
.•• I j °'W. ' -. •• '. t

NEAR EAST UNIVERSITY' ,., '"' .• ,)
', ·./o ,,,.
,, O'{J - LE'f'<'-,. ' -~ .. ;;::-/

' --

FACULTY OF ENGINEERING

Department of Computer Engineering

DUAL PORT RAM

Graduation Project
COM400

Student: Taha Yaseen (20034260)

Supervisor: Mr.Mehmet Ozakman

Nicosia - 2007

..
ACKNOWLEDMENT

"I am waiting this time since along time, so firstly I would like to thank Allah for
giving me the opportunity to be reached my objective.

More over, I want to pay my best regards to my dear father who is responsible for all
my expenses and supporting me to educate as much as possible, as well as I thank
my dear mother for being in touch with me and praying to god for my succession, I
also thank my dear brother and sisters for every thing and I would love to thank my
'love Handegul Erdogan for supporting me in studying, I will never forget their
sacrifices for my education in all my life time.

I would like also to thank all my educators who they are: Okan DONANGIL, Rahib
B. ABIYEV, Umit ILHAN, Adnan KHASHMAN and Jemal FATHI. .. I shall never
forget good intention and inexhaustible labor of them.

As well as, I feel proud to pay my best regards to my project advisor who is "Mehmet
Kadir OZAKMAN" it was nice time I spent with him because I got much knowledge
and I interested while getting the knowledge from him, he never gives up of
explaining or teaching something and he is always available when ever I need him
while preparing my project.

Absolutely "NEAR EAST UNIVERSITY" has a big role of supporting me to educate, it
contains various cultures and nationalities and in another hand its beauty, natural
view and its strategy are considered which make me glad to be at it.

Eventually, I give my greeting to all persons who supported me and who worked for
my project, also I want to thank all my friends especially Mahmoud Masoud for
giving me his precious time to complete my project".

..

ABSTRACT

Today's technology uses high level behavioral languages such as VHDL to do

hardware electronic design, I have selected my project in VHDL to learn the current

technology and the methods to do hardware design, my project is Dual Port Ram

where I can to write in a ram using address A and read from this ram from locations

at the same time using address A and address B, the contents of address A shows the

output A and the contents of address B shows the output B.

Today's technology we don't go and buy a Dual Port Ram as a device you just write

a VHDL for it, (there are other languages like ,Verilog) and the synthesizer generates

the design and Implements the design in FPGA which stands for (Field

Programmable Gate Array) as I shown in my design description.

As I can from this implementation I did not have to do the detail electronic design all

I did is to write a VHDL code to describe Dual Port Ram and the ISE tools did the

rest.

11

..

Introduction

What is VHDL and what is its connection with brain building?

VHDL stands for (Very High Speed Integrated Circuit) Hardware
Description Language.

Before we can answer why VHDL is thought to be highly relevant
To the field of brain building, we first need to have some idea of what
VHDLis.
An HDL is a high level language (similar to C, Pascal, Fortran, etc)
Used to specify the design of electronic circuits.

With modern programmable hardware (i.e. configuring bit strings
can be sent into a programmable chip to tell the chip how to wire
itself up (i.e. to configure itself).

Modem hardware compilers can take a high level description of an
Electronic circuit (e.g. written in an HDL such as VHDL, or Verilog,
Or ABEL, etc), and translate it into configuring bit strings, which are
Then used to configure a programmable chip (e.g. Xilinx's Virtex chip).

Thanks to Moore's Law, the number of programmable logic gates (e.g.
AND gates, NAND gates, etc) in today's chips are now in the millions.

With such electronic capacities on a single chip, it is now possible to
Place whole electronic systems on a chip.
This has advantages and disadvantages. The advantage is that
Electronics become more sophisticated and powerful and cheaper.

The disadvantage is that electronics becomes harder to design.

Earlier versions of HD Ls operated more at the gate level of
Description (e.g. "connect the output of gate A to the input of
Gate B").

But, as chips increased in their logic gate count, the above rather low
Level of description became increasingly impractical due to the huge
Number of gates on a single chip.

To cope with this problem, HDLs are taking an ever more behavioral
Level of description. Electronic designers nowadays give a behavioral
Or functional description of what they want their circuit to perform,
And the HDL compiler does the rest.
E.g. instead of saying "connect this gate to that gate", one says

iii

•.

"Multiply these two numbers and store the result in this buffer".

The HDL compiler then translates the latter statement into the
Corresponding circuitry that performs the required function.

Nowadays, it is almost as easy to program hardware as to program
software!

This is not strictly true, since to be able to use an HDL well, one needs
to understand the principles of digital electronic design (e.g.
multiplexors, flip-flops, buffers, counters, etc).

But, increasingly, hardware design is becoming more like programming
in a high level software language, like "C".

We will have a lot more to say about programming in an HDL.
But we now know enough about the basic idea of an HDL to answer
The question of the relevance of HD Ls to brain building.

If one wants to build artificial brains with hundreds/thousands and
more of evolved neural net circuit modules, then the speed of
Evolution of those modules and the speed of the neural signaling of
The interconnected brain comprised of those evolved modules, is
Paramount.

It is well known that hardware speeds are typically hundreds to
Thousands of times faster than software speeds on the same task.

As Moore's law creates chips with millions and later billions of
Logic gates on a single chip, it will become increasingly possible to
Put artificial brain technology into them.

Today's programmable chips contain about ten million gates (107)
This is already enough to start putting tens of modules together to
Build simple artificial brains in a single chip.

By placing dozens of chips on an electronic board (not cheap!)
Then the size of the brain scales linearly with the number of chips.

People who want to be trained in the principles of brain building
Technology therefore needs to know how to put their brain designs
Into hardware, so that they can both evolve their component
Modules and run them once they are interconnected.

IV

ACKNOWLEDGMENTS 1 ~
ABSTRACT ii
INTRODUCTION 111

TABLE OF CONTENTS V

1. INTRODUCTION TO HDL 1
1.2 Hardware Description Languages 1
1.3Advantages of Using HD Ls to Design FPGA Devices 1
1.3.1 Top-Down Approach for Large Projects 2
1.3.2 Functional Simulation Early in the Design Flow 2
1.3.3 Synthesis of HDL Code to Gates 2
1.3 .4 Early Testing of Various Design Implementations 3
1.3.5 Reuse of RTL Code 3

1.4 Designing FPGA Devices with HDLs 3
1.4.1 Designing FPGA Devices with Verilog 4
1.4.2 Designing FPGA Devices with VHDL 5
1.4.3 Designing FPGA Devices with Synthesis Tools 5
1.4.4 Using FPGA System Features 5
1.4.5 Designing Hierarchy 6
1.4.6 Specifying Speed Requirements 7

2. INTEGRATED SOFTWARE ENVIRONMENT 8
2.1 ISE General Information 8
2.1.1 Xilinx ISE Overview 8
2.1.2 Design Entry 8
2.1.3 Synthesis 8
2.1.4 Implementation 8
2.1.5 verification 9
2.1.6 Device Configuration 9

2.2 The Project Navigator 9
2.2.1 Project Navigator Overview 9
2.2.2 Project Navigator Main Window 10
2.2.3 Using the Sources Window 12
2.2.4 Using the Processes Window 13
2.2.5 Process Types 14
2.2.6 Process Status 14
2.2. 7 Running Processes 15
2.2.8 Setting Process Properties 17
2.2.9 Using the Workspace 18
2.2.10 Using the Transcript Window 19
2.2.11 Using the Toolbars 19

2.3 Creating a Project 20
2.3.1 to Create a Project 20
2.3.2 What to Expect 27

2.4 working with projects source file 27
2.4.1 Creating a Source File 27
2.4.2 Adding a Source File to a Project 28
2.4.3 Adding a Copy of a Source File to a Project 29
2.4.4 Editing a Source File 30

V

2.4.5 Removing Files from a Project 31
2.5 Running and Stopping Processes

.• 31
3. My project (dual port ram) 34

3 .1 Overview 34
3.2 Design process is shown below: 34
3.2.1 Requirement 35
3.2.2 Specification 35
3 .2.3 The inputs and outputs of dual port ram 36
3.2.4 The function of VHDL code 37

3.2.4.1 Process (clock write) 37
3.2.4.2 Process (clock read) 37

3.2.5 VHDL code 37
3.3 Creating My project 40
3.3.1 How to Create my project 40
3.3.2 Creating an HDL Source 42

3.3.2.lCreating a VHDL Source 43
3.3.2.2 Using Language Templates (VHDL) 46
3.3.2.3 Final Editing of VHDL Source 46

3.4 Synthesize 51
3.4.1 View synthesize report 51
3.4.2 View RTL Schematic 64
3.4.3 check syntax 65

3.5 Writing the test bech 65
3.5.1 Verifying Functionality using Behavioral Simulation 65
3.5.2 Final Editing of My VHDL Source 67
3.5.3 The simulation 74

3.6 Implementing the desizn 77
CONCLUSION 79
REFERENCES 80

Vl

•

1. INTRODUCTION TO HDL

1.1 Overview

This chapter provides a general overview of designing Field Programmable

Gate Arrays

(FPGA devices) with Hardware Description Languages (HDLs). This chapter

includes the following sections.

• Hardware Description Languages

• Advantages of Using HDLs to Design FPGA Devices

• Designing FPGA Devices with HDLs

1.2 Hardware Description Languages

Designers use Hardware Description Languages (HDLs) to describe the

behavior and Structure of system and circuit designs. This chapter includes:

• A general overview of designing FPGA devices with HDLs

• System requirements and installation instructions for designs available from

the web

• A brief description of why FPGA devices are superior to ASIC devices for

your design needs

Understanding FPGA architecture allows you to create HDL code that effectively

uses

FPGA system features. To learn more about designing FPGA devices with HDL:

• . Enroll in training classes offered by Xilinx® and by the vendors of synthesis

software.

• . Review the sample HDL designs in the later chapters of this Guide.

• . Download design examples from Xilinx Support.

• . Take advantage of the many other resources offered by Xilinx, including

documentation, tutorials, Tech Tips, service packs, a telephone hotline, and an

answers database. See "Additional Resources" in the Preface of this Guide.

1

1.3 Advantages of Using HD Ls to Design FPGA Devices

Using HD Ls to design high-density FPGA devices has the following advantages:

• . "Top-Down Approach for Large Projects.

• Functional Simulation Early in the Design Flow.

• Synthesis of HDL Code to Gates.

• Early Testing of Various Design Implementations.

• Reuse of RTL Code.

1.3.1 Top-Down Approach for Large Projects

Designers use HDLs to create complex designs. The top-down approach to

system design supported by HDLs is advantageous for large projects that require

many designers working together. After they determine the overall design plan,

designers can work independently on separate sections of the code.

1.3.2 Functional Simulation Early in the Design Flow

You can verify the functionality of your design early in the design flow by

simulating the HDL description. Testing your design decisions before the design is

implemented at the RTL or gate level allows you to make any necessary changes

early in the design process.

1.3.3 Synthesis of HDL Code to Gates

You can synthesize your hardware description to target the FPGA

implementation. This step:

2

•

• . Decreases design time by allowing a higher-level specification of the design

rather than specifying the design from the FPGA base elements.

• Generally reduces the number of errors that can occur during a manual

translation of a hardware description to a schematic design.

• Allows you to apply the automation techniques used by the synthesis tool

(such as machine encoding styles and automatic I/0 insertion) during the

optimization of your design to the original HDL code. This results in greater

optimization and efficiency.

1.3.4 Early Testing of Various Design Implementations

HDLs allow you to test different implementations of your design early in the

design flow. Use the synthesis tool to perform the logic synthesis and optimization

into gates.

Additionally, Xilinx FPGA devices allow you to implement your design at your

computer, since the synthesis time is short; you have more time to explore different

architectural possibilities at the Register Transfer Level (RTL). You can reprogram

Xilinx FPGA devices to test several implementations of your design.

1.3.5 Reuse of RTL Code

You can retarget RTL code to new FPGA architectures with a minimum of

recoding.

1.4 Designing FPGA Devices with HDLs

If you are used to schematic design entry, you may find it difficult at first to

create HDL designs. You must make the transition from graphical concepts, such as

block diagrams, state machines, flow diagrams, and truth tables, to abstract

representations of design components. Ease this transition by not losing sight of your

overall design plan as you code in HDL.

3

..

To effectively use an HDL, you must understand the:

• Syntax of the language

• Synthesis and simulator software

• Architecture of your target device

• Implementation tools

This section gives you some design hints to help you create FPGA devices with

HD Ls.

1.4.1 Designing FPGA Devices with Verilog

Verilog is popular for synthesis designs because:

• . Verilog is less verbose than traditional VHDL.

• . Verilog is standardized as IEEE-STD-1364-95 and IEEE-STD-1364-2001.

Since Verilog was not originally intended as an input to synthesis, many

Verilog constructs are not supported by synthesis software. The Verilog coding

examples in this Guide were tested and synthesized with current, commonly-used

FPGA synthesis software. The coding strategies presented in the remaining chapters

of this Guide can help you create HDL descriptions that can be synthesized.

System Verilog is a new emerging standard for both synthesis and simulation. It is

currently unknown if, or when, this standard will be adopted and supported by the

various design tools.

Whether or not you plan to use this new standard, Xilinx recommends that you:

• . Review the standard to make sure that your current Verilog code can be

readily carried forward as the new standard evolves.

• . Review any new keywords specified by the standard.

• A void using the new keywords in your current Verilog code.

4

.•

1.4.2 Designing FPGA Devices with VHDL

VHSIC Hardware Description Language (VHDL) is a hardware description

language for designing Integrated Circuits (ICs). It was not originally intended as an

input to synthesis, and many VHDL constructs are not supported by synthesis

software. However, the high level of abstraction of VHDL makes it easy to describe

the system-level components and test benches that are not synthesized. In addition,

the various synthesis tools use different subsets of the VHDL language. The

examples in this Guide work with most commonly used FPGA synthesis software.

The coding strategies presented in the remaining chapters of this Guide can help you

create HDL descriptions that can be synthesized.

1.4.3 Designing FPGA Devices with Synthesis Tools

Most of the commonly-used FPGA synthesis tools have special optimization

algorithms for Xilinx FPGA devices. Constraints and compiling options perform

differently depending on the target device. Some commands and constraints in ASIC

synthesis tools do not apply to FPGA devices. If you use them, they may adversely

impact your results.
You should understand how your synthesis tool processes designs before you create

FPGA designs. Most FPGA synthesis vendors include information in their guides

specifically for Xilinx FPGA devices.

1.4.4 Using FPGA System Features

To improve device performance, area utilization, and power characteristics,

creates HDL code that uses such FPGA system features as DCM, multipliers, shift

registers, and memory. For a description of these and other features, see the FPGA

data sheet and userguide. The choice of the size (width and depth) and functional

characteristics need to be taken into account by understanding the target FPGA

5

..

resources and making the proper system choices to best target the underlying

architecture.

1.4.5 Designing Hierarchy

HDLs give added flexibility in describing the design. However, not all HDL code is

optimized the same. How and where the functionality is described can have dramatic

effects on end optimization. For example:

• . Certain techniques may unnecessarily increase the design size and power

while decreasing performance.

• . Other techniques can result in more optimal designs in terms of any or all of

those same metrics.

This Guide will help instruct you in techniques for optional FPGA design

methodologies.

Design hierarchy is important in both the implementation of an FPGA and during

interactive changes. Some synthesizers maintain the hierarchical boundaries unless

you group modules together. Modules should have registered outputs so their

boundaries are not an impediment to optimization. Otherwise, modules should be as

large as possible within the limitations of your synthesis tool.

The "5,000 gates per module" rule is no longer valid, and can interfere with

optimization. Check with your synthesis vendor for the preferred module size. As a

last resort, use the grouping commands of your synthesizer, if available.The size and

content of the modules influence synthesis results and design implementation.

This Guide describes how to create effective design hierarchy.

6

•.

1.4.6 Specifying Speed Requirements

To meet timing requirements, you should understand how to set timing constraints in

both the synthesis tool and the placement and routing tool. If you specify the desired

timing at the beginning, the tools can maximize not only performance, but also area,

power, and tool runtime. This generally results in a design that better matches the

desired performance. It may also result in a design that is smaller, and which

consumes less power and requires less time processing in the tools

7

2. INTEGRATED SOFTWARE ENVIRONMENT

2.1 ISE General Information

2.1.1 Xilinx ISE Overview

The Integrated Software Environment (ISE™) is the Xilinx® design

software suite that allows you to take your design from design entry through

Xilinx device programming. The ISE Project Navigator manages and processes

your design through the following steps in the ISE design flow.

2.1.2 Design Entry

Design entry is the first step in the ISE design flow. During design entry, you

create your source files based on your design objectives.

You can create your top-level design file using a Hardware Description Language

(HDL), such as VHDL, Verilog, or ABEL, or using a schematic. You can use multiple

formats for the lower-level source files in your design.

Note If you are working with a synthesized EDIF or NGC/NGO file, you can skip design

entry and synthesis and start with the implementation process.

2.1.3 Synthesis

After design entry and optional simulation, you run synthesis. During this step,

VHDL, Verilog, or mixed language designs become netlist files that are accepted as input

to the implementation step.

2.1.4 Implementation

After synthesis, you run design implementation, which converts the logical

design into a physical file format that can be downloaded to the selected target device.

From Project Navigator, you can run the implementation process in one step, or you can

run each of the implementation processes separately. Implementation processes vary

depending on whether you are targeting a Field Programmable Gate Array (FPGA) or a

Complex Programmable Logic Device (CPLD).

2.1.5 Verification
You can verify the functionality of your design at several points in the design

flow. You can use simulator software to verify.the functionality and timing of your

design or a portion of your design.

The simulator interprets VHDL or Verilog code into circuit functionality and

displays logical results of the described HDL to determine correct circuit operation.

Simulation allows you to create and verify complex functions in a relatively small

amount of time. You can also run in-circuit verification after programming your device.

2.1.6 Device Configuration

After generating a programming file, you configure your device. During

configuration, you generate configuration files and download the programming files from

a host computer to a Xilinx device.

2.2 The Project Navigator

2.2.1 Project Navigator Overview

Project Navigator organizes your design files and runs processes to move

the design from design entry through implementation to programming the targeted

Xilinx® device. Project Navigator is the high-level manager for your Xilinx

FPGA and CPLD designs, which allows you to do the following:

• Add and create design source files, which appear in the Sources window

• Modify your source files in the Workspace

• Run processes on your source files in the Processes window

• View output from the processes in the Transcript window

Note optionally, you can run processes from a script you create or from a

command line prompt. However, it is recommended that you first become familiar

with the basic use of the Xilinx Integrated Software Environment (ISE™)

software and with project management, as described in the following sections.

9

..
2.2.2 Project Navigator Main Window

The following figure 2.1 shows the Project Navigator main window, which allows

you to manage your design starting with design entry through device

configuration.

10

. ~ IDB Properties
i · ~ Timing Constraints
i· ~ Pinout Report
!. ... ~ Clock Report
·,/ Errors and Warnings
~ Synthesis Messages
gJ Translation Messages
~ Map Messages

:t J User Constraints
$ NI Synthesize· XS T
cf: , ~f) 1 mplement Design
,±1, ~ Gener ate Programming File
i ·~ Update Bitstream with Processor Data

Project Properties
i ~ Enable Enhanced Design Sum
I· D Enable Message Filtering
L .. D Display Incremental M esssages

Enhanced Design Summary Contents
D Show Partition Data
D Show Errors
D Show Warnings
~ Show Failing Constraints
D Show Clock Report

Figure 2.2.2 project window

1. Toolbar

2. Sources window

3. Processes window

4. Workspace

11

5. Transcript window

2.2.3 Using the Sources Window

The first step in implementing your design for a Xilinx® FPGA or CPLD

is to assemble the design source files into a project. The Sources tab in the

Sources window shows the source files you create and add to your project, as

shown in figure2.2.

For information on creating projects and source files, see Creating a Project and

Creating a Source File.

,.... digvidenc

El-· a :-:c4vf:-:1 2-12sf 363
El··

S·· ~- DAT APA TH - dv 1,281
! :···· [yJj prescaler - dve_ .

I I···· Iii CHROMA_FIR - .
vN.Y,•N.•,•=N,=NN.L~=,.~Y.v.-,L .•.• _!!w~-.-.···-·'·,.·,·A~l Jl,~,,v,=•, . .d~.,.._tO=v•,•OO;w,v•w~••=wn,W"A=n.•,.w,M·,N.W

routing
inherit(routingJ

Figure 2.2 source window

The Design View ("Sources for") drop-down list at the top of the Sources

tab allows you to view only those source files associated with the selected Design

View (for example, Synthesis/Implementation).

For details, see using the Design Views. The "Number of" drop-down list,

Resources column, and Preserve column are available for designs that use

Partitions. For details, see Using Partitions.

The Sources tab shows the hierarchy of your design. You can collapse and

expand the levels by clicking the plus (+) or minus (-) icons. Each source file

appears next to an icon that shows its file type. The file you select determines the

12

processes available in the Processes window. You can double-click a source file

to open it for editing in the Workspace. For information on the different file types,

see Source File Types.

You can change the project properties, such as the device family to target, the

top-level module type, the synthesis tool, the simulator, and the generated

simulation language. For information, see Changing Project, Source, and

Snapshot Properties.

Depending on the source file and tool you are working with, additional tabs

are available in the Sources window:

• Always available: Sources tab, Snapshots tab, Libraries tab

• Constraints Editor: Timing Constraints tab

• Floorplan Editor: Translated Netlist tab, Implemented Objects tab

• iMPACT: Configuration Modes tab

• Schematic Editor: Symbols tab

• RTL and Technology Viewers: Design tab

• Timing Analyzer: Timing tab

2.2.4 Using the Processes Window

The Processes tab in the Processes window allows you to run actions or

"processes" on the source file you select in the Sources tab of the Sources

window. The processes change according to the source file you select.

The Process tab shows the available processes in a hierarchical view. You can

collapse and expand the levels by clicking the plus (+) or minus (-) icons.

Processes are arranged in the order of a typical design flow: project creation,

design entry, constraints management, synthesis, implementation, and

programming file creation.

Depending on the source file and tool you are working with, additional tabs

are available in the Processes window:

• Always available: Processes tab

13

• Floorplan Editor: Design Objects tab, Implemented - Selection tab

• iMP ACT: Configuration Operations tab

• ISE Simulator: Hierarchy Browser tab

• Schematic Editor: Options tab

• Timing Analyzer: Timing Objects tabz

2.2.5 Process Types

The following types of processes are available as you work on your design:

• Tasks f~

When you run a task process, the !SE software runs in "batch

mode," that is, the software processes your source file but does not

open any additional software tools in the Workspace. Output from the

processes appears in the Transcript window.

• Reports~

Most tasks include report sub-processes, which generate a summary or status

report, for example, the Synthesis Report or Map Report. When you run a report

process, the report appears in the Workspace.

• Tools

When you run a tools process, the related tool launches in

standalone mode or appears in the Workspace where you can view or

modify your design source files.

Note The icons for tools processes vary depending on the tool. For example, the

Timing Analyzer icon is shown above.

2.2.6 Process Status

As you work on your design, you may make changes that require some or all

of the processes to be rerun. For example, if you edit a source file, it may require

that the Synthesis process and all subsequent process be rerun. Project Navigator

14

keeps track of the changes you make and shows 'the status of each process with

the following status icons:

• Running

This icon shows that the process is running.

• Up-to-date

This icon shows that the process ran successfully with no errors or warnings

and does not need to be rerun. If the icon is next to a report process, the report is

up-to-date; however, associated tasks may have warnings or errors. If this occurs,

you can read the report to determine the cause of the warnings or errors.

• Warnings reported

This icon shows that the process ran successfully but that warnings were

encountered.

• Errors reported 0

This icon shows that the process ran but encountered an error.

• Out-of-Date

This icon shows that you made design changes, which require that the

process be rerun. If this icon is next to a report process, you can rerun the

associated task process to create an up-to-date version of the report.

• No icon

If there is no icon, this shows that the process was never run.

2.2. 7 Running Processes

To run a process, you can do any of the following:

15

• Double-click the process

• Right-click while positioned over the process, and select Run from the

popup menu, as shown in figure 2.3

Figure 2.2.7 Run process.

• Select the process, and then click the Run toolbar button ~-

• To run the Implement Design process and all preceding processes on

• the top module II lilfor the design, select Process > Implement Top

Module, or click the Implement Top Module toolbar button{~t_

When you run a process, Project Navigator automatically processes your design as

follows:

• Automatically runs lower-level processes

When you run a high-level process, Project Navigator runs associated

lower-level processes or sub-processes. For example, if you run Implement

Design for your FPGA design, all of the following sub-processes run:

Translate Map, and Place & Route.

• Automatically runs preceding processes

When you run a process, Project Navigator runs any preceding processes

that are required, thereby "pulling" your design through the design flow. For

16

example, to pull your design through the entire flow, double-click Generate

Programming File.

• Automatically runs related processes for out-of-date processes

If you run an out-of-date process, Project Navigator runs that process and

any related processes required to bring that process up to date. It does not

necessarily run all preceding processes. For example if you change your

UCF file, the Synthesize process remains up to date, but the Translate

process becomes out of date. If you run the Map process, Project Navigator

runs Translate but does not run Synthesize.

Note For more information on running processes, including additional Process

menu commands, see running and Stopping Processes.

2.2.8 Setting Process Properties

Most processes have a set of properties associated with them. Properties

control specific options, which correspond to command line options. When

properties are available for a process, you can right-click while positioned over

the process and select Properties from the popup menu, as shown in the following

figure 2.2.8

Figure2.2.8 popup menu for a process

When you select Properties, a Process Properties dialog box appears, with

standard properties that you can set. The Process Properties dialog box differs

depending on the process you select.

17

After you become familiar with the standard properties, you can set

additional, advanced properties in the Process Properties dialog box; however,

setting these options is not recommended if you are just getting started with using

the ISE software. When you enable the advanced properties, both standard and

advanced properties appear in the Process Properties dialog box. ~~~

Note For more information on process properties, see Setting Process

Properties. To set command line options using process properties, see Setting

Command Line Options using Process Properties.

2.2.9 Using the Workspace

When you open a project source file, open the Language Templates, or run

certain processes, such as viewing reports or logs, the corresponding file or view

appears in the Workspace. You can open multiple files or views at one time. Tabs

at the bottom of the Workspace show the names for each file or view. Click a tab

to bring it to the front.

To open a file or view in a standalone window outside of the Project

Navigator Workspace, use the Float toolbar button. To dock a floating window,

use the Dock toolbar button.

• Float~

Dock lei •

Note The Dock toolbar button is only available from the floating window.

For more information, see Arranging Windows.

18

2.2.10 Using the Transcript Window

The Console tab of the Transcript window shows output messages from the

processes you run. When the following icons appear next to a message, you can

right-click the message and select Goto Answer Record to open the Xilinx website

and show any related Answer Records. If a line number appears as part of the

message, you can right-click the message and select Goto Source to open the

source file with the appropriate line number highlighted.

• Warning~

ErrorO •

Depending on the source file and tool you are working with, additional tabs

are available in the Transcript window:

• Always available: Console tab, Errors tab, Warnings tab, Tel Shell tab,

Find in Files tab

Note The Errors and Warnings tabs show a filtered version of the output

messages in the Console tab, that is, only the errors and only the warnings

are shown.

• ISE Simulator: Simulation Console tab

• RTL and Technology Viewers: View by Name tab, View by Category tab

2.2.11 Using the Toolbars

Toolbars provide convenient access to frequently used commands. Click

once on a toolbar button to execute a command. To see a short popup description

of a toolbar button, hold the mouse pointer over the button for about two seconds.

A longer description appears in the status bar at the bottom of the main window.

For Help on a toolbar button, click the Help toolbar button!\?, and then

click the toolbar button for which you want Help. For more information on getting

Help, see Using Xilinx Help.

19

2.3 Creating a Project

Project Navigator allows you to manage your FPGA and CPLD designs

using an ISE™ project, which contains all the files related to your design. First,

you must create a project and then add source files. With your project open in

Project Navigator, you can view and run processes on all the files in your design.

Project Navigator provides a wizard to help you create a new project, as follows.

2.3.1 to Create a Project

1. Select File > New Project.

2. In the New Project Wizard Create New Project page, do the following:

a. In the Project Name field, enter a name for the project. Follow the

naming conventions described in File Naming Conventions.

b. In the Project Location field, enter the directory name or browse to

the directory.

c. In the Top-Level Source Type drop-down list, select one of the

following:

• HDL

Select this option if your top-level design file is a VHDL,

Verilog, or ABEL (for CPLDs) file. An HDL Project can

include lower-level modules of different file types, such as

other HDL files, schematics, and "black boxes," such as IP

cores and EDIF files.

20

• Schematic

Select this option if your top-level design file is a schematic

file. A schematic project can include lower-level modules of

different file types, such as HDL files, other schematics, and

"black boxes," such as IP cores and EDIF files. Project

Navigator automatically converts any schematic files in your

design to structural HDL before implementation; therefore, you

must specify a synthesis tool when working with schematic

projects, as described in step 5.

• EDIF

Select this option if you converted your design to this file type,

for example, using a synthesis tool. Using this file type allows

you to skip the Project Navigator synthesis process and to start

with the implementation processes.

• NGC/NGO

Select this option if you converted your design to this file type,

for example, using a synthesis tool. Using this file type allows

you to skip the Project Navigator synthesis process and start

with the implementation processes.

3. Click Next.

4. If you are creating an HDL or schematic project, skip to the next step. If

you are creating an EDIF or NGC/NGO project, do the following in the

Import EDIF/NGC Project page:

a. In the Input Design field, enter the name of the input design file, or

browse to the file and select it.

21

b. Select Copy the input design to- the project directory to copy

your file to the project directory. If you do not select this option,

your file is accessed from the remote location.

c. In the Constraint File field, enter the name of the constraints file, or

browse to the file and select it.

d. Select Copy the constraints file to the project directory to copy

your file to the project directory. If you do not select this option,

your file is accessed from the remote location.

e. Click Next.

5. In the Device Properties page, set the following options. These settings

affect other project options, such as the types of processes that are

available for your design.

• Product Category

• Family

Note To target a Spartan-3L™ device, select Spartan-3™ as the

family. When creating an EDIF project, the device family

information is read from your EDIF project file, and changing the

device family is not recommended.

• Device

Note To target a Spartan-3L device, select a device that ends in 1,

such as xc3s20001.

• Package

• Speed

• Top-Level Source Type

Note This is automatically set.

• Synthesis Tool

22

Select one of the following synthesis •. tools and the HDL language for

your project. VHDL/Verilog is a mixed language flow. If you plan to

run behavioral simulation, your simulator must support multiple

language simulation.

1. XST (Xilinx® Synthesis Technology)

XST is available with ISE Foundation™ software installations.

It supports projects that include schematic design files and

projects that include mixed language source files, such as

VHDL and Verilog sources files in the same project. For more

information, see XST Synthesis Overview.

• Synplify and Synplify Pro (Synplicity®, Inc.)

The Synplify® software does not support projects that include

mixed language source files. The Synplify Pro® software

supports projects that include mixed language source files, such

as VHDL and Verilog sources files in the same project. The

Synplify and Synplify Pro software do not support projects that

include schematic design files. For more information, see

Using Synplify or Synplify Pro for Synthesis.

• Precision (Mentor Graphics®, Inc.)

The Precision® software supports projects that include

schematic design files and projects that include mixed language

source files, such as VHDL and Verilog sources files in the

same project. For more information, see Using Precision for

Synthesis.

Note When creating an EDIF or NGC/NGO project, this option is not

applicable. A partner synthesis tool is only available as an option if

the software was installed on your computer. If a synthesis tool was

installed, but it does not appear as an option, set the path to the

23

synthesis software in the Integrated Tools Options page of the

Preferences dialog box. ----

• Simulator

Select one of the following simulators and the HDL language for

simulation.

1. ISE Simulator (Xilinx®, Inc.)

This simulator allows you to run integrated simulation

processes as part of your ISE design flow. For more

information, see the ISE Simulator Help.

• ModelSim (Mentor Graphics®, Inc.)

You can run integrated simulation processes as part of your ISE

design flow using any of the following ModelSim® editions:

ModelSim Xilinx Edition (MXE), ModelSim MXE Starter,

ModelSim PE, or ModelSim SE™. For more information on

ModelSim, including the differences between each edition, see

Using the ModelSim Simulator.

• NC-Sim (Cadence®, Inc.)

The NC-Sim simulator is not integrated with ISE and must be

run standalone. For more information, see the documentation

provided with the simulator.

• VCS (Synopsys®, Inc.)

The VCS® simulator is not integrated with ISE and must be

run standalone. For more information, see the documentation

provided with the simulator.

24

• Other

Select this option if you do not have ISE Simulator or

ModelSim installed or if you want to run simulation outside of

Project Navigator.

This instructs Project Navigator to disable the integrated

simulation processes for your project.

Note If you are using a simulator that is not integrated with ISE, you

must still specify your simulator. This ensures that all generated files

are written in the correct format.

• Preferred Language

Select one of the following to set your preferred language. The

Preferred Language project property controls the default setting for

process properties that generate HDL output. If the Synthesis Tool

and/or Simulator options are set to a single-language tool, the default

language for generated HDL output files will be automatically chosen

appropriately. If both the Synthesis Tool and Simulator options are

set to mixed-language (VHDL/Verilog) tools, you can use the

Preferred Language property to select the language in which

generated HDL output will be created.

Note You can also select the language in which to generate files by

setting process properties as described in Setting Process Properties.

• Verilog

Select this option if both Synthesis Tool and Simulation are set

to mixed-language and you want the default language to be

Verilog.

• VHDL

25

Select this option if both Synthesis Tool and Simulation are set

to mixed-language and you want the default language to be

VHDL.

• NIA

This option will appear if both Synthesis Tool and Simulation

are set to a single language.

• Enable Enhanced Design Summary

Select this option to show the number of errors and warnings for each

of the Detailed Reports in the Design Summary. For information, see

Using the Design Summary for FPGAs.

• Enable Message Filtering

Select this option to show the number of messages you filtered in the

Design Summary. You must enable this option, filter messages, and

then run the software to show the number of filtered messages.

• Display Incremental Messages

Select this option to show the number of new messages for the most

recent software run in the Design Summary. You must enable this

option and then run the software to show the number of new

messages.

6. If you are creating an EDIF or NGC/NGO project, skip to step 8. If you

are creating an HDL or schematic project, click Next, and optionally,

create a new source file for your project in the Create New Source page.

Note You can only create one new source file while creating a new project.

You can create additional new sources after your project is created.

26

7. Click Next, and optionally, add existing source files to your project in the

Add Existing Sources page.

8. Click Next to display the Project Summary pa(e.
\

9. Click Finish to create the project.

Note If you prefer, you can create a project using the New Project dialog box

instead of the New Project Wizard, as described above. To use the New Project

dialog box, deselect the Use new project wizard option in the ISE General

Options page of the Preferences dialog box. ·--·

2.3.2 What to Expect

Project Navigator creates the project file, project_name.ise, in the directory you

specified. All source files related to the project appear in the Project Navigator

Sources tab. Project Navigator manages your project based on the project

properties (top-level module type, device type, synthesis tool, and language) you

selected when you created the project. It organizes all the parts of your design and

keeps track of the processes necessary to move the design from design entry

through implementation to programming the targeted Xilinx device.

2.4 working with projects source file

2.4.1 Creating a Source File

A source file is any file that contains information about a design. Project

Navigator provides a wizard to help you create new source files for your project.

• What to Do First

Open a project in Project Navigator.

• To Create a Source File

1. Select Project > New Source.

27

Note Alternatively, you can double-click Create New Source in the

Processes tab.

2. In the New Source Wizard, select the type of source you want to create.

Different source types are available depending on your project properties (top­

level module type, device type, synthesis tool, and language). Some source types

launch additional tools to help you create the file, as described in Source File

Types.

3. Enter a name for the new source file in the File Name field. Follow the

naming conventions described in File Naming Conventions.

4. In the Location field, enter the directory name or browse to the directory.

5. Select Add to Project to automatically add this source to the project.

6. Click Next.

7. If you are creating a source file that needs to be associated with an existing

source file, select the appropriate source file, and click Next. If this does

not apply, skip to the next step.

8. In the New Source Information window, read the summary information for

the new source, and click Finish.

2.4.2 Adding a Source File to a Project

Project Navigator allows you to add an existing source file to a project.

The source file can reside in the project directory or in a remote directory. If you

generated your source file using the New Source wizard and selected Add to

Project, you do not need to add the source file to your project; it is automatically

part of your project.

Note If you want to copy a source file from a remote directory to your project

directory and add it to your project, use the Add Copy of Source command

instead, as described in Adding a Copy of a Source File to a Project. If you are

working with CORE Generator™ or Architecture Wizard IP, use the Add Copy of

28

Source command to copy the IP core and associated files that reside in a remote

directory to your local project directory. The files will not simulate or implement

correctly if you add them as remote source files.

• What to Do First

Open a project in Project Navigator.11111'•1

• To Add a Source File to a Project

1. Select Project > Add Source.

Note Alternatively, you can double-click Add Existing Source in the

Processes tab.

2. In the Add Existing Sources dialog box, browse to the source file and

select it.

3. Click Open.

4. In the Adding Source Files dialog box, select the Design View in which

you want the source file to appear. '------'-'

Note If you want to change the Design View association after the source

file has been added, select the source file in the Sources tab, and then select

Source > Properties.

5. Click OK.

2.4.3 Adding a Copy of a Source File to a Project

Project Navigator allows you to copy a source file from a remote directory

to your project directory and then, add it to your project as follows.

Note If you want to leave the source file in the remote directory and add it to your

project, see Adding a Source File to a Project.

• What to Do First

29

Open a project in Project Navigator.

• To Add a Copy of a Source File to a Project

1. Select Project > Add Copy of Source.

2. In the Add Existing Sources dialog box, browse to the source file and

select it.

3. Click Open.

4. In the Adding Source Files dialog box, select the Design View in which

you want the source file to appear.

Note If you want to change the Design View association after the source

file has been added, select the source file in the Sources tab, and then select

Source > Properties.

5. Click OK.

2.4.4 Editing a Source File

After you create a source file, you can edit it using the ISE™ software.

• What to Do First

Open a project in Project Navigator.

• To Edit a Source File

1. In the Sources tab, select a Design View from the drop-down list. ~~~

2. Double-click the source file.

3. Edit the file in the tool that appears.

Each source type launches a different tool to help you edit the file, as described in

Source File Types. See the Help provided with each tool for detailed information.

30

2.4.5 Removing Files from a Project •

You can remove files from a project that you no longer need. The file is

removed from the project, but is not deleted from your disk.

Caution! When you remove snapshots, the snapshot directory is deleted from the

disk. For details, see Working with Snapshots.

• What to Do First

Open a project in Project Navigator.

• To Remove a Source File from a Project

1. In the Sources tab, select a Design View from the drop-down list. l - - - - ,

2. Select the file to remove.

3. Select Source > Remove, or press the Delete key on the keyboard.

4. Click Yes to remove the file from your project.

2.5 Running and Stopping Processes

In the Processes tab, you can run processes on your selected source file.

You can run a task, generate a report, or launch a tool. You can also stop a process

while it is running.

• What to Do First

Open a project in Project Navigator.[!!~

• To Run a Process

1. In the Sources tab, select a Design View from the drop-down list. llMISeEHrm,tj

2. Select the source file to process.

31

Note the source file you select affects the" processes that appear in the

Processes tab; only the processes that apply to the selected source are shown.

3. In the Processes tab, select a process.

4. From the Process menu, select one of the following commands:

• Run to run the selected process and any preceding processes that

are out of date.

Note alternatively, you can double-click the process to run it.

• Rerun to force a run on the selected up-to-date process.

• Rerun All to force a run on the selected up-to-date process and all

processes that precede the selected process.

• Open without Updating to open a file for an out-of-date task or to

open an out-of-date report for investigative purposes.

Note you can also right-click a process and select one of these commands.

• To Stop a Process

To stop the currently running process, select Process> Stop.

Note Stopping a process is not always immediate; some processes may proceed

until a suitable stopping point is reached.

• What to Expect

One of the following status icons appears next to the process in the Processes tab:

• Running

This icon shows that the process is running.

• Up-to-date 9

32

This icon shows that the process ran successfully-with no errors or warnings and

does not need to be rerun.

• Warnings reported ~

This icon shows that the process ran successfully but that warnings were

encountered.

• Errors reported 0

This icon shows that the process ran but encountered an error.

• Out-of-Date

This icon shows that you made design changes, which require that the process

be rerun. If this icon is next to a report process, you can rerun the process to create

an up-to-date version of the report.

• No icon

If there is no icon, this shows that the process was never run.

33

..

3. My project (dual port ram)

3.1 Overview

In this chapter explains the design process, the design steps and how to implement

them.

3.2 Design process is shown below:

If there is an error in the
syntax should be checked

step back If there is an
error to be fixed

Figure3.2 design process

34

..

3.2.1 Requirement

• Dual port ram

3.2.2 Specification

• 512*64

• 512 locations

• 64 bits in each location

• The output has to be synchronize.

• Clock

• Read/write port

• Read port

• Clock frequency is 100 MHz

35

••

3.2.3 The inputs and outputs of dual port ram

addressA(S:0) ram_outputA(63:0)

AddressB(S:0)

Input_datA(63:0)

Clock

enableA

Write_enableA ram_outputB(63:0)

Figure 3.3 the inputs and out puts

36

.•

3.2.4 The function of VHDL code

3.2.4.1 Process (clock write)

I have written a loop in the architecture when write_enableA is '1' will write in

address A and the input data will increase two bits as shown below:

For I in O to 63 loop

AddressA <=AddressA + '1';
' /

input_Dataa <= input_dataa + "10";
write_enableA<='l ';

wait for 10 ns;

END loop;

3.2.4.2 Process (clock read)

there is another loop in the architecture when write_enableA is 'O' will read from

both addresses A&B as shown below:

for i in O to 62 loop

AddressA <=AddressA + '1';
AddressB <=AddressB + '1';
input_Dataa <= input_dataa + "10";
wait for 10 ns;

End loop;

3.2.5 VHDL code

The entity section of VHDL used to implement the inputs and outputs then the

architecture section used to define the function

-- 512*64 DPRAM module

37

-- KEYWORD: array, concurrent processes, generic, conv _integer

library ieee;

use ieee.std_logic_l 164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity DPRAM is

generic(

width: integer:=64;

depth: integer:=512;

addr: integer:=9);

port(Clock:

enableA:

write_enableA :

in std_logic;

in std_logic;

in std_logic;

AddressA:

AddressB:

input_dataA:

in std_logic_ vector(addr-1 downto 0);

in std_logic_ vector(addr-1 downto O);

in std_logic_ vector(width-1 downto O);

38

..

ram_outputA:

ram_outputB:

out std_logic_ vector(width-1 downto 0);

out std_logic_ vector(width-1 downto 0)

);

endDPRAM;

architecture behav of DPRAM is

-- use array to define the bunch of internal temparary signals

type ram_type is array (0 to depth-1) of

std_logic_ vector(width-1 down to 0);

signal tmp_ram: ram_type;

begin

-- process(Clock, Read)

process(Clock)

begin

if (Clock'event and Clock='I ') then

if (enableA ='1 ') then

if (write_enableA ='1 ') then

tmp_ram(conv_integer(addressA)) <= input_dataA;

end if;

ram_outputA <= tmp_ram(conv_integer(addressA));

39

••

ram_outputB <= tmp_ram(conv _integer(addressB));

end if;

end if;

end process;

end behav;

3.3 Creating My project

3.3.1 How to create my project

Create a new ISE project

Spartan-3 Startup Kit demo board

vhich will target the FPGA device on the

To create my project:

1. Select File -: New Project ... The New Project Wizard appears.

2. Type DPRAM in the Project Name field.

3. Enter or browse to a location (directory path) for the new project. A tutorial

Subdirectory is created automatically.

4. Verify that HDL is selected from the Top-Level Source Type list.

5. Click Next to move to the device properties page.

40

..

Figure 3.3.1 Create a New project

6. Fill in the properties in the table as shown below:

• . Product Category: All

• Family: Spartan3

• Device: XC3S1500l

• Package: FT676

• . Speed Grade: -4

• Top-Level Source Type: HDL

41

..

• . Synthesis Tool: XST (VHDL)

• . Simulator: ISE Simulator (VHDL)

• Preferred Language: VHDL

• . Verify that Enable Enhanced Design Summary is selected.

Leave the default values in the remaining fields.

When the table is complete, your project properties will look like the following:

Figure 3.3.1 Project Device Properties

7. Click Next to proceed to the Create New Source window in the New Project

Wizard. At the end of the next section, my project will be complete.

3.3.2 Creating an HDL Source

42

In this section, will create the top-level HDL file for my design. Determine

the language that i wish to use for the tutorial. Then, continue either to the "Creating

a VHDL Source" section.

3.3.2.lCreating a VHDL Source

Create a VHDL source file for the project as follows:

1. Click the New Source button in the New Project Wizard.

2. Select VHDL Module as the source type.

3. Type in the file name dpram.

4. Verify that the Add to project checkbox is selected.

5. Click Next.

6. Declare the ports for the dpram design by filling in the port information as shown

below:

Figure3.3.2.1 Define Module

43

..

7. Click Next, and then Finish in the New Source Wizard - Summary dialog box to

complete the new source file template

8. Click Next, then Next, then Finish.

:'r::.jc-~t ra:h: · c:. \Xili.t.8!.ll i \ xilir.x\ rAEA'l'E:3'1\ci.?!'Ctt
Tct Le7el"3c~rce !~'Ce: HD1

iJl:.'tJlCel
:",1ok0cg-c:
:~p<?-Prl:

XCJ3l.:iDUi..
Ei;E76
-4

Jyilt~e,i" -r,,~l; X21' {V1IDL('Yc.i:ilvg)
3L"tlllatc·r: Z5E 3in.~at::r TlHDL/Vetil~g).
?refer-red Lar..cr;a,~e i 1niDL

Figure3.3 .2.1 project summary

The source file containing the entity/architecture pair displays in the Workspace, and

the dpram displays in the Source tab, as shown below:

44

..

l·"'?fil- -VP.w]f.$:iJn Si;rnrni:ly
14J·) UsaoiJtl!e,
$·;, Um Cmm,111s
!ti 'i 9,·,-thd« .>ST
!fl U lmp'e'!1.nt Ce,ig,
[~ U .. (,;r,e<ate Prwanm1no Fie

~ IEEE. 270_1CG1<:_ . .11.€4 .ALL.~
e 1EZ:E ,.JT~_1C:Gr,;_AR!Tt.AL1:;
e If.EE,. 31.D_L(S!(_:_ONSIGBF.'.D.;.LL.:·

Uw..:.r..::.:.~-~:ii:. th-~ dt::cl~.:::{j.Ll: ... su l..[i.1,~l.-tLllLii:1:...i.Lg
ecce .

Fu.r-: c.Lcck ; in :}TD _LOGIC.:
p-i,;b1~;i. : , n srn t .. 0-;Tr.:
write enableA : in s:D :.:~&J:t:;
a.·ddresal,- a n S'IO~L)G1C_VZ.C70?, .s :iov..nt:Q C);
a.ddres3B : i n 5TD_.V)G'lC_Vt:C'£0.R 1.8 downcc C);
i:ipu"C _:di:i.t:aA ; in

raI_input..Zl : ccc
!:'d!!_i_,u~~U:.,B ; t.Ji.H.

{':1 ocenec 0.) ;·
(8 dovnto OJ :'
(t th>'«.:"i...:u O}};

Figure 3.3.2.1 New Project in ISE

45

3.3.2.2 Using Language Templates (VHDL)

The next step in creating the new source is to add the behavioral description

for the counter. To do this you will use a simple counter code example from the ISE

Language Templates and customize it for the counter design.

1. Place the cursor just below the begin statement within the counter architecture.

2. Open the Language Templates by selecting Edit --:Language Templates ...

Note: You can tile the Language Templates and the counter file by selecting Window

--: Tile Vertically to make them both visible.

3. Using the"+" symbol, browse to the following code example:

VHDL - Synthesis Constructs -:Coding Examples -Ram -:Block Ram -
Dual port Ram-lClock, lRead\Write Port,lRead Port

4. With lClock, lRead\Write Port,lRead Port selected, select Edit-Use in File,

or select the Use Template in File toolbar button. This step copies the template into

the dpram source file.

5. Close the Language Templates.

3.3.2.3 Final Editing of VHDL Source

1. Add the generic parameter below the entity and above the port:

generic(width:

depth:

addr:

integer:=64;

integer:=512;

integer:=9);

2. change the following occurrences

addressA: in STD_LOGIC_ VECTOR (8 downto 0);

addressB: in STD_LOGIC_ VECTOR (8 downto 0);

input_dataA: in STD_LOGIC_ VECTOR (8 downto O);

ram_outputA: in STD_LOGIC_ VECTOR (8 downto O);

ram_outputB: in STD_LOGIC_ VECTOR (8 downto O);

To:

46

••

addressA: in STD_LOGIC_ VECTOR (addr-1 downto 0);

addressB: in STD_LOGIC_ VECTOR (addr-1 downto O);

input_dataA: in STD_LOGIC_ VECTOR (width-1 downto 0);

ram_outputA: in STD_LOGIC_ VECTOR (width-1 downto O);

ram_outputB: in STD_LOGIC_ VECTOR (width-1 downto 0);

3. Add the following signal declaration to handle the feedback of the dpram output

below the architecture declaration and above the first begin statement:

type ram_type is array (0 to depth-1) of

std_logic_ vector(width-1 downto O);

signal tmp_ram: ram_type;

4. Customize the source file for the counter design by replacing the port and signal

name place holders with the actual ones as follows:

• replace all occurrences of < clock > with CLOCK

• . replace all occurrences of'< enableA > with enableA

• . replace all occurrences of « write_enableA > with write_enableA

• . replace all occurrences of'< addressA > with addressA

• . replace all occurrences of « addressB > with addressB
• . replace all occurrences of « input_dataA> with input_dataA

• replace all occurrences of'< ram_outputA> with ram_outputA

• . replace all occurrences of x ram_outputB> with ram_outputB

• replace all occurrences of « ram_name> with tmp_ram

47

5. Save the file by selecting File ~Save.

When I am finished, the dpram source file will look like the following:

-- 512*64 DPRAM module

-- KEYWORD: array, concurrent processes, generic, conv _integer

library ieee;

use ieee.std_logic_l 164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity DPRAM is

generic(

width: integer:=64;

depth: integer:=512;

addr: integer:=9);

port(Clock: in std_logic;

48

enableA: in std_logic;

write_enableA : in std_logic;

AddressA: in std_logic_vector(addr-1 downto O);

AddressB: in std_logic_vector(addr-1 downto 0);

input_dataA: in std_logic_ vector(width-1 downto O);

ram_outputA: out std_logic_vector(width-1 downto 0);

ram_outputB: out std_logic_vector(width-1 downto 0)

);

endDPRAM;

architecture behav of DPRAM is

-- use array to define the bunch of internal temparary signals

type ram_type is array (0 to depth-1) of

std_logic_ vector (width-1 downto O);

signal tmp_ram: ram_type;

49

..

begin

-- Read Functional Section

-- process(Clock, Read)

process(Clock)

begin

if (Clock'event and Clock='l') then

if (enableA ='1 ') then

if (write_enableA ='1') then

tmp_ram(conv_integer(addressA)) <= input_dataA;

end if;

ram_outputA <= tmp_ram(conv_integer(addressA));

ram_outputB <= tmp_ram(conv_integer(addressB));

end if;

end if;

end process;

end behav;

50

3.4 Synthesize

from the process window click on'+' which is for synthesize XST

!ii ··· View RTL. Schematic
· [i View Techm:i!ogf Schematic

, ··, ~-Check S:mtax
Eil f ~ Generate Post-Synthesis Simulation M1Jdel

Post-S1rnthesis Simulation Moclel Report

Figure 3.4 Synthesize in Process Window

3.4.1 View synthesize report

Release 9.li - xst J.30

Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

--> Parameter TMPDIR set to ./xst/projnav.tmp

CPU: 0.00 I 2.97 s I Elapsed: 0.00 I 3.00 s

--> Parameter xsthdpdir set to ./xst

CPU: 0.00 I 2.98 s I Elapsed: 0.00 I 3.00 s

--> Reading design: DPRAM.prj

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis

51

..

6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

9 .1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

------------ ------------
* Synthesis Options Summary *

------------ ------------
---- Source Parameters

Input File Name

Input Format

: "DPRAM.prj"

: mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name

Output Format

Target Device

---- Source Options

Top Module Name

Automatic FSM Extraction

FSM Encoding Algorithm

Safe Implementation

FSM Style

RAM Extraction

: "DPRAM"

:NGC

: xc3s15001-4-fg676

:DPRAM

:YES

: Auto

:No

: lut

: Yes

52

~fuN!V~'\
l '

..

RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto

Decoder Extraction :YES

Priority Encoder Extraction :YES

Shift Register Extraction :YES

Logical Shifter Extraction :YES

XOR Collapsing :YES

ROM Style : Auto

Mux Extraction :YES

Resource Sharing :YES

Asynchronous To Synchronous : NO

Multiplier Style : auto

Automatic Register Balancing : No

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer(BUFG) : 8

Register Duplication : YES

Slice Packing : YES

Optimize Instantiated Primitives : NO

Use Clock Enable : Yes

Use Synchronous Set : Yes

Use Synchronous Reset : Yes

Pack IO Registers into IOBs : auto

Equivalent register Removal : YES

---- General Options

Optimization Goal

Optimization Effort

: Speed

: 1

53

Library Search Order : DPRAM.lso

Keep Hierarchy : NO

RTL Output : Yes

Global Optimization, : AllClockNets

Read Cores : YES

Write Timing Constraints : NO

Cross Clock Analysis : NO

Hierarchy Separator : I

Bus Delimiter : <>

Case Specifier : maintain

Slice Utilization Ratio : 100

BRAM Utilization Ratio : 100

Verilog 2001 : YES

Auto BRAM Packing : NO

Slice Utilization Ratio Delta : 5

--- ---
------------ ------------

------------ ------------
* HDL Compilation *
--- ---
------------ ------------
Compiling vhdl file "C:/Xilinx91i/xilinx/tahaproj/dpram/dpram.vhd" in Library work.

Entity <dprarn> compiled.

Entity <dpram> (Architecture <behav») compiled.

------------ ------------

54

.•

* Design Hierarchy Analysis *
--- ---
------------ ------------
Analyzing hierarchy for entity <DPRAM> in library <work> (architecture <behav»)

with generics.

addr = 9

depth= 512

width= 64

------------ ------------
* HDL Analysis *

------------ ------------
Analyzing generic Entity <DPRAM> in library <work> (Architecture <behav>).

width= 64

depth= 512

addr = 9

Entity <DPRAM> analyzed. Unit <DPRAM> generated.

--- ---
------------ ------------
* HDL Synthesis *
--- ---
------------ ------------

Performing bidirectional port resolution ...

Synthesizing Unit <DPRAM>.

55

•.

Related source file is "C :/Xilinx.91 i/xilinx/tahaproj/ dpram/ dpram. vhd".

Found 512x64-bit dual-port RAM <Mram_tmp_ram> for signal <tmp_ram>.

Found 64-bit register for signal <ram_outputA>.

Found 64~bit register for signal <ram_outputB>.

Summary:

inferred 1 RAM(s).

inferred 128 D-type flip-flop(s).

Unit <DPRAM> synthesized.

------------ ------------
HDL Synthesis Report

Macro Statistics

#RAMs

512x64-bit dual-port RAM

Registers

64-bit register

: 1

: 1

:2

:2

------------ ------------

* Advanced HDL Synthesis *

Loading device for application Rf_Device from file '3s15001.nph' in environment

C:\Xilinx.91 i.

56

INFO:Xst:2691 - Unit <DPRAM> : The RAM <Mram_tmp_ram> will be

implemented as a BLOCK RAM, absorbing the following register(s):

<ram_outputA> <ram_outputB>.

I ram_type I Block

I Port A I
aspect ratio I 512-word x 64-bit I
mode I read- first
clkA I connected to signal <Clock> I rise I
enA I connected to signal <enableA> I high I
weA I connected to signal <write_enableA> I high I
addrA I connected to signal <AddresaA> I I
di A I connected to signal <input_dataA> I I
do A I connected to signal <ram_outputA> I I

I Port B I
I aspect ratio I 512-word x 64-bit I
I mode I write-first I I
I cl kB I connected to signal <Clock> I rise I
I enB I connected to signal <enable.A> I high I
I addrB I connected to signal <Addressfl> I I
I doB I connected to signal <ram_outputB>

------------ ------------
Advanced HDL Synthesis Report

Macro Statistics

#RAMs : 1

57

•.

512x64-bit dual-port block RAM : 1

------------ ------------

--- ---
------------ ------------
* Low Level Synthesis *

------------ ------------

Optimizing unit <DPRAM> ...

Mapping all equations ...

Building and optimizing final netlist ...

Found area constraint ratio of 100 (+ 5) on block DPRAM, actual ratio is 0.

Final Macro Processing ...

------------ ------------
Final Register Report

Found no macro

--- ---
------------ ------------

--- ---
------------ ------------
* Partition Report *

58

------------ ------------

Partition Implementation Status

No Partitions were found in this design.

------------ ------------
* Final Report *

Final Results

RTL Top Level Output File Name : DPRAM.ngr

Top Level Output File Name : DPRAM

Output Format

Optimization Goal

Keep Hierarchy

:NGC

: Speed

:NO

Design Statistics

#IOs : 213

Cell Usage:

#BELS

GND

#RAMS

: 1

: 1

:2

RAMB16_S36_S36 :2

Clock Buffers : 1

59

.•

BUFGP

IO Buffers

IBUF

OBUF

: 1

: 212

: 84

: 128

--- ---
------------ ------------

Device utilization summary:

Selected Device : 3s1500lfg676-4

Number of Slices: 0 out of 13312 0%

213

213 out of 487 43%

2 out of 32 6%

1 out of 8 12%

Number of I Os:

Number of bonded IOBs:

Number of BRAMs:

Number of GCLKs:

Partition Resource Summary:

No Partitions were found in this design.

------------ ------------
TIMING REPORT

60

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE

TRACE REPORT

GENERA TED AFTER PLACE-and-ROUTE.

Clock Information:

-----------------------------------+------------------------+-------+

Clock Signal I Clock buff er(FF name) I Load I

-----------------------------------+------------------------+-------+

Clock IBUFGP

-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information:

No asynchronous control signals found in this design

Timing Summary:

Speed Grade: -4

Minimum period: No path found

Minimum input arrival time before clock: 2.222ns

Maximum output required time after clock: 6.457ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

61

..

------------ ------------
Timing constraint: Default OFFSET IN BEFORE for Clock 'Clock'

Total number of paths I destination ports: 106 I 106

Offset: 2.222ns (Levels of Logic= 1)

Source: enableA (PAD)

Destination: inst_Mram_mem (RAM)

Destination Clock: Clock rising

Data Path: enableA to inst_Mram_mem

Gate Net

Cell.in-c-out fanout Delay Delay Logical Name (Net Name)

IBUF:l->0 4 0.821 0.917 enableA_IBUF (enableA_IBUF)

RAMB 16_S36_S36:ENA 0.484 inst_Mram_mem

Total 2.222ns (1.305ns logic, 0.917ns route)

(58.7% logic, 41.3% route)

------------ ------------
Timing constraint: Default OFFSET OUT AFTER for Clock 'Clock'

Total number of paths I destination ports: 128 I 128

Offset: 6.457ns (Levels of Logic= 1)

Source: inst_Mram_meml (RAM)

Destination: ram_ outputA <63 > (PAD)

Source Clock: Clock rising

Data Path: inst_Mrarn_mernl to rarn_outputA<63>

62

••

Gate Net

Cell.in-c-out fanout Delay Delay Logical Name (Net Name)

RAMB 16_S36_S36:CLKA->D0A27

(ram_outputA_63_0BUF)

OBUF:1->0 5.644

1 0.012 0.801 inst_Mram_meml

ram_outputA_63_0BUF (ram_outputA<63>)

Total 6.457ns (5.656ns logic, 0.801ns route)

(87.6% logic, 12.4% route)

------------ ------------
CPU : 11.56 I 14.75 s I Elapsed : 11.00 I 14.00 s

-->

Total memory usage is 159180 kilobytes

Number of errors : 0 (0 filtered)

Number of warnings : 0 (0 filtered)

Number of infos : 1 (0 filtered)

63

3.4.2 View RTL Schematic

Figure 3.4.2 inputs&outputs

Met = ena:ileA
Ptirt rnl;;rlr;t = T nrnt
Brandi count • t
1~) Marter count = :

Figure 3.4.2 RTL schematic

64

••

3.4.3 check syntax

Started : "Check Syntax for DPRAM".

------------ ------------
* HDL Compilation *

------------ ------------
Compiling vhdl file "C:/Xilinx91i/xilinx/tahaproj/dpram/dpram.vhd" in Library work.

Architecture behav of Entity dpram is up to date.

Process "Check Syntax" completed successfully

3.5 Writing the test bech

3.5.1 Verifying Functionality using Behavioral Simulation

Creating my test bench containing input stimulus you can use to verify the

Functionality of the DPRAM module. The test bench is a graphical view of a test

bench.

Create my test bench as follows:

1. Select the DPRAM HDL file in the Sources window.

2. Create a new test bench source by selecting Project """7New Source.

3. In the New Source Wizard, select Test Bench as the source type, and type

DPRAM _tb in the File Name field. As shown below:

~Schematic
] Implementation Constraints Hie
t. State Diagram

;

al User Document
Yl Verilog Module

.. Vi. .. s ..•• • .V·e··· nlo.g Test.·. Fixture
"~d VHDL Mi:,dule·

VHDL Librarf

Figure 3.5.1 Select Source Type

4. Click Next.

5. The Associated Source page shows that you are associating the test bench with

the source file DPRAM. Click Next.

6. The Summary page shows that the source will be added to the project, and it

displays the source directory, type and name. Click Finish.

The source file containing the entity/architecture pair displays in the Workspace, and

the dpram displays in the Source tab, as shown below:

66

..

- filt (:;..:e:.tt.!d

- Addicional Ccrn7~nt5:

·· ·· C~::..'-'ti:._:it D~,;l~r,:~:tiot. f:r :.he:_ U:i.it Uade.r reee f)Jt1I)
O)HP':N.:El'l! DPFK-1
POn(

Clock : m Jort ..)coic;
en!:.ble~~ ; IS :it
write_:::iabl::A
--AUJ.r::;:;:t:Ji. U:.l"Wt..,:.J O);

ci,w~:.c 0)_;

01;

Figure 3.5.2: New Project in ISE

3.5.2 Final Editing of VHDL Source

1. Add the process&clock below the Instantiate the Unit Under Test (UUT) and

above tb: process

clk_p: process

begin

clock<= 'O';

wait for 5 ns;

67

clock<= '1';

wait for 5 ns;

end process;

2. Add the following statements below the tb: PROCESS BEGIN:

enableA <='1 ';

write_enableA<='l';

nput_dataa<=(input_dataa'range => '0');

AddressA <=(AddressA'range => 'O');

AddressB <=(addressB'range => 'O');

wait for 100 ns;

3. make two loops, one for writing in addressA just, and another one for reading, it

can read from both addresses A&b:

--first loop is:

for i in O to 63 loop

AddressA <=AddressA + '1';
input_Dataa <= input_dataa + "10";
write_enableA<='l ';

wait for 10 ns;

END loop;

• . Here I Add the following to make addressA zero after finishing form first

loop and wait to start reading with addressB:

AddressA <=(AddressA'range => 'O');

write_enableA<='O';

wait for 20 ns;

--Second loop is:

for i in O to 62 loop

AddressA <=AddressA + '1';

68

••

AddressB <=AddressB + '1 ';
input_Dataa <= input_dataa + "10";
wait for 10 ns;

End loop;

• . then I have to wait for ever after finishing loops to stop looping otherwise

it is going to keep in looping to infinity so I write:

wait;

• . eventually end the process& end the test bench:

end process;

End behavior

When I am finished, the dpram source file will look like the following:

--Company:

-- Engineer:

-- Create Date: 17:57: 11 04/26/2007

-- Design Name: DPRAM

-- Module Name: C:/Xilinx91i/xilinx/tahaproj/dpram/dpram_tb.vhd

-- Project Name: dpram

-- Target Device:

-- Tool versions:

-- Description:

-- VHDL Test Bench Created by ISE for module: DPRAM

-- Dependencies:

69

••

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

-- Notes:

-- This testbench has been automatically generated using types std_logic and

-- std_logic_ vector for the ports of the unit under test. Xilinx recommends

-- that these types always be used for the top-level I/0 of a design in order

-- to guarantee that the testbench will bind correctly to the post-

implementation

-- simulation model.

LIBRARY ieee;

USE ieee.std_logic_l 164.ALL;

USE ieee.std_logic_unsigned.all;

USE ieee.numeric_std.ALL;

ENTITY dpram_tb_ vhd IS

END dpram_tb_ vhd;

ARCHITECTURE behavior OF dpram_tb_ vhd IS

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT DPRAM

PORT(

Clock : IN std_logic;

enableA : IN std_logic;

write_enableA : IN std_logic;

--AddressA : IN std_logic_ vector(9 downto O);

--AddressB : IN std_logic_ vector(9 downto O);

70

..

AddressA : IN std_logic_ vector(S downto 0);

AddressB : IN std_logic_ vector(8 downto 0);

--input_dataA : IN std_logic_ vector(127 downto 0);

ram_outputA : OUT std_logic_ vector(127 downto 0);

ram_outputB: OUT std_logic_vector(127 downto 0)

input_dataA IN std_logic_ vector(63 downto

0);

ram_outputA : OUT std_logic_ vector(63 downto 0);

ram_outputB : OUT std_logic_ vector(63 downto 0)

);

END COMPONENT;

--Inputs

SIGNAL Clock: std_logic := 'O';

SIGNAL enableA : std_logic := 'O';

SIGNAL write_enableA : std_logic := 'O';

--SIGNAL AddressA: std_logic_vector(9 downto 0) := (others=>'O');

--SIGNAL AddressB: std_logic_vector(9 downto 0) := (others=>'O');

--SIGNAL input_dataA : std_logic_vector(127 downto 0) :=

(others=oO');

--Outputs

SIGNAL ram_outputA: std_logic_vector(127 downto O);

SIGNAL ram_outputB : std_logic_vector(127 downto 0);

71

••

SIGNAL AddressA: std_logic_vector(8 downto 0) := (others=>'O');

SIGNAL AddressB: std_logic_vector(8 downto 0) := (others=>'O');

SIGNAL input_dataA :std_logic_vector(63 downto 0) := (others=>'O');

--Outputs

SIGNAL ram_outputA : std_logic_ vector(63 downto O);

SIGNAL ram_outputB : std_logic_ vector(63 downto O);

BEGIN

-- Instantiate the Unit Under Test (UUT)

uut: DPRAM PORT MAP(

Clock => Clock,

enableA => enableA,

write_enableA => write_enableA,

AddressA => AddressA,

AddressB => AddressB,

input_dataA => input_dataA,

ram_outputA => ram_outputA,

ram_outputB => ram_outputB

);

clk_p: process

begin

clock<= 'O';

wait for 5 ns;

clock<= '1 ';

wait for 5 ns;

end process;

72

tb: PROCESS

BEGIN -- Wait 100 ns for global reset to finish

wait for 100 ns;

enableA <='1';

--wait for 100 ns;

write_enableA<='l ';

input_dataa<=(input_dataa'range => '0');

-- Place stimulus here

AddressA <=(AddressA'range => '0');

AddressB <=(addressB'range => 'O');

wait for 100 ns;

--for i in Oto 127 loop

For I in O to 63 loop

AddressA <=AddressA + '1 ';
input_Dataa <= input_dataa + "10";

write_enableA<='l ';

--wait; -- will wait forever

Wait for 10 ns;

END loop;

AddressA <=(AddressA'range => '0');

write_enableA<='O';

wait for 20 ns;

73

..

--for i in Oto 126 loop

For I in O to 62 loop

AddressA <=AddressA + '1 ';
AddressB <=AddressB + '1 ';
input_Dataa <= input_dataa + "10";

Wait for 10 ns;

END loop;

wait; -- will wait forever

End process;

End behavior;

3.5.3 The simulation:

A VHDL based simulation typically uses the VHDL language to describe the
stimulus, as well as the device which is being designed. The code that defines the
stimulus is generally called the " testbench", and having a portable stimulus
description gives greater flexibility.

To simulate:

• source window should be on behavioral simulation

• click at '+' sign of Xilinx ISE simulator at the process window then

double click on Simulate Behavioral Model

74

Figure3.5.3 high simulation result

in this simulation write_enableA is 1 so that shows when it is writing in address A

while increasing 1 bit.

75

••

Figure 3.5.3 low Simulation result

This simulation shows that the writing has been stopped and started to read after 20

ns from both address A and address B at the same time.

76

•

3.6 Implementing my design

ranslate
/ · [i!O Translation Report
1 fJi Floorplan Design
li!il·· f~ Generate Post-Translate 'Simulation Model : a P.ssign Package Pins Post-Translate
UGMap

l [il0Map Report
1*! · f ~ Generate PcsHv1ap Static Timing
/.· ti Fleerplsn Design Post-Map (floorp!anner)
! fll Manualr1 Place :& Route (PPGA Editor}
I~ fi Generate Post-Map Simulation Model
f ~8Place :& Route
l·· [il0piace &Houte Report
· [ij Clock Region Report
; ·· [ii ffl;<nchronous Delay Report
•···· [ilG Pad Report
,. · [ii Guide Results Report
~ .. 1» MPPH Results Utilities
$ f ~0Generate Post0Place· & RcnJte Static Timing
i ··fJi View/Edi! Placed Design (Floorplanner} [Im View/Edit Ro1Jted Design (FPGA Editor)
· · IJ' i\na~rze Power JXPower)
~.. \) Generate Power Data. *· f ~ Generate Pest-Place s Route Simulation Model
$· f~ Generate IBIS Mode!
~- f~ Back-anm:,tate Pin Locations

Figure 3.7 Implementing

Once we have a logical net list then we can think about translating this into a physical
description. This process is cold implementation.
The implementation step first involves mapping, the placement and routing, and
finally the programming of the target device.

• Mapping
Mapping is the process of packing the logical description generated by the synthesis
tool into the different resources of the device, such as Configurable Logif Blocs
(CLBs) or functional Blocks (FBs);

77

•.

• Place And Route (PAR)

Placement involves allocation of mapped resources into specific locations on the
device. Routing is then performed to connect between these building blocks. If timing
requirements are supplied to the place and route tools, then the routing will be
performed to rty to meet these timing constraints.

• Post layout verification

Now that we have this physical description of the design, the timing will have been
changed slightly. In order to check that this does not change the functionality of the
dasign, we must verify that the design's timing is stiil within specification.

• Programming
The final step is to program the device with the design files that you have created.

78

CONCLUSION

In this project, it has been designed a Dual Port Ram by using VHDL as a language; by

using Xilinx ISE (Integrated Software Environment) as the development tool. First of all

the specifications are written from the requirements. Then I/0 are defined, and the

function. VHDL codes are being completed and synthesized. Eventually the test bench is

written to see the output where the inputs are defined. This gave the expected outputs
which show that the project is successful.

80

REFERENCES

Form the DVD which I got from my supervisor which includes
• Xilinx 9.li ISE
• Software manuals
• Tutorials
• language templates
• Application notes from (www.Xilinx. Com)

Form my TEACHER
• the soft copy
• · hard copy
• VHDL examples
• Lap notes

	Page 1
	Titles
	NEAR EAST UNIVERSITY' ,., '"' .Ł ,)

	Images
	Image 1
	Image 2

	Page 2
	Titles
	..
	ACKNOWLEDMENT

	Images
	Image 1

	Page 3
	Titles
	..
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	..
	Introduction

	Images
	Image 1

	Page 5
	Titles
	Ł.

	Images
	Image 1

	Page 6
	Images
	Image 1

	Tables
	Table 1

	Page 7
	Images
	Image 1

	Tables
	Table 1

	Page 8
	Titles
	Ł
	1. INTRODUCTION TO HDL
	1.1 Overview
	1.2 Hardware Description Languages

	Images
	Image 1

	Page 9
	Titles
	1.3 Advantages of Using HD Ls to Design FPGA Devices

	Images
	Image 1

	Page 10
	Titles
	Ł
	1.4 Designing FPGA Devices with HDLs

	Images
	Image 1

	Page 11
	Titles
	..

	Images
	Image 1

	Page 12
	Titles
	.Ł

	Images
	Image 1

	Page 13
	Titles
	..

	Images
	Image 1

	Page 14
	Titles
	Ł.

	Images
	Image 1

	Page 15
	Titles
	2. INTEGRATED SOFTWARE ENVIRONMENT
	2.1 ISE General Information
	2.1.1 Xilinx ISE Overview
	2.1.2 Design Entry
	2.1.3 Synthesis
	2.1.4 Implementation

	Images
	Image 1

	Page 16
	Titles
	2.2 The Project Navigator

	Images
	Image 1

	Page 17
	Titles
	..

	Images
	Image 1

	Page 18
	Titles
	1. Toolbar
	2. Sources window
	3. Processes window
	4. Workspace
	Figure 2.2.2 project window
	11

	Images
	Image 1
	Image 2
	Image 3

	Page 19
	Titles
	,.... digvidenc
	El-· a :-:c4vf:-:1 2-12sf 363
	S·· ~- DAT APA TH - dv 1,281
	! :···· [yJj prescaler - dve_ .
	I I···· Iii CHROMA_FIR - .
	routing

	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1

	Page 21
	Titles
	Ł

	Images
	Image 1

	Page 22
	Titles
	Ł Running
	This icon shows that the process is running.
	Ł

	Images
	Image 1

	Page 23
	Titles
	Ł
	Ł

	Images
	Image 1
	Image 2

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Titles
	Ł
	Ł

	Images
	Image 1

	Page 26
	Titles
	Ł
	Ł

	Images
	Image 1

	Page 27
	Titles
	2.3 Creating a Project

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Titles
	24

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	Ł NIA

	Images
	Image 1

	Page 7
	Titles
	2.4 working with projects source file

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	2.5 Running and Stopping Processes

	Images
	Image 1
	Image 2

	Page 12
	Titles
	Ł

	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Titles
	..
	3. My project (dual port ram)

	Images
	Image 1
	Image 2

	Page 15
	Titles
	..

	Images
	Image 1

	Page 16
	Images
	Image 1

	Tables
	Table 1

	Page 17
	Titles
	.Ł

	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Titles
	..

	Images
	Image 1

	Page 20
	Titles
	3.3 Creating My project

	Images
	Image 1
	Image 2

	Page 21
	Titles
	..

	Images
	Image 1
	Image 2

	Page 22
	Titles
	..

	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1
	Image 2

	Page 24
	Titles
	..

	Images
	Image 1
	Image 2
	Image 3

	Page 25
	Titles
	..
	Figure 3.3.2.1 New Project in ISE
	45

	Images
	Image 1
	Image 2
	Image 3

	Page 26
	Images
	Image 1
	Image 2

	Page 27
	Titles
	47

	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Titles
	..

	Images
	Image 1

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Titles
	..

	*
	*

	Images
	Image 1

	Page 3
	Titles
	~fuN!V~'\
	..

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 4
	Titles

	*
	*

	Images
	Image 1

	Page 5
	Titles
	*
	.Ł
	*

	*

	*

	*
	*

	Images
	Image 1

	Page 6
	Titles
	Ł.

	*
	*

	Images
	Image 1

	Page 7
	Titles

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 8
	Titles
	Ł.

	*
	*

	*
	*

	Images
	Image 1

	Page 9
	Titles

	*
	*
	: 1

	Images
	Image 1
	Image 2

	Page 10
	Titles
	.Ł

	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Page 12
	Titles
	..

	Images
	Image 1

	Page 13
	Titles
	ŁŁ

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles

	*

	*

	Images
	Image 1

	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 17
	Titles
	..
	67

	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 21
	Titles
	..

	Images
	Image 1

	Page 22
	Titles
	ŁŁ

	Images
	Image 1

	Page 23
	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Titles
	..
	3.5.3 The simulation:

	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1
	Image 2

	Page 26
	Titles
	ŁŁ

	Images
	Image 1
	Image 2

	Page 27
	Titles
	Ł
	3.6 Implementing my design
	Ł Mapping
	77

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 28
	Titles
	Ł.

	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Titles
	REFERENCES

	Images
	Image 1
	Image 2
	Image 3

