
..•.

NEAR EAST UNIVERSITY

'Faculty of Engineering

Department of Computer Engineering

DEVELOPMENT DELPHI PROGRAM
FOR EXCHANGE AND CHANGE SYSTEM

Graduation Project
COM-400

Student: Ismail Mekki

Supervisor: Mr. Ümit iLHAN

Nicosia 2003 - 2004

ACKNOWLEDGEMENTS

to be capable to cover the requirements of the working life. This role is concerning with

qualifying the student up to he level that the society needs. However, this role cannot be

accomplished unless there is a qualified leader and sophisticated coach.

Fortunately, Mr. Umit ILHAN was the main reason of my success in (his project,

and thus, he deserves my all thanks, gratitude, and my respect due to his support and wise

advice.

I appreciate all the effort that he provided during the preparation of this project.

Therefore, firstly, I would like to dedicate this project my family because of their

unlimited support during my life.

Secondly, I would like to dedicate it to my supervisor Mr. Umit ILHAN because of

his wise supervision on this project and for his wide knowledge.

Finally, I appreciate all the effort aids of my friends during the preparation of this

project."

With all due respect

I

ABSTRACT

This program is designed for the change and exchange markets where the

individuals deal with the currencies and barter them. This system is based on BORLAND

DELPHI 6 programming language. All the criterions of this system are taken according

upon the request of the Near East Bank and all the features of this software can be adjusted

according to the desire of the customer.

All the screens that will appear in the usage of this program will be illustrated in the

coming chapters in details. The calculations and the mathematical operations that this

program applies are explained in details in the appendix at the end of this report. This

program is designed to find out the exact profit of the company by using graphical charts

and by showing statues reports at any time. Three hard currencies are taken into

consideration in this system and they are compared with the Turkish lira, which is the local

currency. The values of these hard currencies will be taken from the stock markets that the

government decides daily according o the daily economic level. The decision maker in

NEB will determine the amount of the profit that he desires and the total revenue will be

calculating by the software. A navigation bar is located in the bottom of each screen for

adding, deleting, saving ... etc.

II

1.1. Overview

1.2. Economic Analysis of Floating Exchange Rate System

1.2 a Introduction

1.2 b Opportunities From Around World

1.3 Delphi Programming

1.4. Database Programming

1.5. Borland Database Engine (BOE)

1.6. Graphical Data-Aware Control

1.7. The clintdataSet Component

1.8 Classic BOE component

1.9 Tables and Queries

1.1 O DBNavigator and Dataset Actions

1.11 Text-Based Data-Aware Control

L 12 Navigator a Dataset

2

2

2

5

7

8

8

9

10

10

11

12

12

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

CHAPTER ONE: INTRODUCTION

I

II

III

·v

CHAPTER TWO: THE DESCRIPTION OF THE SYSTEM

2.2 Change System

2.3. Exchange curve

2.4. Exchange System

2.5. Exchange Bar Graphs

14

14

18

19

21

22

"' 2.1 Main -Merıu Screen - - -

III

CONCLUSION

SYSTEM REQUIREMENTS

REFERENCES

75

75

76

2.6. Adding the Exchange rates

2.7. Database. Desktop

23
25

3.1. Data Flow Diagram

3.2. Main Menu
3.3. Buy Change System Preview

3.4. Exchange System Sterling

3.5. Change System Sterling
3.6. Exchange System Sterling Dollar

3.7. Exchange System Dollar Euro

3.8. Change System Dollar Euro

3.9. Exchange System Euro
3.1 O. Exchange System Dollar Sterling

3.11. Change System Dollar Sterling

3.12. Sell Exchange System
3 .13. Exchange Euro to Steri ing

3.14. Exchange Euro
3.15. Exchange System Dollar to Euro

3.16. Buy Change System preview

3.17. Buy Change System

3.18. Buy Change System
3.19. Change System Sterling

3.20. Change System

3 .21. Report Dollar
3.22. Sell Change System Preview

26

26

27

48

51

52

52

54

55

55
57
58

58

60

61
61

63

66

67

68

69

71

72

CHAPTER THREE: DATA SOURCE

IV

LIST OF FIGURES

CHAPTER II
CHANGE AND EXCHANGE SYSTEMS

2.1 Main Menu Screen

2.2 Buy change system preview

2.3 Exchange report

2.4 Exchange rates

2.5 Change System Preview

2.6 Exchange system Preview

2.7 Change System

2.8 Change Curve

2.9 Change Curve

2.1O Change Curve

2.11 Exchange System

2.12 Exchange Bar Graphs a

2.13 Exchange Bar Graphs b

2.14 Adding the Exchange Rates (Selling Rates)

2.15 Adding the Exchange Rates (Foreign Currency Rates)

2.16 Database Desktop

CHAPTER III

DAJASOURCE

3.1 Data Flow Diagram

V

14

15

15

16

17

17
18

19

20

20

21

22

23

23

24

25

26

INTRODUCTION

1.1 Overview

Many activities are done daily in the stock market. Most of these activities are

concerning with the transactions and exchanging the goods and services. Since the

market is the place that the buyers and sellers exchange goods and services, then the

currencies are considered as a good that the people buy and sell within the market.

As it is known, the most currencies that are used widely are those currencies that

are called the hard currencies such as US Dollar, UK sterling, and Euro. Therefore, as

we are concerning with controlling the activities in the market by issuing the required

software programs that include all features of controlling the business by means of

scientific methods in order to be used in a proper and easy way.
Using any programming language to create certain software gives you the

opportunity of gaining a good experience and it will promote your approaches of

analyzing the aspects of any given project.
Therefore, any software needs an adequate and sufficient programming language

that helps us to set up all the applications and all the functions that include the features

of organizing and sustaining our business.
The role of a computer engineer requires an adequate ability of analyzing and

dealing with all the aspects of any project in order to be capable to create and issue

certain software that controls the business. Therefore, our role as an engineer is to not

only deal with the hardware, but also deal with creating a software programs. Thus, the

role of an engineer is to control the technical specifications of the firm and to know

every single aspect that is necessary to measure the level of the success.

1

1.2 Economic Analysis of Floating Exchange Rate Systems

1.2.a Introduction
Associated foreign exchange is looking for experienced foreign exchange sales

..
professionals! Successful candidates will be strongly motivated individuals who can

identify and cultivate potential corporate clients with international payment needs.

Strong communication skills, experience in the foreign exchange field and experience in

relationship based selling are a must. Successful candidates will be responsible for

opening, maintaining and growing accounts through relationship building, identifying

customer needs and cross-selling appropriate services.

1.2 b Opportunities from Around the World
Over the last three decades the foreign exchange market has become the world's

largest financial market, with over $1.5 trillion USD traded daily. The primary market

for currencies is the 24-hour Interbank market. The Interbank market literally follows

the sun around the world, moving from major banking centers of the United States to
.,,,,

Australia and New Zealand to the Far East, to Europe and finally back to the United

States. With the large minimum transaction sizes and often-stringent financial

requirements, banks, hedge funds, major currency dealers and the occasional high net­

worth individual speculator were the principal participants. These large traders were

able to take advantage of the many benefits offered by the forex market vs. other

markets including fantastic liquidity and the strong trending nature of the world's

primary currency exchange rates.
The business section of any newspaper will have a table of spot exchange rates.

These are the rates at which a person could have bought other currencies or foreign

Exchange, such as the English Pound, French Franc, or the new European Euro. The

Prices of foreign currencies can be determined in two major types of exchange rate

Systems. In the United States, the dollar's exchange rates are determined by the•
"" Marketplace, i.e., by supply and demand. This type of system is called a floating -- - - -

Exchange rate system. In other countries, governments set the price of their currencies

With respect to other countries. They then buy or sell foreign exchange at the prices

They've set. This is called a fixed exchange rate system. The economic effects of these

Two systems can be very different. However, in either system the underlying forces

Influencing the value of a country's currency remain the same. Due to possible

2

confusion of being able to quote different currencies in terms of Each other, e.g., $/£ or

£/$, we need to explicitly define an exchange rate. An exchange Rate is, therefore, the

domestic cost of a unit of foreign exchange. For example, from the US perspective the

price of the English Pound would be denominated as the number of US dollars per

pound, or$/£. As noted above, the exchange rate in a floating exchange rate system is

Determined by market forces. Our definitiori of the exchange rate defines the market as

The market for foreign exchange. In this market we have demanders and suppliers of

Foreign currencies willing to pay and accept dollars in return for these currencies. We

Will in turn discuss the demand and supply of foreign exchange. Foreign Exchange

Demand The demand for foreign exchange is a derived demand. With the exception of

currency Collectors, the demand for foreign exchange is due to people's desire to use it

in the Purchase of foreign goods or financial assets. Foreign exchange demand is,

therefore, Highly sensitive to changes in these desires.

In order to understand changes in the demand for foreign exchange, we will need

to Discuss its underlying forces. These are the demand for foreign goods and services

and the demand for foreign financial assets. The supply of foreign exchange has at its

roots the same conceptual basis as Demand, only it is from the foreign perspective.

Foreign currency is supplied to the Foreign exchange market when foreigners exchange

their currency for dollars in order to Buy US goods or financial assets. Equivalently, the

supply of foreign exchange is Nothing more than a mirror image of the foreign demand

for US currency. Exchange is the mirror of the supply of dollars to the foreign exchange

market. One question which might arise is which foreign exchange Market. New York,

London, Frankfort and Tokyo are Major financial centers with large foreign exchange

markets. The answer as to which market is all of them. The first rule of business is to

buy low and sell high. Should exchange rates be different across different financial

centers, then the opportunity for arbitrage profits occurs. Currency dealers will buy low.
in one center and sell high in another, driving exchange rates into equality Across the

' different markets. For example, should the Swiss Franc be at a lower price (in terms of

$) in London and at a higher price in New York, then-the dealers will increase the

demand for the Swiss Franc in London, driving up its price, and increase its supply in

New York, driving down its price there. This continues until the price is the same in

both places. The major questions to be addressed are how exchange rates determined are

and what the forces which influence them are. In Figure 1, the equilibrium exchange

rate (e) is the one where the quantity demanded is equal to the quantity supplied for

3

foreign exchange. As with most markets, the price changes in order to equilibrate the

market. When quantity demanded exceeds quantity supplied, and then the exchange rate

will rise. If the quantity supplied is greater then quantity demanded, the exchange rate

falls. What does it mean when the exchange rate rises or falls? As we have defined the

Exchange rate($/£), when the exchange rate rises, the value of the dollar decreases or

depreciates. It now takes more dollars to buy an English pound than it did before the

Change in the exchange rate. Fewer foreign goods can now be purchased for a given

number of dollars. The reverse is also true. As the exchange rate falls, the dollar cost of

foreign exchange falls, increasing the dollar's value. This is termed an appreciation of

the dollar. More foreign exchange rate$/£ Foreign exchange Sfx or D$ Dfx or S$.

Market should force lead to a change in either the supply or demand for foreign

exchange then the exchange will change accordingly to re-equilibrate the market. The

basic notion is that exchange rates are sensitive to differential inflation rates across

Countries. Should the domestic inflation rate rise at a rate greater than our trading

Partners, then at a given exchange rate, the price of domestic goods will be rising

relative To foreign goods. This will, in tum, increase the demand for foreign goods

(imports are Now cheaper in domestic currency terms) and decrease the demand for

domestic exports (Domestic exports are now more expensive in foreign currency terms).

This results in an Increase in the demand for foreign exchange, as well as a decrease in

the supply of Foreign exchange.

This is a long-run effect because of the Law of One Price. This concept states

that in the Long run the price of tradable goods must be the same across countries. If

this was not The case, then the opportunity for arbitrage profits, buying low in one

country and selling High in another, would result in a movement in the exchange rate

bringing about the Equalization. For example, suppose Argentine wheat, at the

prevailing exchange rate, is cheap in US Dollars. As North Americans buy more and

more Argentine wheat, they increase the Demand for the Argentine currency, driving up

its value, thus making wheat more Expensive in dollar terms. The exchange rates which.•
would prevail under the Law of One Price are called purchasing power parity exchange

rates (PPP). While these do not exist in reality (there are many other factors affecting

exchange rates) there is an underlying pressure moving exchange rates in this fashion.

PPP exchange rates are used in comparing the economic performance between

countries. The World Bank compares countries in their World Development Report

using a PPP exchange rate. Medium Term - Differential Growth Rates As an economy

4

grows, its demand for imports will also grow. As income increases, some portion of that

increase will be spent on imported goods. In the jargon of macroeconomics, the

proportion of the additional dollar of income spent on imports is called the marginal

propensity to import. Assume that the marginal propensity to import is the same across

countries. Should a country's economy grow faster than its trading partners, then its

demand for imports will also be growing faster? In the context of Figure 4, this is

represented by increases in both the demand and supply of foreign exchange, but the

demand would increase by more. This would result in a slight depreciation of the

domestic currency. Short-Run - Differential Interest Rates This factor has become

extremely important as countries have liberalized their economies, allowing the flow of

financial capital into and out of their countries. It has played an important role in the

East Asian and Mexican Peso financial crises. Exchange rate$/£ Foreign exchange.

1.3 Delphi Programming
Delphi 5 provided new features to the Object Inspector, and Delphi 6 includes

even more additions to it. As this is a tool programmer's use all the time, along with the

editor and the Form Designer, its improvements are really significant.
The most important change in Delphi 6 is the ability of the Object Inspector to

expand component references in-place. Properties referring to other components are

now displayed in a different color and can be expanded by selecting the+ symbol on the

left, as it happens with internal subcomponents. You can then modify the properties of

that other component without having to select it.
NÖTE This interface-expansion feature also supports subcomponents, as

demonstrated by the new Labeled Edit control. The Form Designer
TIP A related feature of the Object Inspector is the ability to select the

component referenced by a property. To do this, doµble-click the property value with

the left mouse button while keeping the Ctrl key pressed. For example, if you have a.•
Main Menu component in a form and you are looking at the properties of the form in

the Object Inspector, you can select the Main Menu component by moving to the Main

Menu property of the form and Ctrl+double-clicking the value of this property. This

selects the main menu indicated as the value of the property in
the Object Inspector. Here are some other relevant changes of the Object

Inspector: The list at the top of the Object Inspector shows the type of the object and

5

an be removed to save some space (and considering the presence of the Object Tree

View). The properties that reference an object are now a different color and may be

expanded without changing the selection. You can optionally also view read-only

properties in the Object Inspector. Of course, they are grayed out.. The Object Inspector

has a new Properties dialog box which allows you to customize the colors of the various

types of properties and the overall behavior of this window.
The Project Manager doesn't provide a way to set the options of two different

projects at one time. What you can do instead is invoke the Project Options dialog from

the Project Manager for each project. The first page of Project Options (Forms) lists the

forms that should be created automatically at program startup and the forms that are

created manually by the program.
The next page (Application) is used to set the name of the application and the

name of its Help file, and to choose its icon. Other Project Options choices relate to the

Delphi compiler and linker, version information, and the use ofrun-time packages.

There are two ways to set compiler options. One is to use the Compiler page of

the Project Options dialog. The other is to set or remove individual options in the source

code with the {$X+}or {$X-}commands, where you'd replaceXwith the option you

want to set. This second approach is more flexible, since it allows you to change an

option only for a specific source-code file, or even for just a few lines of code. The

source-level options override the compile-level options.
All project options are saved automatically with the project, but in a separate file

with a .DOF extension. This is a text file you can easily edit. You should not delete this

file if you have changed any of the default options. Delphi also saves the compiler

options in another format in a CFG file, for command-line compilation. The two files

have similar content but a different format: The dee command-line compiler, in fact,

cannot use .DOF files, but needs the .CFG format. Another alternative for saving

compiler options is to press Ctrl+O+O (press the O key twice while keeping Ctrl.
pressed). This inserts, at the top of the current unit, compiler directives that correspond

to the current project options, as in the following listing: {$A +,B-,C+,D+,E-,F­

,G+,H+,l+,J+,K-,L+,M-,N+,0+,P+, Q-,R-,S-, T-, U-, V+, W-,X+, Y+,ZI}
Memory management in Delphi is subject to three rules: Every object must be

created before it can be used; every object must be destroyed after it has been used; and

every object must be destroyed only once. Whether you have to do these operations in

6

your code, or you can let Delphi handle memory management for you, depends on the

model you choose among the different approaches provided by Delphi.

Delphi supports three types of memory management for dynamic elements (that

is, elements not in the stack and the global memory area):

. Every time you create an object explicitly, in the code of your application, you

should also free it. If you fail to do so, the memory used by that object won't be released

for other objects until the program terminates .

. When you create a component, you can specify an owner component, passing

the owner to the component constructor. The owner component (often a form) becomes

responsible for destroying all the objects it owns. In other words, when you free the

form, it frees all the components it owns. So, if you create a component and give it an

owner, you don't have to remember to destroy it. This is the standard behavior of the

components you create at design time by placing them on a form or data module .

. When you allocate memory for strings, dynamic arrays, and objects referenced

by interface variables, Delphi automatically frees the memory when the reference goes

out of scope. You don't need to free a string: when it becomes unreachable, its memory

is released.

1.4 Database Programming
Delphi's support for database applications is one of the key features of the

programming environment. Many programmers spend most of their time writing data­

access code, which needs to be the most robust portion of a database application. This

chapter provides an overview of Delphi's extensive support for database programming.

What you will find here is a discussion of the theory of database design. I am assuming

that you already know the fundamentals of database design and have already designed

the structure of a database. I will not look into database-specific problems; my goal is to

help you understand how Delphi supports database access. I will begin with an

explanation of the alternatives Delphi offers in terms of data access, and then I will

provide an overview of the database components that I have used in my program. This

chapter includes an overview of the TDataSet class, an in-depth analysis of the TField

components, and the use of data-aware controls. The following chapters will provide

information on more advanced database programming topics, such as client/server

programming, the use of dbGo, dbExpress, and Inter Base Express

7

1.5 Borland Database Engine (BDE)
The BDE originated with Paradox, well before Delphi existed, and was extended

by Borland to support other local databases and many SQL servers. The BDE has direct

access to dBASE, Paradox, ASCII, FoxPro, and Access tables. A series of drivers

(called SQL Links and available only in Delphi Enterprise) allows access to some SQL

servers, including Oracle, Sybase, Microsoft, Informix, InterBase, and DB2 servers. If

you need access to a different database, the BDE can also interface with ODBC drivers.

1.6 Graphical Data-Aware Controls
Finally, Delphi includes two graphical data-aware controls:

• DBImage, which is an extension of an Image component that shows a picture stored in

a BLOB field (provided the database use a graphic format that the Image component

supports, such as BMP and JPEG). The output of the Cust- Lookup example, with the

BLookupComboBox showing multiple fields in its drop-down list.

• DBChart is a data-aware business graphic component or the data-aware version of the

TeeChart control built by David Bemeda. To demonstrate the use of the DBChart

control, I have added this component to a simple example showing a data grid. The

application, called ChartDB, shows a pie chart with the surface of each country of the

COUNTRY.DB table. The program has almost no code, as all the settings can be done

using the specific component editor, which has several options but is quite easy to use.

Here are some of the key properties of the component, taken from the form description:

object DBChartl: TDBChart

Legend.Visible= False

Align= alClient

object Series1: TPieSeries

Marks.ArrowLength = 8

Marks.Visible= True

DataSource = Table 1

XLabelsSource = 'Name'

ExplodeBiggest = 3

OtherSlice.Style = poBelowPercent

OtherSlice.Text = 'Others'

8

OtherSlice.Value = 2

PieValues.ValueSource = 'Area'

end;

end.

What I have done is show the area field as the data source for the pie chart (the

PieValues Value Source property of the series), use the name field for the labels (the

XLabelsSource property of the series), and condense all the countries with a value

below 2 percent in a single section indicated as Others (the OtherSlide subproperties).

As a minor addition to the code, I have added two radio buttons you can use to toggle

between the area and the population. The code of the two radio buttons simply sets the

source of the series, after casting it to the proper series type, as in:

procedure TForml .RadioPopulationClick(Sender: Tübject);

begin

DBChartl.Title.Text [O] := 'Population of Countries';

(DBChartl.Series [O] as TPieSeries).PieValues.ValueSource := 'Population';

end;

1.7 The ClientDataSet Component
Finally, there is a component derived from TDataSet that has a peculiar behavior

and can be combined with other data-access components. The ClientDataSet

component, in fact, is a dataset accessing data kept in memory. The in-memory data can

be totally temporary (lost as you exit the program), saved to a local file as a snapshot,

and imported by another dataset using a Provider 'component. This last situation is

certainly the most common: You can hook a ClientDataSet to any other local dataset, or

use Borland's multitier support (discussed in Accessing a Database: BDE, dbExpress,

and other alternatives "Multitier Database Applications with DataSnap") to retrieve data
"' _ from a dataset hosted by a different application, possibly running on a separate

computer. The ClientDataSet component becomes particularly useful if the data-access

components you are using provide limited or no caching. This is particularly true of the

new dbExpress engine, but can equally help you when using the BDE or other native

components.

9

On the other hand, ADO already provides most of the services of the

ClientDataSet component and using these two at the same time can be useful only in

· ited situations

1.8 Classic BDE Components
Each of the database-access solutions discussed above has its own set of data-

access, database connection, and extra utility components on a specific page of the

Component palette. The classic BDE components have been moved to the new BDE

page and include the Table, Query, and StoredProc components. The ADO, dbExpress,

and InterBase Express components are each in specific pages, and all include specific

dataset components and others that tend to mimic the BDE components, simplifying the

porting of existing applications.
The Data Access page of the Component palette includes only the Data Source

Component and others not specifically related with any single data access technology.

Besides the data-access component of your choice, a Delphi visual application generally

uses some data-aware controls (in the Data Controls page) and the DataSource

component. Data-aware controls are visual components used to view and edit the data in

a form and are extensions of standard components such as edit and list boxes, radio

buttons, images, and the
Grid. The DataSource component has the role of connector between the data-

aware controls and a dataset component.

1.9 Tables and Queries
The simplest traditional way to specify data access in Delphi was to use the BDE

Table component. A Table object simply refers to a database table. When you use a

Table component, you need to indicate the name of the database you want to use in its

DatabaseName-property. You can enter an alias or the path of the directory with the

table files. The Object Inspector lists the available names, which depend on the aliases

installed in the BDE. You also need to indicate a proper value in the TableName

property. The Object Inspector lists the available tables of the current database (or

directory), so you should generally select the DatabaseName property first. Another

classic dataset is the BDE Query component. A query requires a SQL language

10

command. You can customize a query using SQL more easily than you can customize a

table (as long as you know at least the basic elements of SQL, of course). The Query

component has a DatabaseName property like the Table component, but it does not have
~ ~

a TableName property. The table is indicated in the SQL statement, stored in the SQL

property. For example, you can write a simple SQL statement like this:

Select * from Country where Country is the name of a table and the asterisk (*)

indicates that you want to use all of the fields in the table.

The efficiency of a table or a query varies depending on the database you are

using. In general, we can say that the Table component tends to be faster on local tables,

while the Query component tends to be faster on SQL servers, although this is just a

very general rule, and in many cases you might have the opposite effect. We'll see some

efficiency issues while discussing
client/server development in the third BDE dataset component is StoredProc,

which refers to stored procedures of a SQL server database. You can run these

procedures and get the results in the form of a database table. Stored procedures can

only be used with SQL servers.

1.10 DBNavigator and Dataset Actions
DBNavigator is a collection of buttons used to navigate and perform actions on

the database. You can disable some of the buttons of the DBNavigator control, by

removing some 'of the elements of the VisibleButtons set. The buttons perform basic

actions on the connected dataset, so you can easily replace them

With your own tool bar, particularly if you use an ActionList component with the

predefined database actions provided by Delphi. In this case, in fact, you get all the

standard behaviors, but you'll also see the various buttons enabled only when their

action is legitimate. TIP If you use the standard actions, you can avoid connecting them

to :1 specific DataSource component, and the actions wi]! be applied to the dataset

connected to the visual control that currently has the input focus. This way a single

toolbar can be used for multiple datasets displayed by a form.

11

1.11 Text-Based Data-Aware Controls

There are multiple text-oriented components:
. DBText displays the contents of a field that cannot be modified by the user. It is

a data ware Label graphical control. It can be very useful, but users might confuse this

control with the plain labels that indicate the content of each field-based control.

DBEdit lets the user edit a field (change the current value) using an Edit control. At

times, you might want to disable editing and use a DBEdit as if it were a DBText, but

highlighting the fact that this is data coming from the database. DBMemo lets the user

see and modify a large text field, eventually stored in a memo or BLOB (binary large

object) field. It resembles the Memo component and has full editing capabilities, but all

the text is rendered in a single font.
DBRichEdit is a component that lets the user edit a formatted text file; it is

based on a RichEdit Windows common control and, in contrast to DBMemo, it allows

text with multiple fonts and paragraph styles.

1.12 Navigating a Dataset
We've seen that a dataset has only one active record, and you can imagine that

the active record changes often, in response of user actions or because of internal

commands given to the dataset. To move around the dataset and change the active

record, there are methods of the TDataSet class, particularly in the section commented

as "position, movement." You can move to the next or previous record, jump back and·

forth by
A given number of records (with MoveBy), or go directly to the first or last

record of the dataset. These operations of the dataset are generally available in the

DBNavigator component or in the standard dataset actions, and they are not particularly

complex to understand. What is not obvious, though, is how a dataset handles the

extreme positions. If you open any dataset with a navigator attached, you can see that as

yoıi move on record by record, the Next button remains enabled even when you've

reached the last record. It's only when you try to move forward after the last record that

the current record apparently doesn't change and the button is disabled. This is because

the Eof test (end of file) succeeds only when the cursor has been moved to a special

position after the last record. If you jump to the end with the Last button, instead, you'll

immediately be at the very end. You'll see exactly the same behavior for the first record

12

(and the Bof test). As we'll see in a while, this approach is very handy, as we can scan a

dataset testing for Eof to be True and, at this point, we know we 've also already

processed the last record of the dataset.
' NOTE Handling this special record positions before the beginning and after the

end of the dataset, which are called cracks, is very important (and quite confusing)

when you write a custom dataset,.Besides moving around record by record or by a given

number of records, programs might need to jump to specific records or positions. Some

datasets support the RecordCount property and allow movement to a record at a given

position in the dataset using the RecNo property. These properties can be used only for

datasets that support positions natively, which basically excludes all client/server

architectures, unless you grab all of the records in a local cache (something you'll

generally want to avoid) and then navigate on the cache. As we'll see in the next

chapter, when you open a query on a SQL server you fetch only the records you are

using, so Delphi doesn't know the record count, at least not in advance. There are two

alternatives you can use to refer to a record in a dataset, regardless of its type. You can

save a reference to the current record and then jump back to it after moving around.

This is accomplished by using bookmarks, either in the TBookmark or the more modem

TBookmarkStr form. You can locate a record of the dataset matching given criteria,

using the Locate method. This even works after you close and reopen the dataset,

because you're working at a logical (and not physical) level. This approach is presented

in the next section.

13

2.1 Main Menu Screen

Figure 2.1 Main Menu Screen

The figure above shows the first screen which occurs when you first start running

the program. This screen contains the following:
+ The calendar: This automatically obtains the current date month and year of

the system which the program is running on.
+ Buy change system preview: which shows the current selling price of

currencies that you have entered in the change system, which will be

explained later.

- - ---· ~.- ----

14

Figure 2.2 Buy change system preview

+ Sell exchange system preview: which shows the current reports of the

exchange system. The following screen will appear and allow you to

Select the type of exchange report that you wish to preview.

Figure 2.3 Exchange report

15

The following report preview will show the exchange rates related to which

form you choose:

Figure 2.4 Exchange rates

+ Change system preview: it is a report that shows the current price of the

currencies in the stuck exchange related to selling currencies, which can be

printed by the button next to it.

.•

16

CHANGE APO EXCHANGE SYSTEM

Turkish Sterling Oollıw Euro D:;;aı:;;•::......--
1430000 2400000 1400000 2100000 111rıoo4

Figure 2.5 Change System Preview

+ Exchange system: it is a report that shows the current price of the currencies in

the stuck exchange related to buying currencies, which can be printed by the

button next to it.

CKf<tlGEı'ıHOE.XCHMll SYSTEM
~~~~Q!!__

12,0000 UIJOOOl 1?00000 2000000 1i11200'

Figure 2.6 Exchange System Preview

17



18

2.2 Change System 

Figure 2.7 Change System

This screen consists of three sub-menus, which will allow you to complete your

transaction processes. In addition, the forms contain the following:
The first part of each form grapes the exchange rates of the currencies from your

database that you have entered.
The second part deals with the current amount of currency that you are

exchanging at the time being. It consists of a navigation bar that allows you to scroll in

the fields of your transactions.



2.3 Exchange Curves 

Figure 2.8 Change Curve

It consists of three chart reports that are all linked to the data base and change in

respect to the processes that you make, that each transaction made is added or deleted

and presented in the as a curve in respect to the money amount you have processed.

The rest of the graphs are shown below

•

19



.• 

Figure 2.9 Change Curve

Figure 2.10 Change Curve

20 



These graphs are just to keep track of you exchange processes in terms of

money, and also shows you which of the currencies is have the most demand in the

market, at this point you can analyze the current situation of the foreign currencies flow

in you exchange office and take your decisions among that.

2.4 Exchange System 

Figure 2.11 Exchange System

21 



The exchange system consists of three fields that allow you to deal with the

exchange of the foreign currencies each one consist of selling and buying prices of the

currencies and another field for your processes, where you can add delete or modify

your processes.

2.5 Exchange Bar Graphs 
The following bar graphs illustrate the change in the currencies by date and

respectively with the database.

Figure 2.12 Exchange Bar Graphs a

22 



Figure 2.13 Exchange Bar Graphs b

2.6 Adding the Exchange Rates

a. Selling Rates: here in this form you can you can add the current rates of the local

currency.

Figure 2.14 Adding the Exchange Rates (Selling Rates)

23



b. Foreign Currency Rates 
Here in the following form you can add the foreign exchange rates

Figure 2.15 Adding the Exchange Rates (Foreign Currency Rates)

24



..•. 

NEAR EAST UNIVERSITY 

'Faculty of Engineering 

Department of Computer Engineering 

DEVELOPMENT DELPHI PROGRAM 
FOR EXCHANGE AND CHANGE SYSTEM 

Graduation Project 
COM-400 

Student: Ismail Mekki 

Supervisor: Mr. Ümit iLHAN 

Nicosia 2003 - 2004 



ACKNOWLEDGEMENTS 

to be capable to cover the requirements of the working life. This role is concerning with 

qualifying the student up to he level that the society needs. However, this role cannot be 

accomplished unless there is a qualified leader and sophisticated coach. 

Fortunately, Mr. Umit ILHAN was the main reason of my success in (his project, 

and thus, he deserves my all thanks, gratitude, and my respect due to his support and wise 

advice. 

I appreciate all the effort that he provided during the preparation of this project. 

Therefore, firstly, I would like to dedicate this project my family because of their 

unlimited support during my life. 

Secondly, I would like to dedicate it to my supervisor Mr. Umit ILHAN because of 

his wise supervision on this project and for his wide knowledge. 

Finally, I appreciate all the effort aids of my friends during the preparation of this 

project." 

With all due respect 

I 



ABSTRACT 

This program is designed for the change and exchange markets where the

individuals deal with the currencies and barter them. This system is based on BORLAND

DELPHI 6 programming language. All the criterions of this system are taken according

upon the request of the Near East Bank and all the features of this software can be adjusted

according to the desire of the customer.

All the screens that will appear in the usage of this program will be illustrated in the

coming chapters in details. The calculations and the mathematical operations that this

program applies are explained in details in the appendix at the end of this report. This

program is designed to find out the exact profit of the company by using graphical charts

and by showing statues reports at any time. Three hard currencies are taken into

consideration in this system and they are compared with the Turkish lira, which is the local

currency. The values of these hard currencies will be taken from the stock markets that the

government decides daily according o the daily economic level. The decision maker in

NEB will determine the amount of the profit that he desires and the total revenue will be

calculating by the software. A navigation bar is located in the bottom of each screen for

adding, deleting, saving ... etc.

II



1.1. Overview

1.2. Economic Analysis of Floating Exchange Rate System

1.2 a Introduction

1.2 b Opportunities From Around World

1.3 Delphi Programming

1.4. Database Programming

1.5. Borland Database Engine (BOE)

1.6. Graphical Data-Aware Control

1.7. The clintdataSet Component

1.8 Classic BOE component

1.9 Tables and Queries

1.1 O DBNavigator and Dataset Actions

1.11 Text-Based Data-Aware Control

L 12 Navigator a Dataset

2

2 

2

5

7

8

8

9

10

10

11

12

12

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

ABSTRACT 

TABLE OF CONTENTS 

LIST OF FIGURES 

CHAPTER ONE: INTRODUCTION 

I 

II 

III 

·v 

CHAPTER TWO: THE DESCRIPTION OF THE SYSTEM 

2.2 Change System

2.3. Exchange curve

2.4. Exchange System

2.5. Exchange Bar Graphs

14

14

18

19

21

22 

"' 2.1 Main -Merıu Screen - - -

III 



CONCLUSION 

SYSTEM REQUIREMENTS 

REFERENCES 

75

75

76 

2.6. Adding the Exchange rates

2.7. Database. Desktop

23
25

3.1. Data Flow Diagram

3.2. Main Menu
3.3. Buy Change System Preview

3.4. Exchange System Sterling

3.5. Change System Sterling
3.6. Exchange System Sterling Dollar

3.7. Exchange System Dollar Euro

3.8. Change System Dollar Euro

3.9. Exchange System Euro
3.1 O. Exchange System Dollar Sterling

3.11. Change System Dollar Sterling

3.12. Sell Exchange System
3 .13. Exchange Euro to Steri ing

3.14. Exchange Euro
3.15. Exchange System Dollar to Euro

3.16. Buy Change System preview

3.17. Buy Change System

3.18. Buy Change System
3.19. Change System Sterling

3.20. Change System

3 .21. Report Dollar
3.22. Sell Change System Preview

26

26

27

48

51

52

52

54

55

55
57
58

58

60 

61
61

63

66

67 

68 

69

71

72

CHAPTER THREE: DATA SOURCE 

IV



LIST OF FIGURES 

CHAPTER II
CHANGE AND EXCHANGE SYSTEMS

2.1 Main Menu Screen

2.2 Buy change system preview

2.3 Exchange report

2.4 Exchange rates

2.5 Change System Preview

2.6 Exchange system Preview

2.7 Change System

2.8 Change Curve

2.9 Change Curve

2.1O Change Curve

2.11 Exchange System

2.12 Exchange Bar Graphs a

2.13 Exchange Bar Graphs b

2.14 Adding the Exchange Rates (Selling Rates)

2.15 Adding the Exchange Rates (Foreign Currency Rates)

2.16 Database Desktop

CHAPTER III

DAJASOURCE

3.1 Data Flow Diagram

V

14

15

15

16

17

17
18

19

20

20

21

22

23

23

24

25

26



INTRODUCTION 

1.1 Overview 

Many activities are done daily in the stock market. Most of these activities are

concerning with the transactions and exchanging the goods and services. Since the

market is the place that the buyers and sellers exchange goods and services, then the

currencies are considered as a good that the people buy and sell within the market.

As it is known, the most currencies that are used widely are those currencies that

are called the hard currencies such as US Dollar, UK sterling, and Euro. Therefore, as

we are concerning with controlling the activities in the market by issuing the required

software programs that include all features of controlling the business by means of

scientific methods in order to be used in a proper and easy way.
Using any programming language to create certain software gives you the

opportunity of gaining a good experience and it will promote your approaches of

analyzing the aspects of any given project.
Therefore, any software needs an adequate and sufficient programming language

that helps us to set up all the applications and all the functions that include the features

of organizing and sustaining our business.
The role of a computer engineer requires an adequate ability of analyzing and

dealing with all the aspects of any project in order to be capable to create and issue

certain software that controls the business. Therefore, our role as an engineer is to not

only deal with the hardware, but also deal with creating a software programs. Thus, the

role of an engineer is to control the technical specifications of the firm and to know

every single aspect that is necessary to measure the level of the success.

1 



1.2 Economic Analysis of Floating Exchange Rate Systems 

1.2.a Introduction 
Associated foreign exchange is looking for experienced foreign exchange sales

.. 
professionals! Successful candidates will be strongly motivated individuals who can

identify and cultivate potential corporate clients with international payment needs.

Strong communication skills, experience in the foreign exchange field and experience in

relationship based selling are a must. Successful candidates will be responsible for

opening, maintaining and growing accounts through relationship building, identifying

customer needs and cross-selling appropriate services.

1.2 b Opportunities from Around the World 
Over the last three decades the foreign exchange market has become the world's

largest financial market, with over $1.5 trillion USD traded daily. The primary market

for currencies is the 24-hour Interbank market. The Interbank market literally follows

the sun around the world, moving from major banking centers of the United States to
.,,,, 

Australia and New Zealand to the Far East, to Europe and finally back to the United

States. With the large minimum transaction sizes and often-stringent financial

requirements, banks, hedge funds, major currency dealers and the occasional high net­

worth individual speculator were the principal participants. These large traders were

able to take advantage of the many benefits offered by the forex market vs. other

markets including fantastic liquidity and the strong trending nature of the world's

primary currency exchange rates.
The business section of any newspaper will have a table of spot exchange rates.

These are the rates at which a person could have bought other currencies or foreign

Exchange, such as the English Pound, French Franc, or the new European Euro. The

Prices of foreign currencies can be determined in two major types of exchange rate

Systems. In the United States, the dollar's exchange rates are determined by the•
"" Marketplace, i.e., by supply and demand. This type of system is called a floating -- - - -

Exchange rate system. In other countries, governments set the price of their currencies

With respect to other countries. They then buy or sell foreign exchange at the prices

They've set. This is called a fixed exchange rate system. The economic effects of these

Two systems can be very different. However, in either system the underlying forces

Influencing the value of a country's currency remain the same. Due to possible

2 



confusion of being able to quote different currencies in terms of Each other, e.g., $/£ or

£/$, we need to explicitly define an exchange rate. An exchange Rate is, therefore, the

domestic cost of a unit of foreign exchange. For example, from the US perspective the

price of the English Pound would be denominated as the number of US dollars per

pound, or$/£. As noted above, the exchange rate in a floating exchange rate system is

Determined by market forces. Our definitiori of the exchange rate defines the market as

The market for foreign exchange. In this market we have demanders and suppliers of

Foreign currencies willing to pay and accept dollars in return for these currencies. We

Will in turn discuss the demand and supply of foreign exchange. Foreign Exchange

Demand The demand for foreign exchange is a derived demand. With the exception of

currency Collectors, the demand for foreign exchange is due to people's desire to use it

in the Purchase of foreign goods or financial assets. Foreign exchange demand is,

therefore, Highly sensitive to changes in these desires.

In order to understand changes in the demand for foreign exchange, we will need

to Discuss its underlying forces. These are the demand for foreign goods and services

and the demand for foreign financial assets. The supply of foreign exchange has at its

roots the same conceptual basis as Demand, only it is from the foreign perspective.

Foreign currency is supplied to the Foreign exchange market when foreigners exchange

their currency for dollars in order to Buy US goods or financial assets. Equivalently, the

supply of foreign exchange is Nothing more than a mirror image of the foreign demand

for US currency. Exchange is the mirror of the supply of dollars to the foreign exchange

market. One question which might arise is which foreign exchange Market. New York,

London, Frankfort and Tokyo are Major financial centers with large foreign exchange

markets. The answer as to which market is all of them. The first rule of business is to

buy low and sell high. Should exchange rates be different across different financial

centers, then the opportunity for arbitrage profits occurs. Currency dealers will buy low. 
in one center and sell high in another, driving exchange rates into equality Across the

' different markets. For example, should the Swiss Franc be at a lower price (in terms of

$) in London and at a higher price in New York, then-the dealers will increase the

demand for the Swiss Franc in London, driving up its price, and increase its supply in

New York, driving down its price there. This continues until the price is the same in

both places. The major questions to be addressed are how exchange rates determined are

and what the forces which influence them are. In Figure 1, the equilibrium exchange

rate (e) is the one where the quantity demanded is equal to the quantity supplied for

3



foreign exchange. As with most markets, the price changes in order to equilibrate the

market. When quantity demanded exceeds quantity supplied, and then the exchange rate

will rise. If the quantity supplied is greater then quantity demanded, the exchange rate

falls. What does it mean when the exchange rate rises or falls? As we have defined the

Exchange rate($/£), when the exchange rate rises, the value of the dollar decreases or

depreciates. It now takes more dollars to buy an English pound than it did before the

Change in the exchange rate. Fewer foreign goods can now be purchased for a given

number of dollars. The reverse is also true. As the exchange rate falls, the dollar cost of

foreign exchange falls, increasing the dollar's value. This is termed an appreciation of

the dollar. More foreign exchange rate$/£ Foreign exchange Sfx or D$ Dfx or S$.

Market should force lead to a change in either the supply or demand for foreign

exchange then the exchange will change accordingly to re-equilibrate the market. The

basic notion is that exchange rates are sensitive to differential inflation rates across

Countries. Should the domestic inflation rate rise at a rate greater than our trading

Partners, then at a given exchange rate, the price of domestic goods will be rising

relative To foreign goods. This will, in tum, increase the demand for foreign goods

(imports are Now cheaper in domestic currency terms) and decrease the demand for

domestic exports (Domestic exports are now more expensive in foreign currency terms).

This results in an Increase in the demand for foreign exchange, as well as a decrease in

the supply of Foreign exchange.

This is a long-run effect because of the Law of One Price. This concept states

that in the Long run the price of tradable goods must be the same across countries. If

this was not The case, then the opportunity for arbitrage profits, buying low in one

country and selling High in another, would result in a movement in the exchange rate

bringing about the Equalization. For example, suppose Argentine wheat, at the

prevailing exchange rate, is cheap in US Dollars. As North Americans buy more and

more Argentine wheat, they increase the Demand for the Argentine currency, driving up

its value, thus making wheat more Expensive in dollar terms. The exchange rates which.• 
would prevail under the Law of One Price are called purchasing power parity exchange

rates (PPP). While these do not exist in reality (there are many other factors affecting

exchange rates) there is an underlying pressure moving exchange rates in this fashion.

PPP exchange rates are used in comparing the economic performance between

countries. The World Bank compares countries in their World Development Report 

using a PPP exchange rate. Medium Term - Differential Growth Rates As an economy

4 



grows, its demand for imports will also grow. As income increases, some portion of that

increase will be spent on imported goods. In the jargon of macroeconomics, the

proportion of the additional dollar of income spent on imports is called the marginal

propensity to import. Assume that the marginal propensity to import is the same across

countries. Should a country's economy grow faster than its trading partners, then its

demand for imports will also be growing faster? In the context of Figure 4, this is

represented by increases in both the demand and supply of foreign exchange, but the

demand would increase by more. This would result in a slight depreciation of the

domestic currency. Short-Run - Differential Interest Rates This factor has become

extremely important as countries have liberalized their economies, allowing the flow of

financial capital into and out of their countries. It has played an important role in the

East Asian and Mexican Peso financial crises. Exchange rate$/£ Foreign exchange.

1.3 Delphi Programming 
Delphi 5 provided new features to the Object Inspector, and Delphi 6 includes

even more additions to it. As this is a tool programmer's use all the time, along with the

editor and the Form Designer, its improvements are really significant.
The most important change in Delphi 6 is the ability of the Object Inspector to

expand component references in-place. Properties referring to other components are

now displayed in a different color and can be expanded by selecting the+ symbol on the

left, as it happens with internal subcomponents. You can then modify the properties of

that other component without having to select it.
NÖTE This interface-expansion feature also supports subcomponents, as

demonstrated by the new Labeled Edit control. The Form Designer
TIP A related feature of the Object Inspector is the ability to select the

component referenced by a property. To do this, doµble-click the property value with

the left mouse button while keeping the Ctrl key pressed. For example, if you have a.• 
Main Menu component in a form and you are looking at the properties of the form in

the Object Inspector, you can select the Main Menu component by moving to the Main

Menu property of the form and Ctrl+double-clicking the value of this property. This

selects the main menu indicated as the value of the property in
the Object Inspector. Here are some other relevant changes of the Object

Inspector: The list at the top of the Object Inspector shows the type of the object and

5 



an be removed to save some space (and considering the presence of the Object Tree

View). The properties that reference an object are now a different color and may be

expanded without changing the selection. You can optionally also view read-only

properties in the Object Inspector. Of course, they are grayed out.. The Object Inspector

has a new Properties dialog box which allows you to customize the colors of the various

types of properties and the overall behavior of this window.
The Project Manager doesn't provide a way to set the options of two different

projects at one time. What you can do instead is invoke the Project Options dialog from

the Project Manager for each project. The first page of Project Options (Forms) lists the

forms that should be created automatically at program startup and the forms that are

created manually by the program.
The next page (Application) is used to set the name of the application and the

name of its Help file, and to choose its icon. Other Project Options choices relate to the

Delphi compiler and linker, version information, and the use ofrun-time packages.

There are two ways to set compiler options. One is to use the Compiler page of

the Project Options dialog. The other is to set or remove individual options in the source

code with the {$X+}or {$X-}commands, where you'd replaceXwith the option you

want to set. This second approach is more flexible, since it allows you to change an

option only for a specific source-code file, or even for just a few lines of code. The

source-level options override the compile-level options.
All project options are saved automatically with the project, but in a separate file

with a .DOF extension. This is a text file you can easily edit. You should not delete this

file if you have changed any of the default options. Delphi also saves the compiler

options in another format in a CFG file, for command-line compilation. The two files

have similar content but a different format: The dee command-line compiler, in fact,

cannot use .DOF files, but needs the .CFG format. Another alternative for saving

compiler options is to press Ctrl+O+O (press the O key twice while keeping Ctrl. 
pressed). This inserts, at the top of the current unit, compiler directives that correspond

to the current project options, as in the following listing: {$A +,B-,C+,D+,E-,F­ 

,G+,H+,l+,J+,K-,L+,M-,N+,0+,P+, Q-,R-,S-, T-, U-, V+, W-,X+, Y+,ZI} 
Memory management in Delphi is subject to three rules: Every object must be

created before it can be used; every object must be destroyed after it has been used; and

every object must be destroyed only once. Whether you have to do these operations in

6



your code, or you can let Delphi handle memory management for you, depends on the

model you choose among the different approaches provided by Delphi.

Delphi supports three types of memory management for dynamic elements (that

is, elements not in the stack and the global memory area):

. Every time you create an object explicitly, in the code of your application, you

should also free it. If you fail to do so, the memory used by that object won't be released

for other objects until the program terminates .

. When you create a component, you can specify an owner component, passing

the owner to the component constructor. The owner component (often a form) becomes

responsible for destroying all the objects it owns. In other words, when you free the

form, it frees all the components it owns. So, if you create a component and give it an

owner, you don't have to remember to destroy it. This is the standard behavior of the

components you create at design time by placing them on a form or data module .

. When you allocate memory for strings, dynamic arrays, and objects referenced

by interface variables, Delphi automatically frees the memory when the reference goes

out of scope. You don't need to free a string: when it becomes unreachable, its memory

is released.

1.4 Database Programming 
Delphi's support for database applications is one of the key features of the

programming environment. Many programmers spend most of their time writing data­

access code, which needs to be the most robust portion of a database application. This

chapter provides an overview of Delphi's extensive support for database programming.

What you will find here is a discussion of the theory of database design. I am assuming

that you already know the fundamentals of database design and have already designed

the structure of a database. I will not look into database-specific problems; my goal is to

help you understand how Delphi supports database access. I will begin with an

explanation of the alternatives Delphi offers in terms of data access, and then I will

provide an overview of the database components that I have used in my program. This

chapter includes an overview of the TDataSet class, an in-depth analysis of the TField

components, and the use of data-aware controls. The following chapters will provide

information on more advanced database programming topics, such as client/server

programming, the use of dbGo, dbExpress, and Inter Base Express

7



1.5 Borland Database Engine (BDE) 
The BDE originated with Paradox, well before Delphi existed, and was extended

by Borland to support other local databases and many SQL servers. The BDE has direct

access to dBASE, Paradox, ASCII, FoxPro, and Access tables. A series of drivers

(called SQL Links and available only in Delphi Enterprise) allows access to some SQL

servers, including Oracle, Sybase, Microsoft, Informix, InterBase, and DB2 servers. If

you need access to a different database, the BDE can also interface with ODBC drivers.

1.6 Graphical Data-Aware Controls 
Finally, Delphi includes two graphical data-aware controls:

• DBImage, which is an extension of an Image component that shows a picture stored in

a BLOB field (provided the database use a graphic format that the Image component

supports, such as BMP and JPEG). The output of the Cust- Lookup example, with the

BLookupComboBox showing multiple fields in its drop-down list.

• DBChart is a data-aware business graphic component or the data-aware version of the

TeeChart control built by David Bemeda. To demonstrate the use of the DBChart

control, I have added this component to a simple example showing a data grid. The

application, called ChartDB, shows a pie chart with the surface of each country of the

COUNTRY.DB table. The program has almost no code, as all the settings can be done

using the specific component editor, which has several options but is quite easy to use.

Here are some of the key properties of the component, taken from the form description:

object DBChartl: TDBChart

Legend.Visible= False

Align= alClient

object Series1: TPieSeries

Marks.ArrowLength = 8

Marks.Visible= True

DataSource = Table 1

XLabelsSource = 'Name' 

ExplodeBiggest = 3

OtherSlice.Style = poBelowPercent

OtherSlice.Text = 'Others' 

8



OtherSlice.Value = 2

PieValues.ValueSource = 'Area' 

end;

end.

What I have done is show the area field as the data source for the pie chart (the

PieValues Value Source property of the series), use the name field for the labels (the

XLabelsSource property of the series), and condense all the countries with a value

below 2 percent in a single section indicated as Others (the OtherSlide subproperties).

As a minor addition to the code, I have added two radio buttons you can use to toggle

between the area and the population. The code of the two radio buttons simply sets the

source of the series, after casting it to the proper series type, as in:

procedure TForml .RadioPopulationClick(Sender: Tübject);

begin 

DBChartl.Title.Text [O] := 'Population of Countries'; 

(DBChartl.Series [O] as TPieSeries).PieValues.ValueSource := 'Population'; 

end;

1.7 The ClientDataSet Component 
Finally, there is a component derived from TDataSet that has a peculiar behavior

and can be combined with other data-access components. The ClientDataSet

component, in fact, is a dataset accessing data kept in memory. The in-memory data can

be totally temporary (lost as you exit the program), saved to a local file as a snapshot,

and imported by another dataset using a Provider 'component. This last situation is

certainly the most common: You can hook a ClientDataSet to any other local dataset, or

use Borland's multitier support (discussed in Accessing a Database: BDE, dbExpress,

and other alternatives "Multitier Database Applications with DataSnap") to retrieve data
"' _ from a dataset hosted by a different application, possibly running on a separate

computer. The ClientDataSet component becomes particularly useful if the data-access

components you are using provide limited or no caching. This is particularly true of the

new dbExpress engine, but can equally help you when using the BDE or other native

components.

9



On the other hand, ADO already provides most of the services of the

ClientDataSet component and using these two at the same time can be useful only in

· ited situations

1.8 Classic BDE Components 
Each of the database-access solutions discussed above has its own set of data-

access, database connection, and extra utility components on a specific page of the

Component palette. The classic BDE components have been moved to the new BDE

page and include the Table, Query, and StoredProc components. The ADO, dbExpress,

and InterBase Express components are each in specific pages, and all include specific

dataset components and others that tend to mimic the BDE components, simplifying the

porting of existing applications.
The Data Access page of the Component palette includes only the Data Source

Component and others not specifically related with any single data access technology.

Besides the data-access component of your choice, a Delphi visual application generally

uses some data-aware controls (in the Data Controls page) and the DataSource

component. Data-aware controls are visual components used to view and edit the data in

a form and are extensions of standard components such as edit and list boxes, radio

buttons, images, and the
Grid. The DataSource component has the role of connector between the data-

aware controls and a dataset component.

1.9 Tables and Queries 
The simplest traditional way to specify data access in Delphi was to use the BDE

Table component. A Table object simply refers to a database table. When you use a

Table component, you need to indicate the name of the database you want to use in its

DatabaseName-property. You can enter an alias or the path of the directory with the

table files. The Object Inspector lists the available names, which depend on the aliases

installed in the BDE. You also need to indicate a proper value in the TableName

property. The Object Inspector lists the available tables of the current database (or

directory), so you should generally select the DatabaseName property first. Another

classic dataset is the BDE Query component. A query requires a SQL language

10



command. You can customize a query using SQL more easily than you can customize a

table (as long as you know at least the basic elements of SQL, of course). The Query

component has a DatabaseName property like the Table component, but it does not have
~ ~ 

a TableName property. The table is indicated in the SQL statement, stored in the SQL

property. For example, you can write a simple SQL statement like this:

Select * from Country where Country is the name of a table and the asterisk (*)

indicates that you want to use all of the fields in the table.

The efficiency of a table or a query varies depending on the database you are

using. In general, we can say that the Table component tends to be faster on local tables,

while the Query component tends to be faster on SQL servers, although this is just a

very general rule, and in many cases you might have the opposite effect. We'll see some

efficiency issues while discussing
client/server development in the third BDE dataset component is StoredProc,

which refers to stored procedures of a SQL server database. You can run these

procedures and get the results in the form of a database table. Stored procedures can

only be used with SQL servers.

1.10 DBNavigator and Dataset Actions 
DBNavigator is a collection of buttons used to navigate and perform actions on

the database. You can disable some of the buttons of the DBNavigator control, by

removing some 'of the elements of the VisibleButtons set. The buttons perform basic

actions on the connected dataset, so you can easily replace them

With your own tool bar, particularly if you use an ActionList component with the

predefined database actions provided by Delphi. In this case, in fact, you get all the

standard behaviors, but you'll also see the various buttons enabled only when their

action is legitimate. TIP If you use the standard actions, you can avoid connecting them

to :1 specific DataSource component, and the actions wi]! be applied to the dataset

connected to the visual control that currently has the input focus. This way a single

toolbar can be used for multiple datasets displayed by a form.

11 



1.11 Text-Based Data-Aware Controls 

There are multiple text-oriented components:
. DBText displays the contents of a field that cannot be modified by the user. It is

a data ware Label graphical control. It can be very useful, but users might confuse this

control with the plain labels that indicate the content of each field-based control.

DBEdit lets the user edit a field (change the current value) using an Edit control. At

times, you might want to disable editing and use a DBEdit as if it were a DBText, but

highlighting the fact that this is data coming from the database. DBMemo lets the user

see and modify a large text field, eventually stored in a memo or BLOB (binary large

object) field. It resembles the Memo component and has full editing capabilities, but all

the text is rendered in a single font.
DBRichEdit is a component that lets the user edit a formatted text file; it is

based on a RichEdit Windows common control and, in contrast to DBMemo, it allows

text with multiple fonts and paragraph styles.

1.12 Navigating a Dataset 
We've seen that a dataset has only one active record, and you can imagine that

the active record changes often, in response of user actions or because of internal

commands given to the dataset. To move around the dataset and change the active

record, there are methods of the TDataSet class, particularly in the section commented

as "position, movement." You can move to the next or previous record, jump back and·

forth by
A given number of records (with MoveBy), or go directly to the first or last

record of the dataset. These operations of the dataset are generally available in the

DBNavigator component or in the standard dataset actions, and they are not particularly

complex to understand. What is not obvious, though, is how a dataset handles the

extreme positions. If you open any dataset with a navigator attached, you can see that as

yoıi move on record by record, the Next button remains enabled even when you've

reached the last record. It's only when you try to move forward after the last record that

the current record apparently doesn't change and the button is disabled. This is because

the Eof test (end of file) succeeds only when the cursor has been moved to a special

position after the last record. If you jump to the end with the Last button, instead, you'll

immediately be at the very end. You'll see exactly the same behavior for the first record

12



(and the Bof test). As we'll see in a while, this approach is very handy, as we can scan a

dataset testing for Eof to be True and, at this point, we know we 've also already

processed the last record of the dataset.
' NOTE Handling this special record positions before the beginning and after the

end of the dataset, which are called cracks, is very important (and quite confusing)

when you write a custom dataset,.Besides moving around record by record or by a given

number of records, programs might need to jump to specific records or positions. Some

datasets support the RecordCount property and allow movement to a record at a given

position in the dataset using the RecNo property. These properties can be used only for

datasets that support positions natively, which basically excludes all client/server

architectures, unless you grab all of the records in a local cache (something you'll

generally want to avoid) and then navigate on the cache. As we'll see in the next

chapter, when you open a query on a SQL server you fetch only the records you are

using, so Delphi doesn't know the record count, at least not in advance. There are two

alternatives you can use to refer to a record in a dataset, regardless of its type. You can

save a reference to the current record and then jump back to it after moving around.

This is accomplished by using bookmarks, either in the TBookmark or the more modem

TBookmarkStr form. You can locate a record of the dataset matching given criteria,

using the Locate method. This even works after you close and reopen the dataset,

because you're working at a logical (and not physical) level. This approach is presented

in the next section.

13



2.1 Main Menu Screen 

Figure 2.1 Main Menu Screen

The figure above shows the first screen which occurs when you first start running

the program. This screen contains the following:
+ The calendar: This automatically obtains the current date month and year of

the system which the program is running on.
+ Buy change system preview: which shows the current selling price of

currencies that you have entered in the change system, which will be

explained later.

- - ---· ~.- ----

14 



Figure 2.2 Buy change system preview

+ Sell exchange system preview: which shows the current reports of the

exchange system. The following screen will appear and allow you to

Select the type of exchange report that you wish to preview.

Figure 2.3 Exchange report 

15



The following report preview will show the exchange rates related to which

form you choose:

Figure 2.4 Exchange rates

+ Change system preview: it is a report that shows the current price of the

currencies in the stuck exchange related to selling currencies, which can be

printed by the button next to it.

.• 

16



CHANGE APO EXCHANGE SYSTEM 

Turkish Sterling Oollıw Euro D:;;aı:;;•::......--
1430000 2400000 1400000 2100000 111rıoo4

Figure 2.5 Change System Preview

+ Exchange system: it is a report that shows the current price of the currencies in

the stuck exchange related to buying currencies, which can be printed by the

button next to it.

CKf<tlGEı'ıHOE.XCHMll SYSTEM
~~~~Q!!__

12,0000 UIJOOOl 1?00000 2000000 1i11200'

Figure 2.6 Exchange System Preview

17

18

2.2 Change System

Figure 2.7 Change System

This screen consists of three sub-menus, which will allow you to complete your

transaction processes. In addition, the forms contain the following:
The first part of each form grapes the exchange rates of the currencies from your

database that you have entered.
The second part deals with the current amount of currency that you are

exchanging at the time being. It consists of a navigation bar that allows you to scroll in

the fields of your transactions.

2.3 Exchange Curves

Figure 2.8 Change Curve

It consists of three chart reports that are all linked to the data base and change in

respect to the processes that you make, that each transaction made is added or deleted

and presented in the as a curve in respect to the money amount you have processed.

The rest of the graphs are shown below

•

19

.•

Figure 2.9 Change Curve

Figure 2.10 Change Curve

20

These graphs are just to keep track of you exchange processes in terms of

money, and also shows you which of the currencies is have the most demand in the

market, at this point you can analyze the current situation of the foreign currencies flow

in you exchange office and take your decisions among that.

2.4 Exchange System

Figure 2.11 Exchange System

21

The exchange system consists of three fields that allow you to deal with the

exchange of the foreign currencies each one consist of selling and buying prices of the

currencies and another field for your processes, where you can add delete or modify

your processes.

2.5 Exchange Bar Graphs
The following bar graphs illustrate the change in the currencies by date and

respectively with the database.

Figure 2.12 Exchange Bar Graphs a

22

Figure 2.13 Exchange Bar Graphs b

2.6 Adding the Exchange Rates

a. Selling Rates: here in this form you can you can add the current rates of the local

currency.

Figure 2.14 Adding the Exchange Rates (Selling Rates)

23

b. Foreign Currency Rates
Here in the following form you can add the foreign exchange rates

Figure 2.15 Adding the Exchange Rates (Foreign Currency Rates)

24

Figure 2.16 Database Desktop

2.7 Database Desktop

Database Desktop is a database tool where you can create or restructure database

tables, or browse and edit their data. You can work with tables in Paradox, dBase, and

SQL formats.

25

DATA FLOW DIAGRAM
(DFD)

DECISIONS DECISIONS
MANAGER

REPORTS
STATISTICS AND

GRAPHS

EXCHANGE TRANSACTIONS
(DATABASE UPDATING)

UPDATES UPDATES

EXCHANGE COUNTER
1

(SELLING&BUYING)

EXCHANGE COUNTER
2

(SELLING&BUYING)

INVOICE ---
INVOICE

CUSTOMER
CUSTOMER

Figure 3.1 Data Flow Diagram

26

3.2 MAIN MENU

unit CHEXSY;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DB Tables, jpeg, ExtCtrls, DBCtrls, StdCtrls, Mask, ComCtrls,

TeEngine, Series, TeeProcs, Chart, DbChart, Grids, DBGrids;

type
TMAINMENUCHANGEEXCHANGESYSTEM = class(TForm)

Panel 1: TPanel;

GroupBoxl: TGroupBox;

Image 1: Tlmage;

Table 1: TTable;

Table 1 Date: TDateField;

TablelEuro: TFloatField;

Table 1 Dollar: TFloatField;

Table 1 Sterling: TFloatField;

Table 1 Turkish: TFloatField;

buychange: TDataSource;

selchange: TDataSource;

Table2: TTable;

DateField 1: TDateField;

FloatFieldl: TFloatField;

.• FloatField2: TFloatField;

FloatField3: TFloatField;

FloatField4: TFloatField;

dollar: TDataSource;

Table3: TTable;

Table3Dollar: TFloatField;

Table3Rate: TFloatField;

27

Table3Date: TDateField;

sterlaing: TDataSource;

Table4: TTable;

euro: TDataSource;

Table5: TTable;

Table9: TTable;

exdollarE: TDataSource;

Tablelü: TTable;

exeuroD: TDataSource;

Tablel 1: TTable;

Tablel2: TTable;

exeuroS: TDataSource;

exdollarS: TDataSource;

Table14: TTable;

exsterlingD: TDataSource;

exsterlingE: TDataSource;

Table15: TTable;

Tablel 7: TTable;

Table 18: TTable;

Table6: TTable;

Table?: TTable;

Table8: TTable;

Panel2: TPanel;

GroupBox32: TGroupBox;

Panel3: TPanel;

PageControl l: TPageControl;

TabSheetl: TTabSheet;

Inıage2: Tlmage;

TabControl 1: TTabControl;

Panel6: TPanel;

Month Calendar 1: TMonthCalendar;

Buttonl: TButton;

Button3: TButton;

Button4: TButton;

28

r
Buttons: TButton;
TabSheet2: TTabSheet;
PageControl3: TPageControl;

TabSheetl 1: TTabSheet;

GroupBox6: TGroupBox;

Labell6: TLabel;

Label1 7: TLabel;

Labell8: TLabel;

Labell 9: TLabel;

Label20: TLabel;
DBEditl2: TDBEdit;

DBEditl3: TDBEdit;

DBEditl4: TDBEdit;

DBEditlS: TDBEdit;

DBEditl6: TDBEdit;
DBNavigator2: TDBNavigator;

GroupBox8: TGroupBox;

Label26: TLabel;
GroupBox9: TGroupBox;

Label27: TLabel;

Label28: TLabel;

Label29: TLabel;

Label30: TLabel;
- DBEdit25: TDBEdit;

DBEdit22: TDBEdit;

DBEdit23: TDBEdit;

DBEdit24: TDBEdit;..
DBNavigatorS: TDBNavigator;

TabSheetl2: TTabSheet;

GroupBoxS: TGroupBox;

Label11:TLabel;

Labell2: TLabel;

Labell 3: TLabel;

Labell4: TLabel;

29

Label15: TLabel;

DBEdit7: TDBEdit;

DBEdit8: TDBEdit;

DBEdit9: TDBEdit;

DBEditlO: TDBEdit;

DBEditl 1: TDBEdit;

DBNavigator4: TDBNavigator;

Group Box 1 O: TGroupBox;

Label3 l: TLabel;

GroupBox 11: TGroupBox;

Label32: TLabel;

Label33: TLabel;

Label34: TLabel;

Label3 5: TLabel;

DBEdit26: TDBEdit;

DBEdit28: TDBEdit;

DBEdit29: TDBEdit;

DBEdit27: TDBEdit;

DBNavigator6: TDBNavigator;

TabSheet13: TTabSheet;

GroupBox7: TGroupBox;

Label2 l: TLabel;

Label22: TLabel;

Label23: TLabel;

Label24: TLabel;

Label25: TLabel;

DBEditl 7: TDBEdit;

DBEdit18: TDBEdit;

DBEditl9: TDBEdit;

DBEdit20: TDBEdit;

DBEdit2 l: TDBEdit;

DBNavigator3: TDBNavigator;

Group Box 12: TGroupBox;

1,abel36: TLabel;

30

Group Box 13: TGroupBox;

Label3 7: TLabel;

Label38: TLabel;

Label39: TLabel;

Label40: TLabel;

DBEdit30: TDBEdit;

DBEdit31: TDBEdit;

DBEdit32: TDBEdit;

DBEdit33: TDBEdit;

DBNavigator7: TDBNavigator;

TabSheet3: TTabSheet;

PageControl4: TPageControl;

TabSheet14: TTabSheet;

DBGrid 1: TDBGrid;

DBChartl: TDBChart;

Series 1: TLineSeries;

Series2: TLineSeries;

Series3: TLineSeries;

TabSheet15: TTabSheet;

DBGrid2: TDBGrid;

DBChart2: TDBChart;

Line Series 1: TLineSeries;

LineSeries2: TLineSeries;

LineSeries3: TLineSeries;

TabSheet16: TTabSheet;

DBGrid3: TDBGrid;

DBChart3: TDBChart;..•
LineSeries4: TLineSeries;

LineSeries5: TLineSeries;

LineSeries6: TLineSeries;

TabSheet4: TTabSheet;

Label71: TLabel;
PageControl5: TPageControl;

TabSheetl 7: TTabSheet;

31

Group Box 14: TGroupBox;

Label41: TLabel;

Label42: TLabel;

Label43: TLabel;

Label44: TLabel;

Label45: TLabel;

Label77: TLabel;

DBEdit34: TDBEdit;

DBEdit35: TDBEdit;

DBEdit36: TDBEdit;

DBEdit37: TDBEdit;

DBEdit38: TDBEdit;

DBNavigator8: TDBNavigator;

GroupBox20: TGroupBox;

Label78: TLabel;

Label79: TLabel;

Label80: TLabel;

Label81: TLabel;

Label82: TLabel;

Label 113: TLabel;

DBEdit64: TDBEdit;

DBEdit65: TDBEdit;

DBEdit66: TDBEdit;

DBEdit67: TDBEdit;

DBEdit68: TDBEdit;

DBNavigator14: TDBNavigator;

GroupBox27: TGroupBox;

Laoel120: TLabe1;

Labell 2 I: TLabe1;

Label 122: TLabel;

Label 123: TLabel;

Label124: TLabel;

Label125: TLabe1;

DBEdit97: TDBEdit;

32

DBEdit98: TDBEdit;

DBEdit99: TDBEdit;

DBNavigator21: TDBNavigator;

Edit89: TEdit;

Edit90: TEdit;

TabSheet18: TTabSheet;

Group Box 18: TGroupBox;

Label6 l: TLabel;

Label62: TLabel;

Label63: TLabel;

Label64: TLabel;

Label65: TLabel;

Label76: TLabel;

DBEdit54: TDBEdit;

DBEdit55: TDBEdit;

DBEdit56: TDBEdit;

DBEdit57: TDBEdit;

DBEdit58: TDBEdit;

DBNavigator12: TDBNavigator;

GroupBox21: TGroupBox;

Label83: TLabel;

Label84: TLabel;

Label85: TLabel;

Label~6: TLabel;

Label87: TLabel;

Label 109: TLabel;

.,DBEdit69: TDBEdit;

DBEdit70: TDBEdit;

DBEdit71: TDBEdit;

DBEdit72: TDBEdit;

DBEdit73: TDBEdit;

DBNavigator15: TDBNavigator;

GroupBox28: TGroupBox;

Label126: TLabel;

33

Label127: TLabel;

Label128: TLabel;

Label129: TLabel;

Label 130: TLabel;

Label 131: TLabel;

DBNavigator22: TDBNavigator;

DBEditl 00: TDBEdit;

DBEditl O 1: TDBEdit;

DBEditl02: TDBEdit;

Edit3: TEdit;

Edit5: TEdit;

TabSheetl 9: TTabSheet;

Group Box 15: TGroupBox;

Label46: TLabel;

Label47: TLabel;

Label48: TLabel;

Label49: TLabel;

Label50: TLabel;

Label75: TLabel;

DBEdit39: TDBEdit;

DBEdit40: TDBEdit;

DBEdit4 l: TDBEdit;

DBEdit42: TDBEdit;

DBEdit43: TDBEdit;

DBNavigator9: TDBNavigator;

GroupBox22: TGroupBox;

Label88: TLabel;

t'abel89: TLabel;

Label90: TLabel;

Label91: TLabel;

Label92: TLabel;

Labell l O: TLabel;

DBEdit74: TDBEdit;

DBEdit75: TDBEdit;

34

DBEdit76: TDBEdit;

DBEdit77: TDBEdit;

DBEdit78: TDBEdit;

DBNavigator16: TDBNavigator;

GroupBox29: TGroupBox;

Label132: TLabel;

Label133: TLabel;

Label134: TLabel;

Labell35: TLabel;

Labell 36: TLabel;

Labell37: TLabel;

DBEditl03: TDBEdit;

Edit7: TEdit;

DBEditl04: TDBEdit;

DBEditl05: TDBEdit;

DBNavigator23: TDBNavigator;

Edit93: TEdit;

TabSheet20: TTabSheet;

Group Box 17: TGroupBox;

Label56: TLabel;

Label57: TLabel;

Label58: TLabel;

Label59: TLabel;

Label60: TLabel;

Label74: TLabel;

DBEdit49: TDBEdit;

DBEdit50: TDBEdit;..
DBEdit51: TDBEdit;

DBEdit52: TDBEdit;

DBEdit53: TDBEdit;
DBNavigatorl 1: TDBNavigator;

GroupBox23: TGroupBox;

Label93: TLabel;

Label94: TLabel;

35

Label95: TLabel;

Label96: TLabel;

Label97: TLabel;

Labell 11: TLabel;

DBEdit79: TDBEdit;

DBEdit80: TDBEdit;

DBEdit81: TDBEdit;

DBEdit82: TDBEdit;

DBEdit83: TDBEdit;

DBNavigatorl 7: TDBNavigator;

GroupBox30: TGroupBox;

Label138: TLabel;

Label139: TLabel;

Label140: TLabel;

Label 141: TLabel;

Label142: TLabel;

Label 143: TLabel;

DBEditl 06: TDBEdit;

Edit9: TEdit;

DBEdit107: TDBEdit;

DBEdit108: TDBEdit;

DBNavigator24: TDBNavigator;

Edit92: TEdit;

TabSheet2 l: TTabSheet;

GroupBoxl6: TGroupBox;

Label5 l: TLabel;

Label52: TLabel;,.
Label53: TLabel;

Label54: TLabel;

Label55: TLabel;

Label73: TLabel;

DBEdit44: TDBEdit;

DBEdit45: TDBEdit;

DBEdit46: TDBEdit;

36

DBEdit47: TDBEdit;

DBEdit48: TDBEdit;

DBNavigatorlO: TDBNavigator;

GroupBox24: TGroupBox;

Label98: TLabel;

Label99: TLabel;

Label 100: TLabel;

Labell O 1 : T,Label;

Labell02: TLabel;

Labell 12: TLabel;

DBEdit84: TDBEdit;

DBEdit85: TDBEdit;

DBEdit86: TDBEdit;

DBEdit87: TDBEdit;

DBEdit88: TDBEdit;

DBNavigator18: TDBNavigator;

GroupBox31: TGroupBox;

Labell44: TLabel;

Labe1145: TLabel;

Labell46: TLabel;

Label 14 7: TLabel;

Labe1148: TLabel;

Label149: TLabel;

DBEditl 09: TDBEdit;

DBEditl 12: TDBEdit;

DBEditl 13: TDBEdit;

DBNavigator25: TDBNavigator;

EditliO: TEdit;

Editl 11: TEdit;

TabSheet22: TTabSheet;

Group Box 19: TGroupBox;

Label66: TLabel;

Label67: TLabel;

Label68: TLabel;

37

Label69: TLabel;

Label70: TLabel;

Label72: TLabel;

DBEdit59: TDBEdit;

DBEdit60: TDBEdit;

DBEdit6 l: TDBEdit;

DBEdit62: TDBEdit;

DBEdit63: TDBEdit;

DBNavigatorl3: TDBNavigator;

GroupBox25: TGroupBox;

Label 103: TLabel;

Labell04: TLabel;

Labell05: TLabel;

Labell 06: TLabel;

Labell07: TLabel;

Labell08: TLabel;

DBEdit89: TDBEdit;

DBEdit90: TDBEdit;

DBEdit91: TDBEdit;

DBEdit92: TDBEdit;

DBEdit93: TDBEdit;

DBNavigatorl 9: TDBNavigator;

GroupBox26: TGroupBox;

Labell 18: TLabel;

Labell 19: TLabel;

Labell 14: TLabel;

Labell 15: TLabel;

Labell 16: TLabel;

Labell 17: TLabel;

DBEdit94: TDBEdit;

Editl: TEdit;

DBEdit95: TDBEdit;

DBEdit96: TDBEdit;

DBNavigator20: TDBNavigator;

38

Edit66: TEdit;

TabSheet6: TTabSheet;

DBGrid5: TDBGrid;

DBChart4: TDBChart;

BarSeries 1: TBarSeries;

BarSeries2: TBarSeries;

BarSeries3: TBarSeries;

Series4: TBarSeries;

Series5: TBarSeries;

TabSheet7: TTabSheet;

DBGrid4: TDBGrid;

DBChart5: TDBChart;

BarSeries4: TBarSeries;

BarSeries5: TBarSeries;

BarSeries6: TBarSeries;

BarSeries7: TBarSeries;

BarSeries8: TBarSeries;

TabSheet8: TTabSheet;

GroupBox2: TGroupBox;

PageControl2: TPageControl;

TabSheet9: TTabSheet;

GroupBox3: TGroupBox;

Label5: TLabel;

Label4: TLabel;

Label3: TLabel;

Label2: TLabel;

Label6: TLabel;

EditTurkish:_ TDBEdit;

EditSterling: TDBEdit;

EditDollar: TDBEdit;

EditEuro: TDBEdit;

DBEdit6: TDBEdit;

DBNavigator: TDBNavigator;

TabSheetlO: TTabSheet;

39

GroupBox4: TGroupBox;

Labell: TLabel;

Label7: TLabel;

Label8: TLabel;

Label9: TLabel;

Labell O: TLabel;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

DBNavigatorl: TDBNavigator;

Button2: TButton;

Button6: TButton;

Image3: Timage;

Image4: Timage;

Image5: Timage;

Image6: Timage;

Image?: Timage;

Image8: Timage;

Image9: Timage;

ImagelO: Timage;

Image 11: Timage;

Imagel2: Timage;
procedure DBEdit23Change(Sender: TObject);

procedure DBEdit29Change(Sender: Tübject);

procedure DBEdit32Change(Sender: TObject);
.,. procedure Editl 11 Change(Sender: Tübject);

·---- -------
procedure Edit90Change(Sender: TObject);

procedure Edit5Change(Sender: Tübject);

procedure Edit93Change(Sender: Tübject);

procedure Edit92Change(Sender: Tübject);

procedure Edit66Change(Sender: Tübject);

·procedureButtonlClick(Sender: TObject);

40

procedure Button3Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var
MAINMENUCHANGEEXCHANGESYSTEM:

TMAINMENUCHANGEEXCHANGESYSTEM;

implementation

uses REPORT, MENU, MENU2, REPORT4, REPORTS;

{$R *.dfm}

procedure TMAINMENUCHANGEEXCHANGESYSTEM.DBEdit23Change(Sender:

TObject);

var

a,b,c:Currency;
begin _ _ _ _ __ --·

if (DBEdit22.gettextlen=O)or (DBEdit23.gettextlen=O)then

begin
showmessage('please enter value on edits');

exit;

end;

begin

41

a:=strtoFloat(DBEdit22.text);

b:=strtoFloat(DBEdit23.text);

c:=a*b;

DBEdit24.text:=Floattostr(c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.DBEdit29Change(Sender:

TObject);

var

a,b,c:Currency;

begin
if (DBEdit28.gettextlen=O) or (DBEdit29.gettextlen=O) then

begin
showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEdit28.text);

b:=strtoFloat(DBEdit29.text);

c:=a*b;

DBEdit27 .text:=Floattostr(c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.DBEdit32Change(Sender:

TObject);

var

a,b,c:Currency;

begin
if (DBEdit3 l .gettextlen=O) or (DBEdit32.gettextlen=O) then

begin
. showmessage('please enter value on edits');

42

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Editl 11 Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEdit109.gettextlen=O)OR (Editl 10.gettextlen=O) or (Editl 11.gettextlen=O) then

begin

showmessage('please enter value on edits');

exit;

end;

begin

a:==strtoFloat(DBEditl 09 .text);

b:=strtoFloat(Editl 10.text);

d:=strtoFloat(Editl 11.text);

c:= (a* b)/d;

exit;

end;

begin

a:=strtoFloat(DBEdi-t3 l .text);

b:=strtoFloat(DBEdit32.text);

c:=a*b;

DBEdit33.text:=Floattostr(c);

end;

end;

..
DBEditl 12.text:=Floattostr(c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit90Change(Sender:

TObject);

43

DBEdit98.text:=Floattostr(c);

end;

end;

VAR

a,b,c,d:CURRENCY;

begin
if (DBEdit97. gettextlen=O)OR (Edi t89. gettextlen=O) or (Edit90. gettextlen=O) then

'begin
showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEdit97 .text);

b:=strtoFloat(Edit89.text);

d:=strtoFloat(Edit90.text);

c:= (a* b)/d;

//procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit4Change(Sender:

Tübject);

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit5Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEdit 100.gettextlen=O)OR (Edit3 .gettextlen=O) or (Edit5. gettextlen=O) then

..
begin

showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEditl 00.text);

b:=strtoFloat(Edit3 .text);

44

..•.

NEAR EAST UNIVERSITY

'Faculty of Engineering

Department of Computer Engineering

DEVELOPMENT DELPHI PROGRAM
FOR EXCHANGE AND CHANGE SYSTEM

Graduation Project
COM-400

Student: Ismail Mekki

Supervisor: Mr. Ümit iLHAN

Nicosia 2003 - 2004

ACKNOWLEDGEMENTS

to be capable to cover the requirements of the working life. This role is concerning with

qualifying the student up to he level that the society needs. However, this role cannot be

accomplished unless there is a qualified leader and sophisticated coach.

Fortunately, Mr. Umit ILHAN was the main reason of my success in (his project,

and thus, he deserves my all thanks, gratitude, and my respect due to his support and wise

advice.

I appreciate all the effort that he provided during the preparation of this project.

Therefore, firstly, I would like to dedicate this project my family because of their

unlimited support during my life.

Secondly, I would like to dedicate it to my supervisor Mr. Umit ILHAN because of

his wise supervision on this project and for his wide knowledge.

Finally, I appreciate all the effort aids of my friends during the preparation of this

project."

With all due respect

I

ABSTRACT

This program is designed for the change and exchange markets where the

individuals deal with the currencies and barter them. This system is based on BORLAND

DELPHI 6 programming language. All the criterions of this system are taken according

upon the request of the Near East Bank and all the features of this software can be adjusted

according to the desire of the customer.

All the screens that will appear in the usage of this program will be illustrated in the

coming chapters in details. The calculations and the mathematical operations that this

program applies are explained in details in the appendix at the end of this report. This

program is designed to find out the exact profit of the company by using graphical charts

and by showing statues reports at any time. Three hard currencies are taken into

consideration in this system and they are compared with the Turkish lira, which is the local

currency. The values of these hard currencies will be taken from the stock markets that the

government decides daily according o the daily economic level. The decision maker in

NEB will determine the amount of the profit that he desires and the total revenue will be

calculating by the software. A navigation bar is located in the bottom of each screen for

adding, deleting, saving ... etc.

II

1.1. Overview

1.2. Economic Analysis of Floating Exchange Rate System

1.2 a Introduction

1.2 b Opportunities From Around World

1.3 Delphi Programming

1.4. Database Programming

1.5. Borland Database Engine (BOE)

1.6. Graphical Data-Aware Control

1.7. The clintdataSet Component

1.8 Classic BOE component

1.9 Tables and Queries

1.1 O DBNavigator and Dataset Actions

1.11 Text-Based Data-Aware Control

L 12 Navigator a Dataset

2

2

2

5

7

8

8

9

10

10

11

12

12

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

CHAPTER ONE: INTRODUCTION

I

II

III

·v

CHAPTER TWO: THE DESCRIPTION OF THE SYSTEM

2.2 Change System

2.3. Exchange curve

2.4. Exchange System

2.5. Exchange Bar Graphs

14

14

18

19

21

22

"' 2.1 Main -Merıu Screen - - -

III

CONCLUSION

SYSTEM REQUIREMENTS

REFERENCES

75

75

76

2.6. Adding the Exchange rates

2.7. Database. Desktop

23
25

3.1. Data Flow Diagram

3.2. Main Menu
3.3. Buy Change System Preview

3.4. Exchange System Sterling

3.5. Change System Sterling
3.6. Exchange System Sterling Dollar

3.7. Exchange System Dollar Euro

3.8. Change System Dollar Euro

3.9. Exchange System Euro
3.1 O. Exchange System Dollar Sterling

3.11. Change System Dollar Sterling

3.12. Sell Exchange System
3 .13. Exchange Euro to Steri ing

3.14. Exchange Euro
3.15. Exchange System Dollar to Euro

3.16. Buy Change System preview

3.17. Buy Change System

3.18. Buy Change System
3.19. Change System Sterling

3.20. Change System

3 .21. Report Dollar
3.22. Sell Change System Preview

26

26

27

48

51

52

52

54

55

55
57
58

58

60

61
61

63

66

67

68

69

71

72

CHAPTER THREE: DATA SOURCE

IV

LIST OF FIGURES

CHAPTER II
CHANGE AND EXCHANGE SYSTEMS

2.1 Main Menu Screen

2.2 Buy change system preview

2.3 Exchange report

2.4 Exchange rates

2.5 Change System Preview

2.6 Exchange system Preview

2.7 Change System

2.8 Change Curve

2.9 Change Curve

2.1O Change Curve

2.11 Exchange System

2.12 Exchange Bar Graphs a

2.13 Exchange Bar Graphs b

2.14 Adding the Exchange Rates (Selling Rates)

2.15 Adding the Exchange Rates (Foreign Currency Rates)

2.16 Database Desktop

CHAPTER III

DAJASOURCE

3.1 Data Flow Diagram

V

14

15

15

16

17

17
18

19

20

20

21

22

23

23

24

25

26

INTRODUCTION

1.1 Overview

Many activities are done daily in the stock market. Most of these activities are

concerning with the transactions and exchanging the goods and services. Since the

market is the place that the buyers and sellers exchange goods and services, then the

currencies are considered as a good that the people buy and sell within the market.

As it is known, the most currencies that are used widely are those currencies that

are called the hard currencies such as US Dollar, UK sterling, and Euro. Therefore, as

we are concerning with controlling the activities in the market by issuing the required

software programs that include all features of controlling the business by means of

scientific methods in order to be used in a proper and easy way.
Using any programming language to create certain software gives you the

opportunity of gaining a good experience and it will promote your approaches of

analyzing the aspects of any given project.
Therefore, any software needs an adequate and sufficient programming language

that helps us to set up all the applications and all the functions that include the features

of organizing and sustaining our business.
The role of a computer engineer requires an adequate ability of analyzing and

dealing with all the aspects of any project in order to be capable to create and issue

certain software that controls the business. Therefore, our role as an engineer is to not

only deal with the hardware, but also deal with creating a software programs. Thus, the

role of an engineer is to control the technical specifications of the firm and to know

every single aspect that is necessary to measure the level of the success.

1

1.2 Economic Analysis of Floating Exchange Rate Systems

1.2.a Introduction
Associated foreign exchange is looking for experienced foreign exchange sales

..
professionals! Successful candidates will be strongly motivated individuals who can

identify and cultivate potential corporate clients with international payment needs.

Strong communication skills, experience in the foreign exchange field and experience in

relationship based selling are a must. Successful candidates will be responsible for

opening, maintaining and growing accounts through relationship building, identifying

customer needs and cross-selling appropriate services.

1.2 b Opportunities from Around the World
Over the last three decades the foreign exchange market has become the world's

largest financial market, with over $1.5 trillion USD traded daily. The primary market

for currencies is the 24-hour Interbank market. The Interbank market literally follows

the sun around the world, moving from major banking centers of the United States to
.,,,,

Australia and New Zealand to the Far East, to Europe and finally back to the United

States. With the large minimum transaction sizes and often-stringent financial

requirements, banks, hedge funds, major currency dealers and the occasional high net­

worth individual speculator were the principal participants. These large traders were

able to take advantage of the many benefits offered by the forex market vs. other

markets including fantastic liquidity and the strong trending nature of the world's

primary currency exchange rates.
The business section of any newspaper will have a table of spot exchange rates.

These are the rates at which a person could have bought other currencies or foreign

Exchange, such as the English Pound, French Franc, or the new European Euro. The

Prices of foreign currencies can be determined in two major types of exchange rate

Systems. In the United States, the dollar's exchange rates are determined by the•
"" Marketplace, i.e., by supply and demand. This type of system is called a floating -- - - -

Exchange rate system. In other countries, governments set the price of their currencies

With respect to other countries. They then buy or sell foreign exchange at the prices

They've set. This is called a fixed exchange rate system. The economic effects of these

Two systems can be very different. However, in either system the underlying forces

Influencing the value of a country's currency remain the same. Due to possible

2

confusion of being able to quote different currencies in terms of Each other, e.g., $/£ or

£/$, we need to explicitly define an exchange rate. An exchange Rate is, therefore, the

domestic cost of a unit of foreign exchange. For example, from the US perspective the

price of the English Pound would be denominated as the number of US dollars per

pound, or$/£. As noted above, the exchange rate in a floating exchange rate system is

Determined by market forces. Our definitiori of the exchange rate defines the market as

The market for foreign exchange. In this market we have demanders and suppliers of

Foreign currencies willing to pay and accept dollars in return for these currencies. We

Will in turn discuss the demand and supply of foreign exchange. Foreign Exchange

Demand The demand for foreign exchange is a derived demand. With the exception of

currency Collectors, the demand for foreign exchange is due to people's desire to use it

in the Purchase of foreign goods or financial assets. Foreign exchange demand is,

therefore, Highly sensitive to changes in these desires.

In order to understand changes in the demand for foreign exchange, we will need

to Discuss its underlying forces. These are the demand for foreign goods and services

and the demand for foreign financial assets. The supply of foreign exchange has at its

roots the same conceptual basis as Demand, only it is from the foreign perspective.

Foreign currency is supplied to the Foreign exchange market when foreigners exchange

their currency for dollars in order to Buy US goods or financial assets. Equivalently, the

supply of foreign exchange is Nothing more than a mirror image of the foreign demand

for US currency. Exchange is the mirror of the supply of dollars to the foreign exchange

market. One question which might arise is which foreign exchange Market. New York,

London, Frankfort and Tokyo are Major financial centers with large foreign exchange

markets. The answer as to which market is all of them. The first rule of business is to

buy low and sell high. Should exchange rates be different across different financial

centers, then the opportunity for arbitrage profits occurs. Currency dealers will buy low.
in one center and sell high in another, driving exchange rates into equality Across the

' different markets. For example, should the Swiss Franc be at a lower price (in terms of

$) in London and at a higher price in New York, then-the dealers will increase the

demand for the Swiss Franc in London, driving up its price, and increase its supply in

New York, driving down its price there. This continues until the price is the same in

both places. The major questions to be addressed are how exchange rates determined are

and what the forces which influence them are. In Figure 1, the equilibrium exchange

rate (e) is the one where the quantity demanded is equal to the quantity supplied for

3

foreign exchange. As with most markets, the price changes in order to equilibrate the

market. When quantity demanded exceeds quantity supplied, and then the exchange rate

will rise. If the quantity supplied is greater then quantity demanded, the exchange rate

falls. What does it mean when the exchange rate rises or falls? As we have defined the

Exchange rate($/£), when the exchange rate rises, the value of the dollar decreases or

depreciates. It now takes more dollars to buy an English pound than it did before the

Change in the exchange rate. Fewer foreign goods can now be purchased for a given

number of dollars. The reverse is also true. As the exchange rate falls, the dollar cost of

foreign exchange falls, increasing the dollar's value. This is termed an appreciation of

the dollar. More foreign exchange rate$/£ Foreign exchange Sfx or D$ Dfx or S$.

Market should force lead to a change in either the supply or demand for foreign

exchange then the exchange will change accordingly to re-equilibrate the market. The

basic notion is that exchange rates are sensitive to differential inflation rates across

Countries. Should the domestic inflation rate rise at a rate greater than our trading

Partners, then at a given exchange rate, the price of domestic goods will be rising

relative To foreign goods. This will, in tum, increase the demand for foreign goods

(imports are Now cheaper in domestic currency terms) and decrease the demand for

domestic exports (Domestic exports are now more expensive in foreign currency terms).

This results in an Increase in the demand for foreign exchange, as well as a decrease in

the supply of Foreign exchange.

This is a long-run effect because of the Law of One Price. This concept states

that in the Long run the price of tradable goods must be the same across countries. If

this was not The case, then the opportunity for arbitrage profits, buying low in one

country and selling High in another, would result in a movement in the exchange rate

bringing about the Equalization. For example, suppose Argentine wheat, at the

prevailing exchange rate, is cheap in US Dollars. As North Americans buy more and

more Argentine wheat, they increase the Demand for the Argentine currency, driving up

its value, thus making wheat more Expensive in dollar terms. The exchange rates which.•
would prevail under the Law of One Price are called purchasing power parity exchange

rates (PPP). While these do not exist in reality (there are many other factors affecting

exchange rates) there is an underlying pressure moving exchange rates in this fashion.

PPP exchange rates are used in comparing the economic performance between

countries. The World Bank compares countries in their World Development Report

using a PPP exchange rate. Medium Term - Differential Growth Rates As an economy

4

grows, its demand for imports will also grow. As income increases, some portion of that

increase will be spent on imported goods. In the jargon of macroeconomics, the

proportion of the additional dollar of income spent on imports is called the marginal

propensity to import. Assume that the marginal propensity to import is the same across

countries. Should a country's economy grow faster than its trading partners, then its

demand for imports will also be growing faster? In the context of Figure 4, this is

represented by increases in both the demand and supply of foreign exchange, but the

demand would increase by more. This would result in a slight depreciation of the

domestic currency. Short-Run - Differential Interest Rates This factor has become

extremely important as countries have liberalized their economies, allowing the flow of

financial capital into and out of their countries. It has played an important role in the

East Asian and Mexican Peso financial crises. Exchange rate$/£ Foreign exchange.

1.3 Delphi Programming
Delphi 5 provided new features to the Object Inspector, and Delphi 6 includes

even more additions to it. As this is a tool programmer's use all the time, along with the

editor and the Form Designer, its improvements are really significant.
The most important change in Delphi 6 is the ability of the Object Inspector to

expand component references in-place. Properties referring to other components are

now displayed in a different color and can be expanded by selecting the+ symbol on the

left, as it happens with internal subcomponents. You can then modify the properties of

that other component without having to select it.
NÖTE This interface-expansion feature also supports subcomponents, as

demonstrated by the new Labeled Edit control. The Form Designer
TIP A related feature of the Object Inspector is the ability to select the

component referenced by a property. To do this, doµble-click the property value with

the left mouse button while keeping the Ctrl key pressed. For example, if you have a.•
Main Menu component in a form and you are looking at the properties of the form in

the Object Inspector, you can select the Main Menu component by moving to the Main

Menu property of the form and Ctrl+double-clicking the value of this property. This

selects the main menu indicated as the value of the property in
the Object Inspector. Here are some other relevant changes of the Object

Inspector: The list at the top of the Object Inspector shows the type of the object and

5

an be removed to save some space (and considering the presence of the Object Tree

View). The properties that reference an object are now a different color and may be

expanded without changing the selection. You can optionally also view read-only

properties in the Object Inspector. Of course, they are grayed out.. The Object Inspector

has a new Properties dialog box which allows you to customize the colors of the various

types of properties and the overall behavior of this window.
The Project Manager doesn't provide a way to set the options of two different

projects at one time. What you can do instead is invoke the Project Options dialog from

the Project Manager for each project. The first page of Project Options (Forms) lists the

forms that should be created automatically at program startup and the forms that are

created manually by the program.
The next page (Application) is used to set the name of the application and the

name of its Help file, and to choose its icon. Other Project Options choices relate to the

Delphi compiler and linker, version information, and the use ofrun-time packages.

There are two ways to set compiler options. One is to use the Compiler page of

the Project Options dialog. The other is to set or remove individual options in the source

code with the {$X+}or {$X-}commands, where you'd replaceXwith the option you

want to set. This second approach is more flexible, since it allows you to change an

option only for a specific source-code file, or even for just a few lines of code. The

source-level options override the compile-level options.
All project options are saved automatically with the project, but in a separate file

with a .DOF extension. This is a text file you can easily edit. You should not delete this

file if you have changed any of the default options. Delphi also saves the compiler

options in another format in a CFG file, for command-line compilation. The two files

have similar content but a different format: The dee command-line compiler, in fact,

cannot use .DOF files, but needs the .CFG format. Another alternative for saving

compiler options is to press Ctrl+O+O (press the O key twice while keeping Ctrl.
pressed). This inserts, at the top of the current unit, compiler directives that correspond

to the current project options, as in the following listing: {$A +,B-,C+,D+,E-,F­

,G+,H+,l+,J+,K-,L+,M-,N+,0+,P+, Q-,R-,S-, T-, U-, V+, W-,X+, Y+,ZI}
Memory management in Delphi is subject to three rules: Every object must be

created before it can be used; every object must be destroyed after it has been used; and

every object must be destroyed only once. Whether you have to do these operations in

6

your code, or you can let Delphi handle memory management for you, depends on the

model you choose among the different approaches provided by Delphi.

Delphi supports three types of memory management for dynamic elements (that

is, elements not in the stack and the global memory area):

. Every time you create an object explicitly, in the code of your application, you

should also free it. If you fail to do so, the memory used by that object won't be released

for other objects until the program terminates .

. When you create a component, you can specify an owner component, passing

the owner to the component constructor. The owner component (often a form) becomes

responsible for destroying all the objects it owns. In other words, when you free the

form, it frees all the components it owns. So, if you create a component and give it an

owner, you don't have to remember to destroy it. This is the standard behavior of the

components you create at design time by placing them on a form or data module .

. When you allocate memory for strings, dynamic arrays, and objects referenced

by interface variables, Delphi automatically frees the memory when the reference goes

out of scope. You don't need to free a string: when it becomes unreachable, its memory

is released.

1.4 Database Programming
Delphi's support for database applications is one of the key features of the

programming environment. Many programmers spend most of their time writing data­

access code, which needs to be the most robust portion of a database application. This

chapter provides an overview of Delphi's extensive support for database programming.

What you will find here is a discussion of the theory of database design. I am assuming

that you already know the fundamentals of database design and have already designed

the structure of a database. I will not look into database-specific problems; my goal is to

help you understand how Delphi supports database access. I will begin with an

explanation of the alternatives Delphi offers in terms of data access, and then I will

provide an overview of the database components that I have used in my program. This

chapter includes an overview of the TDataSet class, an in-depth analysis of the TField

components, and the use of data-aware controls. The following chapters will provide

information on more advanced database programming topics, such as client/server

programming, the use of dbGo, dbExpress, and Inter Base Express

7

1.5 Borland Database Engine (BDE)
The BDE originated with Paradox, well before Delphi existed, and was extended

by Borland to support other local databases and many SQL servers. The BDE has direct

access to dBASE, Paradox, ASCII, FoxPro, and Access tables. A series of drivers

(called SQL Links and available only in Delphi Enterprise) allows access to some SQL

servers, including Oracle, Sybase, Microsoft, Informix, InterBase, and DB2 servers. If

you need access to a different database, the BDE can also interface with ODBC drivers.

1.6 Graphical Data-Aware Controls
Finally, Delphi includes two graphical data-aware controls:

• DBImage, which is an extension of an Image component that shows a picture stored in

a BLOB field (provided the database use a graphic format that the Image component

supports, such as BMP and JPEG). The output of the Cust- Lookup example, with the

BLookupComboBox showing multiple fields in its drop-down list.

• DBChart is a data-aware business graphic component or the data-aware version of the

TeeChart control built by David Bemeda. To demonstrate the use of the DBChart

control, I have added this component to a simple example showing a data grid. The

application, called ChartDB, shows a pie chart with the surface of each country of the

COUNTRY.DB table. The program has almost no code, as all the settings can be done

using the specific component editor, which has several options but is quite easy to use.

Here are some of the key properties of the component, taken from the form description:

object DBChartl: TDBChart

Legend.Visible= False

Align= alClient

object Series1: TPieSeries

Marks.ArrowLength = 8

Marks.Visible= True

DataSource = Table 1

XLabelsSource = 'Name'

ExplodeBiggest = 3

OtherSlice.Style = poBelowPercent

OtherSlice.Text = 'Others'

8

OtherSlice.Value = 2

PieValues.ValueSource = 'Area'

end;

end.

What I have done is show the area field as the data source for the pie chart (the

PieValues Value Source property of the series), use the name field for the labels (the

XLabelsSource property of the series), and condense all the countries with a value

below 2 percent in a single section indicated as Others (the OtherSlide subproperties).

As a minor addition to the code, I have added two radio buttons you can use to toggle

between the area and the population. The code of the two radio buttons simply sets the

source of the series, after casting it to the proper series type, as in:

procedure TForml .RadioPopulationClick(Sender: Tübject);

begin

DBChartl.Title.Text [O] := 'Population of Countries';

(DBChartl.Series [O] as TPieSeries).PieValues.ValueSource := 'Population';

end;

1.7 The ClientDataSet Component
Finally, there is a component derived from TDataSet that has a peculiar behavior

and can be combined with other data-access components. The ClientDataSet

component, in fact, is a dataset accessing data kept in memory. The in-memory data can

be totally temporary (lost as you exit the program), saved to a local file as a snapshot,

and imported by another dataset using a Provider 'component. This last situation is

certainly the most common: You can hook a ClientDataSet to any other local dataset, or

use Borland's multitier support (discussed in Accessing a Database: BDE, dbExpress,

and other alternatives "Multitier Database Applications with DataSnap") to retrieve data
"' _ from a dataset hosted by a different application, possibly running on a separate

computer. The ClientDataSet component becomes particularly useful if the data-access

components you are using provide limited or no caching. This is particularly true of the

new dbExpress engine, but can equally help you when using the BDE or other native

components.

9

On the other hand, ADO already provides most of the services of the

ClientDataSet component and using these two at the same time can be useful only in

· ited situations

1.8 Classic BDE Components
Each of the database-access solutions discussed above has its own set of data-

access, database connection, and extra utility components on a specific page of the

Component palette. The classic BDE components have been moved to the new BDE

page and include the Table, Query, and StoredProc components. The ADO, dbExpress,

and InterBase Express components are each in specific pages, and all include specific

dataset components and others that tend to mimic the BDE components, simplifying the

porting of existing applications.
The Data Access page of the Component palette includes only the Data Source

Component and others not specifically related with any single data access technology.

Besides the data-access component of your choice, a Delphi visual application generally

uses some data-aware controls (in the Data Controls page) and the DataSource

component. Data-aware controls are visual components used to view and edit the data in

a form and are extensions of standard components such as edit and list boxes, radio

buttons, images, and the
Grid. The DataSource component has the role of connector between the data-

aware controls and a dataset component.

1.9 Tables and Queries
The simplest traditional way to specify data access in Delphi was to use the BDE

Table component. A Table object simply refers to a database table. When you use a

Table component, you need to indicate the name of the database you want to use in its

DatabaseName-property. You can enter an alias or the path of the directory with the

table files. The Object Inspector lists the available names, which depend on the aliases

installed in the BDE. You also need to indicate a proper value in the TableName

property. The Object Inspector lists the available tables of the current database (or

directory), so you should generally select the DatabaseName property first. Another

classic dataset is the BDE Query component. A query requires a SQL language

10

command. You can customize a query using SQL more easily than you can customize a

table (as long as you know at least the basic elements of SQL, of course). The Query

component has a DatabaseName property like the Table component, but it does not have
~ ~

a TableName property. The table is indicated in the SQL statement, stored in the SQL

property. For example, you can write a simple SQL statement like this:

Select * from Country where Country is the name of a table and the asterisk (*)

indicates that you want to use all of the fields in the table.

The efficiency of a table or a query varies depending on the database you are

using. In general, we can say that the Table component tends to be faster on local tables,

while the Query component tends to be faster on SQL servers, although this is just a

very general rule, and in many cases you might have the opposite effect. We'll see some

efficiency issues while discussing
client/server development in the third BDE dataset component is StoredProc,

which refers to stored procedures of a SQL server database. You can run these

procedures and get the results in the form of a database table. Stored procedures can

only be used with SQL servers.

1.10 DBNavigator and Dataset Actions
DBNavigator is a collection of buttons used to navigate and perform actions on

the database. You can disable some of the buttons of the DBNavigator control, by

removing some 'of the elements of the VisibleButtons set. The buttons perform basic

actions on the connected dataset, so you can easily replace them

With your own tool bar, particularly if you use an ActionList component with the

predefined database actions provided by Delphi. In this case, in fact, you get all the

standard behaviors, but you'll also see the various buttons enabled only when their

action is legitimate. TIP If you use the standard actions, you can avoid connecting them

to :1 specific DataSource component, and the actions wi]! be applied to the dataset

connected to the visual control that currently has the input focus. This way a single

toolbar can be used for multiple datasets displayed by a form.

11

1.11 Text-Based Data-Aware Controls

There are multiple text-oriented components:
. DBText displays the contents of a field that cannot be modified by the user. It is

a data ware Label graphical control. It can be very useful, but users might confuse this

control with the plain labels that indicate the content of each field-based control.

DBEdit lets the user edit a field (change the current value) using an Edit control. At

times, you might want to disable editing and use a DBEdit as if it were a DBText, but

highlighting the fact that this is data coming from the database. DBMemo lets the user

see and modify a large text field, eventually stored in a memo or BLOB (binary large

object) field. It resembles the Memo component and has full editing capabilities, but all

the text is rendered in a single font.
DBRichEdit is a component that lets the user edit a formatted text file; it is

based on a RichEdit Windows common control and, in contrast to DBMemo, it allows

text with multiple fonts and paragraph styles.

1.12 Navigating a Dataset
We've seen that a dataset has only one active record, and you can imagine that

the active record changes often, in response of user actions or because of internal

commands given to the dataset. To move around the dataset and change the active

record, there are methods of the TDataSet class, particularly in the section commented

as "position, movement." You can move to the next or previous record, jump back and·

forth by
A given number of records (with MoveBy), or go directly to the first or last

record of the dataset. These operations of the dataset are generally available in the

DBNavigator component or in the standard dataset actions, and they are not particularly

complex to understand. What is not obvious, though, is how a dataset handles the

extreme positions. If you open any dataset with a navigator attached, you can see that as

yoıi move on record by record, the Next button remains enabled even when you've

reached the last record. It's only when you try to move forward after the last record that

the current record apparently doesn't change and the button is disabled. This is because

the Eof test (end of file) succeeds only when the cursor has been moved to a special

position after the last record. If you jump to the end with the Last button, instead, you'll

immediately be at the very end. You'll see exactly the same behavior for the first record

12

(and the Bof test). As we'll see in a while, this approach is very handy, as we can scan a

dataset testing for Eof to be True and, at this point, we know we 've also already

processed the last record of the dataset.
' NOTE Handling this special record positions before the beginning and after the

end of the dataset, which are called cracks, is very important (and quite confusing)

when you write a custom dataset,.Besides moving around record by record or by a given

number of records, programs might need to jump to specific records or positions. Some

datasets support the RecordCount property and allow movement to a record at a given

position in the dataset using the RecNo property. These properties can be used only for

datasets that support positions natively, which basically excludes all client/server

architectures, unless you grab all of the records in a local cache (something you'll

generally want to avoid) and then navigate on the cache. As we'll see in the next

chapter, when you open a query on a SQL server you fetch only the records you are

using, so Delphi doesn't know the record count, at least not in advance. There are two

alternatives you can use to refer to a record in a dataset, regardless of its type. You can

save a reference to the current record and then jump back to it after moving around.

This is accomplished by using bookmarks, either in the TBookmark or the more modem

TBookmarkStr form. You can locate a record of the dataset matching given criteria,

using the Locate method. This even works after you close and reopen the dataset,

because you're working at a logical (and not physical) level. This approach is presented

in the next section.

13

2.1 Main Menu Screen

Figure 2.1 Main Menu Screen

The figure above shows the first screen which occurs when you first start running

the program. This screen contains the following:
+ The calendar: This automatically obtains the current date month and year of

the system which the program is running on.
+ Buy change system preview: which shows the current selling price of

currencies that you have entered in the change system, which will be

explained later.

- - ---· ~.- ----

14

Figure 2.2 Buy change system preview

+ Sell exchange system preview: which shows the current reports of the

exchange system. The following screen will appear and allow you to

Select the type of exchange report that you wish to preview.

Figure 2.3 Exchange report

15

The following report preview will show the exchange rates related to which

form you choose:

Figure 2.4 Exchange rates

+ Change system preview: it is a report that shows the current price of the

currencies in the stuck exchange related to selling currencies, which can be

printed by the button next to it.

.•

16

CHANGE APO EXCHANGE SYSTEM

Turkish Sterling Oollıw Euro D:;;aı:;;•::......--
1430000 2400000 1400000 2100000 111rıoo4

Figure 2.5 Change System Preview

+ Exchange system: it is a report that shows the current price of the currencies in

the stuck exchange related to buying currencies, which can be printed by the

button next to it.

CKf<tlGEı'ıHOE.XCHMll SYSTEM
~~~~Q!!__

12,0000 UIJOOOl 1?00000 2000000 1i11200'

Figure 2.6 Exchange System Preview

17



18

2.2 Change System 

Figure 2.7 Change System

This screen consists of three sub-menus, which will allow you to complete your

transaction processes. In addition, the forms contain the following:
The first part of each form grapes the exchange rates of the currencies from your

database that you have entered.
The second part deals with the current amount of currency that you are

exchanging at the time being. It consists of a navigation bar that allows you to scroll in

the fields of your transactions.



2.3 Exchange Curves 

Figure 2.8 Change Curve

It consists of three chart reports that are all linked to the data base and change in

respect to the processes that you make, that each transaction made is added or deleted

and presented in the as a curve in respect to the money amount you have processed.

The rest of the graphs are shown below

•

19



.• 

Figure 2.9 Change Curve

Figure 2.10 Change Curve

20 



These graphs are just to keep track of you exchange processes in terms of

money, and also shows you which of the currencies is have the most demand in the

market, at this point you can analyze the current situation of the foreign currencies flow

in you exchange office and take your decisions among that.

2.4 Exchange System 

Figure 2.11 Exchange System

21 



The exchange system consists of three fields that allow you to deal with the

exchange of the foreign currencies each one consist of selling and buying prices of the

currencies and another field for your processes, where you can add delete or modify

your processes.

2.5 Exchange Bar Graphs 
The following bar graphs illustrate the change in the currencies by date and

respectively with the database.

Figure 2.12 Exchange Bar Graphs a

22 



Figure 2.13 Exchange Bar Graphs b

2.6 Adding the Exchange Rates

a. Selling Rates: here in this form you can you can add the current rates of the local

currency.

Figure 2.14 Adding the Exchange Rates (Selling Rates)

23



b. Foreign Currency Rates 
Here in the following form you can add the foreign exchange rates

Figure 2.15 Adding the Exchange Rates (Foreign Currency Rates)

24



Figure 2.16 Database Desktop

2.7 Database Desktop 

Database Desktop is a database tool where you can create or restructure database

tables, or browse and edit their data. You can work with tables in Paradox, dBase, and

SQL formats.

25



DATA FLOW DIAGRAM 
(DFD) 

DECISIONS DECISIONS
MANAGER 

REPORTS
STATISTICS AND

GRAPHS

EXCHANGE TRANSACTIONS
(DATABASE UPDATING)

UPDATES UPDATES

EXCHANGE COUNTER
1 

(SELLING&BUYING)

EXCHANGE COUNTER
2

(SELLING&BUYING)

INVOICE ---
INVOICE

CUSTOMER
CUSTOMER

Figure 3.1 Data Flow Diagram 

26 



3.2 MAIN MENU 

unit CHEXSY;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DB Tables, jpeg, ExtCtrls, DBCtrls, StdCtrls, Mask, ComCtrls,

TeEngine, Series, TeeProcs, Chart, DbChart, Grids, DBGrids;

type
TMAINMENUCHANGEEXCHANGESYSTEM = class(TForm)

Panel 1: TPanel;

GroupBoxl: TGroupBox;

Image 1: Tlmage;

Table 1: TTable;

Table 1 Date: TDateField;

TablelEuro: TFloatField;

Table 1 Dollar: TFloatField;

Table 1 Sterling: TFloatField;

Table 1 Turkish: TFloatField;

buychange: TDataSource;

selchange: TDataSource;

Table2: TTable;

DateField 1: TDateField;

FloatFieldl: TFloatField;

.• FloatField2: TFloatField;

FloatField3: TFloatField;

FloatField4: TFloatField;

dollar: TDataSource;

Table3: TTable;

Table3Dollar: TFloatField;

Table3Rate: TFloatField;

27



Table3Date: TDateField;

sterlaing: TDataSource;

Table4: TTable;

euro: TDataSource;

Table5: TTable;

Table9: TTable;

exdollarE: TDataSource;

Tablelü: TTable;

exeuroD: TDataSource;

Tablel 1: TTable;

Tablel2: TTable;

exeuroS: TDataSource;

exdollarS: TDataSource;

Table14: TTable;

exsterlingD: TDataSource;

exsterlingE: TDataSource;

Table15: TTable;

Tablel 7: TTable;

Table 18: TTable;

Table6: TTable;

Table?: TTable;

Table8: TTable;

Panel2: TPanel;

GroupBox32: TGroupBox;

Panel3: TPanel;

PageControl l: TPageControl;

TabSheetl: TTabSheet;

Inıage2: Tlmage;

TabControl 1: TTabControl;

Panel6: TPanel;

Month Calendar 1: TMonthCalendar;

Buttonl: TButton;

Button3: TButton;

Button4: TButton;

28



r 
Buttons: TButton;
TabSheet2: TTabSheet;
PageControl3: TPageControl;

TabSheetl 1: TTabSheet;

GroupBox6: TGroupBox;

Labell6: TLabel;

Label1 7: TLabel;

Labell8: TLabel;

Labell 9: TLabel;

Label20: TLabel;
DBEditl2: TDBEdit;

DBEditl3: TDBEdit;

DBEditl4: TDBEdit;

DBEditlS: TDBEdit;

DBEditl6: TDBEdit;
DBNavigator2: TDBNavigator;

GroupBox8: TGroupBox;

Label26: TLabel;
GroupBox9: TGroupBox;

Label27: TLabel;

Label28: TLabel;

Label29: TLabel;

Label30: TLabel;
- DBEdit25: TDBEdit;

DBEdit22: TDBEdit;

DBEdit23: TDBEdit;

DBEdit24: TDBEdit;.. 
DBNavigatorS: TDBNavigator;

TabSheetl2: TTabSheet;

GroupBoxS: TGroupBox;

Label11:TLabel;

Labell2: TLabel;

Labell 3: TLabel;

Labell4: TLabel;

29

---



Label15: TLabel;

DBEdit7: TDBEdit;

DBEdit8: TDBEdit;

DBEdit9: TDBEdit;

DBEditlO: TDBEdit;

DBEditl 1: TDBEdit;

DBNavigator4: TDBNavigator;

Group Box 1 O: TGroupBox;

Label3 l: TLabel;

GroupBox 11: TGroupBox;

Label32: TLabel;

Label33: TLabel;

Label34: TLabel;

Label3 5: TLabel;

DBEdit26: TDBEdit;

DBEdit28: TDBEdit;

DBEdit29: TDBEdit;

DBEdit27: TDBEdit;

DBNavigator6: TDBNavigator;

TabSheet13: TTabSheet;

GroupBox7: TGroupBox;

Label2 l: TLabel;

Label22: TLabel;

Label23: TLabel;

Label24: TLabel;

Label25: TLabel;

DBEditl 7: TDBEdit;

DBEdit18: TDBEdit;

DBEditl9: TDBEdit;

DBEdit20: TDBEdit;

DBEdit2 l: TDBEdit;

DBNavigator3: TDBNavigator;

Group Box 12: TGroupBox;

1,abel36: TLabel;

30



Group Box 13: TGroupBox;

Label3 7: TLabel;

Label38: TLabel;

Label39: TLabel;

Label40: TLabel;

DBEdit30: TDBEdit;

DBEdit31: TDBEdit;

DBEdit32: TDBEdit;

DBEdit33: TDBEdit;

DBNavigator7: TDBNavigator;

TabSheet3: TTabSheet;

PageControl4: TPageControl;

TabSheet14: TTabSheet;

DBGrid 1: TDBGrid;

DBChartl: TDBChart;

Series 1: TLineSeries;

Series2: TLineSeries;

Series3: TLineSeries;

TabSheet15: TTabSheet;

DBGrid2: TDBGrid;

DBChart2: TDBChart;

Line Series 1: TLineSeries;

LineSeries2: TLineSeries;

LineSeries3: TLineSeries;

TabSheet16: TTabSheet;

DBGrid3: TDBGrid;

DBChart3: TDBChart;..• 
LineSeries4: TLineSeries;

LineSeries5: TLineSeries;

LineSeries6: TLineSeries;

TabSheet4: TTabSheet;

Label71: TLabel;
PageControl5: TPageControl;

TabSheetl 7: TTabSheet;

31



Group Box 14: TGroupBox;

Label41: TLabel;

Label42: TLabel;

Label43: TLabel;

Label44: TLabel;

Label45: TLabel;

Label77: TLabel;

DBEdit34: TDBEdit;

DBEdit35: TDBEdit;

DBEdit36: TDBEdit;

DBEdit37: TDBEdit;

DBEdit38: TDBEdit;

DBNavigator8: TDBNavigator;

GroupBox20: TGroupBox;

Label78: TLabel;

Label79: TLabel;

Label80: TLabel;

Label81: TLabel;

Label82: TLabel;

Label 113: TLabel;

DBEdit64: TDBEdit;

DBEdit65: TDBEdit;

DBEdit66: TDBEdit;

DBEdit67: TDBEdit;

DBEdit68: TDBEdit;

DBNavigator14: TDBNavigator;

GroupBox27: TGroupBox;

Laoel120: TLabe1;

Labell 2 I: TLabe1;

Label 122: TLabel;

Label 123: TLabel;

Label124: TLabel;

Label125: TLabe1;

DBEdit97: TDBEdit;

32



DBEdit98: TDBEdit;

DBEdit99: TDBEdit;

DBNavigator21: TDBNavigator;

Edit89: TEdit;

Edit90: TEdit;

TabSheet18: TTabSheet;

Group Box 18: TGroupBox;

Label6 l: TLabel;

Label62: TLabel;

Label63: TLabel;

Label64: TLabel;

Label65: TLabel;

Label76: TLabel;

DBEdit54: TDBEdit;

DBEdit55: TDBEdit;

DBEdit56: TDBEdit;

DBEdit57: TDBEdit;

DBEdit58: TDBEdit;

DBNavigator12: TDBNavigator;

GroupBox21: TGroupBox;

Label83: TLabel;

Label84: TLabel;

Label85: TLabel;

Label~6: TLabel;

Label87: TLabel;

Label 109: TLabel;

.,DBEdit69: TDBEdit;

DBEdit70: TDBEdit;

DBEdit71: TDBEdit;

DBEdit72: TDBEdit;

DBEdit73: TDBEdit;

DBNavigator15: TDBNavigator;

GroupBox28: TGroupBox;

Label126: TLabel;

33



Label127: TLabel;

Label128: TLabel;

Label129: TLabel;

Label 130: TLabel;

Label 131: TLabel;

DBNavigator22: TDBNavigator;

DBEditl 00: TDBEdit;

DBEditl O 1: TDBEdit;

DBEditl02: TDBEdit;

Edit3: TEdit;

Edit5: TEdit;

TabSheetl 9: TTabSheet;

Group Box 15: TGroupBox;

Label46: TLabel;

Label47: TLabel;

Label48: TLabel;

Label49: TLabel;

Label50: TLabel;

Label75: TLabel;

DBEdit39: TDBEdit;

DBEdit40: TDBEdit;

DBEdit4 l: TDBEdit;

DBEdit42: TDBEdit;

DBEdit43: TDBEdit;

DBNavigator9: TDBNavigator;

GroupBox22: TGroupBox;

Label88: TLabel;

t'abel89: TLabel;

Label90: TLabel;

Label91: TLabel;

Label92: TLabel;

Labell l O: TLabel;

DBEdit74: TDBEdit;

DBEdit75: TDBEdit;

34



DBEdit76: TDBEdit;

DBEdit77: TDBEdit;

DBEdit78: TDBEdit;

DBNavigator16: TDBNavigator;

GroupBox29: TGroupBox;

Label132: TLabel;

Label133: TLabel;

Label134: TLabel;

Labell35: TLabel;

Labell 36: TLabel;

Labell37: TLabel;

DBEditl03: TDBEdit;

Edit7: TEdit;

DBEditl04: TDBEdit;

DBEditl05: TDBEdit;

DBNavigator23: TDBNavigator;

Edit93: TEdit;

TabSheet20: TTabSheet;

Group Box 17: TGroupBox;

Label56: TLabel;

Label57: TLabel;

Label58: TLabel;

Label59: TLabel;

Label60: TLabel;

Label74: TLabel;

DBEdit49: TDBEdit;

DBEdit50: TDBEdit;.. 
DBEdit51: TDBEdit;

DBEdit52: TDBEdit;

DBEdit53: TDBEdit;
DBNavigatorl 1: TDBNavigator;

GroupBox23: TGroupBox;

Label93: TLabel;

Label94: TLabel;

35



Label95: TLabel;

Label96: TLabel;

Label97: TLabel;

Labell 11: TLabel;

DBEdit79: TDBEdit;

DBEdit80: TDBEdit;

DBEdit81: TDBEdit;

DBEdit82: TDBEdit;

DBEdit83: TDBEdit;

DBNavigatorl 7: TDBNavigator;

GroupBox30: TGroupBox;

Label138: TLabel;

Label139: TLabel;

Label140: TLabel;

Label 141: TLabel;

Label142: TLabel;

Label 143: TLabel;

DBEditl 06: TDBEdit;

Edit9: TEdit;

DBEdit107: TDBEdit;

DBEdit108: TDBEdit;

DBNavigator24: TDBNavigator;

Edit92: TEdit;

TabSheet2 l: TTabSheet;

GroupBoxl6: TGroupBox;

Label5 l: TLabel;

Label52: TLabel;,. 
Label53: TLabel;

Label54: TLabel;

Label55: TLabel;

Label73: TLabel;

DBEdit44: TDBEdit;

DBEdit45: TDBEdit;

DBEdit46: TDBEdit;

36



DBEdit47: TDBEdit;

DBEdit48: TDBEdit;

DBNavigatorlO: TDBNavigator;

GroupBox24: TGroupBox;

Label98: TLabel;

Label99: TLabel;

Label 100: TLabel;

Labell O 1 : T,Label;

Labell02: TLabel;

Labell 12: TLabel;

DBEdit84: TDBEdit;

DBEdit85: TDBEdit;

DBEdit86: TDBEdit;

DBEdit87: TDBEdit;

DBEdit88: TDBEdit;

DBNavigator18: TDBNavigator;

GroupBox31: TGroupBox;

Labell44: TLabel;

Labe1145: TLabel;

Labell46: TLabel;

Label 14 7: TLabel;

Labe1148: TLabel;

Label149: TLabel;

DBEditl 09: TDBEdit;

DBEditl 12: TDBEdit;

DBEditl 13: TDBEdit;

DBNavigator25: TDBNavigator;

EditliO: TEdit;

Editl 11: TEdit;

TabSheet22: TTabSheet;

Group Box 19: TGroupBox;

Label66: TLabel;

Label67: TLabel;

Label68: TLabel;

37



Label69: TLabel;

Label70: TLabel;

Label72: TLabel;

DBEdit59: TDBEdit;

DBEdit60: TDBEdit;

DBEdit6 l: TDBEdit;

DBEdit62: TDBEdit;

DBEdit63: TDBEdit;

DBNavigatorl3: TDBNavigator;

GroupBox25: TGroupBox;

Label 103: TLabel;

Labell04: TLabel;

Labell05: TLabel;

Labell 06: TLabel;

Labell07: TLabel;

Labell08: TLabel;

DBEdit89: TDBEdit;

DBEdit90: TDBEdit;

DBEdit91: TDBEdit;

DBEdit92: TDBEdit;

DBEdit93: TDBEdit;

DBNavigatorl 9: TDBNavigator;

GroupBox26: TGroupBox;

Labell 18: TLabel;

Labell 19: TLabel;

Labell 14: TLabel;

Labell 15: TLabel;

Labell 16: TLabel;

Labell 17: TLabel;

DBEdit94: TDBEdit;

Editl: TEdit;

DBEdit95: TDBEdit;

DBEdit96: TDBEdit;

DBNavigator20: TDBNavigator;

38



Edit66: TEdit;

TabSheet6: TTabSheet;

DBGrid5: TDBGrid;

DBChart4: TDBChart;

BarSeries 1: TBarSeries;

BarSeries2: TBarSeries;

BarSeries3: TBarSeries;

Series4: TBarSeries;

Series5: TBarSeries;

TabSheet7: TTabSheet;

DBGrid4: TDBGrid;

DBChart5: TDBChart;

BarSeries4: TBarSeries;

BarSeries5: TBarSeries;

BarSeries6: TBarSeries;

BarSeries7: TBarSeries;

BarSeries8: TBarSeries;

TabSheet8: TTabSheet;

GroupBox2: TGroupBox;

PageControl2: TPageControl;

TabSheet9: TTabSheet;

GroupBox3: TGroupBox;

Label5: TLabel;

Label4: TLabel;

Label3: TLabel;

Label2: TLabel;

Label6: TLabel;

EditTurkish:_ TDBEdit;

EditSterling: TDBEdit;

EditDollar: TDBEdit;

EditEuro: TDBEdit;

DBEdit6: TDBEdit;

DBNavigator: TDBNavigator;

TabSheetlO: TTabSheet;

39



GroupBox4: TGroupBox;

Labell: TLabel;

Label7: TLabel;

Label8: TLabel;

Label9: TLabel;

Labell O: TLabel;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

DBNavigatorl: TDBNavigator;

Button2: TButton;

Button6: TButton;

Image3: Timage;

Image4: Timage;

Image5: Timage;

Image6: Timage;

Image?: Timage;

Image8: Timage;

Image9: Timage;

ImagelO: Timage;

Image 11: Timage;

Imagel2: Timage;
procedure DBEdit23Change(Sender: TObject);

procedure DBEdit29Change(Sender: Tübject);

procedure DBEdit32Change(Sender: TObject);
.,. procedure Editl 11 Change(Sender: Tübject);

·---- -------
procedure Edit90Change(Sender: TObject);

procedure Edit5Change(Sender: Tübject);

procedure Edit93Change(Sender: Tübject);

procedure Edit92Change(Sender: Tübject);

procedure Edit66Change(Sender: Tübject);

·procedureButtonlClick(Sender: TObject);

40



procedure Button3Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var
MAINMENUCHANGEEXCHANGESYSTEM:

TMAINMENUCHANGEEXCHANGESYSTEM;

implementation

uses REPORT, MENU, MENU2, REPORT4, REPORTS;

{$R *.dfm}

procedure TMAINMENUCHANGEEXCHANGESYSTEM.DBEdit23Change(Sender:

TObject);

var

a,b,c:Currency;
begin _ _ _ _ __ --·

if (DBEdit22.gettextlen=O)or (DBEdit23.gettextlen=O)then

begin
showmessage('please enter value on edits');

exit;

end;

begin

41 



a:=strtoFloat(DBEdit22.text);

b:=strtoFloat(DBEdit23.text);

c:=a*b;

DBEdit24.text:=Floattostr( c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.DBEdit29Change(Sender:

TObject);

var

a,b,c:Currency;

begin
if (DBEdit28.gettextlen=O) or (DBEdit29.gettextlen=O) then

begin
showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEdit28.text);

b:=strtoFloat(DBEdit29.text);

c:=a*b;

DBEdit27 .text:=Floattostr( c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.DBEdit32Change(Sender:

TObject);

var

a,b,c:Currency;

begin
if (DBEdit3 l .gettextlen=O) or (DBEdit32.gettextlen=O) then

begin
. showmessage('please enter value on edits');

42



procedure TMAINMENUCHANGEEXCHANGESYSTEM.Editl 11 Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEdit109.gettextlen=O)OR (Editl 10.gettextlen=O) or (Editl 11.gettextlen=O) then

begin

showmessage('please enter value on edits');

exit;

end;

begin

a:==strtoFloat(DBEditl 09 .text);

b:=strtoFloat(Editl 10.text);

d:=strtoFloat(Editl 11.text);

c:= (a* b)/d;

exit;

end;

begin

a:=strtoFloat(DBEdi-t3 l .text);

b:=strtoFloat(DBEdit32.text);

c:=a*b;

DBEdit33.text:=Floattostr(c);

end;

end;

.. 
DBEditl 12.text:=Floattostr(c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit90Change(Sender:

TObject);

43



DBEdit98.text:=Floattostr( c);

end;

end;

VAR

a,b,c,d:CURRENCY;

begin
if (DBEdit97. gettextlen=O )OR (Edi t89. gettextlen=O) or (Edit90. gettextlen=O) then

'begin
showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEdit97 .text);

b:=strtoFloat(Edit89.text);

d:=strtoFloat(Edit90.text);

c:= (a* b)/d;

//procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit4Change(Sender:

Tübject);

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit5Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEdit 100.gettextlen=O)OR (Edit3 .gettextlen=O) or (Edit5. gettextlen=O) then

.. 
begin

showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEditl 00.text);

b:=strtoFloat(Edit3 .text);

44



d:=strtoFloat(Edit5. text);

c:= (a* b)/d;

DBEditl Ol .text:=Floattostr( c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit93Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEditl 03 .gettextlen=O)OR (Edit7 .gettextlen=O) or (Edit93 .gettextlen=O) then

begin

showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEditl 03 .text);

b:=strtoFloat(Edit7 .text);

d:=strtoFloat(Edit93 .text);

c:= (a* b)/d;

DBEditl 04.text:=Floattostr( c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit92Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEditl 06.gettextlen=O)OR (Edit9.gettextlen=O) or (Edit92.gettextlen=O) then

45



exit;

begin
showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEdit l 06 .text);

b:=strtoFloat(Edit9.text);

d:=strtoFloat(Edit92.text);

c:= (a* b)/d;
DBEditl 07 .text:=Floattostr( c);

end;
-

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit66Change(Sender:

TObject);

VAR 
a,b,c,d:CURRENCY;

begin
if (DBEdit94.gettextlen=O)OR (Editl .gettextlen=O) or (Edit66.gettextlen=O) then

begin
showmessage('please enter value on edits');

end;

begin

a:=strtoFloat(DBEdit94.text);

b:=strtoFloat(Edit l .text);

d:=strtoFloat(Edit66.text);

c:= (a* b)/d;

DBEdit95 .text:=Floattostr( c);

end;

end;

46



procedure TMAINMENUCHANGEEXCHANGESYSTEM.ButtonlClick(Sender:

TObject);

begin
//REPOR TDO LLAR. QuickRep l .Preview;

SELCHANGESYSTEMPREVIEW.SHOW;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button3Click(Sender:

TObject);

begin
BUYCHANGESYSTEMPREVIEW.SHOW;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button4Click(Sender:

TObject);

begin
BUYCHANGESYSTEM.QuickRep l .Preview;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button5Click(Sender:

TObject);

begin
SELLEXCHANGESYSTEM.QuickRep l .Preview;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button6Click(Sender:

TObject);

begin
SELLEXCHANGESYSTEM.QuickRep l .Print;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button2Click(Sender:

TObject);

begin

47 



BUYCHANGESYSTEM.QuickRep I .Print;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.ForrnCreate(Sender:

TObject);

begin

end;

end.

3.3 BUY CHANGE SYSTEM PREVIEW 

unitMENU2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls;

type
TBUYCHANGESYSTEMPREVIEW = class(TForrn)

Panell: TPanel;

GroupBoxl: TGroupBox;

Button3: TButton;.. 
Button2: TButton;

Buttonl: TButton;

Panel2: TPanel;

GroupBox2: TGroupBox;

Panel3: TPanel;

GroupBox3: TGroupBox;

48



var
BUYCHANGESYSTEMPREVIEW: TBUYCHANGESYSTEMPREVIEW;

Button4: TButton;

Buttons: TButton;

Button6: TButton;
procedure Buttonl Click(Sender: TObject);

procedure Button2Click(Sender: Tübject);

procedure Button3Click(Sender: Tübject);

procedure Button4Click(Sender: Tübject);

procedure Button5Click(Sender: Tübject);

procedure Button6Click(Sender: Tübject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

implementation

uses REPORTSDU, REPORTSDS, REPORTSE, REPORTSES, REPORTSSE,

REPORTS SD;

{$R *.dfm}
procedure TBUY CHAN GESYSTEMPREVIEW.Button 1 Click(Sender: TObject);

begin
EXCHANGSYSTEMDOLLARTOEURO.QuickRepl .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button2Click(Sender: TObject);

begin
EXCHANGESYSTEMDOLLARSTERLING.QuickRepl.Preview;

end;

49 



procedure TBUYCHANGESYSTEMPREVIEW.Button3Click(Sender: TObject);

begin

EXCHANGEEUROSYSTEM.QuickRepl .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button4Click(Sender: TObject);

begin

EXCHANGEEUROS.QuickRep 1 .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button5Click(Sender: TObject);

begin
EXCHANGESYSTEMSTERLINGSTERLING.QuickRepl.Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button6Click(Sender: TObject);

begin
EXCHANGESYSTEMSTERLINGDOLLAR.QuickRepl.Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.FormCreate(Sender: TObject);

begin

end;

end .

.. 

50



3.4 EXCHANGE SYSTEM STERLING 

unit REPORTSSE;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGESYSTEMSTERLINGSTERLING = class(TForm)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

. QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Table1: TTable;
procedure FormCreate(Sender: TObject);

private•. 
--- - -- { Frivate declarations }

public
{ Public declarations }

end;

var

51



52

3.5 CHANGE SYSTEM STERLING 

implementation

{$R *.dfm}

procedure TEXCHANGESYSTEMSTERLINGSTERLING.FormCreate(Sender:

Tübject);

begin

end;

end.

3.6 EXCHANGE SYSTEM STERLING DOLLAR 

unit REPORTSSD;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
'

TEXCHANGESYSTEMSTERLINGDOLLAR = class(TForm). 
Quicklcep t: TQüickkep;

PageF ooterBand 1: TQ RBand;

QRExprl: TQRExpr;

ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;



QRLabel3: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Tablel: TTable;

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

EXCHANGESYSTEMSTERLINGDOLLAR:

TEXCHANGESYSTEMSTERLINGDOLLAR;

implementation

{$R *.dfm}

procedure TEXCHANGESYSTEMSTERLINGDOLLAR.FormCreate(Sender:

Tübject);

begin

end;

end.

53



3.7 EXCHANGE SYSTEM DOLLAR EURO 

unit REPORT5ED;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGESYSTEMDOLLAREURO = class(TForm)

QuickRep 1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Table 1: TTable;

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

54



55

3.8 CHANGE SYSTEM DOLLAR EURO 

TEXCHANGESYSTEMDOLLAREURO;

implementation

{$R *.dfm}

procedure TEXCHANGESYSTEMDOLLAREURO.FormCreate(Sender: TObject);

begin

end;

end.

3.9 EXCHANGE EURO SYSTEM 

unit REPORT5E;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGEEUROSYSTEM = class(TFo-rm)-- -

Quick.Rep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColumnHeaderBandl: TQRBand;

QRLabel1: TQRLabel;



QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBand 1: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Table 1: TTable;

procedure FormCreate(Sender: Tübject);

private

{ Private declarations }

public

{ Public declarations }

end;

var
EXCHANGEEUROSYSTEM:TEXCHANGEEUROSYSTEM;

implementation

{$R *.dfm}

procedure TEXCHANGEEUROSYSTEM.FormCreate(Sender: TObject);

begin

end;

end."

56



3.10 EXCHANGE SYSTEM DOLLAR STERLING 

unit REPORTSDS;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGESYSTEMDOLLARSTERLING = class(TForm)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;
ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Tablel: TTable;
procedure ForrnCreate(Sender: TObject);

private
{ Private declarations }.. 

public
{ Public declarations }

end;

var

57



{$R *.dfm}

3.11 CHANGE SYSTEM DOLLAR STERLING 

TEXCHANGESYSTEMDOLLARSTERLING;

implementation

procedure TEXCHANGESYSTEMDOLLARSTERLING.FormCreate(Sender:

TObject);

begin

end;

end.

3.12 SELL EXCHANGE SYSTEM 

unit REPORTS;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls; .. 

type •
TSELLEXCHANGESYSTEM = class(TForm)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColurnnHeaderBandl: TQRBand;

58



59

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

QRLabel4: TQRLabel;

QRLabelS: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRExprS: TQRExpr;

QRExpr6: TQRExpr;

QRLabel6: TQRLabel;

Tablel: TTable;
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
SELLEXCHANGESYSTEM: TSELLEXCHANGESYSTEM;

implementation

{$R *.dfm}

procedure TSELLEXCHANGESYSTEM.FormCreate(Sender: Tübject);

begin

end;

end.



end;

3.13 EXCHANGE EURO TO STERLING 

unit REPORTSES;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGEEUROS == class(TForm)

QuickRep1: TQuickR.ep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;
ColumnHeaderBandl: TQRBand;

QRLabel1: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBand1: TQRBand;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

_ QRLabel4: TQRLabel;

Table1: TTable;

QRExpr2: TQRExpr;
procedure FormCreate(Sender: Tübject);

private
• 
{ Private declarations }

public
{ Public declarations }

var

60



..•. 

NEAR EAST UNIVERSITY 

'Faculty of Engineering 

Department of Computer Engineering 

DEVELOPMENT DELPHI PROGRAM 
FOR EXCHANGE AND CHANGE SYSTEM 

Graduation Project 
COM-400 

Student: Ismail Mekki 

Supervisor: Mr. Ümit iLHAN 

Nicosia 2003 - 2004 



ACKNOWLEDGEMENTS 

to be capable to cover the requirements of the working life. This role is concerning with 

qualifying the student up to he level that the society needs. However, this role cannot be 

accomplished unless there is a qualified leader and sophisticated coach. 

Fortunately, Mr. Umit ILHAN was the main reason of my success in (his project, 

and thus, he deserves my all thanks, gratitude, and my respect due to his support and wise 

advice. 

I appreciate all the effort that he provided during the preparation of this project. 

Therefore, firstly, I would like to dedicate this project my family because of their 

unlimited support during my life. 

Secondly, I would like to dedicate it to my supervisor Mr. Umit ILHAN because of 

his wise supervision on this project and for his wide knowledge. 

Finally, I appreciate all the effort aids of my friends during the preparation of this 

project." 

With all due respect 

I 



ABSTRACT 

This program is designed for the change and exchange markets where the

individuals deal with the currencies and barter them. This system is based on BORLAND

DELPHI 6 programming language. All the criterions of this system are taken according

upon the request of the Near East Bank and all the features of this software can be adjusted

according to the desire of the customer.

All the screens that will appear in the usage of this program will be illustrated in the

coming chapters in details. The calculations and the mathematical operations that this

program applies are explained in details in the appendix at the end of this report. This

program is designed to find out the exact profit of the company by using graphical charts

and by showing statues reports at any time. Three hard currencies are taken into

consideration in this system and they are compared with the Turkish lira, which is the local

currency. The values of these hard currencies will be taken from the stock markets that the

government decides daily according o the daily economic level. The decision maker in

NEB will determine the amount of the profit that he desires and the total revenue will be

calculating by the software. A navigation bar is located in the bottom of each screen for

adding, deleting, saving ... etc.

II



1.1. Overview

1.2. Economic Analysis of Floating Exchange Rate System

1.2 a Introduction

1.2 b Opportunities From Around World

1.3 Delphi Programming

1.4. Database Programming

1.5. Borland Database Engine (BOE)

1.6. Graphical Data-Aware Control

1.7. The clintdataSet Component

1.8 Classic BOE component

1.9 Tables and Queries

1.1 O DBNavigator and Dataset Actions

1.11 Text-Based Data-Aware Control

L 12 Navigator a Dataset

2

2 

2

5

7

8

8

9

10

10

11

12

12

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

ABSTRACT 

TABLE OF CONTENTS 

LIST OF FIGURES 

CHAPTER ONE: INTRODUCTION 

I 

II 

III 

·v 

CHAPTER TWO: THE DESCRIPTION OF THE SYSTEM 

2.2 Change System

2.3. Exchange curve

2.4. Exchange System

2.5. Exchange Bar Graphs

14

14

18

19

21

22 

"' 2.1 Main -Merıu Screen - - -

III 



CONCLUSION 

SYSTEM REQUIREMENTS 

REFERENCES 

75

75

76 

2.6. Adding the Exchange rates

2.7. Database. Desktop

23
25

3.1. Data Flow Diagram

3.2. Main Menu
3.3. Buy Change System Preview

3.4. Exchange System Sterling

3.5. Change System Sterling
3.6. Exchange System Sterling Dollar

3.7. Exchange System Dollar Euro

3.8. Change System Dollar Euro

3.9. Exchange System Euro
3.1 O. Exchange System Dollar Sterling

3.11. Change System Dollar Sterling

3.12. Sell Exchange System
3 .13. Exchange Euro to Steri ing

3.14. Exchange Euro
3.15. Exchange System Dollar to Euro

3.16. Buy Change System preview

3.17. Buy Change System

3.18. Buy Change System
3.19. Change System Sterling

3.20. Change System

3 .21. Report Dollar
3.22. Sell Change System Preview

26

26

27

48

51

52

52

54

55

55
57
58

58

60 

61
61

63

66

67 

68 

69

71

72

CHAPTER THREE: DATA SOURCE 

IV



LIST OF FIGURES 

CHAPTER II
CHANGE AND EXCHANGE SYSTEMS

2.1 Main Menu Screen

2.2 Buy change system preview

2.3 Exchange report

2.4 Exchange rates

2.5 Change System Preview

2.6 Exchange system Preview

2.7 Change System

2.8 Change Curve

2.9 Change Curve

2.1O Change Curve

2.11 Exchange System

2.12 Exchange Bar Graphs a

2.13 Exchange Bar Graphs b

2.14 Adding the Exchange Rates (Selling Rates)

2.15 Adding the Exchange Rates (Foreign Currency Rates)

2.16 Database Desktop

CHAPTER III

DAJASOURCE

3.1 Data Flow Diagram

V

14

15

15

16

17

17
18

19

20

20

21

22

23

23

24

25

26



INTRODUCTION 

1.1 Overview 

Many activities are done daily in the stock market. Most of these activities are

concerning with the transactions and exchanging the goods and services. Since the

market is the place that the buyers and sellers exchange goods and services, then the

currencies are considered as a good that the people buy and sell within the market.

As it is known, the most currencies that are used widely are those currencies that

are called the hard currencies such as US Dollar, UK sterling, and Euro. Therefore, as

we are concerning with controlling the activities in the market by issuing the required

software programs that include all features of controlling the business by means of

scientific methods in order to be used in a proper and easy way.
Using any programming language to create certain software gives you the

opportunity of gaining a good experience and it will promote your approaches of

analyzing the aspects of any given project.
Therefore, any software needs an adequate and sufficient programming language

that helps us to set up all the applications and all the functions that include the features

of organizing and sustaining our business.
The role of a computer engineer requires an adequate ability of analyzing and

dealing with all the aspects of any project in order to be capable to create and issue

certain software that controls the business. Therefore, our role as an engineer is to not

only deal with the hardware, but also deal with creating a software programs. Thus, the

role of an engineer is to control the technical specifications of the firm and to know

every single aspect that is necessary to measure the level of the success.

1 



1.2 Economic Analysis of Floating Exchange Rate Systems 

1.2.a Introduction 
Associated foreign exchange is looking for experienced foreign exchange sales

.. 
professionals! Successful candidates will be strongly motivated individuals who can

identify and cultivate potential corporate clients with international payment needs.

Strong communication skills, experience in the foreign exchange field and experience in

relationship based selling are a must. Successful candidates will be responsible for

opening, maintaining and growing accounts through relationship building, identifying

customer needs and cross-selling appropriate services.

1.2 b Opportunities from Around the World 
Over the last three decades the foreign exchange market has become the world's

largest financial market, with over $1.5 trillion USD traded daily. The primary market

for currencies is the 24-hour Interbank market. The Interbank market literally follows

the sun around the world, moving from major banking centers of the United States to
.,,,, 

Australia and New Zealand to the Far East, to Europe and finally back to the United

States. With the large minimum transaction sizes and often-stringent financial

requirements, banks, hedge funds, major currency dealers and the occasional high net­

worth individual speculator were the principal participants. These large traders were

able to take advantage of the many benefits offered by the forex market vs. other

markets including fantastic liquidity and the strong trending nature of the world's

primary currency exchange rates.
The business section of any newspaper will have a table of spot exchange rates.

These are the rates at which a person could have bought other currencies or foreign

Exchange, such as the English Pound, French Franc, or the new European Euro. The

Prices of foreign currencies can be determined in two major types of exchange rate

Systems. In the United States, the dollar's exchange rates are determined by the•
"" Marketplace, i.e., by supply and demand. This type of system is called a floating -- - - -

Exchange rate system. In other countries, governments set the price of their currencies

With respect to other countries. They then buy or sell foreign exchange at the prices

They've set. This is called a fixed exchange rate system. The economic effects of these

Two systems can be very different. However, in either system the underlying forces

Influencing the value of a country's currency remain the same. Due to possible

2 



confusion of being able to quote different currencies in terms of Each other, e.g., $/£ or

£/$, we need to explicitly define an exchange rate. An exchange Rate is, therefore, the

domestic cost of a unit of foreign exchange. For example, from the US perspective the

price of the English Pound would be denominated as the number of US dollars per

pound, or$/£. As noted above, the exchange rate in a floating exchange rate system is

Determined by market forces. Our definitiori of the exchange rate defines the market as

The market for foreign exchange. In this market we have demanders and suppliers of

Foreign currencies willing to pay and accept dollars in return for these currencies. We

Will in turn discuss the demand and supply of foreign exchange. Foreign Exchange

Demand The demand for foreign exchange is a derived demand. With the exception of

currency Collectors, the demand for foreign exchange is due to people's desire to use it

in the Purchase of foreign goods or financial assets. Foreign exchange demand is,

therefore, Highly sensitive to changes in these desires.

In order to understand changes in the demand for foreign exchange, we will need

to Discuss its underlying forces. These are the demand for foreign goods and services

and the demand for foreign financial assets. The supply of foreign exchange has at its

roots the same conceptual basis as Demand, only it is from the foreign perspective.

Foreign currency is supplied to the Foreign exchange market when foreigners exchange

their currency for dollars in order to Buy US goods or financial assets. Equivalently, the

supply of foreign exchange is Nothing more than a mirror image of the foreign demand

for US currency. Exchange is the mirror of the supply of dollars to the foreign exchange

market. One question which might arise is which foreign exchange Market. New York,

London, Frankfort and Tokyo are Major financial centers with large foreign exchange

markets. The answer as to which market is all of them. The first rule of business is to

buy low and sell high. Should exchange rates be different across different financial

centers, then the opportunity for arbitrage profits occurs. Currency dealers will buy low. 
in one center and sell high in another, driving exchange rates into equality Across the

' different markets. For example, should the Swiss Franc be at a lower price (in terms of

$) in London and at a higher price in New York, then-the dealers will increase the

demand for the Swiss Franc in London, driving up its price, and increase its supply in

New York, driving down its price there. This continues until the price is the same in

both places. The major questions to be addressed are how exchange rates determined are

and what the forces which influence them are. In Figure 1, the equilibrium exchange

rate (e) is the one where the quantity demanded is equal to the quantity supplied for

3



foreign exchange. As with most markets, the price changes in order to equilibrate the

market. When quantity demanded exceeds quantity supplied, and then the exchange rate

will rise. If the quantity supplied is greater then quantity demanded, the exchange rate

falls. What does it mean when the exchange rate rises or falls? As we have defined the

Exchange rate($/£), when the exchange rate rises, the value of the dollar decreases or

depreciates. It now takes more dollars to buy an English pound than it did before the

Change in the exchange rate. Fewer foreign goods can now be purchased for a given

number of dollars. The reverse is also true. As the exchange rate falls, the dollar cost of

foreign exchange falls, increasing the dollar's value. This is termed an appreciation of

the dollar. More foreign exchange rate$/£ Foreign exchange Sfx or D$ Dfx or S$.

Market should force lead to a change in either the supply or demand for foreign

exchange then the exchange will change accordingly to re-equilibrate the market. The

basic notion is that exchange rates are sensitive to differential inflation rates across

Countries. Should the domestic inflation rate rise at a rate greater than our trading

Partners, then at a given exchange rate, the price of domestic goods will be rising

relative To foreign goods. This will, in tum, increase the demand for foreign goods

(imports are Now cheaper in domestic currency terms) and decrease the demand for

domestic exports (Domestic exports are now more expensive in foreign currency terms).

This results in an Increase in the demand for foreign exchange, as well as a decrease in

the supply of Foreign exchange.

This is a long-run effect because of the Law of One Price. This concept states

that in the Long run the price of tradable goods must be the same across countries. If

this was not The case, then the opportunity for arbitrage profits, buying low in one

country and selling High in another, would result in a movement in the exchange rate

bringing about the Equalization. For example, suppose Argentine wheat, at the

prevailing exchange rate, is cheap in US Dollars. As North Americans buy more and

more Argentine wheat, they increase the Demand for the Argentine currency, driving up

its value, thus making wheat more Expensive in dollar terms. The exchange rates which.• 
would prevail under the Law of One Price are called purchasing power parity exchange

rates (PPP). While these do not exist in reality (there are many other factors affecting

exchange rates) there is an underlying pressure moving exchange rates in this fashion.

PPP exchange rates are used in comparing the economic performance between

countries. The World Bank compares countries in their World Development Report 

using a PPP exchange rate. Medium Term - Differential Growth Rates As an economy

4 



grows, its demand for imports will also grow. As income increases, some portion of that

increase will be spent on imported goods. In the jargon of macroeconomics, the

proportion of the additional dollar of income spent on imports is called the marginal

propensity to import. Assume that the marginal propensity to import is the same across

countries. Should a country's economy grow faster than its trading partners, then its

demand for imports will also be growing faster? In the context of Figure 4, this is

represented by increases in both the demand and supply of foreign exchange, but the

demand would increase by more. This would result in a slight depreciation of the

domestic currency. Short-Run - Differential Interest Rates This factor has become

extremely important as countries have liberalized their economies, allowing the flow of

financial capital into and out of their countries. It has played an important role in the

East Asian and Mexican Peso financial crises. Exchange rate$/£ Foreign exchange.

1.3 Delphi Programming 
Delphi 5 provided new features to the Object Inspector, and Delphi 6 includes

even more additions to it. As this is a tool programmer's use all the time, along with the

editor and the Form Designer, its improvements are really significant.
The most important change in Delphi 6 is the ability of the Object Inspector to

expand component references in-place. Properties referring to other components are

now displayed in a different color and can be expanded by selecting the+ symbol on the

left, as it happens with internal subcomponents. You can then modify the properties of

that other component without having to select it.
NÖTE This interface-expansion feature also supports subcomponents, as

demonstrated by the new Labeled Edit control. The Form Designer
TIP A related feature of the Object Inspector is the ability to select the

component referenced by a property. To do this, doµble-click the property value with

the left mouse button while keeping the Ctrl key pressed. For example, if you have a.• 
Main Menu component in a form and you are looking at the properties of the form in

the Object Inspector, you can select the Main Menu component by moving to the Main

Menu property of the form and Ctrl+double-clicking the value of this property. This

selects the main menu indicated as the value of the property in
the Object Inspector. Here are some other relevant changes of the Object

Inspector: The list at the top of the Object Inspector shows the type of the object and

5 



an be removed to save some space (and considering the presence of the Object Tree

View). The properties that reference an object are now a different color and may be

expanded without changing the selection. You can optionally also view read-only

properties in the Object Inspector. Of course, they are grayed out.. The Object Inspector

has a new Properties dialog box which allows you to customize the colors of the various

types of properties and the overall behavior of this window.
The Project Manager doesn't provide a way to set the options of two different

projects at one time. What you can do instead is invoke the Project Options dialog from

the Project Manager for each project. The first page of Project Options (Forms) lists the

forms that should be created automatically at program startup and the forms that are

created manually by the program.
The next page (Application) is used to set the name of the application and the

name of its Help file, and to choose its icon. Other Project Options choices relate to the

Delphi compiler and linker, version information, and the use ofrun-time packages.

There are two ways to set compiler options. One is to use the Compiler page of

the Project Options dialog. The other is to set or remove individual options in the source

code with the {$X+}or {$X-}commands, where you'd replaceXwith the option you

want to set. This second approach is more flexible, since it allows you to change an

option only for a specific source-code file, or even for just a few lines of code. The

source-level options override the compile-level options.
All project options are saved automatically with the project, but in a separate file

with a .DOF extension. This is a text file you can easily edit. You should not delete this

file if you have changed any of the default options. Delphi also saves the compiler

options in another format in a CFG file, for command-line compilation. The two files

have similar content but a different format: The dee command-line compiler, in fact,

cannot use .DOF files, but needs the .CFG format. Another alternative for saving

compiler options is to press Ctrl+O+O (press the O key twice while keeping Ctrl. 
pressed). This inserts, at the top of the current unit, compiler directives that correspond

to the current project options, as in the following listing: {$A +,B-,C+,D+,E-,F­ 

,G+,H+,l+,J+,K-,L+,M-,N+,0+,P+, Q-,R-,S-, T-, U-, V+, W-,X+, Y+,ZI} 
Memory management in Delphi is subject to three rules: Every object must be

created before it can be used; every object must be destroyed after it has been used; and

every object must be destroyed only once. Whether you have to do these operations in

6



your code, or you can let Delphi handle memory management for you, depends on the

model you choose among the different approaches provided by Delphi.

Delphi supports three types of memory management for dynamic elements (that

is, elements not in the stack and the global memory area):

. Every time you create an object explicitly, in the code of your application, you

should also free it. If you fail to do so, the memory used by that object won't be released

for other objects until the program terminates .

. When you create a component, you can specify an owner component, passing

the owner to the component constructor. The owner component (often a form) becomes

responsible for destroying all the objects it owns. In other words, when you free the

form, it frees all the components it owns. So, if you create a component and give it an

owner, you don't have to remember to destroy it. This is the standard behavior of the

components you create at design time by placing them on a form or data module .

. When you allocate memory for strings, dynamic arrays, and objects referenced

by interface variables, Delphi automatically frees the memory when the reference goes

out of scope. You don't need to free a string: when it becomes unreachable, its memory

is released.

1.4 Database Programming 
Delphi's support for database applications is one of the key features of the

programming environment. Many programmers spend most of their time writing data­

access code, which needs to be the most robust portion of a database application. This

chapter provides an overview of Delphi's extensive support for database programming.

What you will find here is a discussion of the theory of database design. I am assuming

that you already know the fundamentals of database design and have already designed

the structure of a database. I will not look into database-specific problems; my goal is to

help you understand how Delphi supports database access. I will begin with an

explanation of the alternatives Delphi offers in terms of data access, and then I will

provide an overview of the database components that I have used in my program. This

chapter includes an overview of the TDataSet class, an in-depth analysis of the TField

components, and the use of data-aware controls. The following chapters will provide

information on more advanced database programming topics, such as client/server

programming, the use of dbGo, dbExpress, and Inter Base Express

7



1.5 Borland Database Engine (BDE) 
The BDE originated with Paradox, well before Delphi existed, and was extended

by Borland to support other local databases and many SQL servers. The BDE has direct

access to dBASE, Paradox, ASCII, FoxPro, and Access tables. A series of drivers

(called SQL Links and available only in Delphi Enterprise) allows access to some SQL

servers, including Oracle, Sybase, Microsoft, Informix, InterBase, and DB2 servers. If

you need access to a different database, the BDE can also interface with ODBC drivers.

1.6 Graphical Data-Aware Controls 
Finally, Delphi includes two graphical data-aware controls:

• DBImage, which is an extension of an Image component that shows a picture stored in

a BLOB field (provided the database use a graphic format that the Image component

supports, such as BMP and JPEG). The output of the Cust- Lookup example, with the

BLookupComboBox showing multiple fields in its drop-down list.

• DBChart is a data-aware business graphic component or the data-aware version of the

TeeChart control built by David Bemeda. To demonstrate the use of the DBChart

control, I have added this component to a simple example showing a data grid. The

application, called ChartDB, shows a pie chart with the surface of each country of the

COUNTRY.DB table. The program has almost no code, as all the settings can be done

using the specific component editor, which has several options but is quite easy to use.

Here are some of the key properties of the component, taken from the form description:

object DBChartl: TDBChart

Legend.Visible= False

Align= alClient

object Series1: TPieSeries

Marks.ArrowLength = 8

Marks.Visible= True

DataSource = Table 1

XLabelsSource = 'Name' 

ExplodeBiggest = 3

OtherSlice.Style = poBelowPercent

OtherSlice.Text = 'Others' 

8



OtherSlice.Value = 2

PieValues.ValueSource = 'Area' 

end;

end.

What I have done is show the area field as the data source for the pie chart (the

PieValues Value Source property of the series), use the name field for the labels (the

XLabelsSource property of the series), and condense all the countries with a value

below 2 percent in a single section indicated as Others (the OtherSlide subproperties).

As a minor addition to the code, I have added two radio buttons you can use to toggle

between the area and the population. The code of the two radio buttons simply sets the

source of the series, after casting it to the proper series type, as in:

procedure TForml .RadioPopulationClick(Sender: Tübject);

begin 

DBChartl.Title.Text [O] := 'Population of Countries'; 

(DBChartl.Series [O] as TPieSeries).PieValues.ValueSource := 'Population'; 

end;

1.7 The ClientDataSet Component 
Finally, there is a component derived from TDataSet that has a peculiar behavior

and can be combined with other data-access components. The ClientDataSet

component, in fact, is a dataset accessing data kept in memory. The in-memory data can

be totally temporary (lost as you exit the program), saved to a local file as a snapshot,

and imported by another dataset using a Provider 'component. This last situation is

certainly the most common: You can hook a ClientDataSet to any other local dataset, or

use Borland's multitier support (discussed in Accessing a Database: BDE, dbExpress,

and other alternatives "Multitier Database Applications with DataSnap") to retrieve data
"' _ from a dataset hosted by a different application, possibly running on a separate

computer. The ClientDataSet component becomes particularly useful if the data-access

components you are using provide limited or no caching. This is particularly true of the

new dbExpress engine, but can equally help you when using the BDE or other native

components.

9



On the other hand, ADO already provides most of the services of the

ClientDataSet component and using these two at the same time can be useful only in

· ited situations

1.8 Classic BDE Components 
Each of the database-access solutions discussed above has its own set of data-

access, database connection, and extra utility components on a specific page of the

Component palette. The classic BDE components have been moved to the new BDE

page and include the Table, Query, and StoredProc components. The ADO, dbExpress,

and InterBase Express components are each in specific pages, and all include specific

dataset components and others that tend to mimic the BDE components, simplifying the

porting of existing applications.
The Data Access page of the Component palette includes only the Data Source

Component and others not specifically related with any single data access technology.

Besides the data-access component of your choice, a Delphi visual application generally

uses some data-aware controls (in the Data Controls page) and the DataSource

component. Data-aware controls are visual components used to view and edit the data in

a form and are extensions of standard components such as edit and list boxes, radio

buttons, images, and the
Grid. The DataSource component has the role of connector between the data-

aware controls and a dataset component.

1.9 Tables and Queries 
The simplest traditional way to specify data access in Delphi was to use the BDE

Table component. A Table object simply refers to a database table. When you use a

Table component, you need to indicate the name of the database you want to use in its

DatabaseName-property. You can enter an alias or the path of the directory with the

table files. The Object Inspector lists the available names, which depend on the aliases

installed in the BDE. You also need to indicate a proper value in the TableName

property. The Object Inspector lists the available tables of the current database (or

directory), so you should generally select the DatabaseName property first. Another

classic dataset is the BDE Query component. A query requires a SQL language

10



command. You can customize a query using SQL more easily than you can customize a

table (as long as you know at least the basic elements of SQL, of course). The Query

component has a DatabaseName property like the Table component, but it does not have
~ ~ 

a TableName property. The table is indicated in the SQL statement, stored in the SQL

property. For example, you can write a simple SQL statement like this:

Select * from Country where Country is the name of a table and the asterisk (*)

indicates that you want to use all of the fields in the table.

The efficiency of a table or a query varies depending on the database you are

using. In general, we can say that the Table component tends to be faster on local tables,

while the Query component tends to be faster on SQL servers, although this is just a

very general rule, and in many cases you might have the opposite effect. We'll see some

efficiency issues while discussing
client/server development in the third BDE dataset component is StoredProc,

which refers to stored procedures of a SQL server database. You can run these

procedures and get the results in the form of a database table. Stored procedures can

only be used with SQL servers.

1.10 DBNavigator and Dataset Actions 
DBNavigator is a collection of buttons used to navigate and perform actions on

the database. You can disable some of the buttons of the DBNavigator control, by

removing some 'of the elements of the VisibleButtons set. The buttons perform basic

actions on the connected dataset, so you can easily replace them

With your own tool bar, particularly if you use an ActionList component with the

predefined database actions provided by Delphi. In this case, in fact, you get all the

standard behaviors, but you'll also see the various buttons enabled only when their

action is legitimate. TIP If you use the standard actions, you can avoid connecting them

to :1 specific DataSource component, and the actions wi]! be applied to the dataset

connected to the visual control that currently has the input focus. This way a single

toolbar can be used for multiple datasets displayed by a form.

11 



1.11 Text-Based Data-Aware Controls 

There are multiple text-oriented components:
. DBText displays the contents of a field that cannot be modified by the user. It is

a data ware Label graphical control. It can be very useful, but users might confuse this

control with the plain labels that indicate the content of each field-based control.

DBEdit lets the user edit a field (change the current value) using an Edit control. At

times, you might want to disable editing and use a DBEdit as if it were a DBText, but

highlighting the fact that this is data coming from the database. DBMemo lets the user

see and modify a large text field, eventually stored in a memo or BLOB (binary large

object) field. It resembles the Memo component and has full editing capabilities, but all

the text is rendered in a single font.
DBRichEdit is a component that lets the user edit a formatted text file; it is

based on a RichEdit Windows common control and, in contrast to DBMemo, it allows

text with multiple fonts and paragraph styles.

1.12 Navigating a Dataset 
We've seen that a dataset has only one active record, and you can imagine that

the active record changes often, in response of user actions or because of internal

commands given to the dataset. To move around the dataset and change the active

record, there are methods of the TDataSet class, particularly in the section commented

as "position, movement." You can move to the next or previous record, jump back and·

forth by
A given number of records (with MoveBy), or go directly to the first or last

record of the dataset. These operations of the dataset are generally available in the

DBNavigator component or in the standard dataset actions, and they are not particularly

complex to understand. What is not obvious, though, is how a dataset handles the

extreme positions. If you open any dataset with a navigator attached, you can see that as

yoıi move on record by record, the Next button remains enabled even when you've

reached the last record. It's only when you try to move forward after the last record that

the current record apparently doesn't change and the button is disabled. This is because

the Eof test (end of file) succeeds only when the cursor has been moved to a special

position after the last record. If you jump to the end with the Last button, instead, you'll

immediately be at the very end. You'll see exactly the same behavior for the first record

12



(and the Bof test). As we'll see in a while, this approach is very handy, as we can scan a

dataset testing for Eof to be True and, at this point, we know we 've also already

processed the last record of the dataset.
' NOTE Handling this special record positions before the beginning and after the

end of the dataset, which are called cracks, is very important (and quite confusing)

when you write a custom dataset,.Besides moving around record by record or by a given

number of records, programs might need to jump to specific records or positions. Some

datasets support the RecordCount property and allow movement to a record at a given

position in the dataset using the RecNo property. These properties can be used only for

datasets that support positions natively, which basically excludes all client/server

architectures, unless you grab all of the records in a local cache (something you'll

generally want to avoid) and then navigate on the cache. As we'll see in the next

chapter, when you open a query on a SQL server you fetch only the records you are

using, so Delphi doesn't know the record count, at least not in advance. There are two

alternatives you can use to refer to a record in a dataset, regardless of its type. You can

save a reference to the current record and then jump back to it after moving around.

This is accomplished by using bookmarks, either in the TBookmark or the more modem

TBookmarkStr form. You can locate a record of the dataset matching given criteria,

using the Locate method. This even works after you close and reopen the dataset,

because you're working at a logical (and not physical) level. This approach is presented

in the next section.

13



2.1 Main Menu Screen 

Figure 2.1 Main Menu Screen

The figure above shows the first screen which occurs when you first start running

the program. This screen contains the following:
+ The calendar: This automatically obtains the current date month and year of

the system which the program is running on.
+ Buy change system preview: which shows the current selling price of

currencies that you have entered in the change system, which will be

explained later.

- - ---· ~.- ----

14 



Figure 2.2 Buy change system preview

+ Sell exchange system preview: which shows the current reports of the

exchange system. The following screen will appear and allow you to

Select the type of exchange report that you wish to preview.

Figure 2.3 Exchange report 

15



The following report preview will show the exchange rates related to which

form you choose:

Figure 2.4 Exchange rates

+ Change system preview: it is a report that shows the current price of the

currencies in the stuck exchange related to selling currencies, which can be

printed by the button next to it.

.• 

16



CHANGE APO EXCHANGE SYSTEM 

Turkish Sterling Oollıw Euro D:;;aı:;;•::......--
1430000 2400000 1400000 2100000 111rıoo4

Figure 2.5 Change System Preview

+ Exchange system: it is a report that shows the current price of the currencies in

the stuck exchange related to buying currencies, which can be printed by the

button next to it.

CKf<tlGEı'ıHOE.XCHMll SYSTEM
~~~~Q!!__

12,0000 UIJOOOl 1?00000 2000000 1i11200'

Figure 2.6 Exchange System Preview

17

18

2.2 Change System

Figure 2.7 Change System

This screen consists of three sub-menus, which will allow you to complete your

transaction processes. In addition, the forms contain the following:
The first part of each form grapes the exchange rates of the currencies from your

database that you have entered.
The second part deals with the current amount of currency that you are

exchanging at the time being. It consists of a navigation bar that allows you to scroll in

the fields of your transactions.

2.3 Exchange Curves

Figure 2.8 Change Curve

It consists of three chart reports that are all linked to the data base and change in

respect to the processes that you make, that each transaction made is added or deleted

and presented in the as a curve in respect to the money amount you have processed.

The rest of the graphs are shown below

•

19

.•

Figure 2.9 Change Curve

Figure 2.10 Change Curve

20

These graphs are just to keep track of you exchange processes in terms of

money, and also shows you which of the currencies is have the most demand in the

market, at this point you can analyze the current situation of the foreign currencies flow

in you exchange office and take your decisions among that.

2.4 Exchange System

Figure 2.11 Exchange System

21

The exchange system consists of three fields that allow you to deal with the

exchange of the foreign currencies each one consist of selling and buying prices of the

currencies and another field for your processes, where you can add delete or modify

your processes.

2.5 Exchange Bar Graphs
The following bar graphs illustrate the change in the currencies by date and

respectively with the database.

Figure 2.12 Exchange Bar Graphs a

22

Figure 2.13 Exchange Bar Graphs b

2.6 Adding the Exchange Rates

a. Selling Rates: here in this form you can you can add the current rates of the local

currency.

Figure 2.14 Adding the Exchange Rates (Selling Rates)

23

b. Foreign Currency Rates
Here in the following form you can add the foreign exchange rates

Figure 2.15 Adding the Exchange Rates (Foreign Currency Rates)

24

Figure 2.16 Database Desktop

2.7 Database Desktop

Database Desktop is a database tool where you can create or restructure database

tables, or browse and edit their data. You can work with tables in Paradox, dBase, and

SQL formats.

25

DATA FLOW DIAGRAM
(DFD)

DECISIONS DECISIONS
MANAGER

REPORTS
STATISTICS AND

GRAPHS

EXCHANGE TRANSACTIONS
(DATABASE UPDATING)

UPDATES UPDATES

EXCHANGE COUNTER
1

(SELLING&BUYING)

EXCHANGE COUNTER
2

(SELLING&BUYING)

INVOICE ---
INVOICE

CUSTOMER
CUSTOMER

Figure 3.1 Data Flow Diagram

26

3.2 MAIN MENU

unit CHEXSY;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DB Tables, jpeg, ExtCtrls, DBCtrls, StdCtrls, Mask, ComCtrls,

TeEngine, Series, TeeProcs, Chart, DbChart, Grids, DBGrids;

type
TMAINMENUCHANGEEXCHANGESYSTEM = class(TForm)

Panel 1: TPanel;

GroupBoxl: TGroupBox;

Image 1: Tlmage;

Table 1: TTable;

Table 1 Date: TDateField;

TablelEuro: TFloatField;

Table 1 Dollar: TFloatField;

Table 1 Sterling: TFloatField;

Table 1 Turkish: TFloatField;

buychange: TDataSource;

selchange: TDataSource;

Table2: TTable;

DateField 1: TDateField;

FloatFieldl: TFloatField;

.• FloatField2: TFloatField;

FloatField3: TFloatField;

FloatField4: TFloatField;

dollar: TDataSource;

Table3: TTable;

Table3Dollar: TFloatField;

Table3Rate: TFloatField;

27

Table3Date: TDateField;

sterlaing: TDataSource;

Table4: TTable;

euro: TDataSource;

Table5: TTable;

Table9: TTable;

exdollarE: TDataSource;

Tablelü: TTable;

exeuroD: TDataSource;

Tablel 1: TTable;

Tablel2: TTable;

exeuroS: TDataSource;

exdollarS: TDataSource;

Table14: TTable;

exsterlingD: TDataSource;

exsterlingE: TDataSource;

Table15: TTable;

Tablel 7: TTable;

Table 18: TTable;

Table6: TTable;

Table?: TTable;

Table8: TTable;

Panel2: TPanel;

GroupBox32: TGroupBox;

Panel3: TPanel;

PageControl l: TPageControl;

TabSheetl: TTabSheet;

Inıage2: Tlmage;

TabControl 1: TTabControl;

Panel6: TPanel;

Month Calendar 1: TMonthCalendar;

Buttonl: TButton;

Button3: TButton;

Button4: TButton;

28

r
Buttons: TButton;
TabSheet2: TTabSheet;
PageControl3: TPageControl;

TabSheetl 1: TTabSheet;

GroupBox6: TGroupBox;

Labell6: TLabel;

Label1 7: TLabel;

Labell8: TLabel;

Labell 9: TLabel;

Label20: TLabel;
DBEditl2: TDBEdit;

DBEditl3: TDBEdit;

DBEditl4: TDBEdit;

DBEditlS: TDBEdit;

DBEditl6: TDBEdit;
DBNavigator2: TDBNavigator;

GroupBox8: TGroupBox;

Label26: TLabel;
GroupBox9: TGroupBox;

Label27: TLabel;

Label28: TLabel;

Label29: TLabel;

Label30: TLabel;
- DBEdit25: TDBEdit;

DBEdit22: TDBEdit;

DBEdit23: TDBEdit;

DBEdit24: TDBEdit;..
DBNavigatorS: TDBNavigator;

TabSheetl2: TTabSheet;

GroupBoxS: TGroupBox;

Label11:TLabel;

Labell2: TLabel;

Labell 3: TLabel;

Labell4: TLabel;

29

Label15: TLabel;

DBEdit7: TDBEdit;

DBEdit8: TDBEdit;

DBEdit9: TDBEdit;

DBEditlO: TDBEdit;

DBEditl 1: TDBEdit;

DBNavigator4: TDBNavigator;

Group Box 1 O: TGroupBox;

Label3 l: TLabel;

GroupBox 11: TGroupBox;

Label32: TLabel;

Label33: TLabel;

Label34: TLabel;

Label3 5: TLabel;

DBEdit26: TDBEdit;

DBEdit28: TDBEdit;

DBEdit29: TDBEdit;

DBEdit27: TDBEdit;

DBNavigator6: TDBNavigator;

TabSheet13: TTabSheet;

GroupBox7: TGroupBox;

Label2 l: TLabel;

Label22: TLabel;

Label23: TLabel;

Label24: TLabel;

Label25: TLabel;

DBEditl 7: TDBEdit;

DBEdit18: TDBEdit;

DBEditl9: TDBEdit;

DBEdit20: TDBEdit;

DBEdit2 l: TDBEdit;

DBNavigator3: TDBNavigator;

Group Box 12: TGroupBox;

1,abel36: TLabel;

30

Group Box 13: TGroupBox;

Label3 7: TLabel;

Label38: TLabel;

Label39: TLabel;

Label40: TLabel;

DBEdit30: TDBEdit;

DBEdit31: TDBEdit;

DBEdit32: TDBEdit;

DBEdit33: TDBEdit;

DBNavigator7: TDBNavigator;

TabSheet3: TTabSheet;

PageControl4: TPageControl;

TabSheet14: TTabSheet;

DBGrid 1: TDBGrid;

DBChartl: TDBChart;

Series 1: TLineSeries;

Series2: TLineSeries;

Series3: TLineSeries;

TabSheet15: TTabSheet;

DBGrid2: TDBGrid;

DBChart2: TDBChart;

Line Series 1: TLineSeries;

LineSeries2: TLineSeries;

LineSeries3: TLineSeries;

TabSheet16: TTabSheet;

DBGrid3: TDBGrid;

DBChart3: TDBChart;..•
LineSeries4: TLineSeries;

LineSeries5: TLineSeries;

LineSeries6: TLineSeries;

TabSheet4: TTabSheet;

Label71: TLabel;
PageControl5: TPageControl;

TabSheetl 7: TTabSheet;

31

Group Box 14: TGroupBox;

Label41: TLabel;

Label42: TLabel;

Label43: TLabel;

Label44: TLabel;

Label45: TLabel;

Label77: TLabel;

DBEdit34: TDBEdit;

DBEdit35: TDBEdit;

DBEdit36: TDBEdit;

DBEdit37: TDBEdit;

DBEdit38: TDBEdit;

DBNavigator8: TDBNavigator;

GroupBox20: TGroupBox;

Label78: TLabel;

Label79: TLabel;

Label80: TLabel;

Label81: TLabel;

Label82: TLabel;

Label 113: TLabel;

DBEdit64: TDBEdit;

DBEdit65: TDBEdit;

DBEdit66: TDBEdit;

DBEdit67: TDBEdit;

DBEdit68: TDBEdit;

DBNavigator14: TDBNavigator;

GroupBox27: TGroupBox;

Laoel120: TLabe1;

Labell 2 I: TLabe1;

Label 122: TLabel;

Label 123: TLabel;

Label124: TLabel;

Label125: TLabe1;

DBEdit97: TDBEdit;

32

DBEdit98: TDBEdit;

DBEdit99: TDBEdit;

DBNavigator21: TDBNavigator;

Edit89: TEdit;

Edit90: TEdit;

TabSheet18: TTabSheet;

Group Box 18: TGroupBox;

Label6 l: TLabel;

Label62: TLabel;

Label63: TLabel;

Label64: TLabel;

Label65: TLabel;

Label76: TLabel;

DBEdit54: TDBEdit;

DBEdit55: TDBEdit;

DBEdit56: TDBEdit;

DBEdit57: TDBEdit;

DBEdit58: TDBEdit;

DBNavigator12: TDBNavigator;

GroupBox21: TGroupBox;

Label83: TLabel;

Label84: TLabel;

Label85: TLabel;

Label~6: TLabel;

Label87: TLabel;

Label 109: TLabel;

.,DBEdit69: TDBEdit;

DBEdit70: TDBEdit;

DBEdit71: TDBEdit;

DBEdit72: TDBEdit;

DBEdit73: TDBEdit;

DBNavigator15: TDBNavigator;

GroupBox28: TGroupBox;

Label126: TLabel;

33

Label127: TLabel;

Label128: TLabel;

Label129: TLabel;

Label 130: TLabel;

Label 131: TLabel;

DBNavigator22: TDBNavigator;

DBEditl 00: TDBEdit;

DBEditl O 1: TDBEdit;

DBEditl02: TDBEdit;

Edit3: TEdit;

Edit5: TEdit;

TabSheetl 9: TTabSheet;

Group Box 15: TGroupBox;

Label46: TLabel;

Label47: TLabel;

Label48: TLabel;

Label49: TLabel;

Label50: TLabel;

Label75: TLabel;

DBEdit39: TDBEdit;

DBEdit40: TDBEdit;

DBEdit4 l: TDBEdit;

DBEdit42: TDBEdit;

DBEdit43: TDBEdit;

DBNavigator9: TDBNavigator;

GroupBox22: TGroupBox;

Label88: TLabel;

t'abel89: TLabel;

Label90: TLabel;

Label91: TLabel;

Label92: TLabel;

Labell l O: TLabel;

DBEdit74: TDBEdit;

DBEdit75: TDBEdit;

34

DBEdit76: TDBEdit;

DBEdit77: TDBEdit;

DBEdit78: TDBEdit;

DBNavigator16: TDBNavigator;

GroupBox29: TGroupBox;

Label132: TLabel;

Label133: TLabel;

Label134: TLabel;

Labell35: TLabel;

Labell 36: TLabel;

Labell37: TLabel;

DBEditl03: TDBEdit;

Edit7: TEdit;

DBEditl04: TDBEdit;

DBEditl05: TDBEdit;

DBNavigator23: TDBNavigator;

Edit93: TEdit;

TabSheet20: TTabSheet;

Group Box 17: TGroupBox;

Label56: TLabel;

Label57: TLabel;

Label58: TLabel;

Label59: TLabel;

Label60: TLabel;

Label74: TLabel;

DBEdit49: TDBEdit;

DBEdit50: TDBEdit;..
DBEdit51: TDBEdit;

DBEdit52: TDBEdit;

DBEdit53: TDBEdit;
DBNavigatorl 1: TDBNavigator;

GroupBox23: TGroupBox;

Label93: TLabel;

Label94: TLabel;

35

Label95: TLabel;

Label96: TLabel;

Label97: TLabel;

Labell 11: TLabel;

DBEdit79: TDBEdit;

DBEdit80: TDBEdit;

DBEdit81: TDBEdit;

DBEdit82: TDBEdit;

DBEdit83: TDBEdit;

DBNavigatorl 7: TDBNavigator;

GroupBox30: TGroupBox;

Label138: TLabel;

Label139: TLabel;

Label140: TLabel;

Label 141: TLabel;

Label142: TLabel;

Label 143: TLabel;

DBEditl 06: TDBEdit;

Edit9: TEdit;

DBEdit107: TDBEdit;

DBEdit108: TDBEdit;

DBNavigator24: TDBNavigator;

Edit92: TEdit;

TabSheet2 l: TTabSheet;

GroupBoxl6: TGroupBox;

Label5 l: TLabel;

Label52: TLabel;,.
Label53: TLabel;

Label54: TLabel;

Label55: TLabel;

Label73: TLabel;

DBEdit44: TDBEdit;

DBEdit45: TDBEdit;

DBEdit46: TDBEdit;

36

DBEdit47: TDBEdit;

DBEdit48: TDBEdit;

DBNavigatorlO: TDBNavigator;

GroupBox24: TGroupBox;

Label98: TLabel;

Label99: TLabel;

Label 100: TLabel;

Labell O 1 : T,Label;

Labell02: TLabel;

Labell 12: TLabel;

DBEdit84: TDBEdit;

DBEdit85: TDBEdit;

DBEdit86: TDBEdit;

DBEdit87: TDBEdit;

DBEdit88: TDBEdit;

DBNavigator18: TDBNavigator;

GroupBox31: TGroupBox;

Labell44: TLabel;

Labe1145: TLabel;

Labell46: TLabel;

Label 14 7: TLabel;

Labe1148: TLabel;

Label149: TLabel;

DBEditl 09: TDBEdit;

DBEditl 12: TDBEdit;

DBEditl 13: TDBEdit;

DBNavigator25: TDBNavigator;

EditliO: TEdit;

Editl 11: TEdit;

TabSheet22: TTabSheet;

Group Box 19: TGroupBox;

Label66: TLabel;

Label67: TLabel;

Label68: TLabel;

37

Label69: TLabel;

Label70: TLabel;

Label72: TLabel;

DBEdit59: TDBEdit;

DBEdit60: TDBEdit;

DBEdit6 l: TDBEdit;

DBEdit62: TDBEdit;

DBEdit63: TDBEdit;

DBNavigatorl3: TDBNavigator;

GroupBox25: TGroupBox;

Label 103: TLabel;

Labell04: TLabel;

Labell05: TLabel;

Labell 06: TLabel;

Labell07: TLabel;

Labell08: TLabel;

DBEdit89: TDBEdit;

DBEdit90: TDBEdit;

DBEdit91: TDBEdit;

DBEdit92: TDBEdit;

DBEdit93: TDBEdit;

DBNavigatorl 9: TDBNavigator;

GroupBox26: TGroupBox;

Labell 18: TLabel;

Labell 19: TLabel;

Labell 14: TLabel;

Labell 15: TLabel;

Labell 16: TLabel;

Labell 17: TLabel;

DBEdit94: TDBEdit;

Editl: TEdit;

DBEdit95: TDBEdit;

DBEdit96: TDBEdit;

DBNavigator20: TDBNavigator;

38

Edit66: TEdit;

TabSheet6: TTabSheet;

DBGrid5: TDBGrid;

DBChart4: TDBChart;

BarSeries 1: TBarSeries;

BarSeries2: TBarSeries;

BarSeries3: TBarSeries;

Series4: TBarSeries;

Series5: TBarSeries;

TabSheet7: TTabSheet;

DBGrid4: TDBGrid;

DBChart5: TDBChart;

BarSeries4: TBarSeries;

BarSeries5: TBarSeries;

BarSeries6: TBarSeries;

BarSeries7: TBarSeries;

BarSeries8: TBarSeries;

TabSheet8: TTabSheet;

GroupBox2: TGroupBox;

PageControl2: TPageControl;

TabSheet9: TTabSheet;

GroupBox3: TGroupBox;

Label5: TLabel;

Label4: TLabel;

Label3: TLabel;

Label2: TLabel;

Label6: TLabel;

EditTurkish:_ TDBEdit;

EditSterling: TDBEdit;

EditDollar: TDBEdit;

EditEuro: TDBEdit;

DBEdit6: TDBEdit;

DBNavigator: TDBNavigator;

TabSheetlO: TTabSheet;

39

GroupBox4: TGroupBox;

Labell: TLabel;

Label7: TLabel;

Label8: TLabel;

Label9: TLabel;

Labell O: TLabel;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

DBNavigatorl: TDBNavigator;

Button2: TButton;

Button6: TButton;

Image3: Timage;

Image4: Timage;

Image5: Timage;

Image6: Timage;

Image?: Timage;

Image8: Timage;

Image9: Timage;

ImagelO: Timage;

Image 11: Timage;

Imagel2: Timage;
procedure DBEdit23Change(Sender: TObject);

procedure DBEdit29Change(Sender: Tübject);

procedure DBEdit32Change(Sender: TObject);
.,. procedure Editl 11 Change(Sender: Tübject);

·---- -------
procedure Edit90Change(Sender: TObject);

procedure Edit5Change(Sender: Tübject);

procedure Edit93Change(Sender: Tübject);

procedure Edit92Change(Sender: Tübject);

procedure Edit66Change(Sender: Tübject);

·procedureButtonlClick(Sender: TObject);

40

procedure Button3Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var
MAINMENUCHANGEEXCHANGESYSTEM:

TMAINMENUCHANGEEXCHANGESYSTEM;

implementation

uses REPORT, MENU, MENU2, REPORT4, REPORTS;

{$R *.dfm}

procedure TMAINMENUCHANGEEXCHANGESYSTEM.DBEdit23Change(Sender:

TObject);

var

a,b,c:Currency;
begin _ _ _ _ __ --·

if (DBEdit22.gettextlen=O)or (DBEdit23.gettextlen=O)then

begin
showmessage('please enter value on edits');

exit;

end;

begin

41

a:=strtoFloat(DBEdit22.text);

b:=strtoFloat(DBEdit23.text);

c:=a*b;

DBEdit24.text:=Floattostr(c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.DBEdit29Change(Sender:

TObject);

var

a,b,c:Currency;

begin
if (DBEdit28.gettextlen=O) or (DBEdit29.gettextlen=O) then

begin
showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEdit28.text);

b:=strtoFloat(DBEdit29.text);

c:=a*b;

DBEdit27 .text:=Floattostr(c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.DBEdit32Change(Sender:

TObject);

var

a,b,c:Currency;

begin
if (DBEdit3 l .gettextlen=O) or (DBEdit32.gettextlen=O) then

begin
. showmessage('please enter value on edits');

42

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Editl 11 Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEdit109.gettextlen=O)OR (Editl 10.gettextlen=O) or (Editl 11.gettextlen=O) then

begin

showmessage('please enter value on edits');

exit;

end;

begin

a:==strtoFloat(DBEditl 09 .text);

b:=strtoFloat(Editl 10.text);

d:=strtoFloat(Editl 11.text);

c:= (a* b)/d;

exit;

end;

begin

a:=strtoFloat(DBEdi-t3 l .text);

b:=strtoFloat(DBEdit32.text);

c:=a*b;

DBEdit33.text:=Floattostr(c);

end;

end;

..
DBEditl 12.text:=Floattostr(c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit90Change(Sender:

TObject);

43

DBEdit98.text:=Floattostr(c);

end;

end;

VAR

a,b,c,d:CURRENCY;

begin
if (DBEdit97. gettextlen=O)OR (Edi t89. gettextlen=O) or (Edit90. gettextlen=O) then

'begin
showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEdit97 .text);

b:=strtoFloat(Edit89.text);

d:=strtoFloat(Edit90.text);

c:= (a* b)/d;

//procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit4Change(Sender:

Tübject);

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit5Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEdit 100.gettextlen=O)OR (Edit3 .gettextlen=O) or (Edit5. gettextlen=O) then

..
begin

showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEditl 00.text);

b:=strtoFloat(Edit3 .text);

44

d:=strtoFloat(Edit5. text);

c:= (a* b)/d;

DBEditl Ol .text:=Floattostr(c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit93Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEditl 03 .gettextlen=O)OR (Edit7 .gettextlen=O) or (Edit93 .gettextlen=O) then

begin

showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEditl 03 .text);

b:=strtoFloat(Edit7 .text);

d:=strtoFloat(Edit93 .text);

c:= (a* b)/d;

DBEditl 04.text:=Floattostr(c);

end;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit92Change(Sender:

TObject);

VAR

a,b,c,d:CURRENCY;

begin
if (DBEditl 06.gettextlen=O)OR (Edit9.gettextlen=O) or (Edit92.gettextlen=O) then

45

exit;

begin
showmessage('please enter value on edits');

exit;

end;

begin

a:=strtoFloat(DBEdit l 06 .text);

b:=strtoFloat(Edit9.text);

d:=strtoFloat(Edit92.text);

c:= (a* b)/d;
DBEditl 07 .text:=Floattostr(c);

end;
-

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Edit66Change(Sender:

TObject);

VAR
a,b,c,d:CURRENCY;

begin
if (DBEdit94.gettextlen=O)OR (Editl .gettextlen=O) or (Edit66.gettextlen=O) then

begin
showmessage('please enter value on edits');

end;

begin

a:=strtoFloat(DBEdit94.text);

b:=strtoFloat(Edit l .text);

d:=strtoFloat(Edit66.text);

c:= (a* b)/d;

DBEdit95 .text:=Floattostr(c);

end;

end;

46

procedure TMAINMENUCHANGEEXCHANGESYSTEM.ButtonlClick(Sender:

TObject);

begin
//REPOR TDO LLAR. QuickRep l .Preview;

SELCHANGESYSTEMPREVIEW.SHOW;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button3Click(Sender:

TObject);

begin
BUYCHANGESYSTEMPREVIEW.SHOW;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button4Click(Sender:

TObject);

begin
BUYCHANGESYSTEM.QuickRep l .Preview;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button5Click(Sender:

TObject);

begin
SELLEXCHANGESYSTEM.QuickRep l .Preview;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button6Click(Sender:

TObject);

begin
SELLEXCHANGESYSTEM.QuickRep l .Print;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.Button2Click(Sender:

TObject);

begin

47

BUYCHANGESYSTEM.QuickRep I .Print;

end;

procedure TMAINMENUCHANGEEXCHANGESYSTEM.ForrnCreate(Sender:

TObject);

begin

end;

end.

3.3 BUY CHANGE SYSTEM PREVIEW

unitMENU2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls;

type
TBUYCHANGESYSTEMPREVIEW = class(TForrn)

Panell: TPanel;

GroupBoxl: TGroupBox;

Button3: TButton;..
Button2: TButton;

Buttonl: TButton;

Panel2: TPanel;

GroupBox2: TGroupBox;

Panel3: TPanel;

GroupBox3: TGroupBox;

48

var
BUYCHANGESYSTEMPREVIEW: TBUYCHANGESYSTEMPREVIEW;

Button4: TButton;

Buttons: TButton;

Button6: TButton;
procedure Buttonl Click(Sender: TObject);

procedure Button2Click(Sender: Tübject);

procedure Button3Click(Sender: Tübject);

procedure Button4Click(Sender: Tübject);

procedure Button5Click(Sender: Tübject);

procedure Button6Click(Sender: Tübject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

implementation

uses REPORTSDU, REPORTSDS, REPORTSE, REPORTSES, REPORTSSE,

REPORTS SD;

{$R *.dfm}
procedure TBUY CHAN GESYSTEMPREVIEW.Button 1 Click(Sender: TObject);

begin
EXCHANGSYSTEMDOLLARTOEURO.QuickRepl .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button2Click(Sender: TObject);

begin
EXCHANGESYSTEMDOLLARSTERLING.QuickRepl.Preview;

end;

49

procedure TBUYCHANGESYSTEMPREVIEW.Button3Click(Sender: TObject);

begin

EXCHANGEEUROSYSTEM.QuickRepl .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button4Click(Sender: TObject);

begin

EXCHANGEEUROS.QuickRep 1 .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button5Click(Sender: TObject);

begin
EXCHANGESYSTEMSTERLINGSTERLING.QuickRepl.Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button6Click(Sender: TObject);

begin
EXCHANGESYSTEMSTERLINGDOLLAR.QuickRepl.Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.FormCreate(Sender: TObject);

begin

end;

end .

..

50

3.4 EXCHANGE SYSTEM STERLING

unit REPORTSSE;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGESYSTEMSTERLINGSTERLING = class(TForm)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

. QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Table1: TTable;
procedure FormCreate(Sender: TObject);

private•.
--- - -- { Frivate declarations }

public
{ Public declarations }

end;

var

51

52

3.5 CHANGE SYSTEM STERLING

implementation

{$R *.dfm}

procedure TEXCHANGESYSTEMSTERLINGSTERLING.FormCreate(Sender:

Tübject);

begin

end;

end.

3.6 EXCHANGE SYSTEM STERLING DOLLAR

unit REPORTSSD;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
'

TEXCHANGESYSTEMSTERLINGDOLLAR = class(TForm).
Quicklcep t: TQüickkep;

PageF ooterBand 1: TQ RBand;

QRExprl: TQRExpr;

ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Tablel: TTable;

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

EXCHANGESYSTEMSTERLINGDOLLAR:

TEXCHANGESYSTEMSTERLINGDOLLAR;

implementation

{$R *.dfm}

procedure TEXCHANGESYSTEMSTERLINGDOLLAR.FormCreate(Sender:

Tübject);

begin

end;

end.

53

3.7 EXCHANGE SYSTEM DOLLAR EURO

unit REPORT5ED;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGESYSTEMDOLLAREURO = class(TForm)

QuickRep 1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Table 1: TTable;

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

54

55

3.8 CHANGE SYSTEM DOLLAR EURO

TEXCHANGESYSTEMDOLLAREURO;

implementation

{$R *.dfm}

procedure TEXCHANGESYSTEMDOLLAREURO.FormCreate(Sender: TObject);

begin

end;

end.

3.9 EXCHANGE EURO SYSTEM

unit REPORT5E;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGEEUROSYSTEM = class(TFo-rm)-- -

Quick.Rep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColumnHeaderBandl: TQRBand;

QRLabel1: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBand 1: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Table 1: TTable;

procedure FormCreate(Sender: Tübject);

private

{ Private declarations }

public

{ Public declarations }

end;

var
EXCHANGEEUROSYSTEM:TEXCHANGEEUROSYSTEM;

implementation

{$R *.dfm}

procedure TEXCHANGEEUROSYSTEM.FormCreate(Sender: TObject);

begin

end;

end."

56

3.10 EXCHANGE SYSTEM DOLLAR STERLING

unit REPORTSDS;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGESYSTEMDOLLARSTERLING = class(TForm)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;
ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Tablel: TTable;
procedure ForrnCreate(Sender: TObject);

private
{ Private declarations }..

public
{ Public declarations }

end;

var

57

{$R *.dfm}

3.11 CHANGE SYSTEM DOLLAR STERLING

TEXCHANGESYSTEMDOLLARSTERLING;

implementation

procedure TEXCHANGESYSTEMDOLLARSTERLING.FormCreate(Sender:

TObject);

begin

end;

end.

3.12 SELL EXCHANGE SYSTEM

unit REPORTS;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls; ..

type •
TSELLEXCHANGESYSTEM = class(TForm)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColurnnHeaderBandl: TQRBand;

58

59

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

QRLabel4: TQRLabel;

QRLabelS: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRExprS: TQRExpr;

QRExpr6: TQRExpr;

QRLabel6: TQRLabel;

Tablel: TTable;
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
SELLEXCHANGESYSTEM: TSELLEXCHANGESYSTEM;

implementation

{$R *.dfm}

procedure TSELLEXCHANGESYSTEM.FormCreate(Sender: Tübject);

begin

end;

end.

end;

3.13 EXCHANGE EURO TO STERLING

unit REPORTSES;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
TEXCHANGEEUROS == class(TForm)

QuickRep1: TQuickR.ep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;
ColumnHeaderBandl: TQRBand;

QRLabel1: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBand1: TQRBand;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

_ QRLabel4: TQRLabel;

Table1: TTable;

QRExpr2: TQRExpr;
procedure FormCreate(Sender: Tübject);

private
•
{ Private declarations }

public
{ Public declarations }

var

60

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

3.14 EXCHANGE EURO

TEXCHANGEEUROS;

implementation

{$R *.dfm}

procedure TEXCHANGEEUROS.FormCreate(Sender: TObject);

begin

end;

end.

3.15 EXCHANGE SYSTEM DOLLAR TO EURO

unit REPORTSDU;

interface

type~ .
TEXCHANGSYSTEMDOLLARTOEURO = clas.s(TForın)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;
ColurnnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

61

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Table 1: TTable;

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var
EXCHANGSYSTEMDOLLARTOEURO:

TEXCHANGSYSTEMDOLLARTOEURO;

implementation

{$R *.dfm}

procedure TEXCHANGSYSTEMDOLLARTOEURO.FormCreate(Sender: TObject);

begin

end;

end.

62

63

3.16 BUY CHANGE SYSTEM PREVIEW

unitMENU2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls;

type
TBUYCHANGESYSTEMPREVIEW = class(TForın)

Panel1: TPanel;

GroupBox 1 : TGroupBox;

Button3: TButton;

Button2: TButton;

Buttorıl : TButton;

Panel2: TPanel;

GroupBox2: TGroupBox;

Panel3: TPanel;

GroupBox3: TGroupBox;

Button4: TButton;

Button5: TButton;

Button6: TButton;
procedure Button! Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

64

public

{ Public declarations }

end;

var
BUYCHANGESYSTEMPREVIEW: TBUYCHANGESYSTEMPREVIEW;

implementation
uses REPORT5DU, REPORT5DS, REPORT5E, REPORT5ES, REPORT5SE,

REPORTS SD;

{$R *.dfm}

procedure TBUYCHANGESYSTEMPREVIEW.Buttonl Click(Sender: Tübject);

begin
EXCHANGSYSTEMDOLLARTOEURO.QuickRep 1 .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button2Click(Sender: Tübject);

begin
EXCHANGESYSTEMDOLLARSTERLING.QuickRepl.Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button3Click(Sender: Tübject);

begin
EXCHANGEEUROSYSTEM.QuickRep·l .Preview;

end;

..
procedure TBUYCHANGESYSTEMPREVIEW.Button4Click(Sender: Tübject);

begin
EXCHANGEEUROS.QuickRep 1 .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button5Click(Sender: Tübject);

begin
EXCHANGESYSTEMSTERLINGSTERLING.QuickRep l .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button6Click(Sender: TObject);

begin
EXCHANGESYSTEMSTERLINGDOLLAR.QuickRep l .Preview;

end;

65

procedure TBUYCHANGESYSTEMPREVIEW.FormCreate(Sender: TObject);

begin

end;

end.

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button2Click(Sender: TObject);

begin
EXCHANGESYSTEMDOLLARSTERLING.QuickRep l .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button3Click(Sender: TObject);

begin
EXCHANGEEUROSYSTEM.QuickRep l .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button4Click(Sender: TObject);

begin
EXCHANGEEUROS.QuickRep l .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.ButtonSClick(Sender: TObject);

begin

66

EXCHANGESYSTEMSTERLINGSTERLING.QuickRepl.Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.Button6Click(Sender: Tübject);

begin
EXCHANGESYSTEMSTERLINGDOLLAR.QuickRep 1 .Preview;

end;

procedure TBUYCHANGESYSTEMPREVIEW.FormCreate(Sender: Tübject);

begin

end;

end.

3.17 BUY CHANGE SYSTEM

unit REPORT4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
__ TBUYCHANGESYSTEM = class(TForm)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

QRLabel4: TQRLabel;

QRLabel5: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRExpr5: TQRExpr;

QRExpr6: TQRExpr;

QRLabel6: TQRLabel;

Tablel: TTable;

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

3.18 BUY CHANGE SYSTEM

TBUYCHANGESYSTEM;

implementation

----- - --

{$R *.dfm}

procedure TBUYCHANGESYSTEM.FormCreate(Sender: TObject);

begin

67

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

end;

end.

3.19 CHANGE SYSTEM STERLING

unit REPORT3;

interface

uses

type
TCHANGESYSTEMSTERLING = class(TForm)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;
ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Table1: TTable;
procedure ForrnCreate(Sender: TObject);

private
{ Private declarations }

public

68

{ Public declarations }

end;

var
CHANGESYSTEMSTERLING: TCHANGESYSTEMSTERLING;

implementation

{$R *.dfm}

procedure TCHANGESYSTEMSTERLING.FormCreate(Sender: TObject);

begin

end;

end.

3.20 CHANGE SYSTEM

unit REPORT2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type
.•TCHANGESYSTEM =-classt'fForm) ·

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;
ColumnHeaderBandl: TQRBand;

QRLabell: TQRLabel;

69

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBand 1: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

QRLabel4: TQRLabel;

Table 1: TTable;

TablelEuro: TFloatField;

Table 1 Rate: TFloatField;

Table 1 Date: TDateField;

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

·end;

var

CHANGESYSTEM: TCHANGESYSTEM;

implementation

70

{$R *.dfm}

procedure TCHANGESYSTEM.FormCreate(Sender: TObject);

begin

end;

end.

3.21 REPORT DOLLAR

unit REPORT;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, QRCtrls, QuickRpt, ExtCtrls;

type

TREPORTDOLLAR = class(TForm)

QuickRep1: TQuickRep;

PageFooterBandl: TQRBand;

QRExprl: TQRExpr;

ColumnHeaderBand 1 : TQRBand;

QRLabel1: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

DetailBandl: TQRBand;

QRExpr2: TQRExpr;

QRExpr3: TQRExpr;

QRExpr4: TQRExpr;

Table1: TTable;

QRLabel4: TQRLabel;

Table1 Dollar: TFloatField;

Table1 Rate: TFloatField;

TablelDate: TDateField;

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

71

end;

var

REPORTDOLLAR:TREPORTDOLLAR;

implementation

{$R *.dfm}

procedure TREPORTDOLLAR.FormCreate(Sender: TObject);

begin

end;

end.

3.22 SELL CHANGE SYSTEM PREVIEW

unit MENU;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls;

type

TSELCHANGESYSTEMPREVIEW = class(TForİn)

Panel 1: TPanel;

Group Box 1 : TGroupBox;

Button3: TButton;

Button2: TButton;

Buttonl: TButton;

Panel2: TPanel;

72

73

GroupBox2: TGroupBox;

Panel3: TPanel;

GroupBox3: TGroupBox;

procedure Button 1 Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

SELCHANGESYSTEMPREVIEW: TSELCHANGESYSTEMPREVIEW;

implementation

uses REPORT, REPORT2, REPORT3;

{$R *.dfm}

procedure TSELCHAN GES YSTEMPREVIE W.Button 1 Click(Sender: TObj ect);

begin

REPORTDOLLAR.QuickRep ! .Preview;

end;

procedure TSELCHANGESYSTEMPREVIEW.Button3Click(Sender: TObject);-•.
begin

CHANGESYSTEM.QuickRep ! .Preview;

end;

procedure TSELCHANGESYSTEMPREVIEW.Button2Click(Sender: TObject);

begin

CHANGESYSTEMSTERLING.QuickRep I .Preview;

end;

procedure TSELCHANGESYSTEMPREVIEW.FormCreate(Sender: TObject);
'

begin

end;

end.

74

CONCLUSION

Due to my own aim of this project, this program may improve and its features

will be promoted later and it will be capable to the usage on network in the future. I

have designed this program with using database, which is available in the main features

of DELPHI Program. This database is very simple and it can be understood easily with

comparing with the other types of database. Later on, I can apply password option,

which is not required in the project requirements and thus, it will be more controllable

and more efficient. I appreciate all the experience that I have gained from learning and

practicing on this programming language and I feel that I will not stop at this point.

75

SYSTEM REQUIREMENTS

In order to run this program and to setup the settings of this program from any

computer, you should have the following specifications:

+ Pentium® II

+ Operating system: Windows 98, 2000 NT, ME, XP Professional

+ Ram: 128 MB

+ Processor: 1000 MHz at least

+ VGA card: 32MB

••

REFERENCES

76

