
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Car Care and Repair Center

Graduation Project

COM-400

Student: Alper Karakuş(20010680)

Supervisor: Mr. Ümit İLHAN

Lefkoşa - 2006

ACKNOWLEDGMENTS

"It is my pleasure to take this opportunity to emphasize my greate gratitude to man ,

individuals who have given me a lot of supports during myfive-year Undergraduation

program in the Near East University.

First, I would like to thank my supervisor Mr.Ümit İlhan/or

his ivaluable advice and belief in my work and my self over

the course of this Graduation Project..

Second, and thank my dearestparents who encouraged me to continue beyond my

undergraduate studies, to myfather who proceeded before me and to my mother who

encouraged me along the way.

Finally, I would also like thank all myfriends

for their advice and support."

ABSTRACT

Data, gathered around us as a collection of facts, is of no use unless it is organized

and represented in some meaningful form. Data represented in some meaningful form

like, tables, charts, or graphs become information, which can be easily processed. The

collection of data, usually referred to as the database, contains information about one

particular enterprise. These days database are used by a variety of users and organizations,

which are important tools in data processing DBMS, are designed to manage large bodies

of database information.The program provides, manage and take hold of business

transactions' record, customer records, car records, stock records, A scheduled user

manual prepared for helping the users to select a suitable action.

This project has as its goal to develop software, processing information about

activities of car care repair center. Software developed in this project contains both

customer information, user information and information associated with care,sales of parts

and purchase of car parts. I wish to develop this software for processing all activities of

the company.

11

TABLE OF CONTENTS

ACKNOWLEDGMENTS - 1

ABSTRACTION 11

TABLE OF CONTENTS lll

CHAPTER ONE INTRODUCTION TO VISUAL BASIC.NET 1 '
1.1 Introduction to Programming 2
1.2 Introduction to Programming and VB .NET 2·
1.3 Com~uter O~erations 3

1.3.1Input Data 3

I 1.3.2Store data in memory 4

I 1.3.3Perform arithmetic on data 4

I 1.3.4Compare two values and select one of two alternative actions 4

'
1.3.5Repeat a group of actions any number of times 4
1.3.6Output the results of processing 4

1.4Programs and Programming 5
1.5Programming Languages 5

. 1.6Programming .in Windows 7
ı 1. 7 Windows in XP 8
1.8THE VB.NET Language 9

1.9.1Start Visual Studio .NET from the Windows Desktop lQ
' 1.9.2Visual Basic .NET Start Paze Start page 10

1.9.3New Project Dialog Window 11 ·
1.9.4VB .NET IDE Windows Workspace 11
1.9.5VB .NET Applications 12
1.9.6Toolbox 12
1.9.7Solution Explorer Window 13
1.9.8Properties Window -- Set Properties 14
1.9.9Add Event Procedure 14
1.9.10Test or Run Application 15
1.9.11Saving and Recalling a Project 15

I

1.9.12Example - Step 1: Adding Controls 15

1.9.13Example -- Step 2: Adding Properties 16

1.9.14Example -- Step 3: Addinz Events 16
1.9.15Running an A~~lication 16
1.9.16Adding an Event Procedure 16

1.9.17The MessageBox.ShowMethod 17.
1.9.18Message Box with Caption 18
1.9.19Message Box with Buttons 18

1.9.20Message Box with Default Button 19

1.9.21Setting the Initial Object Properties 19

1.9.22Looking at the Focus and Tab Sequence 19
I

1.9.22Looking at the Focus and Tab Sequence 20

1.9.24Statement 20

1.9.25Help Facility 20
I

1.1 OProgramming in VB.NET 21

lll

1.10.1 Step One: Define Problem 22

1.11.2Step Two: Create Interface . 23

I 1.10.3Step Three: DevelopLogicfor Action Objects 23
I

' 1.10.4Step Four: Write and Test Code for Action Objects 25

1.10.5Step Five: Test Overall Project 27

1.10.6Step Six: Document Your Project in Writing 27

CHAPTER TWO WHAT IS AN SQL SERVER? 28

2.1 INTRODUCTION TO SQL SERVER 28
-

2.2 Relational Database Management System 29

2.3 Data Storage Models 29

2.3.1 OLTP Databases 29

2.3.2 OLAP Databases
29'

2.4 Client Applications 29

2.4.1 Transact-SQL 29

2.4.2 XML 30

2.4.3MDX 30

2.4.5 OLE DB and ODBC APis 30

2.4.6 ActiveX Data Objects and ActiveXData Objects (Multidimensional) 30

2.4.7English Query 30

2.5 CLIENT SERVER COMPONENT 30

2.5.1 Client-Server Architecture 30

2.5.2 Client Components 31

2.5.2.1 Client Application 31

2.5.2~2 Database API 31

2.5.2.3Client Net-Librarv 3f

2.5.3Server Components 31

2.5.3.1Server Net-Libraries 32

2.5.3.2 Open Data Services 32

2.5.3.3Relational Engine 32
I

2.5.3.4 Storage Engine 32

2.6 Client-Server Communication Process 32

2.7 SQL SERVER SERVICES 33

1.7.1Four SQL Server Services 33

2.7.1.1MSSQLServer Service 33

2.7.1.2SQLServerAgent Service 33

2.7.1.3Microsoft Distributed Transaction Coordinator 33

2.7.1.4Microsoft Search
34

2.7.2 Multiple Instances of SQL Server 34

2.8 SQL SERVER INTEGRATION 34

2.8.1 Client Components 34

2.8.2 Server ComEonents
34

2.8.3 Internet Browsers and Third-Party Applications 35

2.8.3.1Microsoft Internet Information Services 36
I 2.8.3.2Integrating SQL Server with Other Microsoft Server Applications 36

2.9 SQL SERVER DATABASES 36

2.9.1Types of Databases 36

2.9.2 Database Objects 36

2.9.2.1 Referring to SQL Server Objects 36

2.9.3 Fully Qualified Names . 36

2.9.4 Partially Specified Names 37.

2.9.5 System Tables 38

2.9.5.1 System Tables 38

2.9.5.2 Database Catalog 38

2:9.5.3 System Catalog 38

2.9.6 Metadata Retrieval 38

2.9.7 System Stored Procedures 38
2.9.8 System and Metadata Functions 38

2.9.9 Information Schema Views 39

2.10 SQL SERVER SECURITY 39

2.10.1 Login Authentication 39

2.10.2.Windows Authentication 39

2.10.3 SQL Server Authentication 39

2.10.4 Authentication Mode 40

2.10.5 Windows Authentication Mode 40
2.10.6 Mixed Mode 40

I

2.11 Database User Accounts and Roles 40

2.11.1 Database User Accounts 40

2.11.2 Roles
2.11.3 TrQeS of Roles 41

2.11.3.1 Fixed Server Role 41

2.11.3.2 Fixed Database Roles 41

2.11.3.3 User-defined Database Roles 41

2.11.4 Permission Validation 41

2.12 WORKING WITH SQL SERVER 42

2.12.1 Administering a SQL Server Database 42

2.12.2 Common Administrative Tasks 42

2.12.3 SQL Server Enterprise Manager 42

2.12.4 SQL Server Administration Tools and Wizards 42
2.12.5 SQL Server Command Prompt Management Tools 4?
2.12.6 SQL Server Help and SQL Server Books Online 43

2.12.7 Implementing a SQL Server Database 43
2.12.8 Selecting an Application Architecture for SQL Server 43

2.12.9 Software Architecture 43

2.12.10 Architectural Desizn 44

2.12.10.1 Intellizent Server (2-Tier) 44
' I 2.12.10.2 Intelligent Client (2-Tier) 44

2.12.10.3 N-Tier 44

2.12.10.4 Internet 44

2.12.11 Desizninz Applications Using Database APis 45

2.13 OLE DB 45

2.14 ADO 45

2.15 OVERWIEW OF PROGRAMMING SQL SERVER 46
2.15.1 Designing Enterprise Application Architecture 46

I

2.15.2 Identifying Logical Lavers 46

2.15.3 Data Presentation Layer 46

2.15.4 Application Logic Layer 46

2.15.5 Data Services La!er 47

2.15.6 Designing Physical Layers 47

2.15.6.1 Using a Two-Tier Model 47

2.15.6.2 Using a Multi-Tier Model 47

2.15.7 Accessing Data 48

2.15.8 Accessing Data 4Q_
2.15.8.1 Providinz Universal Data Access 49

2.16 SQL SERVER PROGRAMMING TOOLS 49.

2.16.1 SQL Query Analyzer 49

2.16.2 osgl Utility 50
2.17 THE TRANSACTION-SQL PROGRAMMING LAı~GUAGE 51

2.17.1 Elements of Transact-SQL 52

2.17.2 Data Control Language Statements 52

2.17.3 Data Definition Language Statements 52

2.17.4 Data Manipulation Language Statements 53

2.17.5 SQL Server Object Names 53

2.17.6 SQL Server Obiect Names 54

2.18 ADDITIONAL LANGUAGE ELEMENTS 55

2.18.1 Local Variables 55

2.18.2 Operators 56

2.18.3 Types of Operators 56

2.18.3.1 Arithmetic 56

2.18.3.2 Comparison 56.

2.18.3.3 String Concatenation 56

2.18.3.4 Logical 56

2.18.4 Operator Precedence Levels 57

2.18.5 Functions 57

2.18.5.1 A1rn:regateFunctions 57

2.18.5.2 Scalar Functions 57

2.18.5.3RowsetFunctions 58

2.18.5.4 Convert Functions 58

2.18.5.5 Date Functions 58

2.18.5.6UserFunctions 58

2.18.5.7 Column Property Functions 59

2.18.6 Control of Flow Language Elements 59

2.18.7 Statement Level 59

2.18.8 Row Level 60

2.18.9 Comments 61.

2.18.9.1 In-Line Comments 62

2.18.9.2 Block Comments 62

2.19 WAYS TO EXECUTE TRANSACTION-SQL STATEMENTS 63

2.19.lDynamically Constructing Statements 63

2.19.2 Define a Batch by Using the GO Statement 64

2.19.3 How SQL Server Processes Batches 65

2.19.4 You Cannot Combine Some Statements in a Batch 65

2.19.4.1 Using Scripts 66

' 2.19.4.2 Using TransactionsI

2.19.4.3 Using XML 67
2.19.4.3.1 Allowinz Client Browser to Format Data . 67
2_.19.4.3.2 Specifying the FOR XML AUTO Option
2.19.4.3.3 Specifying the FOR XML RAW Option 68
2.19.4.3.4 Identifying Limitations of Using the FOR XML Clause 68

CHAPTER THREE 69

SCREEN SHOT AND USER MANUAL 69

APPENDIX A 84

'

.

-

INTRODUCTION

Nowadays the technology is developed a lot and started to use by anyone in the world

no matter who he/she is. Because of the technology is entered to every platform of our life

human needed to combine both software and hardware. Without software the machines are

nothing. They need software to operate.
The computer program is also became a part of our lives. The people operate with

programming language in everywhere. My project is Car Care Repair Center Program.This

program is used to keep the information about the car and customer and stock information.
'

'In my project the main point is making the user's job easy. It lets to the manager to

manage the personnel, customer information easily. Also I coded this program to use in the

econd class care repair centers. The mean of these the center is local. Not consist of internet

contact.
This program has many useful abilities. These are; defi.nationof all details of car,if

you wish,without saving information,care and repair , no the net total you are able to

discount,taking parts from outside for repairing car and saving this information.

Also this program can produce some calculated reports; daily report, according to

dates report and according to number plate reports,
The Project consist of introduction, three chapters and conclusion.

Chapter one describes the vb.net and introduction to programming,some examples

about how to code basic processes in vb.net
Chapter two describes introducing to Microsoft SQL SERVER, understanding of

Microsoft SQL SERVER and objects of Microsoft SQL SERVER
Chapter three includes the screenshots and user manual of Care Repair System. These

screenshots are related to codes of the program which is explained in the appendix.

1

CHAPTER ONE

INTRODUCTION TO VISUAL BASIC.NET

1.1 Introduction to Programming

Many organizations are finding that in order to survive, they must be able to
collect and process data efficiently and make the resulting information on their
operations available to their employees. Successful organizations have found that the
key to making this information available is having an effective information system that
will carry out these operations. An information system is the combination of
technology (computers and people that enables an organization to collect data, store
them, and transform them into information.

To understand the concept of an information system fully, you need' to
understand the difference between data and information. Data are raw facts that are
collected and stored by the information system. Data can be in the form of numbers,
letters of the alphabet, images, sound clips, or even video clips. You are undoubtedly
very familiar with many types of data, including names, dates, prices, and credit card
numbers. By themselves, data are not very meaningful; however, when data are
converted by the information system into information, the end result is meaningful.
Once again, you are familiar with many forms of information, including written reports,
lists, tables, and graphs. Information is what organizational employees use in their work.

To convert or process data into information electronically, software must direct
the operations of the computer's operations. Software is composed of one or more lists
of instıuctions called programs, and the process of creating these lists of instructions is
termed programming. While computer hardware can be mass-produced on assembly
lines like other consumer goods, software must be developed through the logical and
creative capabilities of humans. Individuals or groups of individuals working together
must develop the instructions that direct the operations of every computer in use today.

1.2 Introduction to Programming and VB .NET

The same is true whether the instructions are for the computer that controls your
car's fuel system, the computer that controls the space shuttle, or the computer that
prints the checks for the business at which you work.

While a great deal of programming work goes on at large software firms like
Microsoft or Adobe Systems, much more programming is done at companies that
produce nonsoftware goods and services. While you may think that these companies
could buy off the shelf software like word processors or spreadsheets to run their
business, in most cases companies must develop their own software to meet their
particular needs. In fact, it has been said that the "software needed to be competitively
different is generally not available from off-the-shelf packages" and that
" ... building ... systems for unique [competitive] capability is often the single most
important activity for an ... organization.". This means that no matter how good off-the
shelf software becomes, there is always going to be demand for programmers to wort in
businesses and not-forprofit organizations. In fact, the demand for information systems
employees is accelerating and the future is very bright for persons trained in this field.

Programming is actually part of a much larger process known as systems
development.

2

, This process involves a large scale effort to either create an entirely new
information system or to update (maintain) an existing information system. In either
case, systems development involves four primary steps: planning, analysis, design, and
implementation. In the planning stage, it is decided what must be done to solve a
problem or meet a need--create a new system, update an old one, or even, purchase a
system from an outside source. Once it has been decided what must be done, the next
step is to analyze the system that will be created. This may involve analyzing 'an
existing system or analyzing the system that must created. Once the analysis step is
completed, the next step is to design the new or updated system. This design must be
complete and detailed and leave nothing to chance or guesswork. Once the design is
completed, the system can be implemented. It is in the implementation step that
programming comes in. Programmers work with the results of the design step to create
a series of computer programs that, together, will work as the needed information
system.In many cases, the programmers will know little or nothing about the overall
problem and must depend completely on the results of the design step. However,
without the programming process, the information system will never be built or
updated. Visual Basic .NET (VB .NET) and the entire Microsoft .NET framework is
aimed at making this process possible. Given that programming is such an important
part of building and maintaining information systems for organizations of all sizes, it is
easy to see why individuals interested in working in the field of information systems
must have some knowledge of computer programming. This book is written with 'the
purpose of helping you become capable of writing computer programs that will solve
business-related problems.

1.3 Computer Operations

Before we start our discussion of creating computer programs, it is useful to
understand the six operations that all computers can carry out to process data into
information.Understanding these operations will help you when you start writing
programs.Martin, James, Cybercorp: The New Business Revolution, New York:
AMACOM Books

These operations are the same regardless of whether we are discussing multi-
user mainframe computers that handle large-scale processing, such as preparing the end
of term grade rolls or processing the university payroll, or small personal computers that

are used today by a large proportion of office workers in the United States and
other developed countries. The six operations that a computer can perform are:

1. Input data
2. Store data in internal memory
3. Perform arithmetic on data
4. Compare two values and select one of two alternative actions
5. Repeat a group of actions any number of times
6. Output the results of processing
Let's now discuss each of these operations in a little more detail.

1.3.1 Input Data: For a computer to be able to transform data into information, it must
first be able to accept input of the data. Data are typically input from a keyboard or
mouse, but they can also come from other sources such a barcode reader like those used
at checkout terminals. Input can also come from some type of sensor or from a data file
on computer disk. For example, with a word processor, the letters of the alphabet,
numbers, and punctuation symbols are the data that are processed by the computer. New

3

documents are created by entering data from the keyboard while existing documents are
loaded from your hard drive or floppy disk.

1.3.2 Store data in memory: Once data have been input, they are stored in internal
memory.

Each memory location holding a piece of data is assigned a name, which is used
by the instructions to perform the processing. Since the values in a memory location can
change as the process occurs, the memory locations are called variables. The current
balance in your checking account would typically be stored in a single memory location

and be identified by a variable name. The instructions for processing this data
are also stored in memory. In the earliest days of computing, the instructions (program)
were not stored in memory and had to be entered one at a time to process the data.
When the stored program concept was developed by John von Neumann, it was a
tremendous breakthrough. With a stored program, the instructions can be executed as
fast as they can be retrieved from memory to convert the data into usable information.

1.3.3 Perform arithmetic on data: Once the data and instructions have been input and
stored, arithmetic operations can be performed on the variables representing the data to
process them into information. This includes addition, subtraction, multiplication,
division, and raising to a power. The processing chip of the computer carries out these
operations by retrieving the data from memory and then performing the processing
based on instructions from the programmer. You may ask how a word processor or
computer game works if all the computer can do is perform arithmetic. The answer is
that everything in a computer-numbers, letters, graphics, and so on-is represented by
numbers, and all processing is handled through some type of arithmetic operation.

,\

1.3.4 Compare two values and select one of two alternative actions: To do anything
other than the simplest processing, a computer must be able to choose between two sets
of instructions to execute. It does this by comparing the contents of two memory
locations and, based on the result of that comparison, executing one of two groups of
instructions. For example, when you carry out the spell-checking operation, the com
puter is checking each word to determine if it matches a word in the computer's
dictionary. Based on the result of this comparison, the word is accepted or flagged for
you to consider changing.

1.3.5 Repeat a group of actions any number of times: While you could carry out all
of the above operations with a typewriter or handheld calculator, repeating actions is
something the computer does better than any person or any other type of machine.
Because a computer never tires or becomes bored, it can be instructed to repeat some
action as many times as needed without fear of an error occurring from the constant
repetition. The capability of a computer to repeat an operation is what most clearly sets
it apart from all other machines. The spell-checking operation mentioned above iSA an
example of a repeated action: The program repeatedly checks words until it comes to
the end of the document.

1.3.6 Output the results of processing: Once the processing has been completed and
the required information generated, to be of any use the information must be output.
Output of processed information can take many forms: displayed on a monitor, printed
on paper, stored on disk, as instructions to a machine, and so on. Output is
accomplished by retrieving information from a memory location and sending it to the

4

output device. For example, when you complete your work with a word processor, the
resulting information is displayed on your monitor and you probably will also print it
for distribution to others.

These six operations are depicted in Figure 1-1, where each operation is
numbered.

Data Memory

Data Information

Processing Chip

Repeat 0
Operations

Perform 0)
Aıitlımetic -

l\'lake (ı)
Decisions

1.4 Programs and Programming

To carry out any of the six operations just discussed, you must be able to provide
instructions to the computer in the form of a program. The most important thing about
programming is that it is a form of problem solving, and the objective is to develop the
step-by-step process-the logic-that will solve the problem. Step-by-step logic of this
type is referred to as an algorithm. You have worked with algorithms before; a set of
directions to a party is an algorithm, as is a recipe to make spaghetti sauce or to bake a
cake. For a computer program, you must develop a set of instructions for solving a
problem using only the six operations of a computer. This is the most difficult part of
programming. Many times a program fails to work because the programmer attempts to
write the program before developing the correct algorithm for solving the problem.
Only after you have developed the logic of the solution can you consider actually
writing the instructions for the computer. '

Control Structures While it can be quite daunting to create the logic to
solve a problem, remember that all computer programs can be created with only three
types of logic or, as they arcknown in programming, control structures. The three
control structures are sequence, decision, and repetition. The sequence control
structure includes the input, storage, arithmetic, and output computer operations
discussed earlier. It is so called because all four of these operations can be performed
without any need to make a decision or repeat an operation. At its simplest, sequence
means one program instruction follows another in order. Of course, it is up to the
programmer to determine the proper sequence order for the instructions. The decision
control structure is the same as the decision-making computer operation discussed
earlier. It enables the programmer to control the flow of operations by having the user or
data determine which operation is to be performed next.

Finally, the repetition control structure is used to repeat one or more
operations. The number of repetitions depends on the user or the data, but the
programmer must include a way to terminate the repetition process. ,

All algorithms are created using the six operations of a computer within
combinations of these three control structures. Once you learn how to create the logic

5

for these three control structures, you will find that writing meaningful and useful
programs is a matter of combining the structures to create more complex logic.

1.5 Programming Languages

Once you have developed the logic for solving the problem, you can think about
writing the actual instructions that the computer will use in implementing the logic.
Computer programs must be written in one of various programming languages such as
VB .NET. These languages use a restricted vocabulary and a very structured syntax that
the computer can understand. ·While a great deal of research is ongoing to create
computers that can accept instructions using conversational English, currently no
computers meet this criterion. So, until computers like C3-PO and R2D2, popularized in
the Star Wars movies, are created, we are stuck with using these programming
languages. Within the computer, the data and instructions are represented in the binary
number system as a series of zeros and ones. This form of representation is used
because the computer's only two electrical states--on and off--correspond to 1 and O.
Using a string of transistors that act as switches, the computer can represent a number,
character, or instruction as a series of on-off states. All processing is carried out in the
binary number system. For example, the computer carries out all arithmetic in binary
instead of in the decimal number system that humans use. The binary form of 'the
instructions is called machine language, since this is the language that computers use to
carry out their operations. An example of the machine language statements necessary to
sum the digits 1 to 100 for a computer using an Intel CPU.

1.5 Machine language program

10111000 00000000 00000000 Set Total Value to O
101110010000000001100100 Set Current Value to 100
00000001 11001000 Add Current value to Total Value
O 1001001 Subtract 1 from Current Value
01110101 11111011 If Current value is not O, repeat

Programming the very first computers, which had to be done in binary, was very
difficult and time-consuming. Now, we have English-like programming languages, like
VB .NET which are referred to as high-level languages because they are close to the
level of the human programmer rather than being close to the level of the machine.
Before the statements in a high-level program can be used to direct the actions of a
computer, _they must be translated into machine language. Files on a Windows-based
computer with an .exe file extension are machine-language programs that have been
translated from some high-level language. They can be executed with no translation
because they are already in a binary form. Until recently, this was a direct translation
from high-level language to machine language by a software program known as a
compiler or interpreter, depending on whether the code was translated as a unit or line
byline as shown in Figure

6

High level
language program

~achinelanguage
progam

The problem with this approach is that different types of computers have
different machine languages so a program would have to be translated differently for an
Apple computer than for a Windows computer. To make it possible for the same
program to run on all types of machine, the concept of the just-in-time (JIT) compiler
was developed. With this approach, the high-level program is translated or compiled
into an intermediate form that is machine-independent. The two approaches to this use
of a just-in-time compiler are Java from Sun Microsystems and the .NET framework
from Microsoft of which VB .NET is a part. In the case of Java, the intermediate form is
called bytecode and for the .NET framework, it is called Microsoft Intermediate
Language (MSIL). Once converted a VB .NET program is compiled into MSIL, the
just-in-time compiler on any computer can convert it into machine language for that
particular machine. This process is shown in Figure 1-4 for MSIL. Where the Java
approach only works for programs written in Java, the .NET framework approach works
for all languages that have been revised to work under that framework. At this time,
these include VB .NET, C# (pronounced "c-sharp) .NET, and C++ (prounouced "c plus
plus") .NET. This means that if you are using one of these language, it can be compiled
in MSIL and combined with other programs in the MSIL and then sent to the JIT
compiler, which for the .NET framework is called the Common Language Runtime
(CLR).

1.6 Programming in Windows

As you are probably aware, most personal computers today run some form of the
Microsoft Windows operating system such as Windows 95, Windows 98, Windows ME,
Windows 2000, or Windows XP. With Windows being the primary operating system for
personal computers, learning to program in the Windows environment has become a
critical skill for anybody interested in working in information systems. To program in
Windows, you first need to understand a little about how Windows works.

7

VB .NET
program) I JIT I

~ • oomen=J

--....,._

Convert
to l\ılSIL

To understand the workings of Windows, you need to understand three key
concepts:

windows, events, and messages. A window is any rectangular region on the
screen with its own boundaries. All components run in their own windows. For example
when you use your word processor, a document window displays the text you are
entering and editing. When you retrieve a file, you do this from a dialog box that is a
window. Similarly, when an error message is displayed, this is done in a window.

Finally, the menu bar and all of the icons or buttons on the toolbar across the top
or side of your screen are also windows.

1.7 Windows in XP

When an event occurs, the corresponding window sends a message to the
operating system, which processes the message and then broadcasts it to other windows.

When they receive a message, the other windows take actions based on their
own set of instructions. Programming in Windows requires that you learn how to work
with windows, events, and messages. For this reason, programming in Windows is
usually termed event-driven programming, because all actions are driven by events.
While this may sound complicated, languages like VB .NET make it easier to create
Windows- based applications that work with Windows by providing you with the
necessary tools. Event-driven programming is quite different from traditional
approaches to programming where the program itself controls the actions that will take
place and the order in which those actions will occur. With traditional programs,
execution of the program starts with the first instruction and continues through the
remaining nstructions, making decisions as to which instructions will be executed
depending on the data that are input. The main program may use smaller subprograms
to handle parts of the processing. This type of programming is referred to as procedural
programming, and it works very well for such activities as processing a large number
of grades at the end of the term or printing payroll checks at the end of the pay period.
However, with the move toward widespread use of GUI, the trend is toward using
eventdriven programming.

8

1.8 THE VB.NET Language

As discussed above, VB .NET is a computer language that has been developed
to help you create programs that will work with the Windows operating system. It is an
eventdriven language that does not follow a predefined sequence of instructions; it
responds to events to execute different sets of instructions depending on which event
occurs. The order in which events-such as mouse clicks, keystrokes, or even other sets
of instructions-occur controls the order of events in VB .NET and other event-driven
languages. For that reason, an event-driven program can execute differently each time it
is run, depending on what events occur.

In addition to being event-driven, VB .NET is an object-oriented (00)
language; that is, it uses software objects which can respond to events. This is an
important improvement over previous versions of Visual Basic which were almost
objectoriented since they failed to have all of the characteristics of a true 00 language.
What distinguishes object oriented programming from earlier languages is that objects
combine programming instructions or code with data. Previous attempts to structure
programs in such a way that large problems could be broken down into smaller
problems separated the code from the data. The problem with this approach is that if the
data changes, then the code may not work with the new data. With object-oriented
programming, the combination of code and data avoids this problem. For example,
instead of writing code to deal with customers and then using this code with different
customer data for each customer, we combine the code and data into an object for each
customer. The objects for multiple customers are very similar with the exception of the
data component, so you can use them in similar ways. '

I will just introduce you to some of the concepts of 00. First, consider the fact
that each of the windows discussed above as a part of the Windows operating system is
an object, as are a wide variety of other shapes, including buttons, click boxes, menus,
and so on. There are also many objects in Windows that are unseen since they are pure
computer code, but have the same characteristics as visual objects. The beauty of VB
.NET is that, unlike many other 00 languages, you do not have to know how to create
objects to use them. VB. NET automatically creates for you, the programmer, new
instances of a many objects from a wide variety of built-in templates. To understand
Object-oriented programming, we need to understand a number of concepts and
terminology. First, in order to create an object, you must first create a class, that is, a
template with data and procedures from which objects are created. One way of looking
at a class is to think of it as the cookie cutter and the actual object as the resulting cookie
. 2 All of the actual work in creating an object is accomplished in creating the class; an
object is created by defining it to be an instance of a class. Objects have two key
concepts: properties and methods. Properties of objects are simply the attributes
associated with the object such as their name, color, and so on. Methods are a set of
predefined activities that an object can carry out.

Three key characteristics of 00 programming are encapsulation, inheritance,
and polymorphism. Encapsulation refers to a key concept: It should never be possible
to work with variables in an object directly; they must be addressed through the object's
properties and methods. This implies a black-box view of an object, in which the
programmer does not need to know what is going on inside the object, but only needs to
know how to work with the object's methods and properties.

The second key concept in object-oriented programming, inheritance, refers to
the capability to create child classes that descend from a parent class. This capability

9

makes it easier to build a new child classes by having them inherit properties and
methods from a parent class.

Finally, polymorphism is related to inheritance in that a child class can inherit
all of the characteristics and capabilites of the parent class but then add or modify some
of them so the child class is different from the parent class. It is important to note that
the instructions for a method are already a part of VB .NET, but the programmer must
write the instructions to tell the object how to respond to an event.

Working with VB .NET involves combining objects with the instructions on
how each object should respond to a given event. For example, you might have a button
for which the instructions are to display a message; instructions for another button light
be to exit the program or, as it is called in VB .NET, the solution. These instructions are
referred to as the code for the program. The code for VB .NET is written in a much
updated form of one of the oldest computer languages around-Basic, which was first
used in 1960. The version of Basic used in VB .NET has been improved in many ways,
but it retains one of the key advantages of the original language compared to other
languages: It is very easy to use and understand.

1.9.1 Start Visual Studio .NET from the Windows Desktop

1.9.2 Visual Basic .NET Start Page Start page

Allows the programmer to
• open recent projects,
• open any previously saved project, and
• create a new project.

10

1 ı.nr:.vct~
t '/2:(\t~,S
ıU'Jı,,t~,;;,ı)".,
i(f10}~·

1.9.3 New Project Dialog Window

Clicking the New project button on the Start Page to open the New Project

l Project Type:;:
t l .~. -~-

1

, · --~ VisualBasicProjects

.
'.. ;-.-.·..··..••...•~.,..,_.· Setup and Deployment ProjectsEfi-~ Other Projects

i L,,23] VisualStudio Solutions
6

Templates:

. Windows
Application

ClassLibrary \lı•'irıdows
Control Library

-·BT -.c;-/9'

Smart Device ASP.NETWeb ASP.NETWeb
Application Application Service

~1
A. ~,reject for t?;ati~g arı appli~ati,:ı~with a. Wt~dı:m•s user interface~. ·...·.. ·.. - ' .· .· .._..,,. .• . .~.· ·. ·,"

C\ • ..• • •

Name: 1NirıdowsApplicatiorı2

Browse: ..
Location: C: \Documents and Settings'ı,Edimspeed\Belgelerim\'ılisu,

Project will be created at C:\,,, \Edimspeed\Belgelerim\VisualStudio Projects\VılirıdowsApplicatiorı2.

Cancel
AA ¢v)~Motj;l . "I

1.9.4 VB .NET IDE Windows Workspace

• When a new project is created, the GUI designer component of the IDE is
Displayed.
• The IDE also has two other components: a code editor and a debugger.
• The IDE offers all of the capabilities of a Windows-based application, such as

the
ability to resize and close any of the child windows, as well as the overall

11

'ı
I
'ı
!
l

parent window.

!EINM&iiiiM@i,fflWMiBIMIIBfll~l·11111ını Ill
~·ili<# lid ,zl :4:, 18., •., .,, ., S> ı.4 , o.toı , • ,~ "'"""'"" .·':;;; ;~ ?1) °* 2J •• .

fJe Edit Y}ew e;toyıct ~ ~ Oqta f2(mat !ocıls WOOJl'ı t!ı:'4ı

Alili""'
~&ıtton

/;N"fe~,ı::;

i M=*Menu
ı;ı ched&x
,1' Radiolkthıo
'~.! Qoup&l:ı;

~-Pictı.ıre5ox

rJ Pone!
'.µOatoG>iJ
__illLısteox
,jchec
,'.ilcomlx>Bo,
!~t l,ist'liew

ıL~.~Eipkr~<;'.Y~~~- "Jv,~}

'.r;~~~:::<i~~)• L,

'· ~Refeıeoces
~Asserıbtylrıfo.vb
g'l formL\tb

1.9.5 VB .NET Applications

• The steps that are required for creating a Visual Basic application are:
1. Create the graphical user interface (GUI).
2. Set the properties of each object on the interface.
3. Write the code or add events.
4. Debug -- test the application.
• The first step, creating the GUI, consists of adding objects from the Toolbox to

the design form.

1.9.6 Toolbox

• The Toolbox window contains a set of controls that can be placed on a Form
window to produce a graphical user interface (GUI - "goo-ey").

• The toolbox can be opened by choosing the command Toolbox in the View
menu.

12

!!il Buttorı
J8bİ· TextBox
I.,rıaipMerıl/

RJ, CheckJ;19;.

QJ Pictureôox

en Pa~eL
iJ. DataGrid

!Bil ustsox
U 1heckedli-tBox ' !

-: ~< ~--0 . .' :~~: <~s0~:+> ':<0,~(js.~,£,
~ CornboBox
}~* · List'i/iew

:f=- · Treelı'iew
:·::t-

~ TabConhol

]ffl DateTimePicker
mm MonthCalendar

1.9.7 Solution Explorer Window

• Solution Explorer Window provides an easy access to different application
files including files contains forms and codes.

~ ~Cti~o',i~.\i j;;;:;;;;,~t) ·
i:;:'! ~ OT0-2

'.+l··]Th] References . rn Assemblyinfo.vb
[ill] c4.rpt
EEJ cS.t·pt
[ill] c6.rpt
&Bl CAR LIST.vb
&Bl CUSTOMER LIST vb
~ DataSetl .xsd
00 DataSet2.xsd
~ Data5et3.xsd
~ Data5et4.xsd
~ Data5et5.xsd
~ DataSet6. xsd
~ Data5et7. x::;;d

~~Eal Form2.,-·b
ffl Form3.vb
CT] Module 1 , vb
İd2l PRODUCT LIST. vb

~ S_-?1':Jtion -E.xplo~e·r j ~ ~::ı.~~'.iS ~lie'N

13

1.9.8 Properties Window -- Set Properties

• Once objects have been added to the form, the next step is setting the
properties of the objects.

• The properties of objects are set through the Properties window or code (inside
the program).

• Two important properties of objects are the Name property and the T~xt
property.

• The Name property allows the programmer to assign a descriptive name to an
object, rather than using the default name provided by Visual Basic for that object.

• The value of the Text property of an object is displayed to the user when the
application is running.

Locked
MaximizeBox
MaximumSize
Menu
Minimize Box
MinimurrıSize

False
True
O, O
(none)
True
o, o
100°/.:,

No
True

,'
1400,JOO
Auto
True
INindowsDef aultlocation

Forml
False

'[]:
· Nor·mal

~Properties I 9 Dynamic Help I

1.9.9 Add Event Procedure

• An event procedure is a procedure or event handler executed when that event
occurs.

• The first line of a procedure is a header line.
• A header line begins with the optional keyword Private and must contain the

keyword Sub, the name
of the procedure, and a set of parentheses.
• The last line of each procedure consists of the keywords End Sub.
• All statements from the header line to and including the End Sub statement are

collectively referred
to as the procedure's body.

14

(Jııth:wıi R(Qüimi
keyword ı:~yrıwd

fit ocy'tct with wiıldı ıfıi, proooiur~is ,ıs50cfattd
OpiiolllJfımdfüı:vrt i:/ıwııcttr. I Tilt tvtııt thı'ıtiı!vt)J;fi this p.rı.ıcr:dart (oplio!NJ!}{, ı . ~ ı l 1/equitrdl:ettrd H~iliıtı.for~t&eveııt

iht hea.:ier lint - Prrıatc SıJb übjtctH,.me_ m:ııt(,;sttın ~,mme\m I Handles ObjtdNamr _cıı:r.nt
1,1,ual Bıısir st2ttmt.nts h.tre
End Sub fi~qu/rtıJ'Rnt Jfııt.

Ffgure 2~ t9 The St rncrure of an Event Procer1ııre

• The first and last lines of a procedure, consisting of the header line and the End
Sub statement, are referred to as the procedure's template.

1.9.10 Test or Run Application

• You can run your program at any time during
program development:
- Select the Debug Menu and click Start or
- Press the F5 function key or
- Use the hot key sequence Alt+D, then press the S key
• Design time: when an application is being
developed
-Run time: when a program is executing

1.9.11 Saving and Recalling a Project

• To save an application
- Click the File menu and then click Save All or
- Click the SaveAll icon in the Standard Toolbar
• To retrieve a project:
- Select Open Solution from the File menu

1.9.12 Example - Step 1: Adding Controls

· .Lebell Labe12.

~!°;!.J: Button2 : ,~~.

15

1.9.13 Example -- Step 2: Adding Properties

Color:·•
,

Red Green

1.9.14 Example -- Step 3: Adding Events

.. ,., .=~'O"·-·.·-·. ,.,,..,.:·
:~ ;j\'>[tı....,-"'~":.,;;

~~;)~_:: -~·: .. t.n .-<-~-~~,:''O',·,.-« ~'i•~: ~ L~ -:,cjP.<t{: ~:il'<:'¢.,~~?:~' ı,:...:::>.:~•J.~ i:-~,><l*~P.-u-

1.9.15 Running an Application
A project being developed can be executed by using any one of the following
three methods:
- Select the Debug Menu and click Start.

Press the F5 function key.
Use the hot key sequence Alt+D, then press the S key.

1.9.16 Adding an Event Procedure
• A procedure that is executed when an event occurs is referred to as an event

procedure or event handler.

16

• The first line of a procedure is always a header line. A header line begins with
the optional keyword Private and must contain the keyword Sub, the name of the
procedure, and a set of parentheses.

• The last line of each procedure consists of the keywords End Sub.
• All statements from the header line to and including the End Sub statement are

collectively referred to as the procedure's body.
• The first and last lines of a procedure, consisting of the header line and the End

Sub statement, are referred to as the procedure's template

J

1
I

If RadioButton'I.Checked = True Then
GroupBoxlO. Visible = Tnıe

Else : GroupBoxlO.Visible = False
GroupBoxl'I.Visible = False

End If
End Snl::

Pri.vat.e Sub TabPage3 _Click (ByVal sender As System. Object, ByVal e As System. EventArg

GroupBoxlO.Visible = True
GroupBoxl'I.Visible = false

End Sn)J

frivat.e suı:, Forml _ Load (ByVal sender As System. Object, ByVal e As System. EventArgs) H

SqlDataAdapter4.Fill(DataSet11.otocar)
CrystalReportViewerl.ReportSource = xx
cm= CType(Me.BindingContext(DataView2), CurrencyManager)

SqlDataAdapter8.Fill(DataSetl1.otocar)

DataGridS.Visible = False
DataGrid4.Visible = False

DataGrid6.Visible = False
DataGrid7.Visible = False
DataGridB.Visible = False
GroupBox17.Visible = True
TextEox9.Text = ,,,,

TextEoxB.Text = ,,,,
TextBoxlO.Text = 00

l.9.17 The MessageBox.Show Method

• The MessageBox.Show method can be used in a procedure to display a
message to the user through a message box.

• The message box also contains a title and an icon.
• The general forms of the MessageBox.Show method are:
MessageBox.Show(text)
MessageBox.Show(text, caption)
MessageBox.Show(text, caption, buttons)
MessageBox.Show(text, caption, buttons, icon)
MessageBox.Show(text, caption, buttons, icon)

17

1.9.18 Message Box with Caption

MessageBox. Show (11Warning Message! ! ! ! 11)

1.9.19 Message Box with Buttons

MessageBox. Show (11Warning Message! ! ! ! 11, 11Error

Message",
MessageBoxButtons.AbortRetryignore)
MessageBox. Show ("Warning Message! ! ! ! " , "Error

Message",
MessageBoxButtons.YesNo)
MessageBox. Show ("Warning Message! ! ! ! " , "Error

Message",
MessageBoxButtons.OKCancel)
Other values

MessageBoxButtons.OK
MessageBoxButtons.RetryCancel

MessageBoxButtons.YesNoCancel

18

1.9.20 Message Box with Default Button

• MessageBoxDefaul tButton. Buttonl- - specifies the leftmost button and is the
default.
• MessageBoxDefaul tButton. Button2- - specifies the second button from the
left.
• MessageBoxDefaul tButton. Button3- - specifies the third button from the left.
• When the button is clicked, the value returned is one of the following:
~ DialogResult.Abort

DialogResult.Cancel
DialogResult.Ignore
DialogResult.No
DialogResult.OK
DialogResult.Retry
DialogResult.Yes

1.9.21 Setting the Initial Object Properties

Fi>MF-F.,,~
(c.ıı,,
IIC<clttt!fH't

~

Once controls have been added to a form, we can use the Properties window to
change one or more of the properties of the controls.

1.9.22 Looking at the Focus and Tab Sequence

• When an application is run and a user is looking at the form, only one of the
form's

controls will have inputfocus, or focus.

19

• Only objects which are capable of responding to user input through either the
keyboard or mouse can receive focus.

• In order to receive the focus, a control must have its Enabled, Visible, and
TabStop

properties set to True.
• The sequence in which the focus shifts from control to control as the tab key is

pressed by the user is called the tab sequence.
• The programmer can alter the default tab order - which is obtained from the

sequence
in which controls are placed on the form - by modifying an object's Tablndex

value.

1.9.23 Adding Additional Event Procedures

• Once we have added objects to a form and set the properties of these controls, the next
step in

creating a Visual Basic application is to supply these objects with event code.
• Each object can have many events associated with it.
• To enter the event code for an object, we can double-click the object to open its Code

window.

1.9.24 Statement

• AJI statements belong to one of two categories of statements:
- executable statements
- nonexecutable statements.
• An executable statement causes some specific action to be performed by the compiler

or interpreter.
• A nonexecutable statement describes some feature of either the program or its data but

does not cause the computer to perform any action.

1.9.25 Help Facility

• Dynamic Help

20

- The Dynamic Help window displays a list of help topics that changes as you
perform operations

- To open the Dynamic Help window, click Help on the menu bar and then click
Dynamic Help

• Context-sensitive Help
- Context-sensitive Help immediately displays a relevant article for a topic
- To use this facility, select an object and press Fl

1.10 Programming in VB.NET

Creating an application using an 00 programming language such as VB .NET is
much easier than working with a traditional programming language. Instead of having
to develop the logic for the entire program as you would with a procedural language,
you can divide up the program logic into small, easily handled parts by working with
objects and events. For each object, you determine the events that you want the object to
respond to and then develop code to have the object provide the desired response. All of
the necessary messages between objects in Windows are handled by VB .NET, thereby
significantly reducing the work you must do to create an application. The manner in
which you create a VB .NET project is also different from traditional programming.
Instead of having to create an entire program before testing any part of it, with VB .NET
you can use interactive development to create an object, write the code for it, and test
it before going onto other objects. For example, assume a store named Vintage DVDs
that rents only "old" movies on DVD has asked you to create a VB .NET project that
includes calculating taxes on a DVD rental and sums the taxes and price to compute the
amount due. With VB .NET, you can create the objects and code to calculate the taxes
and amount due and test them to ensure their correctness, before going on to the rest of
the project. While creating an application in VB .NET is easier than working with a
procedural language, you still need to follow a series of steps to ensure correctness and
completeness of the finished product. These steps are:

1. Define problem
2. Create interface
3. Develop logic for action objects
4. Write and test code for action objects
5. Test overall project
6. Document project in writing

It should be noted that it may be necessary to repeat or iterate through these
steps to arrive at an acceptable final solution to the original problem. In the next
sections, we will discuss each of these steps and apply them to a part of the situation just
mentioned, that is, creating an application to calculate the taxes and amount due on a
DVD rental.

21

1.10.1 Step One: Define Problem

Before we can hope to develop any computer application, it is absolutely
necessary to clearly define our objective, that is, the problem to be solved. Only then
can we begin to develop the correct logic to solve the problem and incorporate that logic
into a computer application. Ensuring that the correct problem is being solved requires
careful study of why a problem exists. Maybe an organization is currently handling
some repetitive process manually and wants to use a computer to automate it. Or maybe
management has a complicated mathematical or financial problem that cannot be solved
by hand. Or maybe a situation has occurred or will occur that cannot be handled by an
existing program. The problem identification step should include identification of the
data to be input to the program and the desired results to be output from the program.
Often these two items will be specified by a person or an agency other than the
programmer. Much grief can be avoided if these input and output requirements are
incorporated into the programmer's thinking at this early stage of program development.
Unclear thinking at this stage may cause the programmer to write a program that does
not correctly solve the problem at hand, or a program that correctly solves the wrong
problem, or a combination of both! Therefore the programmer must spend as much time
as is necessary to truly identify and understand the problem.

Because vır .NET is a visual language, a good way to understand what is
required to solve the problem is to sketch the interface showing the various objects that
will be part of the project. Not only does this help you understand the problem, it is also
a good way for you to communicate your understanding to other people. As a part of
this sketch, you should denote the input and output objects and the objects for which
code is needed to respond to events, the so-called action objects. A sketch of the
proposed solution for the DVD rental problem is shown in Figure .In looking at , you
will see one input-the price of the DVD-and two outputs- the taxes and the amount
due. There are also two action objects-a calculation button and an exit button. If there
are multiple forms, they should all be sketched with input, output, and action objects
denoted as in Figure

1.11.2 Step Two: Create Interface

Vintage nvr»

DVD Price Input

J~Output

Taxes

Amount Due

Action Objects

_[_c_a_l_cu-la_t_e-,I / -. ~

22

Once you have defined the problem and, using a sketch of the interface, have
decided on the objects that are necessary for your project, you are ready to create the
interface. Creating the interface with VB .NET is quite easy: You select objects from
those available and place them on the form. This process should follow the sketch done
earlier. While you have not yet been introduced to the wide variety of objects available
for creating VB .NET projects, we can work on the logic for the Vintage DVDs problem

with just four types of objects: the foım, buttons for action, textboxes for input
and output, and labels for descriptors. The interface in VB .NET is shown in Figure

1.10.3 Step Three: DevelopLogic for Action Objects

Once the problem has been clearly identified and the interface created, the next
step is to develop the logic for the action objects in the interface. This is the step in the
development process where you have to think about what each action object must do in
response to an event. No matter how good your interface, if you don't develop the
appropriate logic for the action objects, you will have great difficulty creating a project
that solves the problem defined earlier. To help with this logical development for the
action objects, there are two useful tools for designing programming applications: IPO
Tables and pseudocode. IPO

(Input/Processing/Output) Tables show the inputs to an object, the required
outputs for that object, and the processing that is necessary to convert the inputs into the

desired outputs. Once you have an IPO Table for an object, you can write a
pseudocode procedure to complete the logic development step. Writing pseudocçde
involves writing the code for the object in structured English rather than in a computer
language. Once you have developed an IPO Table and the pseudocode for each object, it
is a very easy step to write a procedure in VB.NET that will carry out the necessary
processing. IPO Table Let's begin by developing the logic for the Calculate button
using an IPO Table. The IPO Table for the Calculate button has as input the price of a
DVD. The processing involves the calculation necessary to compute the desired output:
the amount of the sale. As mentioned earlier, in many cases the program designer will
have no control over the input and output. They will be specified by somebody else-

23

either the person for whom the application is being developed or, if you are a member
of a team and are working on one part of the overall application, the overall design.
Once you are given the specified input and output, your job is to determine the
processing necessary to convert the inputs into desired outputs. Figure 1-9 shows the
IPO table for the calculation button. IPO tables are needed for all objects that involve
input, output, and processing. We won't do one for the Exit button since it simply
terminates the project.Pseudocode Once you have developed the IPO tables for each
action object, you should then develop a pseudocode procedure for each one.
Pseudocode is useful for two reasons. First, you can write the procedure for the object in
English without worrying about the special syntax and grammar of a computer
language. Second, pseudocode provides a relatively direct link between the IPO Table
and the computer code for the object, since you use English to write instructions that
can then be converted into program instructions. Often, this conversion from
pseudocode statement to computer language instruction is virtually line for line. There
are no set rules for writing pseudocode; it should be a personalized method for going
from the IPO Table to the computer program. The pseudocode should be a set of clearly
defined steps that enables a reader to see the next step to be taken under any possible
circumstances. Also, the language and syntax should be consistent so that the
programmer will be able to understand his or her own pseudocode at a later time. As an
example of pseudocode, assume a program is needed to compare two values, Salary and
Commission, and to output the smaller of the two. The pseudocode for this example is
shown below:

Begin procedure

Input Salary and Commission

If Salary < Commission then

Output Salary

Else
Output Commission

End Decision

End procedure

· IPO Table for Calculate Button

Input I Processing I Output

Video price I Taxes= 0.07 x Price ı Taxes
Amount due= Price+ Taxes Amount due

24

In this pseudocode, it is easy to follow the procedure. Note that parts of it are
indented to make it easier to follow the logic. The important point to remember about
pseudocode is that it expresses the logic for the action object to the programmer in
thesame way that a computer language expresses it to the computer. In this way,
pseudocode is like a personalized programming language. Now let's write a pseudocode
procedure for the Vintage DVDs Calculate object. Note that the pseuocode program
matches the IPO Table shown in Figure

Begin procedure

Input DVD Price

Taxes = 0.07 x DVD Price

Amount Due= DVD Price+ Taxes

Output Taxes and Amount Due

End procedure

While we have only one object in our small example for which an IPO Table
and pseudocode are needed, in most situations you will have numerous objects for
which

you will need to develop the logic using these tools.

1.10.4 Step Four: Write and Test Code for Action Objects

Once you have created the VB .NET interface and developed the logic for the
action objects using IPO Tables and pseudocode, you must write procedures in VB
.NET for each action object. This code should provide instructions to the computer to
carry out one or more of the six operations listed earlier-that is, input data, store data
in internal memory, perform arithmetic on data, compare two values and select one of
two alternative actions, repeat a group of actions any number of times, and output the
results of processing. While creating the interface is important, writing the code is the
essence of developing an application. Since you have not yet been introduced to the
rules for writing code in VB .NET for the various objects, we will defer a full discussion
of this step until the end and beyond. However, you should be able to see the similarity
between the VB .NET event procedure displayed in VB Code Box 1-1 and the
pseudocode version shown earlier. The differences are due to the way VB .NET handles
input and output. Input is from the Text property of the first textbox, named
txtDVDPrice. Output goes to the Text property of the two textboxes named txtTaxes
and txtAmountDue. There are also statements that begin with the word Dim, to declare
the variables, and comment statements that begin with an apostrophe ('). Once you have
written the code for an action object, the second part of this step is to test that object and
correct any errors; don't wait until the entire project is completed. Use the interactive
capabilities of VB .NET to test the code of each and every object as it is written. This
process is referred to as debugging-trying to remove all of the errors or "bugs."
Because VB .NET automatically checks each line of the code of an object for syntax.or

25

vocabulary errors, the debugging process is much easier than in other languages.
However, even if all the syntax and vocabulary are correct, the code for an object still
may be incorrect-either in the manner in which it carries out the logic or in the logic
itself. The best way to find and correct such errors is to use test data for which the
results are known in advance. If the results for the object do not agree with the results
from the hand calculations, an error exists, either in the logic or in the hand calculations.
After the hand calculations have been verified, the logic must be checked. For example,

· if the results of the Calculate button came out different from what was expected, then
we would need to look for a problem in the data or the logic. In the case of the Calculate
button, we want to determine if the code shown in VB Code Box 1-1 will actually
compute and output to the textboxes the correct taxes and amount due for the DVD
price entered in the first textbox. Figure shows the result of clicking the Calculate
button for a DVD with a price of $1.99. Note that the results, while correct, are not
exactly what you might expect. Instead of rounded values of $.14 for the taxes and
$2.13 for the amount due, the answers are the exact values of $.1393 and $2.1293. This
is because we have not formatted the answers as dollar and cents. This will be done
when we revisit this problem in next. While the answers for this set of test data are
correct, this does not mean it will work for all test data. Testing requires that a wide
variety of test data be used to assure that the code for the object works under all
circumstances. Since the Calculate button appears to work, we can now write the code
for the Exit button, which consists of one instruction: End. If this command also works,
then we are ready to move on to the next step in the application development process:
testing the overall project '

CODE BOX

VB.NET computation of Taxes and Amount Due

Private Sub cmdCalc_Click(ByVal eventSender As System.Object,_
ByVal eventArgs As System.EventArgs) Handles cmdCalc.Click
Const sngTaxRate As Single= 0.07 'Use local tax rate
Dim decPrice as Decimal, decAmountDue As Decimal
Dim decTaxes As Decimal
decPrice = CDec(txtDVDPrice.Text)
decTaxes = decPrice * sngTaxRate 'Compute taxes
decAmountDue = decPrice + decTaxes 'Compute amount due
txtTaxes.Text = CStr(decTaxes)
txtAmountDue.Text = CStr(decAmountDue)
txtDVDPrice.Text = Cstr(decPrice)
End Sub

26

Testing the Calculate button

1.10.5 Step Five: Test Overall Project

Once yoı.i have tested the code for each action object individually, the next step
is to test the overall project and correct any errors that may still exist or that may be the
result of incorrect communication between objects. At this stage it is necessary to
determine whether the results obtained from the project meet the objectives outlined in
the Problem Definition step. If the project does not meet the final user's needs, then the
developer must analyze the results and the objectives to find out where they diverge.
After the analysis, the developer should trace through the program development
procedure and correct the algorithm, IPO Tables, pseudocode, and final code for one or
more objects to find the cause of the difference between the objectives and the final
project.

1.10.6 Step Six: Document Your Project in Writing

An important part of writing any computer software is the documentation of the
software. Documentation can be defined as the written descriptions of the software that
aid users and other programmers. It includes both internal descriptions of the code
instructions and external descriptions and instructions. Documentation helps users by
providing instructions and suggestions on using the software. Documentation helps ther
programmers who may need to make changes or correct the programs. Internal
documentation usually includes comments within the program that are intermingled with
the program statements to explain the purpose and logic of the program elements. In VB
Code Box , the statements beginning with an apostrophe (') are examples of internal
documentation. This type of documentation is essential to the maintenance of software,
especially by someone other than the original programmer. By being able to read the
original programmer's purpose for a part of a program or a program statement, a
different programmer can make any needed corrections or revisions. Without internal
documentation, it can be extremely difficult for anyone to understand the purpose of

27

parts of the program. And, if a programmer is unclear about what's going on in the
program, making needed changes will be very difficult. In this text, because we will be
explaining the code in detail, we do not include the level of internal documentation that
should be found in the projects you create both here and in your work.Written
documentation includes books, manuals, and pamphlets that give instructions on using
the software and also discuss the objectives and logic of the software. The
documentation should include a user's guide and programmer documentation. The user's
guide provides complete instructions on accessing the software, entering data,
interpreting output, and understanding error messages. Theprogrammer documentation

should include various descriptive documents that allow for maintenance of the
software. These may include pseudocode of sections of the program, a listing of the
program, and a description of required input values and the resulting output.

CHAPTER TWO

WHAT IS AN SQL SERVER?

You use SQL Server to manage two types of databases-online transaction
processing (OLTP) databases, and online analytical processing (OLAP) databases.
Typically, separate clients access the databases by communicating over a network.
You can scale SQL Server up to terabyte-size databases and down to small business
ervers and portable computers. You can scale SQL Server out to multiple servers by

using Windows Clustering in Windows 2000.

In this section we will learn about the following topics:

• Introduction to SQL Server
• Client-server components
• Client-server communication process
• SQL Server services

2.1 INTRODUCTION TO SQL SERVER

You can use SQL Server to perform transaction processing, store and analyze
data, and build new applications. SQL Server is a family of products and technologies
that meets the data storage requirements of OLTP and OLAP environments. SQL
erver is a relational database management system (RDBMS) that:

• Manages data storage for transactions and analysis.

• Responds to requests from client applications.

• Uses Transact-SQL, Extensible Markup Language (XML),
multidimensional expressions (MDX), or SQL Distributed Management Objects (SQL
DMO) to send requests between a client and SQL Server.

28

Cffiıent
J"A.p;plica~ion,

R~K.ıı~;;n.aı!l 1L1<a·~.zıba$.e
J'v'I a,trl'ta1,g@rn@nt

2.2 Relational Database Management System

The RDBMS of SQL Server is responsible for:
Maintaining the relationships among data in a database. Ensuring that data is

stored correctly and that the rules defining the relationships among data are not
violated.Recovering all data to a point of known consistency, in the event of a system
failure.

2.3 Data Storage Models

SQL Server manages OLTP and OLAP databases

2.3.1 OLTP Databases Data in an OLTP database is generally organized into
relational tables to reduce redundant information and to increase the speed of updates.
SQL Server enables a large number of users to perform transactions and
simultaneously change real-time data in OLTP databases. Examples of OLTP databases
include airline ticketing and banking transaction systems.

2.3.2 OLAP Databases OLAP technology organizes and summarizes large amounts of
data so that an analyst can evaluate data quickly and in real time. SQL Server 2000
Analysis Services organizes this data to support a wide array of enterprise solutions,
from corporate reporting and analysis to data modeling and decision support.

2.4 Client Applications

Users do not access SQL Server and Analysis Services directly; instead, they
use separate client applications written to access the data. These applications access
SQL Server by using:

2.4.1 Transact-SQL This query language, a version of Structured Query Language
(SQL), is the primary database query and programming language that SQL Server uses.

29

•"''

'

2.4.2 XML This format returns data from queries and stored procedures by using URLs
or templates over Hypertext Transfer Protocol (HTTP). You also can use XML to
insert, delete, and update values in a database.

2.4.3 MDX The MDX syntax defines multidimensional objects and queries and
manipulates multidimensional data in OLAP databases.

2.4.5 OLE DB and ODBC APls Client applications use OLE DB and Open Database
Connectivity (ODBC), application programming interfaces (APis) to send commands
to a database. Commands that you send through these APis use the Transact-SQL
language.

2.4.6 ActiveX Data Objects and ActiveX Data Objects (Multidimensional)
Microsoft ActiveX® Data Objects (ADO) and ActiveX Data Objects
(Multidimensional) (ADO MD) wrap OLE DB for use in languages such Microsoft
Visual Basic®, Visual Basic for Applications, Active Server Pages, and Microsoft
Internet Explorer Visual Basic Scripting. You use ADO to access data in OLTP
databases. You use ADO MD to access data in Analysis Services data cubes.

2.4. 7 English Query This application provides an Automation API that lets users
resolve natural-language questions instead of writing complex Transact-SQL or MDX
statements about information in a database. For example, users are able to ask the
question, "What are the total sales for Region 5?"

2.5 CLIENT SERVER COMPONENT

SQL Server consists of client and server components that store and retrieve
data. SQL Server uses layered communication architecture to isolate applications from,,
the underlying network and protocols. This architecture allows you to deploy the same
application in different network environments.

2.5.1 Client-Server Architecture

SQL Server uses client-server architecture to separate the workload into tasks
that run on server computers and those that run on client computers:

• The client is responsible for business logic and presenting data to the
user. The client typically runs on one or more computers, but it also can run on the
server computer along with SQL Server.

• SQL Server manages databases and allocates the available server
resources such as memory, network bandwidth, and disk operations-among multiple
requests.

30

ır:fü:ewıt
Applic.ı11:lc.rıı

::,ew•ıı~r
Nf'lt-Lı':l::!ırawrA!fs

D>.1ıtzıbB:r;.,ı,API
{OLE os, C)Dec_

C'1,S,,Ubıil!IF)'J

ôp,ııın l:),11 m
S!!!'Y Vk"e.s

CU€!\fıt
t·4 e:•re:-U b rery

Jl4€!'' "'ıt Ion, a il
!Eng!inrı?

St:orzıq~
E.rıg i t1tz

Client-server architecture allows you to design and deploy applications to
enhance a variety of environments. Client programming interfaces provide the means
for applications to run on separate client computers and communicate to the server over
a network.

2.5.2 Client Components

The client components in the communication architecture include:

2.5.2.1 Client Application A client application ends Transact-SQL statements and
receives result sets. You develop an application by using a database APL The
application has no knowledge of the underlying network protocols used to
communicate with SQL Server.

2.5.2.2 Database API Database API (OLE DB, ODBC) uses a provider, driver, or
DLL to pass Transact-SQL statements and receive result sets. This is an interface that
an application uses to send requests to SQL Server and to process results that SQL
Server returns.

2.5.2.3 Client Net-Library A client Net-Library manages network connections and
routing on a client. This is a communication software component that packages the
database requests and results for transmission by the appropriate network protocol.

2.5.3 Server Components

The server components ın the communication architecture include:

31

2.5.3.1 Server Net-Libraries SQL Server can monitor multiple Net-Libraries
concurrently. The client Net-Library must match one of the server Net-Libraries to
communicate successfully. SQL Server supports network protocols such as TCP/IP,
Named Pipes, NWLink, IPX/SPX, VIA ServerNet II SAN, VIA GigaNet SAN, Banyan
VINES, and AppleTalk.

2.5.3.2 Open Data Services Open Data Services makes data services appear to a client
' as SQL Server by providing a network interface for handling network protocol

processes and server routines. This is a component of SQL Server that handles network
connections, passing client requests to SQL Server for processing and returning any
results and replies to SQL Server clients. Open Data Services automatically listens on
all server Net-Libraries that are installed on the server.

2.5.3.3 Relational Engine The relational engine parses Transact-SQL statements,
optimizes and executes execution plans, processes data definition language (DDL) and
other statements, and enforces security.

2.5.3.4 Storage Engine The storage engine manages database files and the use of space
in the files, builds and reads data from physical pages, manages data buffers and
physical input/output (I/0), controls concurrency, performs logging and recovery
operations, and implements utility functions such as Database Consistency Checker
(DBCC), backup, and restore.

2.6 Client-Server Communication Process

Clients and servers typically communicate over a network. The following
sequence uses a query to illustrate the typical client-server communication process
using a database API:

1-A client application submits a query. The client calls the database API and
passes the query. The database API uses a provider, driver, or DLL to encapsulate the
query in one or more Tabular Data Stream (TDS) packets and pass packets to the client
Net-Library.

2-The client Net-Library packages the TDS packets into network protocol
packets. The client Net-Library calls a Windows interprocess communication (IPC)
API to send the network protocol packets to a server Net-Library by using the network
protocol stack of the operating system. The appropriate server Net-Library extracts the
TDS packets from the network protocol packets and passes the TDS packets to Open
Data Services.

3-0pen Data Services extracts the query from the TDS packets and passes the
query to the relational engine. The relational engine then compiles the query into an
optimized execution plan. It executes the execution plan. The relational engine
communicates with the storage engine by using the OLE DB interface.

4-The storage engine transfers data from a database to data buffers and then
passes rowsets containing data to the relational engine. The relational engine combines
the rowsets into the final result set and passes the result set to Open Data Services.

32

5-0pen Data Services packages the result set and returns it to the client
application by using a server Net-Library, the network protocol stack, the client Net
Library, and the database APL The result set can also be returned in XML format.

2.7 SQL SERVER SERVICES

The SQL Server services include MSSQLServer service, SQLServerAgent
service, Microsoft Distributed Transaction Coordinator (MS DTC), and Microsoft
Search. Although these SQL Server services usually run as services on Windows 2000,
they also can run as applications.

2.7.1 Four SQL Server Services

SQL Server includes four services, which are installed by default with a new
installation: MSSQLServer service, SQLServerAgent service, Microsoft Distributed
Transaction Coordinator, and Microsoft Search.

2.7.1.1 MSSQLServer Service

MSSQLServer service is the database engine. It is the component that processes all
Transact-SQL statements and manages all files that comprise the databases on the
server. MSSQLServer service:

• Allocates computer resources among multiple concurrent users.

• Prevents logic problems, such as timing requests from users who want to
update the same data at the same time.

• Ensures data consistency and integrity.

2.7.1.2 SQLServerAgent Service

SQLServerAgent service works in conjunction with SQL Server to create and manage
alerts, local or multiserver jobs, and operators. Consider the following about
SQLServerAgent service:

• Alerts provide information about the status of a process, such as when a
job is complete or when an error occurs.

• SQLServerAgent service includes a job creation and scheduling engine
that automates tasks.

• SQLServerAgent service can send e-mail messages, page an operator, or
start another application when an alert occurs. For example, you can set an alert to
occur when a database or transaction log is almost foil or when a database backup, is
successful.

2.7.1.3 Microsoft Distributed Transaction Coordinator

MS DTC allows clients to include several different sources of data in one transaction.
MS DTC coordinates the proper completion of distributed transactions to ensure that

33

all updates on all servers are permanent-or, in the case of errors, that all modifications
are cancelled.

2.7.1.4 Microsoft Search

Microsoft Search is a full-text engine that runs as a service in Windows 2000. Full-text
support involves the ability to issue queries against character data and the creation and
maintenance of the indexes that facilitate these queries.

2.7.2 Multiple Instances of SQL Server

Multiple instances of the SQL Server may run concurrently on the same
computer.Each instance of SQL Server has its own set of system and user databases
that are not shared between instances. Each instance operates as if it were on a separate
server. Applications can connect to each SQL Server database engine instance on a
computer in nearly the same way that they connect to SQL Server database engines
running on different computers.

When you specify only the computer name, you work with the default instance.
You must specify the computer_ name\instance _ name to connect to a named instance.

2.8 SQL SERVER INTEGRATION

INTEGRATING SQL SERVER WITH OPERATING SYSTEMS
SQL Server includes client and server components that run on various operating

systems.

2.8.1 Client Components

The client components from all SQL Server 2000 editions, except SQL Server
Windows CE Edition, run on all editions of Windows 2000, versions of Microsoft
Windows NT®, on Microsoft Windows Millennium Edition (Me), Microsoft Windows
98, and Microsoft Windows 95.

All client components from SQL Server 2000 CE edition run exclusively on the
Windows CE operating system.

2.8.2 Server Components

The various editions of SQL Server allow it to run on all editions of Windows 2000,
versions of Windows NT, Windows Me, Windows 98, and Windows CE. Specific
versions of the operating systems and editions of SQL Server limit server components.
Microsoft Windows NT Server 4.0, Service Pack 5 (SP5) or later must be installed as a
minimum requirement for all SQL Server 2000 editions. Only the server components,
such as the database engine and the Analysis server, are limited to specific versions of
the operating systems. For example, although the database engine for Microsoft SQL
Server 2000 Enterprise Edition does not run on Microsoft Windows 2000 Professional,
Microsoft Windows NT Workstation, Windows Me, or Windows 98, you can use the

34

SQL Server 2000 Enterprise Edition compact disc to install the client software on any
of these operating systems.Windows NT 4.0 Terminal Server does not support SQL
Server 2000.

2.8.3 Internet Browsers and Third-Party Applications

Internet browsers and third-party client applications running on various operating
systems also can access SQL Server.

2.8.3.1 Microsoft Internet Information Services SQL Server uses Microsoft Internet
Information Services (IIS) so that Internet browsers can access a SQL Server database
by using the HTTP protocol

2.8.3.2 Integrating SQL Server with Other Microsoft Server Applications

i'v'ti..::sae;:oft '1.l\tlndo,.<11'£
2000 v,\hh Mr<:ni:;,sof'!t
Jnt~nıı,ı:rt: s.@;;:,uıı,it!ı,r aırıd
J%ı::,c<:2[~1l1'ILİOfi 5e,rı#-t\H' 'ÜO\I"
tlhe>-lnt:,ı~rını2'ıtStıc.ınz,.f'eı::,m·rc:

Micı.::.~ofl S1ıst(.!'nns.
JVlAlı n JpÇt<!!t1l"'lii?.ft t. 5-<!?H'>,'eı'

fıAIO'Cı:5ôft
Exc!·ı.tınge Sı:tf'•,/er

;t.li6cıroscf1' Hc:-ısc
Jnte9nı tko:rı

Smrv·tEt 2Gı'l:J4'.>

SQL Server integrates well with other Microsoft server applications. Microsoft
provides a group of server applications that work together to help you build business
solutions.

2.9 SQL SERVER DAT ABASES

Each SQL Server has two types of databases: system databases and user
databases. System databases store information about SQL Server as a whole. SQL
Server uses system databases to operate and manage the system. User databases are
databases that users create.

35

2.9.1 Types of Databases

When SQL Server is installed, SQL Server Setup creates system databases and
sample user databases. The Distribution Database is installed when you configure SQL
Server for replication activities.

2.9.2 Database Objects

A database is a collection of data, tables, and other objects. Database objects
help you structure data and define data integrity mechanisms. The following table
describes SQL Server database objects.

2.9.2.1 Referring to SQL Server Objects

You can refer to SQL Server objects in several ways. You can specify the full
name of the object (its fully qualified name), or specify only part of the name of the
object name and allow SQL Server to determine the rest of the name from the context
in which you are working.

2.9.3 Fully Qualified Names

The complete name of a SQL Server object includes four identifiers-the server name,
database name, owner name, and object name in the following format:

server. database. owner. object

An object name that specifies all four parts is known as a fully qualified name. Each
object that you create in SQL Server must have a unique, fully qualified name. For
example, you can have two tables named Orders in the same database as long as they
belong to different owners. Also, column names must be unique within a table or view.

36

2.9.4 Partially Specified Names

When referencing an object, you do not always have to specify the server, database,
and owner. Intermediate identifiers can be omitted as long as their positions are
indicated by periods.

The following list contains valid formats for object names:

• server. database. owner. object
• database.owner.object
• database .. object
• owner. object
• object

When you create an object and do not specify the different parts of the name,
SQL Server uses the following defaults:

• Server defaults to the current instance on the local server.
• Database defaults to the current database.
• Owner defaults to the user name in the specified database associated

with the login ID of the current connection.

A user that is a member of a role can explicitly specify the role as the object
owner. A user that is a member of the db owner or db ddladmin role in a database- -
should specify the dbo user account as the owner of an object. This practice is
recommended.

The following example creates an OrderHistory table in the Northwind
database.

CREATE TABLE Northwind.dbo.OrderHistory

(OrderID int,

ProductID int,

UnitPrice money,

Quantity int,

Discount decimal)

Most object references use three-part names and default to the local server. Four-part
names are generally used for distributed queries or remote stored procedure calls.

SQL Server supports a three-part naming convention when referring to the current
server. The SQL-92 standard also supports a three-part naming convention. The terms
used in both naming conventions are different

37

2.9.5 System Tables

SQL Server stores information, called metadata, about the system and objects in
databases for an instance of SQL Server. Metadaıa is information about data.Metadata
includes information about the properties of data, such as the type of data in a column
(numeric, text, and so on), or the length of a column. It can also be information about
the structure of data or information that specifies the design of objects.

2.9.5.1 System Tables The inforrtıation about data in system tables includes
configuration information and definitions of all of the databases and database objects in
the instance of SQL Server. Users should not directly modify any system table.

2.9.5.2 Database Catalog Each database (including master) contains a collection of
system tables that store metadata about that specific database. This collection of system
tables is the database catalog. It contains the definition of all of the objects in the
database, as weil as permissions.

2.9.5.3 System Catalog The system catalog, found only in the master database, is a
collection of system tables that stores metadata about the entire system and all other
databases.Most system tables begin with the sys prefix

2.9.6 Metadata Retrieval

When you write applications that retrieve metadata from system tables, you
should use system stored procedures, system functions, or system-supplied information
schema views.

You can query a system table in the same way that you do any other database
table to retrieve information about the system. However, you should not write scripts
that directly query system tables, because if the system tables change in future product
versions, your scripts may fail or may not provide accurate information.

2.9.7 System Stored Procedures

To make it easier for you to gather information about the state of the server and
database objects, SQL Server provides a collection of prewritten queries called system
stored procedures.The names of most system stored procedures begin with the sp_
prefix. The following table describes three commonly used system stored procedures.

The following example executes a system stored procedure to get information
on the Employees table.

EXEC sp_help Employees

2.9.8 Systemand Metadata Functions

System and metadata functions provide a method for querying system tables from
within Transact-SQL statements. The following example uses a system function in a
query to retrieve the user name for a user ID of 1 O.

SELECT USER_NAME(lO)

38

2.9.9 Information Schema Views

Information schema views provide an internal, system table-independent view of the
SQL Server metadata. These views conform to the ANSI SQL standard definition for
the information schema. Each information schema view contains metadata for all data
objects stored in that particular database. The following example queries an
information schema view to retrieve a list of tables in a database.

SELECT* FROM INFORMATION SCHEMA.TABLES

2.10 SQL SERVER SECURITY

2.10.1 Login Authentication

A user must have a login account to connect to SQL Server. SQL Server
recognizes two login authentication mechanisms-Windows Authentication and SQL
Server Authentication-each of which has a different type of login account.

2.10.2 Windows Authentication

When using Windows Authentication, a Windows 2000 account or group controls user
access to SQL Server. A user does not provide a SQL Server login account when
connecting. A SQL Server system administrator must define either the Windows 2000
account or the Windows 2000 group as a valid SQL Server login account.

V\/i'rtd~c1-1Af's 2{)()(J
G r·OLJc p or t.J Setf

OR

50'L S·t:~f''9~0f!::.·t<'
t... ·t>·f-.J t t"'i .A~:-c..,.t:ıu,rı 't

SOL 5£e;r~.,;e-T
'•.A:?rifl"'2S TW!iılS-f,.ed

cıe~nn.:).c•ı:ron

SQIL S,(tif',_.lic!'
V\,ı..,,dft.~ t-4.rı.nn,;ı,
,d\ndl Pass•.ı>ıtoırd

2.10.3 SQL Server Authentication

When using SQL Server Authentication, a SQL Server system administrator defines a
SQL Server login account and password. Users must supply both SQL Server logins
and passwords when they connect to SQL Server.

39

..

2.10.4 Authentication Mode

When SQL Server is running on Windows 2000, a system administrator can specify
that it run in one of two authentication modes:

2.10.5 Windows Authentication Mode Only Windows 2000 authentication is
allowed. Users cannot specify a SQL Server login account.

2.10.61\.'lixed Mode Users can connect to SQL Server with Windows Authentication or
SQL Server Authentication.

2.11 Database User Accounts and Roles

After users have been authenticated by Windows 2000 or SQL Server and have
been allowed to log in to SQL Server, they must have accounts in a database. User
accounts and roles identify a user within a database and control ownership of objects
and permissions to execute statements.

2.11.1 Database User Accounts

The user accounts that apply security permissions are Windows 2000 users or groups or
SQL Server login accounts. User accounts are specific to a database.

2.11.2 Roles

Roles enable you to assemble users into a single unit to which you can apply
permissions. SQL Server provides predefined server and database roles for common
administrative functions so that you can easily grant a selection of administrative
permissions to a particular user. You also can create your own user-defined database
roles. In SQL Server, users can belong to multiple roles.

Sı:.''.;!t., Se·,r\Nl!'<
\l,'d•rifi.eı!L, Tırı.;ısted

Conn0~cti"':::ı.r,

5(::}L S;.eınti'L>if J'.l,s,s,ig'ns
L09i4'lS to ILJ$,•2\I'

l\CC04J f&ıtS kıtr'ld fi:ol'2!:8

·\/\/trıcı·oVv~s-.·2oc:ı;J
\ ..,)$(2.J

[)attabsıs.ıe
U5·t:n°

SX:!L Se-1 v:ı:r
VorHJes Na me
~nd P.il'!>:e,'J'ı.H::,td

40

2.11.3 Types of Roles

SQL Server enables three types of roles to help manage permissions: fixed
server roles, fixed .database roles, and user-defined database roles.

2.11.3.1 Fixed Server Role

Fixed server roles provide groupings of administrative privileges at the server level.
They are managed independently of user databases at the server level.

2.11.3.2 Fixed Database Roles

Fixed database roles provide groupings of administrative privileges at the database
level. The following table describes the fixed database roles in SQL Server 2000.

2.11.3.3 User-defined Database Roles

You also can create your own database roles to represent work performed by a group of
employees in your organization. You do not have to grant and revoke permissions from
each person. If the function of a role changes, you easily can change the permissions
for the role and have the changes apply automatically to all members of the role.

2.11.4 Permission Validation

Within each database, you assign permissions to user accounts and roles to
perform (or restrict) certain actions. SQL Server accepts commands after a user has
successfully accessed a database.SQL Server takes the following steps when validating
permissions.When the user performs an action, such as executing a Transact-SQL
statement or choosing a menu option, the client sends Transact-SQL statements to SQL
Server.

1. When SQL Server receives a Transact-SQL statement, it checks that the
user has permission to execute the statement.

2. SQL Server then performs one of two actions:

o If the user does not have the proper permissions, SQL Server returns an
error.

o If the user has the proper permissions, SQL Server performs the action.

41

~'.:¥·,:-:~ i""':ıı·'~ f~~s.. I<> ı·"'y·!";i<- <'.:>' 1-"<.;,
;_:")..ı'i:!'"t·l>c:t~i'"'!ı·'-,,~,;:,.

<:."'..ıc."l:ıtrı·'li!nı.f'l,.-':'tı'·l!ıi«:A

P'~ r· r~"ıiibs f..:::>1'%5-
~"11 C> t:: -ı:::::,.K~

R~-e~ . .ıı'tyıı----.:s E~-r~_J)<jt

2.12 WORKING WITH SQL SERVER

2.12.1Administering a SQL Server Database

SQL Server provides graphical and command prompt tools and utilities to
administer SQL Server. It also includes different types of Help to assist you.

2.12.2 Common Administrative Tasks

Administering a SQL Server database involves:

• Installing, configuring, and securing SQL Server.

• Building databases. Tasks include allocating disk space to the database
and log, transferring data into and out of the database, defining and implementing
database security, creating automated jobs for repetitive tasks, and setting up
replication to publish data to multiple sites.

• Managing ongoing activities, such as importing and exporting data,
backing up and restoring the database and log, and monitoring and tuning the
database.SQL Server includes tools and wizards for administering and managing the
server, designing and creating databases, and querying data. It also provides online
Help.

2.12.3 SQL Server Enterprise Manager

SQL Server provides an administrative client, SQL Server Enterprise Manager,
which is a Microsoft Management Console (MMC) snap-in. MMC is a shared user
interface for the management of Microsoft server applications.

2.12.4 SQL Server Administration Tools and Wizards

SQL Server provides a number of administrative tools and wizards that assist with
particular aspects of its administration.

2.12.5 SQL Server Command Prompt Management Tools

SQL Server command prompt management tools allow you to enter
Transact?SQL statements and execute script files.

42

2.12.6 SQL Server Help and SQL Server Books Online

SQL Server offers different types of Help to assist you.

2.12. 7 Implementing a SQL Server Database

Implementing a SQL Server database means planning, creating, and
maintaining a number of interrelated components.The nature and complexity of a
database application, as well as the process of planning it, can vary greatly. For
example, a database can be relatively simple, designed for use by a single person, or it
can be large and complex, designed to handle all the banking transactions for hundreds
of thousands of clients.Regardless of the size and complexity of the database,
implementing it usually involves:

• Designing the database so that your application uses hardware optimally
and allows for future growth; identifying and modeling database objects and
application logic; and specifying the types of information for each object and type of
relationship.

• Creating the database and database objects, including tables, data
integrity mechanisms, data entry and retrieval objects (often stored procedures),
appropriate indexes, and security.

• Testing and tuning the application and database. When you design a
database, you want to ensure that the database performs important functions correctly
and quickly. In conjunction with correct database design, the correct use of indexes,
RAID, and filegroups are essential to achieving good performance.

• Planning deployment, which includes analyzing the workload and
recommending an optimal index configuration for your SQL Server database.

2.12.8 Selecting an Application Architecture for SQL Server

Planning a database design requires knowledge of the business functions that
you want to model and the database concepts and features that you use to represent
those business functions.

Before you design an application for SQL Server, it is important to take time
designing a database to model the business accurately. A well-designed database
requires fewer changes and generally performs more efficiently. The architecture that
you select affects how you develop, deploy, and manage your software application.

2.12.9 Software Architecture

You can use one of several application architectures to implement client/server
applications. However, selecting a layered application approach affords flexibility and
a choice of management options. You can divide software applications into three
logical layers, which can physically reside on one or more servers.

43

1a""lt:..err~e·tt

.P'W·ı(~!'.".Ii~~t'il '1. ;§ ·t:W :i;.".l?fi
1~.J.'$ l t kt?'.-:':'!i'i-....~

f.~·c1,; ~:'; .s.~,.t·i 1:.ş{j t:&ıt:.:ı•tı
.434Ustt ~:ıfi,""'.55

2.12.10 Architectural Design

Typical application deployment options include:

2.12.10.1 Intelligent Server (2-Tier) Most processing occurs on the server, with the
client handling presentation services. In many instances, most of the business services
logic is implemented in the database. This design is useful when clients do not have
sufficient resources to process the business logic. However, the server can become a
bottleneck because database and business services compete for the same hardware
resources.Corporate applications designed from a database-centric point of view are an
example of this design.

2.12.10.2 Intelligent Client (2-Tier) Most processing occurs on the client, with the
server handling data services. This design is widely used. However, network traffic can
be heavy and transactions longer, which can affect performance.
Applications developed for small organizations with products such as Microsoft Access
are an example of this design.

2.12.10.3 N-Tier Processing is divided among a database server, an application server,
and clients. This approach separates logic from data services, and you easily can add
more application servers or database servers as needed. However, the potential for
complexity increases, and this approach may be slower for small applications.
Multitiered enterprise applications and applications developed with transaction
processing monitors are examples of this design.

2.12.10.4 Internet Processing is divided into three layers, with the business and
presentation services residing on the Web server and the clients using Internet
browsers. SQL Server uses XML support for presentation of data to browsers. SQL
Server can support any client that has a browser, and software does not need to be
maintained on the client.
An example of this design is a Web site that uses several Web servers to manage
connections to clients and a single SQL Server database that services requests for data.
You can access SQL Server over HTTP by using a URL. This allows you to directly
access database objects and execute template files. This is not recommended for
environments that must be highly secure and in which performance is critical.

44

2.12.11 Designing Applications Using Database APls

You can develop a database application that accesses SQL Server through an
APL A database APl contains two parts:

• Transact-SQL language statements passed to the database.

• A set of functions or object-oriented interfaces and methods used to send
the Transact-SQL statements to the database and process the results returned by the
database.

Examples of relational database applications include data entry applications for
airline ticketing and banking transaction systems.

2.13 OLE DB

OLE DB is a Component Object Model (COM)-based APL This API is a library of
COM interfaces that enables universal access to diverse data sources.

SQL Server includes a native OLE DB provider. The provider supports applications
written by using OLE DB, or other APis that use OLE DB, such as ADO. Through the
native provider, SQL Server also supports objects or components using OLE DB, such
as ActiveX, ADO, or Microsoft .NET Enterprise Servers.

2.14 ADO

This database API defines how to write an application to connect to a database by using
OLE DB and how to pass Transact-SQL commands to a database.
ADO is an application-level interface that uses OLE DB. Because ADO uses OLE DB
as its foundation, it benefits from the data access infrastructure that OLE DB provides,
yet it shields the application developer from the necessity of programming COM·',

45

interfaces. Developers can use ADO for general-purpose access programs in business
applications (Accounting, Human Resources, and Customer Management), and can use
OLE DB for tool, utility, or system-level development (development tools and database
utilities).

2.15 OVERWIEW OF PROGRAMMING SQL SERVER

After completing this part, we will be able to:

• Describe the concepts of enterprise-level application architecture.
• Describe the primary Microsoft® SQL Server™ 2000 programming

tools.
• Explain the difference between the two primary programming tools in

SQL Server.
• Describe the basic elements of Transact-SQL.
• Describe the use of local variables, operators, functions, control of flow

statements, and comments.
• Describe the various ways to execute Transact-SQL statements.

2.15.l Designing Enterprise Application Architecture

SQL Server is often part of a distributed application. The design of a SQL
Server implementation for an enterprise solution depends on your choice of
architecture and how you intend to distribute logic across applications

2.15.2 Identifying Logical Layers

Enterprise application architecture contains logical layers. The layers represent
data presentation, application logic, and data services.

Data
·?re,,;ıı,r1tatiorı

Layitr

Appfü::ation Logic
La~r

Data S:.-.ifvic.ııs ,, I
'LZt)l;@'I"

Custoın 'Vlindow1,
applk:Mlons

Cu;;torn-built
C(.>n:q.:1of;Bnts

I nt;:,g rated applkatkm s
and servk::eı;

Data ru lıJ<.s

2.15.3 Data Presentation Layer

The data presentation layer is also referred to as user services and allows users to
browse · and manipulate data. The two main types of client applications are custom
Microsoft Windows® applications and Web browsers. The data presentation layer uses
the services that the application logic layer provides.

2.15.4 Application Logic Layer

This layer contains the application logic that defines rules and processes. It allows for
scalability; instead of many clients directly accessing a database (with each client

46

requiring a separate connection), clients can connect to business services that, in turn,
connect to the data servers. Business services can be custom-built components or
integrated applications and services, such as Web services. The application logic layer
can also contain components that make use of transaction services, messaging services,
or object and connection management services.

2.15.5 Data Services Layer

Data services include data access logic and data storage. These services can include
SQL Server stored procedures to manage data traffic and integrity on the database
server.

2.15.6 Designing Physical Layers

You can physically place logical layers in a distributed environment in a variety
of ways. Although all logical layers can exist on one computer, it is typical to distribute
the logical layers in a two-tier or multi-tier model. This allows you to implement logic,
business rules, and processing where they are most effective.

2.15.6.1 Using a Two-Tier Model

If you use this model, you can locate the presentation and application logic on the
client and the data services on a server. Alternatively, you can locate the application
logic in stored procedures on the server. You can also have a mixed solution in which
the application logic is divided between the client and the server.

Two-tier designs are less common than multi-tier designs, due to the growing
popularity of Internet applications. They are not as scalable and may not be as easy to
maintain as multi-tier designs are.

2.15.6.2 Using a Multi-Tier Model

The multi-tier model, also known as three-tier or n-tier, allows you to distribute logic
across applications. Business rules can be separate from the client or the database.
When this model is applied to the Internet, you can divide presentation services
between a browser client and a Microsoft Internet Information Services (IIS) Web

47

server; the Web server formats the Web pages that the browser displays.

The multi-tier model is scalable for large client bases and many applications, and you
can spread the workload among many computers. A multi-tier model is easy to manage
because you can isolate a change to one business rule without affecting others. Also, an
update to an Active Server Page on a Web server automatically updates all clients. '

2.15.7 Accessing Data

'Microsoft technologies allow you to access enterprise data by using a wide
range of pre-built clients or custom clients that use a data access-programming
interface.

Data
ComıumtHs

Dato
PtO\/id-zrs

2.15.7.1 Using Pre-Built Clients

You can use pre-built client applications to access data on SQL Server. The data
retrieval logic is part of the client application.

Microsoft Office 2000 includes Microsoft Access and Microsoft Excel. When
part of a multi-tier solution, you use these applications primarily for presentation
services. However, you can also use them for application logic and data services. These
applications allow users to browse server-side data and perform ad hoc queries. You
can use them to retrieve SQL Server data or as a client in a multi-tier design. You can
also use Office 2000 as a development environment for building data access
applications.Access and Excel are examples of pre-built clients that offer a range of
functionality. You can also use pre-built clients that only offer presentation services,
such as a browser that communicates with IIS.

2.15.7.2 Building Custom Clients

You can build custom clients by using a data access programming interface and a
development environment, such as Microsoft Visual Studio® version 6.0 Enterprise
Edition.

48

2.15.8 Accessing Data

2.15.8.1 Providing Universal Data Access

Custom clients may need to access many different data sources in the enterprise.
Microsoft Data Access Components (MDAC) is an interface that allows
communication with different data sources. You can use the following MDAC
components to facilitate communication:

• OLE DB. A set of Component Services interfaces that provides uniform
access to data stored in diverse information sources. OLE DB enables you to access

Irelational and nonrelational data sources.

• Microsoft ActiveX® Data Objects (ADO). An easy-to-use application
programming interface (API) to any OLE DB data provider. You can use ADO in a
broad range of data access application scenarios. OLE DB and ADO allow you to
create data components that use the integrated services provided by Component
Services.

ADO allows you to:

• Open and maintain connections.
• Create ad hoc queries.
• Execute stored procedures on SQL Server.
• Retrieve results and use cursors.
• Cache query results on the client.
• Update rows in the database.
• Close connections.

2.16 SQL SERVER PROGRAMMING TOOLS

SQL Server 2000 offers several programming tools, including SQL Query
Analyzer and the osql utility. SQL Query Analyzer is a Windows-based application,
and osql is a utility that you can run from a command prompt.

2.16.l SQL Query Analyzer

You can use SQL Query Analyzer to view query statements and results at the same
time. You also can use it for writing, modifying, and saving Transact-SQL scripts.

SQL Query Analyzer provides the following features:

• Customized marking of syntax elements. As you write a query, SQL
Query Analyzer highlights keywords, character strings, and other language elements;
you can customize how they appear.

• Multiple query windows, each with its own connection.

• Customizable views of result sets. You can view results in default result
set form or in a grid so that you can manipulate them as you would a table.

49

• Graphical execution plans that describe how SQL Server executes the
query. You can view the optimized plan of execution and verify your syntax. '

• The ability to execute portions of a script. You can select portions of a
script, and SQL Server will execute only those portions.

2.16.2 osql Utility

The osql utility allows you to write Transact-SQL statements, system procedures, and
script files. It uses Open Database Connectivity (ODBC) to communicate with the
server. You start the utility directly from the operating system with the case-sensitive
arguments listed below. Once started, osql accepts Transact-SQL statements and sends
them to SQL Server interactively. Osql formats and displays the results on the screen.
Use the QUIT or EXIT commands to exit from osql.

Syntax

osql -U login_id [-e] [-E] [-p] [-n] [-d db_name] [-q "query"] [-Q "query"]
[-c cmd_end] [-h headers] [-w column_width] [-s col_separator]
[-t time_out] [-m error_level] [-L] [-?] [-r {O I 1}]
[-H wksta __name] [-P password] [-R]
[-S server_name] [-i input_file] [-o output_file] [-a packet_size]
[-b] [-O] [-1 time_out]

The following table describes the most commonly used arguments.

Argument Description

-U login_id Is the user login ID. Login IDs are
case sensitive. If neither the -U or -P
option is used, SQLServer uses the
currently logged in user account and
will not prompt for a password.

-E Usesa trusted connection instead of
requesting a password.

-? Displays the syntax summary of osql
switches.

-P password Is a user-specified password. If the -
P option is not used, osql prompts
for a password. If the -P option is
used at the end of the command
prompt without any password,osql
uses the default password (NULL).
Passwordsare casesensitive. If
neither the -U or -P option is used,
SQLServer uses the currently logged
in user account and will not prompt
for a password.

50

-5 server_name Specifies the SQLServer to which to
connect. server_name is the name öf
the server computer on the network.
This option is required if you execute v-.

osql from a remote computer on the ·
network.

-l input_file Identifies the file that contains a
batch of Transact-SQL statements or
stored procedures. You can use the
less than (<) symbol instead of -I.

-o output_file Identifies the file that receives output
from osql. You can use the greater
than (>) symbol in place of -o. If the
input file is Unicode, the output file
will be Unicode if you specify -o, If
the input file is not Unicode, the
output file is OEM.

-b Specifies that osql exits and returns
a Microsoft MS-DOS® ERRORLEVEL
value when an error occurs. The
vaiue returned to the DOS
ERRORLEVELvariable is 1 when the
SQLServer error message has a
severity of 10 or greater; otherwise,
the value returned is O. MS-DOS
batch files can test the value of DOS
ERRORLEVELand handle the error
appropriately.

2.17 THE TRANSACTION-SQL PROGRAMMING LANGUAGE

Transact-SQL is the SQL Server implementation of the entry-level ANSI-SQL
International Standards Organization (ISO) standard. The ANSI-SQL compliant
language elements of Transact-SQL can be executed from any entry-level ANSI-SQL
compliant product. Transact-SQL also contains additional language elements that are
unique to it.

2.17.1 Elements of Transact-SQL

As you write and execute Transact-SQL statements, you will use different
languages statements, which are used to deteımine who can see or modify the data,
create objects in the database, and query and modify the data. You should follow the
rules for naming SQL Server objects, and become familiar with the naming guidelines
for database objects.

In this part I try to explain will learn about the following topics:

• Data control language statements
• Data definition language statements

51

• CREATE object type object_name.
• ALTER object_type object_name.
• DROP object_type object_name.

• Data manipulation language statements
• SQL server object names
• Naming guidelines

2.17.2 Data Control Language Statements

You use Data Control Language (DCL) statements to change the permissions
associated with a database user or role.

By default, only members of the sysadmin,dbcreator,db_owner, or
db_securityadmin role can execute DCL statements.

Example

This example grants the public role permıssıon to query the Products table.

USE Northwind
GRANT SELECT ON Products TO public

2.17.3 Data Definition Language Statements

Data Definition Language (DDL) statements define the database by creating
databases, tables, and user-defined data types. You also use DDL statements to manage
your database objects. Some DDL statements include:

By default, only members of the sysadmin, dbcreator, db_owner, or
db_ddiadmin role can execute DDL statements. In general, it is recommended that no
other accounts be allowed to create database objects. If users create their own objects in
databases, then each object owner is required to grant the proper permissions to each
user of those objects. This causes an administrative burden and should be avoided.
Restricting statement permissions to these roles also avoids problems with object
ownership that can occur when an object owner has been dropped from a database, or
when the owner of a stored procedure or view does not own the underlying tables.
If multiple user accounts create objects, the sysadmin and db_owner roles can use the
SETUSER function to impersonate other users or the sp_changeobjectowner system
stored procedure to change the owner of an object.

Example

The following script creates a table called Client in the ClassNorthwind database. It
includes CustomerID, Company, Contact, and Phone columns.

USE ClassNorthwind
CREATE TABLE Client

52

(CustomerID
Phone char(l2))

int, Company varchar(40),Contact varchar(30),

2.17.4 Data Manipulation Language Statements

DML statements work with the data in the database. By using DML statements,
you can change data or retrieve information. DML statements include:

• SELECT
• INSERT
• UPDATE
• DELETE

By default, only members of the sysadmin, dbcreator,
db_datawriter, and db datareader roles can execute DML

db_owner,
statements.

Example

This example retrieves the category ID, product name, product ID, and unit price of the
products in the Northwind database.

SELECT CategoryID, ProductName, CategoryID, ProductID, UnitPrice FROM
Northwind ..Products

2.17.5 SQL Server Object Names

SQL Server provides a series of standard naming rules for object identifiers and
a method of using delimiters for identifiers that are not standard. It is recommended
that you name objects by using the standard identifier characters, if possible.

Standard Identifiers

Standard identifiers can contain from one to 128 characters, including letters, symbols
(_, @, or #), and numbers. No embedded spaces are allowed in standard identifiers.
You should observe the following rules for using identifiers:

• The first character must be an alphabetic character ofa-zor A-Z.
• After the first character, identifiers can include letters, numerals, or the

@, $,#,or_ symbol.
• Identifier names starting with a symbol have special uses:
o An identifier beginning with the at sign (@)denotes a local variable or

parameter.
o An identifier beginning with a number sign (#) denotes a temporary

table or procedure.
o An identifier beginning with a double-number sign (##) denotes a global

temporary object.

53

2.17.6 SQL Server Object Names

Delimited Identifiers

If an identifier complies with all of the rules for the format of identifiers, you can use it
with or without delimiters. If an identifier does not comply with one or more of the
rules for the format of identifiers, it must always be delimited.

You can use delimited identifiers in the following situations:

• When names contain embedded spaces
• When reserved words are used for object names or portions of object

names.You must enclose delimited identifiers in brackets or quotation marks when you
use them in Transact-SQl. statements.

• Bracketed identifiers are delimited by square brackets ([]):

SELECT* FROM [Blanks In Table Name]

Note: You can always use bracketed delimiters, regardless of the status of the
SET QUOTED _IDENTIFIER option.

• Quoted identifiers are delimited by quotation marks(""):

SELECT * FROM "Blanks in Table Name"

You can use quoted identifiers only if the SET QUOTED _IDENTIFIER option is on.

Naming Guidelines

Guidelines for naming database objects are important for identifying the type of
object and to promote ease in troubleshooting or debugging. When naming database
objects, you should:

• Use meaningful names where possible.

For example, for a column that contains the name of customers, you could name

the column Chr_Name_Of_Customer. A prefix ofChr in the column name denotes a

character data type.

• Keep names short.

For example, although the column name Chr_Name_Of_Customer ıs
meaningful, you could shorten the column name to Name or Chr_Name.

• Use a clear and simple naming convention.

Decide what works best for your situation, and be consistent. Avoid naming
conventions that are too complex, because they can become difficult to remember. For

54

example, you can remove vowels if an object name must resemble a keyword (such as
a backup stored procedure named Bckup).

• · Chose an identifier that distinguishes the type of object, especially when
using views and stored procedures.

System administrators often mistake views for tables, an oversight that can

cause unexpected problems. For example, if you create a view that joins two tables,

you could name that view, SoldView.

• Keep object names and user names unique.

For example, avoid creating a Sales table and a sales role in the same database.

2.18 ADDITIONAL LANGUAGE ELEMENTS

2.18.1 Local Variables

Variables are language elements with assigned values. You can use local
variables in Transact-SQl..

You define a local variable in a DECLARE statement and then assign it an
initial value with either the SET or SELECT statement. Use the SET statement when
the desired value is known. Use the SELECT statement when you must look up the
desired value in a table. After you establish the value of the variable, you can use it in
the statement, batch, or procedure in which it was declared. A batch is a set .of
Transact-SQl. statements that are submitted together and executed as a group. A local
variable is shown with one at sign (@) preceding its name.

Syntax

DECLARE {@local_ variable data_type} [, ... n]

SET @local_ variable _name = expression

Example

The following example declares two variables. It uses the SET statement to establish
the value of the @vLastName variable and the SELECT statement to look up the value
of the @vFirstName variable. It then prints both variables.

DECLARE @vLastName char(20),
@vFirstName varchar(l 1)
SET@vLastName = 'Dodsworth'
SELECT @vFirstName = FirstName

55

FROM Northwind ..Employees
WHERE LastName = @vLastName
PRINT@vFirstName +' '+@vLastNameGO

Result
Anne Dodsworth

2.18.2 Operators

Operators are symbols that perform mathematical computations, string
concatenations, and comparisons between columns, constants, and variables. You can
combine them and use them in search conditions. When you combine them, the order
in which SQL Server processes the operators is based on a predefined precedence.

Partial Syntax

{ constant I column_ name I function I (subquery)}
[{arithmetic_ operator I string_ operator I
AND I OR I NOT}
{constant I column_name ı function I (subquery)} ...]

2.18.3 Types of Operators

SQL Server supports four types of operators: arithmetic, comparison, string
concatenation, and logical

2.18.3.1 Arithmetic

Arithmetic operators perfoım computations with numeric columns or constants.
Transact-SQL supports multiplicative operators, including multiplication (*), division
(/), and modulo (%)-the integer remainder after integer division-and the addition (+)
and subtraction (-) additive operators.

2.18.3.2 Comparison

Comparison operators compare two expressions. You can make comparisons between
variables, columns, and expressions of similar type.

2..18.3.3String Concatenation

The string concatenation operator (+) concatenates string values. String functions
handle all other string manipulation.

2.18.3.4 Logical

The logical operators AND, OR, and NOT connect search conditions in WHERE
clauses.

56

2.18.4 Operator Precedence Levels

If you use multiple operators (logical or arithmetic) to combine expressions, SQL
Server processes the operators in order of their precedence, which may affect the
resulting value.

SQL Server handles the most deeply nested expression first. In addition, if all
arithmetic operators in an expression share the same level of precedence, the order is
from left to right.

2.18.5 Functions
Transact-SQl. provides many functions that return information. Functions take

input parameters and return values that can be used in expressions. The Trarısact-Sôl.
programming language provides three types of functions, aggregate, scalar, and rowset.

2.18.5.1 Aggregate Functions

Aggregate functions operate on a collection of values but return a single, summarizing
value.

Example 1

This example determines the average of the UnitPrice column for all products in the
Products table.

SELECT AVG(UnitPrice) FROM Products

2.18.5.2 Scalar Functions

Scalar functions operate on a single value and then return a single value. You can use
these functions wherever an expression is valid. You can group scalar functions into
the categories in the following table.

Example 2

This metadata function example returns the name of the database currently
in use.

SELECT DB_NAME() AS 'database'

2.18.5.3 Rowset Functions

Rowset functions can be used like table references in a Transact-SQL statement.

Example 3

This example performs a distributed query to retrieve information from the EMP table.

57

SELECT*
FROM OPENQUERY(OracleSvr, 'SELECT ENAME, EMPNO FROM
SCOTT.EMP')

2.18.5.4 Convert Functions

You commonly use functions when converting date data from the format of one
country to that of another.

Note: To change date formats, you should use the CONVERT function with the
style option to determine the date format that will be returned.

Example 4

This example demonstrates how you can convert dates to different styles.

SELECT 'ANSI:' AS Region,
CONVERT (varchar(30), GETDATE(), 102) AS Style

UNION
SELECT 'European:', CONVERT(varchar(30), GETDATE(), 113)
UNION
SELECT 'Japanese:', CONVERT(varchar(30), GETDATE(), 111)

2.18.5.5 Date Functions

This example uses the DATEFORMAT option of the SET statement to format
dates for the duration of a connection. This setting is used only in the interpretation of
character strings as they are converted to date values and has no effect on the display of
date values.

Example 5

SET DATEFORMAT dmy

GO
DECLARE @vdate datetime

SET @vdate = '29/11/00'

SELECT @vdate

2.18.5.6 User Functions

This example returns the current user name and the application that the user is using for

the current session or connection. The user in this example is a member of the

sysadmin role.

58

Example 6

USE Northwind

SELECT user_ name(), app_name()

2.18.5.7 Column Property Functions

This example determines whether the FirstName column in the Employees

table of the Northwind database allows null values.

A result of zero (false) means that null values are not allowed, and a result of

one (true) means that null values are allowed. Notice that the OBJECT_ID function is

embedded in the COLUMNPROPERTY function. This allows you to retrieve the

object id of the Employees table.

Example 7

USE Northwind

SELECTCOLUMNPROPERTY(OBJECT ID('Employees'),
'FirstName', 'AllowsNull')

2.18.6 Control of Flow Language Elements

Transact-SQl. contains several language elements that control the flow of logic
in a statement. It also contains the CASE expression that allows you to use conditional
logic on one row at a time in a SELECT or UPDATE statement.

2.18.7 Statement Level

The following language elements enable you to control the flow of logic in. a

script:

BEGIN...END Blocks These elements enclose a series of Transact-SQL statements so

that SQL Server treats them as a unit.

IF...ELSE Blocks These elements specify that SQL Server should execute the

first alternative if a certain condition is true. Otherwise, SQL Server should execute the

second alternative.

59

WHILE Constructs These elements execute a statement repeatedly as long as

the specified condition is true. BREAK and CONTINUE statements control the

operation of the statements inside a WHILE loop.

Example 1

This example determines whether a customer has any orders before deleting the

customer from the customer list.

USE Northwind

IF EXISTS (SELECT OrderID FROM Orders

WHERE CustomerID = 'Frank')

PRINT'*** Customer cannot be deleted***'

ELSE

BEGIN

DELETE Customers WHERE CustomerID = 'Frank'

PRINT'*** Customer deleted***'

END

2.18.8 Row Level

A CASE expression lists predicates, assigns a value for each, and then tests

each one. If the expression returns a true value, the CASE expression returns the value

in the WHEN clause. If the expression is false, and you have specified an ELSE clause,

SQL Server returns the value in the ELSE clause. You can use a CASE expression

anywhere that you use an expression.

Syntax
CASE expression

{WHEN expression THEN result} [, ... n]

[ELSE result]

END

60

Example

The following example reviews the inventory status of products in the Products table
and returns messages based on the quantities available and quantities back ordered, and
whether the product has been discontinued. ·

SELECT ProductID, 'Product Inventory Status'=

CASE

WHEN (UnitsinStock < UnitsOnOrder AND Discontinued= O)

THEN 'Negative Inventory - Order Now!'

WHEN ((UnitsinStock-UnitsOnOrder) < ReorderLevel AND

Discontinued= O)

THEN 'Reorder level reached- Place Order'

WHEN (Discontinued= 1) THEN '***Discontinued***'

ELSE 'In Stock'

END
FROM Northwiıid..Products

2.18.9 Comments

Comments are non-executing strings of text placed in statements to describe the
action that the statement is performing or to disable one or more lines of the statement.
You can use comments in one of two ways-in line with a statement, or as a block.

2.18.9.1 In-Line Comments

You can create in-line comments by using two hyphens(--) to set a comment
apart from a statement. Transact-SQL ignores text to the right of the comment
characters. You can also use this commenting character to disable lines of a statement.

Example 1

This example uses an in-line comment to explain what a calculation is doing.

SELECT ProductName ,(UnitsinStock + UnitsOnOrder) AS Max - inventory ,

SupplierID FROM Products

61

Example 2

This example uses a second set of in-line comments, as represented by the

second set of hyphens (--), to prevent the execution of a section (SupplierID) of a

statement.

SELECT ProductName ,(UnitslnStock + UnitsOnOrder) AS Max -inventory

--,SupplierID FROM Products

2.18.9.2 Block Comments

You can create multiple line blocks of comments by placing one comment
character (/*) at the start of the comment text, typing your comments, and then
concluding the comment with a closing comment character (* f).
Use this character designator to create one or more lines of comments or comment
headers-descriptive text that documents the statements that follow it. Comment headers
often include the author's name, creation and last modification dates of the script,
version information, and a description of the action that the statement performs.

Example 3

This example shows a comment header that spans several lines. The two asterisks(**)
preceding each line improve readability.

I*
** This code retrieves all rows of the products table
* * and displays the unit price, the unit price increased
* * by l O percent, and the name of the product.
*I
SELECT UnitPrice, (UnitPrice * 1.1), ProductName
FROM Products

Example 4

This section of a script is commented to prevent it from executing. This can be helpful
when debugging or troubleshooting a script file.

I*
DECLARE @vl int
SET@vl = O
WHILE@vl < 100

BEGIN
SELECT @vl = (@vl + 1)
SELECT@vl
END

*/

62

2.19.lDynanıically Constructing Statements

You can build statements dynamically so that they are constructed at the same
time that SQL Server executes a script.To build a statement dynamically, use the
EXECUTE statement with a series of string literals and variables that are resolved at
execution time.

Dynamically constructed statements are useful when you want SQL Server to
assign he value of the variable when it executes the statement. For example, you can
create a dynamic statement that performs the same action on a series of database
objects.

Syntax

EXECUTE ({@str _var I 'tsql_string'} + [{@str_var I 'tsql_string'} ...])}
You set options dynamically, and variables and temporary tables that you create
dynamically last only as long as it takes for SQL Server to execute the statement.

Consider the following facts about the EXECUTE statement:

• The EXECUTE statement executes statements composed of character
trings in a Transact-SQL batch. Because these are string literals, be sure that you add
spaces in the appropriate places to ensure proper concatenation.

• The EXECUTE statement can include a string literal, a string local
variable, or a concatenation of both.

• All items in the EXECUTE string must consist of character data; you
must convert all numeric data before you use the EXECUTE statement.

• You cannot use functions to build the string for execution.

• You can create any valid Transact-SQl. statements dynamically,
including functions

• You can nest EXECUTE statements.

Example 1

This example demonstrates how you can use a dynamically executed statement
to specify a database context other than the one you are currently in, and then use it to
select all of the columns and rows from a specified table. In this example, the change-of
the database context to the Northwind database lasts only for the duration of the query.
The current database context is unchanged.By using a stored procedure, the user could
pass the database and table information into the statement as parameters, and then
query a specific table in a database.

DECLARE @dbname varchar(30), @tablename varchar(30)

SET@dbname = 'Northwind'

63

SET @tablename = 'Products'

EXECUTE

('USE ' + @dbname + ' SELECT ProductName FROM ' + @tablename)

Result

ProductName

Alice Mutton
Aniseed Syrup
Boston Crab

Meat

Example 2

, This example demonstrates how you can use a dynamically executed statement
to hange a database option for the duration of the statement. The following statement
does not return a count of the number of rows affected.

EXECUTE ('SET NOCOUNT ON '+ 'SELECT LastName, ReportsTo
FROM Employees WHERE ReportsTo IS NULL')

Result

LastName ReportsTo

Fuller NULL

Using Batches

You can also submit one or more statements in a batch.

One or More Transact-SQL Statements Submitted Together

Batches can be run interactively or as part of a script. A script can include more
than one batch of Transact-SQl. statements.

2.19.2 Define a Batch by Using the GO Statement

Use a GO statement to signal the end of a batch. GO is not a universally
accepted Transact-SQL statement; only SQL Query Analyzer and the osql utility
accept it. Applications based on the ODBC or OLE DB APis generate a syntax error if
they attempt to execute a GO statement.

64

• CREATE PROCEDURE
• CREATE VIEW
• CREATE TRIGGER
• CREA TE RULE
• CREATE DEFAULT

2.19.3 How SQL Server Processes Batches

SQL Server optimizes, compiles, and executes the statements in a batch
together. However, the statements do not necessarily execute as a recoverable unit of
work.
The scope of user-defined variables is limited to a batch, so a variable cannot be
referenced after a GO statement.

2.19.4 You Cannot Combine Some Statements in a Batch

SQL Server must execute certain object creation statements in their own batches in a
script, because of the way that the objects are defined. Each of the following statements
is defined by including an object definition header followed by the AS keyword
(indicating that one or more statements follow). The object definitions are delimited by
the GO statement; SQL Server recognizes the end of the object definition when it
reaches the GO statement:

Example 1

If you want to use more than one of the non-combinable statements, you must submit
multiple batches, as the following script indicates.

CREATE DATABASE ...
CREATE TABLE ...
GO

CREATE VIEWl ...
GO
CREATE VIEW2 ...
GO

Example 2

The following example is a batch that fails. To execute it correctly, insert a GO
statement before each CREATE TRIGGER statement.

CREATE DATABASE ...
CREATE TABLE ...
CREATE TRIGGER .
CREATE TRIGGER .
GO

65

Example 3

The following example shows how to group the statements of Example 2 so that they
execute correctly.

CREATE DATABASE ...
CREATE TABLE ...
GO

CREATE TRIGGER ...
GO

CREATE TRIGGER ...
GO

2.19.4.1 Using Scripts

Scripts are one of the most common ways to execute Transact-SQL statements.
A script is one or more Transact-SQL statements that are saved as a file.You can write
and save scripts in SQL Query Analyzer or in any text editor, such as Notepad. Save
the script file by using the .sql file name extension.

You can open and execute the script file in SQL Query Analyzer or the osql
utility (or another query tool).Saved scripts are very useful when recreating databases
or data objects, or when you must use a set of statements repeatedly.
Format Transact-SQL statements to be legible to others. Use indenting to indicate
levels of relationships.

2.19.4.2 Using Transactions

Transactions, like batches, are groups of statements that are submitted as a set.
However, SQL Server handles transactions as a single unit of work, and the transaction
succeeds or fails as a whole. This process maintains data integrity. Transactions can
span multiple batches.

Preface a transaction with a BEGIN TRANSACTION statement, and terminate
it with a COMMIT TRANSACTION or ROLLBACK TRANSACTION statement.
When a transaction is committed, SQL Server makes the changes to that transaction
permanent. When a transaction is rolled back, SQL Server returns any rows affected by
the transaction to their pretransaction states.

Partial Syntax

BEGIN TRANSACTION

COMMIT I ROLLBACK TRANSACTION

Example
In the following example, $100 is debited from the savings account of customer

66

number 78910, and $100 is credited to the customer's checking account. The customer
transferred $ 100 from savings to checking.

BEGIN TRANSACTION
UPDATE savings

SET balance= (amount - 100)
WHERE custid = 78910

IF @@ERROR <> O
BEGIN
RAISERROR ('Transaction not completed due to

savings account problem.', 16, -1)
ROLLBACK TRANSACTION

END
UPDATE checking

SET balance= (amount+ 100)
WHERE custid = 78910

IF @@ERROR <> O
BEGIN
RAISERROR ('Transaction not completed due to

checking account problem.', 16, -1)
ROLLBACK TRANSACTION

END
COMMIT TRANSACTION

2.19.4.3 Using XML

XML is a programming language that Web developers can use to present data
from a SQL Server database to Web pages.

2.19.4.3.1 Allowing Client Browser to Format Data

When using the FOR XML clause in the SELECT statement, SQL Server:

• Returns the results of a query as a character string.

• Returns the attributes of the data, such as column and table names, as
tags. A client browser can then use these tags to format the returned data.

'2.19.4.3.2 Specifying the FOR XML AUTO Option

You can specify the FOR XML AUTO option to return query results in a
standardized format.Each table in the FROM clause for which at least one column is
listed in the SELECT clause is represented as an XML element. An element includes
both data and attributes that describe the data.

Example 1

This example selects three columns from two joined tables. Notice that the results
combine all of the columns into a single text string.

67

SELECT Orders.OrderID, Shippers.CompanyName, Orders.CustomerID

FROM Orders JOIN Shippers

ON Orders.shipvia = Shippers.ShipperID

WHERE OrderID < 10250

FOR XML AUTO

Result

XML F52E2B61-18Al-1 ld1-B105-00805F49916B

<Orders
<Shippers

</Orders>
_ <Orders

OrderID="l0248"
CompanyName="Federal

CustomerID="VINET''>
Shipping"/>

OrderID="10249" CustomerID="TOMSP">
<Shippers CompanyName="Speedy Express"/></Orders>

2.19.4.3.3 Specifying the FOR XML RAW Option

In some cases, Web developers do not want the automatic formatting. You can specify
the RAW option to transform each row in the result set into an XML element with a
generic identifier row as the element tag.

Example 2

Compare the result from this example with that ofExample 1. This example returns the
same data, but the formatting is more generic. Notice that the tables are not named, and
the columns are not grouped by table name.

SELECT Orders.OrderID, Shippers.CompanyName, Orders.CustomerID
FROM Orders JOIN Shippers
ON Orders.shipvia = Shippers.ShipperID
WHERE OrderID < 10250
FOR XML RAW

Result

XML F52E2B61-18Al-l ldl-Bl05-00805F49916B

<row OrderID="10248"
CompanyName="Federal Shipping"
CustomerID="VINET"/>
<row OrderID="10249"
Cornpanyl-Jame=t'SpeedyExpress"
CustomerID="TOMSP"/>

68

2.19.4.3.4 Identifying Limitations of Using the FOR Xl\ıIL Clause

A SELECT statement that contains the FOR XML clause reformats the output for the
SQL Server client. Because of these changes, you cannot use a query output in XML
format as an input for further SQL Server processing.

You cannot use XML formatted output in:

• A nested SELECT statement.
• A SELECT INTO statement.
• A COMPUTE BY clause.
• Stored procedures that are called in an INSERT statement.
• A view definition or a user-defined function that returns a rowset.

CHAPTER THREE

SCREEN SHOT AND USER MANUAL

When you open the visual basic.net and select the care-repair program and run
it, the program will greet with login page (figure 3.1).This page includes two verifying
part.

Firstly you enter the right password and usemame.After that you should click to
log in button to enter the program. Otherwise if you want to exit from program it is
enough to clicking the exit button.

Figure 3.1

Welcome to home page. From this page you are able to all attain all things. To
more speed I used to tab controls. When you clicking the any of these tab pages new
page is openning as shown below figure 3.2

69

Figure 3.2

First tab page is care\repair tab page

Figure 3.3

On this page there are 3 groupbox. When you come the select groupbox there
are two radio button to select the care type.firstly we click to periodic care.after that
third groupbox is opened to select to standart care services and click to calculate button
to find the done standart care services total and by entering the information of car and
customer you save the info of service to your database with clicking 'save to database'
button. When the entering the car information if car information was saved before
customer name comes from database and written second textbox. Otherwise program

70

throw the message to ask for saving the all information about car and customer. If you
click the the 'yes ' button ,service acepting page (figure 3.5) is opened. If you click
'no' process is continue without saving all infoımation.

If you select the second radiobutton which is instant care other form is loaded.

Figure 3.4

As it became on the periodic care there are customer info's and done jobs menu.
You enter the done job and its price and calculate button ,price seems on the total price
textbox and entering the info about car by your hand as it became on the periodic care
and then click the save button without any error all informations is successfully saved
to database.

When you click the second tab page servise accepting is opened and first record
seems as you see.this page includes all information about car. With 'find record ' button
you check the whether the car info was saved or not. If it is the first coming to service
info's entering.if it is second or more coming all info's seems on the textboxs. At the
bottom of page there are four button to ge around the records. There are four buttons at
the right of the page to saving,cleaning,updating and deleting record.

71

Figure 3.5

When you coming to third tab page(fıgure 3.6) the taking outside info's· are
coming. Because of this page using is when the car is coming to service and the car needs
to some part and you don't have this part you have to take this part from outside and you
have to under the save this info's for accounting your money.

Figure 3.6
On this page you either see the all taking outside or save the new part to database.

When you want to list of the outside of the specific car, anter the number plate and click
the button.

72

~ 22,cmı
cğ(/e 31,00XI 3 93,0000 karalar
i>J; 23,00XI 2 '16,0000 karalar
i>aot, 32,0000 2 64,0000 aderrderı
marşdınomo 35ıOCOJ 5 175ıOOlJ ;a.l:ımden
,!',S i4/0)) 5 220,00JO ade_rroo-ı
fren teli 66,(ID) I 264}XOJ -conta 23ıl)JJ) 3 69,(ID) sarrı!lden
cont acık 22,00ll 2 H,OOll aderrrlen
bjon 1210COO 3 36,rruı aderrderı

Figure 3.7
When you coming to stock info page you either see all the stocks or saving the

new part in figure 3. 7

CARE\REPA!A SEAVJC1: ACCEPTING ! _ TAKING OUTSIDE STOCK INFO REPORTING .> !JSEASACCOUNT { P.DM!NISTRATM ı.

Kask Care Repair Center
il2.(ıf..'.!1}(1Jj

TP.IM,.

~ 3.8
In the report page there are one tab controls which includes the daily report,

between to date report and according to number plate.On daily report page the date is
taking from the system and if there is any record on date it is displayed and ready to
sending printer or etc.

73

CARE\f!EPAIR) SERVICE ACCEPTING] JAJ(JNG OUTSIDE!• Sf0CK1Nf0 REPORTING J USERS ı\CCOUNTl ADMINISJRATM:]

DAILYREPORT FREEDATER[POAT

J.1,(1,ı TJ.
J4.0-0Tf.

.lO.GôTL
3i.lıl}OTI.

Figure 3.9

On the free date reporttfigure 3.9) the program want from you entering two date
and by clicking enter button program reports informations between these dates and if
there is any record between dates it is displayed and ready to sending printer or etc.

,ÇliRE\flEPAIRfS£AVIC£ACUPT!llG I TAJ(JNGOU!SIDE: STO~~INFO REPORTING l USERSACCOIJNT I ılllMlNISTRslf'{[I

.ı.onTı. J.non.-- ---·Ut!I rı, lUO Tl,

Figure3.l O

74

On the third of the report page the program want a entering number plate to
display and report with exiting records on figure 3. 1 O

Iı
I

C: I
!

Figure 3.11

When we come to tab page of user account firstly page is seems as only one
groupbox and whenever you select the any of these other groupboxes begin to seem.
Firstly we select the new user radiobutton and as you see ,for new user part is
displayed(figure 3.11)

figure3.12

when we select the delete user radiobutton and as you see ,exiting user part is
displayed(figure 3.12) '

75

Clil[IREP.'JA ! SER~CO.CT[PTING j TUING OUTSIDE I STOCKJNFO ! flEPOA!ING USERS ACCOUNT ı .'DMJNISTMTIVE I

Figure 3.13

The last part of user account tab page is update user.when it is selected update
user part is opened and get exiting record to replace it new ones.

tAAE\REP/JA I Tıll:INGnuısıoELsrnvıcuıı:EPTINGIsıocttNFOJ REPORTJNGI USEJ\SAıxııuiıı AOMIN!STRAırvı [

Figure 3. 14

76

When the coming to administrative tab page firstly when it is loaded only the
groupbox only displayed and when you try to select any of these program throw a
message to display the selected radiobutton.(figure 3.14)

You write administrator username and enter then other message is thrown by
program to entering the admin password.(figure 3 .15)

(A!lE18EPtı)R! TAKING OUTSIDE\ >ER'iltEACL""fPTINGI STOO(!NEO]REPORTINGj USERS ACCOUNT AOM1NIB1RATM:j ·

Figure 3.15

When you enter the password correctly program display the detail of
records.(figure 3.15)

After the description of main part I want to mention about shortcut part . as you
see the program have at the top of the page some buttons which are going to what you
want immediatelly.

When you click the periodic care button it is going to first page (figure 3 .16)

Figure 3.16

77

I
I
j

When you click the instant care button it is going to instant care forrrı(fıgure 3. 17)

Figure 3.17

When you click the periodic care button it is going to product list(fıgure 3. 18)

23JIDJ
balata 32.0COJ
marş drnmo 35.oco:ı
aks. 44JIDJ

ademden 29.C6.2CI6
175,COOJ akmMen 28.(6.~
220,IJJJO odem&n

Figure 3.18

78

When you click the periodic care button it is going to car list (figure 3.19)

Figure 3.19

When you click the periodic care button it is going to customer list figure 3 .20

Figure 3.20

79

·,. .,,.,,~ -_ .>~,:~,·<+~ -~._;;.0,; p+_-,,:_->,_/

After the visual explanation of the program I want to mention about
database,tables and its contents. When you click the sql server 2000 shortcut,server is
opened and there is tree on the left of the page. Click local server and the screen is seems
like that;

Console Root
=- ~ Mi<;rosoft SQL Servers

;.:;; .. .iı(31 -~QLServer Group
.7": Qt, (LOCAL) (Windows NT)

-· !.2] Det abe.se s
·.;.,; UJ kask

~ Diagrams
C3 Tables
&o· Views

: · l:Jl Stored Procedures
~tl Users
mRoles
[J Rulesc:;:ı Defaults
rb User Defined Data Types..ıı;_ User Defined Functions

tJ. Northwinda pubs
Data Transformation Services
ManaQemE:nt

29.05.2006 13:52:37

otopaymerıt
jr::g otoperiodic dbo

.
I~ otoproduct dbo

1 tr:] otouser dbo

I

User 07.05.200611:44:20
User 03.05.2006 ı 9;00:20

User 01.05.2006 20:04:54

Support Services
Meta Data Services

Figure 3.21

The right of the screen seem the tables. Now lets incur the tables.

Otocar table

plaq nvarchar 50
mark rıvercher 50

model nvarchar 50 ı/

B';/ear int 4
color nverchar 50 ı/

post char 10 ı/

region nvarchar 50 ı/
city nvarchar 50
phone, char 10

taxno char 10 ı/
mail nvarcher 50 ı/

adete datetime 8
eneme nvarchar 50

Columns I
l

Description
Vüi.f;::-,;t;tf

Figure 3.22

80

Otooutside table

frorıw.,here rıvarchar
forıı',1hich char
selling money 8

dating datetime 8 v

Columns

Description
Default Value

CJ

c

Formula
Collation <database default>

Figure 3.23

Otopayment table

nvarchar 50

money 8
money 8
datetime 8 V

Columns

Description
Default \/alue

Formula
Collatıon <database default>

Figure 3.24

81

Otoperiodic table

Description
Default Value

· <database default>

Figure 3.25

Otoproduct table

nııarchar 50
money 8
numeric
money· 8
nverchsr 50
smalldatetime

Columıis

Description
Default Value

No

Formu!,,

figure 3.26

82

otouser table

Columns

Description
Default Value

Formula
Collation <database default>

Figure 3.27

83

CONCLUSION

Practically implementation of software for business though it is related to any field

eds a devoted and complete life cycle. In this project I personally visit more than two care

oair center, which deal with care to car and purchase parts of car and sales the pars of car,

that I can understand their requirements and the problems, which may occur in the

ıplemerıtation.The most important think that I would like to mention, is the attitude,which

s to be face during the life cycle of the Company. And according to my point of view the

ısorı of most unsuccessful project is misunderstanding between the two parties.

Le software was created after the deep analyst, so that all-Important requirement of the

mpany those who dealing with computer sales and purchase can be accomplished.

oduct code, stock code and customer no have been added in the program to over come the

stakes, which may occurs. Plus a lock table and form has been generated which contain the

tire no with name, so by mistake it cannot be merged with each other. Reports are also

nerated with the help of the Queries for the update purpose. Which contain all information

th dates. The chapters of the software are also organized in such a manner so that all the
'

orrnation related to database and programming language can be understood easily, chapter

·ee contain a advance information about the software .

84

PENDIXA

JRCECODES

lie Class Forml
Inherits System.Windows.Forms.Form

Lie t As Integer= O
Public xx As New C4

rate Sub RadioButtonl CheckedChanged(ByVal sender As System.Object, ByVal e
,ystem.EventArgs) Handles RadioButtonl.CheckedChanged

If RadioButtonl.Checked = True Then
GroupBoxl.Visible = True
GroupBox2.Visible = False
GroupBox3.Visible = False

End If

End Sub

Private Sub RadioButton2_CheckedChanged(ByVal sender As System.Object,
le As System.EventArgs) Handles RadioButton2.CheckedChanged

If RadioButton2.Checked = True Then
GroupBox2.Visible
GroupBoxl.Visible
GroupBox3.Visible

End If
~nd Sub

True
False
False

)rivate Sub RadioButton3_CheckedChanged(ByVal sender As System.Object,
_ e As System.EventArgs) Handles RadioButton3.CheckedChanged

If RadioButton3.Checked = True Then
GroupBox3.Visible
GroupBoxl.Visible
GroupBox2.Visible

End If
nd Sub

True
False
False

rivate Sub Label9_Click(ByVal sender As System.Object, ByVal e As
m.EventArgs)

nd Sub

rivate Sub RadioButton4_CheckedChanged(ByVal sender As System.Object,
e As System.EventArgs) Handles RadioButton4.CheckedChanged

If RadioButton4.Checked = True Then
GroupBoxlO.Visible = True
GroupBoxl4.Visible = True

End If

If RadioButton4.Checked True Then

GroupBoxlO.Visible = True
Else : GroupBoxlO.Visible = False

GroupBoxl4.Visible = False

End If
End Sub

Private Sub TabPage3_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TabPage3.Click

GroupBoxlO.Visible = True
GroupBoxl4.Visible = False

End Sub

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

SqlDataAdapter4.Fill(DataSetll.otocar)
CrystalReportViewerl.ReportSource = xx
cm= CType(Me.BindingContext(DataView2), CurrencyManager)

SqlDataAdapterS.Fill(DataSetll.otocar)
DataGrid5.Visible = False
DataGrid4.Visible = False
DataGrid6.Visible
DataGrid7.Visible
DataGridS.Visible

False
False
False

GroupBoxl7.Visible = True
TextBox9.Text = ""
TextBox8.Text = ""
TextBoxlO.Text
TextBoxll.Text
TextBoxl2.Text
TextBoxl3.Text
ComboBoxl.Text
TextBoxl5.Text
TextBoxl6.Text
TextBoxl7.Text
TextBoxl8.Text
TextBoxl9.Text
TextBox20.Text

''"

""

""

DateTimePickerl.Text = ""
'SqlDataAdapter4.Fill(DataSetll.otocar)
GroupBoxll.Visible = False
DataGridl.Visible = False
GroupBoxlO.Visible = False
HelpProviderl.SetHelpString(TextBox26, "PLEASE ENTER PLAQUE")

End Sub

Private Sub RadioButton5 CheckedChanged(ByVal sender As System.Object,
ByVal e As Systern.EventArgs) Handles RadioButton5.CheckedChanged

Dim f2 As New Forrn2
f2.Show()

End Sub

Private Sub save_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles save.Click

If TextBox3.Text =""Or TextBox4.Text =""Then
MsgBox("username ve pass boş bırakma")
Exit Sub

End If
Try

col.CommandText =" delete from otouser where username='" &
TextBox3.Text & "' and password='" & TextBox4.Text & "'"

col.Connection c2

c2 .Open()
sl = col.ExecuteNonQuery

Dim a As String
a= TextBox3.Text & " " & TextBox4.Text

If sl > O Then
MsgBox(a & "silinmiştir")

End If

If sl = O Then
MsgBox("silinemedi")

End If

Catch ex As Exception
MsgBox(ex.Message)

Finally
c2. Close ()

TextBox3.Text ""

TextBox4.Text ""

End Try

End Sub

Private Sub update_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)

Dim cl As New SqlClient.SqlConnection
Dim col As New SqlClient.SqlCommand

cl.ConnectionString = "data source=ALPER;initial
CATALOG=kask;integrated security=true"

cl.Open()
col.Connection= cl

Dims As Integer
If TextBox5.Text

TextBox7.Text =""Then

o
"" Or TextBox6.Text "" Or TextBox37.Text "" Or

Dim cl As New SqlClient.SqlConnection
Dim col As New SqlClient.SqlCommand
Dim co2 As New SqlClient.SqlCommand
cl.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"
Dim dr As SqlClient.SqlDataReader
Dim sl As Integer= O
If TextBoxl.Text =""And TextBox2.Text =""Then

MsgBox("username ve pass boş bırakma")
Exit Sub

End If
Try

values('" & TextBoxl.Text & "'
col.Connection= cl
co2.Connection = cl
cl.Open()
dr = col.ExecuteReader
Do While ctr.Read

col.CommandText "select* from otouser"
co2.CommandText =" insert into otouser(username,password)

' " & TextBox2. Text & "') "

If TextBoxl.Text = dr("username") Then
MsgBox("farklı bir kullanıcı ismi giriniz")
dr. Close ()
cl.Close()
Exit Sub

End If
Loop
ctr.Close()
sl = co2.ExecuteNonQuery
Dim a As String
a= TextBoxl.Text & "---" & TextBox2.Text
If sl > O Then MsgBox(a & "kaydedilmiştir")

Catch ex As Exception
MsgBox(ex.Message)

Finally
cl. Close ()
ctr.Close()
TextBoxl.Text
TextBox2.Text

IJlf

End Try

End Sub

Private Sub delete_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles delete.Click

Dim c2 As New SqlClient.SqlConnection
Dim col As New Sq1C1ient.Sq1Command

c2.ConnectionString = "data source=ALPER;initial
CATALOG=kask;integrated security=true"

Dim sl As Integer= O

If TextBoxlO.Text = dr("plaq") Then
MsgBox("buaraç önceden gelmiş")

End If
Loop
dr. Close ()
sl = co2.ExecuteNonQuery

If sl > O Then MsgBox(" kaydedilmiştir")

Catch ex As Exception
MsgBox(ex.Message)

Finally
cl. Close ()
ctr.Close()

End Try

End Sub

Private Sub DateTimePickerl_ValueChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs)

End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click

Dim cl As New SqlClient.SqlConnection
Dim col As New SqlClient.SqlCommand
cl.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"
Dim dr As SqlClient.SqlDataReader
Dim sl As Integer= O
If TextBoxlO.Text =""Then

MsgBox("username ve pass boş bırakma")
Exit Sub

End If
Try

col.Connection= cl
cl. Open ()
col.CommandText ="select* from otocar"
dr = col.ExecuteReader
Do While ctr.Read

If dr("plaq") = TextBoxlO.Text Then 'burada cno yerine plaq
kullanmamız gerekiyor fakat plaq p.k oldugu içindatabaseden çagıramıyoruz.bunu
sor'

MsgBox("buaraç önceden gelmiş")
TextBoxlO.Text = dr("plaq")
TextBox9.Text dr("cno")
TextBoxS.Text = dr("cname")
TextBoxll.Text
TextBoxl2.Text
TextBox13.Text
ComboBoxl.Text
TextBoxlS.Text
TextBoxl6.Text
TextBox17.Text

dr("mark")
dr("model")
dr("color")
dr("ayear")
dr("post")
dr("region")
dr ("city")

il'

End If
col.CommandText =" update otouser set username='"

password='" & TextBox37.Text & "' where username='" &

password='" & TextBox6.Text & "'
s = col.ExecuteNonQuery
Ifs> O Then

MsgBox("degiştirildi")
End If
cl. Close ()

& TextBox7.Text &
TextBox5.Text & "'

MsgBox("verileri giriniz")
Exit Sub

and

End Sub

Private Sub Button2_Click_l(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

t5 = DateTimePickerl.Value
m5 = ts.Month & "." & t5.Day & "" & t5.Year

Dim cl As New SqlClient.SqiConnection
Dim col As New SqlClient.SqlCommand
Dim co2 As New SqlClient.SqlCommand
cl.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"
Dim dr As SqlClient.SqlDataReader
Dim sl As Integer= O
If TextBoxlO.Text =""And TextBox9.Text =""Then

'GroupBox6.Visible = False
'GroupBox7.Visible = False
'GroupBoxB.Visible = False
MsgBox("username ve pass boş bırakma")
Exit Sub

Else
GroupBox6.Visible
GrGupBox7.Visible
GroupBoxS.Visible

True
True
True

End If
Dim a As DateTime
a= DateTimePickerl.Text

Try
col. CommandText = "select * .from otocar"
co2.CommandText =" insert into

otocar(plaq,cname,mark,model,ayear,color,post,region,city,phone,taxno,mail,ada
te) values('" & TextBoxlO.Text & "','" & TextBoxB.Text & "','" &
TextBoxll. Text & "' , '" & TextBoxl2. Text & "', '" & TextBoxl3. Text & "', '" &

ComboBoxl.Text & f" & TextBoxl5.Text & il' & TextBoxl6.Text & il' f" &, ,
TextBoxl7.Text & "f f" & TextBoxlS.Text & il f & TextBoxl9.Text & "f f" &,
TextBox20.Text & "' & m5 & ",)",

col.Connection = cl
co2.Connection = cl
cl.Open()
dr = col.ExecuteReader

Do While cir.Read

TextBox18.Text
TextBox19.Text

dr("phone")
dr("taxno")

TextBox20.Text = dr("mail")
DateTimePickerl.Text = dr("adate")

Else
MsgBox("bu aracın servise ilk gelişi")

End If
Loop

Catch ex As Exception
MsgBox(ex.Message)

Finally
cl.Close()
dr. Close ()

End Try

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button3.Click

TextBox8.Text = ""
TextBox9.Text = ""
TextBoxlO.Text
TextBoxll.Text
TextBox12.Text
TextBox13.Text
ComboBoxl.Text
TextBox15.Text
TextBoxl6.Text
TextBoxl7.Text
TextBoxl8.Text
TextBox19.Text
TextBox20.Text
DateTimePickerl.Text

End Sub

H 11

""

""

Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button4.Click

t = o
Dim cl As New SqlClient.SqlConnection
Dim cm As New SqlClient.SqlCommand
Dim cml As New SqlClient.SqlCommand

cl.ConnectionString = "data source=alper;initial
catalog=kask;integrated security=true"

Dim dr As SqlClient.SqlDataReader
Try

cl.Open()
cm.Connection= cl
cm.CommandText ="select* from otoperiodic"
dr = cm.ExecuteReader

Do While ctr.Read 'burdada fiyatların hepsini topluyor????'

If dr ("bakim") = "engineoil" Then
If CheckBoxl.Checked = True Then

t = t + dr("fiyati")

End If
End If

If dr("bakim") = "ventilatorbelt" Then
If CheckBox9.Checked = True Then

t = t + dr("fiyati")

End If
End If

If dr("bakim") = "stopoil" Then
If CheckBox8.Checked = True Then

t = t + dr("fiyati")

End If
End If

If dr("bakim") = "steeringoil" Then
If CheckBoxlü.Checked = True Then

t = t + dr("fiyati")

End If
End If

If dr ("bakim") = "sparks" Then
If CheckBox4.Checked = True Then

t = t + dr("fiyati")

End If
End If

If dr ("bakim") = "oil filter" Then
If CheckBox2.Checked = True Then

t = t + dr("fiyati")

End If
End If

If dr("bakim") = "gearboxoil" Then
If CheckBoxll.Checked = True Then

t = t + dr("fiyati")

End If
End If

cl .Open ()

End Sub

Private Sub TabControll_SelectedindexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TabControll.SelectedindexChanged

If TabPageS.Focus = True Then
sqldataadapter3.Fill(datasetll.otooutside)

End If
If TabPageB.Focus = True Then

Dim z As New CrystalDecisions.Shared.ParameterValues
Dim zl As New CrystalDecisions.Shared.ParameterDiscreteValue

Dim asd = Date.Now.ToShortDateString
zl.Value = asd
z , Add (zl)
xx.DataDefinition.ParameterFields("@gdate") .ApplyCurrentValues(z)
CrystalReportViewerl.ReportSource = xx

End If
End Sub

Private Sub RadioButton6_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles RadioButton6.CheckedChanged

SqlDataAdapterS.Fill(DataSetll.otoproduct)
If RadioButton6.Checked = True Then

DataGridl.Visible = True
GroupBoxll.Visible = False
Button9.Visible = False

End If
End Sub

Private Sub RadioButtonlO_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles RadioButtonlO.CheckedChanged

If RadioButtonlO.Checked = True Then
GroupBoxll.Visible = True
Button9.Visible = True

End If
End Sub

Private Sub Button6_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button6.Click

tar= DateTimePicker3.Value
mmm = tar.Month & "." & tar.Day & "." & tar.Year

Dim cl As New SqlClient.SqlConnection

Dim co2 As New SqlClient.SqlCoTILmand
cl.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"

Dim sl As Integer= O

Try

If dr("bakim") = "frontstop" Then
If CheckBox6.Checked = True Then

t = t + dr("fiyati")

End If
End If

If dr("bakim") = "batterywater" Then
If CheckBoxl2.Checked = True Then

t = t + dr("fiyati")

End If
End If

If ctr ("bakim") = "backstop" Then
If CheckBox7.Checked = True Then

t = t + dr("fiyati")

End If
End If
If dr("bakim") = "arıtifiriz" Then

If CheckBox5.Checked = True Then
t = t + dr("fiyati")

End If
End If
If dr("bakim") = "airfilter" Then

If CheckBox3.Checked = True Then
t = t + dr("fiyati")

End If
End If

'If CheckBox4.Checked
't = dr("fiyati")

True Then

'End If
TextBox30.Text = t

Loop

Catch ex As Exception

End Try
End Sub

Private Sub TabPage4_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TabPage4.Click

'Dim tl As Date= TextBox41.Text
'TextBox41.Text = String.Format("{dd/MM/yyyy},tl")

sl = co2.ExecuteNonQuery
Dim a As String

If sl > O Then MsgBox(" kaydedilmiştir")
TextBox31.Text
TextBox32.Text
TextBox33.Text
TextBox34.Text
TextBox35.Text
TextBox36.Text

""

Catch ex As Exception
MsgBox(ex.Message)

Finally

SqlDataAdapterS.Fill(DataSetll.otoproduct)
cl. Close ()

End Try

End Sub

Private Sub Button12_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)

cm= CType(Me.BindingContext(DataView2), CurrencyManager)
If cm.Position= cm.Count - 1 Then

MsgBox("son kayıttasınız")
Else

cm.Position+= 1
End If

End Sub

Private Sub Buttonll Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)

cm= CType(Me.BindingContext(DataView2), CurrencyManager)
If cm.Position= O Then

MsgBox("ilk kayıttasınız")
Else

cm.Position-= 1
End If

End Sub

Private Sub ButtonlO_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)

cm= CType(Me.BindingContext(DataView2), CurrencyManager)
If cm.Position= O Then

MsgBox("zaten ilk kay ı t t a s ı.n ız ")
Else

cm.Position= O

co2.Connection = cl
co2. CorrunandText = 11 insert into

otooutside(proname,unitprice,quantity,totalprice,fromwhere,forwhich,selling,da
ting) values ('" & TextBox21. Text & "', " & TextBox22. Text & ", 11 &
TextBox23. Text & ", " & TextBox24. Text & ", '" & TextBox25. Text & "', '" &
TextBox26.Text & "' " & TextBox27.Text & " '" & mmm & "')"

sl = co2.ExecuteNonQuery
Dim a As String
a= TextBoxl.Text & "---" & TextBox2.Text
If sl > O Then MsgBox(a & "kaydedilmiştir")

Catch ex As Exception
MsgBox(ex.Message)

Finally
cl. Close ()
DataSetll.Clear()
SqlDataAdapter3.Fill(DataSetll.otooutside)

TextBox21.Text
TextBox22.Text
TextBox23.Text
TextBox24.Text
TextBox25.Text
TextBox26.Text
TextBox27.Text

""

End Try

End Sub

Private Sub Button8_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button8.Click

DataViewl.RowFilter = "forwhich='" & TextBox39.Text & "'"
End Sub

Private Sub Button9_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button9.Click

t4 = DateTimePicker4.Value
m4 = t4.Month & "." & t4.Day & "." & t4.Year
Dim cl As New SqlClient.SqlConnection

Dim co2 As New SqlClient.SqlCommand
cl.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"

Dim sl As Integer= O

Try
cl. Open ()
co2.Connection = cl
co2.CommandText =" insert into

otoproduct(prono,proname,unitprice,quantity,total,fromwhere,tdate) values(" &
TextBox31. Text & " ' " & TextBox32. Text & " ' " & TextBox33. Text & " , " &
TextBox34.Text & "
m4 & II I) II

" & TextBox35.Text & " " & TextBox36.Text & 11
' &

If TextBox29.Text = dr("plaq") Then
MsgBox("aracın zaten bir hesabı var!!!!")
TextBox28.Text = dr("cname")
TextBox30.Text = dr("total")
TextBox42.Text = dr("donepay")
DateTimePicker2.Text = dr("dating")
dr. Close ()
cl. Close ()
Exit Sub

End If
Loop
ctr.Close()
sl = co2.ExecuteNonQuery

If sl > O Then MsgBox(" kaydedilmiştir")

Catch ex As Exception
MsgBox(ex.Message)

Finally
cl. Close ()
ctr.Close()

End Try
End If

End Sub

Private Sub DataGrid2_Navigate(ByVal sender As System.Object, ByVal ne As
System.Windows.Forms.NavigateEventArgs) Handles DataGrid2.Navigate

End Sub

Private Sub Buttonl4_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl4.Click

cm.EndCurrentEdit()
MsgBox("update process is succesfull")

End Sub

Private Sub ButtonlS_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl5.Click

cm= CType(Me.BindingContext(DataView2), CurrencyManager)

If cm.Count<> O Then
cm.RemoveAt(cm.Position)
MsgBox ("silindi")

Else
MsgBox(" there is no item to delete ")

End If
cm.Refresh()

End Sub

Private Sub CheckBoxl_CheckedChanged(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles CheckBoxl.CheckedChanged

End If
End Sub

Private Sub Buttonl3 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)

cm= CType(Me.BindingContext(DataView2), CurrencyManager)
If cm.Position= cm.Count - 1 Then

MsgBox("zaten son kayıttasınız")
Else

cm.Position-= 1
End If

End Sub

Private Sub Buttonl6_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl6.Click

Dim a As Integer
Dim b As Integer
a= TextBox30.Text
b = TextBox42.Text
If b > a Then

MsgBox("done payment can not greater then total price",
MsgBoxStyle.Information, "SYSTEM-ERROR-CONTROL")

TextBox28.Text
TextBox29.Text
TextBox30.Text
TextBox42.Text ""

Else

tar DateTimePicker2.Value
tar.Month & "." & tar.Day & & tar.Yearmmm

Dim cl As New SqlClient.SqlConnection
Dim col As New SqlClient.SqlCommand
Dim co2 As New SqlClient.SqlCommand
cl.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"
Dim ctr As SqlClient.SqlDataReader
Dim sl As Integer= O
If TextBox29.Text =""Then

MsgBox("plaq'ı boş bırakma")
Exit Sub

End If
Try

col.CommandText = "select * from otopayment"
co2.CommandText = "insert into

otopayment(plaq,cname,total,donepay,dating) values('" & TextBox29.Text & "',
'" & TextBox28. Text & "'," & TextBox30. Text & "," & TextBox42. Text & ", '" &
mmm & n')"

col.Connection= cl
co2.Connection = cl
cl .Open ()
ctr= col.ExecuteReader
Do While cir.Read

End Sub

Private Sub TextBox9_Enter(ByVal sender As Object, ByVal e As
System.EventArgs) Handles TextBox9.Enter

MessageBox. Show ("Not enter any record this fields", "Not Enter",
MessageBoxButtons.OK, MessageBoxicon.Information)

End Sub

Private Sub DataView2_ListChanged(ByVal sender As System.Object, ByVal e
As System.ComponentModel.ListChangedEventArgs)

End Sub

Private Sub TabPage5_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TabPage5.Click

End Sub

Private Sub TextBox39_KeyPress(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyPressEventArgs) Handles TextBox39.KeyPress

If e.KeyChar = ChrW(l3) Then
DataViewl.RowFilter = "forwhich='" & TextBox39.Text & 11111

End If
End Sub

Private Sub Button7_Click_l(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button7.Click

Dim cl As New SqlClient.SqlConnection
Dim col As New SqlClient.SqlCommand

cl.ConnectionString = "data source=ALPER;initial
CATALOG=kask;integrated security=true"

cl .Open ()
col.Connection= cl

Dims As Integer
If TextBox5.Text

o
Or TextBox6.Text 1111 Or TextBox37.Text

TextBox7.Text =""Then
MsgBox("verileri giriniz")
Exit Sub

"1

End If
col.CommandText =" update otouser set username='"

password='" & TextBox37.Text & "' where username='" &
password='" & TextBox6.Text & "'

s = col.ExecuteNonQuery
Ifs> O Then

MsgBox ("degiştirildi")
End If
cl.Close()
TextBox5.Text
TextBox6.Text
TextBox7.Text
TextBox37.Text ""

& TextBox7.Text &
TextBox5.Text & "'

and

"" Or

End Sub

Private Sub RadioButtonl3_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles RadioButtonl3.CheckedChanged

DataGrid5.Visible = False
DataGrid4.Visible
DataGrid6.Visible
DataGrid7.Visible
DataGrid8.Visible

False
False
True
False

SqlDataAdapterll.Fill(DataSet41.otopayrnent)
End Sub

Private Sub RadioButtonlS_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles RadioButtonl5.CheckedChanged

DataGrid5.Visible = False
DataGrid4.Visible
DataGrid6.Visible
DataGrid7.Visible
DataGrid8.Visible

False
False
False
True

SqlDataAdapterl3.Fill(DataSet61.otoproduct)
End Sub

Private Sub RadioButton8_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles RadioButton8.CheckedChanged

DataGrid5.Visible = False
DataGrid4.Visible
DataGrid6.Visible
DataGrid7.Visible
DataGrid8.Visible

True
False
False
False

SqlDataAdapter6.Fill(DataSetll.otouser)
End Sub

Private Sub Button23_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button23.Click

Application.Exit()

End Sub

Private Sub Button5_Click_3(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button5.Click

TabControll.Selectedindex = O
End Sub

Private Sub CheckBox3_CheckedChanged(ByVal sender As System.Object, ByV~l
e As System.EventArgs) Handles CheckBox3.CheckedChanged

End Sub

Private Sub DataView2_ListChanged_l(ByVal sender As System.Object, ByVal e
As System.ComponentModel.ListChangedEventArgs) Handles DataView2.ListChanged

End Sub

Private Sub ButtonlO_Click_l(ByVal sender As System.Object, ByVal e As
ystem.EventArgs) Handles ButtonlO.Click

cm= CType(Me.BindingContext(DataView2), CurrencyManager)
If cm.Position= O Then

MsgBox("you are still on first record")
Else

cm.Position= O
End If

End Sub

Private Sub Buttonll_Click_l(ByVal sender As System.Object, ByVal e As
ystem.EventArgs) Handles Buttonll.Click

cm= CType(Me.BindingContext(DataView2), CurrencyManager)
If cm.Position= O Then

MsgBox("you are on first record")
Else

cm.Position-= 1
End If

End Sub

Private Sub Button12_C1ick_l(ByVal sender As System.Object, ByVal e As
ystem.EventArgs) Handles Button12.Click

cm= CType(Me.BindingContext(DataView2), CurrencyManager)
If cm.Position= cm.Count - 1 Then

MsgBox("you are on last record")
Else

cm.Position+= 1
End If

End Sub

Private Sub Button13_Click_l(ByVal sender As System.Object, ByVal e As
ystem.EventArgs) Handles Button13.Click

cm= CType(Me.BindingContext(DataView2), CurrencyManager)
If cm.Position= cm.Count - 1 Then

MsgBox("you are still on last record")
Else

cm.Position= cm.Count - l
End If

End Sub

Private Sub RadioButton7_CheckedChanged(ByVal sender As System.Object,
yVal e As System.EventArgs) Handles RadioButton7.CheckedChanged

SqlDataAdapter9.Fill(DataSet21.otocar)

If RadioButton7.Checked = True Then
DataGrid5.Visible = True
DataGrid4.Visible = False
DataGrid6.Visible = False
DataGrid7.Visible = False
DataGridB.Visible = False

End If

End Sub

Private Sub TabPage9_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TabPage9.Click

End Sub

Private Sub RadioButton9_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles RadioButton9.CheckedChanged

DataGrid5.Visible = False
DataGrid4.Visible
DataGrid6.Visible
DataGrid7.Visible
DataGrid8.Visible

False
True
False
False

SqlDataAdapterl0.Fill(DataSet31.otocar)
End Sub

Private Sub TabPage9_Enter(ByVal sender As Object, ByVal e As
System.EventArgs) Handles TabPage9.Enter

Dim ad As String
Dim soyad As String
ad= InputBox("enter the admin username", "IDENTITY VERIFICATION")
If ad= "admin" Then

soyad= InputBox("enter the admin password", "IDENTITY

VERIFICATION")
If soyad= "master" Then

GroupBoxl6.Visible = True
Else

MsgBox("entered password is invalid")
GroupBoxl6.Visible = False

End If
Else

MsgBox("entered username is invalid")
GroupBoxl6.Visible = False

End If
End Sub

Private Sub TabPage9_Leave(ByVal sender As Object, ByVal e As
System.EventArgs) Handles TabPage9.Leave

GroupBoxl6.Visible = True
End Sub

Private Sub Button24_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button24.Click

tar= DateTimePicker5.Value
mmm = tar.Month & "." & tar.Day & "." & tar.Year
tar2 DateTimePicker6.Value
mmm2 = tar.Month & "." & tar.Day & "." & tar.Year

Dim A As Date= DateTimePicker5.Value
Dim b As Date= DateTimePicker6.Value
Dim basla As String= A.ToShortDateString
Dim bitir As String= b.ToShortDateString

' DataView6.RowFilter "dating=>' (O}' and dating<=' {l}'", basla,

bitir"

End Sub

Private Sub Button20_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button20.Click

Dim cl As New CUSTOMER LIST
cl.Show()

End Sub

Private Sub CrystalReportViewerl_Load_l(ByVal sender As System.Object, ,
ByVal e As System.EventArgs) Handles CrystalReportViewerl.Load

End Sub

Private Sub Button25_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button25.Click

Dim xx As New c5
st - DateTimePicker7.Value
en= DateTimePicker8.Value

Dim z As New CrystalDecisions.Shared.ParameterValues
Dim zz As New CrystalDecisions.Shared.ParameterValues

Dim zl As New CrystalDecisions.Shared.ParameterDiscreteValue
Dim z2 As New CrystalDecisions.Shared.ParameterDiscreteValue

Dim urunl
Dim urun2

st.ToShortDateString
en.ToShortDateString

zl.Value = urunl
z2.Value = urun2
z .Add (zl)
zz .Add (z2)

xx.DataDefinition.ParameterFields("@gdatel") .ApplyCurrentValues(z)
xx. DataDefini tion. ParameterFields ("@gdate2") . ApplyCurrentValues (zz)

CrystalReportViewer2.ReportSource = xx
End Sub

Dim x As Integer
Dim y As Integer
Private Sub TextBox34_LostFocus(ByVal sender As Object, ByVal e As

System.EventArgs) Handles TextBox34.LostFocus
x = TextBox33.Text
y = TextBox34.Text
TextBox35.Text = (x * y) .ToString

End Sub

Private Sub TabPage8_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TabPage8.Click

If TabPageS.Focus = True Then
TabControl2.Show()

End If
End Sub

Private Sub TextBox23 LostFocus(ByVal sender As Object, ByVal e As

System.EventArgs) Handles TextBox23.LostFocus
Dim a As Integer
Dim b As Integer
a= TextBox22.Text
b = TextBox23.Text
TextBox24.Text = (a* b) .ToString

End Sub

Private Sub Button17_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button17.Click
f2.Show()

End Sub

Private Sub Button19_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl9.Click
f5.Show()

End Sub

Private Sub TextBox29_Leave(ByVal sender As Object, ByVal e As

System.EventArgs) Handles TextBox29.Leave
If TextBox29.Text =""Then

MsgBox("can not empty this cell")

Exit Sub

End If
Dim cl As New SqlClient.SqlConnection
Dim col As New SqlClient.SqlCommand
cl.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"
Dim ctr As SqlClient.SqlDataReader
Dim sl As Integer= O
Dim a As MsgBoxResult

Try

col.CommandText ="select* from otocar"
col.Connection= cl
cl .Open ()
dr = col.ExecuteReader
Do While ctr.Read

If dr("plaq") = TextBox29.Text Then
TextBox28.Text = dr("cname")

Else

If MsgBox("araç kayıtlı degil,kaydetmek istermisiniz",

MsgBoxStyle.YesNo, "SYSTEM INFORMATION") = MsgBoxResult.Yes Then

TabControll.Selectedindex = 1
TextBoxS.Text = ""
TextBox9.Text 1111

TextBoxlO.Text
TextBoxll.Text 1111

TextBoxl2.Text
TextBoxl3.Text = ""
TextBoxl5.Text ""
TextBoxl6.Text - TIii

TextBoxl7.Text
TextBoxlS.Text ""
TextBoxl9.Text ""
TextBox20.Text If H

Else
TabControll.Selectedindex = O

End If
End If
Exit Do

Loop
dr. Close ()
cl. Close ()

Catch ex As Exception
MsgBox(ex.Message)

Finally
cl. Close ()
ctr.Close()
cl.Close()

End Try
End Sub

Private Sub ButtonlS_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button18.Click

f6.Show()

End Sub

Private Sub TabControl2_SelectedindexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TabControl2.SelectedindexChanged

If TabPagel.Focus = True Then

Dim xx As New c4
End If
If TabPage2.Focus = True Then

Dim xx As New c5

End If

End Sub

Private Sub Button26_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button26.Click

Dim xx As New c6

Dim z As New CrystalDecisions.Shared.ParameterValues
Dim zl As New CrystalDecisions.Shared.ParameterDiscreteValue

Dim urunl = TextBox14.Text

zl.Value = urunl
z .Add (zl)

xx.DataDefinition.ParameterFields("@numberplate") .ApplyCurrentValues(z)

CrystalReportViewer3.ReportSource xx
End Sub

End Class

Public Class Form2
Inherits System.Windows.Forms.Form

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click

If TextBox15.Text =""Then
TextBoxl5.Text = O

End If
If TextBoxl6.Text =""Then

TextBox16.Text = O
End If
If TextBox17.Text =""Then

TextBox17.Text = O
End If
If TextBox18.Text =""Then

TextBoxl8.Text = O
End If
If TextBoxl9.Text =""Then

TextBox19.Text = O
End If
If TextBox20.Text =""Then

TextBox20.Text = O
End If
If TextBox21.Text =""Then

TextBox21.Text = O
End If
If TextBox22.Text =""Then

TextBox22.Text = O
End If
If TextBox23.Text =""Then

TextBox23.Text = O
End If
If TextBox30.Text =""Then

TextBox30.Text = O
End If
If TextBox31.Text =""Then

TextBox31.Text = O
End If
If TextBox32.Text =""Then

TextBox32.Text = O
End If
If TextBox33.Text =""Then

TextBox33.Text = O
End If
If 'I'e x t BoxS 4. Text = "" Then

TextBox34.Text = O
End If
If TextBox29.Text =""Then

TextBox29.Text = O
End If

Dim a As Integer= O
Dim b As Integer= O
Dim C As Integer= O
Dim d As Integer= O

Dim u As Integer= O
Dim f As Integer= O
Dim g As Integer= O
Dim h As Integer= O
Dimi As Integer= O
Dim j As Integer= O
Dim k As Integer= O
Dim l As Integer= O
Dim m As Integer= O
Dim n As Integer= O
Dim o As Integer= O

a= CType(TextBox34.Text, Integer)
b = CType(TextBoxl5.Text, Integer)
c = CType(TextBoxl6.Text, Integer)
d = CType(TextBoxl7.Text, Integer)
u = CType(TextBoxlS.Text, Integer)
f = CType(TextBoxl9.Text, Integer)
g = CType(TextBox20.Text, Integer)
h = CType(TextBox21.Text, Integer)
i = CType(TextBox22.Text, Integer)
j = CType(TextBox23.Text, Integer)
k = CType(TextBox30.Text, Integer)
l = CType(TextBox31.Text, Integer)
m = CType(TextBox32.Text, Integer)
n = CType(TextBox33.Text, Integer)
o= CType(TextBox29.Text, Integer)

TextBoxl3.Text =a+ b + c + d + u + f + g + h + i + j + k + l + m + n
+ o

End Sub

Private Sub Form2_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

If TextBoxll.Text =''"Or TextBoxl2.Text
'Panell.Enabled= False
TextBoxl3.Enabled = True

"" Then

Else 'Panell.Enabled= True
TextBoxl3.Enabled = True

End If
End Sub

Private Sub Button3 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

Dim c As Integer
Dim b As Integer
c = TextBox13.Text
b = TextBox24.Text
If b > C Then

MsgBox("done payment can not greater then total price",
MsgBoxStyle.Information, "SYSTEM-ERROR-CONTROL")

TextBoxll.Text - ""
TextBoxl2.Text
TextBoxl3.Text
TextBox24.Text

""

""

Else

tar3 = DateTimePickerl.Value
mmm3 = tar.Month & "." & tar.Day & "." & tar.Year
Dim cl As New SqlClient.SqlConnection
Dim col As New SqlClient.SqlCowmand
Dim co2 As New SqlClient.SqlCommand
Dim a As DateTime
a= DateTimePickerl.Text
cl.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"
Dim ctr As SqlClient.SqlDataReader
Dim sl As Integer= O
If TextBoxl2.Text =""Then

MsgBox("plaq'ı boş bırakma")
Exit Sub

End If
Try

col.CommandText ="select* from otopayment"
co2. Command'I'e xt; = "insert into

otopayment(plaq,cname,total,donepay,dating) values('" & TextBox12.Text
'" & TextBoxll.Text & "'," & TextBoxl3.Text & "," & TextBox24.Text & " '" &

& "' '
mmm3 & 11

I) 11

col.Connection= cl
co2.Connection = cl
cl.Open ()
dr = col.ExecuteReader
Do While cir.Read

If TextBoxl2.Text = dr("plaq") Then
MsgBox("aracın zaten bir hesabı var!!!!")
TextBoxll.Text = dr("cname")
TextBox13.Text = dr("total")
TextBox24.Text = dr("donepay")
DateTimePickerl.Text = dr("dating")

cir.Close()
cl. Close ()
Exit Sub

End If
Loop
cir.Close()
sl = co2.ExecuteNonQuery

If sl > O Then MsgBox(" kaydedilmiştir")

a= MsgBox("araç kayıtlı degil,kaydetmek istermisiniz",,

MsgBoxStyle.YesNo, "SYSTEM INFORMATION")
If a.Yes Then

fl.TabControll.Selectedindex = 1
TextBox8.Text = ""
TextBox9.Text = ""
TextBoxlO.Text = ""
TextBoxll.Text - ""

Else

Catch ex As Exception
MsgBox(ex.Message)

Finally
cl. Close ()
dr. Close ()

End Try
End If

End Sub

Private Sub TextBoxl2_Leave(ByVal sender As Object, ByVal e As

System.EventArgs) Handles TextBoxl2.Leave
If TextBoxl2.Text =""Then

MsgBox("can not empty this cell")

Exit Sub

End If
Dim cl As New SqlClient.SqlConnection
Dim col As New SqlClient.SqlCommand
cl.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"
Dim dr As SqlClient.SqlDataReader
Dim sl As Integer= O
Dim a As MsgBoxResult

Try

col.CommandText ="select* from otocar"

col.Connection= cl
cl.Open ()
dr = col.ExecuteReader
Do While ctr.Read

If dr("plaq") = TextBoxl2.Text Then
TextBoxll.Text = dr("cname")

TextBoxl2.Text - ""
TextBoxl3.Text
TextBoxl5.Text - ""
TextBoxl6.Text = ""
TextBox17.Text = "rt

TextBoxl8.Text = ""
TextBoxl9.Text = ""
TextBox20.Text - ""

Else
fl.TabControll.Selectedindex = O

End If
End If

c.ConnectionString = "data source=ALPER;initial

CATALOG=kask;integrated security=true"
c.Open ()
co.Connection= c
co.CommandText ="select* from otouser"
ctr= co.ExecuteReader
Dims As Integer= O
Do While ctr.Read

If dr("username")

TextBox2.Text Then
s = 1

TextBoxl.Text And dr("password")

Loop
dr .Close ()
cl. Close ()

Catch ex As Exception
MsgBox(ex.Message)

Finally
cl. Close ()
ctr.Close()
cl. Close ()

End Try
End Sub

End Class

Public Class Form3
Inherits System.Windows.Forms.Form

Private Sub Form3_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl.Click
Dim c As New SqlClient.SqlConnection
Dim co As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader

Try

Exit Do
End If

Loop
Ifs= O Then

MsgBox("girilen degerler yanlış")

Exit Sub

End If

c.Close()
ctr.Close()

Dim Fl As New Forml
Fl. Show ()

CaLch ex As SqlClient.SqlException
MsgBox(ex.Message)

End Try

End Sub

Private Sub SqlDataAdapterl_RowUpdated(ByVal sender As System.Object,
ByVal e As System.Data.SqlClient.SqlRowUpdatedEventArgs) Handles

SqlDataAdapterl.RowUpdated

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

Systern.EventArgs) Handles Button2.Click
Application.Exit()

End Sub
End Class

Public Class PRODUCT LIST
Inherits System.Windows.Forms.Form

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl.Click
SqlDataAdapterl.Fill(DataSetll.otoproduct)

End Sub

Public Class CAR LIST
Inherits System.Windows.Forms.Form

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl.Click
SqlDataAdapterl.Fill(DataSetll.otocar)

End Sub

Public Class CUSTOMER LIST
Inherits System.Windows.Forms.Form

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Buttonl.Click
SqlDataAdapterl.Fill(DataSet71.otocar)

End Sub

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGMENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS

	Images
	Image 1

	Tables
	Table 1

	Page 5
	Images
	Image 1

	Tables
	Table 1

	Page 6
	Images
	Image 1

	Tables
	Table 1

	Page 7
	Images
	Image 1

	Tables
	Table 1

	Page 8
	Images
	Image 1

	Tables
	Table 1

	Page 9
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 10
	Titles
	CHAPTER ONE
	INTRODUCTION TO VISUAL BASIC.NET

	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Titles
	Data

	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Titles
	'ı
	I
	'
	ı
	!
	11
	ability to resize and close any of the child windows, as well as the overall
	• When a new project is created, the GUI designer component of the IDE is
	~1
	Clicking the New project button on the Start Page to open the New Project
	the
	1.9.4 VB .NET IDE Windows Workspace
	1.9.3 New Project Dialog Window

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 5
	Titles
	'.r;~~~:::<i~~)• L,
	!EINM&iiiiM@i,fflWMiBIMIIBfll~l·11111ını Ill

	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 7
	Titles
	'[]:

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Titles
	Green
	Red
	Color:·Ł

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 10
	Titles
	J
	1
	I

	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	F-
	~
	19
	• When an application is run and a user is looking at the form, only one of the
	controls will have input focus, or focus.
	1.9.22 Looking at the Focus and Tab Sequence
	Once controls have been added to a form, we can use the Properties window to
	1.9.21 Setting the Initial Object Properties
	1.9.20 Message Box with Default Button

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1

	Page 15
	Titles
	J~Output
	Taxes
	DVD Price
	Amount Due
	Vintage nvr»
	_[_c_a_l_cu-la_t_e-,I / -. ~

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	Input I Processing I Output
	Video price I Taxes= 0.07 x Price ı Taxes
	Amount due= Price+ Taxes Amount due

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	CHAPTER TWO
	WHAT IS AN SQL SERVER?

	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	.
	2.10 SQL SERVER SECURITY

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Titles
	[-b] [-O] [-1 time_out]

	Images
	Image 1

	Page 14
	Titles
	2.17.1 Elements of Transact-SQL
	2.17 THE TRANSACTION-SQL PROGRAMMING LANGUAGE

	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	I*
	*I
	I*

	Images
	Image 1

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	CHAPTER THREE
	SCREEN SHOT AND USER MANUAL

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 7
	Titles
	.ı.onTı. J.non.
	-- ---
	74

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Titles
	I
	ı
	I
	!

	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	I
	j

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 12
	Images
	Image 1

	Page 13
	Titles
	I
	I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 14
	Titles
	Figure 3.23
	Otopayment table
	Otooutside table
	Figure 3.24
	81

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1
	Table 2

	Page 15
	Titles
	Otoperiodic table
	Description
	· <database default>
	Otoproduct table
	Figure 3.25
	figure 3.26
	82

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 16
	Titles
	otouser table
	Figure 3.27
	83

	Images
	Image 1
	Image 2

	Page 17
	Titles
	CONCLUSION
	'

	Images
	Image 1

	Page 18
	Titles
	PENDIXA
	JRCECODES

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 19
	Titles
	''"
	""
	""

	Images
	Image 1

	Page 20
	Titles
	""
	""
	o

	Images
	Image 1

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1

	Page 23
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 24
	Titles
	""
	""

	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1

	Page 28
	Titles
	""

	Images
	Image 1

	Page 29
	Titles
	""

	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Titles
	""

	Images
	Image 1

	Page 32
	Titles
	o

	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Images
	Image 1

	Tables
	Table 1

	Page 35
	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 39
	Images
	Image 1

	Page 40
	Images
	Image 1

	Tables
	Table 1

	Page 41
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 42
	Titles
	& "'
	""
	""

	Images
	Image 1

	Page 43
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 44
	Images
	Image 1
	Image 2

	Page 45
	Images
	Image 1
	Image 2

