
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

INTERNET BASED AUTOMATIC CONTROL
& MONITORING

Graduation Project
COM400

Submitted by: Bahar Rehman &
Mohammad Nauman

Submitted to: Asst. Prof. Dr. Dogan Ibrahim

Lefkosa 2000

TABLE OF CONTENTS

Acknowledgement i

Abstract ii

Abbreviations iii

Introduction vi

Chapter 1

Introduction to Network & Client/Server

1.1 Networking 1
1.2 Use of Network 1
1.3 Data 2
1.4 Applications 2
1.5Network Topology 2

1.51 Bus 2
1.52 Star 2
1.5.3Ring 3

1.6 Range of Networks 3
1.61 Local Area Networks (LAN) 3
1.6.2 Wide Area Networks (WAN) 3
1.6.3 Inter-Connected Networks (Inter Network) 3
1.6.4 Metropolitan Area Networks (MAN) 3

1.7 Networking Overview 4
1.7.1 Peer-to-Peer Networks 5
1.7.2 Server-Based Networks 5
1.7.3 Specialized Servers 6

1.8 Client/Server Computing 7
1.8.1 Client 7
1.8.2 Server 7
1.8.3 The Client/Server Process 8

1.9 The Advantages of Working in a Client/Server
Environment 8

Chapter 2

Introduction to TCP/IP

2.1 Introduction of TCP/IP 10
2.2 The Evolution of TCP/IP & Internet 12
2.3 Architectural Model 15
2.4 IP Address 17

2.4.1 Classes of IP Addresses 17
2.4.1.1 Class A 18
2.4.1.2 Class B 18
2.4.1.3 Class C 18

2.5 Diagnosing and Solving IP Configuration Problems 19

Chapter 3

Windows Sockets (Winsock)

3.1 Background of Winsock 23
3.2 Definition of a Socket 24
3.3 The Socket Data Type 24

3.3.1 Uses for Sockets 25
3.3.2 Byte Ordering 25
3.3.3 Convert Byte Orders 26
3.3.4 When We Don't Have to Convert Byte Orders 26

3.4 Sequence of Operations for a Stream Socket
Communication 27

3.5 Winsock Control 28
3.5.1 Possible Uses 28
3.5.2 Selecting a Protocol 29
3.5.3 Setting the Protocol 29
3.5.4 Determining the Name of Computer 29
3.5.5 To find the computer's name 30

3.6 TCP Connection Basics 30
3.6.1 To create a TCP server 30
3.6.2 To create a TCP Client 31
3.6.3 Accepting More than One Connection

Request 31
3. 7 UDP Connection Base Basics 32
3.8 Local Port Property 32

Chapter 4

TCP/IP Programming Using Visual Basic

4.1 TCP/IP Programming
4.2 Sockets
4.3 Winsock Control

4.3.1 Properties
4.3.2 Methods
4.3.3 Events

4.4 Client-Server Application
4.5 A Simple TCP/IP Example

4.5.1 One Way Communication
4.5.1.1 Client Computer
4.5.1.2 Server Computer

4.5.2 Two Way Communication
4.5.2.1 Client Computer
4.5.2.2 Server Computer

4. 6Testing the Programs

33
34
35
35
37
40
41
42
42
43
46
47
48
50
51

Conclusion
Bibliography

53
~

A.CKNOWLEl)~EM}JNTS

I\

First of all we are happy that Almighty Allah Taa'la and Hazrat Muhammad
(peace be upon him) has provided µs the strength courage and knowledge to
achieve the task, and ~lso we ar¢ fateful especially to our dearest parents in
our li~es who ~fl-Y~ sq:pvorted US, advised US, taught US that n~ _qre~m is
unachievable and encow~~ed us to follow our dreams and ambitions. We
wish our mothers lives happily always as the rose lives in the spring and our
fathers in the heaven are proud of us.

We wish to thank 1IlY advisor. Assistant Professor Dr. Dogan Ibr~iJ'~1 who
is the river of knowledge we just took one drop to perforw this joq. ffis
intellectual support, encouragement, patience for coq:~ctlllg ppfh my
stylistic and scientific errors and enthusiasm made this projett po~siple.

Our Earnest thanks mus] go to.q}ir friends esp~pially to Mr.Irf~ a. A.~hir;Mr.
Nasir_ Durrani,Mr. Syed lfw~~ Ali, lyfr_. Naveed Must~fa and finally Mr.
Shahid Islam those shared their suggestions and evaluations throughout the
completion of the project and in our graduation.

We thank Allah Taa'la for giving us courage and strength to achieve aims
and objectives of the life.

ABSTRACT

This project is about automatic control of external hardware over the Internet, using the
TCP/IP communications protocol. The project is based on a client-server model and
the principles of tills model are described in detail. The project also describes the data
exchange between two computers using the well-known TCP/IP protocol.

This project is theoretical and the Visual Basic language, together with the Winsock
ActiveX control component is used to demonstrate the principles of socket-based
prograrnrnmg.

ABBREVIATIONS

ARP Address Resolution Protocol

ARPANET Advanced Research Projects Agency Network

ASCII American Standard Code for Information Interchange

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

BSD Berkeley Software Development

CCITT International Telegraph and Telephone Consultative Committee

CIX Commercial Internet Exchange

DARPA Defense Advanced Research Projects Agency

DNS Domain Name System

-DoD U.S. Department of Defense

FAQ Frequently Asked Questions lists

FDDI Fiber Distributed Data Interface

FTP File Transfer Protocol

FYI For Your Information series of RFCs

GOS IP U.S. Government Open Systems Interconnection Profile

HTML Hypertext Markup Language

HTTP Hypetext Transfer Protocol

IAB Internet Activities Board

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

iii

IESG Internet Engineering Steering Group

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardization

ISOC Internet Society

ITU-T International Telecommunication Union Telecommunication
Standardization Sector

MAC Medium (or media) access control

Mbps Megabits (millions of bits) per second

NICNAME Network Information Center name service

NSF National Science Foundation

NSFNET National Science Foundation Network

OSI Open Systems Interconnection

OSPF Open Shortest Path First

PPP Point-to-Point Protocol

RARP Reverse Address Resolution Protocol

RIP Routing Information Protocol

RFC Request For Comments

SLIP Serial Line IP

SMDS Switched Multimegabit Data Service

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

STD Internet Standards series ofRFCs

TCP Transmission Control Protocol

iv

TLD Top-level domain

UDP User Datagram Protocol

WINSOCK Windows Socket

INTRODUCTION

The Bartering, exchanging, of things is and has been a great demand of the century
and still most wanted. For the sake of the barter system, as in history, there should be
some sort of dealings. As we are in 21st centaury so the old barter system have been
developed and mostly dealings or the purchase & sale is done over the internet; the
biggest WAN in the world through which all most every person is connected. The
finest example of the purchase & sale over Internet is e-commerce and by using this
technology many persons even can sell their products without permitting their bodies to
move. Over the Internet there is also necessary thing mail that have been necessity of
world before establishment of the Internet. Actually the Internet made the checking and
reading the mail for the people so simple that every one has now become slave of
Internet. As we know mail means exchanging of the data. As ordinary snail mail
follows the rule of old mailing system to put some sort of the postage stamps so there
are also some protocols, rules according to which data can be moved over the Internet,
through which mail can be transferred.

Our project is about automatic control using the Internet technology. The project is
based upon the client-server structure and the TCP/IP socket programming. The
project describes the basic principles of client-server based communication systems.
Details of TCP /IP protocol are then given with examples of its usage. The project then
gives some examples of using the Visual Basic language to program client-server based
systems. Principles of Internet based remote control are also described with examples.

The project is theoretical and there is no hardware involved. In a real Internet based
control system we would also have an interface card in the client computer and this
card will monitor and control the external hardware attached to it. The server computer
should then exchange data with the client over the Internet, using the TCP/IP
communications protocol.

vi

Chapter 1

Introduction to Network & Client/Server

1.1 Networking

Consisting of two computers or more than two computers are connected to each other
by cable so they can share data called Network.
Performing the job of establishing a network is called networking.

All networking, no matter how sophisticated, stems from that simple system. While the
idea of two computers connected by cable may not seem extraordinary, in retrospect; it
was a major achievement in communication.

Networking arose from the need to share data in a timely fashion. Personal computers
are wonderful business tools for producing data, spreadsheets, graphics, and other types
of information, but do not allow you to quickly share the data you have produced.
Without a network, the documents have to print out so that other can edit them or use
them. At best, you give files on floppy disks to others to merge the changes. This was,
and still is, called working in a stand-alone enviromnent.

1.2 Use of Network

Organizations implement networks primarily to share resources and enable online
communication. Resources include data, applications, and peripherals. A peripheral is a
device such as an external disk drive, printer, mouse, modem, or joystick. Online
communication includes sending messages back and forth, or e-mail.

Computers that are part of network can share the following.

• Data
• Messages
• Graphics
• Printers
• Fax machines
• Modems
• Other hardware resources

This list is constantly growing as new ways are found to share and communicate by
means of computers.

1

1.3 Data
'

Before networks existed, people who wanted to share information were limited to:

• Telling each other the information (voice communication).
• Writing memos.
• Putting the information on a floppy disk, physically taking the disk to another

computer, and then copying the data onto that computer.
• Sending Data to remote access computer e.g. File transfer(FTP

Networks can reduce the need for paper communication and make nearly any type of
data available to every user who needs i.t.

1.4 Applications

Networks can be used to standardize applications, such as a word processor, to ensure
that everyone on the network is using the same application and the same version of that
application. Standardizing on one application can simplify support. It is easier to know
one application very well than to try to learn four or five different applications. It is
also easier to deal with only one version of an application and to set up all computers in
the same manner.
Some businesses invest in networks because of e-mail and scheduling programs
(different types of databases). Managers can use these utilities to communicate quickly
and effectively with large numbers of people and to organize and schedule an entire
company far more easily than was previously possible and people can easily get
information about the desired job e.g. stock exchange ... etc.

1.5 Network Topology

The term topology, or more specifically, network topology, refers to the arrangement or
physical layout of computers, cables, and other components on the network. Simply the
network topology is describes the way the computers are connected.

Basically there are three topologies of network.

1.5.1 Bus
This topology is uses for the broadcast channels; all computers share the single

common channel. When one host sends data all others can receive while connected to
the network and. all the hosts, computers, connected to a single cable called trunk (back
bone).

1.5.2 Star

Star Topology is used for point-to-point channels. Uses for the centralized system. If
the central computer is down the network fails and main advantage of this is that we

2

can control the network centrally but the worst drawback is we might face the too much
cables when expands the network.

1.5.3 Ring

This can be used for either broadcast or point-to -point channels. The data is travels
around the network in the ring. This has one advantage and one distadvantage.
Advantage is this that uses fewer cables and if one host is down then network will be
down sounds disadvantage but this uses widely in LANs.

1.6 Range of Networks

There are four types of the networks those can be established.

1.6.1 Local Area Networks (LAN)

The computers are connected in a building or over a small area; in general this network
uses over small size. In this network maximum 30 users on a maximum cable length of
just over 600 feet can be connected through any topology as above mentioned.

1.6.2 Wide Area Networks (W ANs)
As the geographical scope of the network grows by connecting users in different cities
or different states, the LAN grows into a wide area network (WAN). The number of
users in a company network can now grow from ten to thousands.
Today, most major businesses store and share vast amounts of crucial data in a
network environment, which is why networks are currently as essential to businesses
as typewriters and filing cabinets used to be.

These type of networks are larger than the LANs. These spans a country or event the
world e.g. Internet. Actually these are interconnected LANs. Transmitting each other
while using the high-speed phone lines, microwave dishes ... etc.

1.6.3 Inter-Connected Networks (Inter Network)

It contains two or more LANs interconnected. Breaking down the large networks into
smaller networks can make these types of networks.

1.6.4 Metropolitan Area Networks (MANs)

These are also interconnected LANs but larger than the inter networks. These can be
within acity or town e.g. large campus. And the feature of this network is usage of
backbone, trunk, for interconnections.

3

1. 7 Networking Overview

In general, all networks have certain components, functions, and features in
common. These include:

• Servers-Computers that provide shared resources to network users.
• Clients-Computers that access shared network resources provided by a server.
• Media-The way those computers are connected.
• Shared data-Files provided by servers across the network.
• Shared printers and other peripherals. Other resources provided by servers ..

Resources-Files, printers, or other items to be used by network users.

Common network elements

Even with these similarities, networks can be divided into two broad categories:

• Peer-to-peer
• Server-based

Server-bei8ct. ·······-

Typical peer-to-peer and server-based networks

4

The distinction between peer-to-peer and server-based networks is important because
each has different capabilities. The type of network you implement will depend on
numerous factors, including the:

• Size of the organization.
• Level of security required.
• Type of business.
• Level of administrative support available.
• Amount of network traffic.
• Needs of the network users.

• Network budget

1.7.1 Peer-to-Peer Networks

In a peer-to-peer network, there are no dedicated servers or hierarchy among the
computers. All of the computers are equal and therefore are known as peers.
Normally, each computer functions as both a client and a server, and there is no one
assigned to be an administrator responsible for the entire network. The user at each
computer determines what data on their computer gets shared on the network.

Peer-t01)eer

Peer-to-peer network computers act as both clients and servers
Size

1. 7 .2 Server-Based Networks

In an environment with more than 10 users, a peer-to-peer network-with computers
acting as both servers and clients-will probably not be adequate. Therefore, most
networks have dedicated servers. A dedicated server is one that only functions as a
server and is not used as a client or workstation. Servers are "dedicated" because they
are optimized to quickly service requests from network clients and to ensure the
security of files and directories. Server-based networks have become the standard
model for networking.

5

Server-based

Server-based network

As networks increase in size and traffic, more than one server on the network is needed.
Spreading the tasks among several servers ensures that each task will be performed in
the most efficient manner possible.

1. 7.3 Specialized Servers

The variety of tasks that servers must perform is varied and complex. Servers for large
networks have become specialized to accommodate the expanding needs of users. For
example, in a Windows NT Server network, the different types of servers include the
following:

• Application servers

Application servers make the server side of client/server applications, as well as the
data, available to clients. For example, servers store vast amounts of data that is
structure to make it easy to retrieve. This differs from a file and print server. With a file
and print server, the data or file is downloaded to the computer making the request.
With an application server, the database stays on the server and only the result of a
request is downloaded to the computer making the request.

A client application running locally would access the data on the application server.
Instead of the entire database being downloaded from the server to your local
computer, only the results of your query would be loaded onto your computer. For
example, you could search the employee database for all employees who were born in
November.

• Mail servers
Mail servers manage electronic messaging between network users.

6

1.8 Client/Server Computing

1.8.1 Client

The user generates a request at the front end. The client runs an application that:

• Presents an interface to the user.
• Formats requests for data.
• Displays data it receives back from the server.

In a client/server environment, the server does not contain the user interface software.
The client is responsible for presenting the data in a useful form, such as with user
interfaces and report writing.

The client computer accepts instructions from the user, prepares them for the server,.
And then sends a request for specific information over the network to the server. The
server processes the request, locates the appropriate information, and sends it across the
network back to the client. The client then feeds the information to the interface, which
presents the information to the user.
In a client/server environment, the person at the client end uses au on-screen form;
called a search key, to specify what information they are looking for.

1.8.3 Server

The server in a client/server environment is usually dedicated to storing and managing
data. This is where most of the actual database activity occurs. The server is also
referred to as the back end of the client/server model because it fulfills the requests of
the client. The server receives the structured requests from the clients, processes them,
and sends the requested information back over the network to the client.
The database software on the file server reacts to client queries by running
searches. As part of a client/server system, it only returns the results of the
searches.
Back-end processing includes sorting data, extracting the requested data, and
sending that data back to the user.

Also, database server software manages the data in a database including:

• Updates
• Deletions

_

• Additions
• Protection

7

1.8.3 The Client/Server Process

TI1e database query is sent from the client but processed on the server. Only the results
are sent across the network back to the client. The whole process of requesting and
receiving information consists of six steps:

1. The client requests data.
2. The request is translated into SQL.
3. The SQL request is sent over the network to the server.
4. The database server carries out a search on the computer where the data exists.
5. The requested records are returned to the client.
6. The data is presented to the user.

In the client/server environment, there are two main components:

The application, which is often referred to as the client or the front end
The database server, which is often referred to as the server or the back end

Front end

The client is the front end and the server is the back end

1.9 The Advantages of Working in a Client/Server Environment

Client/server technology creates a powerful environment that. Offers many real benefits
to organizations. Well-planned client/server systems provide relatively inexpensive
platforms that provide mainframe-computing capacity while being easy to customize
for specific applications. Because client/server processing only sends the results of a
query across the network, it cuts down on network traffic.

8

It puts the file search burden on a computer that is more powerful than the client, and is
better able to handle the request. On a busy network, this means that the processing will
be distributed more evenly man in a traditional server-based system
The client/server network also saves RAM in the client computer because all of the
data and the file I/0 logic is on the application in the server. The servers in client/server
systems are capable of storing large amounts of data. This allows mop space on client
computers for other applications.

Because the file services and the data are on the back-end server, the servers are Easier
to secure and maintain in one location. Data is more secure in a client/server
environment because it is centrally located on one server or on a small number of
servers. When the data is in one location and managed by one authority, backups are
simplified.

9

Chapter l

Introduction to TCP/IP

2.1 Introduction of TCP/IP

TCP/IP stands for transport control protocol/Internet protocol. TCP/lP is actually a
shorthand term for an entire family of protocols, all designed to transport information
between both local area networks (LANs) and wide area networks (.W ANs).

Until a few years ago, it was nearly impossible for computer systems with different
hardware or software to exchange data. TCP/IP was developed as a kind of"Esperanto"
for computers - a universal language all systems understand. It has become the
mainstay of the worldwide Internet, as well as a useful tool for smaller, proprietary
intranets.

TCP/IP has become widely used because:

• Its open standards are freely available and independent of any specific vendor's
hardware or operating system.

• It can run over Ethernet, AR.Cnet, Token-Ring, phone line, and X.25 networks
and virtually any other transmission medium.

• It has a versatile addressing scheme that lets any TCP/IP device address any
other device in a network - even a network of worldwide proportions.

• It can accept major upgrades and repairs while actively operating.

It can automatically route transmitted data around trouble sites. If a snowstorm blows
your connection in Minneapolis, your messages are routed elsewhere and still arrive at
their destination.

TCP and IP were developed by a Department of Defense {DOD) research project to
connect a number different networks designed by different vendors into a network of
networks (the "Internet"). It was initially successful because it delivered a few basic
services that everyone needs (file transfer, electronic mail, remote logon) across a very
large number of client and server systems. Several computers in a small department can

10

use TCP/IP (along with other protocols) on a single LAN. The IP component provides
routing from the department to the enterprise network, then to regional networks, and
finally to the global Internet. On the battlefield a communications network will sustain
damage, so the DOD designed TCP/IP to be robust and automatically recover from any
node or phone line failure. This design allows the construction of very large networks
with less central management. However, because of the automatic recovery, network
problems can go undiagnosed and uncorrected for long periods of time.

As with all other communications protocol, TCP/IP is composed oflayers:

• IP - is responsible for moving packet of data from node to node. IP forwards
each packet based on a four-byte destination address (the IP number). The
Internet authorities assign ranges of numbers to different organizations. The
organizations assign groups of their numbers to departments. IP operates on
gateway machines that move data from. department to organization to region
and then around the world.

• TCP - is responsible for verifying the correct delivery of data from client to
server. Data can be lost in the intermediate network. TCP adds support to detect
errors or lost data and to trigger retransmission until the data is correctly and
completely received.

• Sockets - is a name given to the package of subroutines that provide access to
TCP/IP on most systems.

An increasing number of people are using the Internet and, many for the first time, are
using the tools and utilities that at one time were only available on a limited number of
computer systems (and only for really intense users!). One sign of this growth in use
has been the significant number of TCP /IP and Internet books, articles, courses, and
even TV shows that have become available in the last several years;

2.2 The Evolution of TCP/IP & Internet

Prior to the 1960s, what little computer communication existed comprised simple text
and binary data, carried by the most common telecommunications network technology
of the day. Because most data traffic is burst in nature (i.e., most of the transmissions
occur during a very short period of time), circuit switching results in highly inefficient

11

use of network resources. In 1962, Paul Baran, of the Rand Corporation, described a
robust, efficient, store-and-forward data network in a report for the U.S. Afr Force;
Donald Davies suggested a similar idea in independent work for the Postal Service in
the U.K., and coined the term packet for the data units that would be carried. According
to Baran and Davies, packet switching networks could be designed so that all
components operated independently, eliminating single point-of-failure problems. In
addition, network communication resources appear to be dedicated to individual users
but, in fact, statistical multiplexing and an upper limit on the size of a transmitted entity
result in fast, economical data networks.

The modem Internet began as a U.S. Department of Defense (DoD) funded experiment
to interconnect DoD-fundedresearch sites in the U.S. In December 1968, the Advanced
Research Projects Agency (ARP A) awarded a contract to design and deploy a packet
switching network to Bolt Beranek and Newman (BBN). In September 1969, the first
node of the ARP ANET was installed at UCLA With four nodes by the end of 1969,
the ARPANET spanned the continental U.S. by 1971 and had connections to Europe by
1973.

The original ARP ANET gave life to a number of protocols that were new to packet
switching. One of the most lasting results of the ARP ANET was the development of a
user-network protocol that has become the standard interface between users and packet
switched networks; namely, ITU-I (formerly CCITT) Recommendation X.25. This
"standard" interface encouraged BBN to start Telenet, a commercial packet-switched
data service, in 1974; after much renaming, Telenet is now a part of Sprint's X.25
service.

The initial host-to-host communications protocol introduced in the ARPANET was
called the Network Control Protocol (NCP). Over time, however, NCP proved to be
incapable of keeping up with the growing network traffic load. In 1974, a new, more
robust suite of communications protocols was proposed and implemented throughout
the ARPANET, based upon the Transmission Control Protocol (TCP) and Internet
Protocol (IP). TCP and IP were originally envisioned functionally as a single protocol,
thus the protocol suite, which actually refers to a large collection of protocols and
applications, is usually referred to simply as TCP/IP. The original versions of both TCP
and IP that are in common use today were written in September 1981, although both
have had several modifications applied to them (in addition, the IP version 6, or 1Pv6,
specification was released in December 1995). In 1983, the DoD mandated that all of
their computer systems would use the TCP /IP protocol suite for long-haul
communications, further enhancing the scope and importance of the ARP ANET.

In 1983, the ARP ANET was split into two components. One component, still called
ARPANET, was used to interconnect research/development and academic sites; the
other, called MILNET, was used to carry military traffic and became part of the
Defense Data Network. That year also saw a huge boost in the popularity of TCP/IP
with its inclusion in the communications kernel for the University of California s UNIX
implementation, 4.2BSD (Berkeley Software Distribution) UNIX.

12

In 1986, the National Science Foundation (NSF) built a backbone network to
:interconnect four NSF-funded regional supercomputer centers and the National Center
for Atmospheric Research (NCAR). This network, dubbed the NSFNET, was originally
intended as a backbone for other networks, not as an interconnection mechanism for
individual systems. Furthermore, the "Appropriate Use Policy" defined by the NSF
limited traffic to non-commercial use. The NSFNET continued to grow and provide
connectivity between both NSF-funded and non-NSF regional networks, eventually
becom:ing the backbone that we know today as the Internet. Although early NSFNET
applications were largely multiprotocol in nature, TCP/IP was employed for
interconnectivity (with the ultimate goal of migration to Open Systems
Interconnection).

In 1993, the NSF decided that it did not want to be in the business of mnning and
fund:ing networks, but wanted :instead to go back to the funding of research in the areas
of supercomputing and high-speed communications. In addition, there was increased
pressure to commercialize the Internet; :in 1989, a trial gateway connected MCI,
CompuServe, and Internet mail services, and commercial users were now finding out
about all of the capabilities of the Internet that once belonged exclusively to academic
and hard-core users! In 1991, the Commercial Internet Exchange (CIX) Association
was formed by General Atomics, Performance Systems International (PSI), and UNET
Technologies to promote and provide a commercial Internet backbone service.
Nevertheless, there rema:ined intense pressure from non-NSF ISPs to open the network
to all users.

In 1994, a plan was put in place to reduce the NSF's role in the public Internet. The new
structure comprises three parts:

l. Network Access Points (NAPs), where individual ISPs would incorrect.
Although the NSF is only funding four such NAPs (Chicago, New York, San
Francisco, and Washington, D.C.), several non-NSF NAPs are also in operation.

2. The very High Speed Backbone Network Service, a network interconnecting
the NAPs and NSF-funded centers, operated by MCI. This network was
:installed in 1995 and operated at OC-3 (155.52 Mbps); it was completely
upgraded to OC-12 (622.08 Mbps) in 1997.

3. The Routing Arbiter, to ensure adequate routing protocols for the Internet.

In addition, NSF-funded ISPs were given five years of reduced funding to become
commercially self-sufficient. This fund:ing ended by 1998.

In 1988, meanwhile, the DoD and most of the U.S. Government chose to adopt OSI
protocols. TCP/IP was now viewed as an interim, proprietary solution since it ran only
on limited hardware platforms and OSI products were only a couple of years away. The

13

DoD mandated that all computer communications products would have to use OSI
protocols by August 1990 and use of TCP/IP would be phased out. Subsequently, the
U.S. Government OSI Profile (GOSIP) defined the set of protocols that would have to
be supported by products sold to the federal government and TCP/IP was not included.

Despite this mandate, development of TCP/IP continued during the late 1980s as the
Internet grew. TCP/IP development had always been carried out in an open
environment (although the size of this open community was small due to the small
number of ARPA/NSF sites), based upon the creed "We reject kings, presidents, and
voting. We believe in rough consensus and running code" [Dave Clark, M.I.T.]. OSI
products were still a couple of years away while TCP /IP became, in the minds of many,
the real open systems interconnection protocol suite.

It is not the purpose of this memo to take a position in the OSI vs. TCP/IP debate.
Nevertheless, a number of observations are in order. First, the ISO Development
Environment (ISODE) was developed in 1990 to provide an approach for OSI
migration for the DoD. ISODE software allows OSI applications to operate over
TCP/IP. During this same period, the Internet and OSI communities started to work
together to bring about the best of both worlds as many TCP and IP features started to
migrate into OSI protocols, particularly the OSI Transport Protocol class 4 (TP4) and
the Connectionless Network Layer Protocol (CLNP), respectively. Finally, a report
from the National Institute for Standards and Technology (NIST) in 1994 suggested
that GOSIP should incorporate TCP/IP and drop the "OSI-only" requirement. [NOTE:
Some industry observers have pointed out that OSI represents the ultimate example of a
sliding window; OSI protocols have been "two years away" since about 1986.]

2.3 Architectural Model

TCP/IP is most commonly associated with the Unix operating system. While developed
separately, they have been historically tied, as mentioned above, since 4.2BSD Unix
started bundling TCP/IP protocols with the operating system. Nevertheless, TCP/IP
protocols are available for all widely used operating systems today and native TCP/IP
support is provided in OS/2, OS/400, and Windows 95/98/NT, as well as most Unix
variants.

The following figures show how the layers build upon each other and how the TCP/IP
protocols described above fit.

14

Figure 2.1 shows the Windows NT model within the seven-layer OSI model, which has
become a standard model for comparison of network protocols. Note that most actual
networks do not conform precisely to the OSI model.

Protocol

CSNW GSNW Others

Presentation

TDI

TC/JP NWLink
NetBEUI/NBF

Logical Link Control
Others

Session

Network

NDIS 3.0

Data Link Network Interface Card

Figure 2.1 Networking Architectural Models

The sections below will provide a brief overview of each of the layers in the TCP/IP
suite and the protocols that compose those layers. A large number of books and papers
have been written that describe all aspects of TCP/IP as a protocol suite, including
detailed information about use and implementation of the protocols

15

SNMP

Net BIOS Applications Windows Sockets Applications

Net BIOS Interface Windows Sockets Interface

Net BIOS over TCP/IP

IP

PPP and other drivers

Figure 1.2 TCP/IP Architectural Models

2.4 IP Address

An IP address is a set of numbers that identifies a particular network and the individual
workstations and servers on the network. Just as your street address determines where
your mail goes, the IP address determines where a network delivers your data.

The address is a 32-bit value, such as 10011101 00011000 01110000 11010101.
However, for ease of use, IP addresses are usually expressed as four numbers between
0 and 255, separated by dots. Here are two example IP addresses:

132.36.253.10

99.224.78.176

16

Each number corresponds to eight bits (one byte) of the address. This method of
writing IP addresses is sometimes called the quad format or dotted quad notation, and
each portion of it is called a quad.

Each IP address contains a network identifier, which ensures that incoming data
reaches the correct network, and a host identifier, which ensures that data reaches a
specific workstation or server on that network.

On a completely private network one that never connects to the Internet the network
administrator is free to assign entire addresses at will. In the real world, however, a
portion of the address is pre-assigned by an organization called the Network
Information Center (NIC), or InterNIC.

We cannot just look at an address and tell which part identifies the network and which
the host. Before you can do that, you need to be able to identify what class a particular
address belongs to. For that, read on.

2.4.ICJasses of IP Addresses

There are three common classes of IP addresses. The first few bits of the 32-bit binary
address determine the class the address belongs to; from that you can identify the
characteristics of the rest of the address.

2.4.1.1 Class A

In a Class A network; the first bit of the binary IP address is always 0 .. The first byte
(quad) is always between 1 and 126. The first byte of the munber identifies the
network. The final three bytes identify the hosts on the network.

There are 126 or fewer Class A networks in the world, but each can have up to
16,777,214 hosts on it. These addresses have been assigned by the InterNIC to very
large organizations such as Hewlett Packard, whose network's :first byte is 15.

2.4.1.2 Class B

In a Class B network, the first two bits of the binary IP address are always 10. The first
byte (quad) is always between 128 and 191. The first two full bytes identify the
network. The last two bytes identify the host.

17

Therefore, there are 16,384 Class B networks, and each of these can have up to 65,534
hosts. These networks were assigned to medium-sized companies and institutions.

2.4.1.3 Class C

In a Class C network, the first three bits of the binary IP address are always 110. The
first byte (quad) is always between 192 and 223. The first three complete bytes identify
the network. The last byte identifies the host.

Therefore, there can be 2,097,151 networks within Class C, but each network can
contain only 254 or fewer hosts. These networks are the only ones still available and
are being assigned to companies of all sizes. Microsoft, for instance, uses the Class C
network 198, among others.

There are also several special, reserved classes of networks, but you do not need to
worry about those now.

2.5 Diagnosing and Solving IP Configuration Problems

When diagnosing problems on TCP/IP, it is useful to remember that NetBIOS and
TCP/IP is a layered environment, as indicated in the architectural models in Module 1.
You can isolate a specific problem by checking various layers. The fastest way to do
this is to split the architectural model in half, right at the IP layer.

Your best :fiiend in troubleshooting TCP /IP networks is the utility program ping. You
can use ping to tell you whether a problem is at the IP layer, below it, or above. First,
use ping to test the IP layer of the machine you are on. Ping the loopback device. The
loopback device is simply the IP address 127.0.0.1, which is designed to send any
packet it gets straight back at the sender. (Actually, the entire network 127 is reserved
for a loopback device, but 127 .0.0. l is the traditional address to use. The name
associated with this address is "localhost.")

If you type this command line:

C:\users\default>ping 127.0.0.1

You should get output similar to this:

18

Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<lOms TTL=32

Reply from 127.0.0.1: bytes=32 time<lOms TTL=32

Reply from 127.0.0.1: bytes=32 time<lOms TTL=32

Reply from 127.0.0. l: bytes=32 time<lOms TTL=32

If aU is working, ping repeats the same information several times, then stops. Clearly,
the computer above has a working IP layer.

If ping doesn't work, check to be sure TCP/IP is instaUed on the computer you're
working on and that the computer rebooted after installation.

Check NT's Event Viewer for problems reported by setup or by TCP/IP.

Now, learn the IP address of the computer you're working on. Use ipconfig by typing
the foUowing command line:

C:\users\default>ipconfig

The system should return output similar to

Windows NT IP Configuration

Ethernet adapter ATl 7001:

IP Address : 192.0.0.4

Subnet Mask : 255.255.255.0 _

Default Gateway : 192.0.0.4

If the IP address or subnet mask on your planning sheet disagrees with that returned by
ipconfig, fix the discrepancy, and see if the problem continues.

19

Now ping the computer's IP address by typing

G:\users\default>ping 192.0.0.4

You should get the following result:

Pinging 192.0.0.4 with 32 bytes of data:

Reply from 192.0.0.4: bytes=32 time<lOms TTL=32

Reply from 192.0.0.4: bytes=32 time<lOms TTL=32

Reply from 192.0.0.4: bytes=32 time<l.Oms TTL=32

Reply from 192.0.0.4: bytes=32 time<lOms TTL=32

If you don't get this result, something is wrong on the computer. Go over the above
steps and double-check your work.

Up to now, you have been pinging your own computer. Now try pinging another host
on the same physical network. A computer you know to be good, such as a server or
the gateway, is an appropriate target.

If you don't know whether a particular address is actually on your network, use the
tracert utility, which traces the route to another computer. As a byproduct of tracing the
route, it tells you how many "hops" it bas to make to reach its destination. If it only has
to make one hop, you know the destination is on the same network.

To use the tracert command, type c:\users\defau)~>tracert [address]

The output will look something like this:

C:\users\default>tracert 192.0.0.2

20

Tracing route to bad dog [192.0.0.2]

Over a maximum of 30 hops:

1 10 ms <10 ms <10 ms bad dog [192.0.0.2]

Trace complete.

The "1" tells you it took a single hop to reach this machine and therefore that the two
computers are on the same network.

Now, having traced the route to the computer, ping the computer's IP address. If that
works, ping its host name. If that doesn't work, then you know you have a name
resolution problem, which will be covered later in this module.

If you can ping yourself but not another host on the local net, then you may have a
binding problem. Use netstat -e to get some Ethernet level statistics. You can use
nbtstat to learn what a host knows about its local network. Nbtstat -a or nbtstat -A will
tell you what a remote host knows about its environment. If these utilities return results
that look as if there is no connection to the net, then check the MAC address (which
you can learn with nbtstat -a) against the Ethernet card. They should agree.

You can also use ping on multiple hosts to isolate a problem. For example, if A can
ping B but B cannot ping A, then most likely B has a configuration problem, probably
at the IP layer. Check B's IP address and subnet mask.

You can also use the arp -a command to check arp resolution. Make sure the IP address
and MAC address for each entry agree with what you have in your notebook of
planning sheets. If they don't, you may have a mis-assigned IP address.

You also could simply have a bad connection, such as a loose connector. The best way
to check for bad connections is to use Ethernet cards with "link" LEDs. If you have a
good connection, the link LED will be lit. If it is off, you have a physical layer
problem. Many Ethernet cards have other indicator LEDs as well.

21

If you can ping to another computer but cannot locate it with higher-level services, such
as the File Manager, then the problem is with the higher-level service. For example, if
you can ping a computer but can't ftp to it; you should check that computer's ftp
server.

~_,!

22

Chapter 3

Windows Socket (Winsock)

3.1 Background of Winsock

The Windows Sockets specification defines a binary-compatible network-programming
interface for Microsoft Windows. Windows Sockets are based on the UNIX® sockets
implementation in the Berkeley Software Distribution (BSD, release 4.3) from the
University of California at Berkeley. The specification includes both BSD-style socket
routines and extensions specific to Windows. Using Windows Sockets permits your
application to communicate across any network that conforms to the Windows Sockets
API. On Win32, Windows Sockets provide for thread safety.

Many network software vendors support Windows Sockets under network protocols
including Transmission Control Protocol/Internet Protocol (TCP/IP), Xerox® Network
System (XNS), Digital Equipment Corporation's DECNet™ protocol, Novell®
Corporation's Internet Packet Exchange/Sequenced Packed Exchange (IPX/SPX), and
others. Although the present Windows Sockets specification defines the sockets abstraction
for TCP /IP, any network protocol can comply with Windows Sockets by supplying its own
version of the dynamic link library (DLL) that implements Windows Sockets. Examples of
commercial applications written with Windows Sockets include X Window servers,
terminal emulators, and electronic mail systems.

Note: Keep in mind that the purpose of Windows Sockets is to abstract away the
underlying network so you don't have to be knowledgeable about that network and so your
application can run on any network that supports sockets. Consequently, this
documentation doesn't discuss the details of network protocols.

The Microsoft Foundation Class Library (MFC) supports programming with the Windows
Sockets API by supplying two classes. One of these classes, CSocket, provides a high level
of abstraction to simplify your network communications programming.

The Windows Sockets specification, Windows Sockets: An Open Interface for Network
Computing Under Microsoft Windows, now at version 1.1, was developed as an open
networking standard by a large group of individuals and corporations in the TCP/IP
community and is freely available for use. The sockets programming model supports one
"communication domain" currently, using the Internet Protocol Suite. The specification is
available in the Win32 SDK.

23

Tip: Because sockets use the Internet Protocol Suite, they are the preferred route for
applications that support Internet communications on the "information highway."

3.2 Definition of a Socket

A socket is a communication endpoint an object through which a Windows Sockets
application sends or receives packets of data across a network. A socket has a type and is
associated with a running process, and it may have a name. Currently, sockets generally
exchange data only with other sockets in the same "communication domain," which uses
the Internet Protocol Suite.

Both kinds of sockets are bi-directional: they are data flows that can be communicated in
both directions simultaneously (full-duplex).

Two socket types are available:

• Stream sockets

Stream sockets provide for a data flow without record boundaries a stream of bytes.
Streams are guaranteed to be delivered and to be correctly sequenced and
unduplicated.

• Datagram sockets

Datagram sockets support a record-oriented data flow that is not guaranteed to be
delivered and may not be sequenced as sent or unduplicated.

"Sequenced" means that packets are delivered in the order sent "Unduplicated" means that
you get a particular packet only once.

Note: Under some network protocols, such as XNS, streams can be record-oriented
streams of records rather than streams of bytes. Under the more common TCP/IP protocol,
however, streams are byte streams. Windows Sockets provides a level of abstraction
independent of the underlying protocol.

3.3 The Socket Data Type

Each MFC socket object encapsulates a handle to a Windows Sockets object. The data type
of this handle is SOCKET. A SOCKET handle is analogous to the HWND for a window.
MFC socket classes provide operations on the encapsulated handle.

The SOCKET data type is described in detail in the Win32 SDK. See the topic Socket Data
Type and Error Values under Windows Sockets.

24

3.3.1 Uses for Sockets

Sockets are highly useful in at least three communications contexts:

• Client/Server models

• Peer-to-peer scenarios, such as chat applications

• Making remote procedure calls (RPC) by having the receiving application interpret
a message as a function call

Tip The ideal case for using MFC sockets is when we are writing both ends of the
communication: using MFC at both ends. For more information on this topic, including
how to manage the case when you're communicating with non-MFC applications.

3.3.2 Byte Ordering

Different machine architectures sometimes store data using different byte orders. For
example, Intel-based machines store data in the reverse order of Macintosh (Motorola)
machines. Intel's byte order, called "little-Endian," is also the reverse of the network
standard "big-Endian" order. The following table explains these terms.

Table 3.1 Big- and Little-Endian Byte Ordering

Byte ordering Meaning '
..

Big-Endian i The most significant byte is on the left end of a word. .

Little-Endian : The most significant byte is on the right end of a 1 '

Typically, you don't have to worry about byte-order conversion for data that you send and
receive over the network, but there are situations in which you must convert byte orders.

25

3.3.3 Convert Byte Orders

We need to convert byte orders in the following situations:

• You're passing information that needs to be interpreted by the network, as opposed
to the data you're sending to another machine. For example, you might pass ports
and addresses, which the network must understand.

• The server application with which you're communicating is not an MFC
application (and you don't have source code for it). This calls for byte order
conversions if the two machines don't share the same byte ordering.

3.3.4 When We Don't Have to Convert Byte Orders

You can avoid the work of converting byte orders in the following situations:

• The machines on both ends can agree not to swap bytes, and both machines use the
same byte order.

• The server you're communicating with is an MFC application.

• You have source code for the server you're communicating with, so you can tell
explicitly whether you must convert byte orders or not.

• You can port the server to MFC.

Working with CAsyncscoket, you must manage any necessary byte-order conversions
yourself. Windows Sockets standardizes the "big-Endian" byte-order model and provides
functions to convert between this order and others. CArchive, however, which you use
with CSockey, uses the opposite ("little-Endian") order but CArchive takes care of the
details of byte-order conversions for you. By using this standard ordering in your
applications, or using Windows Sockets byte-order conversion functions, you can make
your code more portable.

The ideal case for using MFC sockets is when you're wntmg both ends of the
communication: using MFC at both ends. If you're writing an application that will
communicate with non-MFC applications, such as an FTP server, you'll probably need to
manage byte-swapping yourself before you pass data to the archive object, using the
Windows Sockets conversion routines, ntohs, ntohl, htons, and htonl. An example of these
functions used in communicating with a non-MFC application appears later in this article.

26

3.4 Sequence of Operations for a Stream Socket Communication

Up to the point of constructing a CSocketFile object, the following sequence is accurate
(with a few parameter differences) for both CAsyncSocket and CSocket. From that point
on, the sequence is strictly for CSocket. The following table illustrates the sequence of
operations for setting up communication between a client and a server.
Setting Up Communication Between a Server and a Client

I I construct a socket
CSocket sockSrvr;

a socket
CSocket sockClient;

create the SOCKET
sockSrvr.Create(nPort); 1,2

I I create the SOCKET
sockClient.Create();2

II Seek a connection
sockClient.Connect(strAddr, nPort);3'4

I I start listening
sockSrvr.Listen();

II construct a new, empty socket
CSocket sockRecv;
II accept connection
sockSrvr.Accept(sockRecv); 5

II construct file object
CSocketFile file(&sockRecv);

II construct file object
CSocketFile file(&sockClient);

I I construct an archive
CArchive arln(&file,

CArchive: :load);
-or-
CArchive arOut(&file,

CArchive: .store);
- or Both-

I I construct an archive
CArchive arln(&file,

CArchive: :load);
-or-
CArchive arOut(&file,

CArchive::store);
- or Both-

Table 3.2

27

1. Where nPort is a port number
2. The server must always specify a port so clients can connect. The Create call sometimes
also specifies an address. On the client side, use the default parameters, which ask MFC to
use any available port.
3. Where nPort is a port number and strAddr is a machine address or an Internet Protocol
(IP) address.
4. Machine addresses can take several forms: "ftp.microsoft.com", "ucsd.edu". IP
addresses use the "dotted number" form "127.54.67.32". The Connect function checks to
see if the address is a dotted number (although it doesn't check to ensure the number is a
valid machine on the network). If not, Connect assumes a machine name of one of the
other forms.
5. When you call Accept on the server side, you pass a reference to a new socket object.
You must construct this object first, but do not call Create for it. Keep in mind that if this
socket object goes out of scope, the connection closes. MFC connects the new object to a
SOCKET handle. You can construct the socket on the stack, as shown, or on the heap.
6. The archive and the socket file are closed when they go out of scope. The socket
object's destructor also calls the Close member function for the socket object when the
object goes out of scope or is deleted.

3.5 Winsock Control

A WinSock control allows you to connect to a remote machine and exchange data using
either the User Datagram Protocol (UDP) or the Transmission Control Protocol (TCP).
Both protocols can be used to create client and server applications. Like the Timer control,
the WinSock control doesn't have a visible interface at run time.

The Winsock control, invisible to the user, provides easy access to TCP and UDP network
services. Microsoft Access, Visual Basic, Visual C++, or Visual FoxPro developers can
use it. To write client or server applications we need to understand the details of TCP or to
call low-level Winsock APis. By setting properties and invoking methods of the control,
you can easily connect to a remote machine and exchange data in both directions.

3.5.1 Possible Uses

• Create a client application that collects user information before sending it to a
central server.

• Create a server application that function as a central collection point for data from
several users.

• Create a "chat" application.

28

3.5.2 Selecting a Protocol

When using the WinSock control, the first consideration is whether to use the TCP or the
UDP protocol. The major difference between the two lies in their connection state:

• The TCP protocol control is a connection-based protocol, and is analogous to a
telephone - the user must establish a connection before proceeding.

• The UDP protocol is a connectionless protocol, and the transaction between two
computers is like passing a note: a message is sent from one computer to another,
but there is no explicit connection between the two. Additionally, the network
determines the maximum data size of individual sends.

The nature of the application you are creating will generally determine which protocol you
select. Here are a few questions that may help you select the appropriate protocol:

1. Will the application require acknowledgment from the server or client when data is
sent or received? If so, the TCP protocol requires an explicit connection before
sending or receiving data.

2. Will the data be extremely large (such as image or sound files)? Once a connection
has been made, the TCP protocol maintains the connection and ensures the integrity
of the data. This connection, however, uses more computing resources, making it
more "expensive."

3. Will the data be sent intermittently, or in one session? For example, if you are
creating an application that notifies specific computers when certain tasks have
completed, the UDP protocol may be more appropriate. The UDP protocol is also
more suited for sending small amounts of data.

3.5.3 Setting the Protocol

To set the protocol that your application will use: at design-time, on the Properties
window, click Protocol and select either sckTCPProtocol, or sckUDPProtocol. We can also
set the Protocol property in code, as shown below:

Winsockl.Protocol = sckTCPProtocol

3.5.4 Determining the Name of Computer

To connect to a remote computer, you must know either its IP address or its "friendly
name." The IP address is a series of three digit numbers separated by periods
(xxx.xxx.xxx.xxx). In general, it's much easier to remember the friendly name of a
computer.

29

3.5.5 To find the computer's name

1. On the Taskbar of your computer, click Start.

2. On the Settings item, click the Control Panel.

3. Double-click the Network icon.

4. Click the Identification tab.

5. The name of your computer will be found in the Computer name box.

Once you have found your computer's name, it can be used as a value for the RemoteHost
property.

3.6 TCP Connection Basics

The Transfer Control Protocol allows you to create and maintain a connection to a remote
computer. Using the connection, both computers can stream data between themselves.

If you are creating a client application, you must know the server computer's name or IP
address (Remote Host property), as well as the port (Remote Port property) on which it
will be "listening." Then invoke the Connect method.

If you are creating a server application, set a port (Local Port property) on which to listen,
and invoke the Listen method. When the client computer requests a connection, the
Connection Request event will occur. To complete the connection, invoke the Accept
method within the Connection Request event.

Once a connection has been made, either computer can send and receive data. To send
data, invoke the Send Data method. Whenever data is received, the Data Arrival event
occurs. Invoke the Get Data method within the Data Arrival event to retrieve the data

The following steps create a rudimentary server:

3.6.1 To create a TCP server

1. Create a new Standard EXE project.

2. Change the name of the default form to frmServer.

3. Change the caption of the form to "TCP Server."

4. Draw a Winsock control on the form and change its name to tcpServer.

30

5, Add two TextBox controls to the form. Name the first txtSendData, and the second
_ txtOutput.

6. Add the code

3.6.2 To create a TCP Client

1. Create a new Standard EXE project.

2. Change the name of the default form to frmClient.

3. Change the caption of the form to "TCP Client."

4. Draw a Winsock control on the form and change its name to tcpClient.

5. Add two TextBox controls to the form. Name the first txtSendData, and the
second txtOutput.

6. Add the code

3.6.3 Accepting More than One Connection Request

The basic server outlined above accepts only one connection request. However, it is
possible to accept several connection requests using the same control by creating a control
array. In that case, you do not need to close the connection, but simply create a new
instance of the control (by setting its Index property), and invoking the Accept method on
the new instance.

The code below assumes there is a Winsock control on a form named sckServer, and that
its Index property has been set to O; thus the control is part of a control array. In the
Declarations section, a module-level variable intMax is declared. In the form's Load event,
intMax is set to 0, and the LocalPort property for the first control in the array is set to
1001. Then the Listen method is invoked on the control, making it the "listening control.
As each connection request arrives, the code tests to see if the Index is O (the value of the
"listening" control). If so, the listening controls increments intMax, and uses that number
to create a new control instance. The new control instance is then used to accept the
connection request.

31

3. 7 UDP Connection Base Basics

- The User Datagram Protocol (UDP) is a connectionless protocol. Unlike TCP operations,
computers do not establish a connection. Also, a UDP application can be either a client or
a server.

To transmit data, first set the client computer's Local Port property. The server computer
then needs only to set the Remote Host to the Internet address of the client computer, and
the Remote Port property to the same port as the client computer's Local Port property, and
invoke the Send Data method to begin sending messages. The client computer then uses
the Get Data method within the Data Arrival event to retrieve the sent messages.

3.8 Local Port Property

Returns or sets the local port to use. Read/Write and available at design time.

• For the client, this designates the local port to send data from. Specify port O if the
application does not need a specific port. In this case, the control will select a
random port. After a connection is established, this is the local port used for the
TCP connection.

• For the server, this is the local port to listen on. If port O is specified, a random port
is used. After invoking the Listen method, the property contains the actual port that
has been selected.

32

Chapter 4

TCP/IP Programming Using Visual Basic

4.1TCP/IP PROGRAMMING

TCP/IP is currently the accepted standard protocol used when two or more computers
wish to exchange information over a network. Several hardware and software
components must be in place before the data can actually be sent and received.
First of all, the physical hardware connection must exist between the computers. This is
either a network interface card (NIC), or a serial communications port for dial-up type
networking connections.
Computers also need to be software configured to use the TCP/IP protocol over the
selected transmission medium. As part of this configuration, each computer on a network
should be given a unique Internet Protocol (IP) address and an IP name. Each computer is
assigned a 32-bit number, which can be used to identify it over the network. This address
is broken down into four 8-bit numbers, separated by dots. This is called dot-notation and
looks something like "170.45.23. l" (see Chapter 3).
When a system sends data over the network using the TCP/IP protocol, it is sent in
discrete units called datagrams, also known as packets. A datagram consists of a header
followed by application dependent data. TCP/IP offers a reliable, full-duplex byte
streaming type data communication. Data packets are re-transmitted if they do not reach
their destinations reliably. TCP/IP is also connection-orientated protocol. This means that
before two computers can begin to exchange data they must establish a connection with
each other. One computer usually assumes the role of a server while the other computer
the client. The server normally waits for a connection. The client is responsible for
establishing the connection, while the server has the option of accepting (or rejecting) a
connection request. If the connection is accepted then the two computers can begin to
exchange data with each other.
There are two general approaches that you can take when creating TCP/IP based
programs. One is to code at the lower level using the Windows Application
Programming Interface (API) calls. The other option, which provides a higher-level and
much simpler approach, is to use an activex component. TI1e Winsock activex component
provided with the Visual Basic distribution kit is a very powerful tool and enables you to
develop TCP/IP based application in a very short time.
In this chapter you'll learn about:
• Windows sockets
• Winsock acti vex component
• Client-server based TCP/IP communications

Several working examples are given in this chapter on the programming of TCP/IP, using
the Winsock activex component.

33

4.2 SOCKETS

A socket is basically a logical interface between two computers, which is created when
using the TCP/IP protocol. A socket is a communications end-point. However, just
creating a socket by itself is not enough for exchanging information. You have to assign a
port number to direct the data to a specific place. A port is a virtual link between two
systems, which communicate with each other. Several applications can use a socket, each
transmitting and receiving data through a selected port. It is important that both sides of
the communication ends must use the same port number. The port numbers are divided
into three ranges: the Well Known Ports, the Registered Ports, and the Dynamic or
Private P01ts. The Well Known Ports are those from O to 1023. The registered Ports are
those from 1024 to 49151, and the Dynamic Ports are those from 49152 to 65535. The
Internet Assigned Numbers Authority (TANA) assigns the Well Known Ports and these
should be used with care when the system is connected to the Internet. When writing
TCP/IP based applications using the Winsock control, you have to make sure to stay
away from any ports that are used by other applications.

34

Table 4.1 Some of the important Well-known Ports

4.3 WINSOCK CONTROL
Before we actually begin programming in TCP/IP, let's take a look at the Winsock
activex control, which shall form the core of our programs. We shall be using this control
nearly in all of our programs.
Just like the other standard activex components (e.g. dialog boxes, push-buttons, text
boxes, list-boxes etc.), Winsock activex control has a number of properties, methods, and
events as described below.

4.3.1 Properties
The Winsock's most interesting properties are listed in Table 4.2 and are described here
briefly. In all the examples given below, the Winsock control is named as Winsock.

Table 4.2 Winsock control important properties

LocalHostName returns a string, which is filled with the IP name of the local machine.

Example use:

35

Assuming the local IP name is Charlie, variable my name will be assigned to string
Charlie.

LocalIP returns a string, which is filled with the IP address of local machine in dotted
string format

Example use:

Assuming the local IP address is "125.23.45", variable my address will be assigned to
string "125.23.45.2".

Protocol is used to set the protocol type used. Valid options are sckTCP protocol for TCP
based protocols and sckUDPProtocol for UDP based protocols.

Example use:

This code will set the protocol to TCP which is what we will be using in this chapter.

RemoteHost Name is used to set or return the remote machine to which a control sends
or receives data. Either the IP name or the IP address ofremote machine can be specified.

Example use:

This code will define the remote machine IP name as "Charile"

State property returns the state of the control, expressed as an enumerated type. The
setting for the state property are listed in Table 4.3

36

Table 4.3 Winsock State Property constant

Example use:

This code will display the message "Scoket is Open " if the socket is open.

4.3.2 Methods

The Winsock' s most interesting methods are listed in Table 5 .4 and are described here
briefly. In all the examples below, the Winsock control is named as Winsockl.

37

Table 4.4 Winsock Control Important Methods

Accept is used for TCP server applications only. This method is used to accept an
incoming connection in a ConnectionRequest event (see section on events).

Example use:

The RequestID parameter identifies the request. The Accept method should be used on a
new control instance and not on the one that is in the listening state.

Bind specifies the LocalPort and LocaUP address to be used for TCP connections. This
method is used if there are multiple protocol adapters.

Example use:

Binds port 500 to local address "120.12.34.45". Bind is used before the Listen

38

Table 4.5 Data types that can be used with GetData

Send Data sends data to a remote computer.

Example use:

Will send the conw~,s of string mydata to the remote computer

4.3.3 Events
The Winsock's most interesting events are listed in Table 5.6 and are described here
briefly. In all the examples below, the winsock control is named as winsckl.

40

method.

Close method closes a TCP connection.

Example use:

Listen is used by the server TCP protocols. The machine waits in listen mode waiting for
a connection request from a client.

Example use:

GetData retrieves the received block of data and stores it in a variable. The general
fonnatis:

Where,
Data is where the retrieved data will be stored
Type is the type of data to be retrieved. This parameter is optional (see table

4.5 for a list of data types)
MaxLen is the size to read. This parameter is optional and if omitted, all
Available data will be retrieved.

Example use:

Will retrieve all available data and store in string mydata

39

Table 4.6 Winsock Control important events

Close event occurs when the remote computer closes the connection. This event should
be used to close a TCP connection properly.

Connect event occurs when a connection is established to the remote computer.

ConnectionRequest event occurs when a remote computer requests a connection. This
event is available for TCP based server applications. The server should accept the
connection request within this event procedure.

Error event occurs whenever an error occurs in background processing. For example, if
failure is detected in receiving or sending data.

DataArrival event occurs when new data is received from the remote computer. GetData
method should be used within this event procedure to retrieve the received data.

4.4 Client-Server Applications

Programs written to use the TCP/IP protocol are developed using the client-server model.
In this model one computer assumes the role of the client, while the other computer must
assume the role of the server. The server computer creates a socket and listens for
connection requests from the client computer on a specified port. The client computer
creates a socket and initiates a connection request to the server on the same port. The
server computer then accepts (or rejects) the connection request and the two sides can
start to exchange data. By accepting the connection, the server completes the virtual
circuit between the two machines. It is important to note that a new socket is created by
the act of accepting a connection and the original socket still continues to listen for
additional connection requests. When the server computer no longer wishes to
communicate, it closes the socket connection and this act breaks the virtual connection
between the two machines.

41

The steps in establishing a connection, sending and receiving data, and closing a
connection are shown diagrammatically in Figure 4.1

Figure 4.1 TCP/IP communication steps

CLIENT SERVER

Create a socket

Listen for Connection
Create a socket

Specify IP name or IP address of Server

Establish Port Number of Server

Establish connection with the Server

Send and received data

Close the Socket

Accept the connection

Send and.recei ved data

Close the Socket

4.5 A SIMPLE TCP/IP EXAMPLE

4.5.1 One Way Communication

In this section we shall be looking at a simple client-server based TCP/IP example. In this
example, assume that two computers with the network names and addresses as shown in
Figure 4.2 are connected to each other using a network interface card. Two programs
shall be developed, one for the s4"ver (SIERRA) and one for the client (CHARLIE). The
server computer shall create a socket and listen for a connection. The client computer
shall initiate a connection and then connect to the server. Data will then be sent from the

42

client to the server. The server computer shall display the received data in a text-box.

CLIENT SERVER

JP name: CHARILE

IP address: 170.100.16.1

IP name: SIERRA

IP address: 170.100.16.2

Figure 4.2 Client and server computer of the simple example

The steps in creating the two programs are given below. Note that although two
computers are used in this example it is possible to develop both the client and the server
programs on the same computer by invoking two Visual Basic sessions. This should
enable you to test the programs on one computer only without requiring a second one.
The TCP/IP protocol should of course be installed and configured on this computer.

4.5.1.1 Client Computer
1. Load up Visual Basic and create a new project.
2. Go to Projects, then Components and select Microsoft Winsock Control 6.0 by

placing a tick in the box on the left hand side, as shown in Figure 4.3.

43

- --~-- - - --=-==-

j Mk.-o;oft Sy<lnfo Control 5. 0
J Microsoft Tabbed Dialog Control 5. O (SP2)
Microsoft Telephony

J Microsoft Voice Commands

Figure 4.3 Selecting the Winsock control

3. Place the control on your form. Note that the form is not visible during run-time.
4. Click on the Winsock control. You should see the properties window as in

Figure 4.4 Note that the name of the control is set to Winsock l.

600
0
O - sckTCPProtocot

600

Figure 4.4 Winsock properties Window

5. Create the text-box and the command-buttons on your form as shown in Figure
4.5 and name them as follows:

44

Message label
Message text-box
SEND command-button
EXIT command-button

IblMsg
txtMsg
cmdSend
cmdExit

Figure 4. 5 Client form

6 Enter the following code in appropriate procedures:

45


~~~~~~~~~ --- -- -- ----- - 

Note that in procedure Form_ Load, the protocol type is specified as TCP/IP, the remote 
computer name is specified as SIERRA, and the port number is set to 1112 (any other 
unused port number can be used). When the Send button is pressed, procedure 
cmdSend _ Click is activated and this procedure 

sends the message, which is already in the text-box. The text-box is then cleared ready 
for the next message. Procedure cmdExit_ Click closes the connection. 

4.5.1.2 Server Computer 

1. Load up Visual Basic and create a new project. 
2. Go to Projects, then Components and select Microsoft Winsock Control 6. 0 as 

before. 
3. Place the winsock control on the form and name the control as Winsock 1. 
4. Create the text-box and the command-buttons as shown in Figure 4.6 and name 

them as follows: 

Message label Received 
Data text-box EXIT 
Command-button 

lblMsg 
txtReceivecl 
cmdExit 

46 



--·---- 

Figure 4.6 Server form 

5 Enter the following code in the appropriate procedures: 

Procedure FormJLoad sets the protocol type to TCP/IP, the port number to 1112, and 
listens for a connection request from the client, which is accepted in procedure Winsockl 
_ ConnectionRequest. Note that the state of the listening socket is checked and closed if 
open. Procedure Winsockl_DataArrival retrieves the received data and displays this data 
in text-box txtReceived. Finally, procedure cmdExit_Click is activated when the exit 
button is pressed and this procedure closes the TCP /IP link. 

4.5.2 Two Way Communication 

The example in the previous section demonstrated the basic principles of TCP/IP based 
communication. We shall now develop a more complicated example where both the 

47 



-------- ~-~~- n 

server and the client can send and receive data. In addition, you should be able to specify 
the remote computer name at nm time so that the program can be used to connect to any 
server. 

Since you are now familiar with the steps of using the Winsock control, only the project 
forms and the code shall be given in this section. 

4.5.2.1 CLIENT COMPUTER 

Create the form details shown in Figure 4.7 and name the Winsock control as Winsockl. 
Name the various controls as follows: 

Data to be sent label 
Received data label 
Remote host name label 
Send command-button 
Connect command-button 
Exit command button 

lblSend 
lblReceived 
lblHost 
cmdSend 
cm.dConnect 
cmdExit 

The following code should be entered into the appropriate procedures: 

48 



Procedure Form , Load defines the protocol type as TCP/IP and disables the Send 
command-button on the form. This button will be enabled after a connection is made to 
the client. Procedure cmdConnect_ Click initiates a connection to the server on port 
number 1112. Procedure cmdlixit Click closes the connection and terminates the 
program. Procedure cmdSend _ Click sends the data in text-box txtSend to the remote 
machine. Procedure Winsockl _ Connect is a winsock event driven procedure and is 
activated whenever a connection is established. The Send command-button is enabled 
and the Connect command-button is disabled in this procedure. Procedure Winsockl 
_ DataArrival is activated when a data packet is received by the program. The received 
data is displayed in the text-box called txtReceived. 

49 



Figure 4. 7 Client form 

4.5.2.2 Server Computer 

Create the form details shown in Figure 4.8 and load two identical Winsock controls on 
the form, both named Winsockl. Set the Index of one of the controls to O and the other 
one to 1. Name the various controls on the form as follows: 

Data to be sent label 
Data to be Sent Text-Box 
Received data label 
Received Text-Box 
Send command-button 
Exit command button 

lblSend 
tx:tSend 
lblReceived 
tx:tReceived 
cmdSend 
cmdExit 

Figure 4.8 Server form 

The following code should be entered into the appropriate procedures: 

50 



Procedure Form_Load defines the protocol as TCP/IP, defines the local port and then 
listens for a connection. Procedure cmdSend Click sends the text in text-box cmdSend to 
the remote computer. Procedure Winsockl _ ConnectionRequest accepts he connection 
request from the client. Procedure Winsockl _ DataArrival retrieves he received data and 
displays it in text-box txtReceived. 

Testing the programs should be relatively easy. All you have to do is run the server 
Program first, then the client program. Try entering messages from both sides of the 
connection. You should see the messages displayed in the appropriate text-boxes. 

4.6 Testing the Programs 

Testing the simple client-server programs you have created is easy. Run the server 
program first. Then run the client program either on the same computer or on another 
computer. Remember to change the IP names to match the TCP/IP configurations of your 
computer. Now enter a message on the client computer and press the Send button. The 
message should be displayed on the server computer. Press the exit button to terminate 

5] 



the application. 

52 



CONCLUSION 

In this project we have described the client-server based communications using the 
TCP/IP protocol over the Internet. We have shown that client-server communication is 
very well suited to remote control based applications. We have used the Visual Basic 
language in our project with the Winsock control. This has made the programming very 
easy and well structured that sends the simple text to each other. 

As Client requests to Server after accepted request by Server both computers can 
communicate each other and in this way Client can share the other resources of the 
network e.g. data storage over the Server. Where it connected. Then connections are 
made through the winsock control and text can be sent over the Internet while curing the 
protocols of Internet. While taking the concept of this simple and basic structure of the 
client-server based application we can develop highly civilized and widely used 
applications e.g. famous chat applications icq and mire ,e-mail and finally the file 
attachments with e-mails. 

We can recommend that the project be expanded in the future by adding hardware to the 
client computer. This way, we can physically control and monitor remote equipment 
from a local server computer. 

53 



BIBLOGRAPHY 

• A guide for writing the base of Internet: 

ARPANET to INTERNET and beyond ... by Peter Salus (Addison-Wesley, 
1995) and Where Wizards Stay Up Late: The Origins of the Internet by Katie 
Hafuer and Mark Lyon (Simon & Schuster, 1997). 

• A guide for writing on the basic concept of the Networking and client/sever 
Microsoft's Networking Essentials from Microsoft Press 

Referred to Intemetworking with TCP /IP, 
Vol. I: Principles, Protocols, and Architecture, 

2/e, by D. Comer (Prentice-Hall, 1991) 

TCP/IP: Architecture, Protocols, and Implementation with IPv6 and IP 
Security, 
2nd. Edition. by S. Feit (McGraw-Hill, 1997), 
"TCP/IP Tutorial" by T.J. Socolofsky and C.J. Kale (RFC 1180), 
TCP/IP illustrated, Volume I: 
The Protocols by W.R. Stevens (Addison-Wesley, 1994). 

• A guide for writing the program on Visual basic. 

www.vbcode.com 

www.programmersheaven.com 

http://www.hill.com or http://www.sover.net/~kessfam 

54 


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 

	Images
	Image 1


	Page 2
	Titles
	TABLE OF CONTENTS 
	Chapter 1 
	Introduction to Network & Client/Server 

	Images
	Image 1

	Tables
	Table 1


	Page 3
	Titles
	Chapter 2 
	Introduction to TCP/IP 
	Chapter 3 
	Windows Sockets (Winsock) 

	Images
	Image 1


	Page 4
	Titles
	Chapter 4 
	TCP/IP Programming Using Visual Basic 
	Conclusion 

	Images
	Image 1


	Page 1
	Titles
	A.CKNOWLEl)~EM}JNTS 

	Images
	Image 1


	Page 2
	Titles
	ABSTRACT 

	Images
	Image 1


	Page 3
	Titles
	ABBREVIATIONS 

	Images
	Image 1


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Titles
	INTRODUCTION 

	Images
	Image 1


	Page 7
	Titles
	Chapter 1 
	Introduction to Network & Client/Server 
	1.1 Networking 
	1.2 Use of Network 
	1 

	Images
	Image 1


	Page 8
	Titles
	1.3 Data 
	1.4 Applications 
	1.5 Network Topology 
	1.5.1 Bus 
	1.5.2 Star 

	Images
	Image 1


	Page 9
	Titles
	1.5.3 Ring 
	1.6 Range of Networks 

	Images
	Image 1


	Page 10
	Titles
	1. 7 Networking Overview 

	Images
	Image 1
	Image 2
	Image 3


	Page 11
	Titles
	1.7.1 Peer-to-Peer Networks 
	1. 7 .2 Server-Based Networks 

	Images
	Image 1
	Image 2


	Page 12
	Titles
	1. 7.3 Specialized Servers 

	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Titles
	1.8 Client/Server Computing 
	1.8.1 Client 
	1.8.3 Server 

	Images
	Image 1


	Page 14
	Titles
	1.8.3 The Client/Server Process 
	1.9 The Advantages of Working in a Client/Server Environment 

	Images
	Image 1
	Image 2
	Image 3


	Page 15
	Images
	Image 1


	Page 16
	Titles
	Chapter l 
	Introduction to TCP/IP 
	2.1 Introduction of TCP/IP 

	Images
	Image 1


	Page 17
	Titles
	2.2 The Evolution of TCP/IP & Internet 

	Images
	Image 1


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1


	Page 20
	Titles
	2.3 Architectural Model 

	Images
	Image 1


	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 3
	Titles
	2.4.ICJasses of IP Addresses 
	2.4.1.1 Class A 
	2.4.1.2 Class B 

	Images
	Image 1


	Page 4
	Titles
	2.4.1.3 Class C 
	2.5 Diagnosing and Solving IP Configuration Problems 

	Images
	Image 1
	Image 2


	Page 5
	Images
	Image 1


	Page 6
	Images
	Image 1
	Image 2
	Image 3


	Page 7
	Images
	Image 1


	Page 8
	Titles
	22 

	Images
	Image 1


	Page 9
	Titles
	Chapter 3 
	Windows Socket (Winsock) 
	3.1 Background of Winsock 

	Images
	Image 1


	Page 10
	Titles
	3.2 Definition of a Socket 
	3.3 The Socket Data Type 
	24 

	Images
	Image 1


	Page 11
	Titles
	3.3.1 Uses for Sockets 
	3.3.2 Byte Ordering 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 12
	Titles
	3.3.3 Convert Byte Orders 
	3.3.4 When We Don't Have to Convert Byte Orders 

	Images
	Image 1
	Image 2


	Page 13
	Titles
	3.4 Sequence of Operations for a Stream Socket Communication 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 14
	Titles
	3.5 Winsock Control 
	3.5.1 Possible Uses 

	Images
	Image 1
	Image 2
	Image 3


	Page 15
	Titles
	3.5.2 Selecting a Protocol 
	3.5.3 Setting the Protocol 
	3.5.4 Determining the Name of Computer 

	Images
	Image 1


	Page 16
	Titles
	3.5.5 To find the computer's name 
	3.6 TCP Connection Basics 
	3.6.1 To create a TCP server 

	Images
	Image 1


	Page 17
	Titles
	3.6.2 To create a TCP Client 
	3.6.3 Accepting More than One Connection Request 

	Images
	Image 1


	Page 18
	Titles
	3. 7 UDP Connection Base Basics 
	- 
	3.8 Local Port Property 

	Images
	Image 1


	Page 19
	Titles
	Chapter 4 
	TCP/IP Programming Using Visual Basic 
	4.1TCP/IP PROGRAMMING 

	Images
	Image 1


	Page 20
	Titles
	4.2 SOCKETS 

	Images
	Image 1
	Image 2


	Page 21
	Titles
	4.3 WINSOCK CONTROL 
	4.3.1 Properties 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 22
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 23
	Titles
	4.3.2 Methods 

	Images
	Image 1
	Image 2
	Image 3


	Page 24
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 25
	Titles
	4.3.3 Events 

	Images
	Image 1
	Image 2
	Image 3


	Page 26
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 27
	Titles
	4.4 Client-Server Applications 

	Images
	Image 1
	Image 2


	Page 28
	Titles
	4.5 A SIMPLE TCP/IP EXAMPLE 
	4.5.1 One Way Communication 

	Images
	Image 1
	Image 2
	Image 3


	Page 29
	Titles
	4.5.1.1 Client Computer 

	Images
	Image 1
	Image 2


	Page 30
	Images
	Image 1
	Image 2
	Image 3


	Page 31
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 32
	Titles
	4.5.1.2 Server Computer 

	Images
	Image 1
	Image 2
	Image 3


	Page 33
	Titles
	4.5.2 Two Way Communication 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 34
	Titles
	-------- ~-~~- n 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 35
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 36
	Titles
	4.5.2.2 Server Computer 

	Images
	Image 1
	Image 2
	Image 3


	Page 37
	Titles
	4.6 Testing the Programs 

	Images
	Image 1


	Page 38
	Images
	Image 1
	Image 2


	Page 39
	Images
	Image 1


	Page 40
	Titles
	BIBLOGRAPHY 

	Images
	Image 1
	Image 2



