A globally optimal solution is one where there are no other feasible solutions with

better objective function values. A locally optimal solution is one where there are no other

feasible solutions "in the vicinity" with better objective fıinction values. You can picture this

as a point at the top of a "peak" or at the bottom of a "valley" which may be formed by the

objective fıinction and/or the constraints - but there may be a higher peak or a deeper

valley far away from the current point.

In certain types of problems, a locally optimal solution is also globally optimal. These

include LP problems; QP problems where the objective is positive definite (if minimizing;

negative definite if maximizing); and NLP problems where the objective is a convex

fıinction (if minimizing; concave if maximizing) and the constraints form a convex set. But

most nonlinear problems are likely to have multiple locally optimal solutions.
Global optimization seeks to find the globally optimal solution. GO problems are'

intrinsically very difficult to solve; based on both theoretical analysis and practical

experience, you should expect the time required to solve a GO problem to increase

rapidly- perhaps exponentially- with the number of variables and constraints.

2.5.1 Problem Formulation

Many important practical problems can be posed as mathematical programming
problems.

This has been internationally appreciated since 1944 and has lead to major
research activities in many countries, in all of which the aim has been to write efficient
computer programs to solve subclasses of this problem. An important subclass that has
proved very difficult to solve occurs in many practical engineering applications. Let us
consider the design of a system that has to meet certain design criterion. The system will
include features that may be varied by the designer within certain limits. The values

•given to these features will be the optimization variables of the problem. Frequently
when the system performance is expressed as a mathematical function of the
optimization variables, this function, which will sometimes be called the objective
function, is not convex and possesses more than one local minimum. The problem of

writing computer algorithms that distinguish between these local minima and locate the
best local minimum is known as the global optimization problem.

2.5.2 Some Classes of Problems

Let the features that may be varied be represented by the vector x=Ix., ... ,xn) of
reals. Let A be the feasible region in which the global minimum of f(x) is to be
estimated.
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Combinatorial problems are those that have a finite but large number of feasible

points in A.

Constrained Global Optimization Problems are those for which the border of A

comes into play. A subset of these problems are those for which f(x) and the constraints

have a special form, eg. quadratic. Such problems are treated in [Pardalos and Rosen

1978] and will not be dealt with here.

Essentially Unconstrained Global Optimization Problems are those for which the

global minimum is in the interior of A. We will here concentrate on these, see [Töm and

Zilinskas 1987]. Normally A will be a box giving the limits for each feature.

Only essential local minima are considered, i.e., those having a sub-optimal

surrounding of positive measure. A solution to the problem will of course not be the

global minimum f* exactly, but for instance a value less than f* e, where f* e = f* +epsilon.
The problem to determine x*, where f* = f(x*) is not a properly posed problem, i.e.,

there exist continuous functions in A with maximum absolute difference in function
values over A arbitrary small but with global optima wide apart.

2.5.3 Complexity of Problems

2.5.3.1Complexity Measures
Methods for generally solving such essentially unconstrained problems are those

containing some technique, which explores the search region A by evaluating f for
points spread out in A (eg. random sampling) and then use some local technique to
possibly find the global minimum.

We postulate that the complexity in solving such problems is dependent on the
following features of the problem:
The size p* of the region of attraction of the global minimum in relation to A.
The affordable number of function evaluations Nf. Embedded or isolated global
minimizers. The number of local minimizers.

2.5.3.2 The size p* of the region of attraction of the global minimum in relation to A.

The region of attraction of a local minimizer S(x112) is defined as the largest region
containing Xm, such that when starting an infinitely small step strictly descending local
minimization from any point in S(xm), then the minimizer Xm will be found each time.
The region of attraction of of a minimum m is the union ofregions of attraction of all
minimizers x for which f(x) = m.

If the region of attraction off* is large then this region is easy to detect when
sampling in A and such a problem is of course easier to solve than a problem with
smaller such region.
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2.5.3.3The affordable number of function evaluations Nr

The value of the expression (1-p*tris the chance to miss the region of attraction

off* when sampling Nr points at random in A. If the function fis cheap to evaluate then

Nr is large and and the probability that even a very small region of attraction is missed

becomes small. However, if only a small number of function evaluations can be

performed then the probability to miss the region of attraction of the global minimum

even for large p * is large.

2.5.4 Elements of Global Optimization Methods

All methods will evaluate the function f(x) in some points xı, ... ,XN in A, and they

differ only in their choice of these points.

2.5.4.1 Strategies in choosing points.

Because we do not have any information about where in A to find the global

minimum, one strategy that must be used is to spread out some of the points to cover A.

We call any realization of this strategy a global technique. A possible global technique

is uniform sampling. Any serious GO method must use some global technique.

Given a point x it is normally possible to find a nearby point with a smaller

function value. We call any technique realizing this a local technique. A possible local

technique is local optimization. Any serious GO method will use local optimization, at

least to improve upon the estimates of the global minimum found.

A special local technique is to adapt the probes in the global technique so that more

effort is put on sampling in regions where relatively small function values are found. We

call this technique adaption. Adaption can range from no adaption, i.e., global

technique, to extreme adaption, i.e., local technique. A GO method can be based

exclusively on successive adaption.

2.5.4.2 Stopping Conditions and Solvabillty

In any computer algorithm there must be some stopping condition, which after

s~me finite number of computing steps stops the computation. The condition should of

course relate to the quality of the solution achieved.

This is a very crucial point in global optimization. Without some additional

information or assumptions about the problem there is no way to decide on the quality

of the solution after a given number of steps (eg. number of function evaluations made).

A necessary condition for solving the problem is that at least one of the points

x1, ... ,xN is in the region of attraction of the global minimum S(x<SUP*< sup>). Ifno

information about the size of S(x<SUP*< sup>) (eg. lower bound) is known then of

course there is no hope to formulate a proper stopping condition. It is of course not
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possible for the algorithm to decide on the proper stopping condition based on the
function values f(x1), •.• ,f(xN).

This means that either additional information or assumptions must be utilized for
establishing a proper stopping condition or else the stopping condition is more or less
heuristic.

From this we may conclude that the global optimization problem in general is
unsolvable and that we must be prepared to accept non-global minima as solutions.

2.5.4.3 Convergence with Probability One

Because convergence is not in general possible, we may then lower our ambition
and only require convergence with probability 1. This is of course possible only for
algorithms that can be made to run forever.

This seems to be a modest requirement for any serious algorithm. However, the
requirement is very weak and is not of very much use in practice, which can be seen
from the following reasoning.

It has been pointed out that some methods do not have any theoretical convergence
properties (eg. Price's CSR) and they are therefore considered inferior to other methods.
Assume that we have a method that can be made to run forever. Add the following: For
i= 1,2,3,... when N reaches lOiNrsample a point at random in A to be a candidate to
include in the converging set of CSR.

The modified method will converge with probability 1, but because Nr is the
maximal affordable number of function evaluations, the two algorithms will give
equivalent results in any real application.

2.5.4.4 Comparing Methods

It should be clear that a comparison ofmethods must be based on empirical
evaluation rather than on theoretical.

"Assume that we apply a probabilistic method M to a problem P. We can see this
as a mapping from (M,P) --> (E,m,q), where E is the effort applied and q is the

•probability that some minimum m is reached.

Assume that two methods are applied and that the same minimum is achieved.
"

This gives
(Ml,P) --->(El,m,ql)
(M2,P) --->(E2,m,q2)

If Ei < Ej and qi> qj then obviously Mi is better than Mj for this problem.

However, ifwe have that Ei < Ej and qi< qj then neither dominates the other and no
conclusion about which is better can be made.
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Because the results may vary depending on P and the levels of E and q a

conclusive decision about the superiority of one method over another needs a lot

of computations.

2.5.5 Solving GO Problems

Multistart methods are a popular way to seek globally optimal solutions with the aid of

a "cIassical" smooth nonlinear solver ( that by itself finds only 1 ocally optimal solutions).

The basic idea behind these methods is to automatically start the nonlinear Solver from

randomly selected starting points, reaching different locally optimal solutions, then select

the best of these as the proposed globally optimal solution. Multistart methods have a

limited guarantee that (given certain assumptions about the problem) they will "converge

in probability" to a globally optimal solution. This means that as the number of runs of the

nonlinear Solver increases, the probability that the globally optimal solution has been found

also increases towards 100%.

Where Multistart methods rely on random sampling of starting points, Continuous

Branch and Bound methods are designed to systematically subdivide the feasible region

into successively smaller subregions, and find locally optimal solutions in each subregion.

The best of the locally optimally solutions is proposed as the globally optimal solution.

Continuous Branch and Bound methods have a theoretical guarantee of convergence to the

globally optimal solution, but this guarantee usually cannot be realized in a reasonable

amount of computing time, for problems of more than a small number of variables. Hence

many Continuous Branch and Bound methods also use some kind of random or statistical

sampling to improve performance.

Genetic Algorithms, Tabu Search and Scatter Search are designed to find "good"

solutions to nonsmooth optimization problems, but they can also be applied to smooth

nonlinear problems to seek a globally optimal solution. They are often effective at finding

better solutions than a "classic" smooth nonlinear solver alone, but they usually take
•much more computing time, and they offer no guarantees of convergence, or tests for

having reached the globally optimal solution.
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2.6 Smooth Nonlinear Optimization (NLP) Problems
A smooth nonlinear programming (NLP) or nonlinear optimization problem is one

in which the objective or at least one of the constraints is a smooth nonlinear function of
the decision variables. An example of a smooth nonlinear function is:

2 xl 2 + x23 + log x3

where xl, x2 and x3 are decision variables. A quadratic programming (QP) problem is a
special case of a smooth nonlinear optimization problem, but it is usually solved by
specialized, more efficient methods.

Nonlinear functions, unlike linear functions, may involve variables that are raised
to a power or multiplied or divided by other variables. They may also use transcendental
functions such as exp, log, sine and cosine.

NLP problems and their solution methods require nonlinear functions that are
continuous, and (usually) further require functions that are smooth -- which means that
derivatives of these functions with respect to each decision variable, i.e. the function

gradients, are continuous.

2.6.1 Solving NLP Problems
There are a variety ofmethods for solving NLP problems, and no single method is

best for all problems. Two of the most widely used and effective methods, used by
Frontline's solvers, are the Generalized Reduced Gradient (GRG) and Sequential
Quadratic Programming (SQP) methods. Interior Point or Newton-Barrier methods are
also being adapted to solve at least some NLP problems.

NLP solvers generally exploit the smoothness of the problem functions by
computing gradient values at variou~trial solutions, and moving in the direction of the
negative gradient (when minimizing; the positive gradient when maximizing). They
usually also exploit second derivative information to follow the curvature as well as the

• •
direction of the problem functions. To solve constrained problems, NLP solvers must take
into account feasibility and the direction and curvature of the constraints as well as

the objective.
As noted above, NLP solvers normally can find only a locally optimal solution, in

the vicinity of the starting point of the optimization given by the user. It is frequently
possible, but considerably more difficult, to find the globally optimal solution.

32



2.7 Nonsmooth Optimization (NSP)

The most difficult type of optimization problem to solve is a nonsmooth problem (NSP).

Such a problem may not only have multiple feasible regions and multiple locally optimal

points within each region -- because some of the functions are non-smooth or even

discontinuous, derivative or gradient information generally cannot be used to determine the

direction in which the function is increasing (or decreasing). In other words, the situation at

one possible solution gives very little information about where to look for a better solution.

In all but the simplest problems, it is impractical to exhaustively enumerate all of
the possible solutions and pick the best one, even on a fast computer. Hence, most
methods rely on some sort of random sampling of possible solutions. Such methods ar
nondeterministic or stochastic -- they may yield different solutions on different runs,
even when started from the same point on the same model, depending on which points
are randomly sampled.

2.7.1 Solving NSP Problems

Genetic or Evolutionary Algorithms offer one way to find "good" solutions to
nonsmooth optimization problems. (In a genetic algorithm the problem is encoded in a
series of bit strings that are manipulated by the algorithm; in an "evolutionary
algorithm," the decision variables and problem functions are used directly. Most
commercial Solver products are based on evolutionary algorithms.)

These algorithms maintain a population of candidate solutions, rather than a single
best solution so far. From existing candidate solutions, they generate new solutions
through either random mutation of single points or crossover or recombination of two or
more existing points. The population is then subject to selection that tends to eliminate
the worst candidate solutions and keep the best ones. This process is repeated,
generating better and better solutions; however, there is no way for these methods to

"determine that a given solution is truly optimal.
Tabu Search and Scatter Search offer another approach to find "good" solutions to

•
nonsmooth optimization problems. These algorithms also maintain a population of
candidate solutions, rather than a single best solution so far, and they generate new
solutions from old ones. However, they rely less on random selection and more on
deterministic methods. Tabu search uses memory of past search results to guide the
direction and intensity of future searches. These methods generate successively better
solutions, but as with genetic and evolutionary algorithms, there is no way for these
methods to determine that a given solution is truly optimal.
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2.8 Multi-Objective Optimization for Highway Management Programming

Highway infrastructure is a major national investment, and a well-managed

highway network forms an integral element of a sustainable economy. An ideal

management program for a highway network is one that would maintain all highway

sections at a sufficiently high level of service and structural condition, but requires only

a reasonably low budget and use of resources, without creating any significant adverse

impact on the environment, safe traffic operations, and social and community activities.

Unfortunately, many of these are conflicting requirements. For instance, more resources

and higher budgets may be needed if the highways are to be maintained at a high state of

operability. But this could lead to pavement activities causing longer traffic delays,

increased pollution, more disruption of social activities, and inconvenience to the

community. Therefore, the decision processes involved in highway management

activities requires a multi-objective consideration that addresses the competing

requirements of different objectives.

Practically all the pavement management programming tools in use currently are

based on single-objective optimization. In single-objective analysis, the requirements

hich are not incorporated into the objective function are imposed as constraints in the

formulation. This can be viewed as an interference of the optimization process which

artificially sets limits to selected problem parameters. As a result, the solutions obtained

from single-objective analysis are sub-optimal with respect to one's derived from multi-

objective formulations.
A genetic-algorithm (GA) based formulation for multi-objective programming of

highway management activities has been developed at the Centre for Transportation

Research. Genetic algorithms, which are a robust search technique formulated on the

principles of natural selection and natural genetics, are employed to generate and

identify better solutions until convergence is reached. The selection of good solutions is

based on the so-called Pareto based-fitness evaluation procedure by comparing the

relative strength of the generated solutions with respect to each of the adopte objectives.

An important aspect of multi-objective GA analysis is the definition.of "fitness"
•

of a solution. The "fitness" of a solution directly influences the probability of the

solution being selected for reproduction to generate new offspring solutions. To

overcome the afore-mentioned problem, a rank-based fitness assignment scheme is used

where all non-dominated solutions in a given pool of solutions are assigned a rank of 1.

Solutions that are dominated by one solution will have a rank of 2, those dominated by

two solutions are given a rank of 3, and so on.
In the evaluation of a pool of solutions, one can identify a curve (for the case of

two-objective problems) or a surface (for the case three- or higher multi-objective

problems) which are composed of all non-dominated solutions. This curve or is known
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as the Pareto frontier. The GA optimization process seeks to generate new solutions that

would give an improved frontier that dominates the existing frontier. This process

continues until, ideally, a set of globally non-dominated solutions is found. These

globally non-dominated solutions, called the Pareto optimalset,definethe Pareto optimal

frontier.

The general procedure of GA operations and offspring generation in multi

-objective programming is similar to that for single-objective programming. The main

difference lies with the evaluation of "fitness" of each solution, which is the driving

criterion of the search mechanism of genetic algorithms. An important consideration of

the optimization process is to produce representative solutions that are spread more or

less evenly along the Pareto frontier. This can be achieved by using an appropriate

reproduction scheme to generate offspring solutions and to form a new pool of parent

solutions.

The proposed procedure is illustrated by means of a highway maintenance

optimisation problem at network level subject to five forms of resources and operation

constraints. The five constraints were production requirements, budget, manpower

availability, equipment availability, and rehabilitation schedule. The problem considered

four highway classes, four pavement defects and three levels of maintenance-need

urgency. Its objective was to select an optimal set of maintenance activities for an

analysis period of 45 working days.

The decision variables were the respective amounts of maintenance work,

measured in workdays, assigned to each maintenance treatment type. There were 48

treatment types referring to maintenance repairs arising from 4 distress forms of 3

maintenance-need urgency levels on 4 highway classes. The coded string structure of

GA representation thus consisted of 48 cells. Each cell could assume an integer value of

workdays from O to 45. •

In this example, the following four objective functions were considered: (a)
•minimization of the total maintenance cost; (b) maximization of overall network

pavement condition; (c)minimization of total manpower requirement, and (d)
maximization ofwork production in total workday units. For the purpose of illustrating
the flexibility of GAs in handling multi-objective problems, two different analyses were
performed. They consisted of a two-objective and a three-objective problem. The
objectives of the former were minimization of total maintenance cost and maximization
ofmaintenance work production, while those of the latter were minimisation of total
maintenance cost, maximisation ofmaintenance work production, and maximisation of
overall network condition.
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Figure 1 shows the convergence pattern of the Pareto frontier for the case with

two- objective problem. The convergence trend was apparent with the Pareto front

moving in the direction towards lower maintenance costs and higher maintenance work

production. Figure 2 presents the Pareto optimal frontiers of both the two-objective and

three-objective optimization solutions in the same two-dimensional plot of (maintenance

cost) vs. (work production) for comparison. It can be seen that although the two Pareto

frontiers are very close to each other, the Pareto frontier of the two-objective solutions

appear to dominate the frontier of the three-objective solutions in terms of maintenance

cost and work production. This was clearly the effect of introducing a third objective,

i.e. maximizing pavement condition, in the three-objective problem, in compromising

the two initial objectives.
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The robust search characteristics and multiple-solution handling ability of GAs are

well suited for multi-objective optimization analysis of multi-objective highway

infrastructure management and planning. The concepts of Pareto frontier and rank-based

fitness evaluation, and a method of selecting optimal solution from the Pareto frontier

were found to be effective in solving the problems. The proposed algorithm was able to

produce a set of optimal solutions which were well spread on the Pareto frontier .

••

•
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CHAPTER THREE

A GENETIC ALGORITHM-BASED OPTIMIZATION

3.1 Main Features for Optimization

• Probabilistic algorithms for searching and optimization

• Mimic natural evolution process

• Capable ofhandling nonlinear, non-convex problem

• Optimizationprocedure does not require differentiation operation

• Capable of locating global and local optima within search domain

• Optimizations is based on population instead ofa single point.

Let's consider a simple problem ofmaximization ofthe function F(x)==x2, where xe

[0,31] (see Fig).

I

In order to use GA we should first code variables İn to bit strings as any İnteger number
between O to 31 may be represented in binary number 5 symbols between (00000)=0 and
(11111)=31 the length ofchromosomes will be five.

Lets take 4 chromosomes with random set of genes as an initial population as;

01101
11000
01000
10011

•

F(x)
961

625
400
225
100

5 10 15 20 25 31 X 
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Then define their fitness inserting appropriate real values into the function

as:f(O1000)2=f(8=64)

Thus the fitness of all individuals in calculated then accordance with the

Formula i I" ı iP 5=Fi L. ı=ıF 5,

Survival probability for each individual is calculated where as cumulatives

Let's enter all the calculated values in table

Table3.1

Initial Their integer F( j=x' P5 Pcum Nuın

Population values After

Select

ıon

01101 13 169 0.14 0.14 1

11000 24 576 0.49 0.63 2

01000 8 64 0.06 0.69 o
10011 19 361 0.31 1 1

Sum

293 0.25 1
576 0.49 2

1170 1 4

Average
Maximum

For the selection process we generate 4 random numbers from the range [0,1]. Suppose

that we generated 0.1; 0.25; 0.5 and 0.8.
"'

Comparing these values with cumulative probabilities, we obtaining the

following •
O.l<Picum

I 2P cum< 0..25< P cum
l 2P cum< 0.5 .P cum
3 4P cum< 0.8< P cum
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Looking at the right sides of these inequalities, one can easily see, that the first and the

fourth chromosomes have passed the selection, each four taking a place in the new

generation, the second chromosome-the most highly fitted has got 2 copies, while the third

one did not survive at all. These indices are written in the right column of table 3. 1.

Then crossover operation is applied. If the probability of crossover Pc=l is given, it

means that, 4. 1 =4 chromosomes will participate in crossover process.

Let's choose them at random. Suppose that the first and the seconds trings mate from

crossover point 4, and the third with the forth-from crossover point 2.

0110 I ı
1100 I o
11 I ooo
oo I 011

Table3.2

Population Crossover New Value of F(x)=X2

after selection Population X

01101 4 01100 12 144
11000 4 11001 25 625

11000 2 11011 27 729

10011 2 10000 16 256

Average
Maximum
Sum

439
729
1754

•

Having compared both of the tables we see, for ourselves, that the population fitness is

improved and we have come close to the solution.

The next recombination operation mutation, is performed on a bit-by-bit basis. IfPm=0.05 is

given, it means that only one of twenty bits in population will be changed: 20- 0.05= 1. Suppose,

that the third bit of the fourth string undergoes mutation. I.e. X,ı=lOlOO. Repeating
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ese operations in a finite number of generations we will get the chromosome (11111)

,rresponding to problem optimal solution. It is necessary to mention, that GA is especially

effective for multi-extreme problems in the global solution search process. For example, if the

ction is of the type shown. It is rather difficult to find its global maximum by means of

traditional methods. Suppose that the junction is defined as [ 1]

f(x)=x.sin(l O ff ·x)+l.

The problem is to find x from the range [-1,2], which maximizes the function f, i.e., to find

Xo such that

f(xo) ~f(x), for all XE [-1,2].

It is relatively easy to analyze the junction f. The zeros of the first derivative f should be

determined

F(x)=sin(lO ff 'x ff)+ 10 ff. x .cos(lO ff . x)=O

The formula is equivalent to

tan(lO ff x)=(lO ff .x) It is clear that the above equation has an infinite

number of solutions,

\=(2i-l )/20+ Çj for i=l, 2, ... ,

Xo=O,

\=(2i-l )/20+ Çj for i=l,-2, ... ,

Where terms ç 1 represent decreasing sequences ofreal numbers (forİ = 1, 2,... , and i=-1, -2,

... ) approaching zero. Note also that the function f reaches its local maxima for x, it i is an odd

integer, and its local minima for x, if i is an.even integer. Since the domain of the problem is x E [-

1,2], the function reaches its maximum for •.
•

Xı9=(37/20)+ç 19=1.85+ç

Where f(X19) is slightly larger than

F(l.85)=1.85 • sin(18 ff+ ff /2)=1.0=2.85.

Assume that we wish to construct a genetic algorithm to solve the above problem, I.e.,

to maximize the function f. Let us discuss the major components of such a genetic algorithm

in tum. [ 4]
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3.1.1 Representation

We use a binary vector as a chromosome to represent real values of the variable x.

The length of the vector depends on the required precision, which, in this example, is six

places after the decimal point. The domain of the variable x has length 3; the precision

requirement implies that the range [-1,2] should be divided into at least 3 • 1000000 equal

size ranges. This means that 22 bits are required as a binary vector (chromosome):

2097152=231 < 3000000 ::; 233 = 4194304

The mapping from a binary (b21 b20 b0) string into a real number x from the range [-1 ,2]

is straightforward and is completed in two steps:

Convert the binary string (b21 b20 b0) from the base 2 to base 1 O:

21 i(<b21b20bo>)2=(I i=0bi. 2)1o=x

Find a corresponding real number x:

x= - 1 O + x.(3/(222- 1 )),

Where -1,0 is the left boundary of the domain and 3 is the length of the domain. For

example, a chromosome

(1000101110110101000111)

Represents the number 0.637197, since

x'=(lOOOlül 110110101000111)3 = 2288967 and

x=l,0+2288967 .( 3 I 4194303)= 0.637197.

Of course, the chromosomes

(0000000000000000000000) and ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) Represent

boundaries of the domain-I.O and 2.0, respectively.

Initial population. The initialization process is very simple; we create a population of

chromosomes, where each chromosome is a binary vector of 22 bits. All 22 bits for each

chroıposome are initialized randomly. •••

Evaluation function. Evaluation function eval for binary vectors v is equivalent to the

function f:

Eval(v)=f(x),

Where the chromosome v represents the real value x.

As noted earlier, the evaluation junction plays the role of the environment, rating potential

solutions in terms of their fitness. For example, three chromosomes:
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Evalrvıj=f=I. 5 86345

Eval(v2)=f(x2)=0.078878

Eval (v3)=f(x3)=2.250650

Clearly, the chromosome v3 is the best of the three chromosomes, since its evaluation

returns the highest value.

During the reproduction phase of the genetic algorithm we would use two classical genetic

operators; mutation and crossover.

As mentioned earlier, mutation alters one or more genes (positions in a chromosome)

with a probability equal to the mutation rate. Assume that the fifth gene from the v3 chromosome

was selected for a mutation. Since the fifth gene in this chromosome is O, it would be flipped into

V3=(l 11 O 1 O O O O O 11111 1 O O O 1 01)

This chromosome represents the value x3=1.721638 and f(x3)=-0.082257. This means that

this particular mutation resulted in a significant decrease of the value of the chromosome v3 . On the

other hand, if the 1 oth gene was selected for mutation in the chromosome v3 them

V3=(l l 1 O O O O O O 1 1 111 1 1 O O O O 1 O 1)

The corresponding value x3=1.630818 and f(x3)=2.343555, an improve-ment over the
original value of f(x3)=2.250650.

Let us illustrate the crossover operator on chromosomes v2 and v3 . Assume that the

crossover point was (randomly) selected after the 5th gene:

V2=(00000I01 l10000000010000)

V3=(11100/000001 l l l 11000101)

The two resulting offspring are

V'2=(00000I00000111111000101)

V13=(1 llOOIOl llOOOOOOOOIOOOO)

These offspring evaluate to

F(v'ı)=f(-0.998113)=0.940865.

F(v13)=f(l .666028)=2.459245
Note that the second offspring has a better evaluation than both of its parents.

•

Parameters. For this particular problem we have used the following parameters

population size ps=50, probability of crossover Pc =0.25, probability of mutation

Pm =O.Ol.The following section presents some experimental results for such a genetic
system.
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Experimental results. We provide the generation number for which we noted an

improvement in the evaluation fonction together with the value of the fonction. The best

chromosome after 150 generations was

Ynıax=(l 111001101000100000101), Which

corresponds to a value xmax=l.850773

AS exprected, Xrrıax= 1 .85+ ı; and f(Xmax) is slightly larger than 2.85.

{} ~ {flx)} x', [1] I E<~ • ı; 1r

Table 3.3.

GenerationNumber Fitness Function

1 1.441942
5 2.250003

8

9 2.250284

10 2.250363

12 2.328077

36 2.344251

40 2.345087

51 2.738930

99 2.849246

137 " 2.850217.
145 2.850227

..
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3.2 Applications
Genetic algorithms have been very successful at solving many types of problems.

1. Maximizing discontinuous, multimodal, multidimensional functions.

2. They have also been used on discrete problems, including the traveling salesperson,

bin packing, and job-shop scheduling.

Here are two example problems, one discrete and one continuous, that are more

realistic.
1. For an arbitrary expression inn Boolean variables, find an assignment of true and

false values to the Boolean variables in the expression that make the expression true,

if such an assignment exists.

2. This is called the Boolean satisfiability problem (SAT).

3. Each assignment of true and false values to the variables can be encoded in a bit

string of length n, O for false and 1 for true.

4. The fitness of such a chromosome is how "close" to being true the assignment

makes the Boolean expression, such as how many clauses in the expression are

individually made true by the assignment.

5. Some (in Postscript) SATs are very hard for GAs

2. Maximize the function:

f(x1, x2, x3) = 21.5 + xı sin (4 pi xJ) + x2 sin (20 pi x2) + X3

for x, in [-3.0,12.l],x2 in [4.1,5.8], and x, in [0.0,1.0].

1. This function is highly multimodal.

2. A chromosome can be encoded in three real numbers, one for each of xı x2 and X3,

over their respective ranges.

3. The fitness of a chromosome is the value öff{x1,x2,x3) for the xı, x2 and x3 encoded

in the chromosome.
•
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3.2.1 Difficulties

Hitchhiking.

1. This may cause a GA to perform poorly.
2. Once a schema attains high fitness in a population, then the members of the

population containing the schema will proliferate.

3. Bit values in positions not in the schema will hitchhike along with the schema as it

propagates and will delay the discovery of high-fitness schemas with different

values in those other bit positions.

4. For example, consider these 8 schemas.

11111111 .

......... 11111111 .

.................. 11111111 ··········································

................................ 1111111 .

....................................... 11111111 .

................................................ 11111111 .

.......................................................... 11111111 ········

.................................................................... 11111111

5. Define a fitness functionf(x) where xis a 64-bit string to be 8 times the number of

these schemas it contains.

6. Sof (all 64 bits 1) = 64f(all 64 bits O)= O.
7. A GA performs poorly relative to hill-climbing on this because of hitchhiking.

..
•
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3.3 The Neighborhood Constraint Method:
A Genetic Algorithm-Based Multiobjective Optimization Technique

Multiobjective genetic algorithms (MOGAs), including VEGA, Pareto optimal
ranking, and niched-Pareto, allow the tradeoffs among design objectives to be estimated in a
single optimization model run. This paper presents a new MOGA technique called the
neighborhood constraint method (NCM) that uses a combination of a neighborhood selection
technique and location-dependent constraints. NCM is demonstrated for a complex, real
-world problem, where it is compared with an integer programming (IP) procedure, an
iterative procedure using a single-objective GA, and implementations of a Pareto and hybrid
niched-Pareto MOGA technique. Preliminary results suggest that NCM is computationally
more efficient than the SO approach and may perform better that the other MOGA techniques
at promoting and maintaining population diversity over the entire tradeoff curve, using
relatively small population sizes. These results show that further evaluation and comparisons

ofNCM are warranted.

3.3.1 Introduction

Engineering problems that are faced in everyday decision-making are often complex
and multiobjective (MO), requiring solutions to be judged on their ability to satisfy
competing design goals. For most multiobjective problems, there exists a set of
nondominated, or Pareto, solutions that represent the optimal tradeoff relationship among
objectives. For any solution in the Pareto set, any one design objective cannot be improved

without sacrificing another.

The shape of the Pareto set can provide useful information to a decision maker. For
example, in a pollution abatement problem, the Pareto set could identify the increasing costs
associated with increasing levels of pollutant control. A decision-maker might use this

relationship to determine reasonable control levels.
~

The purpose of an MO analysis is often to estimate the shape of an interesting portion
of the Pareto set and to identify solutions along that portion. Several mathematical•
programming procedures, including the constraint method and the weighting method (Figure
1 ), are available for this purpose. These generating techniques estimate the noninferior set

through iterative runs of an optimization model.
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Figure 1.Classical MO Generating Techniques. (A) All objectives except one are
converted into constraints. The remaining objective is maximized. The constraints are
incremented and the model is run iteratively. (B) All objectives are weighted and considered
in the objective function simultaneously. A different set ofweights is used in each run.

Alternatively, preference-based MO techniques, such as goal programming, may require
only a single optimization model run to identify the solution that best meets prespecifıed
"ideal" levels of each objective. Both classes of classical MO procedures are discussed in

detail by Cohon (1978).

MO procedures have been used successfully within traditional mathematical
optimization procedures, such as linear programming, integer programming and nonlinear
programming. Many realistic problems, however, involve complex, nonlinear relationships

that do not fit readily into one of these traditional frameworks.

Recently, many such problems have been solved by employing non-gradient-based,
probabilistic search techniques such as genetic algorithms (GAs) and simulated annealing
(SA). Both GA and SA may be used in the classical MO procedures. However, the inherent
parallel structure of a GA provides some important advantages in MO analysis: with the•
appropriate schemes and operators, the population of solutions carried in a GA can be

ı, •

directed to converge along the Pareto set in a single run. Several multiobjective GA (MOGA)
techniques that take advantage of this behavior are summarized in the following section.

The objective of this paper is to present a new method for MOGA, called the
neighborhood constraint method (NCM). NCM differs from previous MOGA approaches by
using a unique combination of a neighborhood selection technique and location-dependent
constraints. A description ofNCM and its application to an illustrative air quality
management problem are provided. Performance ofNCM is compared with those of several
other MOGA techniques, as well as with the performance of a single-objective GA (SOGA)
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and an integer programming approach using the classical MO constraint method.

3.3.2. Literature Review :GAs in MO Analysis
In a review ofmultiobjective optimization techniques, Fonseca and Fleming (1995)

classify MOGA techniques into four major categories: plain aggregation methods,

population-based non-Pareto methods, Pareto-based approaches, and niche induction

schemes. Plain aggregation methods use GAs in classical MO procedures like those depicted

in Figure 1. These methodologies do not take advantage of the GA population-based search

to generate the Pareto set in a single run, but instead require many iterations.

The most well-known population-based, non-Pareto method is the Vector Evaluated

Genetic Algorithm, or VEGA (Schaffer, 1991). In the VEGA scheme, the population is

divided into groups in each generation, and each group is evaluated with only a single

objective. Individuals from different groups are allowed to mate with the intent that offspring

will perform well with respect to the objectives of both their parents. While this approach and

several of its variations have been successful in locating the elbow and extreme points of the

Pareto set, it is recognized that exploration of the entire Pareto set is difficult.

In an intriguing non-Pareto technique, Hajela and Lin (1992) used a combination of

restrictive mating, objective weighting, and fitness sharing. Their variable weighting

approach treats the weights on objectives as decision variables that are encoded into the GA

chromosome for each individual. Combined with fitness sharing, this approach allows

individuals to evolve to represent a large number of different weightings. Fleming and

Pashkevich (1985) noted that any technique that aggregates objectives linearly in the

objective function, as in VEGA and Hajela and Lin's techniques, is not capable of exploring

concave regions of the Pareto set.
Pareto-based approaches were proposed by Goldberg (in 1989) and have become a

major focus ofMOGA research. These techrtiques explicitly make use of the definition of

Pareto optimality. In Pareto schemes, the fitness of an individual is defined in terms of rank.

For each &enerationof the GA, the non-dominated set of solutions in the population is given

the top rank and then removed from that population. This step is repeated, where in each

iteration the non-dominated set of solutions remaining in the population is given the next

rank, until all solutions in the population are assigned a rank. Rankings are then typically

used in a tournament selection to encourage the exploration in the direction of nondominated

individuals.
Successful applications of this procedure have been reported by Cieniawski et al.

(1995) and Ritzel et al. (1994). Liepins et al. (1988) found the Pareto optimal ranking scheme
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to be superior to VEGA. An important advantage of Pareto approaches is that they are able to

identify solutions in concave areas of the Pareto set.

Pareto schemes typically suffer from population drift, where the population migrates to

a small portion of the Pareto set (Goldberg and Segrest, 1987). To assure a uniform sampling

of the Pareto set, recent applications of Pareto-based MOGA by Fonseca and Fleming (1993),

Hom et al. (1994), and Srinivas and Deb (1994) have incorporated niching schemes.

In both the Pareto and niched-Pareto methods, there may be a likelihood of mating

between individuals that are far apart in the nondominated set. These solutions likely will be

very different in decision space, and as a result, their children may not meet either objective

satisfactorily (Goldberg, 1989). The niched-Parteto scheme by Fonseca and Fleming

(1993)and the non-Pareto scheme by Hajela and Lin (1992) deal with this problem by

restricting mating to individuals in similar regions in the objective space.

3.3.3 Neighborhood Constrained Method
3.3.3.1 Overview

The Neighborhood Constraint Method (NCM) presented here is a MOGA technique
that: samples effectively from along the entire Pareto set, including the endpoints
examines both convex and concave regions of the Pareto set, and provides a computationally­
efficient approach .While MOGA techniques by Hom et al. (1994) and Fonesca and Fleming
(1993) also address these issues, NCM was developed concurrently and uses a very different

approach.

NCM falls into the class of non-Pareto MOGA techniques because it does not make
explicit use ofPareto dominance in fitness evaluation. NCM is inspired by the natural
phenomena of adaptation to environmental conditions that are locationally, or geographically,
dependent (eg. the gradual darkening of skin color seen in human populations as one travels
south from northern Europe to the equator). {}daptation,in this case, arises either from the
preferential selection of traits that perform well with respect to the local environment, or
through migration of traits to environments where they are better suited.

•• •
NCM includes the following major operations: population indexing, location­

dependent constraints, and restrictive mating using a neighborhood selection scheme. These

operations are described below.

3.3.3.2 Population Indexing

Each individual is given an index to define its location in the population. Indices are
assigned in the following manner: for problems with two objectives, individuals are simply
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indexed from 1 ton, where n is the population size. For three objectives, the population is

indexed in a matrix form so that each individual is given a set of x-y ordinal coordinates. The

dimension of the matrix is m-by-n, where the product ofm-by-n is the population size.

Examples for two and three objectives are shown in Figure 2.

Indi vi.duals

~~§ §•u ~ §
l 2 3 n-t nr 

Individual index: 2

Two Ob,J'ectlve Case

1 ~$1 n

ı ~· ~ m ·~ ··~· ·~ .~
@~~~~lJ~~
= m ffl m~..·• .ın ~ ~
m ~. ~ I\~. B ·~ ~

In4ividualirı'dex: [3.2]

Three Objective Case

Figure 2. Indices used in the two and three objective cases. For a problem with K

objective, there are K-1 index numbers used to describe each individual.

For problems of four or more objectives, individuals are indexed in a similar fashion,

with the number of index values set equal to the number of objectives minus 1.

3.3.3 Location-Dependent Constraints

NCM handles multiple objectives in a very similar manner to the classical MO constraint

method. For a K-objective problem, K-1 objectives are converted into constraints while the

remaining objective is optimized. What makes this method unique is that the values of the

constrained objectives are gradually varied at each index location in the population.

Consider the two-objective problem with objectives A and Band a population size of n.

The individual with index 1 would be constrained to satisfy objective Bat a minimum target

level TBrnin- The individual with index n would instead be constrained to a maximum target

level Ts:ıax· The constraint for any individual i in the population is generalized by:

TB. =TB .1 mm
(i _,'1;*(TBm,ax. -TBmin)

+
(n -1)

(1)

Conversion of these targets to constraints in the GA is done through the use of penalties.

Although the form of the penalty function may be problem specific, it generally can be

incorporated in the fitness function as:
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j = S(A) - w *g( S(B))

(TBi -S(B))
g(S(B)).. .

CI':sm ax - TBmin)

for sça.) < ~.

g (S(B))= O for S(B) > la

(2)

(3}

(4)

where: f is the fitness of an individual, S(A) and S(B) are the levels to which objectives A and

B, respectively, are met, and w is a weighting factor. w is typically set to a very high value to

encourage the constraint g, in Equation 2, to be strictly met. Equations 3 and 4 make the

constraint on objective B to be one-sided, i.e., there is no penalty for exceeding the

constraint.

3.3.3.4 Restrictive Mating: Neighborhood Selection

Neighborhood selection is a restrictive mating scheme discussed in the context of single

objective, parallel GAs by DeJong and Sarma (1995). Neighborhood selection schemes

restrict the mating of individuals to those within a specified "neighborhood," or vicinity, of

each other. A number of different selection techniques, including roulette wheel and

tournament selection, can be modified to promote neighborhood selection.

The implementation of neighborhood selection in NCM uses the notions of a selection

radius, r, and a reference index location, L. The parameter r is fixed to be some fraction of n,

the population size. The parameter L is an index that represents the location of an individual

with respect to all other individuals in the population.

The likelihood of an individual being selected for mating is dependent on the proximity

of that individual to the location L. An individual is considered for selection only if the

distance between that individual and location Lis within the selection radius, r. For instance,

in a two-objective case, the distance between a reference location at L=4 and an individual at

index 8 is 4. If r is greater than 4, the individual is considered for selection. Likewise, in the

three-objective case, the distance between Lat [4,2] and an individual at [3,7] is ((4-3)2 + (2-

7)2)° 5, or 5. 1. If r<5. 1, then the individual will not be considered for selection.

The neighborhood selection process is described below for a two-objective problem.

Assume that the population size, n, is 100; the selection radius, r, is defined as 0.05 * n, i.e.,

5; and a tournament selection scheme is carried out. The selection process begins by setting

the reference location, L, to 1. Individuals at index locations up tor (=5) locations away from
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L(=l), i.e., from 1 to 6, will be considered as candidates for selection. Two of the six

individuals in this range are selected using tournament selection. The winners of the selection

undergo crossover, and the resulting individuals are placed into a new population at locations

Land L+ 1, i.e., at locations 1 and 2. Lis then incremented by two, and the selection and

crossover processes are repeated. These steps are repeated until the new population has the

same number of individuals as the previous population. This implementation of

neighborhood selection is depicted in Figure 3.

Popı;ılati oo hıdexesı,~\ Cumrıt.Po_ı:ll;dalic;ırı.

StepB:
.Sh,leı::tioo and. cı:,ossove:t

Ntw Population

Figure 3. Neighborhood Selection. Step A: individuals are identified that fall within r
places of L. Step B: two individuals are selected from this set and undergo crossover. Step C:
the resulting individuals are placed into the next population at locations Land L+1.

3.3.3.5 Other Special Operations

In addition to the NCM-specific operations described above, other special operations
may be used to improve performance for various types ofproblems. Several potential
modifications are listed and described below.

Population sorting - Because the initial population is often generated randomly and is not
necessarily in any order, individuals will likely not be in a location where they perform best.
NCM performance may be improved by sorting the initial population, placing individuals
closer to their ideal locations.

Dynamic scaling of TBmax and TBmin - It may be difficult to estimate the initial values of
the minimum and maximum objective targets, e.g., TBmax and TBmin, for some problems.
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When this occurs, TBmax and TBmin may be dynamically changed in each generation to reflect

the maximum and minimum values in the algorithm to that point.
0

Locational elitism - To speed convergence, an elitism scheme compares the individual at
each location in the population with the individual in that location in the previous generation.
If the individual in the previous generation had a better fitness value than that of the current

generation, it replaces the current individual.
Population distribution - Using Equation 1, individuals will be spaced evenly along

objective B. Alternative distributions of individuals along objective B may be useful in
concentrating the search toward areas in which the decision maker is interested.

Allow multiple individuals at a location - Instead of having one set of constraint values
per individual, more than one individual can share the same set of constraints. This may
provide a more robust search by allocating more GA resources to each of the objective

targets.
Evaluation of local fitness - In the selection process, the fitness of individuals within the

selection radius can be re-evaluated to determine how well they would perform at location L.
Because the children of selected individuals will be placed at Land L+1, this promotes gene

migration.
Selection of individuals outside the selection radius - It may be advantageous to select

occasionally individuals from outside of the selection radius, which is expected to promote
faster gene migration across the population. A factor can be introduced to allow sampling
outside the selection radius at a pre-specified rate.

Dynamic selection radius - Our trials to date have used a selection radius that is equal to
a fixed percentage of the population size. An alternative would be to allow the selection
radius to change dynamically. For instance, the radius would start large and reduce as the

population converges to the Pareto set.

3.3.4 Application

NCM was applied to a real-world, air quality management application with two
conflicting objectives: minimizing the cost of controlling air pollutant emissions.and

••
maximizing the amount of emissions reduction.

This problem included approximately 300 air pollutant sources that varied in emissions
amounts from 1 to nearly 8000 tons per year. Each source had from four to seven mutually
-exclusive control options, including a no-control option. The average number of control

options at a source was approximately five.

The choice of control techniques was discrete, i.e., when a control was chosen, it was
applied to the entire emissions emanating from a source. Therefore, this problem requires a
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combinatorial search through approximately 5300 potential control strategies.

Associated with each control technique are an emissions removal efficiency and a cost

-per-ton of emissions removed. The mathematical representation of the problem is as follows:

mınımıze c = LLAJci,f ,ui l (9)
i

s. t.

-ç, [u . * (e . . * t: . ) ]L....ı ı . J,t J.,r
j . >T·-ç,u. -·

L....ı ı
(lOJ

i

C i,t E{O,l} Vj,t

-ç, C. = 1 \fjL....ı J,t

(1 l)

(I2)

where: C is the total cost; Ai is the cost at source j; Cj,t is the binary variable representing

whether control option t is used at source j; ui is the emissions at source j; ei,t is the removal

efficiency of control tat source j, and Tis the target level of emissions reduction. The

problem is described in more detail by Loughlin (1995).

This problem can be modeled and solved as an integer programming (IP) formulation,

allowing the comparison of the GA results with the actual Pareto otimal solutions obtained

using the IP. Also, this problem is closely related to another formulation that we have been

examining in our research, in which a highly nonlinear air quality model is used in the

evaluation function to predict air quality impacts. This alternative GA formulation seeks to
"'minimize costs subject to an ambient air quality constraint. The complexity of the

atmospheric transport and chemistry makes the use of more classical optimization

methodologies intractable. • •
Also, because of the duration of an atmospheric model run, the efficiency and quick

convergence of a MOGA technique are important, providing the impetus for the work

presented in this paper.
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3.3.4.1 Methodology

Four MO methods were tested and compared for the case study problem. Each method

is described briefly.

1. Integer Programming

First, an integer programming (IP) model was set up and solved to determine the true

Pareto optimal costs for achieving emissions reductions of 5%, 10%, 15%, 20%, 25%, 30%,

35%, 40%, 45%, 50%, and 55%. The IP model contained approximately 1300 binary

decision variables.

2. Single-Objective GA

Next, a single-objective GA (SOGA) was run iteratively, one run for each level of

reduction, i.e. 5%, 10%, etc. The SOGA, as well as the MOGA techniques tested in this

paper, used real-coded genes. Coding of the decision variables is discussed by Loughlin

(1995).
Other parameters used in the SOGA runs included: a mutation rate of O. 1 %, a uniform

crossover rate of 35%, tournament selection, and elitism to preserve the best individual in

each generation. 30% of genes that underwent crossover were subjected to a linear

recombination. These parameter values were found to perform well through trials of various

parameterizations. Population sizes of 50 and 150 individuals were tested, each for 15

different random number seeds. The runs were terminated when no improvement in fitness

was observed in 20 consecutive generations.

3. The Neighborhood Constraint Method

NCM was then used to generate the tradeoff curve in a single run. The NCM-specifıc

parameters used in this problem are listed in Table 1.

•
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-~, .
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· : the initial population

For NCM, only 10% of the genes that underwent crossover were linearly recombined.

While this value may appear low, trials suggested that a low value allowed for better gene

migration across the population with less chance of disruption.

Once again, runs were made for population sizes of 50 and 150 individuals for 15

different random number seeds. Termination occurred after 20 generations with no

improvement in the average cost of individuals in the population.

Pareto Ranking and Hybrid Niched-Pareto MOGAs

Pareto ranking and a hybrid niched-Pareto MOGA technique were implemented and

tested for the same population sizes and random seeds. The Pareto ranking scheme was based

on the procedure described by Goldberg (1989).
The hybrid technique was a combination of two techniques described in the literature,

and made use of:
•

Objective sharing - Combined with tournament selection, this technique encouraged

exploration of the tradeoff curve by promoting selection of individuals in relatively
••

nonpopulated areas. The objective sharing implementation was based on the procedure

described by Hom et al. (1994).

Restrictive mating - This technique, adapted from Fonseca and Fleming (1993), used a

parameter, Dmating, to encourage the mating of individuals that are similar in objective space.

Tournament selection was used in this hybrid method. A number of individuals equal to 10%

(arbitrarily chosen) of the population size was sampled. If there was a tie in the ranking of the

best individuals in the sample, continuously- updated objective sharing was used to identify

the winner, as described by Hom et al. (1994). Another sampling of roughly 10% of the
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population was taken to find a mate. After the sampling was completed, the new set of

individuals was evaluated to determine whether the individuals fell within an objective-space

distance, Dmating, from the winner of the first tournament. The fitness of individuals that fell
within this distance was increased to encourage selection. Ifthere was a tie, objective sharing
was carried out in the second sampled set to identify the mate.

4. Results
Table 2 summarizes the preliminary results of these trials. Costs obtained from each of

the techniques, in millions of dollars per year, are provided for various target levels of
reduction. Since the controls being considered are discrete, it may not be possible to meet a
target reduction level exactly. Therefore, the cost displayed is for the strategy that most cost­
effectively reduces greater than or equal to the current target, but less than the next higher

target level.
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Results are reported for population sizes of 50 and 150. Also compared are the

number of fitness evaluations required by each method.

Figure 4 shows the nondominated sets and the final populations obtained through the

NCM, the Pareto method, and the hybrid method, and compares them with IP the solutions.
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Figure 4. Final populations and ~j setsidentifi:edthroughout a typical run, for each MOGA tech­
nique, Individuals in the final population are represented as iight-cölored'circles. IP-generated Pareto solutions are
blackdiamonds. The ~.s.et is representedas graysquares.

5. Discussion

Several observations may be made from the results. These include:

• None of the GA methods identified the true optimal points found by the IP.,This was
w

notunexpected because of the stochastic nature of GA search and the difficulty of the
problem. However, the SOGA and MOGA techniques, with the exception of the Pareto
method, did approximate the Pareto set to a degree that may be acceptable to a decision-
maker.

• All three MOGA techniques required considerably fewer fitness evaluations and
computational time than did the iterative SOGA technique. In about 1/3 of the duration of
a SOGA run, which only identified 1 O nondominated solutions, the MOGA techniques

were able to identify several hundred to thousands of nondominated solutions.
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• The Pareto method found better solutions near the elbow region of the curve,

Compared to the hybrid, NCM, and SOGA. The results suggest that the Pareto technique

was superior at the elbow because it tended to direct more search effort in that region than

did the NCM and hybrid.

• Of the MOGA runs, the hybrid technique, with a population size of 150, identified the

best nondominated solutions (Fig. 4c,f), providing good coverage of the entire curve.

However, the hybrid technique was more dependent on the random number seed than

NCM,and in several runs failed to identify solutions in the lower portion of the tradeoff

curve. Although the hybrid technique was able to find good nondominated solutions, it

was unableto maintain them throughout the search. The final population tended to

converge toward the elbow. NCM was able to cover the noninferior set well, and also

maintained the nondominated solutions throughout the search (Fig. 4a,d). This behavior

may be desirable because it reduces the book-keeping required to maintain records of

solutions along the set. The Pareto technique did poorly in covering the noninferior set

and maintaining the nondominated solutions.

• NCM exhibited better coverage of the Pareto set than the hybrid technique for runs

where the population was 50.

3.3.5 Summary

This section represent a new multiobjective genetic algorithm technique, the
neighborhood constraint method (NCM). NCM uses a restrictive mating scheme and
location-dependent constraints to promote and maintain diversity in the GA population.

The application of the NCM technique to a realistic problem was demonstrated and its
performance was compared with those of an integer programming procedure, an iterative
procedure using a single-objective GA optimization, and a Pareto and a hybrid niched-Pareto
multiobjective GA (MOGA) techniques.

Preliminary results show that NCM performs better than the SOGA and the other
MOGA techniques. NCM appears to provide good coverage of the Pareto set, and is capable

. "
ofpromoting and maintaining population diversity throughout the GA run with a relatively
small population size. It does appear, however, that the Pareto-based techniques may be
better at identifying regions near the elbow of the Pareto set.

These results suggest that NCM is a viable MOGA technique, and point to the need for a
more comprehensive investigation ofNCM to better identify the effects of the restrictive
mating and the location-dependent constraints. A determination of the best selection
approach (i.e., roulette wheel, tournament, etc.), selection radius, and recombination and
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crossover rates to use with NCM would be beneficial. NCM should also undergo a more

rigorous comparison with the other MOGA techniques for a set of well-known problems.

Another potential use of NCM that deserves attention is in parallel GAs, since the

methodology adapts well to the decentralized selection schemes discussed by De Jong and

Sarma (1995).

•• •
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CONCLUSION

A couple of conclusions from building block theory are of importance to note. Strings

with very fit schemata of short length will have a high likelihood ofbeing selected to create the

next population, and thus pass on those schemata to strings in the new population. It has been

shown that schemata of this form increase in number from one population to the next in an

exponential fashion. In other words, n"' useful schemata are processed per generation, and the

majority of these have small orders and lengths associated with them. These schemata are

what give a GA the power to efficiently search through a problem space. This n1 feature is so

important to GAs that it has been given a special name, implicitparallelism.

If the conception of a computer algorithms being based on the evolutionary of

organism is surprising, the extensivenesswith which this algorithms is applied in so many areas

is no less than astonishing. These applications,be they commercial, educational and scientific,

are increasingly dependent on this algorithms, the Genetic Algorithms. Its usefulness and

gracefulness of solving problems has made it the more favorite choice among the traditional

methods, namely gradient search, random search and others. GAs are very helpful when the

developer does not have precise domain expertise, because GAs possess the ability to explore

and learn from their domain.

In this project, the use of operators of GAs in optımızation of engineering and

commerce are considered. We believe that, by these interesting examples, one could grasp the

idea of GAs with greater ease. The different optimization problems are described. The

application of GA to solve optimization problem are given the selection procedure model

parameters by using GA operators are represented. Also different problems solution, by using

GA, is given.

In future, the developmentsof variants of GAs to tailor for some very specific tasks will

be interesting. This, might defy the very principle of GAs that it is ignorant of the problem

domain when used to solve problem. But we would realize that this practice could make GAs

even more powerful.
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