
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

SQL SERVER 2000 ANALYSIS SERVICES

Students:

Supervisor:

Graduation Project
COM-400

Hubeyt Yiicel· (990850)

Mr. Kaan Uyar

Nicosia - 2005

ACKNOWLEDGEMENTS

First,I would like to thank my supervisor Mr.Kaan UY AR and Assoc. Prof. Dr. Rahib
ABIYEV for his invaluable advice and belief in my work and my self over the course of this

Graduation Project

Second.I would like to Express my gratitude to Near East University Vice President Prof.
Dr. Senol BEKT AS and Faculty of Engineering Dean Fakhraddin Mamedov for the help me

that made work possible.

Third,I thank my family for their constant encouragement and support during the preparation
of this Project.

Finally, I would also like to thank my brother Cihangir and Muzaffer and my home friends
and names not write all friens for their advice and support.

ACKNOWLEDGEMENTS

First,I would like to thank my supervisor Mr.Kaan UY AR and Assoc. Prof. Dr. Rahib
ABIYEV for his invaluable advice and belief in my work and my self over the course of this

Graduation Project

Second.I would like to Express my gratitude to Near East University Vice President Prof.
Dr. Senol BEKTAS and Faculty of Engineering Dean Fakhraddin Mamedov for the help me

that made work possible.

Third.I thank my family for their constant encouragement and support during the preparation
of this Project.

Finally, I would also like to thank my brother Cihangir and Muzaffer and my home friends
and names not write all friens for their advice and support.

- ·-· ~ - ··- .-·

1

ABSTRACT

In short, SQL Server Analysis Services is a powerful and affordable solution for companies
that are struggling to gain insights from the volumes of data that their core business systems
generate every day. Unlike traditional query tools and report writers, Analysis Services can
integrate data from heterogeneous sources into flexible, multidimensional structures that
decision makers can access whenever they need to. Users can slice and study Analysis
Services cubes using dozens of products ranging from Microsoft Office applications to
standalone data analysis tools. While the benefits that Analysis Services offers are similar to
those of other OLAP engines, its intuitive interfaces and overall flexibility allow designers
and administrators to be more productive than on competitive products. It is also the only
OLAP engine that offers incremental upgrades, a feature that can significantly improve the
currency and availability of cube data. Moreover, since Analysis Services is a no-cost feature
of SQL Server, it is a value leader in its product category. As such, Analysis Services
deserves close consideration by any organization that wants to get more business value from
their enterprise application databases.

Over the last decade, deriving greater value and insight from core business applications such
as enterprise resource management, inventory, and order entry systems has grown to become
one of the most important enterprise IT requirements. This has led companies to deploy many
types of database analysis products ranging from simple query tools and report writers to
more sophisticated decision support and executive information systems. While all of these
tools are capable of deriving some actionable information from enterprise _application
databases, most of them suffer from one or more shortcomings that limit their usefulness.
These shortcomings include the following.

• Application limitations.
Many data analysis tools, particularly those provided by enterprise application vendors, can
only access data from the vendor's applications or, at best, from a limited number of systems.
This significantly limits the benefits of the analyses they provide, as some of the most
valuable insights come from synthesizing and analyzing data from multiple sources and
applications.

• Analytical limitations.
A. number of tools, particularly query facilities and report writers, produce analyses that limit
the ability of users to study their output from different angles. Such tools frequently produce
reports known as "banded courier" or "sort break" reports that· are little more than
reproductions of paper printouts. Such reports usually cannot be analyzed in spreadsheets
using pivot table or cross-tabulation functions. Moreover, users cannot "drill down" into the
results to study the lower-level detail behind each cell.

• Performance limitations.
Many data analysis tools directly access the production databases upon which enterprise
pplications rely. If the data analysis tools attempt to access these databases during business
hours, they frequently degrade enterprise application performance. As such, many companies
severely limit the amount of processor and memory resources that the data analysis tools can
use, or limit data analyses to "off hours." As a result, many users must endure long
information retrieval times or rely on reports that lack the current day's transactions.

These and other limitations have led many organizations to implement two solutions that can
address these issues: data warehouses and OLAP facilities. Both solutions enable
organizations to extract data from multiple host applications and integrate them into a single
database that is dedicated to data analyses. This allows these solutions to address both the
application dependencies and performance limitations of other solutions.

In addition, OLAP facilities are particularly adept at addressing the analytical limitations of
other data analysis tools. OLAP facilities aggregate enterprise application data across
dimensions that are relevant to businesses such as product, region, and fiscal quarter. These
aggregations are stored as a multidimensional database or "cube". These cubes can be
analyzed by decision makers to quickly answer complex ad hoc questions such as, "How
many blue socks did each of our regions sell by credit card during the third quarter, and what
percentage of sales within each region were multiple-item versus single-item transactions."
OLAP products also enable extensive cross tabulations, "what if' analyses, and drill-downs
into transaction-level information.

While data warehouses and OLAP facilities are powerful tools, they are often quite costly,
take significant time to learn, and can be difficult to use. In addition, many OLAP facilities
require lengthy and painstaking operations to extract enterprise application data to flat files
before the information can be loaded into cubes. These shortcomings tend to increase the time
and expense associated with developing and supporting OLAP services, thereby reducing
their overall value.

Iii its studies of the current 'generation of'Ol.Alvfacilities, Andrews Consulting Group-has
found that Microsoft SQL Server Analysis Services addresses many of the common
shortcomings of these solutions while offering most of their strengths. Analysis Services is
based on a wizard-driven interface design that offers considerable ease-of-use benefits. It can
connect to a wide variety of legacy host databases, including all IBM DB2 sources via
Microsoft's Host Integration Server. It can also aggregate dimensional data directly from
production databases rather than requiring extraction and integration of data to flat files.
Compared to other OLAP solutions such as IBM's DB2 OLAP Server and Hyperion's
Essbase, Analysis Services is also quite cost effective. These qualities make Analysis
Services an OLAP solution that· deserves closer consideration by most organizations. The
following pages provide further information that database administrators can use to
understand what this product can offer them.

11

TABLE OF CONTENTS

~
AC~O~l:])GMl:-l'f:f i
AB~~C"f ii
TABLE OF CONTEl'f:fS .- iii
J:l'l'l1l..OI>UC'I110~ iv
CHAPTER 1 :SQL Server 2000 Analysis 1
1.1 Details of Database Components SP2 Installation 2
1.2.Identifying the Current Version of SQL Server or Analysis Services 2
CHAPTER 2: Using Microsoft SQL Server Analysis Services with
IBMDa1:a.bases 4
2.1 Whatis SQL Server Analysis Services 6
2.2 SQL ServerAnalysis Services - A Closer Look 7
2.3: What Is Microsoft Host Integration Server 2000 9
2.4.How SQL Server Analysis Services Stacks Up Against the Competition 24
:CHAPTER3: Preparing and Mining Data with Microsoft SQL-Server200ff ,·.··
and Analysis Services 28
3 .1 Introducing the Data Mining Scenario .29
3.2.Data Mining Fundamentals 36
3.3 Defining the Problem 45
3.4.Cleaning the Data 47
3.5.Transforming the Data 72
3.6.Exploring the Data 75
.. 3 .. 7 .Splitting the Data , ·-·.•·.·· ,._..,., _ ,, , _ _. r: 96_.
3.8.Building and Validating the Models 104
CONCLUSION 122
REFERENCES ~ 123
.t\l'J.>l:Nl)~ ••.•..••.•..•..••.•....•••.••..••..•.•.•...•••.••.•••..••..•.•..••..•.•.•.••• 124

lll

INTRODUCTION

SQL Server part of Windows Server system, is the complate database and analysis
offering for rapidly delivering the next generation of scalable e-commerce, line-off business
and business these applications to market while offering the scalability needed for the most
demanding environments.

Microsoft SQL Server 2000 Analysis Services. While Analysis Services works
effectively with a variety of data sources, many database administrators are not aware that the
facility supports IBM databases running on host systems. The following pages provide both a
high-level overview and a more detailed technical examination of Analysis Services. In the
process, readers will also learn about the facility's IBM database support and discover why
on-line analytical processing (OLAP) facilities such as Analysis Services are viable ways of
meeting their business intelligence requirements.

Analysis Services has a portfolio of features that are quite similar to those found on
competitive products such as Hyperion's Essbase and IBM's DB2 OLAP Server. In addition,
it offers several features that distinguish it from other OLAP facilities. These features include
the following.

• - Intuitive; wizard-based interfaces.
Many OLAP engines have interfaces that require
designers to work through numerous drop-down menus and windows to design, load, and
calculate a simple cube. By contrast, Analysis Services interfaces respond more intelligently
to designer choices, allowing them to get the same results in less time. In many instances,
wizards walk designers through complex decisions that can only be made on a "trial and
error" basis in competitive products.

• Easy access to multiple, heterogeneous data sources.
Analysis Services comes packaged with no-charge facilities that enable access to a wide range
of data sources. These include IBM's DB2 UDB, Oracle, Sybase, Informix, Excel
spreadsheets, text files, and flat files, as well as SQL Server. Analysis Services also eliminates
many of the complex data transformation and formatting tasks that administrators of other
OLAP engines must perform to load a cube.

• More flexible dimensional structure.
Some OLAP engines impose dimensional design
restrictions on cube designers, such as requirements that every member of every dimension
must have a unique identifier. By contrast, Analysis Services allows for non-unique member
identifiers and names and does away with several other time-consuming design requirements.

• Incremental background cube refreshes.
With Analysis Services, users do not need to log off
during an incremental cube reload. Once a cube is designed, a recurring task can be set up
that checks underlying relational databases for any changes, then loads those changes and
refreshes the cube in the background. Refresh processes can be set to run every 15 minutes or
less ifrequired, enabling users to have "near real-time" views into their data aggregations.

• Support for slowly changing dimensions and data.
It is common for OLAP engines to require complete reloads and recalculations of cubes when
slowly changing data-such as customer

Data is a fact of life. As time goes by, we collect more and more data, making our
originalreason for collecting the data harder to accomplish. We don't collect data just to waste
timeor keep busy; we collect data so that we can gain knowledge, which can be used to
improvethe efficiency of our organization, improve profit margins, and on and on. The
problem isthat as we collect more data, it becomes harder for us to use the data to derive
thisknowledge. We are being suffocated by this raw data, yet we need to find away to use
it.Organizations around the world realize that analyzing large amounts of data withtraditional
statistical methods is cumbersome and unmanageable, but what to do about it?Enter data
mining. As both technology and data mining techniques continue to improve,the capability of
data mining products to sort through the raw material, pulling out gems ofknowledge, should
make CEOs around the world jump up and clap their hands.Before we get too far ahead of
ourselves, realize that the success of any data mining projectlies in the proper execution of
specific steps.

The idea is to bring everyone together in the donation process, letting thecustomers
feel as though they are a bigger part of the company as a whole. But with thecurrent economic
situation, your boss wants to reduce the cost of the program while stilloptimizing the results.
It's time to trim the fat!As your boss explains, the dataset contains a large amount of
"demographic· information· and donation history as well as "a column that describes 'whether
each customer donated the lasttime the company sent out a mailing. He wants to use this
information to try to predictwho will donate this time, and then only send out solicitations to
those people. Reducingthe size of the mailing will, in turn, reduce costs and make everybody
happy. You have atyour disposal Microsoft® SQL Server™ 2000, including SQL Server
Analysis Services,and Microsoft Visual Basic® 6.0.

IV

CHAPTER I

SQL Server 2000 Analysis

Service Pack 2 (SP2) for Microsoft® SQL Server™ 2000 is provided in three parts:

• Database Components SP2 provides updates for the database components of an
instance of SQL Server 2000, excluding instances of the SQL Server 2000 Desktop
Engine. Database Components SP2 includes upgrades to:

• The data engine.

• Database client tools and utilities such as SQL Server Enterprise Manager
and osql.

• Database client connectivity components, such as the Microsoft OLE DB
Provider for SQL Server 2000, the SQL Server 2000 ODBC driver, and the
client Net-Libraries.

• Analysis Services SP2 provides updates for the SQL Server 2000 Analysis Services
components of a SQL Server 2000 installation, including:

• Analysis Services.

• - Analysis Services client components/which include AnalysisManagerand
the Microsoft OLE DB Provider for Analysis Services.

• Database client connectivity components, such as the Microsoft OLE DB
Provider for SQL Server 2000, the SQL Server 2000 ODBC driver, and the
client Net-Libraries.

• Desktop Engine SP2 provides updates for the database components of an instance
of the SQL Server 2000 Desktop Engine (also referred to as MSDE 2000),
including:

• The data engine.

• Database client connectivity components, such as the Microsoft OLE DB
Provider for SQL Server 2000, the SQL Server 2000 ODBC driver, and the
client Net-Libraries.

These three parts of SP2 can be applied individually, as follows:

• SQL Server 2000 sites can use Database Components SP2 to upgrade their database
components without upgrading their Analysis Services components or instances of
the SQL Server 2000 Desktop Engine.

• Analysis Services 2000 sites can use Analysis Services SP2 to upgrade their
Analysis Services components without upgrading instances of the Desktop Engine
or their database components.

• Desktop Engine sites can use Desktop Engine SP2 to upgrade instances of the
Desktop Engine without upgrading Analysis Services or instances of other editions
of SQL Server 2000.

1.1 Details of Database Components SP2 Installation

Database Components SP2 Setup automatically detects which edition of SQL Server 2000
is present on the instance of SQL Server 2000 being upgraded, and only upgrades the
components that have been installed for that instance. For example, when the service pack
is applied to a computer running SQL Server 2000 Standard Edition, it will not attempt to
upgrade components that ship only with SQL Server 2000 Enterprise Edition.

Database Components SP2 can be applied to a single default instance or a named instance
of SQL Server. If multiple instances of SQL Server 2000 need to be upgraded to SP2, you
must apply SP2 to each instance. When one instance on a computer with one or more
instances of SQL Server 2000 is upgraded to SP2, all of the tools will be upgraded to SP2.
There are not separate copies of the tools for each instance on a computer.

Use the following techniques for finding out which version of SQL Server or Analysis
Services you have installed.

SQL Server

To identify which version of SQL Server 2000 you have installed, typeSELECT
@@VERSION at the command prompt when using the osql or isql utilities or in the Query
window in SQL Query Analyzer. The followingtable shows the relationship between the
version string reported by @@VERSION and the SQL Server 2000 version number. -

If you are not sure which edition of SQL Server 2000 you are running, view the last line of
output returned by SELECT @@VERSION. The last line should match one of the
following:

Desktop Engine on Windows NT 5.0 (Build 2195: Service Pack 2)
Enterprise Evaluation Edition on Windows NT 5.0 (Build 2195: Service Pack 2)

2

Developer Edition on Windows NT 5.0 (Build 2195: Service Pack 2)
Personal Edition on Windows NT 5.0 (Build 2195: Service Pack 2)
Standard Edition on Windows NT 5.0 (Build 2195: Service Pack 2)
Enterprise Edition on Windows NT 5.0 (Build 2195: Service Pack 2)

Analysis Services

To identify which version of Analysis Services you have installed, follow these steps:

1. From the Start menu, point to Program· Files, SQL Server 2000, Analysis
Services, and then click Analysis Manager.

2. In the Analysis Manager tree, right-click the Analysis Servers node and select
About Analysis Services.

3. The following table shows which version of Analysis Services you have.

Services R TM

3

CHAPTER2

Using Microsoft SQL Server Analysis Services with IBM Databases

Today, many organizations are looking for better ways to transform data locked in their
legacy databases on their host systems into actionable information. Unfortunately, most
business intelligence solutions are relatively expensive and require complex database
operations to deliver the desired benefits.

This report discusses a business intelligence solution that, in our firm's experience, is
significantly more cost-effective and easy-to-use than alternative products: Microsoft SQL
Server 2000 Analysis Services. While Analysis Services works effectively with a variety of
data sources, many database administrators are not aware that the facility supports IBM
databases running on host systems. The following pages provide both a high-level overview
and a more detailed technical examination of Analysis Services. In the process, readers will
also learn about the facility's IBM database support and discover why on-line analytical
processing (OLAP) facilities such as Analysis Services are viable ways of meeting their
business intelligence requirements.

Over the last decade, deriving greater value and insight from core business
.. applicationssuch f1S enterpriseresource _m-a9,a~erI1ent, inventory, .ar1_d order eµtry systems __
has grown to become one of the most important enterprise IT requirements. This has led
companies to deploy many types of database analysis products ranging from simple query
tools and report writers to more sophisticated decision support and executive information
systems.
While all of these tools are capable of deriving some actionable information from enterprise
application databases, most of them suffer from one or more shortcomings that limit their
usefulness. These shortcomings include the following.

• Application limitations.
Many data analysis tools; particularly those provided by enterprise
application vendors, can only access data from the vendor's applications or, at best, from a
limited number of systems. This significantly limits the benefits of the analyses they
provide,
as some of the most valuable insights come from synthesizing and analyzing data from
multiple sources and applications.

• Analytical limitations.
A number of tools, particularly query facilities and report writers,
produce analyses that limit the ability of users to study their output from different angles.
Such tools frequently produce reports known as "banded courier" or "sort break" reports
that are little more than reproductions of paper printouts. Such reports usually cannot be
analyzed in spreadsheets using pivot table or cross-tabulation functions. Moreover, users
cannot "drill down" into the results to study the lower-level detail behind each cell.

4

• Performance limitations.
Many data analysis tools directly access the production databases
upon which enterprise applications rely. If the data analysis tools attempt to access these
databases during business hours, they frequently degrade enterprise application
performance.
As such, many companies severely limit the amount of processor and memory resources
that
the data analysis tools can use, or limit data analyses to "off hours." As a result, many users
must endure long information retrieval times or rely on reports that lack the current day's
transactions.

These and other limitations have led many organizations to implement two solutions that
can
address these issues: data warehouses and OLAP facilities. Both solutions enable
organizations to extract data from multiple host applications and integrate them into a
single database that is dedicated to data analyses. This allows these solutions to address
both the application dependencies and performance limitations of other solutions.

In addition, OLAP facilities are particularly adept at addressing the analytical limitations of
other data analysis tools. OLAP facilities aggregate enterprise application data across
dimensions that are relevant to businesses such as product, region, and fiscal quarter. These
"aggregations are stored 'as a fnultldimensionaldatabase or "cube". These "cubes can be .
analyzed by decision makers to quickly answer complex ad hoc questions such as, "How
many blue socks did each of our regions sell by credit card during the third quarter, and
what percentage of sales within each region were multiple-item versus single-item
transactions." OLAP products also enable extensive cross tabulations, "what if' analyses,
and drill-downs into transaction-level information.

While data warehouses and OLAP facilities are powerful tools, they are often quite costly,
take significant time to learn, and can be difficult to use. In addition, many OLAP facilities
require lengthy and painstaking operations to extract enterprise application data toflat files · -
before the information can be loaded into cubes. These shortcomings tend to increase the
time and expense associated with developing and supporting OLAP services, thereby
reducing their overall value.

In its studies of the current generation of OLAP facilities, Andrews Consulting Group has
found that Microsoft SQL Server Analysis Services addresses many of the common
shortcomings of these solutions while offering most of their strengths. Analysis Services is
based on a wizard-driven interface design that offers considerable ease-of-use benefits. It
can connect to a wide variety of legacy host databases, including all IBM DB2 sources via
Microsoft's Host Integration Server. It can also aggregate dimensional data directly from
production databases rather than requiring extraction and integration of data to flat files.
Compared to other OLAP solutions such as IBM's DB2 OLAP Server and Hyperion's
Essbase, Analysis Services is also quite cost effective.
These qualities make Analysis Services an OLAP solution that deserves closer
consideration by most organizations. The following pages provide further information that
database administrators can use to understand what this product can offer them.

5

2.1 What is SQL Server Analysis Services.

SQL Server Analysis Services is an OLAP solution that comes packaged with all
editions of Microsoft SQL Server 2000. While other OLAP products can cost tens or
hundreds of thousands of dollars, Analysis Services comes with SQL Server at no
additional charge.

Analysis Services has a portfolio of features that are quite similar to those found on
competitive products such as Hyperion's Essbase and IBM's DB2 OLAP Server. In
addition, it offers several features that distinguish it from other OLAP facilities. These
features include the following.

• Intuitive, wizard-based interfaces.
Many OLAP engines have interfaces that require
designers to work through numerous drop-down menus and windows to design, load, and
calculate a simple cube. By contrast, Analysis Services interfaces respond more
intelligently
to designer choices, allowing them to get the same results in less time. In many instances,
wizards walk designers through complex decisions that can only be made on a "trial and

. error" basis in competitiveproducts, . .. >-.. "

• Easy access to multiple, heterogeneous data sources.
Analysis Services comes packaged with no-charge facilities that enable access to a wide
range of data sources. These include IBM's DB2 UDB, Oracle, Sybase, Informix, Excel
spreadsheets, text files, and flat files, as well as SQL Server. Analysis Services also
eliminates many of the complex data transformation and formatting tasks that
administrators of other OLAP engines must perform to load a cube.

• More flexible dimensional structure.
Some OLAP engines impose dimensional design
restrictions on cube designers, such as requirements that every member of every dimension
must have a unique identifier. By contrast, Analysis Services allows for non-unique
member
identifiers and names and does away with several other time-consuming design
requirements.

• Incremental background cube refreshes.
With Analysis Services, users do not need to log off
during an incremental cube reload. Once a cube is designed, a recurring task can be set up
that checks underlying relational databases for any changes, then loads those changes and
refreshes the cube in the background. Refresh processes can be set to run every 15 minutes
or
less if required, enabling users to have "near real-time" views into their data aggregations.

• Support for slowly changing dimensions and data.

6

It is common for OLAP engines to require complete reloads and recalculations of cubes
when slowly changing data-such as customer
addresses or product specifications-must be altered. By contrast, Analysis Services can
accommodate most of these changes without reloads or recalculations, resulting in
increased
availability over competing products.

In many cases, these and other design features enable Analysis Services designers to
deliver
OLAP solutions significantly faster than with competitive products. They can also reduce
the
time required to learn and support the solution. Users also benefit, as the incremental
update
capabilities of Analysis Services allow for uninterrupted access to business-critical data.

2.2. SQL Server Analysis Services - A Closer Look

The following pages provide a ~a1kth;ougli. ofA~alysis Services that examines the major
features of the product and, in the process, demonstrates some of the solution's strengths.
The
walkthrough also discusses some of the tasks that Analysis Services designers and
administrators
typically perform.

Installation and setup.
Among OLAP facilities, Analysis Services is one of the easiest to install
and configure. - Wizards guide the customer throughout the installation process. - Once
complete,
the installation process creates a demonstration multidimensional database that contains
two
physical cubes and one virtual cube, a relational database with the source information for
the
demonstration cubes, two data mining models, and other resources to help database
administrators get started.

Connecting to and integrating data sources.
As Figure l illustrates, Analysis Services can
extract data from a wide variety of heterogeneous sources. Designers can derive
dimensional
data from sources in many formats, including star schema, snowflake, parent-child, virtual
dimensions, and data mining models. Analysis Services can also integrate data from
multiple

7

sources via Data Transformation Services, another no-charge facility within SQL Server.
One of the particular strengths of Analysis Services is its rich palette of connections to OLE
DB providers. As Figure 1 shows, the supported providers list is extensive. In addition,
designers can draw from all native Microsoft sourcesincluding SQL Server tables, SQL
Server replication, SQL Server DTS packages, other Analysis Services cubes, and
Microsoft Office databases.

Through Microsoft's Host IntegrationServer, designers can extend their
sourcingcapabilities to legacy IBM S/390-zSeries and AS/400-iSeries databases. Host
Integration Server includes OLE DB providers for DB2/400 (also known as DB2 UDB for
iSeries), DB2 UDB for z/OS and OS/390, VSAM for OS/390, and other host data sources.
Where OLE DB providers are not available, such as in AS/400 data queues, Host
Integration Server utilizes ODBC drivers and ActiveX controls to extract data. During
extraction processes, Host Integration Server does an admirable job of resolving packed
and signed fields; indeed, it often does a better job of resolving packed and signed fields
from DB2 UDB to non-DB2 UDB databases than IBM's own products do. The facility also
resolves code page differences between source and target databases

,t,1.e:r:,~Jt ~i.:JE i:;E'.t, F'J,=,,.~,kt Fim'l!J,ect,e, .;.11"1in.!ll 3.;,i9:,i,1:1:1$
(M:;;1ir.1:i0;,ft Ci!L.e C El' ~¥id§. k!r oe!i:2
,M .:u::i!;,:::n: OU:. cs: F'r-=,,,.,jd1e:11. ku DT:S P . .-1,,-~:.·
·1-.{c,r::rsa;ftQiLE cs, P'r:::uideri •D1 hcd!-!ti'ti,;::.iSer'\itE'ill
'.M 01 ;;i1i:J{t;, IJl.;JE C el Pr;;;t,,<id~ J.llr I 1rt;,s:,y,(ol;- F'iM:>lii;i£'1,irt1.
;M a:;i;,.:s:;:i,lt tJL!.: Ca F'r;;;t,,~.1;:;1 !tir t..'fi,i;,tll~d: $:(N11,;;:"'
,lvl oi::ii!:::ttt OU: CS.: Pr~.l:"ft lor,O'!.'.JBiCDt"''!<ll~
,Me:1,~tf.:uL~ ts:.f=1';:.WJ1:1r 1o1,0J....A..r' Se,~,~
'M c:e1~ft IJUf CB: FtY\ricl,r;:$ kn 0~ :::;cw·~:; Et,O
:Ma11::iso.ft OU: CEI' F'r.:,, •• <id!!:11 larOl~.le;
lvh:::::1:,~oftOLJE CB' J;>r~•!lidI!& IOrS:ltl :!i:er,...-e·
iM GJ:)f:::Jft IJLE ca, Si:[ri;ple Pl7!»'Viid!!r
,Mi t) ~•.rlS. l').11,p:B:
'.Di:U:: 00 =te,,..,;:1.M ieo ~1iet.t,."S'i,;it DI!~ S!i!t"1t:::e~
iSQL S~r"'eti 19.e;f)lrk~,or OLE'. DB P·a,,iit1enla1 ors

Figure 1
Analysis Services provides connectivity to a wide array of sources. Microsoft's Host
Integration Server extends this connectivity to relational and non-relational sources on IBM
host systems.

8

2.3. What Is Microsoft Host Integration Server 2000.

Host Integration Server 2000 is Microsoft's primary product for providing interoperability
between Windows solutions and IBM host systems-including S/390-zSeries and AS/400-
iSeries servers. Using Host Integration Server, Windows users can integrate host
applications and data across a wide range of network fabrics. As a data integration facility, Host
Integration Server provides powerful yet easy-to-use tools for accessing both structured and
non-structured data on IBM host systems. Data integration tools include:

• An OLE DB provider for both the S/390-zSeries and AS/400-iSeries versions of
DB2

• An OLE DB provider for non-DB2 data sources on the AS/400-iSeries
• An OLE DB provider for VSAM files
• An ODBC driver for both the S/390-zSeries and AS/400-iSeries versions of DB2
• A Data Queue ActiveX Control for accessing AS/400-iSeries data queues
• A Host File Transfer ActiveX Control that transfers files between a local computer

and an S/390-zSeries, AS/400-iSeries, or VSE/ESA host system

These facilities enable Host Integration Server to access relational data, flat files, source
files, keyed and non-keyed physical files at the record level, data queues, and logical files

- _ with external record .descriptions, .Host.Integraticn Server, can make- these data sources -
available to virtually all Windows solutions, including Analysis Services, SQL Server, Data
Transformation Services, Microsoft Transaction Server, Microsoft BizTalk Server, and
Microsoft Commerce Server; Developers can also use Host Integration Server to build host
data access capabilities into their own applications.

While Host Integration Server offers an array of data integration tools, its functions go
beyond data integration to include 3270/5250 terminal and printer emulation, Web
enablement of host applications, client access management, and other features. To learn
more about Host Integration Server, go to

.Once Analysis Services has accessed a data source via its own connectors or those of Host
Integration Server, it can normally load dimensional and fact data directly from the source.
By contrast, other OLAP engines frequently require extractions and denormalizations of
data sources to flat files before loading. This gives Analysis Services a significant time-to
results advantage in many applications.

It is important to note that there are times when it makes sense to extract data to an
intermediary target. For instance, an organization might want to create a relational data
warehouse and data marts that its Analysis Services cubes can drill into for transaction
level information. The organization might also want to integrate and perform
transformations on multiple data sources to create its data warehouse.
Such tasks are well-suited for Data Transformation Services, as it was designed to perform
all of these tasks. Data Transformation Services enables SQL Server users to access, move,
and transform data from all of the sources that Analysis Services can access as well as other
sources, including text and flat files. Data Transformation Services can integrate multiple

9

sources to a data warehouse or mart, then update the target with periodic feeds from those
sources. It can also transform source data using either VBScript or }Script. These
capabilities make Data Transformation Services an important adjunct tool for Analysis
Services.

Designing cubes and dimensions.
One characteristic of Analysis Services ihat many users point out is its ability to make cube
design a rapid and intuitive process. After Analysis Services has connected to the necessary
data sources, a wizard enables the designer to select the individual elements that make up
the fact table. Additional wizards ask questions to determine the structure of each
dimension. It is here where designers can specify special properties for selected
dimensions, such as those for time. Designers can also use the wizards to establish not only
member names but also member keys. A calculated member builder is also available to
walk the designer through all of the calculated measurements in the cube.
One of the most notable features of Analysis Services is its allowance for the assignment of
non-unique names to members. By contrast, Essbase and DB2 OLAP Server require
designers to assign unique names to every member at every level. This limitation makes
designing and managing dimensions a more cumbersome task than under Analysis
Services .
. One of the most notable features of Analysis Services is its allowance for the assignment
of non-unique names to members. By contrast, Essbase and DB2 OLAP Server require

C designerstoassign unique names "to every member at every level. This limitation makes
designing and managing dimensions a more cumbersome task than under Analysis
Services.
The following pages provide screen shots that demonstrate the cube, dimension, and
member design capabilities of Analysis Services. --·· - --- -~- .-L~---

Figure 2
Welcome to SQL Server Analysis Services, an OLAP solution that is a standard feature of
Microsoft SQL Server. The following screens step through the Cube Wizard, which enables
designers to select and create facts, dimensions, and storage methods. Analysis Services

10

uses wizards to streamline many design tasks. This enables designers to connect to data
sources and develop cube structures without having to work through extensive drop-down
menus and scripts.

~),'tit\ x,, -1c;0:. _,,_,,

,·-"- . _ ~ - -Figure-3-
The first step in creating an Analysis Services cube is to select a fact table from a list of
tables in available data sources. Analysis Services can extract data from relational and non
relational data sources in many formats, including star schema, snowflake, parent-child,
virtual dimensions, and data mining models. Through Microsoft Host Integration Server,
Analysis Services can also access relational and non-relational data sources on IBM S/390-
zSeries and AS/400-iSeries host systems

fwiiGm"" Yliiii.~~ N ~ <

i:-W:H~K'\1
'ii?~

Figure 4
From within the fact table, designers can select those fields that represent numeric values
they want displayed as facts in the cube.

11

Figure 5
After designers have selected their fact tables and fields that contain measurements, the
wizard directs them to select their dimensions. This screen shot shows that some
dimensions (on the left) have already been created and selected (on the right) for inclusion
in the cube. Figures 8 through 20 provide further detail about how these dimensions were
actually created.

Figure 6
At this point, the Cube Wizard prompts the designer to name the cube. This creates an
initial cube that can be viewed and further edited.

12

Figure 7
The cube editor provides the means for viewing and editing the cube created in the previous
screen shot. This figure shows the cube, which is based on a snowflake relational design
model. The cube facts appear in the center.

Figure 8
The Dimension Wizard provides many tools for creating and customizing cube dimensions.
This wizard demonstrates many of the capabilities that SQL Server Analysis Services
offers that are not found on competitive products.

13

Figure 9
The initial step is to define the structure or table hierarchy of the dimension. The simplest
structure is the star schema design, which requires only one table to define the entire
dimension. Other options include: snowflakes, where multiple tables are required for the
dimension definition; parent-child, where a single recursive table contains the unlimited
levels of a dimension; virtual dimensions, where the dimension levels are member
properties of an existing dimension; and mining model dimensions, which are sourced from

.. an 6LA:Pmini11g model. - - - . - C - • ' -- ---- -- -- ~-' --- ,.. ..·. - • '

Figure 10
For this particular cube, the designer is going to create a dimension based on a star schema,
the most common dimension type. This screen enables the designer to identify the table that
contains the dimension information.

14

Figure 11
Here, the designer has chosen the Store table and can see the fields contained in the table
displayed in the right pane.

Figure 12
Analysis Services now needs to know if the designer intends to treat this dimension as a
standard dimension or give it special treatment by identifying it as a time dimension. If the
designer had identified this as a time dimension, Analysis Services would have provided
options for defining the dimension and calculated the appropriate columns (e.g., year,
quarter, month, etc.).

15

Figure 13
This screen enables the designer to identify the fields that make up the levels of the
dimension. One helpful feature of this screen is the "count level members automatically"
option in the lower left comer. When enabled, this option counts the distinct values of each
level -of each dimension as the user adds .them.to the right-hand .pane. This -provides. an-.»
indication when the designer may have added the levels in the wrong order, enabling
changes to be made before populating the cube.

Figure14
One advanced dimension option that designers can set is the availability of changing
dimensions without reprocessing the cube. Figure 18 discusses this option at greater length.

16

Figure 15
This screen enables the designer to identify not only the field that contains the name of a
level member, but also the field that will be used as the member key column. This is an
improvement from past releases in which designers were only allowed to identify the name
of a level member and everything else was a member attribute.

.._-.:::. --·-.-·:.

Figure 16
Another advanced dimension option is the ability to specify the sort order and uniqueness
of members in a dimension level. Figure 19 discusses this option at greater length.

17

Figure 17
The final advanced dimension option is the ability to determine the storage method of the
-dimension. Figure 20-·discusses·thrs·option'atgreafer length.' ·~ "·· · ··-:: --- , ·'· ·· ·. "· - -

Figure 18
Changing dimension treatment is a key differentiator between Analysis Services and
competitive products. Most cube engines cannot provide special treatment for slowly
changing dimensions. By contrast, Analysis Services allows designers to synchronize the
underlying relational data with the production database if desired, allowing users to see
new or changed dimensional data without fully processing the dimension. This feature does
come at a price in terms of performance, so it should only be used when required and when
the performance penalty is not severe.

18

Figure 19
Dimension ordering is another powerful feature of Analysis Services. Users can retrieve the
data from the cube in the predefined order they dictate to the cube designer. In addition,
designers can specify the uniqueness of the Key and Name fields, enabling non-unique
names. Other OLAP products force uniqueness throughout the cube engine, a requirement
that increases complexity and inflexibility in the name of performance. By contrast,
Analysis Services-lets: the designer choose· uniqueness where- it-is needed: - - : - ., -.- - ·. -

Figure 20
Designers can specify that their dimensions be stored using the MOLAP method (for
optimal performance) or the ROLAP method (for high-volume storage). Storage methods
can be designated not only at the cube level but also at the individual dimension level.

19

mmifflsJ()'f/11 wb:itrd'
~<',I

Figure 21
The final screen of the Dimension Wizard allows the designer to name the dimension,
specify if a hierarchy of the dimension should be created, and determine whether the
dimension can be shared across other cubes.

~ ·, .. '.
Analysis Services brings power as well as ease of use to the cube design process. Here is a
partial list of the features that the SQL Server 2000 version of Analysis Services offers.

• Design and storage support for multidimensional OLAP (MOLAP), relational
OLAP (ROLAP), and hybrid OLAP (HOLAP) cubes.

• Support for MOLAP cubes with over 10 million members and ROLAP cubes with
over 100 million members.

• Support for new dimension types, including ragged, parent-child, changing, write
enabled, and dependent dimensions.

• The-ability to specify, display, and drill down on an unlimited-number of member
attributes.

• Support for specifying a unique set of member attributes at every level of every
dimension.

• The ability to specify the preferred sort order of dimensions on a "dimension by
dimension" basis as well as on a "level by level" basis within dimensions.

• Options to specify a dimension once, then share the dimension across all physical
and virtual cubes within an environment.

• Support for sharing measurements as well as dimensions across cubes.
• Support for linked cubes, in which measurements can be shared between two or

more cubes via a common dimension.
• The ability to specify security settings at the cube, dimension, member, and cell

levels.
As this list illustrates, Analysis Services is a mature solution that can compete on a feature
and function basis with other OLAP engines. By combining this functional maturity with
ease of use, it distinguishes itself as a leader in its product category.

20

Storing and refreshing cubes.
As the feature list above already mentioned, Analysis Services supports the storage of
MOLAP, ROLAP, and HOLAP cubes. This differentiates it from other OLAP engines,
many of which lack capabilities for one or more of these storage methods. Besides offering
flexibility in storage methods, Analysis Services offers other storage features that are
seldom found on OLAP solutions. These include a compression facility that allows
administrators to store cubes in significantly less space than that required by competitive
products. Analysis Services also includes a cube partitioning facility that allows partitions
to be stored in different physical locations and storage formats as well as at different levels
of aggregation. This allows administrators significant freedom to tune partitions to the
information needs and response time requirements of various users.
One unique feature of Analysis · Services is a wizard that enables administrators to
determine in advance the percentage of predefined aggregations to store in their cubes.
While predefined aggregations boost user response times, they also consume considerable
storage space. Using the wizard, administrators can specify the maximum disk storage that
a cube can occupy, then ask the wizard to calculate what percentage of aggregations the
storage limit will allow.
Alternatively, they can specify the percentage of aggregations they want to store, then let
the wizard calculate the storage requirements for that percentage. By contrast,
administrators of other OLAP engines must make storage calculations on their own or

. simply guess attheir cubes' storage· requirements; >·c .· •.•. · .· ~· ' • . ..

!/!l!rl!:im:twUi!e
Sto~ De.sfgn,Wl:zam

·t~,th?vnii:ifl«,,:knr~,~!.1,fi~t.z:rth!::Hi-b-1it~~~~~n
:j'i;.J;ffl)l'L

Figure 22
One of the strongest features of Analysis Services is its Storage Design Wizard, a short but
powerful utility that simplifies the tasks of determining disk storage requirements and
balancing them against performance requirements.

21

Figure 23
Analysis Services provides three storage options that are easy to understand and implement.
The MOLAP method provides the best performance but the highest storage requirements;
this makes it best suited for small cubes. The ROLAP method provides the slowest
performance but bas minimal storage requirements; this makes _~t idealforvery large cubes.
The i-IOLAP .. method prov1des-a - useful compromise between performance and storage
requirements.

Figure 24
The screen above allows designers to set aggregation options before they have run any
scenarios. It enables designers to select a storage limit within which Analysis Services will
calculate as many aggregations as possible. Alternatively, designers can choose the
"performance gains" option and specify the percentage of aggregations to calculate
regardless of the storage consumed. A third option allows designers to watch the
aggregation process and stop it at any time.

22

Figure 25
This screen shot shows what happens if the designer sets a limit of 100l\1B of storage and
clicks the Start button on the previous screen. The screen shows that, based on a 100l\1B
limit, Analysis Services will create 5 30 aggregations that will take up 100l\1B of disk
storage. It also reports that these aggregations represent 49% of the total aggregations that
could be created.

-·

Figure 26
Once designers have determined storage options for their cubes, they can choose to save the
definitions and run them in batch mode at a later time. Alternatively, they can save the
definitions and process them now on an interactive basis, as this designer is doing.

Another unique feature of Analysis Services can be found in its cube refresh
facilities. While theOLAP facility performs complete cube loads and recalculations like
competitive products, it also offers an incremental update facility that does not require
users to log off. To perform an incremental update, Analysis Services creates a temporary
cube partition, loads any new or changed data in the background, then merges the

23

temporary partition with the appropriate cubes. Since incremental updates can run as
recurring processes every few minutes, they allow Analysis Services to deliver "near real
time" information.

One of the headaches that many OLAP administrators face is the need to totally reload and
recalculate cubes-not to mention take users offline-whenever they make changes to
dimension names and attributes. By contrast, Analysis Services can perform incremental
background updates on dimensions and attributes in much the same way that it manages
incremental updates to dimensional data. This feature is invaluable in environments where
users demand nearly continuous access to their data.

Accessing and slicing cubes.

Microsoft provides numerous ways for users to access Analysis Services, whether through
Microsoft's applications, third-party tools, or in-house programs. The primary application
interface for Analysis Services is PivotTable Service, an OLE DB provider that offers the
functions needed to access and query cubes. PivotTable Service is used by Microsoft's
Office products (such as Excel's PivotTable and PivotChart features) as well as by third
party tools. It offers a wide range of functions that make is possible to perform
sophisticated analyses on client systems rather than increasing server overhead. This,
coupled with storage features such as cube partitioning, allows hundreds of users to

- :: cbt1dlrientlyacce-ssAnalysifServices.0 • -

Since PivotTable Service is widely used by the development community, many data
analysis tools are available to access Analysis Services. Indeed, we have seen that most
business intelligence vendors are now writing new releases of their analysis tools to
Analysis Services before they write them to other OLAP engines. As a result, users can
start working with Analysis Services through Office applications or choose from a variety
of sophisticated third-party tools. Developers can also create their own tools using the
Microsoft ActiveX Data Objects Multidimensional (ADO MD) library or the OLE DB for
OLAP Component Object Model interfaces.

PivotTable Service also enables users to create local cubes-that is, slices from an Analysis
Services cube-that they can download to their client computers and analyze offline from
the server. Cube slicing facilities can be invoked via Microsoft Excel to create local cubes,
or "cub files" as some organizations call them. Additionally, database administrators can
select from several powerful and inexpensive third-party products that automatically slice
and distribute local cubes to multiple users.

2.4.How SQL Server Analysis Services Stacks Up Against the
Competition
Today, organizations can choose from several OLAP engines to analyze their enterprise
application data. Many database administrators are familiar with Hyperion Essbase, but
similar products are available from Oracle, Seagate, MicroStrategy, and other vendors.

24

IBM also offers DB2 OLAP Server, an OEM version of Essbase that requires DB2 UDB
for support functions.

While there are many OLAP engines on the market, the only dominant products are
Analysis Services and Hyperion Essbase in both its native and DB2 OLAP Server versions.
With that in mind, the following paragraphs consider how Analysis Services stacks up
against Essbase and DB2 OLAP Server in several key areas.

Price.
As mentioned earlier, Analysis Services is packaged with SQL Server at no extra charge.
By contrast, Essbase and DB2 OLAP Server cost tens to hundreds of thousands of dollars
extra in addition to the relational databases with which they interface. In price comparisons
we have performed, Analysis Services has proven to be more cost-effective than its two
main competitors.

Ease of use.
Since Microsoft has architected ease of use into its product, it takes fewer steps to perform
most tasks within Analysis Services than it does in Essbase or DB2 OLAP Server. Consider
the following features that Analysis Services has but that its main competitors do not offer,
or for which support is weak.

- ·- :.. -. Intelligent wizards - for "most of'the steps "within the 'cube design, storage: "and'
management

processes.
• Support for non-unique member names.
• The ability to load normalized data sources directly into cube dimensions instead of

having to perform an intermediate load to a flat file. (Essbase and DB2 OLAP
Server offer this feature for some data sources, but the feature is not well
documented nor is it well-supported by Hyperion and IBM.)

• Support for an unlimited number of member attributes-such as the color and
"weight of ari iterri-that are displayable and drillable ..

In our experience, these and other features within Analysis Services allow cube designers
to get results faster and be more productive. This translates into marked reductions in the
cost of
managing and delivering OLAP services.

Access to data sources.
Analysis Services compares quite favorably to its competitors in the number of data sources
it can access. For instance, while DB2 OLAP Server has well-documented access to DB2
sources, it has less robust support and documentation for the non-082 sources that
Analysis Services can access. In addition, Analysis Services can frequently load data
sources faster than Essbase or DB2 OLAP Server, particularly when the data sources offer
an OLE DB provider. These providers, which Analysis Services uses wherever possible,
tend to offer better performance than the ODBC drivers that the competitors use.

25

Storage utilization.
In today's efficiency-minded environment, reducing storage costs is an imperative. In
response to this imperative, Analysis Services offers cube compression ratios that are
usually superior to those of both Essbase and DB2 OLAP Server. By offering intelligent
wizards to help administrators predetermine aggregation percentages and cube sizes, it also
makes storage planning an easier task.

Performance and response times
Hyperion and IBM make many claims about the superior performance of their products
versus Analysis Services. While it is true that Essbase and DB2 OLAP Server can
outperform Analysis Services on selected workloads, it is equally true that when tuned
properly, Analysis Services can often perform as well as or better than its competitors. Like
Essbase and DB2 OLAP Server, Analysis Services offers performance-enhancing features
such as cube partitioning and on-the-fly aggregation. However, many administrators find
Analysis Services easier to tune than other products because its performance management
tools are more intuitive and intelligent. In many cases, this ease of tuning may allow
Analysis Services administrators to get better performance than on Essbase or DB2 OLAP
Server.

Analysis tools.
---Because of itsgrowing popularity; developers andvendors have built a rich portfolio of

analysis tools around Analysis Services over the last several years. As a result, it is easy to
find analysis tools that match or exceed the functionality found in the tools that are
available for Essbase and DB2 OLAP Server. It should also be noted that many of the third
party analysis tools for these two competitors lack support for the latest functions that
Hyperion has built into its products. For users that want to access those functions, this
problem can limit their choices to the tools that Hyperion and IBM offer.

Cube availability.
Since Essbase and DB2 OLAP Server lack the incremental update function that Analysis
Services offers, users must log off for cube reloads and recalculations. To avoid the long
downtimes associated with complete reloads and recalculations, administrators of these
products must write complicated scripts that update selected ranges in their cubes. By
contrast, Analysis Services can update any cell in any cube whenever the underlying data
changes, and can do so in the background.

Ownership and support issues.
Companies that use DB2 OLAP Server face another issue-the fact that IBM does not own
or control the development of the underlying product. As a result, when customers
experience problems with DB2 OLAP Server, they often must work with both IBM and
Hyperion support teams. This can lengthen problem resolution times and increase support
costs. It should also be noted that IBM ports DB2 OLAP Server from Unix to its S/390-
zSeries and AS/400-iSeries servers. After the port, administrators must use Unix-like

26

commands in a shell to manage the product. This may add complexity and cost to the
management effort, as many mainframe and AS/400 support staffs do not know Unix.

While Analysis Services has advantages over Essbase and DB2 OLAP Server in several
key areas, there are undoubtedly some IT environments and applications where it might not
compare favorably to one of these competitors. Compared to Analysis Services, for
instance, DB2 OLAP Server offers a broader portfolio of data mining tools and models that
let users look for unusual patterns and deviations in DB2 OLAP Server cubes and data
warehouses. This might be useful for a company that is searching for the proverbial "beer
and diapers" connection in its data. However, for the everyday task of deriving business
performance information from enterprise applications, Analysis Services is much more
likely to be the best-suited and most cost-effective solution.

In short, SQL Server Analysis Services is a powerful and affordable solution for companies
that are struggling to gain insights from the volumes of data that their core business systems
generate every day. Unlike traditional query tools and report writers, Analysis Services can
integrate data from heterogeneous sources into flexible, multidimensional structures that
decision makers can access whenever they need to. Users can slice and study Analysis
Services cubes using dozens of products ranging from Microsoft Office applications to
standalone data analysis tools. While the benefits that Analysis Services offers are similar
ld those of 'other OLAP engines, its - intuitive interfaces- and 'overall flexibility allow ' -
designers and administrators to be more productive than on competitive products. It is also
the only OLAP engine that offers incremental upgrades, a feature that can significantly
improve the currency and availability of cube data. Moreover, since Analysis Services is a
no-cost feature of SQL Server, it is a value leader in its product category. As such, Analysis
Services deserves close consideration by any organization that wants to get more business
value from their enterpri~e application databases.

27

CHAPTER 3: Preparing and Mining Data with Microsoft SQL
Server2000 and Analysis Services

Data is a fact of life. As time goes by, we collect more and more data, making our
originalreason for collecting the data harder to accomplish. We don't collect data just to
waste timeor keep busy; we collect data so that we can gain knowledge, which can be used
to improvethe efficiency of our organization, improve profit margins, and on and on. The
problem isthat as we collect more data, it becomes harder for us to use the data to derive
thisknowledge. We are being suffocated by this raw data, yet we need to find away to use
it.Organizations around the world realize that analyzing large amounts of data
withtraditional statistical methods is cumbersome and unmanageable, but what to do about
it?Enter data mining. As both technology and data mining techniques continue to
improve,the capability of data mining products to sort through the raw material, pulling out
gems ofknowledge, should make CEOs around the world jump up and clap their
hands.Before we get too far ahead of ourselves, realize that the success of any data mining
projectlies in the proper execution of specific steps. There is no magic box from which a
datamining solution appears. We must work with the raw data and get to know what
itcontains. What we get out of a data mining solution is only as good as what we put into
it.The six steps for a data mining solution are as follows:
·• Defining the problem . . .·... . . . _;• .. '
• Preparing the data
• Building the models
• Validating the models
• Deploying the models
• Managing the meta data associated with transforming and cleaning the data andbuilding
and validating the models of these steps can further be subdivided into tasks. Only in
working through each ofthese steps can we create the best data mining solution to solve a
given problem. The mosttime-consuming task in the process is not creating the model, as

· you mightthink; · instead.it' s cleaning and exploring the data that takes up about 70 to 80
percent of the time spenton any data mining project. Creating the model is as simple as
setting some parameters andclicking Process. Cleaning and exploring the data require data
domain knowledge and agood feel for what you are doing. In the solution described iri this
book, we'll only gothrough the steps of creating and validating the model. Managing the
meta data is beyondthe scope of this book.So what is it we're really trying to get out of a
data mining solution? Well, we've talkedabout gaining knowledge, but that's pretty
abstract. What gives us the capability to findthis knowledge? The answer is to find the
hidden patterns that exist in data, which can bestored in the form of a data mining model. A
data mining model uses a specific algorithmto search through the data and find and store
interesting patterns. We can then browsethrough a graphical representation of these
patterns. Depending on the model, we can alsocreate predictions based on the relationships
that the model finds.
Microsoft supplies several great tools that allow us to create a complete data
miningsolution. The purpose of this book is to demonstrate how to apply these tools to the

28

data mining process.Throughout this book, we'll use a scenario to illustrate the steps in the
data mining process.The following section describes this scenario.

31.Introducing the Data Mining Scenario

Your boss stops by your office and drops a dataset into your lap. He says that he's
heardabout data mining and wants to use it as part of a business objective to reduce
costs.Your company is well known throughout the industry for being very generous
withcharities. One of its endeavors is to send out requests for donations to the customers in
itsdatabase. The idea is to bring everyone together in the donation process, letting"
thecustomers feel as though they are a bigger part of the company as a whole. But with
thecurrent economic situation, your boss wants to reduce the cost of the program while
stilloptimizing the results. It's time to trim the fat!As your boss explains, the dataset
contains a large amount of demographic information and
donation history as well as a column that describes whether each customer donated the
lasttime the company sent out a mailing. He wants to use this information to try to
predictwho will donate this time, and then only send out solicitations to those people.
Reducingthe size of the mailing will, in turn, reduce costs and make everybody happy. You
have atyour disposal Microsoft® SQL Server™ 2000, including SQL Server Analysis
Services,and Microsoft Visual Basic® 6.0. Accompanying this book is a sample
application, theData_ l\1ining Tool, which you'Il use to work through. the . steps jn the .
book.Note The data mining process descrtbed in. this book.doe~ not· include writing Visual-. - .
Basic code.But because the Data Mining Tool is provided as non-compiled code, you'll
need Visual Basic toview the code.The following diagram shows the user interface of the
Data Mining Tool. The steps shownon the user interface closely match the data mining
process that you will be learning aboutin this book.

Figure i. l The Data Mining Tool

29

This solution and the accompanying sample code were designed specifically for the
targetedmailing dataset that is included with the code and text. You can use the Data
Mining Toolwith other datasets, but its functionality may be affected. However, the general
conceptsdiscussed in this book are applicable to most data mining projects. This solution is
designedso that you can modify the code as necessary to fit within your individual project's
goals-it's a place for you to start in designing your own solution.Important The Data
Mining Tool and the procedures associated with it may not work as described on non
English systems.

This chapter provides instructions on how to set up the Data Mining Tool. It also briefly
describes the components of the Data Mining Tool and provides instructions on installing
and configuring publicly available components.
Setup is a multistep process. First, you need to ensure that your computer is equipped with
the required set of tools and technologies. Then you run the Microsoft SQL Server™ 2000:
Data Mining Setup Wizard () to install the database, the Data Mining Tool, and other
components. We recommend that you install the software and run the Data Mining Tool on
a computer that has at least 500 Megabytes (MB) of RAM and a 1.5 Gigahertz (GHz)
processor. If you do not have a computer that meets these recommendations, the procedures
that require processing will take a considerable period of time to complete. Optionally, you
can use the sampling and column-selection techniques described later in this book to reduce
the size 'of the original table, which willreduce processingtime. If you choose to. reduce the· c..
size of the original table, make sure that you do not eliminate the columns CONTROLN,
TARGET_B, and TARGET_D. These columns are necessary for the data mining tasks we
will be performing.

Meeting the Setup Requirements
The SQL Server 2000: Data Mining Setup Wizard requires that you have administrator
privileges on the computer on which you plan to run the wizard. Also, before running the
wizard, you must install the tools and technologies listed in the following sections. It is
strongly recommended that you install theminthe order in which-they're listed.·
After your computer meets these requirements, you are ready to run the SQL Server 2000:
Important If you do not have the required software installed before you run the SQL Server
2000: Data Mining Setup Wizard, the installation process will not succeed and the Data
Mining Tool will not work.
Microsoft WindowsXP Professional or Windows 2000 Service Pack 2 (SP2) with NTFS
To help ensure the security of your computer, install the latest Windows updates by going
to the Microsoft Windows Update site and following the online installation instructions.
Microsoft SQL Server™ 2000 SP2 (Developer Edition recommended) For more
information about SQL Server 2000,
The Data Mining Tool assumes that you are using Windows Authentication as your
security protocol. If this is not the case, you must reconfigure your server to allow
Windows Authentication. SQL Server 2000 Analysis Services SP2 (Developer Edition
recommended) For more information about Analysis Services
MDAC 2.7 To run this solution, you need to make sure that MDAC 2.7 is installed on your
computer.
You can install MDAC 2.7 from the Microsoft Data Access

30

Microsoft Visual Basic® 6.0 SP5
To view or manually compile the code used in the Data Mining Tool, you need to have
Visual Basic installed on your computer.
Angoss Visualization Tools
To compile and run the sample code, you need to install the Microsoft OLE DB for Data
Mining SDK, which contains the Angoss OLE DB for Data Mining Consumer Controls.
To install the OLE DB for Data Mining SDK

1. On the Microsoft OLE DB for Data Mining SDK download page
2. Either click Open to run the installation file immediately, or click Save to save the
installation file to your computer. You can then run the file locally-.
After you run the installation file, the consumer controls will be installed on your computer.
In addition, Help files describing the controls and a sample application will be added to
your Start menu. Microsoft Windows Installer 2.0
Although Windows Installer 2.0 comes with Windows XP, Windows 2000 does not
include this installer by default.
To install Windows Installer 2.0

1. In Internet Explorer, go to the Windows Installer Version 2.0 page
2. In the Run-time Requirements section, click the link shown to download the
redistributable file.

Running the Setup Wizard
After making sure thar your computer meetsithe 'rriinimum - software and 'hardware
requirements, run the SQL Server 2000: Data Mining Setup Wizard. How you run this
wizard depends on whether or not you have already downloaded the wizard to your
computer.
To run the setup wizard from your computer

• In the location to which you downloaded the setup wizard, double-click the
SQL2KDataMining.msi file and follow the instructions on the screen to run the installer
package.
To run the setup wizard from the download page
L In Internet Explorer (or other- browser), go to· the-Preparing -and Mining Data with
Microsoft SQL Server 2000 and Analysis Services - Sample Code page
2. On the left side of the page, click Download, and then follow the instructions on the
screen to open and run the installer package.
Note The SQL2KDataMining.msi file is approximately 35 MB and, depending on your
connection speed, may take a significant time to download.
Running the SQL Server 2000: Data Mining Setup Wizard:
• Installs the sample source code used in this book.
• Installs the documentation for Preparing and Mining Data with SQL Server 2000 and
Analysis Services.
• Adds a new database to your server, DM_Prep_Tool, and creates an empty table with the
correct column information.
You can find the files associated with the source code in the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample folder and the files associated
with the database in the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data
Mining\Database folder.

31

Setting Up the SQL Server Database
Throughout this book, you will be using the Data Mining Tool to mine data in the
DM_Prep_Tool database. This database contains data taken from the UCI Knowledge
Discovery in Databases (KDD) Archive
A data dictionary describing the different columns included in the dataset can also be
downloaded from the site. The data is available as a text file, with the rows delimited by
linefeeds (If) and the columns delimited by commas. The first row holds the column names.
The dataset contains 481 columns and over 90,000 rows of data. Because the data is in a
plain-text file, no column data types are included with the data; instead, they can be found
in an accompanying document. To make this solution easier to work with, we created the
table structure in the database during setup, including setting types of the columns. To work
with the solution, you now only have to import the data from the text file into the table
using the DTS Import/Export Wizard. ·

The following procedure describes how to use the DTS Import/Export Wizard to populate
the table with data.
To populate the cup98lrn table with data

1. From the Start menu, point to Programs, point to Microsoft SQL Server, and then
click Import and Export Data.
2. The DTS Import/Export Wizard opens.
3. In the opening screen, click Next.
4. From theData 'Source drop-down' menu, selectText File. --- - ·- - -- - - >' -

5. Browse to C:\Program Files\Microsoft NESBooks\SQLServer2000\Data Mining\DM
Sample, select cup981rn, and then click Next.
6. Select the Delimited check box; in the Row Delimiter drop-down box, select {LF};
select the First row has column names check box; and then click Next.
7. Because Comma is already selected, click Next.
8. Select your server (or leave as local host), select the DM_Prep_Tool database, and then
click Next.
9. The correct table is already selected, so click Next.
10. Select Run immediately, and then dick Next.
11. A DTS package is now built and run that imports the data from the text file into the
existing cup98lm table. The column data types were set during installation, so the new data
is correctly typed.

Setting Up the Analysis Server
In order to create the mining models and work with them, you will need to set up a new
database on your Analysis server.
To create a new Analysis Services database

1. From the Start menu, open Analysis Manager.
2. In the tree view, navigate to your server.
3. Right-click your server, and then select New Database.
4. In the Database name text box, type DM_OLAP.
5. A new database has now been created on your Analysis server.
6. Within the new database, you also need to create a new data source from which the
mining models can be built.
To create a new data source

32

..

1. From the Start menu, open Analysis Manager.
2. In the tree view, navigate to your server, and then expand the node for the DM_OLAP
database.
3. Right-click Data Sources, and then click New Data Source.
4. For the provider, select Microsoft OLE DB for SQL Server, and then click Next.
5. For the server, select Locaffiost, select Use Windows NT Integrated security, and for
the database, select DM_Prep_Tool.
6. Click OK.
A new data source named Localhost DM_Prep_Tool has been created on your Analysis
server, which you can use as a source for building your models. The name that Analysis
Services gives the data source is long and inconvenient, so let's rename it. The problem is
that we have to use a funny work around because Analysis Services provides no direct way
to rename the data source through the user interface.
To rename a data source in Analysis Manager

1. Right-click the Localhost Data_ Prep_ Tool data source, and then click Copy.
2. Right-click the Data Sources folder, and then click Paste.
The Duplicate Name form appears, allowing you to choose a new name.
3. In the Name text box, type cup98LRN.
You now have a duplicate data source with a new name.

Connecting to the SQL Server Database
.-, = Wilh the· data ·rrop<erlf stored 1.ri the database.'we nowneedtoset up a connectionbetween - -

the Data Mining Tool and the database. This step is critical, because no matter what kind of
project you are working on, you need a connection to the database before you can start to
mine the data.
When you first open the Data Mining Tool, the only button you can click is the Connect
button. This button defines the server and database for a new connection string.
To connect to the DM_Prep_Tool database

1. In Windows Explorer, browse to the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click
DMFinaLvbp.
2. In Visual Basic, on the Standard toolbar, click Start.
This opens the Data Mining Tool.
3. In the Data Mining Tool, type the following information, and then click Connect:
In Server, type Localhost.
In Database, type DM_Prep_Tool.

After you click Connect, the Data Mining Tool uses the server and database information
that you provided to create a connection between the tool and the database.

33

Figure 3.1 The Data Min1ng tool After making a connection

Selecting a Table in the Data Mining Tool
We've just set a connection to the database. The next step is to decide which data we want
to use in the data mining process. Because we do not want to affect the original data, we'll
make a copy of the source data and store it in a new table. We will then mine the new table
for information.
To select a table, click the Manage Tables button in the Data Mining Tool. This opens the
Manage tables form (Figure 1.2), where, in addition to copying entire tables, you can:
• Select specific columns to include in· a hew table. · · ·
• Drop tables from the database that are no longer useful.
• Create a copy of an existing table but include fewer rows (in other words, sample the
table).
• Create a copy of an existing table but force the sampling algorithm to include a higher
percentage of positive predicted values than actually existed in the original table.

34

Figure 3.2 The Manage tables form

Depending on the data being mined, you might want to use any of the table management
techniques listed here. In the course of this book, we'll focus on just a couple of these
techniques. But if you're interested in the techniques we don't cover, see Appendix,
"Managing Tables," for complete instructions on using the other techniques. ·
To copy the table in the DM_Prep_ Tool database

1. In the Data Mining Tool, click Manage Tables.
2. In the Create a new table by copying an existing table section, enter the following
information:
In Select a source table, select cup98LRN.
In Enter a table name, type cup98LRN _ clean.

3. Click Copy Table.
The Data Mining Tool begins to copy the table. Depending on the speed of your computer,
this process may take a little while. As you'll soon see, mining a large dataset not only
requires an intimate familiarity with the data but a good deal of patience as well.
4. When a message box appears indicating that the table was created, click OK.
5. In the Manage tables form, click Close.
At this point, we are all set up to start mining data. But before we get too hasty, let's take
the next couple of chapters to define exactly what data mining is and exactly what data
mining problem we want to solve.

35

3.2Data Mining Fundamentals

As mentioned in the Introduction, your boss wants you to use data mining to figure out
which customers are most likely to respond to a request for a charitable donation.
Your first question is, "What is data mining?"

What Is Data Mining?
Every day, corporations throughout the world add billions of rows of data to their
databases. As the amount of raw data increases exponentially, our ability to understand the
data and extract the wealth of information that lies inside it plummets. Using SQL, we can
generate queries that return lists of records, basically filtering the available data into smaller
subsets. We. can also create multidimensional aggregations using complex SQL
statements-to answer questions like, how much did "so and so" sell in his district last
year.
These are valuable tools that help present and summarize data, but we can't develop a deep
understanding of the data using these technologies. For instance, we can't use SQL and
online analytical processing (OLAP) to predict the value of a column in a table based on
the values of related columns in a database. Nor can we use these technologies to predict
whether someone will donate money based on what we know about him or her. But we can
use data mining to answer these complex questions, and in doing so, we can begin to make
sense of the world of data that has accumulated around us. - .. ~--= ~- :.·_- __ . : - - __ -_,_ . -· .- - --- ·-- - -.-: .- .-:-·-····. -. : -- -

Defining Data Mining
A technical definition of data mining is often stated as "the process of extracting valid,
authentic, and actionable information from large databases." Notice that within this
definition we are not extracting specific data, but instead we are deriving information that
the data as a whole can provide us.
Now what does this definition of data mining really mean? Let's look a couple of
examples.
Example of Data Mining Through Personal Experience
If you always walk down the same street on your way to work, ·you naturally observe and
store things in your brain that you may not consciously realize:
The bakery is always crowded at 8 A.M. and is always out of coffee by then.
The bartender from the bar next door drops last night's bottles into the recycle bin about the
time you reach the corner.
The overhead train drowns out conversations at the bus stop.

When faced with decisions involving unknown factors, you use this stored information to
make an educated guess. If you are in a hurry and need coffee, you most likely will skip the
bakery and try the quick stop next door. You don't know for sure that the bakery will be out
of coffee, but based on past experience you can make a good prediction. If you want to
have a conversation with a friend while waiting for the bus, you will probably choose a stop
that is not underneath the overhead train tracks. Again, you don't know for sure that the
train will be there-maybe it broke down-but you have a good idea that it will. Though
obvious, these examples help describe how data can be transformed into actionable
explanations. You collect data and then later use that data to make a best guess as to what
will happen in the future. The real power of data mining is that it can go beyond the

36

obvious, finding hidden patterns you would otherwise not think to look for in large
databases.
Example of Data Mining on a Corporate Level
For a more concrete example of data mining, consider this: you receive a credit card
application in the mail and decide to apply. In the application, you give both personal and
financial data. The bank issuing the credit card uses these few bits of personal and financial
information to predict your credit risk. Much like you, the bank has learned from its
experiences. There are many obvious reasons the bank might reject an application; for
example, if the applicant is unemployed with a poor credit history, and has, more often than
not, defaulted on his or her credit. Likewise, there are many obvious reasons the bank
might accept an application; for example, if the applicant is married with two kids, and has
a good job and a good credit history. You wouldn't necessarily need to use data mining to
find these instances, but what about someone with a relatively good job and little credit
history-are there any signs that this person might be a bad credit risk? Data mining can
help to uncover the hidden patterns that answer this question. Over the years that the bank
has been issuing loans and credit cards, it has amassed a large store of observations that it
can use to create mining models. The only difference between the bank and you is that the
bank stores its observations in a large database. In the same way that you predict which
store will be out of coffee, the bank predicts which person will pose a greater risk, but the
bank's predictions will be based on models developed from large datasets.
Data mining is often compared to statistical analysis, yet it differs in a couple of ways.
Firsttypical data'mining algorithms deal 'with large datasets; while in the 'field' of statistics,
datasets consist of a sampled set of data taken from a larger population (though a data
mining dataset can also be sampled). Second, statistical algorithms are typically hypotheses
based. In creating a statistical solution, you are probably trying to answer a very specific
question or prove or reject a hypothesis. In creating a data mining solution, you try to find
general or hidden trends and relationships that exist in the data. Data mining draws from
several fields, including artificial intelligence and statistics. Think of statistical analysis as
approaching a problem in a top-down manner, while data mining approaches a problem
from the bottom up. In other words, you don't know exactly what you'll find when you are

- datamining. - -_

_ .. _ :, .. _

How Data Mining Works
Now let's talk about the specifics of data mining-how does it work? Creating a mining
model can be compared to any manufacturing process. First you need the raw material
the data. You then pump that data through a mechanical process-the algorithm. This, in
tum, produces a product-the mining model. The difference between the manufacturing
process and the data mining process is that instead of creating the product through
mechanical means, you are using mathematical means.

The Raw Materials
Where does the raw material-the data-come from? Basically, anywhere you can find it:
text files (flat files), Microsoft® Excel files, online transaction processing (OL TP)
databases, online analytical processing (OLAP) databases, and so on.
Typically, you also check this data for integrity. Data integrity is an important concept.

37

Because you often pull data from multiple sources, you cannot assume that the data is
always presented in the same manner. For example, dates from one dataset can be
expressed in a MID/YR format, while those from another as D/M/YR. Measurements can
be expressed in different units from one dataset to another. To maintain consistency in the
final data warehouse, you must identify these problems and resolve them.

The Process ~
As you might have noticed in the overview of the data mining process, the data mining
algorithm is at the heart of this process. Technically speaking, data mining algorithms fall
into the following categories:
• Classical statistical algorithms (that is, radial basis-functions and multivariate splines)
• Pattern recognition algorithms
• Genetic algorithms
• Classification and regression trees (CART)
• Other rule-based methods
Choosing the right algorithm can be complicated because each produces a different result,
and some can produce more than one type of result. You can also use different algorithms
to perform the same task. To further complicate matters, you don't have to use these
algorithms independently; you can use multiple algorithms to solve a particular business
problem. You use some algorithms as a means of exploring data, while you use others to
predict a specific outcome based on the data. For example, you can use a regression tree

- "-- algorithmto provide financialforecasting and a rule-based algorithm (a CART algorithm): __ ,._
in a market basket analysis. You can use the decision tree algorithm (a classification
algorithm) both for prediction and as a way of reducing the number of columns in a dataset
(by showing which columns do not affect the final model). You can use a clustering
algorithm (a pattern recognition algorithm) to break data into groups that are more or less
homogeneous, and then use the results to create a better decision tree model. Both a
sequence clustering algorithm and a rule-based algorithm can be used in a click-stream
analysis. However, remember that while choosing an appropriate algorithm is important,
your true goal is to create a robust and accurate model that can be understood by users and
deployed into production with minimal-effort.
For this scenario, we will build decision tree models using the Microsoft Decision Trees
algorithm. This algorithm allows us to build a good overall model with strong predictive
capabilities. For more information about the Microsoft Decision Trees algorithm, see
"Implementing Data Mining with Microsoft Tools" later in this chapter.

The Product
As you begin to work through your data mining solution, realize that it is a dynamic and
iterative process-the solution evolves and grows over time. As you learn more about the
data domain or add more data to the data warehouse, your mining model also changes. If
you base your mining model on a dynamically changing data warehouse (which grows
through scheduled updates), you need to develop a strategy for updating your mining
model. Similarly, you may have originally built the mining models from a sparse data
source, but, as time has passed, your data source has become richer, allowing you now to
create a more accurate model. To take advantage of this, you need to rebuild the model.

38

A key point here is that the model that you build is only as good as the raw material used to
create it. However, it doesn't matter how good your data is if you do not understand it.
You will be making tough decisions about which data should be included, how it should be
cleaned and transformed, and what you eventually want to predict.
After you create your models, but before you put them into production, you need some
metrics by which to calculate the effectiveness of your models. You do not want to put a
model into production until you know how good it is.
To summarize, there are four things you must have to create an accurate mining model:
• A clear definition of the business problem
• A rich dataset related to the business problem
• A thorough understanding of the data domain
• A set of metrics with which to measure the success of the mining model
The usefulness of your mining model can be directly traced to the initial planning and
thought dedicated to defining and clearly stating the problem you are trying to solve. How
can you find the answer if you can't ask the right question?

Translating the Data Mining Process into Steps

As you've just learned, data mining is a process. Though the end step is clearly building a
mining model, the steps leading up to the creation of the model determine the success of
your solution. While there are a multitude of approaches to the data mining process, all of
them roughly translate intc the distinct steps and tasks shown in Figure3::r . . ·-' ·- ,· ..

Step I-Problem Definition
Before you build a mining model, you need to understand the data you will work with and
clearly define the business problem you are trying to solve. This includes analyzing the
business requirements, defining the scope of the problem, defining the metrics by which
the model will be evaluated, and defining the final objective for the data mining project.
These tasks translate into questions like:
• What is your boss is looking for?

· • Which attribute of the dataset do you want to try to predict?
• What types of relationships are you trying to find?
• Do you want to make predictions from the data mining model or just look for interesting
patterns and associations?
• How is the data distributed?
• How are the columns related, or if there are multiple tables, how are the tables related?
These are the questions that you need to be able to answer before you can begin to work
with the data. To find the answers, you may need to conduct a data availability study,
investigating the needs of the business users with respect to the data available. If the data
won't support what the users need to find out, you may need to redefine the project.

Step 2-Data Preparation
You've defined the problem that you are going to try to solve-now what? Well, first you
need to find the raw data related to this business problem. Collecting the data can be a
cumbersome task. This data is usually scattered across a company and stored in different
formats. But do not narrow your focus! Find all data that is related to the business problem.

39

Often, the original data is collected through an OL TP system and contains inconsistencies.
Entries are missing or flawed; for example, the data might show that a customer bought a
product before she was born or shops regularly at a store 2,000 miles from her home.
Before you begin to build the models, you need to fix these problems. In other words, you
must "clean" the data. The problem is that cleaning the data is not a straightforward
process. Maybe the person shopping 2,000 miles from her home has two residences and
lives an equal amount of time at both. Usually, you are working with a very large dataset
and can't look through every transaction personally. Therefore, you need to use some form
of automation to explore the data and find the inconsistencies. Exploration techniques can
include calculating the minimum and maximum values, calculating the mean and standard
deviations, and looking at the distribution of the data. In the end, you need to decide
which data seems flawed and devise a strategy for fixing the problem.
In preparing the data, you often have to transform columns of the dataset before building a
mining model. For example, to determine whether your company's compensation strategy
is equitable, you may try to predict salaries based on age, experience, length of time with
the company, and other factors. The data you use to create your model contains a large
number of possible values for the salary of an employee-in essence, it is a continuous
attribute, a column with a large number of states. To make your final model more focused,
you need to discretize the data. This simply means creating a limited number of buckets
(salary ranges) such as low, medium, and high, and replacing the values in the column with
the appropriate bucket name. You may also want to define a new column based on existing

~· · columns, For example, you may not have a column that details the totalcost of'retainirig ari
employee, including such things as health insurance and other perks, but you could easily
make one by adding up each cost and displaying it in a new column.

Step 3-Model Building
The most important concept in data mining is knowing your data. If you don't understand
the structure of your dataset, how can you know what to ask, or which columns to include
in your data mining model? Imagine that you are at an important business meeting but did
not prepare. If you ask questions during the meeting, they will probably not make
sense.reducing your effectiveness. The same holds· true for data mining.' If you· build
modelswithout knowing your data, you will ask the wrong questions, reducing the model's
effectiveness.
Before building the model, you need to randomly separate the original dataset into separate
training (model-building) and testing (validation) datasets. You use the training data tobuild
the model. Then you test the accuracy of the model by creating prediction queriesagainst
the testing dataset. Because you know the outcome of the predictions (the datacomes from
the same set used to train the model), you can calculate the accuracy of themodel's
performance. ,
Sometimes the attribute that you are trying to predict has a very high distribution of
onestate, and a very low distribution of another state. For example, in our dataset, the
numberof positive responses in the predictable column is about 5 percent, while the number
ofnegative responses is about 95 percent. There is a chance that there are not enough
occurrences of the positive response to generate the strong relationships that will allow us
to

40

Step 1: Problem Oefinitiori
- Define the business problem
·• Define the data mining prcblern
- Define the metrics
• :Ensure proper group interaction
anch:tata avaHabllity
(intemal and external)

- Create aschema to store infurmation
about dean:tn.g: ,,m,d! transforming the data,
and l:luHding .and updating the rnodeJ

· • store the data in tat>Je, · · ·

Figure 3.3. Steps in the Data Mining Process

create predictions. One way to solve this problem is to over-sample the data, which means
that we artificially boost the number of positive responses but randomly remove a number
of the records that correspond to negative responses. For more information about
oversampling, see the SQL Server 2000 Resource Kit and Appendix, "Managing Tables."
After you explore the data and select columns to include in the model, you can build your
models using the training dataset. This process happens exactly the way it sounds-you
pass the data through the algorithm to train the model. Each algorithm also
containsadjustable parameters that can affect the outcome of the model. The result of the
training process is a mathematical model you can either use to explore the data (as in the
case of a clustering algorithm) or to create predictions (as in the case of a decision tree
algorithm).How well you choose the columns to include in the model and how you alter

41

parameters of the model ultimately determine the performance of the models. With that
said, here are the
steps for building the model:
• Select columns.
• Select a model.
• Adjust parameters.
• Train the model.

Step 4-Model Validation
After you build a model, you need to know how well it performs. You do not want to move
the model into a production environment until you know how well it predicts. Often, you
build several models and then compare how they perform against each other. This is where
you use the testing dataset that you previously set aside. ·

Step 5-Deployment of the Model into Production
This is where all of your hard work begins to show results. After you build the models and
measure their effectiveness, you can deploy them in a production environment, the place
where the models will be used in the business decision-making process. Updating the
model is part of the deployment strategy. As more data comes into the organization, you
need to develop a process for rebuilding the models, thus improving their effectiveness.

Step 6--Meta Data Management .·. =- ·- · · __ , ~----

The information that is associated with exploring the data and building the models is useful
for you to save. This includes columns that were removed, models that were previously
built, and the effectiveness of those models. Managing this data can become a project in
itself, but it is a very important step. Typically, you store this information in a database,
where it is available through queries, like any other data.

Implementing Data Mining with Microsoft Tools
So how do we go about performing all of the tasks that we've been talking about? Well,

· · -luckily, Microsoft provides all-of the tools, which, when used together; allow us to work all
the way through the data mining process. Throughout this project, we will use:

• Microsoft Visual Basic 6.0 to view the code in the Data Mining Tool.·
• Microsoft SQL Server 2000 to manipulate, manage, and store the data.
• SQL Server 2000 Analysis Services to build the mining models and make predictions.

In developing this solution, we found that the mechanisms to complete the tasks associated
with each data mining step were divided between Analysis Services and SQL Server.
Although each task can be performed individually in either SQL Server or Analysis
Services, we felt that it would be nice to have an environment that tied it all together-the
Data Mining Tool.

There are a few advantages to this approach:
• The data mining process is exemplified as we work through the steps.
• All of the tasks can be accessed from a single program.
• Techniques for programmatically accessing SQL Server and Analysis Services

42

functionality are demonstrated.
So how did we build this environment? Well, that's where Visual Basic comes into play.
Visual Basic, along with the Microsoft ActiveX® Data Objects (ADO) and Decision
Support Objects (DSO) programming interfaces, gives us the means to tie all of these
technologies together. We take advantage of FlexGrid controls to look through data in the
tables, chart controls to explore the data, and third-party modeling controls to view and
compare data mining models.
In working through this solution, several tables are created, dropped, and modified, which
implies a need for a mechanism to manage all of this data. SQL Server is perfect, providing
all of the functionality we need to modify, store, and manage data. Additionally, several
tools are provided with SQL Server that are useful in completing several of the tasks
associated with the data mining process. Data Transformation Services (DTS) provides the
mechanism for importing and transforming the data through the DTS Import/Export
Wizard. We will use the wizard to import the raw data into the database and to transform
the columns in the table we are cleaning. In using the wizard, we are actually creating a
DTS package that can either be run immediately or saved and run later. DTS also includes
the Data Mining Prediction Query Task, which can be used to create a package that creates
a prediction based on a mining model and performs an action based on the results.
How do we actually build the models from the tables managed in SQL Server? This is
where Analysis Services comes into play. Using Analysis Services, we'll build models
based on the relational data source created with SQL Server. You can also build models
based on 'multidimensional data sources; 'bat that's ashbjectfor ahotlier book "-cc, - - .• - - _._ - - -

Probably what is newest to you in this book is working with the data mining functionality
in Analysis Services, so let's take a closer look at what Microsoft has done in this area.

Analysis Services
Microsoft included data mmmg functionality with the release of SQL Server 2000,
coinciding with the release of the OLE DB for Data Mining 1.0 Specification version 1.0
Historically, data mining has been restricted to users who can draw information from
complicated statistical techniques and software. The Microsoft vision for data mining is to
make it available not only to the power user; but also to the-intermediate and naive user. -
Microsoft does this by using technologies that developers already use and understand, such
as ADO and schema rowsets.
Accordingly, Microsoft helped to define an industry standard API that allows you to create
and modify data mining models, train these models, and then predict against them. The idea
was to hide some of the more complicated details, letting you use a language similar to the
Transact-SQL that you already know. You can build models using a CREA TE statement,
use an INSERT statement and train the models, use the SELECT statement to get statistical
information from the models, and use a PREDICTION JOIN statement to create predictions
using the model and data when you don't know the outcome of the predictable column.
Does this sound familiar-CREA TE, INSERT, SELECT? The details about this language,
as well as examples, can be found in the OLE DB for Data Mining 1.0 Specification.
The basis for data mining in Analysis Services is an object called the Data Mining Model
(DMM). When you create a new model in Analysis Services using either the Mining Model
Wizard or the language, you are actually building a container with a structure similar to a
relational table. There is no information in this container except for a description of each
column included in the model, as well as the algorithm type. By training the model, you fill

43

the table with the information it needs to describe the model. The DMM stores the
relationships and rules, but not the actual data.
A concept unique to Microsoft is how sparse data is handled. Often, companies store data
in large flat files with each value in a row corresponding to a specific attribute (or column).
To express many-to-one relationships, you add more columns to the table, leaving many
cells with null values. For example, consider how your company stores information about
your customers and the products that they buy. Your company probably uses tables such as ~
Customer, Orders, and Order Details, where for each customer there are multiple orders,
and for each order there are multiple columns describing the details of the order. Now,
imagine flattening this into a single relational table. Imagine how many null values would
exist. Each customer would end up taking up several rows in which only their specific
columns would hold information. This table would contain one or more columns for each
product in the catalog, which would make the table huge. Your table would be full of null
values, making mining for data difficult and confusing. Microsoft has solved this problem
by allowing you to define a column type as being a table; thus, allowing you to create
many-to-one relationships within a single table.
The purpose of data mining is to create a model that expresses relationships. To accomplish
this, Analysis Services includes the capability to build two types of mining models, a
decision tree model and a clustering model. Let's take a closer look at these algorithms.

Decision Trees
The Microsoft-nedsiofl'Ttees-a.lgorithn1 'creates a 'model that works wellfor predictive .- ·
modeling. It looks at how each column in a dataset affects the result of the column whose
values you are trying to predict, and then uses the columns with the strongest relationship
to create a series of splits, which are called nodes. These splits can be visualized as a tree
structure.
This may sound complicated, but it is really very simple to visualize. The top node
describes the breakdown of the predicted attribute over the overall population. For example,
you might be trying to define the credit risk of potential applicants. Over the population, 20
percent of the applicants are considered to be a good risk while the remaining 80 percent
are considered to be a bad risk. So we know that this is the worst case in creating
predictions. It is now the job of the algorithm to try to improve the accuracy of the
predictions. Suppose that the algorithm finds a strong relationship between marital status
and risk potential-there are more cases of good credit when individuals are married than
when they are not. The algorithm can then create a split based on this information, creating
one dataset filled with only those individuals who are married and another with those who
are not. After the split, you find that the percentages of positive and negative responses in
each new dataset are more drastic, meaning that your ability to predict risk has been
improved. Now suppose that, for those who are married, job state is the next big factor. Of
the people who are married and have a good job, 90 percent are low risk, while the
remaining 10 percent of married people are high risk. By creating another split, your
predictive ability has improved yet again. This process continues until the algorithm
reaches a point in which an additional split does not improve the accuracy of the prediction.
For a more detailed explanation of the Microsoft Decision Trees algorithm, see SQL Server
2000 Books Online.

44

Clustering
The Microsoft Clustering algorithm segments the data into groups that give you a beter
understanding of the relationships in the data. For this scenario, we have a dataset with a
large number of attributes, or columns. How do these columns relate to one another? Is
there an underlying pattern, something that relates the seemingly disparate columns? There
may be natural groupings in the data that are impossible for you to find through casual
observation. They would even be hard to spot if you are using basic graphing techniques.
What kind of groupings are we talking about? To clarify, think about each record in the
dataset relating back to a person. Consider the case where people who live in the same
neighborhood, drive the same kind of car, eat the same kind of food, and all respond to the
request for donations in a similar manner. This is a cluster of data. Another cluster may
include people who go to the same restaurants, have similar salaries, and vacation twice a
year outside the country. Seeing these clusters together, you can get a better handle on how
the people in the dataset interact, and how that affects the outcome of our predictable
attribute. Now that we've talked about the tools we are going to use to create this solution,
let's get into the process!

3.3.Defining the Problem

Now let's goto the beginning of the process-what are we trying to do? In this step, we
. mold theinherent vag;u.enesA of the boss's reqtie_st into a data .. rniningprobiem. First,

0\ye
should ask, "What does the boss really want?" Then we need to clearly define this business
problem and formulate an actionable goal that solves the problem defined in terms of data
mining. In defining the data mining problem, we:
• Decide what type of analysis will solve the business problem. Are we simply exploring
the data, or are we also trying to create a model that can predict the future?
• Determine our data needs. Does the data support the type of analysis that the problem
requires? Or do we need to find additional data either internally or externally?
After defining the data mining problem, we need to define the metrics by which the model
will be measured.

Defining the Business Problem
Right now, let's define the business problem in our current scenario-our company has
partnered with a major charity to solicit donations from the community, and now the
company wants to reduce the overall cost of the project while maximizing the results.
Over the years, the money that the company spends on mailing has increased significantly
as the target audience for the mailing has grown. The problem is that the actual Money
brought in has not increased in proportion to the increased expense. With the current
economic situation, the boss wants to reduce spending, but-and here's the catch- without
adversely affecting the amount of money collected. He has come to us to find out how to do
this. To aid us in this task, he has brought along several year's worth of historical data that
describes the demographics and response rates of previous mailings.
Defining the Data Mining Problem
So it sounds like the boss is asking for a targeted mailing. By sending the mailing only to
those people who are most likely to respond, we can make the process more efficient

45

without reducing the amount of money coming in. Thus, our actionable goal becomes "to
predict whether someone is likely to donate money to the company's volunteer effort based
on the historical data collected over the years."
Now we need to decide what type of analysis will solve this problem and determine
whether we have the necessary data.

Deciding What Type of Analysis to Use
In Analysis Services, we have a choice of two algorithms: the Microsoft Clustering
algorithm and the Microsoft Decision Trees algorithm. The Microsoft Clustering algorithm
We can use the Microsoft Clustering-algorithm to describe how people in the dataset can be
grouped based on similar demographic and donation patterns. Basically, the Microsoft
Clustering algorithm is a diagnostic tool used for unsupervised learning. The Microsoft
Decision Trees algorithm We can use the Microsoft Decision Trees algorithm to build a
classification model to predict an output attribute. For this scenario, we'll use the Microsoft
Decision Trees algorithm to create the data mining models, but we could just as easily use
the Microsoft Clustering algorithm to create the models and draw similar conclusions.

Determining Our Data Needs
Does the infrastructure of the dataset support the analysis we are trying to perform? The
historical data that the boss provided contains two columns that are useful for predictions:

• r • --'·-•A Boolean columh'(TARGET~B/that"sfates whether eachpersoii doriatedmoney. --
• A numeric column (TARGET_ D) that stores the amount of money each donor gave.
Because the two columns are related, we need to be careful how we use them in our
analysis. We can predict whether someone will donate based on whether a money amount
exists in the TARGET_D column. Even though the predictive power of this model would
be very accurate, it really doesn't tell us much about who will donate! Additionally, the
dataset contains a large amount of demographic data and response history, which can be
used by the model to predict which columns best describe people's donation patterns.

Defining the Metrics
Now that we've defined the data mining problem, how will we know our models work? We
need to define what success is, which in this case, will be determined by whether the ratio
of money collected to money spent on the project increases. One common method to
determine the effectiveness of the model is to use a lift chart. To create a lift chart, we
create a prediction query on a testing dataset and then compare the results to the known
values in the dataset. This is possible because the testing dataset contains values for the
columns that we are predicting. The lift chart displays the improvement the model provides
in predicting the outcome of the predictable attribute as compared to a random guess. This
difference is called "lift."
For example, suppose we have a database containing a record for each customer, and we
have scored and ranked the customers based on how likely they are to donate (based on the
models we developed). Now, ifwe take the top 10 percent and mail a request for donations
to them, and then randomly take another 10 percent of the customers (records) not included
in the first 10 percent, and mail requests to them, we can compare the response rates, and
thus, rate the effectiveness of the model.

46

So how much lift should we expect to see? The lift provided by the models is ultimately
limited by how good the data is. No matter how many models we build and what
parameters we change, the models can only be as accurate as the data allows them to be.
We will talk more about lift charts in Chapter 8, "Building and Validating the Models."

Creating the Formal Problem Definition
The formal definition of the problem is as follows:
Predict which potential donors will respond to a mailing. To achieve this, we will build a
decision tree model that will predict the outcome of TARGET_B, the Boolean column
describing each person's donation history based on columns describing historical response
and demographic data. This will allow the boss to create a targeted mailing, using the
historical
data the company has collected, and thus improve the response rate. The success of the
model will be determined by the increased profitability of the ad campaign.

3.4.Cleaning the Data

This can really be considered the most important stage of the project. It is in working with
the data-exploring it, taking out unnecessary columns, and cleaning others-that we

... -· prepare_ for the process of crt:!ating, a data mining model. While the_ boss has come up with
-- . the generalidea for the project, ·we· have-to make It work, and by the end of the project,

nobody will know the data better than we do.
So what is this "cleaning" stuff all about? At some point, data has to enter the computer.
Depending on the error-checking procedures that are in place at the point of entry, it is
likely that someone will make some mistakes-entering the wrong date, the wrong salary,
the wrong address, and so on. If we aren't careful, these problems can potentially reduce
the effectiveness of our models. It is our job to find and rectify as many of these mistakes
as we can within an allowable period of time.
In the dataset, there are around 90,000 rows of data and 481 columns. That's something
like 43,290,000. cells! Obviously.' we can't investigate each cell individually, so we are· .
going to have to devise some methods of automation that will find as many potentially
inaccurate records as possible.
But before cleaning the dataset, we have to know the data. We'll be making decisions here
that have far-reaching consequences on the accuracy and validity of the data mining
models. We need to know what it is that we're trying to predict, how the column values are
formatted, and what each column tells us.
After we know the dataset, we can target the inconsistencies that we want to eliminate
before building our models.

Targeting Inconsistencies
Many types of inconsistencies can occur in a dataset, including those listed in the following
table.

47

Telephone numbers.or other- columns that have a
one,to,one ,relationship with each ease, .o,r a eoiu.mn
that only has. a single case

Records that do not make sense I A product with a purchase date that t-s ear1ier than.Jthe
when.compared to similar records: I purchasers: birth date
of a different attribute

The way in which we resolve these problems depends on the situation, the requirements of
the model, and the way in which we choose to approach the problem. For example, cells
that are determined to be outliers can be replaced with a mean value, replaced with a value
according to a specific distribution type, or be excluded (along with the rest of the row). In

. _ this. chapter, 'Y~:JJ use the fg!JowiQg techniques .tcaddress the first three problems .that are _

listed in the table:

• For columns with a high number of null values, we' 11 compute the percentage of null
(missing) values for each attribute to determine if the attribute should be excluded from the
model-building process.
• For columns with too few distinct states, we'll compute a mean, a minimum value (min),
a maximum value (max), and a distinct count for each attribute. We will use this
information to exclude columns that do not seem to be useful.
• For records that fall outside the normal distribution of the column, we'll compute outliers
and flag the rows -in which they reside: Then we' Ii decide, on an individual basis, how to
handle them.

We can address these problems in the Data Mining Tool by using a tab control, where each
tab represents one of the three cleaning tasks that we've chosen. This tab control resides on
the Clean Data form (Figure3.4).
To view the Clean Data form

• In the Data Mining Tool, click Clean.

48

r'ou can clean data using three techniques: by removing columns with a high percentage of null values, by removing
columns based on column properties, or by flagging rows with values that fall far outside the norm. To select a new table!
to clean, dose the Clean Model form and selecte new table on the main form.

Figure3.4The Clean Data form

What About Those Null Columns?
The tab control on the Clean Data form defaults to the Percent Null tab, which by
coincidence (or is it?) is our first step in cleaning the data. Calculating the number of null
values in a column is. the least time-consuming task of the three that we've selected. So it's .
only natural that we tackle this process first.
But why do we need to calculate the number of null values in a column, anyway? The first
thing you might have noticed about this dataset is that it has a large number of columns.
Having so many columns can get extremely messy as we begin to work with the data. The
more unnecessary columns we can remove now, the less time we will waste on
computation in later tasks.
Columns with a high number of null values can, at best, have no effect on the final outcome
of the model and, at worst, adversely affect the accuracy of the model. For this solution,
we'll remove columns that have too many null values.

Trying Out the Percent Null Tab
The theory behind how the Data Mining Tool works with null columns is actually fairly
simple. Because we preserve the source data, we can remove whatever columns we need to
from the table being cleaned. To do this, we created a stored procedure, which is called
from the tool, that calculates the number of null values in each column of the dataset and
then divides that number by the total number of rows to get the percentage of null values. If

49

this percentage is greater than a predetermined amount, the stored procedure drops the
column from the table.
Let's give it a try. Because we have already selected a table to clean, we only need to input
the percentage of null values that we want to allow to exist in each cleaned column.
The procedures in this chapter assume that the Solution_ DB database is set up, a
connection exists between the Solution_DB database and the Data Mining Tool, and the
source data has been copied into a table to be used in the data mining process. If you have
not yet completed these steps, proceed to, "Setup," and complete the installation
procedures.
To remove null columns from the cup98LRN_clean table
l. In the Data Mining Tool, click Clean.
2. On the Percent Null tab, for% null exclusion, type 60.
This means that if more than 60 percent of the values in a column are null, the Data Mining
Tool targets that column for removal.
3. Click Remove.
The Data Mining Tool now cycles through the columns in the table, removing those
containing more than 60 percent null values. After removing the columns from the table,
the tool displays them in a FlexGrid control on the Percent Null tab.
In looking at the form in Figure3.5, we can see that the columns that were removed seem
reasonable-none of them contain information that justify the number of null values that
they contain.

···"Now thatwe'veseenthis functionality in. action, let's look at the code· behind all this
cleaning business.

Figure 3.5 Removed columns in the Flex Grid control

50

Looking at the Remove Null Columns Code
To complete this cleaning task, we use three values:
• The percentage cutoff level
• The number of rows in the table
• The number of null values for each column in the table
The question is: how we should go about performing the calculations and removing the
values?

We could split the work between the client and the server, grabbing a column of data from
the server, moving it to the client, performing the test, and then going back to the server to
drop the column from the table if it meets the criteria. Now what stands out about this
solution? There is a lot of back and forth going on between the server and the client. When
we're dealing with a table containing a small number of columns-say, 10-it's not so bad,
only 10 trips back and forth are required. But look at our table. We start with 481
columns-that's a lot of round trips to the server! Each one of these round trips is a
potential performance hit, which can cause a lot of waiting.
Alternatively, we could do all of the work on the server, creating a stored procedure that we
call from the code. We tried both of these methods and found that the stored procedure
processes the task about 20 percent faster! So let's see how we implemented the stored
procedure that does all these heavy null value calculations.

· Calculating Null Vahies· · ·· = · · - .· ·· · '· · · · ·.

As with several of the tasks in this project, we have to cycle through each column in the
table, performing the same operation on each one. If we did this in Microsoft® Visual
Basic, we would have had to create a recordset holding the column names and then cycle
through each column, shooting a query back to the server to get the data and make
necessary modifications to the table.
Let's look at how the usp _ KillNulls stored procedure handles this challenge.
To view the usp_KillNulls stored procedure

1. In Query Analyzer, expand the DM_Prep_Tool database, and then expand the Stored
Procedure folder.
2. Right-click dbo.usp_KillNulls, and then click Edit.
To calculate the null values, the stored procedure requires two parameters: the name of the
table being cleaned (@strBaseTable) and the percentage of allowable values
(@fltLimit).
Create procedure usp _ KillN ulls
@strBaseTable nvarchar(255),
@fltLimit float
AS
We then create a new table that holds a list of all of the column names that were removed.
SET @strSQL='CREATE TABLE['+ @strNewTable + '] (Column_Name
nvarchar(l 6))'
EXECUTE sp _ executesq l @strSQL
In order to cycle through each column in the table, we declare a cursor that holds the
column names for the base table.
DECLARE columns cursor CURSOR FOR
SELECT [name] FROM syscolumns WHERE id= OBJECT_ID(@strBaseTable)

51

The procedure then takes the number of rows from the table and stores this number in the
@iTotal variable. We will use this value to calculate the percentage of nulls in the selected
column.
SET @strSQL='SELECT @iTotalOut = COUNT(*) FROM'+ @strBaseTable
EXECUTE sp_executesql@strSQL,N'@iTotalOut int OUTPUT',@iTotalOut =
@iTotal OUTPUT

"And now we start cycling through the columns! We first open the cursor, get the next
available column name, and hold it in the local variable, @strColName.
OPEN columns cursor
FETCH NEXT FROM columns cursor
INTO @strColName
WHILE@@FETCH_STATUS = 0
Then, for each column, the procedure finds the number of null values that are present,
divides that number by the total number of rows in the table (as held in the @iTotal
variable), and compares the result against the allowable percentage set by the user. If the
calculated percentage is greater than the user-defined cutoff percentage, the procedure
drops the column from the table, and adds the column name to the table holding the list of
columns that were removed.
BEGIN
SET @strSQL='DECLARE @iNull int
SET @iNull=(SELECT Count(*) FROM '+ @strBaseTable

- -+' WHERE '+@strColName +'IS NULL) -, -
IF cast(@iNull as float)/' + cast(@iTotal as
nvarchar(25)) + '> '+ cast(@fltLimit as nvarchar(25)) +
'BEGIN
INSERT INTO['+ @strBaseTable + '_removed] VALUES
('" + @strColName + "')
ALTER TABLE['+ @strBaseTable +']DROP COLUMN['
+@strColName + ']
END'
EXECUTE sp__:_executesql @strSQL
FETCH NEXT FROM columns cursor
INTO @strColName
END
CLOSE columns cursor
DEALLOCATE columns cursor
Remember that the table being cleaned is a copy of the original table, cup98lrn. So we can
make as many changes as we want without affecting the source data.

Getting the Null Values
Okay, that's how the stored procedure works. Now all we have to do is call this procedure
from the code used to display and control the Remove Nulls tab. This code is located in the
cmdRemoveN ulls _ Click subroutine. Open Visual Basic and follow along as we walk
through this code.
To view the cmdRemoveNulls Click subroutine

1. In Windows Explorer, browse to the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click

52

the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.
3. Right-click frmClean (frmClean.frm), and then click View Code.
4. Locate the cmdRemoveNulls Click subroutine.
The cmdRemoveNulls _ Click subroutine starts by declaring three new objects-a command
to run the stored procedure on the server, and the two parameters that the procedure
requires,
Dim objCommand As New ADODB.Command
Dim objParam_ Table As New Parameter
Dim objParam_Limit As New Parameter
The routine then gathers the only user input (the cutoff percentage) that we need for the
usp _ KillN ulls stored procedure.
sngPercentRemove = CSng(txtPercentRemove.Text)/100
The table that holds the names of the removed columns is then named and stored in the
strRemovedNullsTable variable.
strRemovedNullsTable = frmMain.strCleanedTable & " removed"
Having obtained the cutoff percentage value, the routine starts defining the parameters that
the stored procedure requires.

With objParam _ Table
.Name =-"@strHaseTable11·

.Direction = adParamlnput

.Type= adVarChar

.Size= 255

.Value= frmMain.strCleanedTable
End With
With objParam_Limit
.Name= "@fltLimit"
.Direction = adParaminput
.Type = adDecimal -
.Precision = 2
.Value= sngPercentRemove
End With

With the necessary parameters set, the routine prepares the Microsoft ActiveX® Data
Objects (ADO) Command object and then calls the object's Execute method to run the
stored procedure on the server.

With objCommand
.ActiveConnection = cnDataPrep
.CommandTimeout = 0
.CommandText = "usp_KillNulls"
.CommandType = adCmdStoredProc
.Parameters.Append objParam _ Table
.Parameters.Append objParam _ Limit
End With

53

obj Command.Execute

As we sit and wait (the time this task takes varies by computer), the stored procedure
checks
columns and removes those columns that exceed the cutoff percentage. By the time the
procedure finishes, we have a table cleaned of those pesky null columns!
Now we just have to display those columns on the form. This allows the user to inspect the
results and decide if he or she agrees with them. We grab the column names from the
strRemovedNullsTable table that was created in the stored procedure.

Set rsData = mdlProperties.cnDataPrep.Execute("Select column_ name
from" & strRemovedNullsTable & "")
Set hfgRemovedNulls.DataSource = rsData
Set hfgRemovedNulls.DataSource = rsData

If the procedure removes too many columns, the user can always go back, create a new
copy of the source data, and redo this task with a different cutoff level. If it doesn't remove
enough columns, the user can just re-run the procedure on the same table with a higher
cutoff level. And now, on to the next cleaning step!

·what About Those TableProperties? -._ - ,-.
So far, we've removed the obvious columns-those that didn't have enough records to tell
us anything-but we now have to look a little deeper. There are several properties of the
columns that are easy to calculate but also tell us something about the data. These include
the minimum value (min), the maximum value (max), the standard deviation (stdev), and
number of unique values in the column (distinct count), which can obviously only be
calculated for numeric columns.

We calculate these values for two reasons:
• To-provide a-better understanding of the distribution of records in each column of the -
dataset.
• To compute variables that will be used in exploring the data.
The more we know about the data, the more columns we can exclude, and the better
choices we can make when it comes to building the models. For example, by calculating
the distinct count, we can find and remove columns that only have one distinct value, and
therefore, add no value to the accuracy of the model.

Trying Out the Calculate Properties Tab
The second tab of the Clean Data form, Calculate Properties, does ... guess what? That's
right-it calculates specific properties about each column. There are only three tasks that
we can perform here: calculate properties, show a previously calculated properties table, or
remove a column based on something we learned about the table from its properties. No
user input is necessary. We just start clicking away!
To calculate properties, the Data Mining Tool calls a stored procedure that loops through
each numeric column in the table, calculates the column's properties, and stores these
properties in a table. The tool then displays the results of all this hard work-the properties

54

table-on the Calculate Properties tab by using a hierarchical FlexGrid control.
To calculate the properties table for cup98LRN _ clean

1. In the Data Mining Tool, click Clean.
2. On the Calculate Properties tab, click Calculate.
Now, just relax and wait for the routine to finish-get a new cup of coffee and let the
dog out. By that time, the properties will be calculated and we can begin to investigate
the results shown in Figure3.6
Figure 3.6 shows how the FlexGrid control on the Calculate Properties tab displays
the properties table that we just created. Because we use these properties later when
working with the data, the Data Mining Tool stores them in a table whose name is the
name of the table being cleaned, appended with a _pr. In this way, anytime we need
the properties associated with a table that is being cleaned, the tool can quickly find the
appropriate properties table without having to set up a tracking mechanism that
manages the association between each properties table and its corresponding cleaned
table.

72002 0 54 954 55
'.:1710 . 0 2724 2132 847
241 0 3 9 75
99 0 1 5 95
88 0 30 11 88

0 30 15 95
0 33 .· 18 100
0 7 4 55

, I ST.c1 TE GOV 99 0 5 5 65
FED GOV 87 0 3 4 55
POP901 98701 0 3256 5743 9906
POP902 23766 0 865 1458

Figure 3.6 The Calculate Properties tab

Let's look at what we can learn from these properties. The main thing we are trying to do
in this task is to reduce the number of columns in the table. So how can this be done from
the properties table?
There are a couple things we should look for when we decide which columns to exclude.
Are there too many distinct states? If more than 90 percent of the values are distinct, maybe
the column is not worth keeping. Ninety percent is about 85,870 rows. How many
columns contain more than 85,870 distinct values? After some investigation we'll see that

55

there is only one, CONTROLN, which also happens to be the key column. We obviously
can't exclude the key column because it identifies each row.
Now let's take the opposite approach. How many columns contain a low number of
distinct counts? Three columns have a distinct count of 2:
• ADATE 2
• TARGET B
• HPHONE D
If we hadn't removed all of those columns that contained null values in the previous step,
we also would have found that the following columns contained very few distinct counts.
• ADATE 2
• ADATE 3
• ADATE 6
• ADATE 10
• ADATE 14
• ADATE 20
• ADATE 21
• ADATE 24
We can see that something is going on with the ADATE columns-what do these columns
signify? If we look in the table description (from the Web site listed in Chapter 1, "Setup"),
the number for each of the ADATE columns is the date (in YY/MM format) that a specific
promotion was mailed out. It makes sense that these should have very few distinct counts
be-cause most likely the mailings were -an mailedout ar the- same time of the year. "The - -
question is, should we include the remaining columns in the model? For an answer to this
question, we need to explore the column and see how it looks. So let's keep these columns
in mind and come back to them later in "Exploring the Data."
The HPHONE_D column signifies whether the respondent has a published telephone
number, so once again the fact that it only has two distinct states is normal. As for the last
column, TARGET_B, it should have only two distinct states because it answers a yes/no
question. Because this is our predictable column, we need to keep it.
Now look at DOB-it is an interesting column. Although it is listed as a numeric column
-in the database, it's not a numeric column that tracks a particular item, such as the cost of·
something. Instead, it contains a code, which in this case is the year and month that each
customer was born (in YY/MM format). The mean is 2,724 and the standard deviation is
2,132-not exactly a normal distribution, which we need to keep in mind when we start to
explore the columns. Although the date can tell us a lot, we also have an age column for
which the calculated properties make much more sense.
After we explore the data, we will have a better idea of which columns we should drop.
Here is the procedure we'll use eventually to drop columns from the table.
To drop an unnecessary column

• On the Calculate Properties tab, select a column, and then click Drop Column.
We will come back to this procedure after we explore the columns in Chapter 6, "Exploring
the Data." For now, let's look at how we constructed the code that calculates the properties.
56 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services
Looking at the Calculate Properties Code
The code that makes the Calculate Properties tab work actually spans three different
subroutines within the frmClean form:

56

• The Form_Load subroutine names the properties table associated with the table currently
being cleaned.
• The cmdCalculateProperties _ Click subroutine first determines whether the properties
table exists, and if so, whether the user wants to re-create it. The subroutine then creates the
table, calculates the property values for each column, and displays the resulting properties
table on the tab.
• The cmdDropColumn_Click drops a column from the table being cleaned.
Let's look at the tasks each of these various subroutines accomplishes during this cleaning
step. Open Visual Basic and follow along as we walk through the code.
To view the code used for the frmClean form

1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data
Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.

l. Right-click frmClean (frmClean.frm) and click View Code.

Naming the Properties Table

The point of the Calculate Properties tab is to produce a properties table by which the user gains
insight into the contents of the table being cleaned. In addition to providing insight to the user, the
properties stored in this table become essential later when we use the Data Mining Tool to
transform and explore the data;' -·- - - ' ~-.,. - - -·- - -
Knowing that we need this properties table, our first step is to name the table. In the first
iteration of this tool, we gave the user the opportunity to name (select) a properties table
from a list of such tables wherever such a selection was important (for example, when
generating a correlation matrix or graphing data). But this both cluttered the user interface
and caused room for confusion (the user would have to remember which table to select
from the list of tables). Because no one should ever need to select a properties table that is
not associated with the table currently being cleaned, we removed that functionality and
opted to set the properties table automatically for the user upon loading the Clean Data
form. In the Form_Load subroutine, we derive the name of the properties table by taking
the name of the table being cleaned, appending _pr to the end of that name, and then storing
the new name in the strTableProperties string.
Private Sub Form_Load()
'strPropertiesTable is set equal to the table name the user
'enters in the txtTableProperties textbox.
strPropertiesTable = frmMain.strCleanedTable & "_pr"
End Sub

Determining Whether the Properties Table Exists
We named the properties table. The next step is to actually determine whether this table
exists. Why do we do this? You see, the user may have already created such a table and just
wants to view that table from the Calculate Properties tab. If so, we don't want to
overwrite the existing table. We just want to display it when the user clicks the Show
button on the tab. Alternatively, the user may want to start over with this table, causing us
to drop the existing table in preparation for creating a new one.

57

Thus, the first step in the cmdCalculateProperties _ Click subroutine is to determine whether
a properties table with the given name already exists. 'Check to see if the table already
exists in the database
strSQLSelect = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = "' & strPropertiesTable & '""
Set rsTable = mdlProperties.cnDataPrep.Execute(strSQLSelect)
'If the table already exists, the user can either recreate it or
exit the routine
IfrsTable.RecordCount <> 0 Then
If MsgBox("Y ou have already created a properties table for "
& frmMain.strCleanedTable & "." & -
"Do you want to recreate it?", vbYesNo) = vb Yes Then
Else
Go To Exit , cmdCalculateProperties _ Click
End If
As you can see from the code, the user has the choice of either re-creating the table or
exiting the routine.

Creating the Table and Calculating Properties
Finally, we are ready to create the table and calculate the properties we've chosen for each
of the columns in the table. Creating the table is not too difficult, but calculating those
properties rs abit ofachallenge. 'As with the Pereent'Nulls tab where We calculated null ".
values for every column, we face a similar repetitive process here. This time we need to
cycle through each column and calculate its properties. As before, we can either do this
using a recordset in Visual Basic or through a stored procedure in Microsoft® SQL
Server™. In developing this solution, we tried both approaches. And it shouldn't come as a
surprise that we determined the stored procedure approach (where the server does all the
processing) improved processing time by about 40 percent over the recordset approach
(where there is a lot of I/0 between the client and server). Obviously, we opted to use the
stored procedure. To implement this stored procedure, we created a Calculate _Properties
function that both creates the table and calculates the column-properties; Once again, such a
function lends itself to reuse. We are now able to quickly calculate table properties not only
during this cleaning task, but also in creating the correlation matrix (see "Exploring the
Data"). By packing all this data manipulation into a function and a stored procedure, we
didn't have to write lot of code for the cmdCalculateProperties _ Click subroutine.
The following line of code is all that's required.Call
mdlProperties.Calculate _ Properties(frmMain.strCleanedTable, strPropertiesTable) Walking
Through the Calculate _Properties Function Before going into detail about the stored
procedure, let's take a look what the Calculate Properties function in the mdlProperties
module does to call that procedure. As in the cmdRemoveN ulls _ Click subroutine for the
Percent Nulls tab, the Calculate Properties function first declares both the Command
object that runs the stored procedure and the single input parameter (the table name) that is
passed to the procedure.
Public Function Calculate_Properties(ByVal strTable As String, ByVal
strPropertiesTable As String)
Dim objCommand As New ADODB.Command
Dim objBase _ Table As New Parameter

58

The function then defines the objBase_Table input parameter.
With objBase _ Table
.Name= "@strBaseTable"
.Direction = adParaminput
.Type= adVarChar
.Size= 255
.Value= strTable
End With
Next, the function prepares the Command object and runs it.
With objCommand
.ActiveConnection = cnDataPrep
.CommandTimeout = 0
.CommandText = "usp_Properties"
.CommandType = adCmdStoredProc
.Parameters.Append objBase_Table
End With
obj Command.Execute
Here again, the code is pretty straightforward and not too complicated. Now let's look at
the usp_Properties stored procedure that is called by the objCommand object. Walking
Through the usp_Properties Stored Procedure Looking at the code so far, you've probably
realized that the bulk of the computational load must be in the usp _Properties stored

--- procedure: Inthis 'procedure, we- firstcreateatable to hotdthecalculated statistics, cycle'
through each numeric column, calculate the mean, min, max, standard deviation, and
distinct count, and then write the values to the new properties table.
To view the usp_Properties stored procedure

1. In Query Analyzer, expand the DM_Prep_Tool database and then expand the Stored
Procedure folder.
2. Right-click dbo.usp_Properties, and then click Edit.
As pointed out in the discussion of the Calculate Properties function, the usp _ Properties
stored procedure takes only one input. This input is the name of the table for which the user
wants to· calculate properties. The usp _Properties· procedure begins by establishing this
parameter as a varchar.
CREA TE Procedure usp _Properties
@strBaseTable nvarchar(255)
Again, as previously mentioned, the procedure creates a name for the properties table by
appending the name of the table being cleaned with _pr and storing this result in the local
variable,
@strBaseTable.
set @strNewTable = @strBaseTable + '_pr'
If you remember, in the beginning of the cmdCalculateProperties _ Click subroutine, we
gave the user the option of re-creating the table if it already exists. Accordingly, the stored
procedure looks through the database to see if the table already exists, and drops the table if
it does.
IF EXISTS(SELECT [name] FROM Sysobjects WHERE [name]= @strNewTable)
BEGIN
SET @strDropSQL = 'DROP TABLE ' + @strNewTable
EXECUTE sp_executesql @strDropSQL

59

END
After any previous occurrence of the table has been dropped, the new table is created in the
database.
SET @strCreateSQL = 'CREATE TABLE [' + @strNewTable + ']
(Column_name varchar(20) NULL, Maximum NUMERIC NULL, Minimum J\JlJMERIC
NULL, Mean NUMERIC NULL, Standard_Deviation NUMERIC NULL,
Distinct_Count NUMERIC NULL)'
EXECUTE sp_executesql @strCreateSQL
As with the usp_KillNulls stored procedure used on the Percent Nulls tab, we get the
system table ID for the newly-created properties table and then declare a cursor to hold the
column names from the table being cleaned. This cursor differs from the cursor used in the
usp_KillNulls procedure in that we are only interested in working with numeric columns.
(It doesn't make much sense to calculate the mean of varchar columns!) To
select only numeric columns, we select only columns of column type 108, which represents
a numeric column.
Set @iTableID = (SELECT [id] from SysObjects where [name]=
@strBaseTable)
DECLARE Columns Cursor CURSOR FOR
Select [name] from SysColumns where [id]= @iTableID AND [Type]= 108
Now that everything is set up and ready to go, we can begin to calculate the properties and
write them to the new table. Using the cursor to iterate through the numeric columns, we
create a 'Transact-SQ[statementthat 'calculatesthe max, min; mean, standard deviation, ..
and distinct count, and then inserts them into the properties table.
OPEN Columns Cursor
FETCH NEXT FROM Columns Cursor
INTO @strColumn
WHILE @@FETCH_ ST A TUS = 0
BEGIN
SET @strinsertSQL = 'INSERT INTO['+ @strNewTable + '] '+
'SELECT '" + @strColumn + 111 As
Column name '+ - '
'MAX(['+ @strColumn + '])as Col_Max,' +
'MIN(['+ @strColumn +'])as Col_Min,' +
'AVG([' +@strColumn +']) as Col_Avg,' +
'STDEV([' + @strColumn + ']) as
Col_STDev,' +
'COUNT(DISTINCT([' + @strColumn + ']))
as Col Distinct ' +
'FROM [' + @strBaseTable + '] '+
'WHERE [' + @strColumn + '] IS NOT NULL'
EXECUTE sp_executesql @strlnsertSQL
FETCH NEXT FROM Columns Cursor
INTO @strColumn
END

60

Displaying the Properties Table
With the column properties calculated and stored, the user will most likely want to see
these results in order to determine whether additional columns can be dropped from the
table. To display these results, we use a hierarchical FlexGrid control. This means that we
have to hook up the DataSource property of the Flex Grid control. Accordingly, we create a
Transact-SQL statement that returns the contents of the properties table, runs it through a
recordset, and sets the DataSource property to the recordset.

' Display properties data in the grid.
strSQLSelect = ''SELECT * FROM [" & strPropertiesTable & "]"
Set rsData = cnDataPrep.Execute(strSQLSelect)
hfgColumn.ColWidth(O) = 300
Set hfgColumn.DataSource = rsData

Dropping a Column
After a user reviews the column properties in the FlexGrid control, it may become obvious
that he or she should drop some of the columns (for instance, columns that have a distinct
count of 1, indicating that these values are all the same).
To drop these types of columns, the user selects the column in the FlexGrid control and
then clicks Drop Column. Clicking this button calls a separate routine
(cmdDropColumn _ Click) that displays a message box asking the user whether he or she

- reallywantstocdrop-the-column~-When~the user-clicks Yes in response to-this message, the
cmdDropColumn _ Click subroutine uses a Transact-SQL statement to drop the
corresponding column from the table being cleaned. The FlexGrid control is then refreshed.
Private Sub cmdDropColumn _ Click()

If MsgBox("Do you really want to drop" & hfgColumn.Text & "
from the table?"
, vbYesNo) = vb Yes Then
strSQLString = "ALTER TABLE " & frmMain.strCleanedTable & "
DROP COLUMN" & hfgColumn.Text & "''
cnDataPrep.Execute (strSQLString)
cmdShow Click ...
Chapter 4: Cleaning the Data 63
And that wraps up the process of calculating table properties. Next up, the way in which we
handle outlier values in the table.

What About Those Outliers?
Until now, we have been cleaning data at the column level-removing groups of data one
column at a time. Here the focus shifts to looking at values at the individual cell level.
Because the dataset is so large and it would be impossible to physically investigate every
cell, the Data Mining Tool automates the process of flagging cells that stand out. Because it
is not a good idea to just blindly remove these cells or their associated rows without some
sort of validation, the Data Mining Tool has a built-in mechanism that allows us to review
flagged cells and decide whether to remove them completely (including the entire row) or
to replace them with the average value of the column. Figure 3.7 shows the Flag Outliers

61

tab. We'll use this tab to specify which values we want the Data Mining Tool to flag as
outliers.

'ou can clean data using three techniques: b_y removing columns with a high percentage of null values. by removing
columns based on column properties. or by flagging rows with values that fall far outside the norm. To select a new table
to clean. close the Clean Data form and select a new table on the main form.

Figure 3.7 The Flag Outliers tab
Before we can flag outlier values, we must set three variables:# of SDs
The number of standard deviations from the mean after which a value is considered to be an
outlier. Max Ratio A ratio signifying that the maximum value is really out there, too far
from the outlier cutoff to be considered a valid value.
% cutoff The percentage of values past the outlier limit that we Will allow before starting to
wonder if they are really outliers or not. (Because we cannot assume that the distribution is
normal, a large number of values a may be a significant distance from the mean. If this is
true, we do not want to flag these values because they may be valid.)
We set these variables because the algorithms used to flag cells take into account both the
distance away from a mean value and how often values of that distance occur.
Here is the first algorithm:
Outlier Value= Mean+ STDev*Number of STDev
To get this algorithm to work, we must first determine the number of standard deviations
after which we consider values to be outliers. According to a normal distribution, three
standard deviations should encompass 99.7 percent of the values. So the default is 3.
Having computed the Outlier_ Value, the next algorithm looks at the ratio between the
maximum value in the dataset and the outlier value:
Outlier Ratio= MaxValue /OutlierValue
If this ratio is high (that is, greater than the value for the maximum ratio), we know that the
maximum value is way beyond the outlier cutoff and is most likely an outlier. If it is low
(less than the maximum ratio), we know that it is just barely beyond the cutoff and we

62

won't consider those values beyond the cutoff to be valid outlier values. We then calculate
the percentage of values that lie beyond the cutoff. ff it is high (greater than the cutoff
percent value), we can assume that the values are not outliers (because so many exist). But
if it is extremely low, we can assume that they are outliers.

Trying Out the Flag Outliers Tab
Finally, we come to the third tab (and the last cleaning task)-finding outlier values in each
column. After identifying all of the outliers, the Flag Outliers tab displays the rows
containing the outliers, highlighting outlier values in red. We then either remove a column
containing an outlier from the table or replace it with the mean value of the column.

: Cleaning the Data
Let's give it a try. To find the outliers, we need to input three parameters, as explained
earlier: the number of standard deviations that most of the data should be contained within,
the maximum ratio that the maximum value should fall within before it is considered to be
an outlier, and the percentage of values that are allowed beyond the outlier
value before they are no longer considered to be outliers.

To flag outliers in the cup98LRN_clean table

1. In the Data Mining Tool, click Clean.
· - - ' 2:·0nthe Flag Outliers tab, type the following values:

For # of SDs, type 5
For Max Ratio, type 12
For % Cutoff, type .1.

2. Click Flag.

Now the Data Mining Tool begins its work. After scouring the columns in the table for
outliers, the tool displays those rows containing outliers in a FlexGrid control on the form.
The cells containing outliers appear in red to make them easy to spot.

· The outliers in the DM_Prep_Tooldata

63

''Ycu can dean ,ja;a using three techniquss: ti_v removing coumns v,.ith a l1ig1 percentage c(nul valuei, b9 rernovnq
cdumne based on coumn prope~ie0 .. or. by .flaggng ro•1.•i v,ilh v;ilue, that fall far ,)utsido tho noun, To oolect a nev1 table r clean, dose the Clean Data fo1m a,d select a new table on the m3in form.

APP l CA 52675 1601
LIS I) ,MO 63028 I)

DRK I) le.~ 54583 I) D
I) ,FL 33311 I I) 0

DNA 2 OR 972(6
MBC INM 87111
BHG IA 51041
MAT IL 605(6-
STL CA 908(8

96744
48131

Figure 3.8 The Outliers in the DM_Preb_Tool Data

The first time we ran this routine, we set values of 3, 10, and 0.4, respectively, and found
that 20,000 rows contained outlier values. Does it seem right that almost 22 percent of the
rows in the table contain outliers? Well, it didn't seem right to us either, so we revised the
input variables to those in the procedure in this section .

. In looking through the flagged values we can see that som€ really stick out-specifically
those in the TCODE column. Most of the values fall within a very small range, say l
through 10, but as shown in the some are as high as 28,028. Now before we go crazy and
start dropping rows, let's look at the column definition and see if the values make sense.
According to the column definition, TCODE stands for the respondent's title, with the title
MSS. being represented by the number 28,028. Looking through the flagged values, we can
see that each of the values flagged in the TCODE column actually corresponds to a valid
state in the column definition.
Now look at AFC3. Several rows are selected because of the values in this column, but are
they really outlier values? The AFC3 column describes the percentage of females who are
active in the military in the respondent's neighborhood. In looking at the values we can see
that they are all less than l 00, which means that they are all potentially good values. But
they keep popping up as outliers because the majority of the values are very small, but
certain neighborhoods have a higher percentage, which causes the values to be flagged. Of
the values the routine marked as outliers, we could not find any that seemed to fit the
definition of an outlier value. But suppose we did find an outlier value-if we click an
outlier value in the table, we can use the Data Mining Tool to either remove the

64

corresponding row from the table or replace the cell's value with the mean value of the
column.
To remove or replace outliers in the DM_Prep_Tool data

1. In the grid, click a cell containing an outlier value.
2. Do one of the following:
To remove the row containing the outlier, click Remove row.
Ta replace the value of the cell with the mean value of the column, click Replace value.

Now, let's look at the code that makes this all work..

Looking at the Flag Outliers Code
Looking through the Visual Basic code contained in the cmdRemoveNulls _ Click
subroutine, you will see that it consists of two main parts:
• Code that prepares the stored procedure that flags the outlier values and then runs that
procedure
• Code that displays the combination of the outlier table and source table data in a
hierarchical FlexGrid on the form.
In this section we'll take a closer look at each of these parts: the stored procedure, the code
that runs the procedure, and the code that displays the outlier information.

Flagging the Outliers
When developing this tool, the way in which we flagged outliers became an interesting

---- - problem. How could we "store the information about which cells contained outlier'values?
To store it in the same table meant either creating an additional column for each numeric
column in the table and checking off a flag, or somehow changing the original data to
signify that a value is suspect. Neither of these options seemed like a good choice.
We decided to make a copy of the original table, leaving out the actual values. Every time
we found an outlier value, we put an identifier in the corresponding cell of the new table.
We also added a new column to the table that signifies whether a row contains outlier
values. This made it possible to perform filtering on either table and to just look at the rows
containing outliers. With these two tables, we can both preserve the original data and store
outlier information. Anytime we want to see a combination of the two; we can use an inner
join. That's the theory behind flagging outliers. We then had to decide how to implement
this theory. As with the other cleaning tasks, we had a choice of either using Visual Basic
to loop through the table columns or running a stored procedure. As before, we chose the
stored procedure.
Let's walk through the stored procedure and see how our theory translates into reality.
To view the usp _ Outliers stored procedure

1. In Query Analyzer, expand the DM_Prep_Tool database, and then expand the Stored
Procedures folder.
2. Right-click dbo.usp _ Outliers, and then click Edit.
The stored procedure requires six parameters:
• The source table (@strBaseTable)
• The key column of the table (@strKeyID)
• The properties table associated with the source table (@strLookupTable)
• The number of standard deviations from the mean (@fltNumberSD)
• A cutoff percentage (@fltPercentageCutoff)
• An outlier ratio (@fltOutlierMax)

65

These parameters are defined first in the procedure.
CREA TE Procedure usp _ Outliers
@strBaseTable nvarchar(255),
@strKeyID nvarchar(255),
@strLookupTable nvarchar(255),
@fltNumberSD float,
@fltOutlierMax float,
@fltPercentageCutoff float
The procedure then has to name the table that will record the location of the outlier values.
It does this by appending the name-of the source table with _ou.
SET @strNewTable = @strBaseTable + '_ou'
To calculate the percentage of values that lie outside of the cutoff value, we need to divide
the number of outlier values by the total number of records in the column. We currently
don't have this total, so we have the procedure get this count and store it in the
@intRecCount variable.
SET@strLookupSQL = 'SELECT@retum_Count = (SELECT
COUNT([controln]) FROM['+ @strBaseTable + '])'
EXECUTE sp_executesql @strLookupSQL, N'@retum_Count INT OUTPUT',
@return_ Count= @intRecCount output
Next, the procedure queries the database to see if the table that will hold the outlier values
(let's call it the outlier table) has already been created, and if so, drops it from the database.

C IF EXISTS(SELECT [name] FROM'Sysobjects WHERE [name]> @sttNewTable)
BEGIN
SET @strDropSQL = 'DROP TABLE' + @strNewTable
EXECUTE sp_executesql @strDropSQL
END
The next query uses a SELECT INTO statement to make the outlier table an identical copy
of the source table. Because we want the outlier table to be blank, we exclude the actual
data from this table by including a WHERE clause that can never happen-the key being
less than zero. Then the query copies the key column data from the source table into the
outlier table. This ensures -that the outlier table has the same number of rows as the source
table and that they are in the same order, allowing us to later join the new table with the old
table for display on the Flag Outliers tab. Last, the query adds a column,
FLAGGED ROWS. (Initially, the values in the FLAGGED ROWS column are set to null. - -
Later,
the stored procedure replaces the null value withal if one of the row's cells holds an
outlier value.)
SET @strCreateSQL = 'SELECT * INTO [' + @strNewTable + '] FROM [' +
@strBaseTable +']WHERE['+ @strKeyID + '] < 0 '+
'ALTER TABLE[' +@strNewTable +']ADD flagged_rows
INT NULL I+
'INSERT INTO['+ @strNewTable + '] ([' +@strKeyID
+'])I+
'SELECT [' + @strKeyID + '] FROM [' + @strBaseTable
+']'
EXECUTE sp_executesql @strCreateSQL

66

As with the previous two stored procedures, we need to get the ID of the source table in
order to get the names of the columns in the table.
Set @iTableID = (SELECT [id] from SysObjects where [name]=
@strNewTable)
The procedure then declares the Columns_ Cursor cursor, which will hold the numeric
column names from the source table.
DECLARE Columns Cursor CURSOR FOR
Select [name] from SysColumns where [id]= @iTableID AND [xType] =
108
The procedure can now begin to loop through the columns in the table to look for outlier
values.
OPEN Columns Cursor
FETCH NEXT FROM Columns Cursor
INTO @strColumn
WHILE @@FETCH_ STATUS = 0
BEGIN
The first step in the loop is to gather the table properties used to calculate the outlier
values-the standard deviations, mean, and max values.
SET @strLookupSQL =
'Select @return_ STDev = (SELECT Standard __Deviation from
'+ @strLookupTable +' WHERE Column_name = "' + @strColumn + "') ,--,-+· - ·--
'Select @return _Mean = (SELECT mean from ' +
@strLookupTable +' WHERE Column_name = '" + @strColumn + "') '+
'Select @retum_Max = (SELECT Maximum from'+
@strLookupTable +' WHERE Column_name = "' + @strColumn + "')'
EXECUTE sp_executesql @strLookupSQL, N'@retum_STDev float
OUTPUT,@retum_Mean float OUTPUT,@retum_Max float OUTPUT',
@retum_STDev = @fltCol_STDev OUTPUT,@retum_Mean = @fltCol_Avg
OUTPUT,@retum_Max = @fltCol_Max OUTPUT
Usingthenumber of-standard deviations from the mean (as set by the user), theloopthen -·
calculates a cutoff value for outliers and uses the maximum value to determine a ratio for
which the maximum is beyond the outlier-the OutlierRatio. To avoid dividing by zero, the
loop calculates the maximum ratio only if the value for sngOutlier is greater than zero.
SET @fltOutlier = (@fltCol_Avg + @fltNumberSD * @fltCol_STDev)
IF @fltOutlier = 0
BEGIN
SET @fltOutlierRatio = 0
END
ELSE
BEGIN
SET @fltOutlierRatio = @fltCol_ Max I @f1t0utlier
END
Now the loop looks to see if the outlier ratio is greater than the ratio determined by the
user. If it is, the procedure flags all of the values past the outlier value as outliers.
IF @fltOutlierRatio > @f1tOutlierMax
BEGIN

67

SET @strLookupSQL = 'Select@return_Count =
(SELECT Count(['+ @strColumn + ']) from [' + @strBaseTable + ']
where [' + @strColumn + '] > '+ cast(@fltOutlier as nvarchar(25))
+ ')'
EXECUTE sp_executesql @strLookupSQL,
N'@return_Count decimal OUTPUT', @retum_Count =@intOutlierCount
OUTPUT
By dividing the number of calculated outliers by the variable @intRecCount (the number
ofrecords in the table), the loop now finds the percentage of values in the column that are
outliers. If this percentage is less than the percentage set by the user, the loop flags the row
as containing an outlier for that column.
SET @fltPercentageOut = @intOutlierCount I
@intRecCount
IF @fltPercentageOut < @fltPercentageCutoff
BEGIN

Finally, the procedure replaces the cells in the outlier table corresponding to outlier values
in the base table with a value of 2 to signify the presence of an outlier value. When a row
contains an outlier, the procedure also updates the corresponding cell in the flagged _row
column with a value of 1. This allows us to sort rows based on whether
they contain outlier values.
SET @strLookupSQL =''UPDATE [' + - ·- .; - -
@strNewTable + '] SET['+ @strColumn + '] = 2, [flagged_rows] = 1
FROM [' + @strNewTable + '] t,[' + @strBaseTable + '] s WHERE t.[' +
@strKeyID + '] = s.[' + @strKeyID +']AND s.[' + @strColumn + '] >
'+ cast(@fltOutlier as nvarchar)
EXECUTE sp_executesql @strLookupSQL
END
END
FETCH NEXT FROM Columns Cursor
INTO @strColumn
END

·- -· ~ - .

Getting the Outliers
Okay, we now have a way to flag outliers. We just need to implement this stored procedure
from the Flag Outliers tab. Here is how we do that within the cmdCalculateOutliers _ Click
subroutine. As with the usp _ Outliers stored procedure, the subroutine names the tab le that
holds outlier information by appending_ ou to the name of the source table.
strOutlierTable = frmMain.strCleanedTable & " ou"
As with the previous cleaning tasks, the subroutine must declare each parameter and the
ADO Command object.
Dim objCommand As New ADODB.Command
Dim objBase_Table As New Parameter
Dim objKeyID As New Parameter
Dim objLookupTable As New Parameter
Dim objNumberSD As New Parameter
Dim objOutlierMax As New Parameter

68

Dim objPercentageCutoff As New Parameter
The subroutine then prepares the various parameters to be used by the stored procedure.
With objBase_Table
.Name= "@strBaseTable"
.Direction = adParaminput
.Type= adVarChar
.Size= 255
.Value= frmMain.strC!eanedTable
End With
With objKeyID
.Name= "@strKeyID"
.Direction = adParamlnput
.Type= adVarChar
.Size= 255
.Value= KEYID
End With
With objLookupTable
.Name= "@strLookupTable"
.Direction = adParaminput
.Type= adVarChar
.Size= 255

· .Value = 'srrl'roperties'Table ·
End With
With objNumberSD
.Name= "@fltNumberSD"
.Direction = adParaminput
.Type= adSingle
.Precision = 10
.Value= CSng(txtNumberSD.Text)
End With
With objOutlierMax ·
.Name= "@fltOutlierMax"
.Direction = adParaminput
. Type = adSingle
.Precision = 10
.Value= CSng(txtMa:xRatio.Text)
End With
With objPercentageCutoff
.Name= "@fltPercentageCutoff'
.Direction = adParaminput
.Type= adSingle
.Precision = 10
.Value= CSng(txtPercentCutoff.Text)
End With

-·-·

Next, the procedure passes all of this necessary information to the Command object.
With objCommand
.ActiveConnection = cnDataPrep

69

.CommandTimeout = 0

.CommandText = "usp_Outliers"

.CommandType = adCmdStoredProc

.Parameters.Append objBase_Table

.Parameters.Append objKeyID

.Parameters.Append objLookupTable

.Parameters.Append objNumberSD

.Parameters.Append objOutlierMax

.Parameters.Append objPercentageCutoff
End With
Finally, the procedure carries out the command and the stored procedure begins the process
of flagging outliers. obj Command.Execute
The usp _ Outlier stored procedure takes the longest of the three to· run-there are a lot of
values to check! You may even have time to make lunch while you're waiting. But the
good news is that by using a stored procedure, we were able to cut processing time from
around 30 minutes to around 15 minutes on our computer. ·

Displaying the Outliers
Now that the outlier values have been calculated, let's look at how they are displayed to the
user. In addition to the challenge of tracking outlier values, the other challenge we faced in
developing this solution was figuring out how to relay the information about outliers to the
user. At first, We fried todisplaythe actual'outlier table Ina Flexxiridccnttol; which; when
the user selected a row value, would display the corresponding row in an additional
FlexGrid control. This would have allowed the user to quickly find the outlier values and
view the row values to determine what action to take. We eventually scrapped this
approach in favor of displaying only a single grid that conveys both pieces of
information- displaying the real values in the grid but color-coding those values flagged
as outliers.
To do this single-grid approach, the cmdCalculateOutliers_Click subroutine uses a
Transact-SQL statement that creates an inner join between the outlier table and the source
table, and then returns real values for each row containing an outlier value to the FlexGrid
control.

strSQLSelect = "SELECT c. * FROM [" & frmMain.strCleanedTable &
"] AS c INNER JOIN [" & strOutlierTable & "] AS t ON c.controln =
t.controln AND t.flagged_rows = 1 ORDER BY c.controln" Set rsData =
mdlProperties.cnDataPrep.Execute(strSQLSelect)

The FlexGrid control then displays this information.

Set hfgOutlier.DataSource = rsData

The tricky part comes in highlighting the outlier values within the grid. We first have to get
a recordset filled with the outlier table data that marks the outlier values with a 2. We then
cycle through the table and whenever we find an outlier value, we set the FlexGrid control
to the corresponding value and highlight the cell in red.

70

strSQLSelect ="SELECT* FROM[" & strOutlierTable & "] where
flagged_rows = 1 ORDER BY controln"
Set rsData = mdlProperties.cnDataPrep.Execute(strSQLSelect)
lngRow = 1
Do Until rsData.EO F
For lngColumn = 0 To rsData.Fields.Count - 1
If rsData(lngColumn) = 2 Then
hfgOutlier.Col = lngColurnn + 1
hfgOutlier.Row = lngRow
hfgOutlier.CellBackColor = vbRed
End If
Next lngColumn
rsData.MoveNext
lngRow = lngRow + 1
Loop

The only two tasks left to do are to either replace a selected· cell with its mean value or
remove a selected row.

Replacing a Cell with Its Mean Value
If the user clicks Replace value, the code first displays a message box asking whether the
user really wants toreplacethevaluewith themean:" -~<" •· - -- -- - - '

If MsgBox("Do you really want to replace the selected value in the
table?" -
, vbYesNo) = vb Yes Then

If the user clicks No, the routine exits. Otherwise, the routine begins to determine where the
cell is within the grid. The hardest part of this routine is figuring out how to find which
column in the FlexGrid control holds the key to the table. The code does this by setting a
variable, ·strColumnID, equal to the first column and· first row in the FlexGrid control, and
then cycling through the column values in the first row until they match the key column
name for the dataset, "controln".

strColumn = hfgOutlier.TextMatrix(O, hfgOutlier.Col)
For lngColumnID = 0 To hfgOutlier.Cols
If hfgOutlier.TextMatrix(O, lngColumnID) = UCase("controln")
Then Exit For
Next lngColumnID

Using the selected column name in the strColumn string, along with the key identifier for
the selected row, the routine then creates a SELECT statement that updates the table value
with the mean value for the column.

strSQLString = "UPDATE " & frmTables.strCleanedTable & " SET " &
strColumn & " = " & sngMean & " where " & hfgOutlier.TextMatrix(O,
lngColumnID) & " = "' & hfgOutlier.TextMatrix(hfgOutlier.Row,

71

lngColumnID) & ""'

Removing a Row
The routine for removing a row is much the same, except that instead of replacing a column
value, the routine creates a SELECT statement that removes the row containing the outlier
value.

strSQLString = "Delete from " & frmTables.strCleanedTable & "where
" & hfgOutlier.TextMatrix(O, lngColumnID) & " = "' &
hfgOutlier.TextMatrix(hfgOutlier.Row, lngColumnID) & ""'

Now that our data should be in a fairly clean state, let's start looking at the types of
transformations we can perform to further -prepare the data for use in models.

3.5. Transforming the Data

Now that we've cleaned the data-getting rid of all of the trouble-causing columns and
rows-it's time to transform some of it into a more desirable form. To do this, we will use
the DTS Import/Export Wizard, which can run scripts that transform the data. This step is
yet another example of why we need to understand our data. If we do not know how a

.-. ' --· column behaves, wecan'tdetermine howtotrarisform it intoa moreusable state: There 'are
several types of transformations that we can perform. For example, it can be hard to find
out how the states of the input columns affect the states of the output columns if the input
columns have too many states. (This is the case with one of our input columns, POP901.
This column defines the population of the neighborhood in which each respondent lives,
and thus, consists of several thousand different states.) A way to solve this problem is to
reduce the number of states in the input columns by creating buckets. Instead of having an
infinite number of possibilities, we define five states (labeled l through 5) and replace the
column's values with whatever designation is appropriate. This transformation makes it
much easier to find relationshipsbetween the input and predictablecolumns:
There are two places in the process where we can perform this transformation: either now
using a script in the wizard or later during the model-building phase. We will demonstrate
the first technique in this solution.
Another transformation converts a date into the number of months since an event occurred.
In our table, the column ODATEW describes when each person first donated money.
Instead of working with a date, we could work with a concrete number, such as the number
of months, that we can then use to find things like the correlation and mean value.

In this chapter, we try both of these transformations on the POP901 and ODA TEW
columns, using just a single script. Keep in mind, though, that the number of
transformations that you can perform is endless. You can easily modify the transformations
in this chapter to create your own transformation, and see how it changes your models.
Note that we will not replace the existing column; instead, we add the transformed column
to the table. This preserves the state of the original column and also allows us to look at the
information contained within it in a different way.

72

Trying Out the DTS Import/Export Wizard
In the Data Mining Tool, clicking the Transform button opens the DTS Import/Export
Wizard, allowing you to run through the steps of creating a transformation and then return
to the Data Mining Tool.

To transform data using the DTS Import/Export Wizard
1. In the Data Mining Tool, click Transform.
2. On the Data Transformation Services Import/Export Wizard page, click Next.
3. On the Choose a Data Source page, select the following options, and then click Next:
For Data Source, select Microsoft OLE DB Provider for SQL Server.
For Server, type (local).
Select Use Windows NT Integrated Security.
For Database, select DM_Prep_Tool.

4. On the Choose a destination page, select the following options and then click Next:
For Destination, select Microsoft OLE DB Provider for SQL Server.
For Server, type (local).
Select Use Windows Authentication,
For Database, select DM_Prep_Tool.

Note These settings map the source database to itself. If you want to, you can also map the
source database to a new database.
5. On the Specify Table Copy or Query page, select Use a query to specify the data to

,. 'ttansfer;·and·the1fclickNexc··0 - - C.- : .•_ ._-... •

6. On the Type SQL Statement page, type the following statement into the Query
statement box:
select [cup98LRN_ Clean].[ODATEDW], [cup98LRN_ Clean].[POP901],
[cup98LRN _ Clean].[CONTROLN]
from [cup98LRN _Clean]
7. Click Next.
8. On the Select Source Tables and Views page, under Transform, click the browse(...)
button.
9. - On -the Transformations -tab, select· "Transform - information as it is copied to the - ·
destination, and then click Browse.
10. In the Open dialog box, select the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample\transform _ script.txt file, and
then click Open.
Although you can type any script that you like in the text box, we have prepared one
ahead of time, which is discussed later in this chapter in "The Transformation Script."
All of the transformations are performed using just one script.
11. Click OK, and then click Next.
12. On the Save, schedule, and replicate package page, select Run immediately, and then
click Next.
The POP901 and ODA TEDW columns are now transformed and added to a new table
named Results, along with the key column, CONTROLN. We now just have to run the
following Transact-SQL scrip to copy the new columns into the cup98LRN_clean table.
Note If you use a non-English computer, the DTS Import/Export Wizard puts the
transformed data
into a table with a name other than Results. For example, on a German computer the DTS

73

Import/Export Wizard puts the transformed data into a table named Ergebnisse. Check your
database to find the proper name and replace the name Results with the correct name in the
following script:

ALTER TABLE dbo.cup98LRN _ Clean ADD ODA TED W2 NUMERIC(l 8,0) NULL,
POP90 l _ 2 NUMERIC(l 8,0) NULL
Go
UPDATE dbo.cup98LRN _ Clean
SET ODATEDW2 = Results.ODATEDW, POP901 2 = Results.POP901
FROM Results
WHERE cup98LRN _ Clean.controln = Results.controln
Go

Looking at the Code Calling the Wizard
The design of this step has changed over time. During the initial discussions about creating
this project, we designed a form that allowed users to create a custom Transact-SQL script
to transform data and then apply this script to the data. As time passed, we realized that
SQL Server had already created a perfectly good mechanism for doing this-the DTS
Import/Export Wizard. So, instead of reinventing the wheel, we decided to take advantage
of the wizard in showing you how to perform custom transformations on columns on a
table. Using the wizard, we are basically going to copy the specified columns, transform

· · - them.rand put thern back into the table. Hooking up the DTS Import/Export Wizard to the·
Data Mining Tool is a simple task,
requiring only the following code.
Shell Environ("ProgramFiles") & "\Microsoft SQL
Server\80\Tools\Binn\dtswiz.exe", vbNormalFocus

The Transformation Script
Using a Microsoft ®Visual Basic® Scripting Edition (VBScript) script, we can easily
transform the data for the specified columns in the table. When the script runs, the database
goes through each 'row in the source table and runs it through the script, performing the
necessary transformation. The row is then copied into the new table, which in our case is
the original table. In essence, we are pulling a row of data out of the table, transforming it,
and putting it right back in.
To create the script, we copied the template that was already in the code editor (which just
grabs each row and moves it without transforming it) and modified it. Let's look at the code
we modified. We first need to define local variables for the columns we are going to
transform.
Dim lvPOP901
Dim lvODATEDW
Dim Month
Dim Year
We can now start to perform the transformations. In the first, we will change the variable,
lvODA TED W, which tells us the date of the donor's first donations, from a date to the
number of months since their first donations.
The data is formatted as YY/MM in the database. We first pull out the individual year and
month for each row, and then recalculate them to be equal to the number of months

74

(assuming the present year is 1998).
Month= cdbl(right(DTSSource("ODA TEDW"),2))
Year= cdbl(left(DTSSource("ODATEDW"),2))
lvODATEDW = (98-year)* 12 + month
Chapter 5: Transforming the Data 83
In the next transformation, we convert the variable lvPOP901 from a continuous variable
to a discrete variable. -
We first check to see if the value is null, and then convert it to a double, which allows us to
use mathematical comparisons on the value. If the value is null, we set it equal to zero.
If lsNull(DTSSource("POP901 ")) Then
' If null, then 0
lvPOP901 = 0
Else
lvPOP90l = CDbl(DTSSource("POP90l "))
End If
We then start the discretization process.
If lvPOP901 >= 0 And lvPOP90l <= 19740.2 Then
lvPOP901 = I
Elseif lvPOP901 > 19740.2 And lvPOP901 <= 39480.4 Then
lvPOP901 = 2
Elseif lvPOP901 > 39480.4 And lvPOP901 <= 59220.6 Then

- tvPOP90t'== '.Y · · · - - -
Elseif lvPOP901 > 59220.6 And lvPOP901 <= 78960.8 Then
lvPOP901 = 4
Elseif lvPOP901 > 78960.8 Then
lvPOP90l = 5
End If
The column values are then added to the destination table.
DTSDestination("CONTROLN") = DTSSource("CONTROLN")
DTSDestination("ODATEDW") = lvODA TEDW
DTSDestinationC'POP901 ") = lvPOP90-1

Main = DTSTransformStat OK
End Function

3.6.Exploring the Data

Data mining is more of an art than a science. No one can tell you exactly how to choose
columns to include in your data mining models. There are no hard and fast rules you can
follow in deciding which columns either help or hinder the final model. For this reason, it is
important that you understand how the data behaves before beginning to mine it. The best
way to achieve this level of understanding is to see how the data is distributed across
columns and how the different columns relate to one another. This is the process of
exploring the data. When it comes to exploring data, both visual and numeric techniques
offer unique perspectives:

75

• Visual techniques allow you to quickly look through a large number of columns and get a
general feel for how they interact. To visualize non-numeric (varchar) data, you build
histograms. To visualize numeric data, you can build both histograms and scatter plots. To
see an example of a histogram, see Figure3.9. To see an example of a scatter plot, see
Figure3.l 1.
• Numeric techniques, on the other hand, give you a more concrete understanding of how
the data interacts. As the- term "numeric" implies, you can use numeric techniques only
with numeric columns. But by focusing only on the numeric columns, you can build a
correlation matrix that shows the relationship between the numeric columns and the
predictable column.
Because both visual and numeric techniques provide you with a deeper understanding of
the data, the Data Mining Tool presented in this book includes both techniques. In this

· chapter, we' 11 build histograms, scatter plots, and a correlation matrix, which we'll use to
explore the data in our sample dataset. After completing each step, we'll look at the code in
the Data Mining Tool that makes each step work.

Visualizing Data with Histograms and Scatter Plots
A histogram describes the distribution of the different states of a column with respect to the
predictable column. For example, suppose there are two possible states for a column that
describes the color of shirts that people wear in a particular situation: crimson and gray.
When that column is compared to a column containing answers to a yes/no question, we

---firidthat"those who Wear crimson' shirts-answer "yes" to aquestion 25 percent of the time,
while people who wear gray shirts may answer "yes" only 5 percent of the time. We'll
build two kinds of histograms, one based on varchar columns (like color) and one based on
numeric columns (like salary). The main difference between the two is in the number of
states that each column can contain. A varchar column typically has a finite number of
states, such as crimson or gray, while a numeric column can have an infinite number of
states, such as the time an event occurred, or a salary. To build a histogram, we need to
compare a small number of states to a predictable column. This means that for numeric
columns we have to create artificial buckets in which to group the data. Although a salary
column- can contain 10,000- states, we can transform that data into three new states: high,
medium, and low, which we can then chart in a histogram. For a varchar column, we do not
have to worry about creating buckets; instead, we can just work with the data in the
column.
A scatter plot uses two axes to describe groupings of data in the predictable column with
respect to the different states of the selected column. The x-axis holds the input column,
which we are exploring, while the y-axis holds the column that we want to predict. By
plotting these against each other, we can determine where the majority of the data lies. Do
positive responses in the predictable column occur only for certain states of the input
column? Or do the same number of positive responses tend to occur throughout the states,
making no state unique?

So that's the insight that histograms and scatter plots can provide. Now it's time to get back
to work and implement these visual techniques using the Data Mining Tool. Regardless of
whether we're creating a histogram or a scatter plot, the basic methodology behind the
Charts tab is simple--create a SELECT statement based on the selected column data, fill
the recordset, and set the data source of the Microsoft Chart control so that it is equal to the

76

recordset. The only thing that changes between chart types is the formatting of the chart,
and the only thing that changes between column types is the formulation of the
SELECT statement.

Programming Challenges
When trying to visually explore the data using charts, we encountered two challenges. The
first was in- working with the Microsoft Chart control-there is little documentation
describing how to manipulate the control. Formatting the histogram control was not so
difficult, because it is basically a two-dimensional bar chart. But in formatting the scatter
plot, we had a lot of problems trying to get the individual points to appear without a line.
The second was in constructing the correct Transact-SQL statement to feed the chart
control. For the histogram charts, we had to find a way to return a query that aggregates the
states of the data with respect to the states of the predictable attribute.
Visualizing varchar Columns
When working with non-numeric or varchar columns, we have only one charting option
open to us-a histogram. Because we only have to deal with a single type of chart when
working with varchar data, and also because the varchar histogram is the simplest
histogram to create (the data buckets are already defined), we'll start our visual exploration
of the data here. Selecting a varchar column on the Charts tab creates a SELECT statement
to cull the varchar columns and group them by bucket. The Data Mining Tool then displays
these results as a histogram on the screen.

C We· are looking for information that will help us decide whether to use specific columns in ·-.
our data mining model. So let's grab one of the varchar columns and see how it looks
plotted in a histogram.
To create a varchar histogram of the cup98LRN _ cleantable

1. In the Data Mining Tool, click Explore.
2. On the Chart tab, select the following options:
Select Histogram.
For Predicted, type target_b.
For VarChar Column, select MAILCODE.

77

(au car, e~plare the data using three techniques: .. ~ scatter plot. a histo~ram, or ,:1 correlation matri:-:. On the Charts tab,
ou can either select a hislogram or a scatter plot for the chart type; and then select a either a numeric or vercher

column to view on the form. On the Correlation tab, vou can either create a new correlation metrix. create an
abbreviated matrix fv,.•hich compares each column only to the predictable column), or display an existing matrix. To select·
a new table to explore, close the Exolore Data form and select .9 new table on the main form.

Figure 3.9 A varchar histogram

As we can see from the chart, the values for the column MAILCODE make up only a small
percentage of the values in the table, and those that are present closely match the
distributions found over the whole table. For this reason, we can exclude the column from
the dataset. Let's drop this column- now, using the procedure outlined in, "Cleaning the
Data."
Now let's look at the code in the Data Mining Tool that creates the histogram. Looking at
the Code Behind Creating the varchar Histogram A varchar histogram is generated through
a single subroutine- cb VarCharPlot_ Click. To put this subroutine in context with the other
code on the Charts tab, open Microsoft® Visual Basic ® and look at this subroutine while
we walk through the code.
To view the cbVarCharPlot Click subroutine

1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data
Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.
3. Right-click frmExplore (frmExplore.frm), click View Code, and then locate the
cb VarCharPlot Click subroutine.
Selecting Varchar Data
When a user clicks an item in the varchar Column list, the cb VarCharPlot_ Click
subroutine is invoked. For the varchar data, we don't need to worry about separating values

78

into buckets because a distinct number of buckets already exist. We do, however, need to
differentiate between the states of the predictable column for each bucket. In our case, the
predictable column contains two states, "Yes" if the person contributed last time
(signified by a 1 in the column) and "No" if the person did not contribute (signified by a 0
in the column). For each bucket, we need to figure out how many positive ("Yes") and
negative ("No") results are in the predictable column.
To do this, we sum the cases that are positive and those that are negative. After determining
these counts, we can make a count for each bucket using a GROUP BY statement and order
the information using an ORDER BY statement.
Here is the rather complicated Transact-SQL SELECT statement that results from all these
calculations.

'The SQL statement that selects data from the table that is
appropriate for a histogram.
strSQLSelect ="SELECT" & strHistinputVar & ", " & _
"SUM(CASE WHEN" & strPredicted & "=l THEN l
ELSE O END)AS Match," & _
"SUM(CASE WHEN " & strPredicted & " =O THEN 1
ELSE O END) AS NoMatch FROM " &
"[" & frmMain.strCleanedTable & "] GROUP BY " &
strHistinputVar & ""
Set rsfrata == mdIProperties'.cnDataPrep.Execute(strSQLSelect)

Displaying the varchar Histogram
Now it is just a matter of formatting the chart control to display a two-dimensional bar
chart (that is, a histogram) and setting its datasource property equal to the recordset
holding the results of the SELECT statement.

'Initialize the chart control to display the data properly.
With mscExplore

· · .Visible =True
.chartType = VtChChartType2dBar
.Plot.UniformAxis = False
End With
'Set the datasource property of the chart control to the recordset
returned by the Transact-SQL statement,
'and then refresh the chart.
Set mscExplore.DataSource = rsData
Me.Refresh

As you can see, creating and displaying a varchar histogram is relatively easy. Having done
all the charting that we can with varchar columns, let's go back to the Data Mining Tool
and create and display a numeric histogram.

Visualizing Numeric Columns with a Histogram
Now let's use a histogram to investigate the distribution of data in some of the numeric
columns. If you remember from Chapter 4, we looked at the properties of several columns

79

whose names begin with ADA TE. From the properties we found that these columns contain
only one or two distinct states. Will these states help us create a better mining
model? Let's find out.
To create a numeric histogram of the Cup98LRN_clean data

1. In the Data Mining Tool, click Explore.
2. On the Charts tab, select the following options:
Select Histogram.
For Predicted, type target_b.
For Numeric Column, select ADATE_2.

Figure 3. l O shows the numeric histogram we just created.

au cat1.e:-:plore the data usit1g three techt1iques: a scatter plot, a hist,~gr.:1rn, or a correlatiori rnatriK IJn the Cr.arts tab ..
you can either select a histogram or ,3 scatter plot for the chart type, and then select a either a numeric or varchar
column to view on the form On the Correlation tab, vou can either create a new correlation matrix, create an
abbreviated matrix [which compares each column only to the predictable column}, or display. an e:,isting matrix. To select,
a new table to explore, dose the Explore Data form end select a new table on the main form.

Figure 3.10 Numeric Histogram

From the properties table, we found that the column ADATE _ 2 contains only two distinct
states. We can see in Figure 3 .10 that the ratio of positive to negative responses in the
predictable column is the same for the column as for the entire population. If the
proportions do not differ from the entire population, they do not add anything to the
effectiveness of the model. Accordingly, we can remove ADATE_2 from the
cup98LRN_clean table by using the procedure outlined in "Cleaning the Data."

80

Looking at the Code Behind the Numeric Histogram
Working with numeric columns introduces a couple of issues that we didn't have to deal
with when working only with varchar columns. The first issue is that that we can create two
charts-histograms and scatter plots-from numeric columns. When a user just selects a
numeric column on the Charts tab, it does not give us enough information to know which
chart the user wants to generate. To deal with this issue, all we have to do is declare a
Boolean variable that is set to True when the user selects a histogram and False otherwise.
That takes care of the first issue.

The second issue has to do with the states represented by the numeric column. Numericdata
does not exist in discrete states. Numeric data spans a nebulous range, and we need todefine
states for this data. Thus, when creating a numeric histogram, we need to determine the
entire range of the data (subtract the minimum value from the maximum value) and divide
that range into a user-defined number of states or buckets.

With those two issues out of the way, the code used to create a numeric histogram is
remarkably similar to the code used to create a varchar histogram. Let's take this
opportunity to see exactly how this code works.
As with charting varchar columns, a numeric histogram is generated through a single
subroutine-cbNumericPlot_ Click. Open Visual Basic and follow along as we walk
through the code.
To view the cbNi.nnericPlot Click subroutine" .; · -

1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data
Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.
3. Right-click frmExplore (frmExplore.frm), click View Code, and then locate the
cbNumericPlot Click subroutine.
Defining States for the Numeric Data
As with a varchar histogram, when a user clicks an item in the Numeric Column list, a
subroutine is invoked. In this case, that subroutine· is cbNumericPlot_ Click: But unlike the·
subroutine used to create a varchar histogram, the cbNumericPlot_ Click subroutine must
first create a Boolean variable (blnChartTypeHist) that is set to True if the user selects a
histogram and False if the user selects a scatter plot. Remember that we' need to do this
because numeric data can be plotted in more than one way.
The subroutine then uses the blnChartTypeHist variable in an If-Then-Else statement to
determine which type of chart to create using the numeric data. When the value of this
variable is True, the routine enters the Else section, which creates a numeric histogram. In
this section, the routine must first retrieve the maximum and minimum values for the
column. (We'll use these values to define the various states for the data.) To get these
values, the routine uses the Select_ Properties function of the mdlProperties module and
then places the values into the sngCol_Max and sngCol_Min variables.

Else
'If blnChartTypeHist is True, create a histogram.
'Get the min and max values to be used to define the states for
'grouping the numerical data.

81

sngCol _ Max = mdlProperties.Select_ Properties(strPropertiesTable,
strNumericinput, Max)
sngCol_ Min= mdlProperties.Select_ Propertieststrl'roperties'Table,
strNumericinput, Min)

With the maximum and minimum values retrieved, we can now define the size for each
state. The routine determines the entire range of values (which is stored in sngDivision)
by subtracting the minimum value from the maximum value and then dividing this range
by the value (the user-defined number of buckets) stored in the NOD variable.

'Define the size of each state.
sngDivision = (sngCol_Max - sngCol_Min) I NOD
sngAdd = 0

So far, so good. Now comes the task of using these states to define a SELECT statement
that gathers the information for each state.
Building a SELECT Statement
Using the range stored in sngDivision, the routine calculates an upper and lower bound for
each bucket, and stores these values in two arrays. Because the number of divisions is a
variable that the user sets, the routine never knows how many divisions to expect when
constructing the Transact-SQL statement. So, to make the program as versatile as possible,
the - routine also constructs =·the ' case 'statement - of· the Transact~S-Qc·- SELECT
(strSQLSubSelect) within a loop. The strSQLSubSelect statement created within this loop
basically divides the data based on where it fits within a range.

'For each division create an upper and lower bound and store them in the
'upper(i) and lower(i) arrays. Also, build the case portion of the SQL statement.
For i = 1 To NOD
Lower(i) = sngCol_Min + sngAdd
Upper(i) = Lower(i) + sngDivision

- sngAdd = sngDivision * i
strSQLSubSelect = strSQLSubSelect & "when " &
strNumericinput & "between" & Lower(i) & "and" & Upper(i) & "
then"' & Lower(i) & ""'
Next i

The routine then finishes the strSQLSubSelect statement with the following code.

'Finish the sub select of the SQL statement.
strSQLSubSelect = strSQLSubSelect & " end As
AggregatedName,target_b from" & frmMain.strCleanedTable & ""

Having created the strSQLSubSelect statement, we can now add this statement to the final
SELECT statement (strSQLSelect). As you might recall from the SELECT statement used
to create the varchar histogram, this final SELECT statement makes a count for each bucket
using a GROUP BY statement and then orders this information using an ORDER BY
statement.

82

'Construct the final Transact-SQL statement using the sub select.
strSQLSelect = "select AggregatedName, sum(case when target_b=l
then 1 else O end)" &
"as Match, sum(case when target_b=O then 1 else
0 end) as NoMatch " & _
"from (" & strSQLSubSelect & ") as a group by
AggregatedName order by AggregatedName"

All that's left to do now is to run this statement and display the results on the screen.
Displaying the Numeric Histogram
Not too surprisingly, we display the numeric histogram the same way we display a
varchar histogram. Here is the code to do so.
'Initialize the chart control to display the histogram.
With mscExplore
.Visible= True
.chartType = VtChChartType2dBar
.Plot.UniformAxis = False
End With
End If
'Set the chart datasource of the chart control equal to the data
extracted from the table.: - - - - ,-_ - - - ' .C - - -

:-::-,···· : .· ~- ._ __ - .-·

Set mscExplore.DataSource = rsData
mscExplore.Refresh

Visualizing Numeric Columns with a Scatter Plot
A scatter plot tells us how the states of the predictable column are distributed across the
selected column. By looking at this distribution, we can get a better idea of which columns
to include when we build the data mining models. If the states of the predictable column are
evenly scattered across the selected column, we know that the selected column does not tell
us anything significant about the predictable column; But if the states of the predictable -
column are grouped together, the selected column probably can be useful in determining
the outcome of the predictable column.

To create a scatter plot of the Cup98LRN_clean data
1. In the Data Mining Tool, click Explore.
2. On the Charts tab, do the following:
Select Scatterplot.
For Predicted, type target_d.
For Numeric Column, select HC19.

Figure shows the scatter plot we just created.

83

Youcen e~plore the data using three techniques: a scatter plc,t, a histogram, ma correlation rriatriK Oti the Charts tab,
you can either select a hislogram or. a scatter plot for the chart type, end then select a either a numeric or vercher
column to view on the form. On the Correlation tab, vou can either create a new correlation matrix, create an
abbreviated metrix (which compares each column o·nly to the predictable column), or display an existing matrix. To select:
a new table to explore, close the E:-:plore Data form and select a new table on the main form.

Figure 3.11 Scatter plot

In this procedure we selected TARGET_D, which describes how much money was
donated, as the predictable attribute. If we used TARGET_B, which indicates whether
customers donated, the chart would contain only two straight lines, while TARGET_D
shows more of the grouping pattern. We can see from Figure 6.3 that the data is distributed
across the states of the selected column fairly evenly, reducing the column's effectiveness
in a data mining model. Accordingly, we'll drop the column HC19 by using the procedure
outlined in "Cleaning the Data."

Looking at the Code Behind a Scatter Plot
Luckily, when it comes to scatter plots of numeric data, we don't have to worry about
dividing the data into discrete buckets. Therefore, scatter plots are much easier to code.
We only have to retrieve the values for the selected numeric column and the predictable
column, and then chart the results on a scatter plot. Of course, formatting this chart takes a
bit more work than the two-dimensional charts we've been using until now.

The code used to create a scatter plot is located in the If-Then portion of the If-Then-Else
statement used in the cbNumericPlot Click subroutine. For information about how to view
this code, see "Looking at the Code Behind a Numeric Histogram" earlier in this chapter.

84

Compared to the SELECT statements used to create histograms, the SELECT statement for
a scatter plot is much easier to construct. The cbNumericPlot_ Click subroutine just creates
a SELECT statement that returns both the selected numeric column and the predictable
column.

'If the user chooses to create a scatter plot from numeric data,
'the Boolean variable, blnChartHist, is False.
IfblnChartTypeHist = False Then
'Get the data from the table to create the scatter plot.
Set rsData = mdlProperties.cnDataPrep.Execute(11select 11 &
strNumericlnput & 11 as input, 11 & strPredicted & 11 as predicted FROM
[11 & fnnMain.strC!eanedTable & 11] 11)

It's more of a problem to format the chart control. To display the data points without a
line, the Show line property must be set to False and the Style, Size, and Visible
properties of the Marker must be set as shown in the following code.

'Initialize the chart control to display the data in a scatter plot.
With mscExplore
.Visible= True
.chartType = VtChChartType2dXY

· .Plct.Uniforni.Axis =False r-

.Plot.SeriesCollection(l).ShowLine = False

.Plot. SeriesCo llection(l). Series Marker.Auto = False

.Plot.SeriesCollection(1).DataPoints(-1).Marker. Sty le =
VtMarkerStyleFilledC ircle
.Plot.SeriesCollection(l).DataPoints(-1).Marker.Size= 80
.Plot.SeriesCollection(l).DataPoints(-1).Marker. Visible =
True

.. _-.:-:.·

98 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services
Like the histogram code we've already seen, all we have to do after selecting the data and
formatting the chart is to display it using the following familiar code.

Set mscExplore.DataSource = rsData
mscExp lore.Refresh

Numerically Exploring Data with a Correlation Matrix
While graphical explorations give us a good feel for the different columns in the table, it is
also nice to have a more concrete way of seeing how the columns interact. Using a
correlation matrix, we can investigate the relationships between the columns, and, more
important, the relationship between each column and the predictable column.

A correlation describes how one column changes in comparison to another column. For
example, an increase in a gas tax correlates with an increase in the overall cost of gasoline.
The value of a calculated correlation lies between -1 and 1, depending on the direction of

85

the correlation. If an increase in the values in one column corresponds to an increase in the
values in the second column, the correlation is positive. If the increase in the values in the
first column corresponds to a decrease in the values in the second column, the correlation is
negative. As the calculated value of correlation approaches -1 or 1, the correlation between
the attributes becomes stronger. A perfect con-elation returns a value of 1 or -1. To build a
correlation matrix, we'll construct a table that has a row and column for each column in the
source tab le. We' 11 then fill in the calculated values for the correlations so
that we have a value for each column against each other column. A pattern should appear
where a line of ones down the middle corresponds to each column being compared to itself.
The values on either side are- minor images of each other because the same columns are
being compared, just in a different order.
To calculate con-elation, we use the following formula:

= t"
y

ix
iyyx X

n
r
6 6 1
1

The problem with creating a con-elation matrix is that it can be extremely resourceintensive,
especially with a dataset as large as ours. If we work with all 317 numeric columns, we' 11
have to work through that equation 90,000 times! This can be done, but it takes a long time.
As an alternative, the Data Mining Tool gives us the choice of either calculating the entire
matrix, or just one row: each column versus the predictable column. Because we already
know which column the predictable column is, we are really most interested in how each
other column relates to it, because this will help us choose which columns to include in the
final data mining model. Because there is value in looking at how all columns relate to one
another, the Data Mining Tool also provides this option.

Now that we understand what a correlation is and how to calculate it, let's see what kind of
con-elations we find using the Data Mining Tool.

86

To create an abbreviated correlation matrix of the Cup98LRN_clean data
1. In the Data Mining Tool, click Explore.
2. On the Correlation Matrix tab, type Small_Matrix to name the matrix.
Note Make sure that the Calculate the entire matrix check box is cleared.
3. Click Calculate.
The abbreviated matrix is calculated and displayed on the Correlation Matrix tab, as
shown in Figure 3.12

Yru can explore the data using three techniques a scatter plot, a histogram, or a correetion matrix. 0 n the Charts tab,
you cen ether select ;a hi~togam or il $Catter plct for the. chart tjpe, and thEf"l selecl a ~ithef a numeric or '·1ar,~har
cdumn to view on the· form. 0 n the Corrdation tab, }OU can either cieete a new corelaion ma~ix, create an
etorevieted m:itri~ (which comoees each cdurnn only to the predictable cdumnL cr display an existing marix. To select
a new tebe to explore.iclose theExpore Model form and seect a new tsole.on the main form.

Figure 3.12 Correlation matrix
In the correlation matrix, we can see which columns correlate most closely to the
predictable column, and which do not seem to be affected by the change in values of the
predictable column. You may notice that some of the values do not fall within the expected
range of -1 to 1, or a column compared to itself does not return a value of 1. This is most
likely explained by the fact that not all columns contain data that is distributed normally,
which is an assumption of the correlation calculation.

Looking through the matrix in Figure 6.4, we can disregard columns such as:
• LFC5 (-0.0006)
• OEDCl (-0.0036)
• EC7 (0.001)

In fact, all of the ADATE columns have a very low correlation, which is related to the low

87

number of states that they contain. This matrix should be a good guide in choosing which
numeric columns to include in the model-building process. Note that each time we run this
routine, slightly different values are returned. This is expected because the routine is using
a sampled version of the original table to calculate the correlations. If you want to look at
the entire matrix, you can go ahead and calculate it now, but be prepared to wait a while!
By calculating the entire matrix, you will be able to see how columns are not only related to
the predictable column, but also how they are related to the other columns in the table.

Looking at the Code Behind the Correlation Matrix Tab
The code for the correlation matrix is in the cmdCalculateCorrelation Click -
subroutine. Open Visual Basic and follow along as we walk through the code.

To view the cmdCalculateCorrelation Click subroutine
1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data
Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.
3. Right-click frmExplore (frmExplore.frm), click View Code, and then locate the
cmdCalculateCorrelation Click subroutine .

..": Senlng.Up.forTwoLcops; _ ...
Our goal is to translate the correlation equation into workable code. That means we must
identify the various parts of the equation and determine how we can either obtain that
information or generate it.

Looking at the equation, we see that we need a record count for the original table. That's
pretty easy to calculate. We also see that we'll need the mean and standard deviation for
each column. That too is easy to calculate. We also see that we need some way to sum the
product of the values of every column against every other column. That is a bit more
complicated and requires embedding a loop within a loop. The outer loop selects a column
from the data, while the inner loop calculates the correlation value for that column against
all other columns.

The code used in the cmdCalculateCorrelation_ Click subroutine tackles all these tasks, but
not exactly in the order listed. The subroutine first creates two recordsets, rsColumns 1 and
rsColumns2, with identical schema information about each column in the table. We do this
by first creating a recordset, as usual, and then using the Clone function to copy all of the
information from the first recordset into the second. Because we are working only with
numeric columns, we set a filter on the recordset so that only numeric columns are visible.

Set rsColumns 1 =
mdlProperties.cnDataPrep.OpenSchema(adSchemaColumns, Array(Empty,
Empty, "[" & frmMain.strCleanedTable & "]"))
rsColumnsl.Filter = "[data_type] = 131"
Set rsColumns2 = rsColumnsl.Clone
rsColumns2.Filter = "[data_type] = 131"

88

As we'll see later in the code, these twin recordsets are the key to making the
embeddedloop approach work. They enable us to select a column from the rsColumns 1
recordset in the outer loop, and then, within the inner loop, use the columns in the
rsColumn2 recordset to calculate the associated correlation values.

Creating a Table for Correlation Values
Although we now have the recordsets we need to compare every column against every
other column, we don't have a place to store the correlation results. Thus, we need to create
a table to hold this matrix of calculated correlations. This table requires identical numeric
column names in both the first row and the first column.

To create the table, we need a string holding all of the column names, which can be
incorporated into a Transact-SQL SELECT statement. Because we are already filtering the
recordset by data type, we simply have to loop through the recordset, adding the column
names to the strColNames string. At the end of the routine, the column names form a
comma-separated list, with a trailing comma at the end.

Do Until rsColumnsl.EOF
strColNames = strColNames & rsColumnsl!COLUMN_NAME & ","
lngColumnCount = lngColumnCount + 1
rsColi.nnrist.MoveNext ··
Loop

Then, to clean up the strColNames string for use in a Transact-SQL statement, we need
to remove the final comma in the string. Also, because the loop to create the strColNames
string cycles through to the end of the recordset, we'll need to return to the beginning of the
recordset before starting another loop.

If Right(strColNames, 2) =","Then strColNames = Left(strColNames,
Len(strColNames) - 2)-
rsColumns.MoveFirst

With the final set of columns selected, the next step is to create the correlation matrix table,
setting aside the first column to hold the column names and then using the strColNames
string to populate the rest of the table.
strCreateTable = "CREATE TABLE[" & strCorrelationTable & 11]11 & _
"(Column_name varchar(20), 11 & Replace(strCoJNames,
" "

11 numeric(5 4) 11) & ' ' ' ' -
" numeric(5,4)" & ")"
mdlProperties.cnDataPrep.Execute (strCreateTable)

Getting the Raw Data and Its Averages and Standard Deviations As mentioned earlier,
there are more than 300 numeric columns in the table.
Counterbalance this with the fact that there are more than 90,000 rows, and you can see that
we are working with a huge amount of data. Because calculating the correlations is heavily
resource intensive, this could take a very long time! One way to solve this problem is to

89

sample the original table down to 1,000 rows, and then use this new table as the source for
the correlation matrix. Although we are working with less data, the results will still be
accurate enough to be able to compare columns based on their correlations. Because we
have sampled the original table, we also need to create new values for the mean and
standard deviations, which will be used in the correlation matrix calculations. In order to
sample the table, we call the same sampling routine that is used to split the table and create
an over-sampled table. For a description of this subroutine,

"Splitting the Data."
mdlSample.Create _ Table "Correlation_ Sample",
frmMain.strCleanedTable, strSQL Where, N ...
Okay, we have the sampled table of raw data, the recordsets that make the embedded loops
possible, and someplace to store the correlation values. We're almost ready to start the
number crunching. But note the "almost." We are still missing the averages and Standard
deviations required by our correlation equation for the new table we just created. We know
the last necessary value, the record count, because it is just the size of the new table.

We have to recalculate the mean and standard deviations because these values have
changed from the original table. If we do not update these values, our correlation
calculations will be inaccurate. Because we only use these values locally in this subroutine,
we can hold them in a local array. To calculate the values, we call the same

' · · · · Calculate __ Properties routine -- we us eel , to calculate the properties in Chapter "4~ · The
properties are then stored in a local array, so that they can be easily accessed later in the
routine.
mdlProperties. Calculate _Properties "Correlation_ Sample",
"strPropertiesTable"
Set rsProperties = cnDataPrep.Execute("SELECT * FROM
correlation_ sample __pr")
'Insert the values from the properties table into a local array
arrPropertiesTable = rsProperties.GetRows()

Calculating the Correlations
Before we calculate the correlations, we need a place to store them. Because we previously
created a table in the SQL Server database, we now only have to open it in a recordset and
disconnect the recordset. Remember that at this point the table does not hold any data, so
the table will hold only the column names with no rows. Accordingly, we will add a new
row to the recordset each time the code iterates through the outer loop, populating the
recordset with values.

Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services
The following code opens the new recordset, and then disconnect it.
With rsTable
.ActiveConnection = cnDataPrep
.CursorLocation = adUseClient
.LockType = adLockBatchOptimistic
.CursorType = adOpenStatic
.Source= "SELECT * FROM " & strCorrelationTable & '"'

90

.Open
Set .ActiveConnection = Nothing
End With
Originally we updated the table in the database each time the code iterated through the
loop, but with all of the calculations we are doing, this requires a lot of I/0.
Performancewise, it is much better to perform all of the calculations, filling the
disconnected recordset with values, and then update the table all at one time. Now, because
we have the option of creating either the a full matrix or just an abbreviated version, the
calculation section of the routine is split between the two options using the Boolean
variable blnTotalMatrix, and an If-Then-Else statement. The Boolean variable is set in the
click event of the chkTotalMatrix check box. If the check box is selected, blnTotalMatrix is
set to True, and a full matrix is calculated.

Calculating a Full Matrix
Now it's time to start crunching some numbers!
First we have to get the data from which we will calculate the correlations and store it in
the
rsData recordset.
strSQLSelect ="SELECT" & strColNames & "FROM Correlation_Sample"
Set rsData = cnDataPrep.Execute(strSQLSelect)
The routine begins to cycle through the numeric columns in the table, using the rsColumns
recordseCEach lime the- code iterates through the outer loop, a new- row i's' added tothe .·· ...
rsTable recordset and the first column, COLUMN_NAME, is populated with the name of
the selected column.
Do Until rsColumnsl.EOF
rsTable.AddNew
rsTable("Column _ name") = rsColumns 1 !COLUMN_ NAME

To calculate the correlation, we need the mean and standard deviation for the selected
column, which we get from the arrPropertiesTable array and store in local variables.

We first have to check to make sure the calculated values for the mean and Standard
deviation are not null; otherwise, an error will be thrown later in the routine. The numbers
3 and 4 signify the location in the properties table for the mean and standard deviation.

sngXAvg = IIf(IsNull(arrPropertiesTable(3, lngColumnl)),
sngXAvg, arrPropertiesTable(3, lngColumnl))
sngXDev = IIf(IsNull(arrPropertiesTable(4, lngColumnl)), 0,
arrPropertiesTable(4, lngColumnl))

Notice the lngColumnl variable. This defines the position of both the mean and standard
deviation values, and the column ID in the rsData recordset, which holds the raw data
that will be used for the calculations. It is incremented each time the code cycles through
the rsColumnsl recordset, for each column. There is an equivalent variable, lngColumn2,
for the rsColumns2 recordset.

After getting the properties for the column in the rsColumns 1, the code begins to cycle

91

through the columns in the second recordset, rsColumns2. In this way, the code
calculates the correlation between the selected column in rsColumnsl and every column
in rsColumns2. The code also gets the mean and standard deviation from the
arrPropertiesTable array for the selected column in rsColumns2, and stores them
in a local variable.
Do Until rsColumns2.EOF
sngYAvg = IIf(IsNull(arrPropertiesTable(3,
lngColumn2)), sngYAvg, arrPropertiesTable(3, lngColumn2))
sngYDev = IIf(IsNull(arrPropertiesTable(4,
lngColumn2)), 0, arrPropertiesTable(4, lngColumn2))

Now we have everything we need to calculate the correlations. But before we do so, we
need to make sure that the standard deviation for both columns is not equal to zero. If it is,
we will be dividing by zero in the calculations, which causes an error. If both deviations are
not zero, the code begins the loop to calculate the correlations. Because calculating the
correlations involves a summation, we create a loop that cycles through each row in the
recordset, rsData, grabbing the necessary values and adding them to the values already
calculated in the sngCorrelation variable.

If sngXDev = 0 Or sngYDev = 0 Then
sngCorrelation = 0

- Else- - - - - - -
Do Until rsData.EOF
106 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services
sngXValue = IIf(IsNull(rsData(lngColumnl)),
sngXAvg, rsData(lngColumnl))
sngYValue = IIf(IsNull(rsData(lngColumn2)),
sngYAvg, rsData(lngColumn2))
sngCorrelation = sngCorrelation + ((sngXValue
- sngXAvg) I sngXDev) * ((sngYValue - sngYAvg) I sngYDev)

- rsData.MoveNext
Loop
End If

Within the loop we check to see if the selected value is null. If the value is null, it is
replaced with the average value, effectively negating its contribution to the correlation
calculation. If we didn't do this, an error would be raised, because a mathematical
calculation cannot be performed on a null value.

Outside the loop we then insert the correlation value into the disconnected rsTable
recordset. Notice that we increment the variable lngColumns2 by l, because this column
already holds the column name for the row of the matrix. We also move to the next row in
the rsColumns recordset, return to the first row in the rsData recordset, and increment the
lngColumn2 variable, which specifies the column that we are working with in both the
arrPropertiesTable array and the rsData recordset.

rsData.MoveFirst

92

sngCorrelation = sngCorrelation I (N - 1)
rsTable((lngColumn2 + 1)) = round(sngCorrelation,4)
lngColumn2 = lngColumn2 + 1
sngf.orrelation = 0
rsColumns2.MoveNext
rsData.MoveFirst
Loop
Outside of the inner loop, we move to the first row in the rsColumns2 recordset, set the
lngColumn2 variable to zero, increment the lngColumnl variable by 1, move to the next
row in the rsColumnsl recordset, and move to the next row in the rsTable recordset to
be filled with correlation calculations.

lngColumn2 = 0
lngColumnl = lngColumnl + 1
rs Col umns2 .MoveF irst
rs Co 1 umns l .MoveN ext
rsTable.MoveNext
The code also displays the number of rows inserted into the correlation matrix on the form
to keep the user updated.
txtRowCount = CVar(lngCount)
txtRowCount.Refresh

- Loop · ' __ .,._
This continues until the matrix is filled with all of the correlation values. Now let's look at
how we create an abbreviated matrix. If the chkTotalMatrix check box is cleared, the value
of the blnTotalMatrix variable is False, and an abbreviated matrix is calculated.

Calculating an Abbreviated Matrix
If a user is working with a very large table and doesn't want to wait for the complete matrix
to be filled, we create an abbreviated matrix displaying the correlation of each column
against only the predictable column, TARGET_B.
There is not much difference between these two versions ·of the matrix. Instead of using
two embedded loops, we only need to re-create the inner loop from the previous section,
which compares each column to the predictable column. In order to know where the
predictable column lies in the arrf'roperties'Table array and rsData recordset, we create a
new variable, lngPredict, that is set in the loop that creates a string of columns that will be
in the table. Within the loop, we look for the column with the same name as the predictable
column, and then store the corresponding ID.

If rsColumnsl!COLUMN_NAME = PREDICT Then lngPredict = lngCount Using the
column position, we can then get the mean and standard deviation for the predictable
column and store them in local variables.

sngY Avg= arrPropertiesTable(3, lngPredict)
sngYDev = arrPropertiesTable(4, lngPredict)
108 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services
We then add the only new row to the rsTable recordset, because we are only calculating the
correlation values against the single column.

93

rsTable.AddNew
rsTable("Column_name") = PREDICT

The way in which we calculate and store the correlation values is exactly the same as the
inner loop in the previous method; we just do it once instead of cycling through all of the
columns a second time.

Do Until rsColumnsl .EOF
sngXAvg = IIf(IsNull(arrPropertiesTable(3, lngColumnl)),
sngXAvg, arrPropertiesTable(3, lngColumnl))
sngXDev = IIf(IsNull(arrPropertiesTable(4, lngColumnl)), 0,
arrPropertiesTable(4, lngColumnl))
If sngXDev = 0 Or sng YDev = 0 Then
sngCorrelation = 0
Else
Do Until rsData.EOF
sngXValue = IIf(IsNull(rsData(lngColumnl)), sngXAvg,
rsData(lngColumn 1))
sngYValue = IIf(IsNull(rsData(lngPredict)), sngYAvg,
rsData(lngPredict)) sngCorrelation = sngCorrelation +
·c(sngXValue- sngXAvg) I sng.Xfrev):" =((srtgYVa:1ue':: srigYAvg) 1- .
sngYDev)
rsData.MoveNext
Loop
sngCorrelation = sngCorrelation I (N - 1)
rsTable((lngColumnl + 1)) = Round(sngCorrelation, 4)
rsTable((lngColumnl + 1)) = sngCorrelation
rsData.MoveFirst
End If

- .sng'Correlation = 0
lngColumnl = lngColumnl + 1
rsColumns l .MoveNext
Loop

We now have the correlations for each column against the predictable column. Using this
will help us to choose which columns to include in the final mining model, because we only
want those columns that correlate most closely with the predictable column. After
completing the calculations, using a FlexGrid control, we display the data stored in the
correlation table on the form.

strSQLSelect = "SELECT * FROM [" & strCorrelationMatrix & "]"
Set rsData = mdlProperties.cnDataPrep.Execute(strSQLSelect)
Set hfgCorrelation.DataSource = rsData
Splitting the Data
Okay. We've cleaned, transformed, and explored the data. Now what? Build data mining

94

models? Not quite yet-there are still a couple of things we need to do with the original
table.

First, we need to create a new table to hold the columns that we will use to create the
models. In the previous two chapters we cleaned and explored the data. We now have to
take what we learned and use it in deciding which columns to use in the model. To save
time, the following 20 columns have been preselected:

A VGGIFT GENDER NUMPROM
POP901 2 HOMEOWNR PETS
CARDGIFT LAST GIFT ODA TED W2
CARDPM12 MAJOR RAMNTALL
CARDPROM MAXRAMNT TARGET B
CONTROLN MINRAMNT VETERANS
DOB NGIFTALL

Through your explorations, you may decide on different columns, or you may choose a
subset of these columns. Feel free to experiment and see how your models differ from the
ones we build in this solution. To create a new table, we will use the functionality in the
Manage Tables form that allows us to select specific columns and copy them into a new
table. To create the new table, select the columns listed here from the cup98LRN _ clean

"' table, and insert theminto anewtablecalled cup98LRN _Select - - - - ---"-> - - -- --- - ·- ';. - -

Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services
Second, if you remember from Chapter 2, modeling and predicting depend on having both
a training (model-building) and testing (validation) dataset. With the training table we
apply a data mining algorithm to learn the hidden patterns in the data to accomplish a given
objective. Using the testing table, we find out how well the trained model performs in its
ability to predict whether someone will donate money. Because you often have only a
single table or dataset with which to work (as in our scenario), at some point you have to
artificially create the training and testing tables from the original dataset We have now
reached this point.

The goal when splitting a table is to separate that table into two unique tables that each
accurately represents the original table. To achieve this objective, we need to make sure
that:
• Both tables have the same structure-the same columns must exist in both datasets and
the columns must have the same names.
• The rows in the training table do not also exist in the testing table-rows are unique to
each table.
• A sufficient number of rows exist in each table to allow us to build a good model, yet still
have enough data left to perform a good validation. For this solution, we'll split 60 percent
of the data into the training table and the remaining 40 percent into the testing table.
• The distribution of data in the input and predictable columns is approximately the same
for both tables.

95

So how will we split the tables without introducing a bias? If we just choose the top 60
percent of the rows for one table and the bottom 40 percent of the rows for the other, we
can never be sure that each table holds a true representation of the original data. Do we
know that the data was randomly distributed throughout the sample? What if the first 1,000
rows only contain information about people from Washington (WA), while the last rows
contain information about people from Alaska (AK)? What if the rows were inserted
alphabetically or by the date of their creation? In any of these cases, just siphoning off the
first chunk of data into a training table excludes vital information that exists in later rows,
and, therefore, can create an inaccurate model. If we then tried to use the remaining data as
the testing table to test the model, the information excluded from the training table could
throw off the testing results.

The third task we will need to perform in this chapter is to create an over-sampled version
of the training table. An over-sampled table artificially increases the state of the column
that we want to predict. The positive result of the predictable column is fairly
underrepresented in all of our tables, so we might be able to make a better model by
creating an over-sampled version of the training table. The best way to determine how
much of a difference this makes is to create a model based on both versions of the table,
and investigate the predictive differences between the two, which is what we will do in the
model-building section.

3. 7.Splitting 'theData ..

In this chapter, we use the Data Mining Tool to split the table. Then we'll look behind the
scenes at the code in the Data Mining Tool that makes this work.
Note For an explanation of the Manage Tables form and for more information about
oversampling,
see Appendix, "Managing Tables."

Trying Out Table Splitting
to split the original table correctly, there are two critical tasks that we need to do-track
the rows, so that we can ensure the uniqueness of each table, and select rows randomly for
each table. As you'll soon see in detail, we'll find some pretty good ways for Microsoft®
SQL Server™ to accomplish each of these tasks. We first have SQL Server create a new
table that we'll use to track which rows we use in the training-and testing tables. We then
start to populate those tables using a cool little Transact-SQL statement that randomly
selects rows from the original table.
Saving the more detailed discussion of these tasks for later, let's try the code out and split
the original table in two.

To split a cleaned table into two separate tables
1. In the Data Mining Tool, click Split.
2. For Original Table, type cup98LRN _ select.
3. In the Table used to create the models section, type the following options:
For Table name, type cup98LRN_Model.

96

For # Rows, type 57,000. This is the number of records to be included in the training
table.
4. In the Table used to validate the models section, enter the following options:
For Table name, type cup98LRN_Test.
For# Rows, type 38,000. This is the number of records to be included in the testing table.

5. Click Sample.
At this point, the Data Mining Tool creates the two new tables based on the information we
just entered. Then the tool calculates the percentage of positive and negative responses in
the predictable column and displays these results on the form.
The percentages shown allow us to see how well the new tables represent the data in the
original table. As Figure 7.1 shows, the percentages in the new tables are very close to
those
in the original table and should work fine.

To splillhe. data. into two tables, select a source table, type names for the two new tables, and select the number of
rows to include· in each new table:

Figure 3.13 The calculated percentages from splitting the table
After you have created the training table, create an over-sampled version of the training
table, forcing the table to contain 80 percent negative values and 20 percent positive values
in the predictable attribute. We use this in the model-building stage.

To create an over-sampled table
1. In the Data Mining Tool, click Manage Tables.
2. Click Sample.

97

3. On the Small Table form, do the following:
Select Create an over-sample of a table.
For% Positive, type 20.
For Original table, type cup98LRN_Model.
For New table, type cup98LRN_ModelOS.

4. Click Sample.
Let's now look at the code that splits the table.

Looking at the Code Used to Split the Table
So we know that we can't just take a chunk of data from the original table and move it to
the new table, but what are we going to do? We can use the idea of random sampling to
randomly select rows from the source table and insert them into the training table. Between
Microsoft Visual Basic® and SQL Server, we have all the tools we need to do this. Visual
Basic provides a way to define how we want to create the tables. SQL Server provides a
way to create a query that randomly compiles rows from a destination table and inserts
them into a new table.

In this section, we'll first look at the code used to create, maintain, and calculate
percentages for the various tables used within the splitting process. All of this code resides
within the cmdSamp le_ Click subroutine. The way in which we populate these tables with

__ - .data .is discussed later in this . chapter: .. 1 o. .see .this .code, in . context, open Visual .Basic_ and ..
walk through the code as we talk about it.

To view the cmdSample _ Click subroutine
1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data
Mining\DM Sample folder, and double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.
3. Right-click frmSplit (frmSplit.frm), click View Code, and then locate the
cmdSample _ Click subroutine.

Guaranteeing Uniqueness
To create two tables, each originating from the same source table, we need to ensure that
we don't insert the same record into both tables. That is, we need to guarantee the
uniqueness of records between the tables. If we don't do this, some of the data used to
create the model could also be used to test it, and that is not very scientific.
To perform this random sampling, we need:
• A unique identifier for each row in the source table.
• A pool of data from the source table from which to draw the rows.
•Away to keep track of which columns have already been used in each table.
• A way to randomly select columns from the source table.
To guarantee this uniqueness, we need to store information, such as the row ID (controln),
for each table that is created by splitting the original table. For example, when randomly
selecting a row for the validation table, we need to ensure that the pool of data being
sampled does not include ro~s already inserted into the training table.

98

To keep track of the data used by the training and testing tables, we create another table,
Userids. This new table contains two columns:
• The USER_ID column contains the controln value for each row randomly selected from
the original table.
• The USED column contains a value of 1 if we use the corresponding controln value to
creating either the training or testing table.
The second column is necessary when we are trying to create multiple tables from the same
source data.
To explain how we use the Userids table, let's look at what happens to the table as we
progress through the splitting routine. Upon entering the routine, the table is created, and is
therefore empty. As we sample rows for the training table, the Userids table is slowly
populated with the controln values corresponding to the selected rows. When it comes time
to actually create the training table, a join is created between the Userids table and the
source table, populating the training table with data. When we create the testing table, we
do not want to use columns that already have been used by the training table, so we need to
save the previously used controln values. But at the same time, when we perform the join
we want to include only the new IDs that have been added to the Userids table for the
testing table. For this reason we populate the USED column of the table with a value for
each controln used in the training table. When the Userids table is populated with controln
values for the testing table, we can still join the two tables to create the testing table by
ignoring those IDs that have a corresponding value of 1 in the USED column. In this way,
tne·USED·column 'guarantees uniquenessbetween the twotablesHereis the Transact-SQl.
statement used to create the Userids table.

strSQLCreate = "IF EXISTS(SELECT TABLE_NAME FROM
INFORMATION SCHEMA.TABLES WHERE TABLE NAME
TABLE
Userids CREATE TABLE Userids (User_ID Numeric NULL," & _
"Used VARCHARNULL)"
mdlProperties.cnDataPrep.Execute (strSQLCreate)

· As you cansee, the statement first checks to see if the table exists, and -if so, drops and
recreates it. We are able to drop an existing Userids table because we only have to worry
about uniqueness when creating the training and testing tables. If the Userids table already
exists, a set of training and testing tables exist and already contain unique rows. The user
can either use these existing training and testing tables or create new ones, in which case
we will be populating a fresh Userids table anyway.

'Userlds') DROP

Removing Existing Training and Testing Tables
With the Userids table all set to manage uniqueness between tables, we now check to see
whether either the training or testing table exists in the database. If so, we give the user the
option of either replacing the contents of the existing tables or returning to the form to enter
new table names and create new tables. We will check to see if tables exist throughout this
project, so we made this into a separate function that does all of the work.
Because we check for the existence of more than one table, we cycle through control array
txtSampleTableG)using the index, j.
For j = 0 To (lngTableCount - 1)
If Not md!Properties.Check_Table_Exist(txtSampleTableU).Text)

99

Then
Go To Exit_ cmdSample _ Click
End If
Nextj
Let's look at how that Check Table Exist function works.

Walking Through the Check_Table_Exist Function
This function, returns either a value of False (meaning that the table exists and we should
exit the routine) or a value of True (meaning that the table does not exist or has been
dropped and we can continue). The first step is to initialize the function to False.

Check Table Exist = False - -
The function then calls another function, Check_ Table_ Created, which searches the
database for the table name. If it returns a value of True, the Check_ Table_ Exist function
displays a message box asking if the user would like to drop the table or exit the routine.
If Check_Table_Created(strTable) = True Then
If MsgBox("" & strTable & "table already exists in the
database. Would you like to drop the table and recreate it?."_
, vbYesNo) = vb Yes Then
strSQLDrop = "Drop Table[" & strTable & "]"
cnDataPrep.Execute (strSQLDrop)

- Check Tabre- E-xisf=c True - - :-·- --- · ·
End If
Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services
Else
Check Table Exist = True - -
End If
If the table does not exist or if the user opts to drop the table, the function is set to True;
otherwise, it remains False. The calling routine then uses the state of the function to
determine whether to exit the routine or not.

Calculating Percentages in the Original Table
Because we need to measure how well the new tables represent the original table, we
calculate the percentage of "yes" (1) and "no" (0) values in the TARGET_B column (the
predictable column) of the original table, and display these values on the form. (Later on,
we'll calculate these same values for each of the new tables.) To get the percentage, we first
find the number of records in the original table as well as a count of the records in the
PREDICTED column (set to TARGET_B) that have a positive response of l. We do this
by using a recordset and a SELECT statement.
'Get the original percentages of yes and no responses in the
table.
strSQLSelect = "SELECT COUNT(controln) AS countl," & _
"(SELECT COUNT(" & PREDICTED & ") FROM [" &
strTable & "] " & _
"WHERE" & PREDICTED & "= 1) AS count2 FROM["
& strTable & "] "

100

Set rsRecordCount =
mdlProperties.cnDataPrep.Execute(strSQLSelect)
lngRecordCount = rsRecordCount!Countl
At this point, we have both the total number of rows in the original table and the number of
rows with a positive response in the PREDICTED column. All we have to do is divide the
number of rows with a positive response by the total number of rows, multiply by 100, and
get the percentage of "yes" responses in the original database. For the percentage of "no"
responses, we just subtract the percentage of "yes" responses from 100. Here's the code
that
does all of that.
sngPercentYes = (rsRecordCount!Count2 I lngRecordCount) * 100
sngPercentNo = 100 - sngPercentYes txtTableYes.Text =
CVar(sngPercentYes)
txtTableNo.Text = CVar(sngPercentNo) Pretty simple, really. It starts to get a bit more
complicated (but not too much) when we have to calculate these percentages for both the
training and testing tables.

Calling the Sampling Routine
Because we use the sampling routine in several places, it is more efficient to create a
function that randomly samples a selected table, which can then be called as necessary. For

... this _reason, the code ts split into two sections, one that manages the tables _and calls the
- - sampling functfon and one that describes the sampling function being called. Ali right, it's
time to actually start creating the sampled tables! To do this, we set up a loop that calls the
Create_Table function (found in the mdlSamples module) for both the training table and
testing table. The Create_ Table function allows us to randomly select a row for insertion
into the table currently being created. We'll discuss this function in detail in a bit. For now,
all we need to be aware of is the need to pass the following variables to the Create_Table
function:
• txtSampleTable(j).text-the name of the table we are creating
• strTable-the name of the original table
• strSQLWhere-· ·. the WHERE clause of the Transaci-SQL statement that returns the
pool of available data
• txtSampleNumber(j).text-The number ofrows to include in the new table
The reason for all of these should be obvious, except for the WHERE clause. As you will
soon see when we describe the sampling function, a Transact-SQL SELECT statement is
built that returns the pool of available data. The needs of the pooled data change for each
sampled table that is created-in one case we may want to create a sampled table based on
the entire original table, while in other cases we may want to exclude rows based on the
outcome of a specific column. Regardless, we need a mechanism for choosing which data
to include, and this is provided by the WHERE clause. Using the WHERE clause, we
specify constraints that we want to impose on how data is chosen from the original table. If
it is leftempty, the routine assumes that no constraints exist and uses the entire source table
as the pool of data.
In this case, the WHERE clause is empty because no additional constraints are required.
strSQL Where= ""
So let's start the loop that creates a sampled table for both the training and testing tables.

101

The first step in the loop calls the Create_ Table function, passing in the appropriate
values.
For j = 0 To (lngTableCount - l)
mdlSample.Create _ Table txtSampleTableU). Text, strTable,
strSQL Where, CLng(txtSampleNumberU).Text)
Just as in the original table, we now need to calculate and display the percentage of positive
and negative values in the PREDICTED column to check how each new table compares to
the original table.
strSQLSelect = "SELECT COUNT(" & PREDICTED & ")FROM[" &
txtSampleTable(j).Text & "] WHERE" & PREDICTED & "= 1"
Set rsData = mdlProperties.cnDataPrep.Execute(strSQLSelect)
txtYes(j) = (rsData(O) I CVar(txtSampleNumber(j).Text)) * 100
txtNo(j) = 100- CSNG(txtYes(j).text)
Nextj
And that's it for the cmdSample_Click subroutine. Now let's look at how the Create_Table
sampling function called by this subroutine works.

Random Sampling
The sampling function is called for three different purposes throughout this solution:
• To create a smaller version of a table-one with fewer rows
• To create an over-sampled table

- - -. To splitatableinto two smaller tables
If you remember from Chapter 1, we had the opportunity to create a sampled version of
table-one with fewer rows. We will also use the over-sampling functionality later on in
the model-building phase. As far as we are concerned now, the routine is being used to split
the source table in two.
Recall that the function takes four parameters-the new table name, the source table name,
the Transact-SQL WHERE statement that defines the pool of available data, and the
number of sampled rows to insert into the new table. So how do we create the new table?
To view the Create_ Table public function

1. ·. Browse to the C:\Program - Files\Microsoft NESBooks\SQLServer2000\Data
Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Modules.
3. Right-click mdlSample (mdlSample.bas), and then click View Code.
There are actually a couple of ways to sample the table, one more typical and the other new
and exciting. First let's talk about the more common way.
The concept is simple-we need to randomly select a row from a source table and insert it
into a new table. The typical way to do this, either using a stored procedure or in Visual
Basic, is to use a random-number generator to generate a column key identifier, grab the
associated row, insert the row into a new table, and then store the key column identifier to
ensure that the row is not selected again. Going row by row, you can see that this would
tum into a very time-consuming process. We first created a procedure to do this in Visual
Basic using a disconnected recordset. As the project progressed, we wanted to move more
of the resource-intensive calculations to the server, and we decided to change this into a
stored procedure. In researching the stored procedure, we found a new way to create a

102

random table using just a few lines of Transact-SQL. Now be careful when you use this,
because it only works with SQL Server 2000.

SELECT TOP 1000 controln user id
INTO testl
FROM dbo.cup98LRN
ORDER BY NEWID()

With just four lines of code we have created a new, randomly sampled table. The way this
works is pretty cool. The NEWID() function creates a unique, random identifier for each
row in the table. By using an ORDER BY clause, those random numbers become ordered,
which effectively randomizes the order of the rows in the table. By taking the top n number
of rows and inserting them into a new table, we have effectively created a new, random
table with n number of rows. This little bit of Transact-SQL code effectively takes a pretty
complicated routine and simplifies it down to creating a Transact-SQL statement to send to
the server.
So the first thing we do is create the following statement.

strSQLUserID = "INSERT INTO Userids SELECT TOP" & lngSampleNumber &
" controln" &
"FROM [" & strTable & "] WHERE " & strSQL Where & "
not exists " & · · ·- · ·
122 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services
"(SELECT* FROM Userids WHERE user_id = [" &
strTable & "].controln) " & _
"ORDER BY NEWID() "

Notice that we are only grabbing the random controln values for the rows and inserting
them into the Userids table. Later we will create a join between the Userids table and the
source table to create the final sampled table. Notice that the USED column in the Userids
table remains null. This signifies that controln has not yet been used to create a new table in
this routine.
So now we have a statement that creates a table holding two columns, a column holding the
randomly selected controln values and a column holding an identifier signifying whether
the row has already been used somewhere within the calling routine. And we have the
source data from the original table. We now only have to create a Transact-SQL statement
that joins the two tables together on the row ID where the USED column in the Userids
table is null. This returns all of the rows from the source table that were randomly selected
in the statement we used earlier. Here is the Transact-SQL statement that joins the two
tables.
strSQLSelect = "SELECT * INTO [" & strNewTable & "] " & _
"FROM [" & strTable & "] AS OT JOIN Userlds AS " & _
"UT ON OT.controln = Ul.User Id" & - -
"WHERE ui.used IS NULL ALTER TABLE[" & strNewTable
& "] "&_
"DROP COLUMN user_id, used" & _
"UPDATE userids SET used = 1 WHERE used IS NULL"

103

Notice that the last line of the statement updates the Userid table so that all of the rows we
just inserted into the new table are marked as used. It does this by updating to 1 the values
in the USED column that were previously null.
We then combine the two statements into one statement to reduce trips to the server, and
execute the statement.
strSQLFull = strSQLUserID & strSQLSelect
cnDataPrep.Execute (strSQLFull)
A sampled table has now been created from the source data containing as many rows as
specified by the user.

3.8.Building and Validating the Models

We've finally made it! After all the work we've done cleaning and organizing-making
sense out of that mountainous collection of data, it's time to build some data mining
models. For all of its importance, this is probably the easiest task in the project to complete.
We only need to select the columns we want to include in the model, give them appropriate
parameters, and process the new model.

We will build two models, each using different attributes and different algorithm
_p::ir.aiw~tqs, which means that we willalso need to compare how effective the models are in .

. ' - - - - ·- .· . - - . -·- ... - - ,_ -· - .. •-·. ·-. - . - ·-
predicting which customers will donate money. It would not be good to put a model into
production without testing its predictive ability. We will do this using a lift chart, which
was briefly explained in, "Defining the Problem."
Now let's build some models!

Building the Models
Splitting the data was an important step because it allows us to create the models and test
them using data derived from the same source. We will now take advantage of this, using
the training table, to build the models.
Our goal for the 'project is to build a mining model that will allow us to fulfill the objective.
outlined in, "Defining the Problem." It is important to keep in mind that we want to build a
model that predicts the values in the TARGET_B column-whether someone will donate
money in response to a mailing. This in turn will reduce mailing costs and save the boss
money. Accordingly, in this step we will build two models: one from a regular dataset and
one from an over-sampled dataset.
Through all of the cleaning and exploring tasks, we have been able to eliminate many of the
original columns in the base table. Of the remaining columns, we need to choose those that
will most likely aid us in getting the information that we want to predict. While building a
model using all 317 remaining columns is possible, it would be resource intensive to
process and difficult to understand. It is better to choose columns that we can justify as
being interesting to include in the model. For example, a mailing code and full address is
redundant information; for our purposes, just the mailing code is sufficient.

Each column that we include in the model can be parameterized in several ways, which can

104

have a profound impact on how the model is created. Let's look a little closer at how we
can parameterize a column.

Column Parameters
When we add a column to the model, we need to decide what type of a column it is. Will it
be used to identify records (a key column) or as the final column we want to predict? Are
its values continuous or discrete? How is the data distributed within the column?
Here are the properties we can use to define a column:
• Data type
• Usage
• Related to
• Distribution
• Content type
• Modeling flags
For this solution, we will only work with the Data type, Usage, and Content type column
properties. The Data type property describes the kind of data that is in the column, either
numeric (single), or for this solution, varchar. The Usage property signifies whether the
column is an input column, a predictable column, or both. The Content type property
describes data in the columns, which in this solution means they are either continuous
(numeric columns) or discrete (varchar columns). Also, remember that the predictable
column must be discrete in order for us to be able to build the model-if its type is
anything- other than discrete; an error is raised. P-of more tnformatiori about these-properties
and the ones that we did not use, see SQL Server Boks Online.
Now let's see how the algorithm can be parameterized.

Model Parameters
We will build the models using the Microsoft Decision Trees algorithm, which has two
adjustable parameters: COMPLEXITY_PENALTY and MINIMUM_LEAF_CASES. The
COMPLEXITY _PENAL TY parameter inhibits the growth of the decision tree. A low
value decreases the likelihood of a split, while a high value increases the likelihood. The
default value is based on the number of columns for a given model:
• For 1 to 9 columns, the value is 0.5.
• For 10 to 99 columns, the value is 0.9.
• For 100 or more columns, the value is 0.99.

Increasing the complexity penalty moves the model from being more general to more
detailed. A higher complexity penalty slows the growth of the tree, making it harder for the
algorithm to generate more branches. The complexity penalty raises the bar on whether a
split should occur at a certain point. ·
The MINIMUM_ LEAF_ CASES parameter determines the minimum number of leaf cases
required to generate a split in the decision tree. The default number of cases is 10. This
means that a split cannot be generated based on a single value-if only one person in the
dataset is from Alaska, the algorithm cannot use this as a reason to create a split.
For more information about the algorithms and their parameters, see the SQL Server 2000
Resource Kit, SQL Server Books Online, and Preparing and Mining Data with Microsoft
SQL Server 2000 and Analysis Services. There are also several good third-party books
about data mining that give a more in-depth look into using decision trees.

105

Trying Out the Model Building Task
As we look at the Create Mining Model form, we can see that it is divided into three
sections. In the first section, we'll select an Analysis server, a data source, and a model
name. Here we are defining the type of model we're building and where the data is coming
from to build it. We don't actually populate the model with data until we add columns to
the model and process it. The following steps describe how to build the models.

To select an Analysis Server and create an empty model
1. In the Data Mining Tool, click Model.
2. In the OLAP server text box, type Localhost.
3. In the Database text box, type DM _ OLAP.
4. For Data source name, type cup98LRN.
5. For Model name, type DM_Tree.
6. Select Decision tree, and then click Create.
An empty decision tree shell named DM_Tree has been created on the Analysis server and
added to the tree control on the form. We can now begin to populate it with columns and
process it.

Notice that for these models we did not change any model parameters using the Model
parameters text box. When you build your own models, use this text box to change model
parameters arid see howthey affect the models: Enterthe parameter 'and 'its-new value as·
you would in Analysis Manager. For example, you can change the complexity penalty by
typing COMPLEXITY _PENALTY= 0.6 in the text box.
For more information about changing these parameters, see SQL Server Books Online. In
the second section of the Create Mining Model form, we'll select the tab le that holds the
columns we're adding to the model, and then we'll select a column. When we set the data
source in the first section, we were only directing the model to the appropriate database;
now we have to choose a table from that database-the cup98LRN_Model table.
We'll then define how the column is used by the mining model, and we'll add it to the

- - - model. - - ·

,... - ~::.. - -

To select a table and column from the data source and parameterize the column
1. In Select an origin table, select cup98LRN _ Model.
2. In Select a column, select A VGGIFT.
3. Parameterize the column:
For Data type, select single.
For Usage, select input.
For Content type, select continuous.

3. Click->.

The column is now added to the tree control, under the model name DM_Tree. Repeat this
procedure, adding each column in the following table, and parameterize the columns as
described. Note When parameterizing the CONTROLN column, you must also select the is
case key checkbox because this column is the key column.

106

CiRDGIFT'

CARDPMU

CARDPROM;

CONTROLN

GENDER

HOMEOWNR·

LASTGIFT

MAXRAMNT

MINR:AMNT

NGIFTALL

ODATEDWa

NT.ALL

Sing.le rnput
Single Input

Single I
Single Input

Char Input

Char Input

Single ln,:rut

Char. Input

Single Input

Single Input

Continuous

Continuous

Continuous

Single

Single

Continuous Input·

Input C,ontinuous

Single Input.and
predictable

. , Ctscrete

.Input

In the first step we created the shell for the model, but by clicking Process we are actually
passing the data through the shell and creating the relationships that define the model.
To process the model

• Click Process to train the mining model.
Now that the model is processed, we have a working model that we can browse through
and base predictions on. After we have browsed through this first model, we will repeat the
process, using the over-sampled table as the data source. We can then test the effectiveness
of the models using the validation dataset we created in Chapter 7, "Splitting the Data," and
the lift chart.
Now we'll use the same procedures to make another model, which is based on the
oversampled table we created in the Chapter 7, "Splitting the Data." To make the model,
we will use the same Analysis server, the same data source, but a different source table
(cup98LRN_Model_OS) and model name (DM_Tree_OS). Select and parameterize the
same columns that are displayed in the table earlier in this section.

107

Later on, we'll use graphical representations to compare these models. But before we do
that, let's take a look behind the scenes at the code that makes all of this work.

Looking at the Model-Building Code
Let's look at the tasks that various subroutines accomplish during the model-building step.
Open Visual Basic and follow along as we walk through the code.
To view the form frmCreateModel.frm

1. In Windows Explorer, browse to the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click the
DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.
3. Right-click frmCreateModel (frmCreateModel.frm), and then click View Code.
The code is broken up into four main areas:
• Creating a connection
• Building the model shell
• Adding columns to the model shell
• Browsing the model
Let's first look at what we have to declare before we get heavily into the code .

. - _-, ··--·"- :·~-- ... - ·- .- - - :- ·- --- .. _-;·~--.-- - .. ·--·- -·- - -_-. _

The mapTree2Column collection stores the columns that are added to the model. This
allows us to see a visual representation of the columns that we have added to the model.
Private mapTree2Column As Collection Because we are now working against an Analysis
server instead of SQL Server, we open a new connection to the Analysis server using the
DSO.Server object. The DSO.Server object is the only Decision Support Objects (DSO)
object that can be instantiated as new.
Private srv As New DSO.Server The next variables deal with defining the new mining
model. The database and other objects cannot be accessed directly, but instead are
referenced through the MDStore object. For example! '1: new database must be created
through the MDStore object.
Private mds As DSO.MDStore We also need to define a new mining model and mining
model data source. If you remember, we set up a new Analysis server database and data
source in "Setup."
This new dsmm object references that data source.
Private mm As DSO.MiningModel
Private root As Node, parentNode As Node
Private dsmm As DSO.DataSource
The last two variables are used in creating the DSO connection strings. Because different
providers can user different characters to distinguish the open and closed quote delimiters,
we need to get them from the dsmm data source and store them for later use.
Private LQuote As String, RQuote As String

Create the Connection
The first thing we have to do is create a connection to the server. Remember that we are
working with two different servers: the SQL Sever that is holding and organizing our raw

108

data, and the Analysis server, where the models are built and administered. So, before we
create the models, we need to connect to the previously created Analysis Services database.
We first connect to the server. Because Analysis Services uses Windows Authentication for
security, we only need to provide the server name.
srv.Connect txtServer.Text
Next we set the mds variable equal to the data source. Remember that we cannot reference
the database directly. Instead, we have to reference it through the MDStores object. -
Set mds = srv.MDStores(txtDatabase.Text)

After setting the proper connections, we give the user access to the controls that he or she
can use to create the model.
txtDataSource.Enabled = True
txtModelName.Enabled = True
optC.Enabled = True
optDT.Enabled = True
btnCreateModel.Enabled = True
The user can now begin defining and adding columns to the model and create the model.

Defining the Model
We will now define the type of model to build (clustering or decision tree) and add it to the
Analysis Services database. Remember that we are actually just creating the shell for the
model. We 'stilt need to define "the content l5y-addirigcolrirrirrs··to-the"modeC-Even then· the"
model will not be ready to use until it has been processed.

The first step in creating the model is to check to see whether it already exists in the
database. If the model already exists, we remove it; otherwise, we create it.
IfNot (mds.MiningModels(txtModelName) Is Nothing) Then
mds.MiningModels.Remove txtModelN ame
End If
Set mm= mds.MiningModels.AddNew(txtModelName, sbclsRelational)
Next, we create a· data source for the new model that is equal to the one that was created
when the Analysis server was set up.
mm.DataSources.AddN ew txtDataSource
Set dsmm = mm.DataSources(txtDataSource)
LQuote = dsmm.OpenQuoteChar
RQuote = dsmm.CloseQuoteChar
The last step in modifying the new mining model is to set the model type. Analysis
Services
includes algorithms for both a decision tree model and a clustering model.
If (optDT.Value = True) Then
mm.MiningAlgorithm = "Microsoft _Decision_ Trees"
End If
If (optC.Value = True) Then
mm.MiningAlgorithm = "Microsoft_ Clustering"
mm.Parameters= "CLUSTER COUNT=" + txtNoClusters
End If
After all of the updates are implemented, we commit the transactions to the database.

109

mds. CommitTrans
We are going to reuse the cnDataPrep connection that we used earlier in this application,
but we need to make sure that it is set to the same data source that the mining model is
using. Accordingly, we first need to check to see whether cnDataPrep is an open
connection, and if it is, close it.

Dim ds As DSO.DataSource
If (cnDataPrep.State = adStateOpen) Then
cnDataPrep.Close
Else
Set cnDataPrep = New ADODB.Connection
End If
We set the cnDataPrep connection equal to the connection string used by the mining model
for its data source.
cnDataPrep. Connections tring =
mds.DataSources(txtDataSource). ConnectionString
cnDataPrep. Open
We can then populate the cbTable drop-down box on the form with available tables from
that data source. This table will be the source of columns that the user will add to the
mining model.
Fill Combobox cbTable

The last step is to clear the tree viewer control, which displays a graphical representation of
any previous model. We want to make sure that the user is viewing the current model.
tvModel.Nodes.Clear
Set root= tvModel.Nodes.Add(, , "root_ node", mm.Name)
Adding Columns to the Model

Now that we have created the empty shell of a mining model, we need to start populating it
with columns. Associated with each column are several properties, which must be set
before the column-is created. -
We first declare an object for the new column.
Dim me As DSO.Column
To be safe, we then make sure that the data source for the mining model is set correctly.
Set dsmm = mm.DataSources(txtDataSource)
LQuote = dsmm.OpenQuoteChar
RQuote = dsmm.CloseQuoteChar
Mining models themselves do not allow transactions, so we actually have to reference the
parent-or database-to begin the transaction.
mm.Parent.Begin Trans
We can now add a new column to the mining model, using the same name as the column
in the table from the data source.
Set me= mm.Columns.AddNew(txtColumnName)
Now we set properties of the column. The column case parameter is very important
because it identifies the different rows, or cases, in the table. Each mining model must have
a case column.
With me

110

.IsKey = chkCase. Value
Chapter 8: Building and Validating the Models 133
Next, we set the data type.
Select Case cbDataType.Text
Case "Char"
.DataType = adChar
Case "Integer"
.DataType = adinteger
Case "Single"
.DataType = adSingle
End Select
The column type is determined. If the column is not a case column, it can be either input,
predictable, or both input and predictable.
If (.IsKey) Then
Else
Select Case cbUsage.Text
Case "Input"
.Isinput = True
.IsPredictable = False
Case "Input and Predictable"
.Islnput = True

·' .Isl'redictable ~ True·
Case "Predictable"
.Isinput = False
.IsPredictable = True
End Select

:-:-- .. : -- - .. ~

.Distribution= cbDistribution.Text

.ModelingFlags = cbModelingFlags.Text

.RelatedColumn = cbRelatedTo.Text

.IsDisabled = False
If thecolumn is a predictable column; it must have a column type of discrete. If the
selected column is a continuous variable, we use the following code to make it discrete.
If cbContentType = "DISCRETIZED" Then
.ContentType = cbConter1tType & "(" &
cbDiscretizationMethod & ", " & txtBuckets & ")"
Else
.ContentType = cbContentType
End If
End If
Finally, we create the column statement. Here is a good example of using the LQuote and
Rquote variables .
. SourceColumn = .FromClause & "." & LQuote & cbColumns.Text
& RQuote
End With
The mining model is updated, and the transaction is committed to the database.
mm.Update
mm.Parent.CommitTrans

111

Dim currentNode As Node
The Angoss viewer control and the tree view control are updated with the new column. For
more information about the Angoss tree viewer control, see "Browsing the Models" later in
this chapter.
Set currentNode = tvModel.Nodes.Add("root_node", tvwChild,,
me.Name)
map Tree2 Column.Add currentN ode, CS tr(currentN ode .Index)
tvModel.Refresh

Browsing the Models
A good way to evaluate a model is to look at a visual representation of it. After all, what is
easier to understand-a table full of mathematical relationships or a graphic displaying a
decision tree with all of its splits and branches?
Although Analysis Services provides a viewer for both the Decision Trees and Clustering
algorithms, we will use a different method. Because all of the tasks are pretty much
contained within the sample application, we don't want to go back and forth between the
sample application and Analysis Manager building models, then viewing models, then
building models, and so on. So what to do--is there a way to display a tree viewer on a
form within the Data Mining Tool? The answer is a resounding yes-which brings us to
another point-it is very easy to view and compare the models using third-party viewers.

_ We'H view- the.models. withthe Angoss .Consumer __ Controls.which .were. installed during -
setup.
To browse a model

• On the Create Mining Model form, click Browse.
The appropriate viewer opens, displaying the newly-created model.
Figure 8.1 shows the decision tree for the model that we created-this is what all of that
work was for! Of course, this is just the first model of many that we could make from this
dataset. We can see that out of the columns we selected, the following had the most effect
on the outcome of the predictable column (in order of importance).
• LASTGIFT
• CARDPROM
• ODATEDW2

112

LK:;WH

--~---
----- ,! ------.

LASTC.FT, 9.'1S (LASnJFT :•· '3.2G AAri l.,l.£K'f'T:, 1425
Ptoool:ii;•: 1'J 7':f:4 ~l.Af:fQFf.,. i 4.2[) Prcb:,oity: ffiX1 %

l\·ab<h~'(·2:>.18%

~--° FigureJ .-14· Graphical representation of the DM.:_Tree-Mode!

Over the entire population, LASTGFT was the greatest factor in determining where the first
split in the data occurs-a place where one state was preferred over the other state as
compared to the percentage of states in the entire population.

Remember all of that work we did to transform the data? Well, it actually paid off with
ODATEDW2! In testing this application, we built several models that included the
ODATEDW column (and not the transformed ODATEDW2 column) and the ODATEDW
.column had no impact on the model. But as you can see in Fig:ure3.14, the.transformations
we performed on ODATEDW caused a split that had not appeared previously. This shows
how transforming a single column can have a profound impact on the final model.

Of course, for all of the columns we choose to include in the model, only a few played an
important role, which is how it goes in data mining. For all of the assumptions we make
about which columns should be the most important, we really never know what we are
going to find. The reason for this is that even though empirically, we may come to
conclusions about how the data is related, the decision tree finds mathematical
relationships, which it uses to create the model. And this is really the reason that we use
data mining, to find the relationships that are less obvious. If we only found relationships
that we could have deduced simply by perusing the data, what use would we have for data
mining?

In looking at the improved percentages in the final splits, we can see that there is not a huge
change from the original percentages in the dataset, but remember it doesn't take a huge

113

change to save the company money. For every percentage point of improvement, fewer
envelopes have to be mailed out to receive a good response.

Now let's look at the model we created from the over-sampled table (Figure8. l 5).
As you can see, by over-sampling the table, we created a model that is only slightly
different from the DM Tree model. The main difference is that ODATEDW2 and
CARDPROM switched positions on the tree. Looking at the outcomes, we can also see that
the breakdown of "yes" and "no" percentages is a little more drastic as compared to the
original 80 percent and 20 percent from the original table. Will this translate into beter
predictions? We'll find out later when we build some lift charts.
First, let's look at the code behind the browsing functionality. •1e1111 ·· ~----·----

LASTt}f'r ___ ------f- _
LASTGlFT ~ 0.25 (l..l'.STGlFT • (l.25 Ar,j L-'-.STGFT ~ 1 ~.25

Pr\:!L'<llllt',1: 15.14% LASTGIF! <>< 14.25) Pr®mit',': 61 21 %
.. Ptnb~it~:: 3~.t£b~%

(;;>f.f:('RDM

.-J--..,.,___,
(~ROM e 40.25 CARDPRi:l',1 ·<= 40.25
Prooeollr 9,L71 % Proomny 0.29%

Figure 3.15 Graphical representation of the DM_Tree Model_ OS model

Looking at the Browsing Code
Let's look at the tasks that various subroutines accomplish during the model-browsing step.
Open Visual Basic and follow along as we walk through the code.
To view the form frmBrowseModelClustering.frm

1. In Windows Explorer, browse to the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click the
DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.
3. Right-click frmBrowseModelClustering (frmBrowseModelClustering.frm), and then
click View Code.

114

To view the form frmBrowseModelClassification.frm
1. In Windows Explorer, browse to the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click the
DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.
3. Right-click frmBrowseModelClassification (frmBrowseModelClassification.frm), and
then click View Code.
A company called Angoss has created three useful Visual Basic controls that work well
with Analysis Services and that are available for download in their SDK. The first two
controls, a tree view and a cluster viewer, are immediately useful at this stage, while the
third, a lift chart viewer, will show up later in this chapter when we compare the different
models. The controls are simple to use; viewing a model is as easy as pointing the control
to the model and setting a few parameters. Before you can use the controls, you must add
the following references to your project:

• ANGOSS Decision Tree Viewer (OLEDB DM)
• ANGOSS Segment Viewer (OLEDB DM)
• ANGOSS LiftChart Control (OLEDB DM)

Remember that these controls only work with existing mining models-the controls give
you the 'capabilitytc browse through mode rs that already exist, not to create-new models.: - - - -
For more information about using the controls, see the Help file that is installed with the
consumer controls.
To display either type of model, we create two forms-one for decision tree models and
one for clustering models.
Let's look at the decision tree form. We first define a new tree control and connection,
which is set to the Analysis Services database.

Dim tree As New DecisionTreeViewerLibCtl.DTVTree
Dim en As NewADODB:Connection
We then set up the tree viewer to display the model.
With Me.DTViewer.NodeDetail
.NodeDisplayFlags == .NodeDisplayFlags Or
dtvNodeDisplayColorGradient _
Or
dtvNodeDisplayPlusMinus
.InputAttributeDisplayFlags == .InputAttributeDisplayFlags Or
dtvIADisplayProbability
.PredictAttributeColorGradient.FromColor == &HFFCOCO
.PredictAttributeColorGradient.ToColor == &H8080FF
End With
Next, we pass the viewer the information it needs to display the control.
en.Open "Provider=MSOLAP.2;Data Source=" & Server & ";Initial
Catalog=" & Database
tree.Connection == en
tree.ModelName == Model name

115

Then, to display the viewer, we set the tree control to the model object and refresh it.
DTViewer.tree = tree
DTViewer.tree.Refresh
The control is resized in a separate routine so that it fits nicely within the form.
Private Sub Form_Resize()
DTViewer. Width= Me.Width - (DTViewer.Left + 150)
DTViewer.Height = Me.Height - (DTViewer.Top + 450)End Sub
The clustering form is much easier to write. We only have to create the correct connection
string, and pass that information into the viewer, along with the model name.
en.Open "Provider=MSOLAP;Data Source=" & Server & ";Initial
Catalog=" & Model_name
SegViewer.InitFromOLEDBDM en, Model_name
And then plot the data.
Seg Viewer.P lotData
And that's it. As with the tree viewer, we used resizing code to allow the user to resize the
form without losing information. Now let's look at how we validate the models.

Validating the Models
Now that we've built the models, how do we know if they are any good? Well, in our case,
by using a lift chart viewer, which is supplied in the Angoss SDK.

- -- - - - - 'A'Iiftclrart calculates the accuracy of the. predictions created' by a specific miningmodel.Tr
does this by predicting a column in a set of testing data, and then comparing it to the actual
value. Then the predicted value and the actual value are displayed graphically.

A lift chart measures the effectiveness of the model by comparing the results that are
achieved with and without the predictive model. For example, if we randomly select 20,000
people to whom we will send requests for donations, we should expect to receive a positive
response from about 5 percent of the people (in keeping with the distribution in our current
database). But if we use our models to choose which people to send the requests to, we
would hopefully see an increase in-the response rate-say, to 20 percent The difference
between the two response rates is called lift. By charting the response rate for the different
mailings, both the random mailing and the targeted mailing, we can create a lift chart.

-o,,. Model
•••• Random

100%

80~1ci-
-g
~ 60% -g
e
Q
Q. 40% Vt
QI
C(

20%,

0%
Q•l/o 20>'.fo 40°/o 60% 80% 100%

Population

Figure 3.16 Lift chart

116

Note the characteristic curve. This happens because the total number of donations in the
population is always the same. Out of our 90,000 records, we will always have a return rate
of around 5 percent, or around 5,000 responses. Our goal is to reduce the number of
mailings we send out, but still keep the number of responses returned at 5,000, thus
increasing the percentage of mailings returned. Another way of saying this is that we
should expect to get 50 percent of the possible positive responses by contacting 50 percent
of the possible people randomly. But by using the model, we would hope to increase this to,
say,
85 percent of the possible positive responses by contacting 50 percent of the possible
people.
To implement the lift chart, we need:
• A trained model
• A testing dataset from which the model can create predictions
• A mapping between the input data and the structure of the mining model
• Now let's look at how we use the lift chart.

Trying Out the Validation Task
To use the Validation tab, we have to specify a model and the Analysis server on which
it's located, a source for the testing data, the predictable column, and the state of the
predictable column that we are trying to find. We then construct the prediction query,
which creates predictions for the testing data based on the model, and feeds the results into
the lifr chart. ,·.

To create a lift chart
1. In the Server text box, type Localhost.
2. In the Database text box, type DM_ OLAP.
3. From the Models drop-down menu, select DM_Tree.
4. In Predicted column, select target_b.
5. In Predicted state, select 1.
6. In the Prediction query text box, type the prediction query corresponding to the model
you want to look at.: ·

We have included a prediction query for each of the models stored as a text file located in
C:\Program Files\Microsoft NESBooks\SQLServer2000\Data Mining\DM Sample
folder. The file names are Query_Dmtree.txt and Query_Dmtreeos.txt. To speed up the
process, you can just copy and paste each query into the text box.
7. Click Plot liftchart.

A new lift chart appears in the lift chart control.
Figure 3.17 shows the lift chart we just created.

117

•nu 01.'
,go~ I I I i i 1 : i .;,;,,"";
sn % I I I : I i I i I - -"" - r

i ! ' ' .

"Q 7[T:t. i i '
1 I . i -- I I

.g 50.% I ! . 1-""'""''T
I I

<=. T ; ' I ' ~5u% . ; i . I -·~·"" I J I I
OJ, 40.% I 1 i I J .• ..+1' i . I I
(!:; ... ··_I i ·-"' . I

-30.'1',·1 . '
:20% .

10%

•.. __ ·:· :•¥~ .-·. :::--·· .. ·

Figure 3.17 Lift chart with the DM_Tree Mining model

This lift chart is not very exerting; it's hard to tell if the model's predictions are an
improvement over random selection. Let's create another lift chart based on the model we
created based on the over-sampled data. To do this, use the same server and the same
predictable column and predicted state-just change the model to OM_ Tree_ OS, and copy
and paste the query named Query_ dmtreeos. · · · ·· · · · ·

Figure 3.18 shows the lift chart that we just created.

Once again, we do not see much difference. What is this telling us? Are our models not
good enough, or is this about what we should expect? Looking at the models in Figure 3 .14
and Figure3.15, we can see that even when the tree splits, the improvement in the number
of positive to negative responses in the data is not that great-the probability that someone
will not donate is still greater than the probability that someone will donate. This means
that the model does not predict whether someone will donate, and therefore, we do not see
any improvement in the lift charts.

118

Figure 3.18 Lift chart with the DM_Tree_OS Mining model

The key point here is that data mining is not an exact science, and it's not an easy process.
Even with all the work we did to create these models, we did not get the results we
expected. Maybe better transformations would improve our results. Maybe better column
selection, achieved through more in-depth exploration, would create better models. Or
maybe creating an over-sampled table with an even higher ratio of positive to negative
responses would generate better models.

So now it's your tum ... we've started you off with the process and the tools. What can you
achieve? Work through the process a few more times and see if you can improve the
results. · · ·
If you find something interesting, send us your results.
Good luck, and have fun!
Now, before you go running off on your own, let's see the code that makes this validation
task possible.

Looking at the Validation Code
Let's look at the tasks that various subroutines accomplish during the model-validation
step. Open Visual Basic and follow along as we walk through the code.

To view the form frmLiftChart.frm

119

1. In Windows Explorer, browse to the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click the
DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.
3. Right-click frmLiftChart (frmLiftChart.frm), and then click View Code.

Once again, we will be using an Angoss control to create the lift chart. For more
information about using the control, see the Angoss documentation that was installed with
the controls.

The first steps are to create a new connection to the Analysis server and create a recordset
that will hold the models that exist in the Analysis database that we are connecting to. ·

Set en = New ADODB.Connection
Dim rsModels As ADODB.Recordset
en.Open "Provider=MSOLAP;Data Source=" & txtServer & ";Initial
Catalog=" & txtDatabase
Set rsModels = cn.OpenSchema(adSchemaProviderSpecific,,
schemaModels)
We now populate the cbModels combo box with the model names held in the rsModels

- recordset. We first clear the combo boxandthen'cyclethrougfr the recordset, adding model" ·
names to the combo box.
cbModels.Clear
While Not rsModels.EOF
cbModels.Addltem CStr(rsModels.Fields("MODEL _ NAME"). Value)
rsModels.MoveNext
Wend
Next, the cbColumns combo box is populated with the attributes labeled as predictable for
the model selected in the cbModels combo box. This routine is called on the cbModels
click-event. -
We first open a recordset that will be used to hold the schema information for the columns.
We will use this information to find the predictable columns and display them in the
cbColumns combo box.
Set rs= cn.OpenSchema(adSchemaProviderSpecific,
Arrayttxtlratabase.Text, Empty, cbModels.Text), schemaColumns)
The last step in this subroutine is to cycle through the rs recordset, search for the
predictable columns, and add them to the combo box.
cbColurnns.Clear
While Not rs.EOF
If rs.Fields("IS_PREDICTABLE").Value Then
cbColumns.Addltem CStr(rs.Fields("COLUMN _ NAME"). Value)
End If
rs.MoveNext
Wend

120

We only have one more subroutine to get through before setting up and displaying the lift
chart-we need to populate the cbPredictedState combo box with all of the possible
predicted states of the predictable column.

We do this much the same as before, filling a recordset with each distinct state of the
column select in the cbColumns combo box. This routine is called on the cbColumns click
event.

Set rs= cn.Execute("SELECT DISTINCT[" & cbColumns.Text & "]
FROM[" & cbModels.Text & "]")
The states of the selected predictable column are then added to the cbPredictedState
combo box.
cbPredictedState.Clear
While Not rs.EOF
cbPredictedState.Additem CStr(rs.Fields(O).Value)
rs.Move Next
Wend
Everything is now ready to begin the code for creating the lift chart, which is called on the
btnDoLiftChar click event.
We first open a recordset, using the query we copied into the txtQuery text box and the
connection we crated in the first subroutine.
rs.Opentxttjuery.Text, en-· · · - ' · · - -- · - - ' ~--0- •.·•. • •· •• - - ·

We then set the LiftchartModel object to the lift chart control, and point it to the model
selected in the cbModels combo box and the recordset we just created.

The query in the recordset defines the prediction query that will be used to compare the
states predicted by the model to the actual states in the testing table.
Set LiftchartModel = LiftChartl.Models.Add(cbModels.Text, rs,
"")
If LiftchartModel Is Nothing Then
MsgBox "Model has not been created."·&vbCrLf & "Current
limit for number of models is 2. ", vbCritical
Else
Next, we parameterize the lift chart using values inserted into the rs recordset by the MDX
query.
LiftchartModel.ActualColumn = "Actual"
LiftchartModel.PredictColumn = "Predicted"
LiftchartModel.ChartedValue = cbPredictedState.Text
LiftchartModel.ProbabilityColumn = "Certainty"
We then compute the values that will be displayed in the lift chart and refresh the control to
display the results to the screen.
LiftchartModel.Compute
LiftchartModel.Visible = True

121

CONCLUSIONS

SQL Server Analysis Services is an OLAP solution that comes packaged with all
editions of Microsoft SQL Server 2000. While other OLAP products can cost tens or
hundreds of thousands of dollars, Analysis Services comes with SQL Server at no
additional charge.

Analysis Services has a portfolio of features that are quite similar to those found on
competitive products such as Hyperion's Essbase and IBM's DB2 OLAP Server. In
addition, it offers several features that distinguish it from other OLAP facilities. These
features include the following.

Through the scenario, we'll apply the data mining process to a real-world situation,
learning to:
• Think logically about how to use the data mining process.
• Create a succinct definition of the problem we are trying to solve.
• Prepare a real-world dataset for data mining by massaging and cleaning the data.
• Gain domain knowledge through data exploration and transformation.
• Create data mining models using the prepared data.
• Compare thedata mining models and choose the onethat best solves the given problem . . . ---·· ····--·--------- ... , .. - ..•. ·. -·-·· - .. -·.· .. - .. ---·- ~----.----···--·-··- --- . -'----· ·. -

This Project first introduces the concepts behind data mmmg, givmg you a basic
understanding of the process we are about to undertake. From there, the book dives right
into creating the solution, with each chapter showing how to accomplish a step in the data
mining process using Microsoft tools. In the final chapter, we'll build the models and
choose one that performs the best. By the end, you will have learned about the data mining
process and how to apply it to a real-world dataset.

122

REFERENCES

[l] Seth Paul,Nitin Gautam,Raymound Balint, Microsoft SQL Server Series,
Microsoft corporation, september 2002, may 2003

[2] Joe Guerra, Business intelligence Services, Using Microsoft SQL Server
Analysis Services with IBM Databases, Andrews Consulting Group, Cheshine,CI
Nowember 2002, http://www.microsoft.com/sql/.

,._-_..:_ .. · .. .:-.·.

123

APPENDIX

Managing Tables
In addition to copying an existing table, you can also perform the following tasks using the
Manage Tables form:
• Select specific columns to be included in a new table.
• Drop tables from the database that are no longer useful.
• Create a copy of an existing table but with fewer rows (or sample the table).
• Create a copy of an existing table, but force the sampling algorithm to include a higher
percentage of positive predictable values than actually existed in the original table.

Selecting Columns
You may want to investigate specific columns in a table without having to work with the
entire table-especially with a table as large as the one we use in this book. Also, you may
find some columns that you want to exclude from your analysis. For example, if your data
includes both a postal code and street address, you may decide that the street address is
unnecessary because you already have the postal code.

To create a table with selected columns
1. In the Data Mining Tool, click Manage Tables.
2; In-the Create a new table by selecting- columns, from can .existingtable section; enter
the following information:
For Select a source table, select the table that holds the columns you want to include in

the new table.
For Enter a table name, type a name for the new table.

3. To include specific columns in the new table, select a column from the list associated
with the source table, and then click the > button. Repeat this step for each column to be
included. (To include all columns in the new table, click the >>button.)
4. To remove a column from the new table, select the column from the list associated with
the new table, and then-click the.« button. (To remove all. columns .frorn the new table,
click the << button.)
5. Once you have selected the columns that you want to include in the new table, click
Create Table. This adds a new table containing the selected columns to the database.

Dropping Tables
Eventually, with your own data, you will create several tables. If you later decide that a
table has lost its usefulness or if you want to redo a step, you can drop the table from the
database.
To drop a table from the database

1. In the Data Mining Tool, click Manage Tables.
2. In Select a table to drop, select the table that you want to drop.
3. Click Drop Table.

Sampling a Table
Often a dataset contains too many rows, making it difficult and time consuming to perform
an analysis. Accordingly, the Data Mining Tool includes an option to reduce the size of the

124

testing tables. As with that routine, we first check to see whether the table already exists,
and if it does, we give the user the option of either dropping and re-creating it or choosing a
new name for the table. Next, we get the percentage of positive and negative responses in
the predictable column so that they can be displayed on the form.

Because we are creating a single random table from the original table, there is no restriction
on the rows that can be used from the original table. This means that the strSQL Where
statement is left blank.
strSQL Where=""
We then only have to call the Create Table function and the table is created. For more
information about using the Create Table function, see "Splitting the Data."
mdlSample.Create_Table txtSampledTable.Text, strTable, strSQLWhere,
lngRecordCount
Retrieving the final percentages of states in the predictable column and writing them to the
form finishes off this section of the routine.
strSQLSelect = "SELECT COUNT(" & PREDICTED & ") as count FROM [" &
txtSampledTable.Text & "] WHERE " & PREDICTED & " = 1"
Set rsRecordCount = mdlProperties.cnDataPrep.Execute(strSQLSelect)
sngPercentYes = (rsRecordCount!Count I lngRecordCount) * 100
sngPercentN o = 100 - sngPercent Yes
txtSampledYes.Text = CVar(sngPercentYes)

-- ---txtSampledNo.TexC= CVar(sngPercentNoJ - - -
Now let's look at how to over-sample a table.

;-:·.

Increasing the Ratio of Responses in the Predictable Column
As explained in the introduction, it may be useful to highlight a state of the predictable
column, especially if it is underrepresented. In the data used in this book, a positive
occurrence of the predictable attribute only occurs about 5 percent of the time. By
artificially forcing the ratio of positive to negative values to be higher, such as 80 percent
positive to 20 percent negative, we can often find stronger relationships and create beter
models. Although this seems like we're manipulating the data in a bad way, it actually can -
improve the effectiveness of the final model. The final goal is to build a good model, and
how we change the data to achieve that does not matter.

To create an over-sampled table
1. In the Data Mining Tool, click Manage Tables.
2. Click Sample.
3. On the Small Table form, make the following selections and then click Sample:
Select Create an over-sampling of a table.
For % Positive, type the percentage of positive predictable values that you want to exist

in the new table.

For Original table, select the table that you want to sample.
For New table, type a name for your new table.

126

Frgurn: A,2> Creating an over-sampled table

Looking at the Code for Over-Sampling a Table
-.- -·-Iftheuser opts to-createanover-sampled table, the code.inthis section is usedThis isonly- -

slightly more complicated than a simple sampling of the table. In order to make this work,
we made the assumption that if the user wants to over-sample the table, he or she will want
to keep all of the positive responses and just add to them enough of the negative responses
to create the specified percentages.

The first step is to find out how many values we need to sample. Unlike the previous case,
the user is not selecting the number of rows to include in the table, but instead the
percentage ratio of "yes" to "no" values in the predictable column. For this reason, the first

. step is to get the number of positive responses in the table.

Set rsTrueData = cnDataPrep.Execute("SELECT COUNT(" & PREDICTED & ")
as count FROM 11 & strTable & 11 WHERE 11 & PREDICTED & 11 = 1
11)lngSampleTrue = rsTrueData!Count
We then calculate the number of negative results that we need to add to the positive results
to achieve the percentages the user specified.
lngSampleFalse = lngSampleTrue I (CLng(txtPercentYes) I 100) -
lngSampleTrue
Because we are keeping all of the positive responses, we will include only the negative
responses in the pool of data that we're extracting using the WHERE clause.
strSQLWhere = 11 WHERE 11 & PREDICTED & "= 0 11

The contents of strSQL Where are then passed into the Create Table function.
mdlSample.Create _ Table txtSampledTable.Text, strTable, strSQL Where,
lngSampleFalse

127

We now have a table filled with randomly selected negative responses. To finish, we use
the following SQL statement to populate the table with the positive responses from the
original table.

strSQLSelect = "INSERT INTO" & txtSampledTable.Text & "SELECT*
FROM 11 & strTable & 11 WHERE 11 & PREDICTED & " = l 11
cnDataPrep.Execute (strSQLSelect)

To get the record count we combine the number of positive responses and the number of
rows we sampled in the original table.
lngRecordCount = lngSampleTrue + lngSampleFalse
As the last step, we calculate the percentages of yes and no values in the new table and
display them to the form. ·
And now we are finished-an over-sampled table now exists in the database.

-·- '... ··-

128

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Page 3
	Titles
	ACKNOWLEDGEMENTS

	Page 4
	Titles
	ABSTRACT
	� Application limitations.
	� Analytical limitations.
	� Performance limitations.

	Page 5
	Page 6
	Titles
	TABLE OF CONTENTS
	AC~O~l:])GMl:-l'f:f i
	AB~~C"f ii
	TABLE
	OF
	CONTEl'f:fS .- iii
	J:l'l'l1l..OI>UC'I110~ iv
	CHAPTER 1 :SQL Server 2000 Analysis 1
	CHAPTER 2: Using Microsoft SQL Server Analysis Services with
	IBMDa1:a.bases 4
	:CHAPTER3: Preparing and Mining Data with Microsoft SQL-Server200ff ,·.··
	and Analysis Services 28
	CONCLUSION 122
	REFERENCES ~ 123
	.t\l'J.>l:Nl)~ ��.�..��.�..�..��.�....���.��..��..�.�.�...���.��.���..��..�.�..��..�.�.�.��� 124

	Page 7
	Titles
	INTRODUCTION

	Page 8
	Page 9
	Titles
	CHAPTER I
	SQL Server 2000 Analysis

	Page 10
	Titles
	1.1 Details of Database Components SP2 Installation

	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	CHAPTER2
	Using Microsoft SQL Server Analysis Services with IBM Databases

	Page 13
	Page 14
	Titles
	2.1 What is SQL Server Analysis Services.

	Page 15
	Titles
	2.2. SQL Server Analysis Services - A Closer Look

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	2.3. What Is Microsoft Host Integration Server 2000.

	Page 18
	Titles
	--·· - --- -~- .-L~---

	Images
	Image 1

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 26
	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1
	Image 2
	Image 3

	Page 28
	Images
	Image 1
	Image 2

	Page 29
	Titles
	Sto~ De.sfgn,Wl:zam

	Images
	Image 1
	Image 2

	Page 30
	Images
	Image 1
	Image 2

	Page 31
	Images
	Image 1
	Image 2
	Image 3

	Page 32
	Titles
	2.4.How SQL Server Analysis Services Stacks Up Against the

	Images
	Image 1

	Page 33
	Page 34
	Images
	Image 1

	Page 35
	Page 36
	Titles
	CHAPTER 3: Preparing and Mining Data with Microsoft SQL

	Images
	Image 1

	Page 37
	Titles
	31.Introducing the Data Mining Scenario

	Images
	Image 1

	Page 38
	Page 39
	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1

	Page 42
	Images
	Image 1

	Page 43
	Images
	Image 1
	Image 2

	Page 44
	Titles
	3.2Data Mining Fundamentals

	Images
	Image 1

	Page 45
	Page 46
	Images
	Image 1

	Page 47
	Page 48
	Images
	Image 1

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1
	Image 2

	Page 51
	Images
	Image 1

	Page 52
	Images
	Image 1
	Image 2

	Page 53
	Titles
	3.3.Defining the Problem

	Page 54
	Page 55
	Titles
	3.4.Cleaning the Data

	Page 56
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 57
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1
	Image 2
	Image 3

	Page 61
	Images
	Image 1
	Image 2

	Page 62
	Images
	Image 1

	Page 63
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 64
	Images
	Image 1
	Image 2

	Page 65
	Images
	Image 1

	Page 66
	Images
	Image 1
	Image 2

	Page 67
	Images
	Image 1
	Image 2
	Image 3

	Page 68
	Images
	Image 1
	Image 2

	Page 69
	Images
	Image 1

	Page 70
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 71
	Images
	Image 1
	Image 2

	Page 72
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 73
	Images
	Image 1
	Image 2
	Image 3

	Page 74
	Page 75
	Titles
	,--,-+· - ·--

	Images
	Image 1
	Image 2

	Page 76
	Images
	Image 1
	Image 2

	Page 77
	Images
	Image 1

	Page 78
	Images
	Image 1

	Page 79
	Images
	Image 1

	Page 80
	Titles
	3.5. Transforming the Data

	Images
	Image 1

	Page 81
	Images
	Image 1

	Page 82
	Images
	Image 1
	Image 2

	Page 83
	Titles
	3.6.Exploring the Data

	Images
	Image 1

	Page 84
	Images
	Image 1

	Page 85
	Images
	Image 1

	Page 86
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 87
	Images
	Image 1
	Image 2

	Page 88
	Images
	Image 1
	Image 2

	Page 89
	Images
	Image 1
	Image 2

	Page 90
	Images
	Image 1

	Page 91
	Images
	Image 1
	Image 2

	Page 92
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 93
	Images
	Image 1
	Image 2

	Page 94
	Titles
	= t"

	Images
	Image 1
	Image 2

	Page 95
	Images
	Image 1
	Image 2

	Page 96
	Images
	Image 1

	Page 97
	Titles
	' ' ' ' -

	Images
	Image 1

	Page 98
	Images
	Image 1
	Image 2

	Page 99
	Images
	Image 1

	Page 100
	Images
	Image 1
	Image 2

	Page 101
	Images
	Image 1

	Page 102
	Images
	Image 1

	Page 103
	Page 104
	Titles
	3. 7.Splitting 'theData

	Images
	Image 1
	Image 2

	Page 105
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 106
	Images
	Image 1

	Page 107
	Images
	Image 1
	Image 2

	Page 108
	Images
	Image 1
	Image 2

	Page 109
	Page 110
	Page 111
	Page 112
	Titles
	3.8.Building and Validating the Models

	Page 113
	Images
	Image 1
	Image 2

	Page 114
	Images
	Image 1

	Page 115
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Tables
	Table 1

	Page 116
	Images
	Image 1

	Page 117
	Images
	Image 1

	Page 118
	Images
	Image 1
	Image 2
	Image 3

	Page 119
	Images
	Image 1
	Image 2

	Page 120
	Images
	Image 1
	Image 2

	Page 121
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 122
	Titles
	�1e1111 ·· ~----·----
-J--..,.,___,
	___ ------f- _

	Images
	Image 1
	Image 2
	Image 3

	Page 123
	Images
	Image 1

	Page 124
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 125
	Titles
	the lifr chart. ,·.

	Images
	Image 1
	Image 2

	Page 126
	Titles
	�nu 01.'
	,go~ I I I i i 1 : i .;,;,,"";
	"Q 7[T:t. i i ' 1 I . i -- I I
	~5u% . ; i . I -·~·"" I J I I

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 127
	Images
	Image 1

	Page 128
	Images
	Image 1

	Page 129
	Page 130
	Titles
	CONCLUSIONS

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 131
	Titles
	REFERENCES

	Images
	Image 1
	Image 2
	Image 3

	Page 132
	Titles
	APPENDIX

	Images
	Image 1

	Page 133
	Images
	Image 1

	Page 134
	Images
	Image 1
	Image 2

	Page 135
	Images
	Image 1

