
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

KARMOD CABIN AND CONTAINER STOCK AND
SELLING PROGRAM USING BY DELPHI

Graduation Project
COM400

Student:
.

MEHMET AYDIN (20030646)

J Supervisor: Assist. Prof. Dr.Elburus IMANOV

Nicosia-2007

(ıc
I \

ACKNOWLEDGMENT

When people start a new work they get excited. Because who do not know any thing

about the future of work. When a time passed human becomes familiar for this work.

Afterthat may be barred, maybe want to leave this work. That may be true maybe false.It

changes from people to people. But I believe that the important thing in the life do not leave

such who should embrace very tightly. When we get this it makes us happy.

In the life what is important for you. Business? Money? Science? Power? Family?

Love? Humanity? or purpose of existence? In my opinion first of all aim of existence comes

.Rest of all things involved in aim of existence. After that comes Love. The world exists of

love. With love person gets power, gains working perseverence .

Well in this project I gained perseverence from Allah and from my fiancee.I am

happy to complete the task which I had given with blessing of Allah and also I am grateful

to my fiancee and all the people in my life who have supported me, advised me. They all

the time helped and encouraged me to follow my dreams and ambitions.

For intellectual support, encouragement I want to thank to my supervisor Mr.

Elburus Imanov who made this project contributions.

And thank my dearest parents who supported me to continue beyond my

undergraduate studies, and also many thanks to my dear familiy who brought me till such

meaning days.

To all my friends, especially Teslime Dündar and My dear fiancee for sharing

wonderful moments, advice, and for making me feel at home and in life. And above, I thank

God for giving me stamina and courage to achieve my objectives.

MEHMET AYDIN

ABSTRACT

The aim of this program is to develop cabin and container stock in company that contain

registration, all applications and also account application. The program was prepared by

using Delphi programming and using database.

Well Product stock and selling program is important like the program that is used

production. Also production is much more important then others.

This project has as its goal to develop software, processing information about activities of

product application software. Software developed in this project like not only for product

the same time for staff and for owner of the production. All records keep in the other

Database program. It acts easily and fast access. Managers can keep all records in the

program as concentment.

11

ACKNOWLEDGMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
CHAPTER ONE: DELPHI

1.1 Introduction To Delphi

1 .2 What Is Delphi?

1.3 What Kind Of Programming Can You Do With Delphi?

1 .4 Versions Are There And How Do They Differ?

1 .5 Some Knowledge About Delphi

1 .5. 1 Example: Try First Delphi Program

1 .5.2 Delphi Style

1 .6 How Delphi Helps You Define Patterns

1.6.1 Delphi Examples of Design Patterns

1 .6.2 Pattern: Singleton

1 .6.3 Pattern: Adapter

1 .6.4 Pattern: Template Method

1 .6.5 Pattern: Builder

1 .6.6 Pattern: Abstract Factory

1.6.7 Pattern: Factory Method

1.7 Key Elements Of Delphi Class Definitions

1.7.1 Unit Structure

1. 7.2 Class Interfaces

1. 7 .3 Properties

1.7.4 Inheritance

1.7.5 Abstract Methods

1.7.6 Messages

1. 7. 7 Events

1 . 7. 8 Constructors and Destructors

1.8 The Vcl To Applications Developers

1

11

111

vı

1

1

3

4

5

7

8

10

12

12

13

14

15

16

17

18

19

19

19

19

19

21

22

22

22

23

111

1.8.1 The VCL to Component Writers

1.8.2 The VCL is made up of components

1.8.3 Component Types, structure, and VCL hierarchy

1.8.4 Component Types

1.9 Properties Provide Access To Internal Storage Fields

1.9.1 Property-access methods

1.9.2 Types of properties

1.9.3 Methods

1.9.4 Events

1.9.5 Containership

1.9.6 Ownership

1.9.7 Parenthood

23

24

24

25

27

28

30

31

31

32

32

33

34

34

35

35

36

37

37

37

39

39

39

40

40

40

41

42

43
43
44

CHAPTER TWO: DATABASE
2.1 Demerits Of Absence Of Database

2.2 Merits Of Database

2.3 Database Design

2.4 Database Models

2.4.1 Flat Model

2.4.2 Network Model

2.4.3 Relational Model

2.5 Relationshıps Between Tables

2.5.2 One-To-One Relationships

2.5.3 One-To-Many Relationships.

2.6 Data Modeling

2.6.1 Database Normalization

2.6.2 Primary Key

2.6.3 Foreign Key

2.6.4 Compound Key

CHAPTER THREE: USER MANUEL
3.1 User Login
3 .2 The Main Menu

ıv

3.3 Branch Form

3.4 Branch Stock Form
3.5 Add Stock Form
3.6 Selling Form
3.7 Stock List And Stock Report
3.8 Selling List And Selling Report
3.9 Add Country And City
3.9 User Register

CONCLUSION
APPENDIX
REFERENCES

45

46
47
48
49
50
51
51
53
54
110

V

INTRODUCTION

Since human created by the powerful Allah, Human wonder everything.Well who tried to

satisfy wonder.Such humanity came to nowadays as develop.Todays everyone says

technology perfect developed.Yes that is right.By means of technology all process gained

velocity.This development acts to spend time to the people.

Technology is entered to every platform of our life human needed to combine both

software and hardware. Without software the machines are nothing. They need software to

operate.The automation is also became a part of our lives. The people operate with

automation systems in everywhere.

Karmod cabin and container stock and selling program which is my project.In this software

managers can keep easly information about products.

Vl

CHAPTER!

DELPHI

1.1 INTRODUCTION TO DELPHI

The name "Delphi" was never a term with which either Olaf Helmer or Norman Dalkey

(the founders of the method) were particular happy. Since many of the early Delphi

studies focused on utilizing the technique to make forecasts of future occurrences, the

name was first applied by some others at Rand as a joke. However, the name stuck. The

resulting image of a priestess, sitting on a stool over a crack in the earth, inhaling sulfur

fumes, and making vague and jumbled statements that could be interpreted in many

different ways, did not exactly inspire confidence in the method.

The straightforward nature of utilizing an iterative survey to gather information

"sounds" so easy to do that many people have done "one" Delphi, but never a second.

Since the name gives no obvious insight into the method and since the number of

unsuccessful Delphi studies probably exceeds the successful ones, there has been a long

history of diverse definitions and opinions about the method. Some of these

misconceptions are expressed in statements such as the following that one finds in the

literature:

It is a method for predicting future events.

It is a method for generating a quick consensus by a group.

It is the use of a survey to collect information.

It is the use of anonymity on the part of the participants.

It is the use of voting to reduce the need for long discussions.

It is a method for quantifying human judgement in a group setting.

Some of these statements are sometimes true; a few (e.g. consensus) are actually

contrary to the purpose of a Delphi. Delphi is a communication structure aimed at

producing detailed critical examination and discussion, not at forcing a quick

1

compromise. Certainly quantification is a property, but only to serve the goal of quickly

identifying agr~ement and disagreement in order to focus attention. It is often very

common, even today, for people to come to a view of the Delphi method that reflects a

particular application with which they are familiar. In 1975 Linstone and Turoff

proposed a view of the Delphi method that they felt best summarized both the technique

and its objective:

"Delphi may be characterized as a method for structuring a group communication

process, so that the process is effective in allowing a group of individuals, as a whole, to

deal with complex problems." The essence of Delphi is structuring of the group

communication process. Given that there had been much earlier work on how to

· facilitate and structure face-to-face meetings, the other important distinction was that

Delphi was commonly applied utilizing a paper and pencil communication process

among groups in which the members were dispersed in space and time. Also, Delphis

were commonly applied to groups of a size (30 to 100 individuals) that could not

function well in a face-to-face environment, even if they could find a time when they all

could get together.

I
Additional opportunity has been added by the introduction of Computer Mediated

Communication Systems (Hiltz and Turoff, 1978; Rice and Associates, 1984; Turoff,

1989; Turoff, 1991). These are computer systems that support group communications in·

either a synchronous (Group Decision Support Systems, Desanctis et. al., 1987) or an

asynchronous manner (Computer Conferencing). Techniques that were developed and
" refined in the evolution of the Delphi Method (e.g. anonymity, voting) have been

incorporated as basic facilities or tools in many of these computer based systems. As a
' result, any of these systems can be used to carry out some form of a Delphi process or

Nominal Group Technique (Delbecq, et. al., 1975).

The result, however, is not merely confusion due to different names to describe the

same things; but a basic lack of knowledge by many people working in these areas as to

what was learned in the studies of the Delphi Method about how to properly employ

these techniques and their impact on the communication process. There seems to be a

great deal of "rediscovery" and repeating of earlier misconceptions and difficulties.

2

Given this situation, the primary objective of this chapter is to review the specific

properties and methods employed in the design and execution of Delphi Exercises and

to examine how they may best be translated into a computer based environment.

1.2 WHAT IS DELPHI?

Delphi is an object oriented, component based, visual, rapid development environment

for event driven Windows applications, based on the Pascal language.

Unlike other popular competing Rapid Application Development (RAD) tools, Delphi

compiles the code you write and produces really tight, natively executable code for the

target platform. In fact the most recent versions of Delphi optimise the compiled code

and the resulting executables are as efficient as those compiled with any other compiler

currently on the market.The term "visual" describes Delphi very well. All of the user

interface development is conducted in a What You See Is What You Get environment

(WYSIWYG), which means you can create polished, user friendly interfaces in a very

short time, or prototype whole applications in a few hours.

Delphi is, in effect, the latest in a long and distinguished line of Pascal compilers (the

previous versions of which went by the name "Turbo Pascal") from the company

formerly known as Borland, now known as Inprise. In common with the Turbo Pascal

compilers that preceded it, Delphi is not just a compiler, but a complete development

environment. Some of the facilities that are included in the "Integrated Development

Environment" (IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimising compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

3

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools What's more, the development environment itself is

extensible, and there are a number of add ins available to perform functions such as

memory leak detection and profiling.

In short, Delphi includes just about everything you need to write applications that will

run on an Intel platform under Windows, but if your target platform is a Silicon

Graphics running IRIX, or a Sun Spare running SOLARIS, or even a PC running

LINUX, then you will need to look elsewhere for your development tools.

This specialisation on one platform and one operating system, makes Delphi a very

strong tool. The code it generates runs very rapidly, and is very stable, once your own

bugs have been ironed out!

1.3 WHAT KIND OF PROGRAMMING CAN YOU DO WITH DELPHI?

The simple answer is "more or less anything". Because the code is compiled, it runs

quickly, and is therefore suitable for writing more or less any program that you would

consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing machines,

toasters or fuel injection systems, but for more or less anything else, it can be used (and

the chances are that probably someone somewhere has!)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

4

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

This is not intended to be an exhaustive list, more an indication of the depth and breadth

of Delphi's applicability. Because it is possible to access any and all of the Windows

API, and because if all else fails, Delphi will allow you to drop a few lines of assembler

code directly into your ordinary Pascal instructions, it is possible to do more or less

anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs) and

can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

..
1.4 VERSIONS ARE THERE AND HOW DO THEY DIFFER?

Borland (as they were then) has a long tradition in the creation of high speed compilers.

One of their best known products was Turbo Pascal - a tool that many programmers cut

their teeth on. With the rise in importance of the Windows environment, it was only a

matter of time before development tools started to appear that were specific to this new

environment.

In the very beginning, Windows produced SDKs (software development kits) that were

totally non-visual (user interface development was totally separated from the

development of the actual application), and required great patience and some genius to

5

get anything working with. Whilst these tools slowly improved, they still required a

really good understanding of the inner workings of Windows.

To a great extent these criticisms were dispatched by the release of Microsoft's Visual

Basic product, which attempted to bring Windows development to the masses. It

achieved this to a great extent too, and remains a popular product today. However,it

suffered from several drawbacks:

1) It wasn't as stable as it might have been

2) It was an interpreted language and hence was slow to run

3) It had as its underlying language BASIC, and most "real" programmers weren't so

keen!

Into this environment arrived the eye opening Delphi I product, and in many ways the

standard for visual development tools for Windows was set. This first version was a 16

bit compiler, and produced executable code that would run on Windows 3.1 and

Windows 3.11. Of course, Microsoft have ensured (up to now) that their 32 bit

operating systems (Win95, Win98, and Win NT) will all run 16 bit applications,

however, many of the features that were introduced in these newer operating systems

are not accessible to the 16 bit applications developed with Delphi I.

Delphi 2 was released quite soon after Delphi I, and in fact included a full distribution

of Delphi I on the same CD. Delphi 2, (and all subsequent versions) have been 32 bit

compilers, producing code that runs exclusively on 32bit Windows platforms. (We

ignore for simplicity the WIN32S DLLs which allow Win 3.lx to run some 32 bit

applications).

Delphi is currently standing at Version 4.0, with a new release (version 5.0) expected

shortly. In its latest version, Delphi has become somewhat feature loaded, and as a

result, we would argue, less stable than the earlier versions. However, in its defence,

Delphi (and Borland products in general) have always been more stable than their

competitors products, and the majority of Delphi 4's glitches are minor and forgivable -

6

just don't try and copy/paste a selection of your code, midway through a debugging

session!

The reasons for the version progression include the addition of new components,

improvements in the development environment, the inclusion of more internet related

support and improvements in the documentation. Delphi at version 4 is a very mature

product, and Inprise has always been responsive in developing the product in the

direction that the market requires it to go. Predominantly this means right now, the

inclusion of more and more Internet, Web and CORBA related tools and components - a

trend we are assured continues with the release of version 5.0

For each version of Delphi there are several sub-versions, varying in cost and features,

from the most basic "Developer" version to the most complete (and expensive) "Client

Server" version. The variation in price is substantial, and if you are contemplating a

purchase, you should study the feature list carefully to ensure you are not paying for

features you will never use. Even the most basic "Developer" version contains the vast

majority of the features you are likely to need on a day to day basis. Don't assume that

you will need Client Server, simply because you are intending to write a large database

application - The developer edition is quitcapable ofthis.

1.5 SOME KNOWLEDGE ABOUT DELPHI

•• Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

7

For the purposes of this series I will be using Delphi 7. There are more recent versions

available (2005 and 2006) however Delphi 7 should be available inexpensively

compared to the new versions which will set you back a lot of money. Delphi 7 will

more than likely be available in a magazine for free.

1.5.1 Example: Try First Delphi Program

First thing is first, fire up your copy of Delphi and open the Project> Options menu. To

compile a console application you need to change a setting on the Linker tab called

'Generate console application', check the box and click OK. Now select File > Close

All if anything is already loaded. Then select File > New > Other > Console

Application.

Notice the first line refers to the keyword program. You can rename this to HelloWorld.

You can also remove the commented portion enclosed in curly brackets.

The uses keyword allows you to list all units that you want to use in the program. At the

moment just leave it as it is, SysUtils is all we need.

Your unit should now look like this:

Delphi Code:

program HelloWorld;

{$APPTYPE CONSOLE} ••

uses

SysUtils;

begin

end.

Now what we have just done is written a program, it currently doesn't do a thing

however. Hit the run button and see the result. Now wasn't that completely worthless.

8

Luckily this isn't the end of the article so we'll actually have a worthwhile program at

the end of it. All we need to do is insert some code in the main procedure we have just

made.

Every good programmer's first program was 'Hello World' and you'll be no exception.

All we need to do is use the WriteLn procedure to write 'Hello World!' to the console,

simple.Notice the semicolon at the end of the line, at the end of any statement you need

to add a semicolon. Run the program and see the results ...

Now I don't know about you but I saw hello world flash up and go away in a second, if

you didn't write the program you wouldn't even know what it said. To solve this

problem we need to tell the program to leave the console open until the user is ready to

close it. We can use ReadLn for this which reads the users input from the console.

Delphi Code:

program Hello World;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

WriteLn('Hello World!'+ #13#10 + #13#10 +

'Press RETURN to end.. .');

ReadLn;

end.

I have added a few extra things into the 'Hello World' string so the user knows what to

do to end the program as it could be a bit confusing. '# 13#1 O' is to insert a carriage

9

return as 13 and 1 O are the ASCII codes for a carriage return followed by a new line

feed. ASCII can be inserted in this way into strings.

1.5.2 Delphi Style

Coding style, the way you format your code and the way in which you present it on the

page.At the end of the day who cares about my style, I can read it, and Delphi strips all

the spaces out of it and doesn't care ifl indent. Why waste my time?

Neatly present code which conforms to the accepted standards not only makes your

code much easier for you to read and debug but also but any one else who might read

your code to help you, or learn from you can do so with ease. After all which code is

easier to follow, example 1 or 2?

Delphi Code:

II Example 1

procedure xyz();

var

x,y,z,a:integer;

••
begin

x:=l;y:=2;

for z:=x to y do begin

a:=power(z,y);

showmessage(inttostr(a));

end;

10

-- ----------~- ····--·---------------

end;

Delphi Code:

II Example 2

procedure XYZ();

var

X,Y,Z,A: Integer;

begin

X := 1;

y :=2;

for Z := X to Y do

begin

A := Power(Z, Y);

ShowMessage(IntToStr(A));

end; I I for end

end; II procedure end

Design patterns are frequently recurring structures and relationships in object-oriented

design. Getting to know them can help you design better, more reusable code and also

help you learn to design more complex systems.

Much of the ground-breaking work on design patterns was presented in the book Design

Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson

and Vlissides. You might also have heard of the authors referred to as "the Gang of

Four". If you haven't read this book before and you're designing objects, it's an excellent

11

prımer to help structure your design. To get the most out of these examples, I

recommend reading the book as well.

Another good source of pattern concepts is the book Object Models: Strategies, Patterns

and Applications by Peter Coad. Coad's examples are more business oriented and he

emphasises learning strategies to identify patterns in your own work.

1.6 HOW DELPHI HELPS YOU DEFINE PATTERNS

Delphi implements a fully object-oriented language with many practical refinements

that simplify development.

The most important class attributes from a pattern perspective are the basic inheritance

of classes; virtual and abstract methods; and use of protected and public scope. These

give you the tools to create patterns that can be reused and extended, and let you isolate

varying functionality from base attributes that are unchanging.

Delphi is a great example of an extensible application, through its component

architecture, IDE interfaces and tool interfaces. These interfaces define many virtual

and abstract constructors and operations.

1.6.1 Delphi Examples of Design Patterns

l"

I should note from the outset, there may be alternative or better ways to implement

these patterns and I welcome your suggestions on ways to improve the design. The
- '

following patterns from the book Design Patterns are discussed and illustrated ın

Delphi to give you a starting point for implementing your own Delphi patterns.

Pattern Name Definition

Singleton
"Ensure a class has only one instance, and provide a global point

of access to it."

Adapter
"Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that couldn't

12

Template Method

Builder

Abstract Factory

Factory Method

otherwise because of incompatible interfaces."

"Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the

algorithm's structure."

"Separate the construction of a complex object from its

representation so that the same construction process can create

different representations."

"Provide an interface for creating families of related or

dependant objects without specifying their concrete classes. 11

"Define an interface for creating an object, but let subclasses

decide which class to instantiate. Factory method lets a class

defer instantiation to subclasses.11

Note: These definitions are taken from Design Patterns.

1.6.2 Pattern: Singleton

1.6.2.1 Definition

"Ensure a class has only one instance, and provide a global point of access to it."

This is one of the easiest patterns to implement.

1.6.2.2 Applications in Delphi

There are several examples of this sort of class in the Delphi VCL, such as

TApplication, TScreen or TClipboard. The pattern is useful whenever you want a single

global object in your application. Other uses might include a global exception handler,

application security, or a single point of interface to another application.

13

1.6.2.3 Implementation Example

To implement a class of this type, override the constructor and destructor of the class to

refer to a global (interface) variable of the class.

Abort the constructor if the variable is assigned, otherwise create the instance and

assign the variable.

In the destructor, clear the variable if it refers to the instance being destroyed.

Note: To make the creation and destruction of the single instance automatic, include its

creation in the initialization section of the unit. To destroy the instance, include its

destruction in an ExitProc (Delphi 1) or in the finalization section of the unit (Delphi 2).

1.6.3 Pattern: Adapter

1.6.3.1 Definition

"Convert the interface of a class into another interface clients expect. Adapter lets

classes work together that couldn't otherwise because of incompatible interfaces."

1.6.3.2 Applications in Delphi

A typical example of this is t~e wrapper Delphi generates when you import a VBX or

OCX. Delphi generates a new class which translates the interface of the external control

into a Pascal compatible interface. Another typical case is when y.,ou want to build a

single interface to old and new systems.

Note Delphi does not allow class adaption through multiple inheritance in the way

described in Design Patterns. Instead, the adapter needs to refer to a specific instance of

the old class.

14

1.6.3.3 Implementation Example

The following example is a simple (read only) case of a new customer class, an adapter

class and an old customer class. The adapter illustrates handling the year 2000 problem,

translating an old customer record containing two digit years into a new date format.

The client using this wrapper only knows about the new customer class. Translation

between classes is handled by the use of virtual access methods for the properties. The

old customer class and adapter class are hidden in the implementation of the unit.

1.6.4 Pattern: Template Method

1.6.4.1 Definition

"Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

Template Method lets subclasses redefine certain steps of an algorithm without

changing the algorithm's structure."

This pattern is essentially an extension of abstract methods to more complex algorithms.

1.6.4.2 Applications in Delphi

Abstraction is implemented in Delphi by abstract virtual methods. Abstract methods

differ from virtual methods by the base class not providing any implementation. The
•• descendant class is completely responsible for implementing an abstract method.

Calling an abstract method that has not been overridden will result in a runtime error....

1.6.4.3 A typical example of abstraction is the TGraphic class.

TGraphic is an abstract class used to implement TBitmap, Tlcon and TMetafile. Other

developers have frequently used TGraphic as the basis for other graphics objects such as

PCX, GIF, JPG representations. TGraphic defines abstract methods such as Draw,

LoadFromFile and SaveToFile which are then overridden in the concrete classes. Other

objects that use TGraphic, such as a TCanvas only know about the abstract Draw

method, yet are used with the concrete class at runtime.

15

Many classes that use complex algorithms are likely to benefit from abstraction using

the template method approach. Typical examples include data compression, encryption

and advanced graphics processing.

1.6.4.4 Implementation Example

To implement template methods you need an abstract class and concrete classes for

each alternate implementation. Define a public interface to an algorithm in an abstract

base class. In that public method, implement the steps of the algorithm in calls to

protected abstract methods of the class. In concrete classes derived from the base class,

override each step of the algorithm with a concrete implementation specific to that

class.

1.6.5 Pattern: Builder

1.6.5.1 Definition

"Separate the construction of a complex object from its representation so that the same

construction process can create different representations."

A Builder seems similar in concept to the Abstract Factory. The difference as I see it is

the Builder refers to single complex objects of different concrete classes but containing

multiple parts, whereas the abstract factory lets you create whole families of concrete••
classes. For example, a builder might construct a house, cottage or office. You might

employ a different builder for a brick house or a timber house, though you would give.
them both similar instructions about the size and shape of the house. On the other hand

the factory generates parts and not the whole. It might produce a range of windows for

buildings, or it might produce a quite different range of windows for cars.

1.6.5.2 Applications in Delphi

The functionality used in Delphi's VCL to create forms and components is similar in

concept to the builder. Delphi creates forms using a common interface, through

Application.CreateForm and through the TForm class constructor. TForm implements a

16

mmon constructor using the resource information (DFM file) to instantiate the

mponents owned by the form. Many descendant classes reuse this same construction

ess to create different representations. Delphi also makes developer extensions

easy. TForm's OnCreate event also adds a hook into the builder process to make the

fimctionality easy to extend.

1.6.5.3 Implementation Example

following example includes a class TAbstractFormBuilder and two concrete classes

.edFormBuilder and TBlueFormBuilder. For ease of development some common

tionality of the concrete classes has been moved into the shared

AbstractFormBuilder class.

1.6.6 Pattern: Abstract Factory

1.6.6.1 Definition

"Provide an interface for creating families of related or dependant objects without

specifying their concrete classes."

The Factory Method pattern below is commonly used in this pattern.

1.6.6.2 Applications in Delphi

This pattern is ideal where you want to isolate your application from the implementation

of the concrete classes. For example if you wanted to overlay Delphi's VCL with a

common VCL layer for both 16 and 32 bit applications, you might start with the

abstract factory as a base.

1.6.6.3 Implementation Example

The following example uses an abstract factory and two concrete factory classes to

implement different styles of user interface components. TOAbstractFactory is a

singleton class, since we usually want one factory to be used for the whole application.

17

At runtime, our client application instantiates the abstract factory with a concrete class

and then uses the abstract interface. Parts of the client application that use the factory

don't need to know which concrete class is actually in use.

1.6. 7 Pattern: Factory Method

1.6. 7.1 Definition

"Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory method lets a class defer instantiation to subclasses."

The Abstact Factory pattern can be viewed as a collection of Factory Methods.

1.6. 7 .2 Applications in Delphi

This pattern is useful when you want to encapsulate the construction of a class and

isolate knowledge of the concrete class from the client application through an abstract

interface.

One example of this might arise if you had an object oriented business application

potentially interfacing to multiple target DBMS. The client application only wants to

know about the business classes, not about their implementation-specific storage and

retrieval.

1.6.7.3 Implementation Example

In the Abstract Factory example, each of the virtual widget constructor functions is a

Factory Method. In their implementation we define a specific widget class to return.

18

1.7 KEY ELEMENTS OF DELPHI CLASS DEFINITIONS

1.7.1 Unit Structure

Delphi units (.PAS files) allow declaration of interface and implementation sections.

The interface defines the part that is visible to other units using that unit. The keyword

uses can be added to a unit's interface or implementation section to list the other units

that your unit uses. This indicates to the compiler that your unit refers to parts of the

used unit's interface. Parts of a unit declared in the implementation section are all

private to that unit, i.e. never visible to any other unit. Types, functions and procedures

declared in the interface of a unit must have a corresponding implementation, or be

declared as external (e.g. a call to a function in a DLL).

1.7.2 Class Interfaces

Classes are defined as types in Delphi and may contain fields of standard data types or

other objects, methods declared as functions or procedures, and properties. The type

declaration of a class defines its interface and the scope of access to fields, methods and

properties of the class. Class interfaces are usually defined in the interface of a unit to

make them accessible to other modules using that unit. However they don't need to be.

Sometimes a type declaration of a class may be used only within the implementation

part of a unit.

1.7.3 Properties

Properties are a specialised interface to a field of a defined type, allowing access control

through read and write methods. Properties are not virtual, you can,replace a property

with another property of the same name, but the parent class doesn't know about the

new property. It is however possible to make the access methods of a property virtual.

1.7.4 Inheritance

Delphi's inheritance model is based on a single hierarchy. Every class inherits from

Tübject and can have only one parent.

19

A descendant class inherits all of the interface and functionality of its parent class,

subject to the scope described below.

Multiple inheritance from more than one parent is not allowed directly. It can be

implemented by using a container class to create instances one or more other classes

and selectively expose parts of the contained classes.

Private, Protected, Public and Published ScopeScope refers to the visibility of methods

and data defined in the interface of a class, i.e. what parts of the class are accessible to

the rest of the application or to descendant classes.

The default scope is public, for instance the component instances you add to a form at

design time. Public says "come and get me"; it makes the data or method visible to

everything at runtime.

Published parts of a class are a specialized form of Public scope. They indicate special

behaviour for classes derived from TPersistent. A persistent class can save and restore

its published properties to persistent storage using Delphi's standard streaming methods.

Published properties also interact with Delphi Object Inspector in the IDE. A class must

descend from TPersistent in order to use Published. There's also not much point in

publishing methods, since you can't store them, although Delphi's compiler doesn't stop

you. Published also lets another application access details of the class through Delphi's

runtime type information. This would be rarely used, except in Delphi's design time

interaction with its VCL.

Encapsulation or information hiding is essential to object orientation, so Protected and

Private scope let you narrow the access to parts of a class.

Protected parts are visible only to descendant classes, or to other classes defined in the

same unit.

Private parts are visible only to the defining class, or to other classes defined in the

same unit.

It's important to note that once something is given public or published scope, it cannot

be hidden in descendant classes.

20

Static, Virtual and Dynamic Methods; Override and Inherited

Methods declared as virtual or dynamic let you change their behaviour using override in

a descendant class. You're unlikely to see a virtual method in the private part of a class,

since it could only be overridden in the same unit, although Delphi's compiler doesn't

stop you from doing this.

Override indicates that your new method replaces the method of the same name from

the parent class. The override must be declared with the same name and parameters as

the original method.

When a method is overridden, a call to the parent class's method actually executes the

override method in the real class of the object.

Static methods on the other hand have no virtual or override declaration. You can

replace a method of a class in a descendant class by redeclaring another method,

however this is not object oriented. If you reference your descendant class as the parent

type and try to call the replaced method, the static method of the parent class is

executed. So in most cases, it's a bad idea to replace a static method.

Virtual and dynamic methods can be used ,interchangeably. They differ only in their

treatment by the compiler and runtime library. Delphi's help explains that dynamic

methods have their implementation resolved at compile time and run slightly faster,

whereas virtual methods are resolved at runtime, resulting in slightly slower access but

a smaller compiled program. Virtual is usually the preferred declaration. Delphi's help

suggests using dynamic when you have a base class with many descendants that may

not override the method.

The inherited directive lets you refer back to a property or method as it was declared in

the parent class. This is most often used in the implementation of an override method, to

call the inherited method of the parent class and then supplement its behaviour.

1. 7 .5 Abstract Methods

Abstract is used in base classes to declare a method in the interface and defer its

implementation to a descendant class. I.e. it defines an interface, but not the underlying

21

operation. Abstract must be used with the virtual or dynamic directive. Abstract

methods are never implemented in the base class and must be implemented in

descendant classes to be used. A runtime error occurs if you try to execute an abstract

method that is not overridden. Calling inherited within the override implementation of

an abstract method will also result in a runtime error, since there is no inherited

behaviour.

1.7.6 Messages

Delphi's handling of Windows messages is a special case of virtual methods. Message

handlers are implemented in classes that descend from TControl. I.e classes that have a

handle and can receive messages. Message handlers are always virtual and can be

declared in the private part of a class interface, yet still allow the inherited method to be

called. Inherited in a message handler just uses the keyword inherited, there is no need

to supply the name of the method to call.

1.7.7 Events

Events are also an important characteristic of Delphi, since they let you delegate

extensible behaviour to instances of a class. Events are properties that refer to a method

of another object. Events are not inherited in Delphi 1; Delphi 2 extends this behaviour

to let you use inherited in an event. . Inherited in an event handler just uses the keyword

inherited, there is no need to supply the name of the method to call.

Events are particularly important to component developers, since they provide a hook

for the user of the component to modify its behaviour in a way that may not be foreseen

at the time the component is written.

1.7.8 Constructors and Destructors

The constructor and destructor are two special types of methods. The constructor

initializes a class instance (allocates memory initialized to O) and returns a reference

(pointer) to the object. The destructor deallocates memory used by the object (but not

the memory of other objects created by the object).

22

Classes descended from TObject have a static constructor, Create, and a virtual

destructor Destroy.

TComponent introduces a new public property, the Owner of the component and this

must be initialized in the constructor. TComponent's constructor is declared virtual, i.e.

it can be overridden in descendant classes.It is essential when you override a virtual

constructor or destructor in a TComponent descendant to include a call to the inherited

method.

1.8 THE VCL TO APPLICATIONS DEVELOPERS

Applications Developers create complete applications by interacting with the Delphi

visual environment (as mentioned earlier, this is a concept nonexistent in many other

frameworks). These people use the VCL to create their user-interface and the other

elements of their application: database connectivity, data validation, business rules, etc..

Applications Developers should know which properties, events, and methods each

component makes available. Additionally, by understanding the VCL architecture,

Applications Developers will be able to easily identify where they can improve their

applications by extending components or creating new ones. Then they can maximize

the capabilities of these components, and create better applications.

1.8.1 The VCL to Component Writers

Component Writers expand on the existing VCL, 'either by developing new components,

or by increasing the functionality of existing ones. Many component writers make their

components available for Applications Developers to use.

A Component Writer must take their knowledge of the VCL a step further than that of

the Application Developer. For example, they must know whether to write a new

component or to extend an existing one when the need for a certain characteristic arises.

This requires a greater knowledge of the VCL's inner workings.

23

1.8.2 The VCL is made up of components

Components are the building blocks that developers use to design the user-interface and

to provide some non-visual capabilities to their applications. To an Application

Developer, a component is an object most commonly dragged from the Component

palette and placed onto a form. Once on the form, one can manipulate the component's

properties and add code to the component's various events to give the component a

specific behavior. To a Component Writer, components are objects in Object Pascal

code. Some components encapsulate the behavior of elements provided by the system,

such as the standard Windows 95 controls. Other objects introduce entirely new visual

or non-visual elements, in which case the component's code makes up the entire

behavior of the component.

The complexity of different components varies widely. Some might be simple while

others might encapsulate a elaborate task. There is no limit to what a component can do

or be made up of. You can have a very simple component like a TLabel, or a much

more complex component which encapsulates the complete functionality of a

spreadsheet.

1.8.3 Component Types, structure, and VCL hierarchy

Components are really just special types of objects. In fact, a component's structure is

based on the rules that applyrto Object Pascal. There are three fundamental keys to

understanding the VCL.

First, you should know the special characteristics of the four basic component types:

standard controls, custom controls, graphical controls and non-visual components.

Second, you must understand the VCL structure with which components are built. This

really ties into your understanding of Object Pascal's implementation. Third, you should

be familiar with the VCL hierarchy and you should also know where the four

component types previously mentioned fit into the VCL hierarchy. The following

paragraphs will discuss each of these keys to understanding the VCL.

24

1.8.4 Component Types

As a component writer, there four primary types of components that you will work with

in Delphi: standard controls, custom controls, graphical controls, and non-visual

components. Although these component types are primarily of interest to component

writers, it's not a bad idea for applications developers to be familiar with them. They are

the foundations on which applications are built.

1.8.4.1 Standard Components

Some of the components provided by Delphi 2.0 encapsulate the behavior of the

standard Windows controls: TButton, TListbox and Tedit, for example. You will find

these components on the Standard page of the Component Palette. These components

are Windows' common controls with Object Pascal wrappers around them.

Each standard component looks and works like the Windows' common control which it

encapsulates. The VCL wrapper's simply makes the control available to you in the form

of a Delphi component-it doesn't define the common control's appearance or

functionality, but rather, surfaces the ability to modify a control's

appearance/functionality in the form of methods and properties. If you have the VCL

source code, you can examine how the VCL wraps these controls in the file

STDCTRLS.PAS.

If you want to use these standard components unchanged, there is no need to understand

how the VCL wraps them. If, however, you want to extend or change one of these

components, then you must understand how the Window's common control is wrapped

by the VCL into a Delphi component.

For example, the Windows class LISTBOX can display the list box items in multiple

columns. This capability, however, isn't surfaced by Delphi's TListBox component

(which encapsulates the Windows LISTBOX class). (TListBox only displays items in a

single column.) Surfacing this capability requires that you override the default creation

of the TListBox component.

25

This example also serves to illustrate why it is important for Applications Developers to

understand the VCL. Just knowing this tidbit of information helps you to identify where

enhancements to the existing library of components can help make your life easier and

more productive.

1.8.4.2 Custom components

Unlike standard components, custom components are controls that don't already have a

method for displaying themselves, nor do they have a defined behavior. The Component

Writer must provide to code that tells the component how to draw itself and determines

how the component behaves when the user interacts with it. Examples of existing

custom components are the TPanel and TStringGrid components.

It should be mentioned here that both standard and custom components are windowed

controls. A "windowed control" has a window associated with it and, therefore, has a

window handle. Windowed controls have three characteristics: they can receive the

input focus, they use system resources, and they can be parents to other controls.

(Parents is related to containership, discussed later in this paper.) An example of a

component which can be a container is the TPanel component.

1.8.4.3 Graphical components

Graphical components are visual controls which cannot receive the input focus from the

user. They are non-windowed controls. Graphical components allow you to display
•• something to the user without using up any system resources; they have less "overhead"

than standard or custom components. Graphical components don't require a window
...

handle-thus, they cannot can't get focus. Some examples of graphical components are

the TLabel and TShape components.

Graphical components cannot be containers of other components. This means that they

cannot own other components which are placed on top of them.

1.8.4.4 Non-visual components

Non-visual components are components that do not appear on the form as controls at

run-time. These components allow you to encapsulate some functionality of an entity

26

within an object. You can manipulate how the component will behave, at design-time,

through the Object Inspector. Using the Object Inspector, you can modify a non-visual

component's properties and provide event handlers for its events. Examples of such

components are the TOpenDialog, TTable, and TTimer components.

1.8.4.5 Structure of a component

All components share a similar structure. Each component consists of common

elements that allow developers to manipulate its appearance and function via properties,

methods and events. The following sections in this paper will discuss these common

elements as well as talk about a few other characteristics of components which don't

apply to all components.

1.8.4.6 Component properties

Properties provide an extension of an object's fields. Unlike fields, properties do not

store data: they provide other capabilities. For example, properties may use methods to

read or write data to an object field to which the user has no access. This adds a certain

level of protection as to how a given field is assigned data. Properties also cause "side

effects" to occur when the user makes a particular assignment to the property. Thus

what appears as a simple field assignment to the component user could trigger a

complex operation to occur behind the scenes.

1.9 PROPERTIES PROVIDE ACCESS TO INTERNAL STORAGE FIELDS

There are two ways that properties provide access to internal storage fields of

components: directly or through access methods. Examine the code below which

illustrates this process.

TCustomEdit = class(TWinControl)

private

FMaxLength: Integer;

protected

procedure SetMaxLength(Value: Integer);

27

published

property MaxLength: Integer read

FMaxLength write SetMaxLength default O;

end;

The code above is snippet of the TCustomEdit component class. TCustomEdit is the

base class for edit boxes and memo components such as TEdit, and TMemo.

TCustomEdit has an internal field FMaxLength of type Integer which specifies the

maximum length of characters which the user can enter into the control. The user

doesn't directly access the FMaxLength field to specify this value. Instead, a value is

added to this field by making an assignment to the MaxLength property.

The property MaxLength provides the access to the storage field FMaxLength. The

property definition is comprised of the property name, the property type, a read

declaration, a write declaration and optional default value.

The read declaration specifies how the property is used to read the value of an internal

storage field. For instance, the MaxLength property has direct read access to

FMaxLength. The write declaration for MaxLength shows that assignments made to the

MaxLength property result in a call to an access method which is responsible for

assigning a value to the FMaxLength storage field. This access method is

SetMaxLength.

1.9.1 Property-access methods

Access methods take a single parameter of the same type as the property. One of the

primary reasons for write access methods is to cause some side-effect to occur as a

result of an assignment to a property. Write access methods also provide a method layer

over assignments made to a component's fields. Instead of the component user making

the assignment to the field directly, the property's write access method will assign the

28

value to the storage field if the property refers to a particular storage field. For example,

examine the implementation of the SetMaxLength method below.

procedure TCustomEdit. SetMaxLength(V alue: Integer);

begin

if FMaxLength <> Value then

begin

FMaxLength := Value;

if HandleAllocated then

SendMessage(Handle, EM_LIMITTEXT, Value, O);

end;

end;

The code in the SetMaxLength method checks if the user is assigning the same value as

that which the property already holds. This is done as a simple optimization. The

method then assigns the new value to the internal storage field, FMaxLength.

Additionally, the method then sends an EM_LIMITTEXT Windows message to the

window which the TCustomEdjt encapsulates. The EM_LIMITTEXT message places a

limit on the amount of text that a user cari enter into an edit control. This last step is

what is referred to as a side-effect when assignin~ property values. Side effects are any

additional actions that occur when assigning a value to a property and can be quite

sophisticated.

Providing access to internal storage fields through property access methods offers the

advantage that the Component Writer can modify the implementation of a class without

modifying the interface. It is also possible to have access methods for the read access of

a property. The read access method might, for example, return a type which is different

that that of a properties storage field. For instance, it could return the string

representation of an integer storage field.

29

Another fundamental reason for properties is that properties are accessible for

modification at run-time through Delphi's Object Inspector. This occurs whenever the

declaration of the property appears in the published section of a component's

declaration.

1.9.2 Types of properties

Properties can be of the standard data types defined by the Object Pascal rules. Property

types also determine how they are edited in Delphi's Object Inspector. The table below

shows the different property types as they are defined in Delphi's online help.

type !IObjectInspector treatment

Numeric, character, and string properties appear in the Object Insnector'

as numbers, characters, and strings, respectively. The user can type

edit the value of the property directly.

Properties of enumerated types (including Boolean) display the value

defined in the source code. The user can cycle through the

values by double-clicking the value column. There is also a uıvu-u~

list that shows all possible values of the enumerated type.

Properties of set types appear in the Object Inspector looking like a

By expanding the set, the user can treat each element of the set as

Boolean value: True if the element is included in the set or False if

not included.

Properties that are themselves objects often have their own

editors. However, if the object that is a property also has

properties, the Object Inspector allows the user to expand the list

object properties and edit them individually. Object properties

descend from TPersistent.

ay properties must have their own property editors. The

Inspector has no built-in support for editing array properties.

For more information on properties, refer to the "Component Writers Guide" which

ships with Delphi.

30

1.9.3 Methods

Since components are really just objects, they can have methods. We will discuss some

of the more commonly used methods later in this paper when we discuss the different

levels of the VCL hierarchy.

1.9.4 Events

Events provide a means for a component to notify the user of some pre-defined

occurrence within the component. Such an occurrence might be a button click or the

pressing of a key on a keyboard.

Components contain special properties called events to which the component user

assigns code. This code will be executed whenever a certain event occurs. For instance,

if you look at the events page of a TEdit component, you'll see such events as

OnChange, OnClick and OnDblClick. These events are nothing more than pointers to

methods.

When the user of a component assigns code to one of those events, the user's code is

referred to as an event handler. For example, by double clicking on the events page for a

particular event causes Delphi to generate a method and places you in the Code Editor

where you can add your code for that method. An example of this is shown in the code

below, which is an OnClick event for a TButton component.

It becomes clearer that events ,are method pointers when you assign an event handler to

an event programmatically. The above example was Delphi generated code. To link

your own an event handler to a TButton's OnClick event at run time you must first

create a method that you will assign to this event. Since this is a method, it must belong

to an existing object. This object can be the form which owns the TButton component

although it doesn't have to be. In fact, the event handlers which Delphi creates belong to

the form on which the component resides. The code below illustrates how you would

create an event handler method.

When you define methods for event handlers, these methods must be defined as the

same type as the event property and the field to which the event property refers. For

31

instance, the OnClick event refers to an internal data field, FOnClick. Both the property

OnClick, and field FOnClick are of the type TNotifyEvent. TNotifyEvent is a

procedural type as shown below:

TNotifyEvent = procedure (Sender: TObject) of object;

Note the use of the of object specification. This tells the compiler that the procedure

definition is actually a method and performs some additional logic like ensuring that an

implicit Self parameter is also passed to this method when called. Self is just a pointer

reference to the class to which a method belongs.

1.9.5 Containership

Some components in the VCL can own other components as well as be parents to other

components. These two concepts have a different meaning as will be discussed in the

section to follow.

1.9.6 Ownership

All components may be owned by other components but not all components can own

other components. A component's Owner property contains a reference to the

component which owns it.

The basic responsibility of the owner is one of resource management. The owner is

responsible for freeing those components which it owns whenever it is destroyed... -

Typically, the form owns all components which appear on it, even if those components

are placed on another component such as a TPanel. At design-time, the form

automatically becomes the owner for components which you place on it. At run-time,

when you create a component, you pass the owner as a parameter to the component's

constructor. For instance, the code below shows how to create a TButton component at

run-time and passes the form's implicit Self variable to the TButton's Create constructor.

TButton.Create will then assign whatever is passed to it, in this case Self or rather the

form, and assign it to the button's Owner property.

MyButton := TButton.Create(self);

32

When the form that now owns this TButton component gets freed, MyButton will also

be freed.

You can create a component without an owner by passing nil to the component's Create

constructor, however, you must ensure that the component is freed when it is no longer

needed. The code below shows you how to do this for a TTable component.

1.9.7 Parenthood

Parenthood is a much different concept from ownership. It applies only to windowed

components, which can be parents to other components. Later, when we discuss the

VCL hierarchy, you will see the level in the hierarchy which introduces windowed

controls.

Parent components are responsible for the display of other components. They call the

appropriate methods internally that cause the children components to draw themselves.

The Parent property of a component refers to the component which is its parent. Also, a

component's parent does not have to be it's owner. Although the parent component is

mainly responsible for the display of components, it also frees children components

when it is destroyed.

Windowed components are controls which are visible user interface elements such as

edit controls, list boxes and memo controls. In order for a windowed component to be

displayed, it must be assigned a parent on which to display itself. This task is done..
automatically by Delphi's design-time environment when you drop a component from

the Component Palette onto your form.

33

CHAPTER2

DATABASE

Every thing around us has a particular identity. To identify anything system, actor or

person in words we need a data or information. So this information is valuable and in

this advanced era we can store it in database and access this data by the blink of eye.

For an instant if we go through the definitions of database we may find following

definitions.

A database is a collection of related information.

A database is an organized body of related information.

2.1 DEMERITS OF ABSENCE OF DATABASE

A glance on the past will may help us to reveal the drawbacks in case of

absence of database.

In the past when there wasn't proper system of database, Much paper work was need to

do and to handle great deal of written paper documentation was giant among the

problems itself.

In the huge networks to deal with equally bulky data, more workers .arc needed which

affidavit cost much labor expanses.

The old criteria for saving data and making identification was much time consuming

such as if we want to search the particular data of a person.

Before the Development of Computer database it was a great problem to search for

some thing. Efforts to avoid the headache of search often results in new establishments

of data.

34

Before the development of database it seemed very unsafe to keep the worthy

information. In Some situation some big organization had to employee the special

persons in order to secure the data.

Before the implementation of database any firm had to face the plenty of difficulties in

order to maintain their Management. To hold the check on the expenses of the firm, the

manager faced difficulties.

2.2 MERITS OF DATABASE

The modem era is known as the golden age computer sciences and technology. In a

simple phrase we can express that the modem age is built on the foundation of database.

If we carefully watch our daily life we can examine that some how our daily life is

being connected with database.

There are several benefits of database developments.

Now with the help of computerized database we can access data in a second.

By the development of the database we can make data more secure.

By the development of database we can reduce the cost.

2.3 DAT ABASE DESIGN

The design of a database has to do with the way data is stored and how that data is

related. The design process is performed after y~u determine exactly what information

needs to be stored and how it is to be retrieved.

A collection of programs that enables you to store, modify, and extract information

from a database. There are many different types of DBMS ranging from small systems
" that run on personal computers to huge systems that run on mainframes. The following

are examples of database applications:

Computerized library systems

35

Automated teller machines

Flight reservation systems

Computerized parts inventory systems

From a technical standpoint, DBMS can differ widely. The terms relational, network,

flat, and hierarchical all refer to the way a DBMS organizes information internally. The

internal organization can affect how quickly and flexibly you can extract information.

Requests for information from a database are made in the form of a query.

Database design is a complex subject. A properly designed database is a model of a

business, Country Database or some other in the real world. Like their physical model

counterparts, data models enable you to get answers about the facts that make up the

objects being modeled. It's the questions that need answers that determine which facts

need to be stored in the data model.

In the relational model, data is organized in tables that have the following

characteristics: every record has the same number of facts, every field contains the same

type of facts (Data) in each record, and there is only one entry for each fact. No two

records are exactly the same.

The more carefully you design, the better the physical database meets users' needs. In

the process of designing a cçmplete system, you must consider user needs from a

variety of viewpoints.

2.4 DATABASE MODELS

Various techniques are used to model data structures. Certain models are more easily

implemented by some types of database management systems than others. For any one

logical model various physical implementation may be possible. An example of this is

the relational model: in larger systems the physical implementation often has indexes

which point to the data; this is similar to some aspects of common implementations of

the network model. But in small relational database the data is often stored in a set of

36

.
files, one per table, in a flat, un-indexed structure. There is some confusion below and

elsewhere in this article as to logical data model vs. its physical implementation.

2.4.1 Flat Model

The flat (or table) model consists of a single, two dimensional array of data elements,

where all members of a given column are assumed to be similar values, and all

members of a row are assumed to be related to one another. For instance, columns for

name and password might be used as a part of a system security database. Each row

would have the specific password associated with a specific user. Columns of the table

often have a type associated with them, defining them as character data, date or time

information, integers, or floating point numbers. This model is the basis of the

spreadsheet.

2.4.2 Network Model

The network model allows multiple datasets to be used together through the use of

pointers (or references). Some columns contain pointers to different tables instead of

data. Thus, the tables are related by references, which can be viewed as a network

structure. A particular subset of the network model, the hierarchical model, limits the

relationships to a tree structure, instead of the more general directed graph structure

implied by the full network model.

2.4.3 Relational Model

The relational data model was introduced in an academic paper by E.F. Cod in 1970 as

a way to make database management systems, more independent' of any particular

application. It is a mathematical model defined in terms of predicate logic and set

theory.

Although the basic idea of a relational database has been very popular, relatively few

people understand the mathematical definition and only a few obscure DBMSs

implement it completely and without extension. Oracle, for example, can be used in a

purely relational way, but it also allow tables to be defined that allow duplicate rows an

extension (or violation) of the relational model. In common English usage, a DBMS is

37

called relational if it supports relational operational operations, regardless of whether it

enforces strict adherence to the relational model. The following is an informal, not

technical explanation of how "relational" database management systems commonly

work.

A relational database contains multiple tables, each similar to the one in the "flat"

database model. However, unlike network databases, the tables are not linked by

pointers. Instead, keys are used to match up rows of data in different tables. A key is

just one or more columns in one table that correspond to columns in other tables. Any

column can be a key, or multiple columns can be grouped together into a single key.

Unlike pointers, it's not necessary to define all the keys in advance; a column can be

used as a key even if it wasn't originally intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique key.

Typically one of the unique keys is the preferred way to refer to row; this is defined as

the table's primary key.

When a key consists of data that has an external, real-world meaning (such as a person's

name, a book's ISBN, or a car's serial number), it's called a "natural" key. If no nature

key is suitable, an arbitrary key can be assigned (such as by given employees ID

numbers). In practice, most databases have both generated and natural keys, because

generated keys can be used internally to create links between rows that can't break,

while natural keys can be used, less reliably, for searches and for integration with other

databases. (For example, records in two independently developed databases could be

matched up by social security number, except when the social security numbers are

incorrect, missing, or have changed).

2.4.3.1 Why we use a Relational Database Design

Maintaining a simple, so-called flat database consisting of a single table doesn't require

much knowledge of database theory. On the other hand, most database worth

maintaining are quite a bit more complicated than that. Real life databases often have

hundreds of thousands or even millions of records, with data that are very intricately

related. This is where using a full-fledged relational database program becomes

essential. Consider, for example, the Library of Congress, which has over 16 million

38

books in its collection. For reasons that will become apparent soon, a single table

simply will not do for this database.

2.5 RELATIONSHIPS BETWEEN TABLES

When you create tables for an application, you should also consider the relationships

between them. These relationships .give a relational database much of its power. There

are three types of relationships between tables: one-to-one, one-to-many and many-to

many relationships.

2.5.2 One-To-One Relationships

In a one-to-one relationship, each record in one table corresponds to a single record in a

second table. This relationship is not very common, but it can offer several benefits.

First, you can put the fields from both tables into a single, combined table. One reason

for using two tables is that each field is a property of a separate entity, such as owner

operators and their tracks. Each operator can operate just one truck at a time, but the

fields for the operator and truck tables refer to different entities.

A one-to-one relationship can also reduce the time needed to open a large table by

placing some of the table's columns in a second, separate table. This approach makes

particular sense when a table has some fields that are used infrequently. Finally, a one

to-one relationship can support in a table requires security, placing them in a separate

table lets your application restrict to certain fields. Your application can link the
l' restricted table back to the main table via a one-to-one relationship so that people with

proper permissions can edit, delete, and add new records to these fields.

2.5.3 One-To-Many Relationships

A one-to-many relationship, in which a row from one table corresponds to one or more

rows from a second table, is more common. This kind of relationship can form the basis

for a Many-To-Many relationship as well.

39

2.6 DATA MODELING

In information system design, data modeling is the analysis and design of the

information in the system, concentrating on the logical entities and the logical

dependencies between these entities. Data modeling is an abstraction activity in that the

details of the values of individual data observations are ignored in favor of the structure,

relationships, names and formats of the data of interest, although a list of valid values is

frequently recorded. It is by the data model that definitions of what the data means is

related to the data structures.

While a common term for this activity is "Data Analysis" the activity actually has more

in common with the ideas and methods of synthesis (putting things together), than it

does in the original meaning of the term analysis (taking things apart). This is because

the activity strives to bring the data structures of interest together in a cohesive,

inseparable, whole by eliminating unnecessary data redundancies and relating data

structures by relationships.

2.6.1 Database Normalization

Database normalization is a series of steps followed to obtain a database design that

allows for consistent storage and efficient access of data in a relational database. These

steps reduce data redundancy and the risk of data becoming inconsistent.

However, many relational DBMS lack sufficient separation between the logical

database design and the physical implementation of the data store; such that queries

against a fully normalized database often perform poorly. In this case de-normalizations

are sometimes used to improve performance, at the cost of reduced consistency.

2.6.2 Primary Key

In database design, a primary key is a value that can be used to identify a particular row

in a table. Attributes are associated with it. Examples are names in a telephone book (to

look up telephone numbers), words in a dictionary (to look up definitions) and Dewey

Decimal Numbers (to look up books in a library).

40

In the relational model of data, a primary key is a candidate key chosen as the main

method of uniquely identifying a relation. Practical telephone books, dictionaries and

libraries can not use names, words or Dewey Decimal System Numbers as candidate

keys because they do not uniquely identify telephone numbers, word definitions or

books. In some design situations it is impossible to find a natural key that uniquely

identifies a relation. A surrogate key can be used as the primary key. In other situations

there may be more than one candidate key for a relation, and no candidate key is

obviously preferred. A surrogate key may be used as the primary key to avoid giving

one candidate key artificial primacy over the others. In addition to the requirement that

the primary key be a candidate key, there are several other factors which may make a

particular choice of key better than others for a given relation.

The primary key should generally be short to minimize the amount of data that needs to

be stored by other relations that reference it. A compound key is usually not

appropriate. (However, this is a design consideration, and some database management

systems may be better than others in this regard.)

The primary key should be immutable, meaning its value should not be changed during

the course of normal operations of the database. (Recall that a primary key is the means

of uniquely identifying a tuple, and that identity by definition, never changes.) This

avoids the problem of dangling references or orphan records created by other relations

referring to a tuple whose primary key has changed. If the primary key is immutable,

this can never happen.
••

2.6.3 Foreign Key

A foreign key (FK) is a field in a database record under one primary key that points to a

key field of another database record in another table where the foreign key of one table

refers to the primary key of the other table. This way references can be made to link

information together and it is an essential part of database normalization.

For example, a person sending an e-mail needs not to include the entire text of a book in

the e-mail. Instead, they can include the ISBN of the book, and interested persons can

then use the number to get information about the book, or even the book itself. The

ISBN is the primary key of the book, and it is used as a foreign key in the e-mail.

41

Note that using a foreign key often assumes its existence as a primary key somewhere

else. Improper foreign key/primary key relationships are the source of many database

problems.

2.6.4 Compound Key

In database design, a compound key (also called a composite key) is a key that consists

on 2 or more attributes.

No restriction is applied to the attribute regarding their (initial) ownership within the

data model. This means that any one, none or all, of the multiple attributes within the

compound key can be foreign keys. Indeed, a foreign key may, itself, be a compound

key.

Compound keys almost always originate from attributive or associative entities (tables)

within the model, but this is not an absolute value.

••

42

CHAPTER3

USER MANUEL

3.1 USER LOGIN

This part is user's entry screan.They join the program with entering password and user
name which is given by admin. -

Figure3.l

On this page (Figure 3.1) the user must enter the user name and password.If user name

and password found then the program check the user state for still working or has left.If still

working; now the program check the user position for Admin,User and Temporary.If the user

has left then who can not enter the system; in the same time there is no user name and

password program gives three trying chance to enter the system; when is thirth the program

will be terminate.

If user is Admin then who can access everything to make on application program; If

user is manager then who access everything to make exclusive of wrong password

application; If user is veterinerian then who can not access process of user after that who can

access; If user is a normal user then who can see some knowledge and can change the

program settings; If the user is temporary then who can access only amusements, internet

explorer, find folder and drug knowledge.

43

3.2 THE MAIN MENU

Then main page comes (Figure 4.2) it is shown below

Figure3.2

This is main page; other pages shown on it. There are ten button on this. User click

one of them and access the page that wanted by the user.

Definitions acts to create knowledge that is necessary for application process.User

decide process and click the button to access the page for needed application.

When the staff button clicked; the page is shown that is figure 4.5. On this page user

can make some process like save, update, delete and find.

On product record form there is a magnifier button that acts that if there is a product

who saved before;knowledge of that product is shown on form with all knowledge.

44

3.3 BRANCH FORM

Figure3.3

Click the branch and new branch register on the main form and will open form on top.
In this form you can save, edit, edit,delete about branch data which branch code, branch
name, branch address.ı.etc. then save the information your database and you can show the
branch information on the screen.(Figure 3.3)

This program gives automatic branch code the branches. Totaly 8 digit that number,
first 4 digit randomly givesthan add the year for example(l2342007). ·

••

45

3.4 BRANCH STOCK FORM

Figure3.4

We can send cabin and container our branches Figure 3.4. If we don't have enough
quantity this program give us a warning. In this part branch code and branch name comes
outomaticaly with branch data base. Product name, product model and product code comes
the selling database. The user just enter the quantity other operations automaticaly continuous.
İf you send the products in branches you can olso see the information about products.

46

3.5 ADD STOCK FORM

Figure3.5

In this form we can enter the products and we can edit, delete them up. Product name
and product model we can sellect but product code get outomatically for example
CBN932152007, if our product is cabin the program take the CBN of the code than get the
other random 4 digit and year like CBN482392007. Ifwe enter wrong information we can
edit the information.(Figure 3.5)

47

3.6 SELLING FORM

Figure3.5

In this part we can sell our products cabins or containers (Figure3.5). All stock
informations are comes automatically from the stock table. the seller save the customer
information than enter the quantity, when we enter the quantitty in the field we can show the
new quantity. Than aotomatically calculate the total price. If some informations are enter the
misteaken, we can olso edit them then enter the new wareables then save them. The program
is very flexable we can olso change the selling quantity after make save. Than if we double
click the list we can show all information in their fields.

48

3.7 STOCK LIST AND STOCK REPORT

Figure3.6

In this part ve can olso search the products in the stock list. We can search by product
name, price, date betwen. Also ve can get a reprot about stock information, yuo can print or
you can print prewiev.

LIST OF IN THE STOCK
_______,, --
P CODE P NAME P MODEL PQ DATE P COST F.COST

-------·--·-----·--- .. ----------

'________:.___ -------

CBN482392007 CABIN 270x270 (WC+SHOWER) 25 28.04.2007 2500 YTL 1250 YTL
--

CBN932152007 CABIN 150x150 25 24.05.2007 300YTL 150 YTL

CBN932152007 CABIN 150x150 28.04.2007 750 YTL 350 YTL

CBN 157392007 CABIN 115x120 20 28.04.2007 750 YTL 250 YTL

--

Figure3.7

49

3.8 SELLING LIST AND SELLING REPORT

Figure3.8

In this part ve can olso search the products in the selling list. We can search by
product name,model. Also ve can get a reprot about selling product information, yuo can print
or you can print prewiev.

LIST OF IN THE LIST

--·-----------·-------·----------------------·-------·-------·-----·-------
FIRSTN!IME LAST NMf PRODUCTNM'IE MODEL DA 1E QUAN111Y TOTAL PRICE COUN1RY OlY
-------------·-------·-------·--·------·-------·-------·------·---------
MEHET OKUR CABIN 150x150 28.02.2007 10 29500 TÜRKIYE ANKAR/1.

--------·-------·-------·----·----·-------------·-------·-----------------
Figure3.9

50

-::=::::----- --------

3.9 ADD COUNTRY AND CITY

Figure3.10

We can enter the country name and cities in our database and we can use them in the
selling form.

3.9 USER REGISTER

Figure3.ll

51

When User want to change the settings, he/she must click settings button that is on

main page.Than setting page will be displayed.Figure shows an settings form

Figure3.12

We can design easy short cats in main menu. For example the user will surf in internet

easly can use the menues.

52

CONCLUSION

Paradox and Delphi are powerful program.When I study with these two program.I get

fun.Because these program are wonderful.Examination of the data for internal

consistency and comparisons with externally available data indicates that the Delphi

study appears reliable. However, the study was difficult to carry out owing to

difficulties in obtaining answers from possible respondents. Thus, if a larger survey is to

be undertaken to include all building components, it is recommended that committed

respondents be obtained before devising the survey.

Karmod cabin and container stock and selling program and users act more

facility.However Users adapt easly to the program and use it safetly.Nowadays in

everywhere, in every job is combined with the computer.

53

APPENDIX 1
Program Code

FORMl

unit Unitl;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, XP_MainMenu, ImgList, LbStaticText, ExtCtrls,
XP_Button, dxCore, dxButton, ToolWin, ComCtrls, XP_MenuBar, XP_PopUpMenu;

type
TForml = class(TForm)
ttfXPMainMenu 1: ttfXPMainMenu;
branch: TMenultem;
Stockl: TMenultem;
Selling1 : TMenultem;
Settings1: TMenultem;
Help1: TMenultem;
ImageListl: TlmageList;
NewShowrooml: TMenultem;
ShowrooomStockl: TMenultem;
AddinStockl: TMenultem;
Aboutl: TMenultem;
NewUserl: TMenultem;
Register1: TMenultem;
Exitl: TMenultem;
tfXPMenuBar1: TtfXPMenuBw;
tfXPButtonl: TtfXPButton;
ImageList2: TlmageList;
tfXPButton2: TtfXPButton;
tfXPButton3: TtfXPButton;
StatusBar1: TStatusBar;
tfXPMenuBar2: TtfXPMenuBar;
Imagel: Timage;
tfXPPopUpMenul: TtfXPPopUpMenu;
NewShowroom2: TMenultem;
StockShowroom1: TMenultem;
tfXPPopUpMenu2: TtfXPPopUpMenu;
Addl: TMenultem;
tfXPButton4: TtfXPButton;
ImageList3: TlmageList;
tfXPButton5: TtfXPButton;

54

tfXPButton6: TtfXPButton;
tfXPButton7: TtfXPButton;
tfXPButton9: TtfXPButton;
tfXPButtonl O: TtfXPButton;
tfXPButtonl 1: TtfXPButton;
tfXPButton 12: TtfXPButton;
tfXPButton13: TtfXPButton;
tfXPButton14: TtfXPButton;
tfXPButton15: TtfXPButton;
Reports 1: TMenultem;
CountryandCty Adding 1: TMenultem;
StockListl: TMenultem;
SellingListl: TMenultem;
tfXPPopUpMenu3: TtfXPPopUpMenu;
StockList2: TMenultem;
SellingList2: TMenultem;
procedure dxButtonl Click(Sender: TObject);
procedure FormDblClick(Sender: Tübject);
procedure ExitlClick(Sender: TObject);
procedure NewShowroom2Click(Sender: TObject);
procedure StockShowroomlClick(Sender: Tübject);
procedure NewShowroomlClick(Sender: Tübject);
procedure ShowrooomStocklClick(Sender: TObject);
procedure Add 1 Click(Sender: Tübject);
procedure AddinStockl Click(Sender: TObject);
procedure tfXPButton3Click(Sender: TObject);
procedure Sellingl Click(Sender: Tübject);
procedure Listofstock2Click(Sender: TObject);
procedure NewU ser 1 Click(Sender: TObject);
procedure tfXPButton4Click(Sender: Tübject);
procedure ListofStockl Click(Sender: TObject);•..
procedure CountryandCtyAddinglClick(Sender: TObject);
procedure StockListl Click(Sender: TObject);
procedure SellingListl Click(Sender: TObject);
procedure StockList2Click(Sender: TObject);
procedure SellingList2Click(Sender: TObject);
procedure tfXPButtonl5Click(Sender: Tübject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml: TForml;

55

implementation

uses Unit2, Unit3, Unit4, Unit5, Unit6, Unit7, Unit8, Unit9, Unit12;

{$R *.dfm}

procedure TForml.dxButtonlClick(Sender: TObject);
begin
FORMl .CLOSE;
end;

procedure TForml .FormDblClick(Sender: Tübject);
begin
form 1. WindowState:=wsMaximized;
end;

procedure TForml .Exitl Click(Sender: Tübject);
begin
forml .close;
form 12.close;
end;

procedure TF orm l .NewShowroom2Click(Sender: TObject);
begin
form2.Show;
form l .Enabled:=true;
end;

procedure TForml .StockShowrooml Click(Sender: Tübject);
begin
form3.show;
forml .Enabled:=true;

..

end;

procedure TForml.NewShowroomlClick(Sender: Tübject);
begin
form2.Show;

forml .Enabled:=false;
end;

procedure TForml .ShowrooomStockl Click(Sender: Tübject);
begin
form3.Show;
end;

56

procedure TForınl.AddlClick(Sender: Tübject);
begin
form4.Show;
forınl .Enabled:=true;
end;

procedure TForml.AddinStocklClick(Sender: TObject);
begin
form4.Show;
end;

procedure TF orml .tfXPButton3Click(Sender: Tübject);
begin
form5. show;
end;

procedure TForm 1. Selling 1 Click(Sender: TObj ect);
begin
form5.Show;
end;

procedure TForm 1 .Listofstock2Click(Sender: TObject);
begin
forınl .Enabled:=true;
form8.show;
end;

procedure TForm1 .NewUser1 Click(Sender: TObject);
begin
form6.show;
end;

procedure TForml .tfXPButton4Click(Sender: Tübject);
begin
form7.show;
end;

procedure TForınl .ListofStockl Click(Sender: Tübject);
begin
form8.show;
end;

procedure TForınl.CountryandCtyAddingl Click(Sender: Tübject);
begin
form9.Show;

57

forml .Enabled:=falsE;
end;

procedure TForml .StockListl Click(Sender: Tübject);
begin
FORM8.Show;
end;

procedure TForml .SellingListl Click(Sender: Tübject);
begin
FORM7.SHOW;
end;

procedure TForml.StockList2Click(Sender: Tübject);
begin
FORM8.Show
end;

procedure TForml .SellingList2Click(Sender: Tübject);
begin
FORM7.Show;
end;

procedure TForml .tfXPButtonl 5Click(Sender: Tübject);
begin
FORMl .CLOSE;
end;

procedure TForml .FormCreate(Sender: Tübject);
begin

end;

end.

FORM2

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, XP_Form, StdCtrls, XP_Edit, XP_Panel, XP_Button,

58

___ ,.. e--

Grids, DBGrids, ComCtrls, ImgList, DB, DBTables, Buttons, Mask;

type
TForm2 = class(TForm)
tfXPForml: TtfXPForm;
GroupBoxl: TGroupBox;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
tfXPEditl: TtfXPEdit;
tfXPEdit2: TtfXPEdit;
tfXPEdit3: TtfXPEdit;
tfXPButtonl: TtfXPButton;
tfXPButton2: TtfXPButton;
tfXPButton3: TtfXPButton;
tfXPButton4: TtfXPButton;
tfXPButtonS: TtfXPButton;
DBGridl: TDBGrid;
DateTimePickerl: TDateTimePicker;
ImageListl: TlmageList;
tfXPButton6: TtfXPButton;
DataSource1: TDataSource;
Query1: TQuery;
BitBtnl: TBitBtn;
tfXPEdit4: TMaskEdit;
tfXPEditS: TMaskEdit;
tfXPEdit6: TMaskEdit;
procedure FormCreate(Sender:"TObject);
procedure tfXPButtonl Click(Sender: Tübject);
procedure tfXPButton3Click(Sender: Tübject);
procedure tfXPButton4Click(Sender: Tübject);
procedure tfXPButtonSClick(Sender: Tübject);
procedure tfXPButton2Click(Sender: Tübject);
procedure DBGridlDblClick(Sender: Tübject);
procedure BitBtnl Click(Sender: Tübject);
procedure tfXPEdit2KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit3KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit4KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEditSKeyPress(Sender: Tübject; var Key: Char);

private
{ Private declarations }

59

public
{ Public declarations }

end;

var
Forın2: TForm2;

implementation

uses Unitl, Unit4, Unit3;

{$R *.dfm}

procedure save;
begin
with form2 do begin
QUERYl .Fields[O] .AsString:=tfXPeditl .Text;
QUERY1.Fields[l].AsString:=tfXPedit2.Text;
QUERYl.Fields[2].AsString:=tfXPedit3.Text;
QUERYl .Fields[3].AsString:=tfXPedit4.Text;
QUERY1.Fields[4].AsString:=tfXPedit5.Text;
QUERYl .Fields[5] .AsString:=tfXPedit6. Text;
QUERYl .Fields[6] .. AsString:=datetostr(datetimepickerl .Date);

end;
end;

procedure read;
begin
with forın2 do begin
tfXPeditl .Text:=QUERYl .Fields[O].AsString;
tfXPedit2.Text:=QUERY1.Fields[l].AsString;
tfXPedit3.Text:=QUERY1.Fielcts[2].AsString;
tfXPedit4.Text:=QUERY1.Fields[3].AsString;
tfXPedit5.Text:=QUERYl.Fields[4].AsString;
tfXPedit6. Text:=QUERYl .Fields[5] .AsString;
datetimepickerl.Date:=strtodate(QUERYl.Fields[6].AsString);
end;
end;

procedure clear;
begin
with form2 do begin
tfXPeditl .Text:=";
tfXPedit2.Text:=";
tfXPedit3. Text:=";
tfXPedit4.Text:=";

60

tfXPedit5.Text:=";
tfXPedit6.Text:=";
end;
end;

procedure TForm2.FormCreate(Sender: Tübject);
begin
form2.caption:= 'New Branch';
end;

procedure TForm2.tfXPButton1Click(Sender: Tübject);
begin
form2.Close;
form l .Enabled:=true;
end;

procedure TForm2. tfXPButton3 Click(Sender: Tübj ect);
var
a:word;
begin
a:=application.MessageBox('Are you Sure?' ,'Question' ,3 6);
if a=IDYES then
begin
query 1.Insert;
save;
query l .Post;
clear;
end;
end;
procedure TForm2.tfXPButton4Click(Sender: Tübject);
var
a:word;
begin
a:=application.MessageBox('Are you Sure' ,'Question' ,3 6);
if a=IDYES then

••

begin
queryl.EDIT;
save;
queryl .Post;
end;
end;

procedure TForm2.tfXPButton5Click(Sender: Tübject);
var
a:string;
b:word;
begin

61

b:=application.MessageBox('Are you sure?','Questions?',36);
ifb=IDYES then begin
a:=tfXPeditl .Text;
queryl .SQL.Clear;
queryl.SQL.Text:='select * from newbranch where bcode='+#39+(a)+#39;
queryl .Open;
query1 .Last;
queryl .Delete;
clear;
queryl .SQL.Clear;
queryl .SQL.Text:='select * from newbranch';
query1.Open;

end;
end;

procedure TForm2.tfXPButton2Click(Sender: Tübject);
var
b:word;
begin
b:=application.MessageBox('Are you sure?','Questions?',36);
ifb=IDYES then begin
clear;
end;
end;

procedure TForm2.DBGrid1DblClick(Sender: TObject);
var
a:string;
begin
a:=dbgridl .Fields[O].AsString;
queryl .SQL.Clear;
queryl.SQL.Text:='select * from newbranch where bcode='+#39+(a)+#39;
queryl .Open;
queryl .Last;
read;
queryl .SQL.Clear;
queryl .SQL.Text:='select * from newbranch';
query1 .Open;

end;
function RS(PWLen: integer): string;
const StrTable: string=

I 123456789';
var
N, K, X, Y: integer;

62

begin
Randomize;
if (PWlen > Length(StrTable)) then K := Length(StrTable)-1

else K := PWLen;
SetLength(result, K);
Y := Length(StrTable);
N:=O;

while N < K do begin
X := Random(Y) + 1;
if (pos(StrTable[X], result)= O) then begin

inc(N);
Result[N] := StrTable[X];

end;
end;

end;

procedure TForm2.BitBtn1Click(Sender: TObject);
begin
tfxpeditl.Text:=rs(5)+FormatDateTime('yyyy',Date);
query 1 .First;
while not query l .Eof do begin
if (query l.Fields[O] .AsString=tfxpeditl. Text) then begin
tfxpeditl.Text:=rs(5)+FormatDateTime('yyyy',Date);
end;
queryl .Next;
end;
TFxpedit2.SetFocus;
end;

procedure TForm2.tfXPEdit2KeyPress(Sender: TObject; var Key: Char);
begin '"
if key=#13 then tfxpedit3.SetFocus;
end;

procedure TForm2.tfXPEdit3KeyPress(Sender: TObject; var Key: Char);
begin
if key=#13 then tfxpedit4.SetFocus;
end;

procedure TForm2.tfXPEdit4KeyPress(Sender: TObject; var Key: Char);
begin
ifkey=#13 then tfxpedit5.SetFocus;
end;
procedure TForm2.tfXPEdit5KeyPress(Sender: TObject; var Key: Char);
begin

63

ifkey=#13 then tfxpedit6.SetFocus;
end;
end.

FORM3

unit Unit3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, XP_Button, StdCtrls, XP_Edit, ExtCtrls, XP_Form,
ComCtrls, lmgList, DB, DBTables, Buttons;

type
TForm3 = class(TForm)
tfXPF orm 1: TtfXPF orm;
GroupBox 1: TGroupBox;
Label 1: TLabel;
Labelz: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
tfXPEdit2: TttxPEdit;
tfXPEdit5: TttxPEdit;
tfXPEdit6: TttxPEdit;
tfXPButtonl: TtfXPButton;
tfXPButton2: TtfXPButton;
tfXPButton3: TtfXPButton; ıo

tfXPButton4: TtfXPButton;
tfXPButton5: TtfXPButton;
DBGridl: TDBGrid;
DateTimePicker 1: TDateTimePicker;
Combo Box 1: TComboBox;
ComboBox2: TComboBox;
Image List 1: TlmageList;
tfXPButton6: TtfXPButton;
ComboBox3: TComboBox;
DataSource 1: TDataSource;
Query 1: TQuery;
Query2: TQuery;
DataSource2: TDataSource;
Label8: TLabel;

64

tfXPEditl: TtfXPEdit;
Query3: TQuery;
DataSource3: TDataSource;
BitBtnl: TBitBtn;
procedure tfXPButton5Click(Sender: TObject);
procedure ComboBoxlChange(Sender: Tübject);
procedure FormActivate(Sender: Tübject);
procedure ComboBox3Change(Sender: Tübject);
procedure ComboBox2Change(Sender: Tübject);
procedure tfXPEditlKeyPress(Sender: TObject; var Key: Char);
procedure tfXPButton2Click(Sender: Tübject);
procedure tfXPButton3Click(Sender: TObject);
procedure tfXPButtonlClick(Sender: TObject);
procedure tfXPButton4Click(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure Group Box 1 Click(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form3: TForm3;

implementation

uses Unitl;

{$R *.dfm}

procedure save;
begin
with form3 do begin
query3.Fields[O].AsString:=combobox3.Text;
query3 .Fields[1] .AsString:=tfxpedit2. Text;
query3.Fields[2].AsString:=comboboxl.Text;
query3 .Fields[3] .AsString:=combobox2. Text;
query3 .Fields[4] .AsString:=tfxpedit5 .Text;
query3 .Fields[5] .AsString:=tfxpeditl .Text;
query3 .Fields[6] .AsString:=datetostr(datetimepicker 1 .Date);
end;
end;

procedure read;

65

begin
with fonn3 do begin
combobox3. Text:=query3 .Fields[O] .AsString;
tfxpedit2. Text:=query3 .Fields[1] .AsString;
combo box l .Text:=query3 .Fields[2] .AsString;
combobox2.Text:=query3.Fields[3].AsString;
tfxpedit5.Text:=query3 .Fields[4].AsString;
tfxpeditl .Text:=query3.Fields[5].AsString;
datetimepicker l .Date:=strtodate(query3 .Fields[6] .AsString);
end;
end;

procedure clear;
begin
with fonn3 do begin
combobox3.Text:=";
tfxpedit2.Text:=";
comboboxl .Text:=";
combobox2.Text:=";
tfxpedit5. Text:=";
tfxpedit 1.Text:=";
tfxpedit6. Text:='';
end;
end;

procedure TFonn3.tfXPButton5Click(Sender: TObject);
begin
fonn3.Close;
fonnl .Enabled:=true;
end;

procedure TFonn3.ComboBox1Cnange(Sender: TObject);
begin
combobox2.Items.Clear;
combobox2.Text:=";
if (comboboxl.Text='CABIN') then begin
queryl .First;
while not queryl .Eof do begin
if (queryl.Fields[O].AsString='CABIN') then begin
combobox2.Items.Add(query l .Fields[l].AsString);
end;
query I.Next;
end;
end;
if (comboboxl.Text='CONTAINER') then begin
queryl .First;

66

while not queryl .Eof do begin
if (queryl .Fields[O].AsString='CONTAINER') then begin
combobox2 .Items.Add(query 1 .Fields[1] .AsString);
end;
queryl .Next;
end;
end;

end;

procedure TForm3.FormActivate(Sender: Tübject);
begin
combo box3 .Iterns. Clear;
query2.First;
while not query2.Eof do begin
combobox3 .Items.Add(query2.Fields[O] .AsString);
query2.Next;
end;

end;

procedure TForm3.ComboBox3Change(Sender: Tübject);
begin
query2.SQL.Clear;
query2.SQL.Text:='select * from newbranch where
bcode='+#3 9+(combobox3. Text)+#3 9;
query2.0pen;
query2.Last;
tfxpedit2. Text:=query2.Fields[1] .AsString;

end;

procedure TForm3.ComboBox2Change(Sender: Tübject);
begin
queryl .SQL.Clear;
queryl.SQL.Text:='select * from addstock where
pname='+#39+(comboboxl.Text)+#39+'and pmodel='+#39+(combobox2.Text)+#39;
queryl.Open;
queryl .Last;
if (query 1 .Fields[3] .AsString<>'O') then begin
tfxpedit5.Text:=queryl .Fields[2].AsString;
tfxpedit6. Text:=query 1 .Fields[3] .AsStririg;
tfxpeditl .SetFocus;
end else application.MessageBox('Not Enough Quantitiy ! !','Warning',16);

67

end;

.procedure TForm3.tfXPEditlKeyPress(Sender: Tübject; var Key: Char);
var
x,y:integer;
begin
if key=# 13 then begin
x :=strtoint(tfxpedit6. Text);
y:=strtoint(tfxpeditl .Text);
if y>x then application.MessageBox('N ot Enough Quantitiy ! ! ','Warning',16)
else begin
tfxpedit6.Text:=inttostr((x-y));
end;
end;
end;

procedure TForm3.tfXPButton2Click(Sender: Tübject);
var
a:Word;
begin
a:=application.MessageBox('Are you sure','Questions',36);
if a=IDYES then begin
query3.Insert;
save;
query3.Post;
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock where pcode='+#39+(tfxpedit5.Text)+#39;
queryl .Open;
queryl .Last;
queryl .Edit;
queryl .Fields[3].AsString:=tfxpedit6.Text;••queryl .Post;
clear;
bitbtnl .Click;
end;
end;

procedure TForm3.tfXPButton3Click(Sender: Tübject);
var
a:Word;
s:string;
c,d:integer;
begin
a:=applicatioh.MessageBox('Are you sure','Questions',36);
if a=IDYES then begin
a:=application.MessageBox('Do you want to change only Quantitiy?','Questions',36);

68

if a=IDYES then begin
queryl .SQL.Clear;
queryl.SQL.Text:='select * from addstock where pcode='+#39+(tfxpedit5.Text)+#39;
query 1 . Open;
query 1 .Last;
c:=strtoint(tfxpeditl .Text);
d:=strtoint(query 1 .Fields [3] .AsString);
tfxpedit6. Text:=inttostr(c+d);
s:=inputbox('New Quantitiy','Quantity=',");
tfxpeditl .Text:=s;
tfxpedi t6.Text:=inttostr(strtoint(tfxpedit6. Text) - strtoint(s));
query3.edit;
save;
query3 .Post;
queryl .Edit;
query 1 .Fields [3] .AsString:=tfxpedit6. Text;
query 1 .Post;
clear;
bitbtnl .Click;
end else begin
query3 .edit;
save;
query3 .Post;
clear;
bitbtnl .Click;
end;
end;
end;

procedure TF orm3 .tfXPButtonl Click(Sender: TObj ect);
var
a:Word;
begin
a:=application.MessageBox('Are you sure' ,'Questions' ,3 6);
if a=IDYES then begin
clear;
end;
end;

procedure TForm3 .tfXPButton4Click(Sender: Tübject);
var
a:Word;
s,x:integer;
begin
a:=application.MessageBox('Are you sure', 'Questions' ,36);
if a=IDYES then begin

69

a:=application.MessageBox('Do you want to Add from branch to stock? ','Questions',36);
if a=IDYES then begin
QUERY3.SQL.Clear;
query3.SQL.Text:='select * from branchstock where
bcode='+#3 9+(combo box3. Text)+# 3 9+'and pcode='+#3 9+(tfxpedit5. Text)+#3 9;
query3. Open;
query3 .Last;
s:=strtoint(query3 .Fields[5] .AsString);
queryl .SQL.Clear;
queryl.SQL.Text:='select * from addstock where pcode='+#39+(tfxpedit5.Text)+#39;
queryl .Open;
query 1 .Last;
x:=strtoint(query 1 .Fields[3] .AsString);
queryl .Edit;
queryl .Fields[3].AsString:=inttostr(x+s);
queryl .Post;
query3 .Delete;
clear;
bitbtnl .Click;
end else begin
QUERY3.SQL.Clear;
query3.SQL.Text:='select * from branchstock where
bcode='+#39+(combobox3.Text)+#39+'and pcode='+#39+(tfxpedit5.Text)+#39;
query3.0pen;
query3 .Last;
query3.Delete;
clear;
bitbtnl .Click;
end;
end;
end;
procedure TForm3.DBGrid1DblClick(Sender: Tübject);
var
a,b:string;
begin

a:=dbgridl .Fields[O].AsString;
b:=dbgridl .Fields[4].AsString;

QUERY3.SQL.Clear;
query3.SQL.Text:='select * from branchstock where bcode='+#39+(a)+#39+'and
pcode='+#39+(b)+#39;
query3. Open;
query3 .Last;
read;
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock where pcode='+#39+(tfxpedit5.Text)+#39;
queryl.Open;

70

queryl .Last;
tfxpedit6. Text:=queryl .Fields[3] .AsString;

end;

procedure TForm3.BitBtnl Click(Sender: Tübject);
begin
query3.SQL.Clear;
query3.SQLText:='select * from branchstock';
query3.0pen;
end;

procedure TForm3. Group Box 1 Click(Sender: Tübject);
begin

end;

end.

FORM4

unit Unit4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, XP_ BJhon, DBCtrls, StdCtrls, XP_ Edit, ExtCtrls,
XP_Form, ComCtrls, ImgList, DB, DBTables, XP_Panel, ExtDlgs;

type
TForm4 = class(TForm)
tfXPForml: TtfXPForm;
Group Box 1: TGroupBox;
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
tfXPEdit3: TtfXPEdit;
tfXPEdit4: TtfXPEdit;
tfXPButtonl: TtfXPButton;

71

tfXPButton2: TtfXPButton;
tfXPButton3: TtfXPButton;
tfXPButton4: TtfXPButton;
tfXPB utton5: TtfXPB utton;
DBGridl: TDBGrid;
DateTimePickerl: TDateTimePicker;
tfXPButton6: TtfXPButton;
ComboBoxl: TComboBox;
ComboBox2: TComboBox;
tfXPEditl: TtfXPEdit;
tfXPEdit2: TtfXPEdit;
Label6: TLabel;
Label7: TLabel;
ImageListl: TlmageList;
tfXPButton8: TtfXPButton;
Queryl: TQuery;
DataSource 1: TDataSource;
ttfXP _Panell: ttfXP _Panel;
Label8: TLabel;
tfXPEdit5: TtfXPEdit;
DBimagel: TDBimage;
OpenPictureDialog 1: TOpenPictureDialog;
procedure tfXPButton5Click(Sender: Tübject);
procedure ComboBox2Change(Sender: Tübject);
procedure ComboBoxlChange(Sender: Tübject);
procedure FormCreate(Sender: Tübject);
procedure tfXPEdit3Change(Sender: Tübject);
procedure tfXPButton6Click(Sender: Tübject);
procedure tfXPButton2Click(Sender: Tübject);
procedure tfXPButton3Click(Sender: Tübject);
procedure tfXPButtonl Click(Sender: Tübject);..
procedure tfXPButton4Click(Sender: Tübject);
procedure tfXPEdit5KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEditlKeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit2KeyPress(Sender: Tübject; var Key: Char);
procedure DBGridlDblClick(Sender: Tübject);
procedure GroupBoxl Click(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form4: TForm4;
sec:string;

72

implementation

uses Unitl;

{$R *.dfm}

function RS(PWLen: integer): string;
const StrTable: string =

'123456789';
var

N, K, X, Y: integer;
begin

Randomize;
if (PWlen > Length(StrTable)) then K := Length(StrTable)-1
else K := PWLen;

SetLength(result, K);
Y := Length(StrTable);
N:=O;

while N < K do begin
X := Random(Y) + 1;
if (pos(StrTable[X], result) = O) then begin
inc(N);
Result[N] := StrTable[X];

end;
end;

end;

function src(a:string;b:string):boolean;
begin
src:=false;
form4.Queryl .First;
while not form4.Queryl .eof do ,
if (a=form4. Query 1 .Fields [O] .asstring) and (b=form 4.Query 1 .Fields [1] .asstring)then
begin
src:=true;
exit;
end
else
form4.Queryl .Next;
end;

procedure TForm4.tfXPButton5Click(Sender: TObject);
begin
form4.Close;

73

form 1 .Enabled:=true; ·
end;
procedure save;
begin
with form4 do begin
queryl .Fields[O] .AsString:=combobox 1. Text;
query 1 .Fields[1] .AsString:=combobox2. Text;
queryl .Fields[2].AsString:=tfxpedit3.Text;
query 1 .Fields[3] .AsString:=tfxpedit4. Text;
query 1 .Fields[4] .AsString:=datetostr(datetimepicker 1 .Date);
query 1 .Fields[5].AsString:=tfxpeditl. Text;
queryl .Fields[6].AsString:=tfxpedit2.Text;
end;
end;
procedure read;
begin
with form4 do begin
comboboxl .Text:= queryl .Fields[O].AsString;
combobox2.Text:= queryl.Fields[l].AsString;
tfxpedit3.Text:= queryl .Fields[2].AsString;
tfxpedit4.Text:= queryl .Fields[3].AsString;
datetimepickerl .Date:= strtodate(queryl .Fields[4] .AsString);
tfxpeditl.Text:= queryl.Fields[5].AsString;
tfxpedit2.Text:= queryl .Fields[6].AsString;
end;
end;
procedure clear;
begin
with form4 do begin
comboboxl .Text:=";
combobox2.Text:= ";
tfxpedit3.Text:= ";
tfxpedit4.Text:= ";
tfxpeditl.Text:= ";
tfxpedit2.Text:= ";
ttfXP _Panel 1 .Visible:=false;
end;
end;

procedure TForm4.ComboBox2Change(Sender: TObject);
begin
src(comboboxl.Text,combobox2.Text);
if (queryl .Fields[O].AsString=comboboxl .Text)and
(queryl.Fields[l].AsString=combobox2.Text) then begin
tfxpedit3.Text:=QUERYl.Fields[2].AsString;
tfxpedit4. Text:=query 1 .Fields[3] .AsString;

74

tfxpeditl. Text.=queryl .Fields[5] .AsString;
tfxpedit2. Text:=query 1 .Fields[6].AsString;
datetimepicker 1 .Date :=strtodate(query 1 .Fields[4] .AsString);
form4.tttXP _Panel 1 .Visible:=true;
form4.ttXPEdit4.Readünly:=true;
tfxpedit5. SetF ocus;
end else begin

if (combo box 1. Text='CABIN') then begin

tfxpedit3.Text:='CBN'+rs(5)+FormatDateTime('yyyy',Date);
form4.tttXP _Panell.Visible:=false;

tfxpedit4.Readünly:=false;
end;

if (combo box 1. Text='CONT AINER') then begin

tfxpedit3.Text:='CNT'+rs(5)+FormatDateTime('yyyy',Date);
form4.tttXP _Panel 1. Visible:=false;

tfxpedit4.Readünly:=false;
end;

tfxpedit4. SetFocus;
end;

end;

procedure TForm4.ComboBox1Change(Sender: Tübject);
begin
//clear;
if (comboboxl.Text='CABIN') then begin
Queryl .SQL.Clear;
queryl.sql.Text:='select * from addstock where pname='+#39+(comboboxl.Text)+#39;
query 1. Open;
combobox2.Items.Clear;
combobox2.Items.Add('l 15x120');
combobox2.Items.Add('l 50xl 50');
combobox2.Items.Add(' 150x215');
combobox2.Items.Add('215x215');
combobox2.Items.Add(' 150x270');
combobox2.Items.Add('215x270');
combobox2.Items.Add('215x390');
combobox2.Items.Add('270x270');
combobox2.Items.Add('270x390');
combobox2.Items.Add('270x51 O');
combobox2.Items.Add('270x630');
combobox2.Items.Add('270x750');
combobox2.Items.Add('390x270 Wide');
combobox2.Items.Add('390x390 Wide');

75

com.'oı.mox1.:t\em.'5~'X)":>'\) ~ı.~~:J,
combobox2.Items.Add('390x750 Wide');
combobox2.Items.Add('390x870 Wide');
combobox2.Items.Add('390x990 Wide');
combobox2.Items.Add('390xl 110 Wide');
combobox2.Items.Add('120x120 (WC+SHOWER)');
combobox2.Items.Add('120x120 (WC)');
combobox2.Items.Add('150x150 (WC+SHOWER)');
combobox2.Items.Add('150x270 (WC+SHOWER)');
combobox2.Items.Add('150x270 (WC+SECURITY)');
combobox2.Items.Add('l 50x390 (WC+SHOWER)');
combobox2.Items.Add('270x270 (WC+SHOWER)');
end;
if (combobox1.Text='CONTAINER') then begin
Queryl .SQL.Clear;
queryl .sql.Text:='select * from addstock where pname='+#39+(comboboxl.Text)+#39;
queryl.Open;
combobox2.Items.Clear;
combobox2.Items.Add('Normal Container');
combobox2.Items.Add('Office Container');
combobox2.Items.Add('House Container');
end;
End;

procedure TForm4.FormCreate(Sender: TObject);
begin
form4.ttfXP_Panell .Visible:=false;
end;

procedure TForm4.tfXPEdit3Change(Sender: TObject);
lil.

begin
Queryl .SQL.Clear;
queryl.sql.Text:='select * from addstock where pcode='+#39+(tfxpedit).Text)+#39;
query1.Open;
end;

procedure TForm4.ttXPButton6Click(Sender: TObject);
begin
OpenPictureDialogl .Title:='Resim Dosyası Seçiniz';
openpicturedialogl .fılter:=('Resim Dosyaları I* .Bmp');
OpenPictureDialogl .Filterlndex:=O;
if (OpenPictureDialog1 .Execute) then begin
DbImage1 .Picture.LoadFromFile(OpenPictureDialogl .FileName);
sec:=(OpenPictureDialogl .FileName);

end;

76

end;

procedure TForm4.tfXPButton2Click(Sender: Tübject);
vara:WORD;
begin
a:=application.MessageBox('Are You Sure?','Questions' ,36);
if a=IDYES then begin
queryl .Insert;
save;
query 1 .Post;

queryl .Edit;
DB Image 1 .Picture.LoadFromFile(sec);
queryl .Post;
clear;
queryl .SQL.Clear;
queryl.SQL.Text:='select * from addstock';
query1.Open;

end;

end;

procedure TForm4.tfXPButton3Click(Sender: Tübject);
vara:WORD;
begin
a:=application.MessageBox('Are You Sure?','Questions',36);
if a=IDYES then begin
queryl .edit;
save;
queryl .Post;

query1 .Edit;
DBimagel.Picture.LoadFromFile(sec);
queryl .Post;
clear;
query1 .SQL.Clear;
queryl.SQL.Text:='select * from addstock';
query1.Open;

end;

end;

procedure TForm4.tfXPButtonl Click(Sender: Tübject);
vara:WORD;
begin
a:=application.MessageBox('Are You Sure?','Questions',36);

77

if a=IDYES then begin
clear;

end;

end;

procedure TForm4.tfXPButton4Click(Sender: Tübject);
vara:WORD;
begin
a:=application.MessageBox('Are You Sure?' ,'Questions' ,3 6);
if a=IDYES then begin

if (tfxpedit3.Text<>") then begin
query I .SQL.Clear;
queryl.SQL.Text:='select * from addstock where pcode='+#39+(tfxpedit3.Text)+#39;
query I .Open;
query I .Last;
query I .Delete;
clear;
query I .SQL.Clear;
queryl.SQL.Text:='select * from addstock';
query I.Open;
end else application.MessageBox('Product code is not be empty!!!!' ,'Warning', 16);
end;

end;

procedure TForm4.tfXPEdit5KeyPress(Sender: Tübject; var Key: Char);
begin
if key=# 13 then begin
tfxpedit4. Text:=inttostr(strtoint(tfxpedit4. Text)+strtoint(tfxpedit5. Text));
tfxpeditl .SetFocus;
end;
end;

••

procedure TForm4.tfXPEdit1KeyPress(Sender: Tübject; var Key: Char);
begin
if key=# 13 then begin
tfxpeditl .Text:=tfxpeditl .Text+' '+'YTL';
tfxpedit2. SetF ocus;
end;
end;

procedure TForm4.tfXPEdit2KeyPress(Sender: Tübject; var Key: Char);
begin
ifkey=#13 then begin
tfxpedit2. Text:=tfxpedit2. Text+' '+'YTL';
end;

78

end;

procedure TForm4.DBGrid1DblClick(Sender: TObject);
var
a:string;
begin
a:=dbgrid 1 .Fields[O] .AsString;
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock where pcode='+#39+(a)+#39;
queryl .Open;
queryl .Last;
read;
queryl .SQL.Clear;
queryl.SQL.Text:='select * from addstock';
query1.Open;
end;

procedure TForm4.GroupBox1Click(Sender: TObject);
begin

end;

end.

FORMS

unit Unit5;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, XP_Button, StdCtrls, XP_Edit, ExtCtrls, XP_Form, Comf'trlş,
DBCtrls, ImgList, DB, DBTables, Grids, DBGrids, Mask;

type
TForm5 = class(TForm)
tfXPForml: TtfXPForm;
GroupBox1: TGroupBox;
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
ComboBox1 : TComboBox;
ComboBox2: TComboBox;
tfXPEditl: TtfXPEdit;
tfXPEdit2: TtfXPEdit;

79

Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
tfXPEdit3: TtfXPEdit;
tfXPEdit4: TtfXPEdit;
Label?: TLabel;
Label8: TLabel;
Label9: TLabel;
Labell O: TLabel;
Label 11 : TLabel;
Label12: TLabel;
Label 13: TLabel;
Label14: TLabel;
Label 15: TLabel;
Label16: TLabel;
Label 1 7: TLabel;
Labell 8: TLabel;
tfXPEdit5: TtfXPEdit;
tfXPEdit6: TtfXPEdit;
tfXPEdit8: TtfXPEdit;
tfXPEditl O: TtfXPEdit;
tfXPEditl 1: TtfXPEdit;
tfXPEditl 3: TtfXPEdit;
tfXPEdit16: TtfXPEdit;
Labell 9: TLabel;
Label20: TLabel;
Label21: TLabel;
ComboBox3: TComboBox; ••
ComboBox4: TComboBox;
tfXPButtonl: TtfXPButton;
tfXPButton2: TtfXPButton;
tfXPButton3: TtfXPButton;
tfXPButton4: TtfXPButton;
tfXPButton5: TtfXPButton;
DateTimePickerl: TDateTimePicker;
ImageListl: TimageList;
Label22: TLabel;
Label23: TLabel;
tfXPEdit9: TtfXPEdit;
tfXPEdit12: TtfXPEdit;
Memo 1: TMemo;
DBimagel: TDBimage;
DBGridl: TDBGrid;

80

DataSource 1: TDataSource;
Query 1: TQuery;
tfXPEdit7: TMaskEdit;
DateTimePicker2: TDateTimePicker;
Label24: TLabel;
tfXPEdit 15: TtfXPEdit;
Label25: TLabel;
tfXPEditl 7: TtfXPEdit;
Query2: TQuery;
DataSource2: TDataSource;
Query3: TQuery;
DataSource3: TDataSource;
DataSource4: TDataSource;
Query4: TQuery;
tfXPEdit14: TMaskEdit;
procedure tfXPButton5Click(Sender: TObject);
procedure ComboBoxlChange(Sender: Tübject);
procedure ComboBox2Change(Sender: Tübject);
procedure tfXPEdit3KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit4KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit5KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit6KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit8KeyPress(Sender: Tübject; var Key: Char);
procedure MemolKeyPress(Sender: TObject; var Key: Char);
procedure tfXPEdit13KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit14KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit16KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEditlOKeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit15KeyPress(Sender: Tübject; var Key: Char);
procedure tfXPEdit7KeyPress(Sender: Tübject; var Key: Char);
procedure ForınActivate(Sender: Tübject);•• procedure ComboBox3Change(Sender: Tübject);
procedure tfXPButton2Click(Sender: Tübject);
procedure DBGridlDblClick(Sender: TObject);
procedure tfXPButtonl Click(Sender: Tübject);
procedure tfXPButton3Click(Sender: TObject);
procedure tfXPButton4Click(Sender: Tübject);
procedure GroupBox3Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form5: TForm5;

81

stock:string;
stockl :integer;

implementation

uses Unitl;

{$R *.dfm}

procedure save;
begin
with form5 do begin
query4.Fields [O] .AsString:=combobox 1.Text;
query4.Fields[1] .AsString:=combobox2. Text;
query4.Fields[2].AsString:=tfxpeditl .Text;
query4.Fields[3] .AsString:=tfxpedit2. Text;
query4.Fields[4] .AsString:=tfxpedit3. Text;
query4.Fields[5].AsString:=tfxpedit4.Text;
query4.Fields[6].AsString:=tfxpedit5.Text;
query4 .Fields [7] .AsString:=tfxpedit6. Text;
query4.Fields[8] .AsString:=tfxpedit7. Text;
query4.Fields[9].AsString:=tfxpedit8.Text;
query4.Fields[1 O].AsString:=memo 1 .Text;
query4.Fields[l l].AsString:=tfxpedit13.Text;
query4.Fields[12] .AsString:=tfxpeditl 4.Text;
query4.Fields[l 3] .AsString:=datetostr(datetimepicker2.Date);
query4.Fields[14] .AsString:=tfxpeditl 6.Text;
query4.Fields[l 5] .AsString:=tfxpeditl 5. Text;
query4.Fields[16] .AsString:=tfxpeditl O.Text;
query4.Fields[l 7].AsString:=tfxpeditl 1 .Text;
query4.Fields[l 8].AsString:=tfxpedit9.Text;••
query4.Fields[19] .AsString:=tfxpeditl 2.Text;
query4.Fields[20] .AsString:=datetostr(datetimepickerl .Date);
query4.Fields[21].AsString:=combobox3.Text;
query4.Fields[22].AsString:=combobox4.Text;
end;
end;

procedure read;
begin
with form5 do begin
combo box 1.Text:=query4.Fields[O] .AsString;
combobox2.Text:=query4.Fields[l].AsString;
tfxpeditl.Text:=query4.Fields[2].AsString;
//tfxpedit2.Text:=query4.Fields[3].AsString;
tfxpedit3.Text:=query4.Fields[4].AsString;

82

tfxpedit4.Text:=query4.Fields[5].AsString;
tfxpedit5. Text:=query4.Fields [6] .AsString;
tfxpedit6. Text:=query4.Fields[7] .AsString;
tfxpedit7.Text:=query4.Fields[8].AsString;
tfxpedit8. Text:=query4.Fields[9] .AsString;
memo l .Text:=query4.Fields[l O] .AsString;
tfxpedit 13. Text:=query4.Fields[11] .AsString;
tfxpeditl4.Text:=query4.Fields[12].AsString;
datetimepicker2.Date:=strtodate(query4.Fields[13].AsString);
tfxpeditl6.Text:=query4.Fields[14].AsString;
tfxpeditl 5. Text:=query4.Fields[l 5] .AsString;
tfxpedit 1 O. Text:=query4.Fields[16].AsString;
tfxpeditl l.Text:=query4.Fields[l 7].AsString;
tfxpedit9 .Text:=query4.Fields[18] .AsString;
tfxpeditl2.Text:=query4.Fields[19].AsString;
datetimepicker l .Date:=strtodate(query4.Fields[20] .AsString);
combobox3.Text:=query4.Fields[21].AsString;
combobox4.Text:=query4.Fields[22].AsString;
end;
end;

procedure clear;
begin
with form5 do begin
comboboxl .Text:=";
combobox2.Text:=";
tfxpeditl .Text:=";
tfxpedit2.Text:=";
tfxpedit3. Text:=";
tfxpedit4.Text:=";
tfxpedit5. Text:=";
tfxpedit6. Text:=";
tfxpedit7 .Text:=";
tfxpedit8.Text:=";
memol.Text:="; ~
tfxpedit 13.Text:='';
tfxpedit14.Text:=";
tfxpedit16.Text:=";
tfxpedit 15. Text:=";
tfxpeditlO.Text:=";
tfxpedit9. Text:=";
tfxpedit12.Text:=";
tfxpeditl 7.Text:=";
combobox3 .Text:=";
combobox4.Text:=";
end;

••

83

end;

procedure TForm5.tfXPButton5Click(Sender: TObject);
begin
form5.Close;
forml .Enabled:=true;
end;

procedure TForm5.ComboBoxl Change(Sender: TObject);
begin
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock';
query 1 . Open;
combobox2.Items.Clear;
combobox2.Text:=";
if (comboboxl.Text='CABIN') then begin
queryl .First;
while not queryl .Eof do begin
if (query 1 .Fields[O] .AsString='CABIN') then begin
combobox2.Items.Add(queryl .Fields[l] .AsString);
end;
queryl .Next;
end;
end;
if (comboboxl.Text='CONTAINER') then begin
query 1 .First;
while not query 1 .Eof do begin
if (queryl.Fields[OJ.AsString='CONTAINER') then begin
combobox2.Items.Add(queryl .Fields[l].AsString);
end;
query 1 .Next;
end;
end;

end;

procedure TForm5.ComboBox2Change(Sender: TObject);
begin
query 1 .SQL.Clear;
queryl .SQL.Text:='select * from addstock where
pname='+#39+(comboboxl.Text)+#39+'and pmodel='+#39+(combobox2.Text)+#39;
queryl .Open;
query 1 .Last;
if (query 1 .Fields[3] .AsString<>'O') then begin
tfxpeditl .Text:=queryl .Fields[2] .AsString;
tfxpedit2.Text:=queryl .Fields[3].AsString;

84

tfxpedit3. SetFocus;
end else begin
application.MessageBox('Not Enough Quantitiy ! ! ','Warning',16);

end;
end;

procedure TForm5.tfXPEdit3KeyPress(Sender: TObject; var Key: Char);
begin
ifkey=#13 then tfxpedit4.SetFocus;
end;

procedure TForm5.tfXPEdit4KeyPress(Sender: TObject; var Key: Char);
begin
if key=#13 then tfxpedit5.SetFocus;
end;

procedure TForm5.tfXPEdit5KeyPress(Sender: TObject; var Key: Char);
begin
ifkey=#13 then tfxpedit6.SetFocus;
end;

procedure TForm5.tfXPEdit6KeyPress(Sender: TObject; var Key: Char);
begin
ifkey=#13 then tfxpedit7.SetFocus;
end;

procedure TForm5.tfXPEdit8KeyPress(Sender: TObject; var Key: Char);
begin
if key=#13 then memol.SetFocus;
end; ••
procedure TForm5.Memo1KeyPress(Sender: TObject; var Key: Char);
begin
if key=#13 then tfxpedit13.SetFocus;
end;

procedure TForm5.tfXPEdit13KeyPress(Sender: TObject; var Key: Char);
begin
ifkey=#l3 then tfxpedit14.SetFocus;
end;

procedure TForm5.tfXPEdit14KeyPress(Sender: TObject; var Key: Char);
begin
ifkey=#13 then tfxpedit16.SetFocus;
end;

85

procedure TForm5.tfXPEdit16KeyPress(Sender: Tübject; var Key: Char);
begin
if key=# 13 then tfxpedi t15. SetFocus;
end;

procedure TForm5.tfXPEdit10KeyPress(Sender: Tübject; var Key: Char);
var
tc:real;
x:integer;
y:integer;
z:integer;
begin
if key=# 13 then
begin
x:=strtoint(tfxpedit15.Text);
y:=strtoint(tfxpeditlü.Text);
z:=strtoint(tfxpeditl 1 .Text);
tc:=(x*y)+(((x*y)*z)/100);
tfxpedit9. Text:=floattostr(tc);
tfxpedit12.SetFocus;
end;
end;

procedure TForm5.tfXPEdit15KeyPress(Sender: Tübject; var Key: Char);
var
x:integer;
y:integer;

begin
if key=# 13 then
begin
x :=strtoint(tfxpedit 15. Text);
y:=strtoint(tfxpedit2.Text);
if(x>y) then application.MessageBox('Not enough Quantity !!','Waming',16)
else begin
stock:=inttostr(y-x);
tfxpeditl 7.Text:=stock;
tfxpeditl O.SetFocus;
end;
end;
end;
procedure TForm5.tfXPEdit7KeyPress(Sender: Tübject; var Key: Char);
begin
if key=#13 then tfxpedit8.SetFocus;

..

86

end;

procedure TForm5.FormActivate(Sender: Tübject);
begin
query2.First;
combobox3.Items.Clear;
while not query2.Eof do begin
combobox3 .Items.Add(query2.Fields[O] .AsString);
query2.Next;
end;

end;

procedure TForm5 .ComboBox3Change(Sender: Tübject);
begin
query3 .First;
combobox4.Items.Clear;
combobox4.Text:=";
while not query3 .Eof do begin
if (query3.Fields[O].AsString=combobox3.Text) then begin
combobox4.Items.Add(query3.Fields[l].AsString);
end;
query3.Next;
end;

end;

procedure TForm5.tfXPButton2Click(Sender: Tübject);
var
a:word;
begin
a:=application.MessageBox('Are you sure?','Questions',36);
if (a=IDYES) then begin
query4 .Insert;
save;
query4.Post;
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock where pcode='+#39+(tfxpeditl .Text)+#39;
queryl .Open;
queryl .Last;
query 1 .Edit;
query 1 .Fields[3] .AsString:=tfxpedit 1 7.Text;
queryl .Post;
clear;
tfxpeditl 7.Text:=";
end;

87

end;

procedure TForm5.DBGrid1DblClick(Sender: Tübject);
VAR
a,b,c:string;
begin
a:=dbgrid 1 .Fields[O] .AsString;
b:=dbgridl .Fields[l] .AsString;
c:=dbgrid 1.Fields[12] .As String;

query4.SQL.Clear;
query4.SQL.Text:='select * from selling where firstname='+#39+(a)+#39+'and
lastname='+#39+(b)+#39;
query 4.Open;
query4.Last;
read;
//combobox info
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock';
queryl .Open;
combobox2.Items.Clear;
combobox2.Text:=";
if (comboboxl.Text='CABIN') then begin
query 1 .First;
while not query 1 .Eof do begin
if (queryl .Fields[O].AsString='CABIN') then begin
combobox2.Items.Add(queryl .Fields[1].AsString);
end;
queryl .Next;
end;
end;
if (combo box 1. Text='CONT AINER') then begin
queryl .First;
while not queryl .Eof do begin
if (query l.Fields[O].AsString='CONTAINER') then begin
combo box2 .Items.Add(query 1 .Fields [1] .AsString);
end;
queryl .Next;
end;
end;
read;
stock 1 :=strtoint(tfxpedit 15.Text);
///select queryl pcode
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock where
pcode='+#3 9+(query4.Fields[2] .AsString)+#3 9;

88

query 1. Open;
query I .Last;

query4.SQL.Clear;
query4.SQL.Text:='select * from selling';
query4.0pen;

end;

procedure TForm5.tfXPButtonl ClickıSender: TObject);
var
a:word;
begin
a:=application.MessageBox('Are you sure?','Questions',36);
if (a=IDYES) then begin
clear;
end;
end;

procedure TForm5.tfXPButton3Click(Sender: Tübject);
var
a:word;
c,d:integer;
s:string;
tc:real;
x:integer;
y:integer;
z:integer;
begin
a:=application.MessageBox('Are you sure?','Questions',36);
if (a=IDYES) then begin
a:=application.MessageBox('Do~you want to change only Quantity?','Questions',36);
if (a=IDYES) then begin
queryl.SQL.Clear; ,
queryI .SQL.Text:='select * from addstock where pcode='+#39+(tfxpeditl .Text)+#39;
queryI .Open;
query1 .Last;
c:=stockl;
I I showmessage(inttostr(c));
d:=strtoint(queryI .Fields[3].AsString);
I lshowmessage(inttostr(d));
tfxpeditz.Text:=inttostr(c+d);
s:=inputbox('New Quantitiy','Quantity=',");
if (strtoint(s)> strtoint(tfxpedit2.Text)) then application.MessageBox('Not Enough
Quantity','Warning!! ', 16)
else begin

89

tfxpeditl5.Text:=s;
x:=strtoint(tfxpedit15.Text);
y:=strtoint(tfxpeditIO.Text);
z:=strtoint(tfxpeditl 1.Text);
tc:=(x*y)+(((x*y)*z)/100);
tfxpedi t9.Text: =fl oatto str(tc);
tfxpeditl 7.Text:=inttostr(strtoint(tfxpedit2.Text)-strtoint(tfxpeditl 5. Text));
query I .Edit;
query l .Fields[3] .AsString:=inttostr(strtoint(tfxpedit2. Text)-strtoint(s));
query I .Post;
query4.edit;
save;
query4.Post;
clear;
end;
end else begin
query4.edit;
save;
query4.Post;
clear;
end;
end;
end;

procedure TForm5.tfXPButton4Click(Sender: Tübject);
var
a:word;
c,d:integer;
s:string;
begin
a:=application.MessageBox('Are,you sure?' ,'Questions' ,3 6);
if (a=IDYES) then begin
a:=application.MessageBox('Do you want to Add from Selling to Stock?','Questions',36);
if (a=IDYES) then begin
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock where pcode='+#39+(tfxpeditl .Text)+#39;
query 1. Open;
query I .Last;
c:=stockl;
d:=strtoint(queryl .Fields[3].AsString);
query I .Edit;
query l .Fields[3] .AsString:=inttostr(c+d);
query I .Post;
query4.Delete;
clear;
end else begin

90

query4.Delete;
clear;
end;
end;
end;

procedure TForm5.GroupBox3Click(Sender: Tübject);
begin

end;

end.

FORM6

unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ImgList, Grids, DBGrids, XP_ Button, StdCtrls, XP_ Edit, ExtCtrls,
XP_Form, DB, DBTables;

type
TForm6 = class(TForm)
tfXPForml: TtfXPForm;
GroupBox 1: TGroupBox;
Label 1 : TLabel;
Label2: TLabel;
Label3: TLabel;
tfXPEditl: TtfXPEdit;
tfXPEdit2: TtfXPEdit;
tfXPEdit3: TtfXPEdit;
tfXPButtonl: TtfXPButton;
DBGridl: TDBGrid;
tfXPButton2: TtfXPButton;
tfXPButton3: TtfXPButton;
tfXPButton4: TtfXPButton;
tfXPButton5: TtfXPButton;
ImageList 1 : TlmageList;
tfXPButton6: TtfXPButton;
Query 1: TQuery;
DataSource 1: TDataSource;
procedure tfXPButton5Click(Sender: Tübject);

..

91

procedure tfXPButton2Click(Sender: Tübject);
procedure tfXPButton3Click(Sender: Tübject);
procedure tfXPButton4Click(Sender: Tübject);
procedure tfXPButtonlClick(Sender: Tübject);
procedure DBGridlDblClick(Sender: Tübject);
procedure tfXPEdit3Chan·ge(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form6: TForm6;

implementation

{$R *.dfm}
procedure save;

begin
with form6 do begin
QUERYl .Fields[O].AsString:=tfXPeditl .Text;
QUERY1.Fields[l].AsString:=tfXPedit2.Text;
QUERYl.Fields[2].AsString:=tfXPedit3.text;

end;
end;

procedure read;
begin
with form6 do begin
tfXPeditl .Text:=QUERYl .Fielas[O] .AsString;
tfXPedit2.Text:=QUERYl.Fields[l].AsString;
tfXPedit3.Text:=QUERY1.Fields[2].AsString;

end;
end;

procedure clear;
begin
with form6 do begin
tfXPeditl .Text:=";
tfXPedit2.Text:=";
tfXPedit3.Text:=";
end;
end;

92

procedure TF orm6. tfXPB utton5 Click(Sender: TObj ect);
begin
form6.Close;
end;

procedure TForm6.tfXPButton2Click(Sender: TObject);
var
a:word;
begin
a:=application.MessageBox('Are you Sure?','Question',36);
if a=IDYES then
begin
query 1 .Insert;
save;
query 1 .Post;
query 1 .Edit;
queryl .Post;
end;
end;

procedure TForm6.tfXPButton3Click(Sender: TObject);
var
a:word;
begin
a:=application.MessageBox('Are you Sure?','Question',36);
if a=IDYES then
begin
queryl.EDIT;
save;
query 1 .Post;
queryl .Edit;
queryl .Post;
end;

end;
procedure TForm6.tfXPButton4Click(Sender: TObject);
var
a:string;
begin
a:=tfXPeditl .Text;
queryl .SQL.Clear;
queryl.SQL.Text:='select * from newuser where usemame='+#39+(a)+#39;
query1.Open;
queryl .Last;
queryl .Delete;
clear;

93

queryl .SQL.Clear;
queryl .SQL.Text:='select * from newuser';
query 1.Open;

end;

procedure TForm6.tfXPButton1Click(Sender: TObject);
begin
clear;
end;

I
procedure TForm6.DBGrid1DblClick(Sender: TObject);
var
a:string;
begin
a:=dbgridl .Fields[O].AsString;
queryl .SQL.Clear;

queryl.SQL.Text:='select * from newuser where usemame='+#39+(a)+#39;
queryl .Open;
queryl .Last;
read;
queryl .SQL.Clear;
queryl .SQL.Text:='select * from newuser';
query 1 .Open;

end;
procedure TForm6.tfXPEdit3Change(Sender: TObject);
begin

end;

end.

FORM7

unit Unit7;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, ComCtrls, ToolWin, ExtCtrls, XP_Form, XP_Button, ImgList,
DB, DBTables, Grids, DBGrids, StdCtrls, XP_Edit;

type

94

TForm7 = class(TForm)
tfXPForm1: TtfXPForm;
GroupBox1: TGroupBox;
Label1: TLabel;
Label3: TLabel;
ComboBoxl: TComboBox;
tfXPEditl: TtfXPEdit;
RadioGroup1: TRadioGroup;
tfXPButtonl: TtfXPButton;
tfXPButton2: TtfXPButton;
tfXPButton3: TtfXPButton;
DBGridl: TDBGrid;
Query1: TQuery;
DataSourcel: TDataSource;
tfXPButton4: TtfXPButton;
ImageListl: TlmageList;
procedure tfXPButton13Click(Sender: Tübject);
procedure ComboBoxl Change(Sender: Tübject);
procedure tfXPEditlChange(Sender: Tübject);
procedure tfXPButtonl Click(Sender: Tübject);
procedure tfXPButton2Click(Sender: Tübject);
procedure tfXPButton4Click(Sender: Tübject);
procedure GroupBoxl Click(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form?: TForm7; ı.

implementation

uses Unitl 1;

{$R *.dfm}

procedure TForm7.tfXPButton13Click(Sender: Tübject);
begin
FORM7.Close;
end;

procedure TForm7.ComboBox1Change(Sender: Tübject);

begin

95

queryl .SQL.Clear;
queryl .SQL.Text:='select * from selling';
queryl .Open;

end;

procedure TForm7.tfXPEdit1Change(Sender: Tübject);
begin
ifradiogroup 1 .Itemlndex=Othen begin
queryl.SQL.Clear; "
queryl.SQL.Text:='select * from selling where pmodel
like'+#39+(ttXPeditl.Text)+'%'+#39;
queryl .Open;
end;
if radiogroup1 .Itemlndex= 1 then begin
queryl .SQL.Clear;
queryl .SQL.Text:='select * from selling where pmodel
like'+#39+(ttXPeditl.Text)+'%'+#39;
queryl ,Open;
end;

end;

procedure TForm7.ttXPButton1Click(Sender: Tübject);
begin
forml 1.QRLabell.Caption:='LIST OF'+' '+comboboxl.Text+' '+'IN THE LIST';
FORMl 1.QuickRepl.Preview;
end;

procedure TForm7.ttXPButton2Click(Sender: Tübject);
begin
forml 1.QRLabell.Caption:='LIST OF'+comboboxl.Text+'IN THE SEL!,,ING';
form1 1 .QuickRep1.Print;
end;

procedure TForm7.ttXPButton4Click(Sender: Tübject);
begin
FORM?.Close;
end;

procedure TForm7.GroupBox1Click(Sender: Tübject);
begin

end;

96

end.

FORMS

unit Unit8;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, XP_Button, StdCtrls, XP_Edit, ExtCtrls, Grids, DBGrids, XP_Form,
ImgList, DB, DBTables, ComCtrls;

type
TForm8 = class(TForm)
tfXPForm1: TtfXPForm;
DBGridl: TDBGrid;
RadioGroup1: TRadioGroup;
Label1 : TLabel;
ComboBoxl: TComboBox;
tfXPEditl: TtfXPEdit;
Label2: TLabel;
tfXPButton2: TtfXPButton;
Panell: TPanel;
tfXPButton3: TtfXPButton;
ImageListl: TimageList;
Query1: TQuery;
DataSource1: TDataSource;
DateTimePickerl: TDateTimePicker;
tfXPButtonl: TtfXPButton;
DateTimePicker2: Tlrate'Timel'icker;
Label3: TLabel;
Label4: TLabel;
tfXPButton4: TtfXPButton;
tfXPButton5: TtfXPButton;
procedure tfXPButton3Click(Sender: TObject);
procedure ComboBoxlChange(Sender: TObject);
procedure tfXPEditl Change(Sender: TObject);
procedure tfXPButtonlClick(Sender: Tübject);
procedure tfXPButton4Click(Sender: Tübject);
procedure tfXPButton5Click(Sender: TObject);
procedure Panell Click(Sender: TObject);

private
{ Private declarations }

public

97

{ Public declarations }
end;

var
Forrn8: TForrn8;

implementation

uses UnitlO;

{$R *.dfm}

procedure TForrn8.tfXPButton3Click(Sender: Tübject);
begin
forrn8.Close;
end;

procedure TForrn8. Combo Box 1 Change(Sender: TObj ect);
begin
queryl .SQL.Clear;
queryl.SQL.Text:='select * from addstock where pname='+#39+(comboboxl.Text)+#39;
queryl .Open;
end;

procedure TForrn8.tfXPEditlChange(Sender: Tübject);
begin
if radio group l .Itemlndex=O then begin
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock where pmodel
like'+#39+(tfXPeditl .Text)+'%'+#39;
query 1. Open;
end;
if radio group l .Itemlndex= 1 then begin
queryl .SQL.Clear;
queryl .SQL.Text:='select * from addstock where pcost
like'+#3 9+(tfXPedit 1. Text)+'%'+#3 9;
queryl .Open;
end;

••

end;

procedure TForrn8.tfXPButtonlClick(Sender: Tübject);
var
dl,d2:string;
begin
{ queryl .SQL.Clear;

98

queryl .SQL.Text:='select * from addstock where pdate
between'+#3 9+(datetostr(datetimepickerl .Date))+#3 9+'and'+#3 9+(datetostr(datetimepick
er2.Date))+#39;
query 1. Open;}
d 1 :=datetostr(datetimepicker 1 .Date);
d2:=datetostr(datetimepicker2.Date);
queryl .close;
Queryl .SQL.Clear;
Queryl.SQL.add('Select * from addstock where pdate>='+#39+(d1)+#39+'and
pdate<='+#3 9+(d2)+#39);
query 1. Open;
{
Queryl .Params[O] .AsDate:=StrToDate(dl);
Queryl .Params[l].AsDate:=StrToDate(d2);

ç
Queryl .Prepare;
Queryl.ExecSQL;}

end;

procedure TForm8.tfXPButton4Click(Sender: Tübject);
var
x,a,b,c:integer;
d,e,f:string;
begin
{ queryl .First;
while not query 1 .Eof do begin

d:=query 1 .Fields[5] .AsString;
e:=queryl.Fields[6].AsString;
x:=length(d);
while x>O do begin

if (d[x]<>'Y')ap.d(d[x]<>'T')and(d[x]<>'L')and(d[x]<>' ')then
begin
f:=f+d[x];
end;
x:=x-1;
end;

a:=strtoint(f);
x:=length(e);

while x>O do begin
if (e[x]<>'Y')and(e[x]<>'T')and(e[x]<>'L')and(e[x]<>' 'jthen
begin
f:=f+e[x];
end;
x:=x-1;

99

end;
b:=strtoint(f);
c:=c+(a+b);
queryl .Next;
end;

}
//forml O.QRLabel13 .Caption:=inttostr(c);

formlO.QRLabell.Caption:='LIST OF'+' '+comboboxl.Text+' '+'IN THE STOCK';
FORMl O.QuickRep1 .Preview;
end;

procedure TForm8.tfXPButton5Click(Sender: Tübject);
begin
formlO.QRLabell.Caption:='LIST OF'+comboboxl.Text+'IN THE STOCK';
formlO.QuickRepl.Print;
end;

procedure TForm8.Panel1Click(Sender: Tübject);
begin

end;

end.

FORM9

unit Unit9;
••

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, DBTables, Grids, DBGrids, dxCore, dxButton, StdCtrls,
XP_Edit, ExtCtrls, XP_Form, XP_Button, ImgList;

type
TForm9 = class(TForm)
tfXPForm1: TtfXPForm;
GroupBoxl: TGroupBox;
GroupBox2: TGroupBox;
Label1: TLabel;
tfXPEditl: TtfXPEdit;
dxButtonl: TdxButton;

100

dxButton2: TdxButton;
dxButton3: TdxButton;
DataSource 1: TDataSource;
DBGridl: TDBGrid;
Queryl: TQuery;
Query2: TQuery;
Query3: TQuery;
DataSource2: TDataSource;
DataSource3: TDataSource;
Label2: TLabel;
Combo Box 1: TComboBox;
Label3: TLabel;
tfXPEdit2: TtfXPEdit;
DBGrid2: TDBGrid;
dxButton4: TdxButton;
dxButton5: TdxButton;
dxButton6: TdxButton;
tfXPButtonl: TtfXPButton;
Button I: TButton;
Button2: TButton;
ImageList 1 : TimageList;
procedure dxButtonl Click(Sender: TObject);
procedure dxButton2Click(Sender: TObject);
procedure dxButton3Click(Sender: Tübject);
procedure FormActivate(Sender: Tübject);
procedure dxButton4Click(Sender: TObject);
procedure dxButton5Click(Sender: TObject);
procedure dxButton6Click(Sender: TObject);
procedure DBGrid2DblClick(Sender: Tübject);
procedure tfXPButtonlClick(Sender: TObject);
procedure Buttonl Clicktfiender: TObject);
procedure Combo Box 1 Change(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure GroupBox2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form9: TForm9;

implementation

101

uses Unitl;

{$R *.dfın}

procedure TF orm9 .dxButtonl Click(Sender: TObject);
begin
queryl .SQL.Clear;
queryl.SQL.Text:='select * from cnt where cnt='+#39+(tfxpeditl.Text)+#39;
query 1. Open;
query l .Last;
if (queryl .Fields[O].AsString<>tfxpeditl .Text) then
begin
queryl .Insert;
query l .Fields[O] .AsString:=tfxpeditl .Text;
queryl .Post;
query2 .First;
combo box I .Items.Clear;
while not query2.Eof do begin
combo box I .Items.Add(query2.Fields[O] .AsString);
query2.Next;
end;

tfxpeditl .Text:=";
tfxpeditl .SetFocus;
Buttonl .Click;
end;

end;

procedure TForm9.dxButton2Click(Sender: Tübject);
begin
queryl .SQL.Clear;
queryl.SQL.Text:='select * from cnt where cnt='+#39+(tfxpeditl.Text)+#39;
queryl .Open;
query l .Last;
if (queryl .Fields[O].AsString=tfxpeditl .Text) then
begin
queryl .edit;
queryl .Fields[O].AsString:=tfxpeditl .Text;
query l .Post;
tfxpedit 1. Text:=";
tfxpeditl. SetF ocus;
Buttonl .Click;
end;

end;

102

procedure TForm9.dxButtoiı3Click(Sender: TObject);
begin
queryl .SQL.Clear;
queryl.SQL.Text:='select * from cnt where cnt='+#39+(tfxpeditl.Text)+#39;
query 1. Open;
query 1 .Last;
if (queryl.Fields[O].AsString=tfxpeditl.Text) then
begin
queryl .Delete;
tfxpeditl .Text:=";
tfxpeditl. SetFocus;
Buttonl .Click;
end;

end;

procedure TForm9.FormActivate(Sender: TObject);
begin
query2.First;
combo box 1 .Items.Clear;
while not query2.Eof do begin
comboboxl .Items.Add(query2.Fields[O] .AsString);
query2.Next; ·
end;

end;

procedure TForm9.dxButton4Click(Sender: TObject);
begin
query3.SQL.Clear; _
query3.SQL.Text:='select * from cty where cnt='+#39+(comboboxl.Text)+#39+'and
cty='+#39+(tfxpedit2.Text)+#39;
query3. Open;
query3 .Last;
if (query3.Fields[O].AsString<>comboboxl .Text) and
(query3.Fields[l].AsString<>tfxpedit2.Text) then
begin
query3 .Insert;
query3.Fields[O].AsString:=comboboxl.Text;
query3 .Fields[l] .AsString:=tfxpedit2.Text;
query3 .Post;
tfxpedi t2.Text:=";
end;
end;

103

procedure TForm9.dxButton5Click(Sender: TObject);
begin
query3.SQL.Clear;
query3.SQL.Text:='select * from cty where cnt='+#39+(comboboxl.Text)+#39+'and
cty='+#39+(tfxpedit2.Text)+#39 ;
query3. Open;
query3 .Last;
query3 .edit;
query3 .Fields[O] .AsString:=combobox I .Text;
query3.Fields[l].AsString:=tfxpedit2.Text;
query3 .Post;
tfxpedit2.Text:=";
end;

procedure TForm9.dxButton6Click(Sender: TObject);
begin
query3.SQL.Clear;
query3.SQL.Text:='select * from cty where cnt='+#39+(comboboxJ.Text)+#39+'and
cty='+#39+(tfxpedit2.Text)+#39;
query3. Open;
query3 .Last;
if (query3.Fields[O].AsString=comboboxl .Text) and
(query3.Fields[l].AsString=tfxpedit2.Text) then
begin
query3 .Delete;
tfxpedit2.Text:=";
end;
end;

procedure TForm9.DBGrid2DblClick(Sender: TObject);
begin "
combo box l .Text:=dbgridl .Fields[1] .AsString;
tfxpedit2.Text:=dbgridl .Fields[O].AsString;
end;

procedure TForm9. ttXPButton 1 Click(Sender: Tübj ect);
begin
form9.Close;
forml .Enabled:=true;
end;

procedure TForm9.ButtonlClick(Sender: Tübject);
begin
query I .SQL.Clear;
query I .SQL.Text:='select * from cnt';
queryl .Open;

104

end;

procedure TForm9.ComboBox1Change(Sender: TObject);
begin
query3.SQL.Clear;
query3.SQL.Text:='select * from cty where cnt='+#39+(comboboxl.Text)+#39;
query3.0pen;
end;

procedure TForm9.Button2Click(Sender: Tübject);
begin
query3.SQL.Clear;
query3.SQL.Text:='select * from cty where cnt='+#39+(comboboxl.Text)+#39;
query3.0pen;
end;

procedure TForm9.DBGrid1DblClick(Sender: Tübject);
begin
tfxpeditl .Text:=dbgridl .Fields[O].AsString;
end;

procedure TForm9.GroupBox2Click(Sender: TObject);
begin

end;

end.

FORMlO

unit Unitlü;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TFormlO = class(TForm)

QuickRep 1: TQuickRep;
QRBandl: TQRBand;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;

105

,

QRLabel4: TQRLabel;
QRLabel5: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRBand2: TQRBand;
QRDBTextl: TQRDBText;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;
QRDBText5: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
QRBand3: TQRBand;
QRLabell 1: TQRLabel;
QRLabellO: TQRLabel;
procedure QRLabel9Print(sender: Tübject; var Value: String);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Formlü: TFormlO;

implementation

{$R *.dfm}

procedure TForm10.QRLabel9Print(sender: Tübject; var Value: String);
begin

end;

end.

FORMll

unit Unitl 1;

interface

uses

106

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForml 1 = class(TForm)
QuickRep1: TQuickRep;
QRBandl: TQRBand;
QRLabell: TQRLabel;
QRBand2: TQRBand;
QRDBTextl: TQRDBText;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;
QRDBText5: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
QRDBText8: TQRDBText;
QRDBText9: TQRDBText;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabel5: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRBand3: TQRBand;
QRLabell 1: TQRLabel;
QRLabel12: TQRLabel;
QRLabel13: TQRLabel; ..
procedure QRBandlAfterPrint(Sender: TQRCustomBand;
BandPrinted: Boolean);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml 1: TForml 1;

implementation

{$R *.dfm}

107

procedure TForml 1 .QRBandlAfterPrint(Sender: TQRCustomBand;
BandPrinted: Boolean);

begin

end;

end.

FORM 12

unit Unitl2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forriıs,
Dialogs, XP_Button, DB, DBTables, StdCtrls, XP_Edit, ExtCtrls, XP_Form;

type
TForml2 = class(TForm)
tfXPForml: TtfXPForm;
Label 1: TLabel;
Label2: TLabel;
tfXPEditl: TtfXPEdit;
tfXPEdit2: TtfXPEdit;
DataSource 1: TDataSource;
Query 1: TQuery;
tfXPButtonl: TtfXPButton;
tfXPButton2: TtfXPButton;
procedure tfXPButtonlClick(Sender: Tübject);
procedure tfXPButton2Click(Sender: TObject);
procedure tfXPEdit2Change(Sender: Tübject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml2: TForml2;

implementation

uses Unitl;

108

{$R *.dfm}

procedure TForm12.ttXPButton1Click(Sender: Tübject);
begin
QUERYl.SQL.clear;
queryl.SQL.Text:='select * from newuser where username='+#39+(tfxpeditl.Text}.-#39;
queryl.Open;
queryl .Last;
if (queryl.Fields[l].AsString=tfxpedit2.Text) then begin
form 1 .enabled:=true;
form12.Hide;
forml .show;
end;
end;

procedure TForml 2.ttXPButton2Click(Sender: Tübject);
begin
FORM12.Close;
end;

procedure TForml2.ttXPEdit2Change(Sender: Tübject);
begin

end;

end.

109

REFERENCES

[1] İhsan K.ARAGLLLE and Zeytin PALA Delphi 6

[2] Memik YA.'\lK Borland Delphi - sisıem Yayıncılık

[3] http://wv.-w.datakent.com

[4] http://~Yw.delphiturk.com

[5] http://v.,vw.programlama.com

••

110

