
Lefkoşa - 2000

Supervisor : Besime ERIN

Students : Seval Cömert (950134)
Koray Özdemir (950463)

GRADUATION PROJECT
COM 400

PARALLEL PROCESSING AND DISTRIBUTED
SYSTEMS

Faculty of Engineering

DEPARTMENT OF COMPUTER ENGINEERING

NEAR EAST UNIVERSITY

First of all, we want to thank to all instructors, who was help
us about our lectures and social life during university period.
Also we want to thank to our supervisor BESiME ERIN and
for her interest which was help us to make easier this
graduation project.

ACKNOWLEDGEMENT

il

While using the techniques in this project is possible to see how can make
network systems and also show how can use network systems.

CH 1 - Parallel computers and Computation,
CH 2 - Designing Parallel Algorithms,
CH 3 - Parallel Brunch-and-bound,
CH 4 - Distributed Processing,
CH 5 - Types of Distributed Systems,

This graduation project is made of two main parts. They can be summarised as a
Parallel Processing and a Distributed Processing. Parallel Processing has three
chapters and the Distributed Processing has two chapters. The chapters in the project
are written below:

ABSTRACT

INR()l)lJC:'fl()N-- 1
C:HAP'fER 1

Parallel Computers and C:omputation--- 3
1.1 Parallelism and C:omputing--- 3

1.1.1 'Trends in Applications--:-- 3
1.1.2 'Trends in Computer Design--5
1.1.3 'Trends in Networking--- 5

1.2 A Parallel Machine Model--- 6
1.2.1 'The Multicomputer-- 6
1.2.2 Other Machine Model--- 8

1.3 A Parallel Programming Model---9
1.3.1 'Tasks and C:hannels-- 10
1.3.2 Other Programming Models-- 13

1.4 Parallel Algorithm Exam pies--- 14
1.4.1 Search-- 14
1.4.2 Parameter Study--- 15

C:HAP'fER 2
Designing Parallel Algorithms---17

2.1 Methodical l)esign-- 17
2.2 Parti ti onin g---19

2.2.1 Domain Dec om position---19
2.2.2 Functional Decomposition--20
2.2.3 Partitioning Design C:hecklist--- 21

2.3 C:ommunication--- 22
2.3.1 Local C:ommunication---23
2.3.2 Global C:ommunication--- 23
2.3.3 lJnstructured and Dynamic C:ommunication-----------------------24
2.3.4 Asynchronous C:ommunication--24

2.4 Agglomeration--25
2.4.1 Increasing Gran ularity--2 7
2.4.2 Preserving Flexibility--31
2.4.3 Reducing Software Engineering C:osts---------------.=----------------32
2.4.4 Agglomeration Design C:hecklist--------------------------------------32

2.5 Mapping-- 33
2.5.1 Load-Balancing Algorithms--- 34
2.5.2 'Task-Scheduling Algorithms----------------------- ------------------ 37
2.5.3 Mapping Design C:hecklist--- 38

C:HAP'fER3
Parallel Bran ch-and- Bound-- 40

3.1 General ()verview--- 40
3.2 An Informal Description-- 40
3.3 'The 0/1 Knapsack Problem-- 41

3.3.1 An Exam pie-- 41
3.4 Parallel Bran ch-and-Bound--- 42

3.4.1 Reasons for Parallel Branch-and-Bound----------------------------42
3.4.2 Implications of Parallel Branch-and-Bound----------------------- 42

TABLE OF CONTENTS

3.4.3 Parallelisation of Branch-and-Bound Algorithms---------------- 43
3.5 Architectures for Branch-and-Bound-------------------------------------- 45

3.5.1 The MANIP Architecture--- 46
3.5.2 MIMD Aproaches--- 46

3.6 Parallel Implementations--48
3.6.1 Pardalos and Rodgers-- 48
3.6.2 Clausen and Traff-- 49
3.6.3 Quinn-- 49
3.6.4 McKeown et al.-- 50

Select Highest Overall (SHO)------------------------------------- 50
Select Highest Available (SHA)----------------------------------- 51
Select Highest Locally (SHL)-------------------------------------- 51
Select Highest Hybrid (SHH)-------------------------------------- 51
Results-- 52
The 0/1 Knapsack Problem-- 52
The Travelling Salesman Problem--------------------------------55

CHAPTER4
Distributing processes ---57

4 .1 Process and threads-- 57
4.2 Synchronization of co-operating processes -------------------------------58
4.3 Inter-processes communication---60
4.4 Stucture distributed system-- 61

4.4.1 The master slave model-- 61
4.4.2 The client/server model ---61
4 .4.3 The group model --62

4.4.4 The distributed object model -------------------------------------63
4.4.5 The multimedia stream model -----------------------------------64
4.4.6 Remote IPC --65

4.5.1 Binding ---65
4.5.2 Connectionless and connection-oriented communication ------66
4.5.3 Synchronization ---67

4.6 Remote IPC: Message passing--67
4.7 Remote IPC :The remote procedure call---------------------------------- 68

4.7.1 RPC exception--- 69
4.7.2 Failure handling -- 69
4.7.3 Execution semantics -- 70

4.8 Advantages of distributed system-------------:-------------------------- 71
4.9 Disadvantages of distributed system------------------------------------- 71

CHAPTERS
Types of distributed system --- 73

5.1 Horizontal vertical distribution-- 73
5.1.1 Cooperative operation?-- 73
5.1.2 Function distribution vs. system distribution--------------------- -73
5.1.3 Combinations ---74

5.2 Function distribution--- 74
5.2.1 Choice of function location --- 75

5.3 Reasons for function --- 76
5.3.1 Reasons for function distribution------------------------------------ 76

Psychlogically effective dialogues-------------------- -- 76
Reduction of telecommunications costs------------ 77
Reliability--- 77

JV

V

Less load on host-- 77
Fast response time-------------------------------------- 78
Data collection--- 78
More attractive output---------------------------------- 78
Peaks--- 78
Sequrity-- 78
Network indepence-------------------------------------- 79
Terminal indepence------------------------------------- 79

5.4 Hierarchical distributing systems--- 80
5.4.1 Examples of hierarchical confirations------------------------------ 80

5.4.2 Process control-- 81
5.4.3 Casually cup led?--- 81
5.4.4 Multiple levels--82
5.4.5 Reasons for hierarchies --- 82

5.5 Horizon tal distribution--- 82
5.6 Patterns of work --- 84
5.7 Degree of homogeneity -- 86
5.8 Noncooperative systems-- 86
5.9 Cooperating system--- 86
5.1O System under one management-- 87
5.11 Interfaces ---87

Conclusion--89
References--- 92

A first part of this project comprises that deal with the design of parallel
programs. This part briefly introduces parallel computation and the importance of
concurrency, scalability, locality, and modularity in parallel algorithm design.

The term parallel processing refers to a large class of methods that attempt to
inrease computing speed by performing more than one computation concurrenty. A
parallel procesor is a computer that implements some parallel processing technique.
Like any type of computing, parallel processing can be viewed at various levels of
complexity.

All modern computers involve some degree of parellelism. Parallelism offers new
degrees of feedom into algorithms not found in sequential algorithms. The term
parallel processor is designed to process more than one basic CPU instruction in
parallel. Convential machines that can only execute one CPU instruction at a time are
termed sequantial processors. (The trm uniprocessor is also used for such machines,
principally to costract them with a particular class of parallel computers, namely,
multiprocessors.)

The overhelming need for parallel algorithms arises from the fact that sequential
algorithms are not efficient enough for many practically important problems.Parallel
algorithms offer perhaps the greatest hope for major improvements. It is likely
therefore that before the end of century all developments in both hardware and
software will be concentrating on parallel processing.

Of what circulstances a parallel algorithm can be designed that will
tremendously reduce the amount of time required to solve a problem in sequential
envirenment. In the quest for answers to these kind of problems are centered around
parallel algorithms and parallel architectures.

While many of these areas correspond to serial algorithms' development, a
parallel algorithm designerneeds to know much more. Parallel algorithms, the
languages they are writtenin, and the systems they run on are extremly more complex.

Distributed processing can loosely be described as the execution of co-operating
processes which communicate by exchanging messages across an information
network. This implies the IT infrastructure consists of distributed processors, enabling
parallel execution of cesses and message exchanges. In this chapter, common models
to support interaction ween processes executing in a distributed IT infrastructure are
considered. The chapter focuses on the most widely used models of process
interaction: the client/server model, the up model and the distributed object model.

Data exchanges between co-operating cesses can be implemented in two ways:
using some common but passive resource or memory (a shared memory mechanism),
or by supporting message exchanges between them.. Discussion is focused on two
widely used message exchange mechanisms: message passing remote procedure calls
(RPC). Some practical implementations will be examined to illustrate above
approaches.

The term distributed processing will be used systems with multiple
processor.proceessors can be interconnected in many ways for various reasons.In
addition the term refers to a multiprocessor complex in one location, in its common
usage,howewer the word distributed implies that the processor will in georaphically
separete locations.occasionaly, this subject is applied to an operation using multiple
minicomputers which wiil not connected at all

INTRODUCTION

In fourth chapter will define the fundemental concepts and set the framework for
distributed processing. Aim of the chapter will to answer 'what is dittributed
processing' and why use distributig computing'questions.In addition to see the other
terns how will be used with distributed processing:disributed fuction,distributed
computing,networks,multicomputers,satellite processing backend processing, time
sharing systems, and functionalyt modular systems.

A historical perspective on the evolotin of distributed systems revals a number of
advantages and disadvantages. In practise both centralized and distributed approaches
have a role to play of the IT infrastructure and information systems.A centralized
system can be equally responsive to end user needs in the right circumtances and can
offer superior, data integrity and systems management functionally. Aim of the fourth
chapter to see advantages and disadvantages of distributed systems

There are several types of distributed processing in which the components are
hooked together by telecommunications. Fifth chapter categorizes them and gives
examples. İn this chapter types of distributed systems will describe.technolies for
implementing application and information will also examined and will see many
confirations of the future will be neither purely verttical nor purely horizontal.and
there will be many application programs in the function distribution in addition will
investigate reasons of the function and in this chapter will discuss function
distribution which peripheral machines are not self-sufficient when isolated from their
host by telecommunications.

Aim of the this chapter will compare the between types of distributed stystems
and investigate each types and will see characteristics . to leran how will use these
systems.

• 1. 1 Parallelism and Computing
• 1 .2 A Parallel Machine Model
• 1 .3 A Parallel Programming Model
• 1 .4 Parallel Algorithm Examples

1.1 Parallelism and Computing
A parallel computer is a set of processors that are able to work cooperatively to solve a

omputational problem. This definition is broad enough to include parallel supercomputers that
have hundreds or thousands of processors, networks of workstations, multiple-processor
workstations, and embedded systems. Parallel computers are interesting because they offer the
otential to concentrate computational resources whether processors, memory, or I/O bandwidth

on important computational problems.
Parallelism has sometimes been viewed as a rare and exotic subarea of computing,

interesting but of little relevance to the average programmer. A study of trends in applications,
omputer architecture, and networking shows that this view is no longer tenable. Parallelism is

becoming ubiquitous, and parallel programming is becoming central to the programming
enterprise.

1.1.1 Trends in Applications
As computers become ever faster, it can be tempting to suppose that they will eventually

become "fast enough" and that appetite for increased computing power will be sated. However,
history suggests that as a particular technology satisfies known applications, new applications
will arise that are enabled by that technology and that will demand the development of new
technology. As an amusing illustration of this phenomenon, a report prepared for the British
government in the late 1940s concluded that Great Britain's computational requirements could be
met by two or perhaps three computers. In those days, computers were used primarily for
computing ballistics tables. The authors of the report did not consider other applications in
science and engineering, let alone the commercial applications that would soon come to
dominate computing. Similarly, the initial prospectus for Cray Research predicted a market for
ten supercomputers; many hundreds have since been sold.

Traditionally, developments at the high end of computing have been motivated by numerical
simulations of complex systems such as weather, climate, mechanical devices, electronic

3

In this chapter, we review the role of parallelism in computing and introduce the parallel
chine and programming models that will serve as the basis for subsequent discussion of

gorithm design, performance analysis, and implementation.
After studying this chapter, you should be aware of the importance of concurrency,

scalability, locality, and modularity in parallel program design. You should also be familiar with
-:..e idealized multicomputer model for which we shall design parallel algorithms, and the
computation and communication abstractions that we shall use when describing parallel

gorithms.

CHAPTER!

Table 1.1: Various refinements proposed to climate models, and the increased
omputational requirements associated with these refinements. Altogether, these refinements

could increase computational requirements by a factor of between 1 QA4 and 1 QA7.
In summary, the need for faster computers is driven by the demands of both data-intensive

applications in commerce and computation-intensive applications in science and engineering.
Increasingly, the requirements of these fields are merging, as scientific and engineering
applications become more data intensive and commercial applications perform more
sophisticated computations.

I I I '
100-km resolution 10-km resolution 102-103

Simple process Improved process 2-10
represent ations represent ations

Simple ocean Fully coupled ocean 2-5
Simple atmospheric Improved atmospheric 2-5

chemistry chemistry
Limited biosphere Comprehensive biosphere about 2
Tens of ye ara Hundreds of ye ara -10-1oı

TABLE 1.1

.ırcuits, manufacturing processes, and chemical reactions. However, the most significant forces
zriving the development of faster computers today are emerging commercial applications that
ecuire a computer to be able to process large amounts of data in sophisticated ways. These
.• lications include video conferencing, collaborative work environments, computer-aided

-·agnosis in medicine, parallel databases used for decision support, and advanced graphics and
rtual reality, particularly in the entertainment industry. For example, the integration of parallel

romputation, high-performance networking, and multimedia technologies is leading to the
_e\'elopment of video servers, computers designed to serve hundreds or thousands of

ultaneous requests for real-time video. Each video stream can involve both data transfer rates
:· many megabytes per second and large amounts of processing for encoding and decoding. In

;raphics, three-dimensional data sets are now approaching 1 QA9 volume elements (1024 on a
side). At 200 operations per element, a display updated 30 times per second requires a computer
capable of 6.4 * 1 QA 12 operations per second. Although commercial applications may define the
architecture of most future parall computers, traditional scientific applications will remain

portant users of parallel computing technology. Indeed, as nonlinear effects place limits on the
ights offered by purely theoretical investigations and as experimentation becomes more costly
impractical, computational studies of complex systems are becoming ever more important.

Computational costs typically increase as the fourth power or more of the "resolution" that
~--termines accuracy, so these studies have a seemingly insatiable demand for more computer
. wer. They are also often characterized by large memory and input/output requirements. For
example, a ten-year simulation of the earth's climate using a state-of-the-art model may involve
• QA 16 floating-point operations ten days at an execution speed of 1QA 1 O floating-point operations
per second (1 O gigaflops). This same simulation can easily generate a hundred gigabytes (1 QA 11
bytes) or more of data. Yet as Table 1.1 shows, scientists can easily imagine refinements to these
models that would increase these computational requirements 10,000 times.

1.1.2 Trends in Computer Design
The performance of the fastest computers has grown exponentially from 1945 to the present,

eragmg a factor of 1 O every five years. While the first computers performed a few tens of
• a.ting-pointoperations per second, the parallel computers of the mid-l 990s achieve tens of

ons of operations per second. Similar trends can be observed in the low-end computers of
--:erent eras: the calculators, personal computers, and workstations. There is little to suggest
-- this growth will not continue. However, the computer architectures used to sustain this

=-- vth are changing radically from sequential to parallel. The performance of a computer
nds directly on the timerequired to perform a basic operation and the number of these basic

-erations that can be performed concurrently. The time to perform a basic operation is
:imately limited by the '' clock cycle" of the processor, that is, the time required to perform the

st primitive operation. However, clock cycle times are decreasing slowly and appear to be
roaching physical limits such as the speed of light. We cannot depend on faster processors to

~·-"ide increased computational performance. To circumvent these limitations, the designer may
-empt to .utilize internal concurrency in a chip, for example, by operating simultaneously on all
- bits of two numbers that are to be multiplied. However, a fundamental result in Very Large

Scale Integration (VLSI) complexity theory says that this strategy is expensive. This result states
··-~1 for certain transitive computations (in which any output may depend on any input), the chip
zreaA and the time T required to perform this computation are related so that AT1''2mustexceed
some problem-dependent function of problem size. This result can be explained informally by
zssuming that a computation must move a certain amount of information from one side of a
square chip to the other. The amount of information that can be moved in a time unit is limited
·-:; the cross section of the chip, sqrt(A). This gives a transfer rate of sqrt(AT), from which the

T"2 relation is obtained. To decrease the time required to move the information by a certain
factor, the cross section must be increased by the same factor, and hence the total area must be

reased by the square of that factor.
This AT"2 result means that not only is it difficult to build individual components that

erate faster, it may not even be desirable to do so. It may be cheaper to use more, slower
components. For example, if we have an area n"2A of silicon to use in a computer, we can either
uild n"2 components, each of size A and able to perform an operation in time T , or build a

single component able to perform the same operation in time Tin . The multicomponent system is
potentially n times faster.

Computer designers use a variety of techniques to overcome these limitations on single
omputer performance, including pipelining (different stages of several instructions execute
oncurrently) and multiple function units (several multipliers, adders, etc., are controlled by a
ingle instruction stream). Increasingly, designers are incorporating multiple "computers," each

with its own processor, memory, and associated interconnection logic. This approach is
facilitated by advances in VLSI technology that continue to decrease the number of components
required to implement a computer. As the cost of a computer is (very approximately)
proportional to the number of components that it contains, increased integration also increases
the number of processors that can be included in a computer for a particular cost. The result is
ontinued growth in processor counts.

1.1.3 Trends in Networking
Another important trend changing the face of computing is an enormous increase in the

capabilities of the networks that connect computers. Not long ago, high-speed networks ran at
1.5 Mbits per second; by the end of the 1990s, bandwidths in excess of 1000 Mbits per second
will be commonplace. Significant improvements in reliability are also expected. These trends
make it feasible to develop applications that use physically distributed resources as if they were

5

6

Figure 1.1: The van Neumann computer. A central processing unit (CPU) executes a
. ogram thatperforms a sequence of read and write operations on an attached memory.

Our study of parallel programming will be most rewarding if we can identify a parallel
::ıachinemodel that is as general and useful as the von Neumann sequential machine model. This

achine model must be both simple and realistic: simple to facilitate understanding and
rogramming, and realistic to ensure that programs developed for the model execute with

reasonable efficiency on real computers.

1.2.1 The Multicomputer
A parallel machine model called the multicomputer fits these requirements. As illustrated in

Figurel.Z, a multicomputer comprises a number of von Neumann computers, or nodes, linked by
an interconnection network. Each computer executes its own program. This program may access
local memory and may send and receive messages over the network. Messages are used to

MemoryCPU

3.5
I J 26 I

John

The rapid penetration of computers into commerce, science, and education owed much to the
early standardization on a single machine model, the von Neumann computer. Avon Neumann
rcmputer comprises a central processing unit (CPU) connected to a storage unit (memory)
Figure 1. 1). The CPU executes a stored program that specifies a sequence of read and write
• rations on the memory. This simple model has proved remarkably robust. Its persistence over

zıore than forty years has allowed the study of such important topics as algorithms and
crogramming languages to proceed to a large extent independently of developments in computer
architecture. Consequently, programmers can be trained in the abstract art of "programming"
....•ther than the craft of "programming machine X" and can design algorithms for an abstract von
~ -eumarınmachine, confident that these algorithms will execute on most target computers with
reasonable efficiency.

of the same computer. A typical application of this sort may utilize processors on multiple
emote computers, access a selection of remote databases, perform rendering on one or more

_ phics computers, and provide real-time output and control on a workstation.
We emphasize that computing on networked computers (''distributed computing") is not just

- subfield of parallel computing. Distributed computing is deeply concerned with problems such
as reliability, security, and heterogeneity that are generally regarded as tangential in parallel
zomputing. (As Leslie Lamport has observed, '' A distributed system is one in which the failure
.: a computer you didn't even know existed can render your own computer unusable.") Yet the

rasic task of developing programs that can run on many computers at once is a parallel
.omputing problem. In this respect, the previously distinct worlds of parallel and distributed
ccmputing are converging.

7

Figure 1.2: The multicomputer, an idealized parallel computer model. Each node consists of
von Neumann machine: a CPU and memory. A node can communicate with other nodes by

ending and receiving messages over an interconnection network.
A defining attribute of the multicomputer model is that accesses to local (same-node)

emory are less expensive than accesses to remote (different-node) memory. That is, read and
'rite are less costly than send and receive. Hence, it is desirable that accesses to local data be
ore frequent than accesses to remote data. This property, called locality, is a third fundamental

requirement for parallel software, in addition to concurrency and scalability. The importance of
ality depends on the ratio of remote to local access costs. This ratio can vary from 1 O: 1 to

: 000: 1 or greater, depending on the relative performance of the local computer, the network, and
--:..e mechanisms used to move data to and from the network.

:nmunicate with other computers or, equivalently, to read and write remote memories. In the
ealized network, the cost of sending a message between two nodes is independent of both node
cation and other network traffic, but does depend on message length.

8

Figure 1.3: Classes of parallel computer architecture. From top to bottom: a distributed
memory MIMD computer with a mesh interconnect, a shared-memory multiprocessor, and a
'ocal area network (in this case, an Ethernet). In each case, P denotes an independent processor.

We review important parallel computer architectures (several are illustrated in Figure 1.3)
and discuss briefly how these differ from the idealized multicomputer model.

The multicomputer is most similar to what is often called the distributed-memory MIMD
ı multiple instruction multiple data) computer. MIMD means that each processor can execute a
eparate stream of instructions on its own local data; distributed memory means that memory is

distributed among the processors, rather than placed in a central location. The principal
difference between a multicomputer and the distributed-memory MIMD computer is that in the
latter, the cost of sending a message between two nodes may not be independent of node location

p
• • •ppp

u

9

The von Neumann machine model assumes a processor able to execute sequences of
tructions. An instruction can specify, in addition to various arithmetic operations, the address

of a datum to be read or written in memory and/or the address of the next instruction to be
executed. While it is possible to program a computer in terms o£. this basic model by writing

achine language, this method is for most purposes prohibitively complex, because we must
.eep track of millions of memory locations and organize the execution of thousands of machine

tructions. Hence, modular design techniques are applied, whereby complex programs are
constructed from simple components, and components are structured in terms of higher-level
abstractions such as data structures, iterative loops, and procedures. Abstractions such as
rocedures make the exploitation of modularity easier by allowing objects to be manipulated

.vithout concern for their internal structure. So do high-level languages such as Fortran, Pascal,
C, and Ada, which allow designs expressed in terms of these abstractions to be translated
automatically into executable code.

Parallel programming introduces additional sources of complexity: if we were to program at
the lowest level, not only would the number of instructions executed increase, but we would also
need to manage explicitly the execution of thousands of processors and coordinate millions of

other network traffic. Examples of this class of machine include the IBM SP, Intel Paragon,
ing Machines CMS, Cray T3D, Meiko CS-2, and nCUBE.

Another important class of parallel computer is the multiprocessor, or shared-memory
ID computer. In multiprocessors, all processors share access to a common memory, typically
a bus or a hierarchy of buses. In the idealized Parallel Random Access Machine (PRAM)
el, often used in theoretical studies of parallel algorithms, any processor can access any

emery element in the same amount of time. In practice, scaling this architecture usually
ıroduces some form of memory hierarchy; in particular, the frequency with which the shared
emery is accessed may be reduced by storing copies of frequently used data items in a cache

ssociated with each processor. Access to this cache is much faster than access to the shared
emery; hence, locality is usually important, and the differences between multicomputers and

tiprocessors are really just questions of degree. Programs developed for multicomputers can
execute efficiently on multiprocessors, because shared memory permits an efficient

lementation of message passing. Examples of this class of machine include the Silicon
GraphicsChallenge, Sequent Symmetry, and the many multiprocessor workstations.

A more specialized class of parallel computer is the SIMD (single instruction multiple data)
__mputer. In SIMD machines, all processors execute the same instruction stream on a different
- ece of data. This approach can reduce both hardware and software complexity but is
.. ropriate only for specialized problems characterized by a high degree of regularity, for

ple, image processing and certain numerical simulations. Multicomputer algorithms cannot
- general be executed efficiently on SIMD computers. The MasPar MP is an example of this

s of machine.
Two classes of computer system that are sometimes used as parallel computers are the local

rea network (LAN), in which computers in close physical proximity (e.g., the same building)
re connected by a fast network, and the wide area network (WAN), in which geographically
··suibuted computers are connected. Although systems of this sort introduce additional concerns

..,_.... h as reliability and security, they can be viewed for many purposes as multicomputers, albeit

.ith high remote-access costs. Ethernet and asynchronous transfer mode (ATM) are commonly
sed network technologies.

10

1. A parallel computation consists of one or more tasks. Tasks execute concurrently. The
number of tasks can vary during program execution.

2. A task encapsulates a sequential program and local memory. (In effect, it is a virtual von
Neumann machine.) In addition, a set of inports and outports define its interface to its
environment.

3. A task can perform four basic actions in addition to reading and writing its local memory
(Figure 1.5): send messages on its outports, receive messages on its inports, create new
tasks, and terminate.

4. A send operation is asynchronous: it completes immediately. A receive operation is
synchronous: it causes execution of the task to block until a message is available.

5. Outport/inport pairs can be connected by message queues called channels. Channels can
be created and deleted, and references to channels (ports) can be included in messages, so
connectivity can vary dynamically.

Figure 1.4: A simple parallel programming model. The figure shows both the instantaneous
state of a computation and a detailed picture of a single task. A computation consists of a set of
·nsks (represented by circles) connected by channels (arrows). A task encapsulates a program
and local memory and defines a set ofports that define its interface to its environment. A channel

a message queue into which a sender can place messages and from which a receiver can
·emove messages, "blocking" if messages are not available.

We consider next the question of which abstractions are appropriate and useful in a parallel
rogramming model. Clearly, mechanisms are needed that allow explicit discussion about

concurrency and locality and that facilitate development of scalable and modular programs. Also
needed are abstractions that are simple to work with and that match the architectural model, the
multicomputer. While numerous possible abstractions could be considered for this purpose, two
fit these requirements particularly well: the task and channel. These are illustrated in Figure 1.5
and can be summarized as follows:

' '

terprocessor interactions. Hence, abstraction and modularity are at least as important as in
__quential programming. In fact, we shall emphasize modularity as a fourth fundamental
equirement for parallel software, in addition to concurrency, scalability, and locality.

11

Example]. 1 Bridge Construction:
Consider the following real-world problem. A bridge is to be assembled from girders being

constructed at a foundry. These two activities are organized by providing trucks to transport
girders from the foundry to the bridge site. This situation is illustrated in Figure 1.6 (a), with the
foundry and bridge represented as tasks and the stream of trucks as a channel. Notice that this
approach allows assembly of the bridge and construction of girders to proceed in parallel without
any explicit coordination: the foundry crew puts girders on trucks as they are produced, and the
assembly crew adds girders to the bridge as and when they arrive.

Figure 1.5: Thefour basic task actions. In addition to reading and writing local memory, a
task can send a message, receive a message, create new tasks (suspending until they terminate),
nd terminate.

•o

o

~

Send a message:

The task abstraction provides a mechanism for talking about locality: data contained in a
sk's local memory are "close"; other data are "remote." The channel abstraction provides a

-.:-chanism for indicating that computation in one task requires data in another task in order to
eed. (This is termed a data dependency). The following simple example illustrates some of

cese features.

6. Tasks can be mapped to physical processors in various ways; the mapping employed does
not affect the semantics of a program. In particular, multiple tasks can be mapped to a
single processor. (We can also imagine a single task being mapped to multiple
processors, but that possibility is not considered here.)

Figure 1.6: Two solutions to the bridge construction problem. Both represent the foundry
the bridge assembly site as separate tasks, foundry and bridge. Thefirst uses a single
ınel on which girders generated by foundry are transported asfast as they are generated.

::outıd ry generates girders faster than they are consumed by bridge, then girders
ulate at the construction site. The second solution uses a second channel to pass flow

ol messagesfrom bridge to foundry so as to avoid overflow.
.-\ disadvantage of this scheme is that the foundry may produce girders much faster than the

bly crew can use them. To prevent the bridge site from overflowing with girders, the
bly crew instead can explicitly request more girders when stocks run low. This refined

••oach is illustrated in Figure 1 .6 (b), with the stream of requests represented as a second
cnel, The second channel can also be used to shut down the flow of girders when the bridge

complete.
e now examine some other properties of this task/channel programming model:

formance, mapping independence, modularity, and determinism.
Performance. Sequential programming abstractions such as procedures and data structures
ffective because they can be mapped simply and efficiently to the von Neumann computer.

-, task and channel have a similarly direct mapping to the multicomputer. A task represents a
ce of code that can be executed sequentially, on a single processor. -If two tasks that share a

el are mapped to different processors, the channel connection is implemented as
erprocessor communication; if they are mapped to the same processor, some more efficient
chanism can be used .

.\1apping Independence. Because tasks interact using the same mechanism (channels)
=;rrdless of task location, the result computed by a program does not depend on where tasks
ecute. Hence, algorithms can be designed and implemented without concern for the number of
cessors on which they will execute; in fact, algorithms are frequently designed that create
y more tasks than processors. This is a straightforward way of achieving scalability : as the
ber of processors increases, the number of tasks per processor is reduced but the algorithm

elf need not be modified. The creation of more tasks than processors can also serve to mask
ramunication delays, by providing other computation that can be performed while
mmunication is performed to access remote data.

(b)

1.3.2 Other Programming Models
In subsequent chapters, the task/channel model will often be used to describe algorithms.

-:owever, this model is certainly not the only approach that can be taken to representing parallel
.omputation. Many other models have been proposed, differing in their flexibility, task
creraction mechanisms, task granularities, and support for locality, scalability, and modularity.
-:~re, we review several alternatives.

Message passing. Message passing is probably the most widely used parallel programming
nodel today. Message-passing programs, like task/channel programs, create multiple tasks, with
each task encapsulating local data. Each task is identified by a unique name, and tasks interact by
sending and receiving messages to and from named tasks. In this respect, message passing is
-~allyjust a minor variation on the task/channel model, differing only in the mechanism used for
:3.ata transfer. For example, rather than sending a message on '' channel ch," we may send a

.. iodularity. In modular program design, various components of a program are developed
arately, as independent modules, and then combined to obtain a complete program.

ctions between modules are restricted to well-defined interfaces. Hence, module
::.ementations can be changed without modifying other components, and the properties of a
;ram can be determined from the specifications for its modules and the code that plugs these
-ıules together. When successfully applied, modular design reduces program complexity and

· tates code reuse.
The task is a natural building block for modular design.A task encapsulates both data and the

-~ that operates on those data; the ports on which it sends and receives messages constitute its
mace. Hence, the advantages of modular design summarized in the previous paragraph are
ectly accessible in the task/channel model.
ng similarities exist between the task/channel model and the popular object-oriented

_ amming paradigm. Tasks, like objects, encapsulate data and the code that operates on those
--. Distinguishing features of the task/channel model are its concurrency, its use of channels
ıaer than method calls to specify interactions, and its lack of support for inheritance.

Determinism. An algorithm or program is deterministic if execution with a particular input
ays yields the same output. It is nondeterministic if multiple executions with the same input

- give different outputs. Although nondeterminism is sometimes useful and must be supported,
• allel programming model that makes it easy to write deterministic programs is highly
sirable. Deterministic programs tend to be easier to understand. Also, when checking for
rrectness, only one execution sequence of a parallel program needs to be considered, rather

all possible executions.
The "arms-length" interactions supported by the task/channel model makes determinism

e.aıively easy to guarantee. As we shall see in Part II when we consider programming tools, it
ces to verify that each channel has a single sender and a single receiver and that a task

eivirıg on a channel blocks until a receive operation is complete. These conditions can be
e.axed when nondeterministic interactions are required.

In the bridge construction example, determinism means that the same bridge will be
structed regardless of the rates at which the foundry builds girders and the assembly crew

girders together. If the assembly crew runs ahead of the foundry, it will block, waiting for
_ rners to arrive. Hence, it simply suspends its operations until more girders are available, rather

attempting to continue construction with half-completed girders. Similarly, if the foundry
uces girders faster than the assembly crew can use them, these girders simply accumulate

·1 they are needed. Determinism would be guaranteed even if several bridges were constructed
ultaneously: As long as girders destined for different bridges travel on distinct channels, they

.2TID.ot be confused.

14

The first example illustrates the dynamic creation of tasks and channels during program
execution. This problem can be structured as follows. Initially, a single task is created for the
root of the tree. A task evaluates its node and then, if that node is not a solution, creates a new
task for each search call (subtree). A channel created for each new task is used to return to the

We conclude this chapter by presenting two examples of parallel algorithms. We do not
oncem ourselves here with the process by which these algorithms are derived or with their

efficiency. The goal is simply to introduce parallel algorithms and their description in terms of
tasks and channels.
The first algorithm creates tasks dynamically during program execution, and the second uses a

xed number of tasks but has different tasks perform different functions.

1.4.1 Search

essage to "task 1 7 .",We explain that the definition of channels is a useful discipline even
'hen designing message-passing programs, because it forces us to conceptualize the

communication structure of a parallel program.
The message-passing model does not preclude the dynamic creation of tasks, the execution

~ multiple tasks per processor, or the execution of different programs by different tasks.
However, in practice most message-passing systems create a fixed number of identical tasks at
;-rogram startup and do not allow tasks to be created or destroyed during program execution.
These systems are said to implement a single program multiple data (SPMD) programming

odel because each task executes the same program but operates on different data. As explained
subsequent chapters, the SPMD model is sufficient for a wide range of parallel programming

problems but does hinder some parallel algorithm developments.
Data Parallelism. Another commonly used parallel programming model, data parallelism,

calls for exploitation of the concurrency that derives from the application of the same operation
:o multiple elements of a data structure, for example, "add 2 to all elements of this array," or

· increase the salary of all employees with 5 years service." A data-parallel program consists of a
sequence of such operations. As each operation on each data element can be thought of as an

dependent task, the natural granularity of a data-parallel computation is small, and the concept
f "locality" does not arise naturally. Hence, data-parallel compilers often require the

programmer to provide information about how data are to be distributed over processors, in other
·ords, how data are to be partitioned into tasks. The compiler can then translate the data-parallel

program into an SPMD formulation, thereby generating communication code automatically.We
show that the algorithm design and analysis techniques developed for the task/channel model
apply directly to data-parallel programs; in particular, they provide the concepts required to
understand the locality and scalability of data-parallel programs.

Shared Memory. In the shared-memory programming model, tasks share a common address
space, which they read and write asynchronously. Various mechanisms such as locks and
semaphores may be used to control access to the shared memory. An advantage of this model
- om the programmer's point of view is that the notion of data '' ownership" is lacking, and hence
:here is no need to specify explicitly the communication of data from producers to consumers.
This model can simplify program development. However, understanding and managing locality
ecomes more difficult, an important consideration (as noted earlier) on most shared-memory

architectures. It can also be more difficult to write deterministic programs.

1.4.2 Parameter Study
In so-called embarrassingly parallel problems, a computation consists of a number of tasks

·-~t can execute more or less independently, without communication. These problems are usually
easy to adapt for parallel execution. An example is a parameter study, in which the same

mputation must be performed using a range of different input parameters. The parameter
alues are read from an input file, and the results of the different computations are written to an
tput file.

Figure 1.7: Task structure for the search example. Each circle represents a node in the
carch tree and hence a call to the search procedure. A task is created for each node in the

e as it is explored. At any one time, some tasks are actively engaged in expanding the tree
irther (these are shaded in thefigure),· others have reached solution nodes and are terminating,
are waiting for their offspring to report back with solutions. The lines represent the channels
ed to return solutions.

Algorithm 1.1 : A recursive formulation of a simple search algorithm. When called to
;and a search tree node, this procedure cheks to see whether the node is question represents a

ion, If not algorithim makes recursive calls to the same procedure to expand each of the
-soring nodes.

procedure search(A)
begin
if (solution(A)) then
score=oval(A)
report solution and score
else
foreach child A(I) of A
search(A(I))
endfor
end if
end.

task's parent any solutions located in its subtree. Hence, new tasks and channels are created
_ vavefront as the search progresses down the search tree (Figurel.7).

16

Figure 1.8: Task structure for parameter study problem. Workers (W) request parameters
"om the input task (1) and send results to the output task (O). Note the many-to-one connections:
· ·2is program is nondeterministic in that the input and output tasks receive data from workers in
hatever order the data are generated. Reply channels, represented as dashed lines, are used to

communicateparameters from the input task to workers.
If the execution time per problem is constant and each processor has the same computational

wer, then it suffices to partition available problems into equal-sized sets and allocate one such
set to each processor. In other situations, we may choose to use the task structure illustrated in
Figure 1.8. The input and output tasks are responsible for reading and writing the input and
utput files, respectively. Each worker task (typically one per processor) repeatedly requests

parameter values from the input task, computes using these values, and sends results to the
utput task. Because execution times vary, the input and output tasks cannot expect to receive

messages from the various workers in any particular order. Instead, a many-to-one
communication structure is used that allows them to receive messages from the various workers
in arrival order.

The input task responds to a worker request by sending a parameter to that worker. Hence, a
'orker that has sent a request to the input task simply waits for the parameter to arrive on its

reply channel. In some cases, efficiency can be improved by pre/etching , that is, requesting the
next parameter before it is needed. The worker can then perform computation while its request is
eing processed by the input task.

Because this program uses many-to-one communication structures, the order in which
omputations are performed is not necessarily determined. However, this nondeterminism affects

only the allocation of problems to workers and the ordering of results in the output file, not the
actual results computed.

... 1 Methodical Design
Most programming problems have several parallel solutions. The best solution may differ

from that suggested by existing sequential algorithms. The design methodology that we describe
- intended to foster an exploratory approach to design in which machine-independent issues

___h as concurrency are considered early and machine-specific aspects of design are delayed
til late in the design process. This methodology structures the.design process as four distinct

stages: partitioning, communication, agglomeration, and mapping. (The acronym PCAM may
serve as a useful reminder of this structure.) In the first two stages, we focus on concurrency and
scalability and seek to discover algorithms with these qualities. In the third and fourth stages,
arrention shifts to locality and other performance-related issues. The four stages are illustrated in
?igure 2.1, and can be summarized as follows:

1. Partitioning. The computation that is to be performed and the data operated on by this
computation are decomposed into small tasks. Practical issues such as the number of
processors in the target computer are ignored, and attention is focused on recognizing
opportunities for parallel execution.

2. Communication. The communication required to coordinate task execution is determined,
and appropriate communication structures and algorithms are defined.

3. Agglomeration. The task and communication structures defined in the first two stages of
a design are evaluated with respect to performance requirements and implementation

17

• 2. 1 Methodical Design
• 2.2 Partitioning
• 2.3 Communication
• 2.4 Agglomeration
• 2.5 Ma.ım.ıng

Now that we have discussed what parallel algorithms look like, we are ready to examine
':..,w they can be designed. In this chapter, we show how a problem specification is translated

o an algorithm that displays concurrency, scalability, and locality. Parallel algorithm design is
cot easily reduced to simple recipes. Rather, it requires the sort of integrative thought that is
zommonly referred to as "creativity." However, it can benefit from a methodical approach that

aximizes the range of options considered, that provides mechanisms for evaluating alternatives,
d that reduces the cost of backtracking from bad choices. We describe such an approach and

.Iustrate its application to a range of problems. Our goal is to suggest a framework within which
:;arallel algorithm design can be explored. In the process, we hope you will develop intuition as
·J what constitutes a good parallel algorithm.

·ou should be able to partition computations, using both domain and functional decomposition
hniques, and know how to recognize and implement both local and global, static and dynamic,

srructured and unstructured, and synchronous and asynchronous communication structures. You
should also be able to use agglomeration as a means of reducing communication and

plementation costs and should be familiar with a range of load-balancing strategies.

If
I ı
'I

18

The outcome of this design process can be a program that creates and destroys tasks
amically, using load-balancing techniques to control the mapping of tasks to processors.

:ematively, it can be an SPMD program that creates exactly one task per processor. The same
ess of algorithm discovery applies in both cases, although if the goal is to produce an SPMD

gram, issues associated with mapping are subsumed into the agglomeration phase of the
sign.

Figure 2.1: PCAM: a design methodology for parallel programs. Starting with a problem
cification, we develop a partition, determine communication requirements, agglomerate
ı..~, and.finally map tasks toprocessors.

PROBLEM

costs. If necessary, tasks are combined into larger tasks to improve performance or to
reduce development costs.

4. Mapping. Each task is assigned to a processor in a manner that attempts to satisfy the
competing goals of maximizing processor utilization and minimizing communication
costs. Mapping can be specified statically or determined at runtime by load-balancing
algorithms.

Algorithm design is presented here as a sequential activity. In practice, however, it is a
_:.:y parallel process, with many concerns being considered simultaneously. Also, although we

to avoid backtracking, evaluation of a partial or complete design may require changes to
gn decisions made in previous steps.
The following sections provide a detailed examination of the four stages of the design
:;!SS. We present basic principles, use examples to illustrate the application of these
ciples, and include design checklists that can be used to evaluate designs as they are
doped. In the final sections of this chapter, we use three case studies to illustrate the

ation of these design techniques to realistic problems.

Partitioning

The partitioning stage of a design is intended to expose opportunities for parallel execution.
ce, the focus is on defining a large number of small tasks in order to yield what is termed a
-grained decomposition of a problem. Just as fine sand is more easily poured than a pile of
cs, a fine-grained decomposition provides the greatest flexibility in terms of potential parallel

_ rithms. In later design stages, evaluation of communication requirements, the target
citecture, or software engineering issues may lead us to forego opportunities for parallel
cution identified at this stage. We then revisit the original partition and agglomerate tasks to
ease their size, or granularity. However, in this first stage we wish to avoid prejudging

ative partitioning strategies.
::ood partition divides into small pieces both the computation associated with a problem and
data on which this computation operates. When designing a partition, programmers most

only first focus on the data associated with a problem, then determine an appropriate
tion for the data, and finally work out how to associate computation with data. This
itioning technique is termed domain decomposition. The alternative approach first
mposing the computation to be performed and then dealing with the data is termed
ıional decomposition. These are complementary techniques which may be applied to

~a-ent components of a single problem or even applied to the same problem to obtain
ative parallel algorithms.

In this first stage of a design, we seek to avoid replicating computation and data; that is, we
•. to define tasks that partition both computation and data into disjoint sets. Like granularity,

- is an aspect of the design that we may revisit later. It can be worthwhile replicating either
putation or data if doing so allows us to reduce communication requirements.

2.2.1 Domain Decomposition
In the domain decomposition approach to problem partitioning, we seek first to decompose
data associated with a problem. If possible, we divide these data into small pieces of

=-:-oximately equal size. Next, we partition the computation that is to be performed, typically
sociating each operation with the data on which it operates. This partitioning yields a

ber of tasks, each comprising some data and a set of operations on that data. An operation
. · require data from several tasks. In this case, communication is required to move data

·een tasks. This requirement is addressed in the next phase of the design process.
The data that are decomposed may be the input to the program, the output computed by the

gram, or intermediate values maintained by the program. Different partitions may be possible,
sed on different data structures. Good rules of thumb are to focus first on the largest data
~.... ture or on the data structure that is accessed most frequently. Different phases of the

putation may operate on different data structures or demand different decompositions for the

19

e data structures. In this case, we treat each phase separately and then determine how the
mpositions and parallel algorithms developed for each phase fit together.
Figure 2.2 illustrates domain decomposition in a simple problem involving a three
nsional grid. (This grid could represent the state of the atmosphere in a weather model, or a

ee-dimensional space in an image-processing problem.) Computation is performed repeatedly
each grid point. Decompositions in the x , y , and/or z dimensions are possible. In the early
ges of a design, we favor the most aggressive decomposition possible, which in this case
:ines one task for each grid point. Each task maintains as its state the various values associated
-ı, its grid point and is responsible for the computation required to update that state.

1-D 2-D 3-D

Figure 2.2: Domain decompositionsfor a problem involving a three-dimensional grid. One
-ı·o-, and three-dimensional decompositions are possible; in each case, data associated with a
gle task are shaded. A three-dimensional decomposition offers the greatest flexibility and is

· ıpted in the early stages of a design.

2.2.2 Functional Decomposition
Functional decomposition represents a different and complementary way of thinking about

blems. In this approach, the initial focus is on the computation that is to be performed rather
on the data manipulated by the computation. If we are successful in dividing this

mputation into disjoint tasks, we proceed to examine the data requirements of these tasks.
~ se data requirements may be disjoint, in which case the partition is complete. Alternatively,
-.ey may overlap significantly, in which case considerable communication will be required to

_ :oid replication of data. This is often a sign that a domain decomposition approach should be
considered instead.

While domain decomposition forms the foundation for most parallel algorithms, functional
zecomposition is valuable as a different way of thinking about problems. For this reason alone, it
saould be considered when exploring possible parallel algorithms. A focus on the computations
.aat are to be performed can sometimes reveal structure in a problem, and hence opportunities for

timization, that would not be obvious from a study of data alone.
As an example of a problem for which functional decomposition is most appropriate,

consider Algorithm 1. 1. This explores a search tree looking for nodes that correspond to
olutions." The algorithm does not have any obvious data structure that can be decomposed.

Initially, a single task is created for the root of the tree. A task evaluates its node and then, if that
code is not a leaf, creates a new task for each search call (subtree). As illustrated in Figure 1 .7,
new tasks are created in a wavefront as the search tree is expanded.

20

Atına spheric Mod el

Hydrology
Model OceB..11

Model

Land Surface Model

Figure 2.3: Functional decomposition in a computer model of climate. Each model
anent can be thought of as a separate task, to be parallelized by domain decomposition.
vs represent exchanges of data between components during computation: the atmosphere

' I generates wind velocity data that are used by the ocean model, the ocean model generates
urface temperature data that are used by the atmosphere model, and so on.

Functional decomposition also has an important role to play as a program structuring
· que. A functional decomposition that partitions not only the computation that is to be

ormed but also the code that performs that computation is likely to reduce the complexity of
erall design. This is often the case in computer models of complex systems, which may be

_cnıred as collections of simpler models connected via interfaces. For example, a simulation
-:...e earth's climate may comprise components representing the atmosphere, ocean, hydrology,

arbon dioxide sources, and so on. While each component may be most naturally
elized using domain decomposition techniques, the parallel algorithm as a whole is simpler

e system is first decomposed using functional decomposition techniques, even though this
cess does not yield a large number of tasks (Figure 2.3).

2.2.3 Partitioning Design Checklist
The partitioning phase of a design should produce one or more possible decompositions of a
lem. Before proceeding to evaluate communication requirements, we use the following

cklist to ensure that the design has no obvious flaws. Generally, all these questions should be
vered in the affirmative.

Does your partition define at least an order of magnitude more tasks than there are
processors in your target computer? If not, you have little flexibility in subsequent design
stages.
Does your partition avoid redundant computation and storage requirements? If not, the
resulting algorithm may not be scalable to deal with large problems.

3. Are tasks of comparable size? If not, it may be hard to allocate each processor equal
amounts of work.

4. Does the number of tasks scale with problem size? Ideally, an increase in problem size
should increase the number of tasks rather than the size of individual tasks. If this is not
the case, your parallel algorithm may not be able to solve larger problems when more
processors are available.

5. Have you identified several alternative partitions? You can maximize flexibility in
subsequent design stages by considering alternatives now. Remember to investigate both
domain and functional decompositions.

Answers to these questions may suggest that, despite careful thought in this and subsequent
zesign stages, we have a "bad" design. In this situation it is risky simply to push ahead with

plementation. We should use the performance evaluation techniques to determine whether the

21

sign meets our performance goals despite its apparent deficiencies. We may also wish to
isit the problem specification. Particularly in science and engineering applications, where the
blem to be solved may involve a simulation of a complex physical process, the
roximations and numerical techniques used to develop the simulation can strongly influence
ease of parallel implementation. In some cases, optimal sequential and parallel solutions to
ame problem may use quite different solution techniques. While detailed discussion of these

es is beyond the scope of this book.

2.3 Communication

The tasks generated by a partıtıon are intended to execute concurrently but cannot, in
_ eral, execute independently. The computation to be performed in one task will typically
ecuire data associated with another task. Data must then be transferred between tasks so as to

w computation to proceed. This information flow is specified in the communication phase of
:esign.

We conceptualize a need for communication between two tasks as a channel linking the
sks, on which one task can send messages and from which the other can receive. Hence, the
aımunication associated with an algorithm can be specified in two phases. First, we define a

zzannel structure that links, either directly or indirectly, tasks that require data (consumers) with
-~ that possess those data (producers). Second, we specify the messages that are to be sent and
eived on these channels. Depending on our eventual implementation technology, we may not
ually create these channels when coding the algorithm. For example, in a data-parallel
guage, we simply specify data-parallel operations and data distributions. Nevertheless,

::..:.::ıking in terms of tasks and channels helps us to think quantitatively about locality issues and
.::nmunication costs.

The definition of a channel involves an intellectual cost and the sending of a message
volves a physical cost. Hence, we avoid introducing unnecessary channels and communication
__ rations. In addition, we seek to optimize performance by distributing communication
cerations over many tasks and by organizing communication operations in a way that permits

urrent execution.
In domain decomposition problems, communication requirements can be difficult to

.ermine. Recall that this strategy produces tasks by first partitioning data structures into
-:joint subsets and then associating with each datum those operations that operate solely on that
rum. This part of the design is usually simple. However, some operations that require data
m several tasks usually remain. Communication is then required to manage the data transfer
essary for these tasks to proceed. Organizing this communication in an efficient manner can
hallenging. Even simple decompositions can have complex communication structures.
contrast, communication requirements in parallel algorithms obtained by functional
omposition are often straightforward: they correspond to the data flow between tasks. For

ple, in a climate model broken down by functional decomposition into atmosphere model,
ean model, and so on, the communication requirements will correspond to the interfaces
tween the component submodels: the atmosphere model will produce values that are used by
~ ocean model, and so on (Figure 2.3).

In the following discussion, we use a variety of examples to show how communication
quirements are identified and how channel structures and communication operations are
.:roduced to satisfy these requirements. For clarity in exposition, we categorize communication

ems along four loosely orthogonal axes: local/global, structured/unstructured, static/dynamic,
synchronous/asynchronous.

22

• In local communication, each task communicates with a small set of other tasks (its
"neighbors"); in contrast, global communication requires each task to communicate with
many tasks.

• In structured communication, a task and its neighbors form a regular structure, such as a
tree or grid; in contrast, unstructured communication networks may be arbitrary graphs.

• In static communication, the identity of communication partners does not change over
time; in contrast, the identity of communication partners in dynamic communication
structures may be determined by data computed at runtime and may be highly variable.

• In synchronous communication, producers and consumers execute in a coordinated
fashion, with producer/consumer pairs cooperating in data transfer operations; in contrast,
asynchronous communication may require that a consumer obtain data without the
cooperation of the producer.

2.3.1 Local Communication
A local communication structure is obtained when an operation requires data from a small
er of other tasks. It is then straightforward to define channels that link the task responsible
erforming the operation (the consumer) with the tasks holding the required data (the

ucers) and to introduce appropriate send and receive operations in the producer and
sumer tasks, respectively.
For illustrative purposes, we consider the communication requirements associated with a
le numerical computation, namely a Jacobi finite difference method. In this class of
erical method, a multidimensional grid is repeatedly updated by replacing the value at each
r with some function of the values at a small, fixed number of neighboring points. The set of

..:es required to update a single grid point is called that grid point's stencil.

2.3.2 Global Communication

®
®

~~J

CD00©0®
7J.:

Figure 2.3: A centralized summation algorithm that uses a central manager task (SJ to sum
.•ımbers distributed among N tasks. Here, N=8, and each of the 8 channels is labeled with the
ber of the step in which they are used

global communication operation is one in which many tasks must participate. When such
__rations are implemented, it may not be sufficient simply to identify individual

ucer/consumer pairs. Such an approach may result in too many communications or may
estrict opportunities for concurrent execution. For example, consider the problem of performing
" rallel reduction operation, that is, an operation that reduces N values distributed over N tasks
sınga commutative associative operator such as addition.

23

24

In summary, we observe that in developing an efficient parallel summation algorithm, we
e distributed the N-1 communication and computation operations required to perform the

ation and have modified the order in which these operations are performed so that they can
ceed concurrently. The result is a regular communication structure in which each task

mmunicates with a small set of neighbors.

2.3.3 Unstructured and Dynamic Communication
Communication patterns may be considerably more complex. For example, in finite element

thods used in engineering calculations, the computational grid may be shaped to follow an
egular object or to provide high resolution in critical regions. Here, the channel structure
.7resenting the communication partners of each grid point is quite irregular and data-dependent

furthermore, may change over time if the grid is refined as a simulation evolves.
Unstructured communication patterns do not generally cause conceptual difficulties in the

y stages of a design. For example, it is straightforward to define a single task for each vertex
a finite element graph and to require communication for each edge. However, unstructured
mmunication complicates the tasks of agglomeration and mapping. In particular, sophisticated
:~rithms can be required to determine an agglomeration strategy that both creates tasks of
proximately equal size and minimizes communication requirements by creating the least

ber of intertask edges. If communication requirements are dynamic, these algorithms must
applied frequently during program execution, and the cost of these algorithms must be

eighed against their benefits.

2.3.4 Asynchronous Communication
The examples considered in the preceding section have all featured synchronous

mmunication, in which both producers and consumers are aware when communication
__rations are required, and producers explicitly send data to consumers. In asynchronous

Figure 2.4: Tree structure for divide-and-conquer summation algorithm with N=8 . The N
bers located in the tasks at the bottom of the diagram are communicated to the tasks in the
immediately above; these each perform an addition and then forward the result to the next

_/. The complete sum is available at the root of the tree after logN steps.

unication, tasks that possess data (producers) are not able to determine when other tasks
zsurrıers) may require data; hence, consumers must explicitly request data from producers.

@
Figure 2.5: Using separate "data tasks II to service read and write requests on a distributed

tructure. In this figure, four computation tasks (CJ generate read and write requests to
·.£ data items distributed among four data tasks (DJ. Solid lines represent requests; dashed

represent replies. One compute task and one data task could be placed on each offour
cessors so as to distribute computation and data equitably.

,,

~,~00(3) wıite(5)

This situation commonly occurs when a computation is structured as a set of tasks that must
iodically read and/or write elements of a shared data structure. Let us assume that this data

ture is too large or too frequently accessed to be encapsulated in a single task. Hence, a
hanism is needed that allows this data structure to be distributed while supporting

vnchronous read and write operations on its components. Possible mechanisms include the
owıng:
1. The data structure is distributed among the computational tasks. Each task both performs

computation and generates requests for data located in other tasks. It also periodically
interrupts its own computation andpolls for pending requests.
The distributed data structure is encapsulated in a second set of tasks responsible only for
responding to read and write requests (Figure 2.5).

3. On a computer that supports a shared-memory programming model, computational tasks
can access shared data without any special arrangements. However, care must be taken to
ensure that read and write operations on this shared data occur in the proper order.

Each strategy has advantages and disadvantages; in addition, the performance characteristics
· each approach vary from machine to machine. The first strategy can result in convoluted,
nmodular programs because of the need to intersperse polling operations throughout
lication code. In addition, polling can be an expensive operation on some computers, in

· ch case we must trade off the cost of frequent polling against the benefit of rapid response to
ote requests. The second strategy is more modular: responsibility for the shared data structure

encapsulated in a separate set of tasks. However, this strategy makes it hard to exploit locality
cause, strictly speaking, there are no local data: all read and write operations require
mmunication. Also, switching between the computation and data tasks can be expensive on

.. me machines.

2.4 Agglomeration

In the first two stages of the design process, we partitioned the computation to be performed
to a set of tasks and introduced communication to provide data required by these tasks. The

esulting algorithm is still abstract in the sense that it is not specialized for efficient execution on

25

articular parallel computer. In fact, it may be highly inefficient if, for example, it creates
:,- more tasks than there are processors on the target computer and this computer is not
gned for efficient execution of small tasks.

the third stage, agglomeration, we move from the abstract toward the concrete. We revisit
sions made in the partitioning and communication phases with a view to obtaining an

_ rithm that will execute efficiently on some class of parallel computer. In particular, we
sider whether it is useful to combine, or agglomerate, tasks identified by the partitioning
-~, so as to provide a smaller number of tasks, each of greater size (Figure 2.6). We also
ermine whether it is worthwhile to replicate data and/or computation.

(a)

(b)

(c)

(d)

•

Figure 2.6: Examples of agglomeration. In (a), the size of tasks is increased by reducing the
mension o/the decompositionfrom three to two. In (b), adjacent tasks are combined to yield a
ee-dimensional decomposition of higher granularity. In (c), subtrees in a divide-and-conquer
ucture are coalesced. In (d), nodes in a tree algorithm are combined.

The number of tasks yielded by the agglomeration phase, although reduced, may still be
=--eater than the number of processors. In this case, our design remains somewhat abstract, since

26

"'C relating to the mapping of tasks to processors remain unresolved. Alternatively, we may
se during the agglomeration phase to reduce the number of tasks to exactly one per
essor. We might do this, for example, because our target parallel computer or program

elopment environment demands an SPMD program. In this case, our design is already largely
Jete, since in defining P tasks that will execute on P processors, we have also addressed the
ing problem. In this section, we focus on general issues that arise when increasing task

cularity. Specific issues relating to the generation of SPMD programs are discussed in Section

Three sometimes-conflicting goals guide decisions concerning agglomeration and
· ation: reducing communication costs by increasing computation and communication
ıularity, retainingjlexibility with respect to scalability and mapping decisions, and reducing
vare engineering costs. These goals are discussed in the next three subsections.

2.4.1 Increasing Granularity
In the partitioning phase of the design process, our efforts are focused on defining as many
- as possible. This is a useful discipline because it forces us to consider a wide range of

cortunities for parallel execution. We note, however, that defining a large number of fine
ed tasks does not necessarily produce an efficient parallel algorithm.
One critical issue influencing parallel performance is communication costs. On most parallel
puters, we have to stop computing in order to send and receive messages. Because we

.cally would rather be computing, we can improve performance by reducing the amount of
e spent communicating. Clearly, this performance improvement can be achieved by sending
- data. Perhaps less obviously, it can also be achieved by using fewer messages, even if we

the same amount of data. This is because each communication incurs not only a cost
portional to the amount of data transferred but also a fixed startup cost.
In addition to communication costs, we may need to be concerned with task creation costs.

- example, the performance of the fine-grained search algorithm illustrated in Figure 1.7,
h creates one task for each search tree node, is sensitive to task creation costs.

27

(a)

(b)

I

_____ .., .,..--

\

Figure 2.7: Effect of increased granularity on communication costs in a two-dimensional
difference problem with a jive-point stencil. The figure shows fine- and coarse-grained
imensional partitions of this problem. In each case, a -single task is exploded to show its

zoing messages (dark shading) and incoming messages (light shading). In (a), a computation
8*8 grid is partitioned into 8*8=64 tasks, each responsiblefor a single point, while in (b)

same computation is partioned into 2*2=4 tasks, each responsible for 16 points. In (a),
4=256 communications are required, 4per task,· these transfer a total of 256 data values. In
nly 4*4=16 communications are required, and only 16*4=64 data values are transferred.
ace-to-Volume Effects

the number of communication partners per task is small, we can often reduce both the
~i.}Çr of communication operations and the total communication volume by increasing the

ularity of our partition, that is, by agglomerating several tasks into one. This effect is
strated in Figure 2.7. In this figure, the reduction in communication costs is due to a surface

-. »lumeeffect . In other words, the communication requirements of a task are proportional to
surface of the subdomain on which it operates, while the computation requirements are

28

portional to the subdomain's volume. In a two-dimensional problem, the '' surface" scales
the problem size while the "volume" scales as the problem size squared. Hence, the amount
mmunication performed for a unit of computation (the communication/computation ratio)

eases as task size increases. This effect is often visible when a partition is obtained by using
ain decomposition techniques.
.-\ consequence of surface-to-volume effects is that higher-dimensional decompositions are
cally the most efficient, other things being equal, because they reduce the surface area

unication) required for a given volume (computation). Hence, from the viewpoint of
ierıcy it is usually best to increase granularity by agglomerating tasks in all dimensions
T than reducing the dimension of the decomposition.

~ıe can sometimes trade off replicated computation for reduced communication
· ements and/or execution time. For an example, we consider a variant of the summation
.ern presented in Section 2.3.2, in which the sum must be replicated in each of the N tasks
contribute to the sum.

figure 2.8: Using an array (above) and a tree (below) to perform a summation and a
'cast. On the left are the communications performed for the summation (s),· on the right, the

ıunications performed for the broadcast (b). After 2(N-l) or 2logN steps, respectively, the
of the N values is replicated in each of the N tasks .

.-\ simple approach to distributing the sum is first to use either a ring- or tree-based algorithm
mpute the sum in a single task, and then to broadcast the sum to each of the N tasks. The
cast can be performed using the same communication structure as the summation; hence,

complete operation can be performed in either 2(N-I) or N steps, depending on which
unication structure is used (Figure 2.8).

These algorithms are optimal in the sense that they do not perform any unnecessary
utation or communication. However, there also exist alternative algorithms that execute in
lapsed time, although at the expense of unnecessary (replicated) computation and
unication. The basic idea is to perform multiple summations concurrently, with each

:ırrent summation producing a value in a different task.

29

·~ 'e first consider a variant of the array summation algorithm based on this idea. In this
t, tasks are connected in a ring rather than an array, and all N tasks execute the same

ithm so that N partial sums are in motion simultaneously. After N-1 steps, the complete sum
" licated in every task. This strategy avoids the need for a subsequent broadcast operation,
zt the expense of redundant additions (N-1)"'2 and (N-1)"'2 unnecessary communications.
ever, the summation and broadcast complete in N-1 rather than 2(N-J) steps. Hence, the
egy is faster if the processors would otherwise be idle waiting for the result of the

ation.
The tree summation algorithm can be modified in a similar way to avoid the need for a
rate broadcast. That is, multiple tree summations are performed concurrently so that after
- teps each task has a copy of the sum. One might expect this approach to result in O(N/\2)
ions and communications, as in the ring algorithm. However, in this case we can exploit
dancies in both computation and communication to perform the summation in just

ılogN) operations. The resulting communication structure, termed a butterfly, is illustrated in
.re 2.9. In each of the logN stages, each task receives data from two tasks, performs a single
-:on, and sends the result of this addition to two tasks in the next stage.

Figure 2.9: The butterfly communication structure can be used to sum N values in logN
.,. Numbers located in the bottom row of tasks are propagated up through logN intermediate

s, thereby producing the complete sum in each task in the top row.

30

l~J

Figure 2.10: The communication structures that result when tasks at different ievels in a
J butterfly structure are agglomerated. From top to bottom: a tree, a butterfly, and an
aleni representation of the butterfly as a hypercube. In each case, N=8, and each channel

=eled with the step in which it is usedfor communication.
iding Communication

_-\gglomeration is almost always beneficial if analysis of communication requirements
rs:- •. eals that a set of tasks cannot execute concurrently. For example, consider the tree and

erfly structures illustrated in Figures 2.4 and 2.9. When a single summation problem is
rmed, only tasks at the same level in the tree or butterfly can execute concurrently. (Notice,

ever, that if many summations are to be performed, in principle all tasks can be kept busy by
.ining multiple summation operations.) Hence, tasks at different levels can be agglomerated
ut reducing opportunities for concurrent execution, thereby yielding the communication

_:tures represented in Figure 2.1 O. The hypercube structure shown in this figure is a
.::.arnental communication structure that has many applications in parallel computing.

2.4.2 Preserving Flexibility
It is easy when agglomerating tasks to make design decisions that limit unnecessarily an

_ rithm's scalability. For example, we might choose to decompose a multidimensional data
~cture in just a single dimension, reasoning that this provides more than enough concurrency
the number of processors available. However, this strategy is shortsighted if our program
st ultimately be ported to larger parallel computers. It may also lead to a less efficient

~~rithm,as discussed in Section 2.4.1.

31

The ability to create a varying number of tasks is critical if a program is to be portable and
· le. Good parallel algorithms are designed to be resilient to changes in processor count.
flexibility can also be useful when tuning a code for a particular computer. If tasks often

· waiting for remote data, it can be advantageous to map several tasks to a processor. Then,
ked task need not result in a processor becoming idle, since another task may be able to

ııte in its place. In this way, one task's communication is overlapped with another task's
utation. This technique, termed overlapping computation and communication.

A third benefit of creating more tasks than processors is that doing so provides greater scope
apping strategies that balance computational load over available processors. As a general

of thumb, we could require that there be at least an order of magnitude more tasks than
tıır:ce-ssors.This issue is discussed in the next section.

optimal number of tasks is typically best determined by a combination of analytic modeling
empirical studies. Flexibility does not necessarily require that a design always create a large
er of tasks. Granularity can be controlled by a compile-time or runtime parameter. What is
rtant is that a design not incorporate unnecessary limits on the number of tasks that can be

zed.

2.4.3 Reducing Software Engineering Costs
o far, we have assumed that our choice of agglomeration strategy is determined solely by a

re to improve the efficiency and flexibility of a parallel algorithm. An additional concern,
ch can be particularly important when parallelizing existing sequential codes, is the relative
elopment costs associated with different partitioning strategies. From this perspective, the
_. interesting strategies may be those that avoid extensive code changes. For example, in a
~" that operates on a multidimensional grid, it may be advantageous to avoid partitioning
gether in one dimension, if doing so allows existing routines to be reused unchanged in a

allel program.
Frequently, we are concerned with designing a parallel algorithm that must execute as part

.:: larger system. In this case, another software engineering issue that must be considered is the
distributions utilized by other program components. For example, the best algorithm for

e program component may require that an input array data structure be decomposed in three
ensions, while a preceding phase of the computation generates a two-dimensional
mposition. Either one or both algorithms must be changed, or an explicit restructuring phase

st be incorporated in the computation. Each approach has different performance

2.4.4 Agglomeration Design Checklist
We have now revised the partitioning and communication decisions developed in the first
design stages by agglomerating tasks and communication operations. We may have

_Jlomerated tasks because analysis of communication requirements shows that the original
tition created tasks that cannot execute concurrently. Alternatively, we may have used

gglomeration to increase computation and communication granularity and/or to decrease
::ware engineering costs, even though opportunities for concurrent execution are reduced. At
- stage, we evaluate our design with respect to the following checklist.

1. Has agglomeration reduced communication costs by increasing locality? If not, examine
your algorithm to determine whether this could be achieved using an alternative
agglomeration strategy.

2. If agglomeration has replicated computation, have you verified that the benefits of this
replication outweigh its costs, for a range of problem sizes and processor counts?

32

If agglomeration replicates data, have you verified that this does not compromise the
scalability of your algorithm by restricting the range of problem sizes or processor counts
that it can address?
Has agglomeration yielded tasks with similar computation and communication costs? The
larger the tasks created by agglomeration, the more important it is that they have similar
costs. If we have created just one task per processor, then these tasks should have nearly
identical costs.

- Does the number of tasks still scale with problem size? If not, then your algorithm is no
longer able to solve larger problems on larger parallel computers.
If agglomeration eliminated opportunities for concurrent execution, have you verified
that there is sufficient concurrency for current and future target computers? An algorithm
with insufficient concurrency may still be the most efficient, if other algorithms have
excessive communication costs; performance models can be used to quantify these
tradeoffs.

- Can the number of tasks be reduced still further, without introducing load imbalances,
increasing software engineering costs, or reducing scalability? Other things being equal,
algorithms that create fewer larger-grained tasks are often simpler and more efficient than
those that create many fine-grained tasks.
If you are parallelizing an existing sequential program, have you considered the cost of
the modifications required to the sequential code? If these costs are high, consider
alternative agglomeration strategies that increase opportunities for code reuse. If the
resulting algorithms are less efficient, use performance modeling techniques to estimate
cost tradeoffs.

-·5 Mapping

the fourth and final stage of the parallel algorithm design process, we specify where each
- to execute. This mapping problem does not arise on uniprocessors or on shared-memory
uters that provide automatic task scheduling. In these computers, a set of tasks and
·ated communication requirements is a sufficient specification for a parallel algorithm;
ting system or hardware mechanisms can be relied upon to schedule executable tasks to

ııııa.-3ble processors. Unfortunately, general-purpose mapping mechanisms have yet to be
oped for scalable parallel computers. In general, mapping remains a difficult problem that

-: be explicitly addressed when designing parallel algorithms.
ur goal in developing mapping algorithms is normally, to minimize total execution time.

se two strategies to achieve this goal:
We place tasks that are able to execute concurrently on different processors, so as to
enhance concurrency.
We place tasks that communicate frequently on the same processor, so as to increase
locality.

Clearly, these two strategies will sometimes conflict, in which case our design will involve
ffs. In addition, resource limitations may restrict the number of tasks that can be placed on

gıe processor.
apping problem is known to be NP -complete, meaning that no computationally tractable

vnomial-time) algorithm can exist for evaluating these tradeoffs in the general case.
ever, considerable knowledge has been gained on specialized strategies and heuristics and

33

asses of problem for which they are effective. In this section, we provide a rough
ı-,-=sification of problems and present some representative techniques .

... .&... ..
I .
I
I ···y----
1
I
I ---~--

.•..
I .
I
I . ..,..
I
I
I•..

I ----;-- : ~ ~ y T: I

·-- -·-- ---t·---~·-t··1···-t·-·1··--~-·i··- ·-· ··-·t··- --· .
···r-··
I .
I

... L ..
I
I

' I ···t--··
I

.,..
I .
I

....J...
I
I .
I ------

figure 2.11: Mapping in a grid problem in which each task performs the same amount of
ıtation and communicates only with its four neighbors. The heavy dashed lines delineate

essor boundaries. The grid and associated computation is partitioned to give each processor
ime amount of computation and to minimize off-processor communication.

Many algorithms developed using domain decomposition techniques feature a fixed number
~ual-sized tasks and structured local and global communication. In such cases, an efficient

ing is straightforward. We map tasks in a way that minimizes interprocessor
unication (Figure 2.1 O); we may also choose to agglomerate tasks mapped to the same

essor, if this has not already been done, to yield a total of P coarse-grained tasks, one per
ssor.

In more complex domain decomposition-based algorithms with variable amounts of work
task and/or unstructured communication patterns, efficient agglomeration and mapping

.egies may not be obvious to the programmer. Hence, we may employ load balancing
_ .::ithms that seek to identify efficient agglomeration and mapping strategies, typically by

g heuristic techniques. The time required to execute these algorithms must be weighed
t the benefits of reduced execution time. Probabilistic load-balancing methods tend to

e lower overhead than do methods that exploit structure in an application.
The most complex problems are those in which either the number of tasks or the amount of
utation or communication per task changes dynamically during program execution. In the
of problems developed using domain decomposition techniques, we may use a dynamic

-balancing strategy in which a load-balancing algorithm is executed periodically to
ermine a new agglomeration and mapping. Because load balancing must be performed many
-5 during program execution, local algorithms may be preferred that do not require global
vledge of computation state.
Algorithms based on functional decomposition often yield computations consisting of many
r-lived tasks that coordinate with other tasks only at the start and end of execution. In this

-". we can use task-scheduling algorithms, which allocate tasks to processors that are idle or
- are likely to become idle.

2.5.1. Load-Balancing Algorithms
A wide variety of both general-purpose and application-specific load-balancing techniques

e been proposed for use in parallel algorithms based on domain decomposition techniques.
e review several representative approaches here, namely recursive bisection methods, local

34

_ rithms, probabilistic methods, and cyclic mappings. These techniques are all intended to
_;lomerate fine-grained tasks defined in an initial partition to yield one coarse-grained task per

essor. Alternatively, we can think of them as partitioning our computational domain to yield
subdomain for each processor. For this reason, they are often referred to as partitioning

zorithms.
ursive Bisection

Recursive bisection techniques are used to partition a domain (e.g., a finite element grid)
subdomains of approximately equal computational cost while attempting to minimize

mmunication costs, that is, the number of channels crossing task boundaries. A divide-and-
quer approach is taken. The domain is first cut in one dimension to yield two subdomains.

-~ are then made recursively in the new subdomains until we have as many subdomains as we
_:ıire tasks. Notice that this recursive strategy allows the partitioning algorithm itself to be
ecuted in parallel.

The most straightforward of the recursive bisection techniques is recursive coordinate
section, which is normally applied to irregular grids that have a mostly local communication

ture. This technique makes cuts based on· the physical coordinates of grid points in the
main, at each step subdividing along the longer dimension so that if (for example) the cut is

e along the x dimension, grid points in one subdomain will all have an x -coordinate greater
'" grid points in the other. This approach has the advantages of being simple and inexpensive.

so does a good job of partitioning computation. A disadvantage is that it does not optimize
mmunication performance. In particular, it can generate long, skinny subdomains, which if an
:orithm has significant local communication will result in more messages than will a
compositionthat generates square subdomains.

A variant of recursive bisection called unbalanced recursive bisection attempts to reduce
:nmunication costs by forming subgrids that have better aspect ratios. Instead of automatically
iding a grid in half, it considers the P-1 partitions obtained by forming unbalanced subgrids

_jı 1/P and (P-1)/P of the load, with 2/P and (P-2)/P of the load, and so on, and chooses the
ition that minimizes partition aspect ratio. This method increases the cost of computing the
ition but can reduce communication costs.
Another technique, called recursive graph bisection , can be useful in the case of more

mplex unstructured grids, for example, finite element meshes. This technique uses
nnectivity information to reduce the number of grid edges crossing subdomain boundaries, and
ce to reduce communication requirements. A grid is treated as a graph with N vertices (grid

cints) . The algorithm first identifies the two extremities of the graph, that is, the two vertices
at are the most separated in terms of graph distance. (The graph distance between two vertices
the smallest number of edges that must be traversed to go between them.) Each vertex is then
signed to the subdomain corresponding to the closer extremity. Another algorithm called

__ ursive spectral bisection is even better in many circumstances.

35

Figure 2.12: Load balancing in a grid problem. Variable numbers of grid points are placed
achprocessor so as to compensatefor load imbalances. This sort of load distribution may
if a local load-balancing scheme is used in which tasks exchange load information with

ghbors and transfer grid points when load imbalances are detected.
cal Algorithms

The techniques just described are relatively expensive because they require global
_ vledge of computation state. In contrast, local load-balancing algorithms compensate for

ges in computational load using only information obtained from a small number of
ghboring processors. For example, processors may be organized in a logical mesh;
odically, each processor compares its computational load with that of its neighbors in the

sa and transfers computation if the difference in load exceeds some threshold. Figure 2.12
vs load distributions produced by such schemes.
Because local algorithms are inexpensive to operate, they can be useful in situations in
ch load is constantly changing. However, they are typically less good at balancing load than

· cal algorithms and, in particular, can be slow to adjust to major changes. in load
racteristics. For example, if a high load suddenly appears on one processor, multiple local
-balancing operations are required before load '' diffuses" to other processors.

.,
~

A particularly simple approach to load balancing is to allocate tasks to randomly selected
cessors. If the number of tasks is large, we can expect that each processor will be allocated
t the same amount of computation. Advantages of this strategy are its low cost and

ability. Disadvantages are that off-processor communication is required for virtually every
· and that acceptable load distribution is achieved only if there are many more tasks than there

~ processors. The strategy tends to be most effective when there is relatively little
mmunication between tasks and/or little locality in communication patterns. In other cases,
' abilistic methods tend to result in considerably more communication than do other
anıques.

lie Mappings

If we know both that computational load per grid point varies and that there is significant
.:.:ial locality in load levels, then a eye!ic (or scattered, as it is sometimes called) mapping of

-· ·n to processors can be appropriate. That is, each of P processors is allocated every P th task
ording to some enumeration of the tasks (Figure 1. 7). This technique is a form of probabilistic
ping. The goal is that, on average, each processor will be allocated about the same
putational load. The benefits of improved load balance may need to be weighed against
eased communication costs due to reduced locality. Block cyclic distributions are also

ssible, in which blocks of tasks are allocated to processors.

36

gure 2.13: Using a cyclic mapping for load balancing in a grid problem, when executing
: processors. Tasks mapped to a single processor are shaded. Notice that with this mapping,

munications are with tasks located on different processors (assuming afi.ve-point stencil).

· .2 Task-Scheduling Algorithms
...•. __k-scheduling algorithms can be used when a functional decomposition yields many tasks,

vith weak locality requirements. A centralized or distributed task pool is maintained, into
new tasks are placed and from which tasks are taken for allocation to processors. In effect,

eformulate the parallel algorithm so that what were originally conceived of as tasks become
structures representing "problems," to be solved by a set of worker tasks, typically one per
ssor.

The most critical (and complicated) aspect of a task-scheduling algorithm is the strategy
~ to allocate problems to workers. Generally, the chosen strategy will represent a compromise

en the conflicting requirements for independent operation (to reduce communication costs)
global knowledge of computation state (to improve load balance). We discuss
ger/worker, hierarchical manager/worker, and decentralized approaches.

manager

Figure 2.14: Manager/worker load-balancing structure. Workers repeatedly request and
-rocess problem descriptions; the manager maintains a pool of problem descriptions (p) and

...sponds to requests from workers.

_ Ianager/Worker
Figure 2.14 illustrates a particularly simple task scheduling scheme that is nevertheless

effective for moderate numbers of processors. Central manager task is given responsibility for
roblem allocation. Each worker repeatedly requests and executes a problem from the manager.

37

-~ considering a design based on dynamic task creation and deletion, have you also
considered an SPMD algorithm? An SPMD algorithm provides greater control over the
scheduling of communication and computation, but can be more complex.
- using a centralized load-balancing scheme, have you verified that the manager will not

oecome a bottleneck? You may be able to reduce communication costs in these schemes
,y passing pointers to tasks, rather than the tasks themselves, to the manager.

using a dynamic load-balancing scheme, have you evaluated the relative costs of
different strategies? Be sure to include the implementation costs in your analysis.
Probabilistic or cyclic mapping schemes are simple and should always be considered,
ecause they can avoid the need for repeated load-balancing operations.

If using probabilistic or cyclic methods, do you have a large enough number of tasks to
ensure reasonable load balance? Typically, at least ten times as many tasks as processors
are required.

e have now completed the design of one or more parallel algorithms designs for our
. However, we are not quite ready to start writing code: several phases in the design

-- remain. First, we need to conduct some simple performance analyses in order to choose
alternative algorithms and to verify that our design meets performance goals. We should

:::ink hard about the implementation costs of our designs, about opportunities for reusing
ag code in their implementation, and about how algorithms fit into larger systems of which
-ay form a part.

39

CHAPTER3

Parallel Branch-and-Bound

. General Overview
Branch-and-Bound paradigm is a general purpose enumerative technique for solving a

:ınge of problems in Combinatorial Optimisation, Operations Research and Artificial
gence. We shall introduce the Branch-and-Bound technique in general terms followed by a

rmal definition using the 0/1 Knapsack problem as an example. Although the solution of
rticular problem is not an especially interesting example of a Branch-and-Bound

, it does provide a simple example for illustrating many of the important aspects of the
-and-Bound paradigm.
:ınch-and-Bound would appear to be well suited to parallel processing because packets of
tıich could be executed independently on different processors are generated during a
-and-Bound algorithm. This is very encouraging as many algorithms of this type involve a

erable number of packets of work and the use of parallel processing could reduce
n times dramatically. However, the design of parallel Branch-and-Bound algorithms is

essarily straightforward, and we shall discuss several possible strategies and show how
zave been implemented on various parallel machines .

. 2. An Informal Description
formally, the Branch-and-Bound approach can be characterised as an intelligent search for
cmal solution within a space of potential solutions to the given problem. Typically, the

space is exponentially large with respect to the size of the problem and the aim of the
ue is to find the optimal solution whilst minimising the number of solutions to be

itly considered.
:ıring the execution of a Branch-and-Bound algorithm the search space is partitioned
vely into smaller and smaller disjoint subsets, a process known as expansion. Each subset
red then requires a value to be computed, corresponding to a bound on the best possible
for any solution which may be found in that section of the search space. After each
n of the partitioning process, all subsets with a bound not better than the value for a

,-:ı solution are identified and are excluded from any further part in the algorithm.
- e partitioning process continues until all possible subsets have either been expanded or

een specifically excluded from further consideration. At this point, the current best
n must be at least as good as any other solution for the given problem and the algorithm
ates. -

· the implementation of Branch-and-Bound algorithms the subsets of the search space are
sented as problem-states which are generated and stored in an active pool of states.

_ ciated with each problem-state is a set of potential solutions to the initial problem. The
em-states in the active pool correspond to sections of the search space which are still to be
· ed. Initially the active pool contains a single element, the initial problem description,

· represents the whole of the search space. On termination of the algorithm the active pool
ty, indicating that the whole of the search space has either been examined or has been

zded from consideration.
The procedure described above can be characterised by a number of rules that define how
search is performed and how the search space is partitioned. These rules are known as the
ztion rule, the expansion rule, the branching rule and the bounding rules and are described
rmally as follows.
The selection rule is used to choose a problem-state from the active pool. After being
cted the problem-state is removed from the pool and is added to the dead pool, consisting of
lems that have been both generated and expanded.

40

The expansion rule proceeds as follows. The selected problem-state is examined to see if it
ovides a single feasible solution to the initial problem. If it does then the solution is considered

5 a possible optimal solution to the initial problem. The value generated is compared to the
zrrent best solution and the solution with the better value is preserved. If the problem-state does

provide a single solution, then it may be possible to show that it cannot possibly provide any
ible solution. In this case the problem-state is infeasible and is discarded. Otherwise, we
and the problem-state using a branching rule to split the problem into a number of sub
blem-states which are then added to the active pool. 'The newly generated problem-states
resent a partitioning of the search space of the parent problem-state.
Bounding rules are used to eliminate problems which cannot lead to an optimal solution.
Branch-and-Bound algorithms can thus be characterised by their expansion, branching,

unding and selection rules. We now present a more formal definition of Branch-and-Bound,
sing the 0/1 Knapsack problem as an illustrative example.

3.3 The 0/1 Knapsack Problem
In the 0/1 Knapsack problem, the objective is to maximise the possible profit which can be

tained from putting a number of items into a knapsack of known capacity. The constraints on
problem are that only whole items may be added to the knapsack and the maximum capacity

• the knapsack must not be exceeded.
An instance of the 0/1 Knapsack problem consists of n items. Associated with the iı\th item

- a volume, v;, and a profit, p;. Profit, p; accrues if the iı\th item is included in the knapsack. For
snapsack of capacity C the problem can be formulated as follows:

Iaximise
n
Ep; x;
i=l

ıject to
n
Ev; x; <= C,

i=l
l<=i<=n.

3.3.1 An Example
We now show how Branch-and-Bound might be used to solve the 0/1 Knapsack problem by

considering a simple example. In this example the knapsack has a capacity of 100 and there are 4
:ems wiüı the following volumes and profits.

Item Volume Profit
1
2
3
4

50
40
40
20

60
46
45
20

The Branch-and-Bound algorithm produces a binary search tree based on a decision as to
.hether or not an item should be included or excluded from the knapsack.

The algorithm begins with an empty knapsack, node 1. This cannot be solved immediately
-~ it is expanded to generate nodes 2 and 7 corresponding to the inclusion and exclusion,
espectively, of item 1. The bounds on these can now be calculated using a greedy process which

ds items until all of the available space is used; this process is allowed to add partial items to
e knapsack. By sorting the items in descending order of profit/volume ratio, this bound

rrovidcs an upper bound on the possible profit.
Node 2 has a current profit of 60 and still has 50 units of remaining space. This can hold all

_: item 2 and one quarter of item 3. This therefore has a bound of [60 + 46 + ((1/ 4) * 45)] = 117.

41

.ode 7 has a current profit of O and 100 units of remaining space. It can therefore hold items 2, 3
d 4 and has a bound of [46 + 45 + 20] = 111.

We use a best-first selection rule, always selecting from the active pool that problem with
e greatest bound. Thus node 2 is selected and expanded generating nodes 3 and 5

corresponding to the inclusion and exclusion, respectively, of item 2. Nodes 3 and 4 are
.panded in turn but only generate 1 child apiece since, in each case, the child that includes the

tern exceeds the knapsack capacity.
The child generated by node 4 is actually a solution to the problem, but this fact cannot be

established until the node is chosen for expansion. In this particular example it is never chosen,
rut is later pruned when a better solution is discovered. Nodes 5-9 are expanded in similar
-~-hion.

When we come to select the next node, there is no node in the active pool with a bound
__tter than the current best and so the algorithm terminates. Our optimal solution includes items
::. 3 and 4 and has a value of 111.

3.4 Parallel Branch-and-Bound

We begin by discussing the attractions of executing Branch-and-Bound algorithms ın
carallel.

3.4.1 Reasons for Parallel Branch-and-Bound
Branch-and-Bound algorithms are often used for solving NP-hard problems with very large

search spaces. The time to solve such problems is normally proportional to the number of
?IOblem-states in the search tree. Problems with large search spaces therefore often place large
demands on resources. A parallel implementation could allow these programs to be run over a
cumber of machines and therefore allow them to complete more quickly.

There has been much research in the past on the possibility of using approximate Branch
and-Bound to reduce the execution time of this form of algorithm. By using a parallel machine it
may be possible to generate an optimal solution in the same time as the sequential machine takes
:o generate an approximate solution. Even if it is not possible to generate an exact solution in
reasonable time, the parallel machine should, hopefully, be able to generate a much closer
pproximatiorı to the true optimal solution.

The use of parallel processing may allow larger problems to be solved than would be
ossible on a sequential machine. As many Branch-and-Bound problems are NP-hard the size of
roblem which can be solved in 'reasonable time' is most unlikely to grow linearly with the

number of processors but some increase in problem size should be possible.

3.4.2 Implications of Parallel Branch-and-Bound

We begin by making a slight change to the classical, sequential, view of Branch- and-Bound.
The classical definition of Branch-and-Bound requires that thestate space search generates all of
the children of a problem before any other active node can become the selected node. This is
obviously a requirement imposed on any sequential implementation and it is inappropriate for a
parallel one. Indeed, there is no reason, in a parallel system, why a child problem cannot be
elected for expansion on one processor while its parent is still being expanded on another

processor.
Another point to consider is that a parallel Branch-and-Bound algorithm might take longer to

execute than the equivalent sequential algorithm. This result has been known for some time and
is known as a 'detrimental anomaly'. Similarly, it is possible for a parallel algorithm to have
super-linear speed up over the sequential one, this being referred to as a 'speed up anomaly'.

The expansion of a problem-state in a Branch-and-Bound algorithm might involve the
generation and manipulation of a complicated data structure such as a cost matrix. It is, however,
ften much easier to generate this structure using the data from an ancestor problem if such data
an be made available. If the parallel machine has more memory than the sequential one then it
ay be possible to store more data and therefore reduce the amount of effort spent recreating the

42

ıa from scratch. As many parallel machines are created from standard sequential parts, it is
ften the. case that a machine with m processors will have m times as much memory as one with
single processor and then efficiency anomalies can occur. Because of these anomalies it is
ssible for an m processor parallel machine to perform more problem expansions than a single
cessor one, but to still get greater than m fold speed up.

3.4.3 Parallelisation of Branch-and-Bound Algorithms
There are a number of ways in which a Branch-and-Bound algorithm may be made to run on

arallel machine. We now present a number of possible sources of parallelism and discuss
eir advantages and disadvantages. For this discussion, we assume that an m processor parallel

zıachine is available for solving the problem.
· Parallel expansion of the search tree with different initial bound values. If an upper and

wer bound, Ub and Lb, are known for the problem then the processors can begin with different
itial bound values in this range. Each processor is assigned an initial upper and lower bound,

Lb, Ub,,). Suitable initial values for processor i might be:

(Lb, L6+ i* (Uh -Lb)lm).

Processors that have their initial bound set too low will finish quickly without finding a
solutionand could then be restarted with a new value in a higher range. When a feasible solutıon

"5 found its value is passed to all processors and any processor whose work becomes bounded
hooses a new range of values. The whole process finıshes when one processor terminates with

an optimal solutıon. This method of introducing parallelism should have very low
comıriunication costs but has the obvious problem that much of the work is performed many
:ımes. This is a fundamental problem with the algorithm as the initial problem-states will be
expanded by every single processor. 'This method has the additional problem that it is not
zpplicable for algorithms using the best-first search strategy. Using this strategy, no processor

·ould terminate with an optımal solution before the processor running the algorithm with
:xıunds[Lb, Ub J and any processor obtaining an optimal solution would have performed exactly
the same set of expansions.

Although this method does not look particularly promising it may prove effective in a small
umber of cases when the lower bound happens (by chance) to be close to the optimal value. In

this case, the processor assigned this initial range will prune large sections of the search tree and
will quickly find an optimal solution.

Similar results to those described could be obtained by using an approximate Branch-and
Bound algorithm and assigning different tolerances to the different processors. A processor
searching with a large tolerance would finish relatively quickly and could start again with a
ower tolerance value. Its first attempt would, however, provide reasonably tight bounds on the
-alue of the optimal solution and these could be used by all of the processors to prune problem

states. The process terminates when a processor finishes with a tolerance of 0%.
· Parallel search using different algorithms. Many optimisation problems can be solved in a

number of different ways using different algorithms with different bound and priority functions.
By running different algorithms on different processors it may be possible to complete the search
more quickly. A possible implementation could have One processor performing a depth-first
earch while another used best-first search.

Once again, the same tree is being expanded by more than one processor so some nodes will
be expanded unnecessarily. As different search strategies are used, however, the overlap in the
areas searched should not be too great. Although the speed up of this system may not be very
great, it may have some beneficial effects on memory usage. The generation of the bounds by the
processor using the depth-first strategy may allow another processor using a best-first search to
prune large sections of the search tree. The use of the best-first search strategy may otherwise
have been impossible due to its large memory requirements.

· Perform the expansion of a single node in parallel. The amount of effort required to expand
a single node may be very significant and it may often be possible to split this work between a

43

ber of processors. For example, consider a Branch-and-Bound algorithm where each
. blem- state generates m children. Each of these children requires a bound value and a priority

e to be computed. In many such algorithms these values could be generated in parallel on m
erent processors. If the generation of the bound and priority values forms a considerable part

..... e execution time then this could lead to a reasonable speed up.
This method may prove effective for a number of problems and has the advantage that it

ids the problems of detrimental speed up anomalies. Since the same search tree will be
;ıanded, irrespective of the number of processors, such anomalies will never occur.
fortunately, the ratio of communication to calculation is likely to be fairly high using this
arıique as data must be sent to processors every time a new child is generated.

An example where this could be used is in the solution of Integer Programming problems.
e method of solving these problems requires an LP relaxation to be performed in the
ansion of every problem. 'Ihe solution of an LP relaxation can involve considerable effort and
ay be possible to do this in parallel. There has been much interest in interior point methods

r solving the LP component of these problems. These methods have the potential for
erallelism and may prove a particularly effective method for solving this type of problem.

The main disadvantage of this form of parallelisation is that it is likely to be very problem
endent and cannot be done in a general way. This approach may, however, prove effective for

ertain classes of Branch- and-Bound algorithms and the fact that its performance is predictable
y make it suitable for applications where predictable performance is more important than
erage absolute performance.

· Parallel evaluation of subproblems. As the search tree is expanded there is a pool of active
oblem-states which could be expanded in parallel. As problem-states are independent of each

:her they can be expanded in parallel on different processors. This appears to be the obvious
__urce of parallelism with a shared memory multi-processor but with a message passing machine
: may be difficult to follow the priority function accurately without large communication
verheads.

There are many ways in which this type of parallelism could be exploited, different
zpproaches involving different tradeoffs between the amount of communication necessary and
the average number of problem-states expanded. Possible methods of parallelisation include:

1. Static distribution of the search tree. One strategy which would lead to very low
communication costs would be to split the search tree statically between the available processors.
Incumbent values could be broadcast to allow pruning of the search tree and termination of the
algorithm occurs when all processors have completed the search of their section of the tree.

The disadvantage of this method is that the amount of workrequired to expand a section of
the search tree is not normally known in advance so it is not possible to divide the work evenly
etween the processors. In general, if the amount of work required to expand a section of the tree

is known in advance then it is likely that the work need not be done at all!
This method may prove effective when a complete expansion of the search tree is required

and where no bounding takes place. A possible use of this technique is therefore to verify that a
known solution is optimal. In this case the value of the proposed solution is already known and
the task is to expand the whole of the remaining tree to verify that no better solution exists.

lthough the actual shape of the final tree may not be known, it may be possible to estimate its
shape and to use this estimate when dividing the work between the processors.

2. Dynamic distribution with farming of available work. Dynamic distribution of work allows
work to be distributed more evenly between the available processors. Unfortunately, this also
means higher communication costs. Although communication costs can be high with a. message
passing computer, many of the current parallel Branch-and-Bound kernels use an approach based
on this principle . On a shared memory machine this approach seems particularly suitable though
memory contention for accessing the pool of work can prove problematical.

3. Dynamic distribution with farming of large tasks. Rost and Maehle (1989) have noted the
large communication overheads present in the farming technique and have come up with a
similar scheme where larger tasks are farmed between the processors.

44

The initial problem is first split into a number of sub-problems by running the algorithm
equentially on one processor using a breadth-first search. This processor continues until M
oblem-states have been generated where M » m. The problem-states in the active pool now
resent large sections of the search space. A farming technique is then used to spread the work

'er the available processors. Each processor is given one of these problems to expand and does
t communicate until it generates a new incumbent or it has expanded the whole of the search

ee represented by the problem-state. When the whole sub-tree has been expanded a message is
nt to the master processor requesting another piece of work.

Two main disadvantages of this method have been noted. First, the initial breadth-first
earch is done on a single processor while all other processors are idle. Rost & Maehle do not
nsider this to be a major problem as the initial brendth-first search is assumed to be a very
all part of the total search.
The second potential disadvantage is that, when the pool of problem-states on the master

;rocessor is, exhausted, processors finishing the work allocated to them have to wait until all of
-:..e other processors have finished before the program can terminate. As the sub-trees are
••..ecifically chosen to involve a large computation component (in order to reduce communication

-erheads) this could lead to a considerable time when only some of the processors are busy.
4. Dynamic distribution with local priority scheme. In order to reduce the communication

costs inherent in the farming method it is possible to store the newly generated child problems in
::3e memory of the processor that generated them and to only follow the priority scheme locally.
This implies that there is no global pool of active problem-states so care must be taken to ensure
:hat all processors have work to do and to ensure that the priority function is adhered to. These
:actors can prove difficult to overcome but much work has been done in this area and many of
-~e currently available kernels use techniques based on this principle.

5. Randomised algorithms. The two methods described above perform extra work to ensure
..... at the same problem-state is not expanded on two different processors. Randomised algorithms
accept that some work may be done more than once but use a random choice of which problem
:o expand to minimise the chance of two processors choosing the same problem. As well as
allowingwork to be done several times, this method also tends to ignore the priority function and
may therefore expand work which has very little chance of generating a new incumbent.
.. evertheless, experiments with this approach have shown that it can be reasonably successful for
some classes of algorithms.

3.5 Architectures for Branch-and-Bound

Although there are many ways of introdusing parallelism into Branch-and-Bound
algorithims, the main way in which this can be achieved is by dynamically dividing the search
space between the available processors and expanding multiple problem-states in parallel. The
main decision is therefore whether to have a global control, where problem-states of globally
highest priority are chosen for expansion, or to have a local control, where only a subset of the
problem-states are available. The use of a global control ensures that the priority function is
losely adhered to while a local control may lead to the unnecessary expansion of a number of

nodes. The use of global control, however, requires that all processors have to a global pool of
active nodes. In a message passing machne thia will lead to large communication overheads,
while a shared memory machine this may lead to memory contention in certain memory blocks.
The shared memory machine may also require the use of semaphores to ensure that processors
do not attempt to update the contents of the same memory location simultaneously.

In all cases the current value of the incumbent must be made available to all processors so
that it can be used to prune sections of the search tree. This value can either be stored in section
of shared memory or can be broadcast to every processor each time a new incumbent is
generated. This should not be an important consideration, however, as the value of the incumbent
should not usually change very frequently.

45

Imlementation of extended branch-and-Bound requires access to dead pool for pruning
Ierns; this is most easily done using shared memory to store the problems after they have

expanded. Implementation on message passing machines is likely lead to large
unications overheads for accessing the dead pool.

The work required to expand a particular problem-state, and therefore the time required, is
""D dependent on the actual data in the problem being expanded. For example, it is often much
eker to determine that a problemis immediately feasible than it is to generate all of its

ren. Similarly, the expansion of problem-states at different levels in the search tree may
:.ıire differing ammounts of work. This tends to suggest that enforced synchronisation may

e some loss in performance as some processors sit idle, waiting for others to finish. A
,ID machine is therefore is likely to be more effective at solving Branch-and-Bound
!ems than a similar SIMD ane.
Yu and Wah (1983) and wah and Ma (1984) have suggested a parallel architecture and

rating system specifically designed to execute Branch-and-Bound algorithms. This
hitecture, referred to as MANIP, makes use of special hardware to improve the parallel
formanceof this type of algorithm.

3.5.1 The MANIP Architecture

The MANIP architecture is designed to perform a best-first expansion of the search tree and
.?S multiple processors to evaluate multiple sub-problems in parallel. A global data register is
~d for storing the current incumbent, and is implemented using sequential associative memory
prevent simultaneous updates. Other important features of the MANIP architecture are the
problem memory controllers which store the active pool of problem-states and the section
redistribution network which allows the various memory controllers to communicate with

ch other. The m processors are split into n groups, where each group uses a single memory
troller. The n controllers are then connected using a ring network which allows problem
es to be distributed between them.
MANIP is a synchronised architecture so an m processor machine should expand m

blem-states in parallel but must then have a synchronisation step so that the m problem-states
=- highest priority can be identified and distributed to the processors. The designers of MANIP

·e noted that the selection phase need only identify the m problem-states of highest priority
._, does not require these to be sorted in any particular way. They believe that the identification
f these problem-states can be performed in parallel using a ring network to connect the memory
ntrollers. Hardware comparators are used to identify the highest priority nodes in each memory
ntroller and these are then sent to neighbours in the ring network. The process of identifying
gh priority work and passing it to neighbours continues until the m nodes of highest priority are
stributed evenly between the memory controllers.

The MANIP architecture has been simulated on a DEC VAX 11/780 and encouraging results
ave been generated showing good speed up for the vertex covering problem.

:j
t

3.5.2 MIMD Approaches
The most common method for performing Branch-and-Bound algorithms in parallel is to

_ cpand multiple problem-states in parallel by expanding one problem-state on each processor.
ere are four main approaches for performing this, depending on whether a local or global

ctive pool is used and whether the system is synchronised or unsynchronised. These approaches
re briefly mentioned above but we now explain them in greater detail. We assume a MIMD
essage passing machine for this discussion and we assume that a heap-tree is used for storing
d sorting the active pool.

46

Svnchronised with a Central Active Pool (SCAP)

This strategy uses a global control to ensure that only the problem-states of the very highest
ity are expanded at any stage. In every iteration, each of them processors is allocated one of
ı active problem-states of highest priority to expand. Clearly, a functional requirement of

strategy is that these m can be identified and thus a master/slave approach is usually adopted.
master processor is responsible for identifying the m problem-states of highest priority at the

. of every iteration and one is sent to each of the m slave processes. Note, several
ementations allow a master process and a slave process to be run in parallel on a single
essor.
This task can obviously be performed using a farming technique where all active problem-

es are stored on the master processor. At the start of each iteration the master processor
ifies the problem-states of highest priority and sends one to each of the slave processors.
During the expansion phase, each slave processor expands the problem- state it has been
cated, As described earlier, expanding a problem-state involves either generating a new
sible solution or generating the children of the problem-state. In the former case, if a new
.ımbent value has been generated, it is sent to the root while in the latter case the newly
erated child problem-states are sent.
Termination of the expansion phase can be determined when a message is received from
processor. Termination of the algorithm is easily detected when there are no active

lem-states to distribute during the selection phase.
disadvantage of this approach is that it can lead to large communication overheads as

c:ımunicationtime is usually proportional to message size and the amount of data that must be
:: between processors is likely to be very large. The size of a problem-state depends on the
finition of the problem, but it will typically require at least O(n), {O=Theta},bytes and
ssibly O(nı\2) or O(nı\3) bytes to describe a single state in a problem of size n. The master

essor can thus become a communication bottleneck as problem-states are sent to the master
essor and then back to the slave processors for expansion.
The use of a synchronised system can lead to further overheads as some processors may be
ed to remain idle while other processors complete the work allocated to them.

Asynchronous with a Central Active Pool (ACAP)

The implementation of this strategy is similar to that of SCP but does not involve a
chronisation step. Thus, this strategy requires the master processor to allocate an active
blem-state (if one exists) to a processor as soon as that processor finishes its expansion phase.
If a processor becomes idle when the active heap on the root is empty, the master processor
increment a count. When new nodes are generated, this count can be decremented and the

ııe processors can be sent work. Termination of the algorithm occurs when the idle processor
unt is equal to m, the number of processors. This strategy should perform more efficiently

zan the SCP strategy as processors will not have to wait for the synchronisation step. It will,
wever, have the same large communication overheads as the earlier strategy and the root
ocessor can become a communication bottleneck. -

Synchronised with a Local Active Pool (SLAP)

This strategy uses a local form of control to reduce the communication overheads of the
strategymentioned above. In order to do this, each processor only considers the work available

its own local heap. The processor removes the highest priority problem-state from its heap,
expands it, and adds any newly generated children problem-states to the heap. When a processor
empties its own local heap, it does not terminate but instead sends a request to its neighbours for

ore work.
When a new incumbent is generated, its value can be broadcast to each processor in the

cetwork so that it can be used to prune unexpanded problem- states. Rather than communicating
iller each expansion, the processors now need only issue a message if they have run out of work
r have generated a new incumbent.

47

- this system were to be synchronised, it would be necessary for each processor to
anise after every problem expansion and this would be likely to negate the advantages of

= a local control strategy.

Asynchronous with a Local Active Pool (ALAP)
This is similar to the strategy just described, but does not have a synchronisation step so
essors continually remove problems from their local heap, expand them and add the newly
ated children problems to the heap.

Two potential disadvantages of this method are, firstly, that it is now much more difficult to
t when the algorithm has terminated and, secondly, that processors have no knowledge of

:ı.ctive problem-states stored on other processors.
The first of these difficulties means that it is necessary to use some form of distributed

::ıination detection algorithm while the second means that the rn problem-states being
anded at any moment in time may not be the rn highest priority problem-states in the system.

_ case where a large proportion of the search tree must be examined this approach is likely to
·ery efficient as communication costs are minimised, but in cases where only a small part of
search tree is examined it is likely to lead to a large number of unnecessary expansions.
Further important considerations concern how requests for work are handled when a
essor empties its local heap of work and how the work is redistributed after this occurs. As

eady mentioned, this strategy is unlikely to follow the priority function very accurately. This
_ · result in more nodes being expanded than is necessary in implementations which follow the

.ority function more closely.
In order to spread the high priority work more evenly between the available processors it

·.Y be necessary to use some strategy for sending work to other processors in the network after
in intervals. It is likely that the most effective strategy will involve sending high priority

rk to other processors, but the optimal interval between each such message is likely to depend
the particular algorithm and the hardware being used. Sending work frequently will help to

stribute the work more evenly but will obviously also increase the communication overheads
well as the overheads for adding and removing problems from the queue of work.

3.6 Parallel Implementations
'IfııIn this section we discuss a number of implementations of parallel Branch-and- Bound

gorithms using different parallel machines. We begin by discussing two implementations based
the iPSC hypercube, then one on the NCUBE and finally a number of kernels on networks of

2vf OS Transputers.

3.6.1 Pardalos and Rodgers
Pardalos and Rodgers (1990) have used an iPSC hypercube for parallel processing of a

umber of quadratic zero-one problems. They use parallel processors to expand multiple
-roblcm-staıes simultaneously but use a depth-first search strategy to reduce memory demands.

'hile MANIP uses specially designed hardware to ensure that only the best nodes are chosen for
__cpansion, Pardalos & Rodgers have opted for a much more local form of control.

This system is similar to the ALAP strategy described earlier and must solve the problem of
cow to request work when the local heap of work becomes empty.

Obviously it is not possible for processors to predict when a neighbouring processor will
empty its heap of work so they must be prepared to receive messages at any time. Unfortunately,
n the hypercube, the operations to send and receive messages are very expensive compared to

other operations. It is therefore important not to issue communication commands more often than
necessary.

Ideally, messages indicating new incumbent values or requesting more work should be
received and processed as quickly as possible to allow pruning or to prevent processors sitting
idle. Unfortunately, for the reasons mentioned above, it is inefficient to continually check for
incoming messages. The kernel therefore uses a variable MAXY which indicates how often a
processor should check for communication from its neighbours.

48

fter every MAXY problem expansions the processor issues a 'probe' operation to check for
oming messages. If messages are waiting they are dealt with immediately, otherwise the
cessor begins another MAXY problem expansions. The choice of value for the parameter

Y has been found to be fairly critical and is also likely to be highly problem dependent.
large a value indicates that processors may sit idle for long periods of time while too small a

..•e indicates that processors spend a large proportion of their time communicating. Empirical
ts from the quadratic zero-one problems being investigated suggest that MAXY should be

to a value of approximately 1000.
Note that the first few iterations of the algorithm are treated as a special case to ensure that

. rocessors have work, and it is only after this point that the MAXY parameter is used.

3.6.2 Clausen and Traff
Clausen and Traff have used a similar method to that described above to run experiments on
graph partitioning problem (Clausen and Traff 1991), also using an iPSC hypercube. The

en/Traff kernel uses a similar scheme to the one mentioned above, where messages may
_- be received after STEPS iterations of the expansion process. They refer to this kernel as the
demand' strategy where messages are only sent in response to a request for work.
One/roblem with this strategy is that it is possible for a processor to exhaust its supply of

rk an then to be idle for a considerable time as its neighbours complete their STEPS node
::ıansions.A second kernel was therefore developed which uses an 'on overload' strategy. This

ws problem-states to be sent to neighbouring processors if the queue of work on the current
essor gets too large.
After completing STEPS expansions the processors check the size of their queue of work; if
queue is larger than some value QUEUEMAX then work is sent to the neighbouring
essors. This will hopefully spread the work more evenly between the processors and it

uld reduce the chance that a processor will run out of work. Processors should therefore
nd a greater proportion of their time actually expanding problem-states.
The designers of this system have come up wıth a number of rules for altering the value of
QUEUEMAX parameter as the algorithm proceeds. These rules are used to allow for the
ging amount of work in the system as the algorithm proceeds and seeks to reduce the
ber of unnecessary messages.
Results presented for these kernels show that, for this particular problem, the use of the 'on

erload strategy increases the processor usage dramatically, but often does so at the cost of
node expansions. This implies that the processors are kept busy but not necessarily doing

ful work. This should, however, prove advantageous when a large porion of the search tree
~t be examined in order to identify the optimal solution.

3.6.3 Quinn
Quinn has performed a number of experiments on an NCUBE hyperube computer using the

::welling Salesman Problem as an example (Quinn 1990). The experiments compared 5
erent strategies for the implementation of parallel Branch-and-Bound, one semi-synchronous

goritbm and 4 asynchronous ones. The implementation of the Travelling Salesman Problem
ed by Quinn generates a binary search tree where at any stage a particular edge is chosen and
y be included or excluded from the tour.

.,

I
q:

1. A semi-synchronous algorithm with a global pool of active problem-states. Each time a
essor completes a node expansion it sends a request to a master processor asking for more

rk. This is similar to the AGAP strategy mentioned earlier and has problems of high
mmunication overheads as the master processor is a communications bottleneck. This
nleneck actually results in a drop in performance for large networks of processors.

The asynchronous algorithms are all variations on the theme described above for ALAP.
different strategies use various methods for distributing the work between the available

cessors. All of these implementations require a problem-state (if available) to be sent to a
.ghbouring processor after every problem expansion is completed. The variants are:
~. The problem-state with the included edge is retained by the processor on which it is

_ erated while the problem-state with the excluded edge is sent to one of the neighbours. This
49

50

Select Highest Overall (SHO)

SHO is a synchronised strategy which uses a global control to ensure that only the problem
states of very highest priority are expanded at any stage. It is thus similar to SGAP and suffers
- om the communication bottleneck mentioned earlier.

The method used for reducing the communication overheads is for each processor to store
the problem-states it generates in its own local memory but to send a small token describing the
. roblem-state to the master processor. This still allows the master processor to identify the
roblem-states of highest priority but reduces the amount of communication necessary. The

tokens sent by the slave processors contain the priority and bound values of the newly generated
roblem-state together with the number of the processor which is currently storing it. The
riority value is used for sorting the tokens while the bound value is used to prune problem-states

that cannot lead to a better incumbent. While the master processor identifies the m nodes of
highest priority, each slave sorts its active problem-states into a heap ordered by priority values,
and considers pruning the heap if memory overflow is imminent.

If the master finds that a processor has more than one of the selected problem-states it sends
a message indicating how the problems should be distributed. Processors are also sent copies of
the incumbent if a new value has been generated in the previous iteration.

After expanding a node the slave processor compares the newly generated child problems to
the current incumbent and sends a token to the master processor for each surviving child

I
I

3.6.4 McKeown et al.
McKeown et al. have developed a number of kernels for running Branch- and-Bound

gorithms on a network of Transputers. These kernels are based on a higher-order definition of
ıhe Branch-and-Bound paradigm and therefore allow an algorithm to be used interchangeably in
zny of the available kernels. The kernels, which we now describe, are referred to as 'Select
Highest Overall', 'Select Highest available', 'Select Highest Locally' and a hybrid kernel known
as 'Select Highest Hybrid' . Although these kernels have been developed for a network of
Transputers it is hoped that they could be implemented on other architectures and there is a
currentproject to implement similar kernels on a shared memory machine.

3. A similar algorithm to the one just described, but where the newly created problem-state
.th the smaller bound value is retained and the one with the higher bound value is sent to a
ighbour. Again, a large number of unnecessary expansions are performed so poor speed up is
orted.

4. Both newly generated problem-states are added to the queue of work and the problem of
ond highest priority is removed and sent to the neighbour. The problem of highest priority is

us kept for expansion on the current processor. This is more effective at spreading the high
· ority work between the available processors but processors very far from the root processor
··1 perform little useful work.

5. Both newly generated problem-states are added to the queue of work and the problem of
ghest priority is sent to a neighbour. This strategy spreads the work more evenly between the

.•. railable processors and all processors perform a reasonable amount of useful work. This
__ategy therefore achieves good speed up as well as reasonable processor utilisation.

The results from these strategies show the importance of distributing the high priority work
__tween all of the processors. If this is not done effectively some processors may only perform

w priority work and poor speed up will result. Adding and removing problems from the
:riority queue will lead to some overheads but these are likely to be insignificant compared to

· e benefits of ensuring that all processors are performing useful work.

hieves good processor utilisation, but poor speed up as a large number of unnecessary
ansions are performed. Only a few processors (those next to the root processor) perform

seful work, all other processors performing low priority work which is pruned in the sequential
sıon.

· lem. Since this is a synchronised system, there is no advantage in sending the repres~intati~~/y"'x}?J,
each child individually so all of the new children are sent in a single packet. \..g,

'(.
elect Highest Available {SHA) ~
The implementation of the SHA strategy is based on that of SHO but does not involve a

achronisation step. When the master allocates a problem-state to a processor it must also send
.: priority and bound values of the node in order to identify it. This is necessary because the
formation stored by the master processor could be slightly out of date with the information
red on the slave processors. When a processor sends a problem-state to another processor it
st therefore search its heap for a problem-state with the correct bound and priority values (it is
ely to be near to the top of the heap) to ensure that the information in the root processor is kept
-to-date.

A strict implementation of the SHA strategy requires that the highest priority work known to
root is sent in response to a request, but a possible relaxation would be to check for work

.:hin a certain tolerance of the highest that is already on the requesting processor.

Select Highest Locally {SHL)

The SHL strategy is similar to the ALAP idea described earlier. The termination detection
gorithm used in this kernel is based on one suggested in Topor which uses a spanning tree
• ology and sends differently coloured tokens between processors depending on the processor
rus.

When a processor exhausts its own local supply of work it requests work from neighbouring
ocessors. Work is allowed to spread quickly around the network, however, as several pieces of
ark are sent in response to a single request.

When a processor receives a request for work it checks its status; if it has spare work in its
ap (in which case it must currently be expanding a problem-state) then it sends some of the
rk to the requesting processor using a Fibonacci series (2,3,5,8,13,21. ..) to decide how much
rk to send. It sends the nodes of 2.(second), 3.(third), 5.(fifth) ... highest priority until the
ttom of the heap is reached. The advantage of this particular approach is that the amount of

ork sent in response to a request is directly related to the amount of work available on the
sending processor and it is also highly biased towards sending work of high priority.

If the processor is currently idle it immediately sends a message indicating this. If the
::-:-ocessor is currently expanding a problem-state but has no spare work to send, it will save the
request and wait until it either has spare work available or becomes idle. These rules are used to
rrevent messages swamping a processor which is busy working, but allow messages to be sent
.:..eely between idle processors.

In order to spread the high priority work more evenly between the available processors they
e allowed to send high priority problem-states to their neighbours at regular intervals. In order

-~ do this an iteration count is implemented indicating how many nodes need to be expanded
__fore work may be sent to neighbours. Thus, when the count is equal to infinity it is a pure
.mplementation of SHL, where work is only ever sent in response to a specific request.

therwise it is a slight variant on SHL where unsolicited work is occasionally sent to
ceighbouring processors.

As an example, in SHL(5) each processor sends work to a neighbouring processor (cycling
__tween each of its neighbours) after every 5 expansions without receiving any request. The
vork sent in these circumstances is the highest priority work known to the sending processor.

Select Highest Hybrid {SHH)
As mentioned previously, the SHA kernel has the potential disadvantage of large

communication costs while the SHL kernel risks performing large numbers of low priority
expansions. The SHH kernel attempts to overcome the worst of these problems by dividing the
high priority work between the processors and then allowing them to do the work on their own.

51

The SHH strategy begins by running the SHA process to generate a number of problem-states
d to ensure that the high priority states are distributed between the processors. The kernel then

switches to the SHL strategy so that those states of high priority can be expanded without the
communication overheads present in SHA.

The current version of the kernel never attempts to change back to the SHA strategy .
.Although this is possible it would require a considerable overhead and at present there does not
zppear to be any need for this to be done.

The optimal time to perform the switch between the SHA and SHL strategies is likely to be
problem dependent but one choice would be to change when the active pool reaches a size of
approximately 16 * m. By using a suitable priority function for this first phase of the algorithm it
should be possible to ensure that every processor has at least 3 or 4 nodes of high priority to
expand whilst still only forming a small part of the search tree.

The SHH kernel appears to have many of the benefits of the system described by Rost and
..1aehle (1989) where large packets of work are farmed between the processors, but manages to
zvoid most of the problems inherent in their system.

The initial search to generate a number of problems is now carried out in parallel using the
"HA strategy and then continues with minimum communication using the SHL strategy. When
~rocessors exhaust their supply of work they need not sit idle, but can request work from
eighbouring processors.

Experiments using a network of Transputers have shown that the amount of communication
vith this strategy is much lower than with the SHA strategy but the number of nodes expanded is
:nuch closer to SHA than to SHL.

Results

The Transputer kernels have been used for the implementation of a wide range of Branch
:ınd-Bound problems and we present here some of the findings.

The first important result is that the SHO kernel generally performs poorly when compared
to SHA. Although SHO performs well for a number of algorithms, its synchronisation step

inders performance in cases where the time to expand a problem-state is not constant but
epends on the data in the node being expanded. The synchronisation step in SHO prevents

. rocessors which finished quickly from continuing until the other processors are ready.
Using the SHA and SHL kernels we have encountered many cases of acceleration anomalies

· ut most cases tend to require slightly more problem expansions when more processors are used.
This can partly be explained by the fact that processors are always given work to do if they are
die, even though the work may be of low priority.
The variants of SHL which send unsolicited work to neighbouring processors demonstrate the
ımportance of following the priority function and spreading the high priority work between the
rocessors. Generally, the kernels which distribute the work frequently have slightly higher

communication costs but require considerably less node expansions.
Experiments with SHH show that this kernel has much lower communication costs than

HA or SHL(l) but expands many fewer problems than SHL,oo). In our experiments with the
Transputer kernels, however, we have found that the actual communication costs for SHA are
fairly small for most algorithms and the SHH strategy has proved unnecessary. Machines with
different communication characteristics (such as the iPSC hypercube) may, however, find that
the reduced communication in SHH allows it to outperform the other kernels.

The 0/1 Knapsack Problem

This algorithm is based on the one described earlier in this chapter and is for an instance of
the problem with 750 items, each with a volume chosen randomly from the range 1 ... 800 and
with a profit based on the size of the item (pro fit = size + O ... 50). The capacity of the
knapsack was

n
Ev;/4.
i=l

52

As stated earlier, the 0/1 Knapsack problem does not lead to a particularly interesting
example of a Branch-and-Bound algorithm and when analysing these results it is important to
consider how the algorithm is likely to proceed when expanding the search tree.

The algorithm begins by generating an initial incumbent which may be used for pruning the
search tree. This is necessary to reduce the overheads of storing problem-states. If an initial
:ncumbent is not provided then it will be necessary to store every problem-state generated until
an incumbent is generated. With an initial incumbent, it is often possible to prune many of these
problems immediately. This incumbent is generated by greedily including items in decreasing
order of profit/volume ratio and generates a fairly tight initial bound.

The algorithm then expands the search tree as explained earlier by including items or
excluding items from the knapsack. The bounding function is, however, quite tight and the·
search tree generated is very deep but very thin. Such a tree does not, in general, provide much
opportunity for exploiting parallelism and thus we would not expect the algorithm to have very
good speed up.

The shape of the search tree is due to the very tight bounds which are generated. In the
.napsack problem, feasible solutions always appear at the same depth in the tree and in this
example they appear at a depth of 750 (every item must be included or excluded). As the
expansion rule chooses items to include in the knapsack in the same order as the bound function
the search begins with a deep stab into the tree. Each newly generated problem-state will have
the same bound value as its parent and will therefore be selected for expansion in the following
..eration.

When the knapsack is eventually filled there will be a number of objects which have been
:ncluded but only marginally ahead of other similar objects. The search tree will therefore grow
out from this point as similar objects are included and excluded from the knapsack to find the
ptimal assignment of items.

When a good assignment is found the algorithm will again stab down towards the leaf as all
f the remaining items are excluded. Once again, the children problem-states will probably have

:ne same bound as the parent (e.g. if the knapsack is completely full) and will therefore be
chosen in the next iteration.
.nfortunately, in Branch-and-Bound, the amount of processing required is not known in advance

50 it is very difficult to perform load balancing. Even more importantly, it is not necessary for all
f the nodes in the search tree to be expanded to generate an optimal solution to the problem
indeed the whole point of Branch-and-Bound is to reduce the number of nodes that actually

aeed to be expanded) so processors cannot simply be given work at random. These results
.llustrate these difficulties and show examples of both speed up and detrimental anomalies.

Results for the experiments with the 0/1 Knapsack problem are shown in Tables 5 .1-5 .4.
=..ooking at the sequential version, we see that only a very tiny section of the search tree is
~enerated (just 4704 problem-states out of a total of nearly 6 * 10"'255) and that most of these
nly generate a single child problem (4704 expansions required only 5088 bound calculations).

These results tend to support our statements about the probable shape of the search tree and show
-ı.at much of the search is inherently sequential.

TABLE 3.1 : Oil Knapsack, SHA

Number of Nodes Bounds Time Speed-
Processors Expanded Calculated (seconds) up

1 4707 5088 190.07 1.00
2 1541 2175 32.65 5.82
4 3116 4388 35.69 5.33
8 6145 8856 40.27 4.72
16 14745 21969 48.83 3.89

Table 3 .1 shows an example of an acceleration anomaly where the two processor system
rforms far fewer expansions than the sequential one and achieves a speed up of greater than 2.

53

ms anomaly is due to the two processor system identifying a good solution more quickly than
e sequential one and therefore being able to prune more of the search tree.

As the 2 processor system is almost optimal (750 expansions must be performed sequentially
with 2 processors 1500 expansions should be expected) using more processors does not

prove the speed up but simply causes more problem-states to be expanded.

TABLE 3 .2 : 0/1 Knapsack, SHL

Number of Nodes Bounds Time Speed-
Processors Expanded Calculated (seconds} up

1 4707 5088 183.87 1.00
2 9491 10267 185.07 0.99
4 11278 13004 106.64 1.72
8 17950 21590 86.49 2.13
16 27479 35049 67.61 2.72

Table 3.2 shows an example of a detrimental anomaly where the two processor system
ctually takes longer than the sequential one. This is due to the second processor not performing
y useful work at all and possibly even providing extra unnecessary work for the first processor.
processors will always be sent work if they become idle, the search tree is split at the first

ssible moment (probably after the expansion of the initial problem) and the two processors
dependently search for an optimal solution.

Increasing the number of processors does give some improvement in speed up, but much of
_e work being done is unnecessary due to the algorithm following the priority function very
--"orly.

The difference in times between the sequential version of SHA and that of SHL shows the
s.ight overhead associated with storing the heap of tokens as well as the heap of problem-states.

TABLE 3.3 : Oil Knapsack, SHL(5}

Number of Nodes Bounds Time Speed-
Processors Expanded Calculated (seconds} up

1 4707 5088 183.87 1.00
2 1675 2337 33.86 5.43
4 3154 4437 32.46 5.66
8 6308 8977 32.85 5.60
16 12644 17968 33.17 5.54

TABLE 3 .4 : 0/1 Knapsack, SHL(l}

Number of Nodes Bounds Time Speed-
Processors Expanded Calculated (seconds} up

1 4704 5088 183.87 1.00
2 3665 4332 77.17 2.38
4 5665 7082 62.86 2.93
8 6138 8731 36.96 4.97
16 12269 17375 37.97 4.84

54

Tables 3.3 and 3.4 show how these variations on SHL perform on this particular problem.
Little can be gained from these results however due to the particular characteristics of this
problem which, as we have already demonstrated, can have both severe acceleration and
deceleration anomalies.

One interesting point that can be seen from these results, however, is the communication
osts of sending problem-states too frequently. The 16 processor version of SHL

5
performs more expansions than the equivalent SHLı one but does so more quickly due to
smaller communication overheads.

Tbe Travelling Salesman Problem
This algorithm is based on one by Little et al. (1963) and uses a reduced cost matrix to

generate a search tree. The tree formed is a binary tree where edges between cities are either
ıncluded or excluded from the solution. The choice of edge to branch on is made on the basis of
:rying to maximise the cost difference between the two branches of the tree. This will, hopefully,
exclude the largest possible part of the tree in one go.
The search tree generated by this algorithm is very different from the one for the Knapsack
roblem. Solutions may occur at different depths in the search tree (there must be 30 included

edges but the number of excluded edges may vary) which will generally be fairly bushy. We
would therefore expect this algorithm to get an increase in speed up as more processors are

ded.
The results refer to an instance of the travelling salesman problem consisting of 30 cities

.ith inter-city costs being randomly chosen in the range O ... 99 and using a best-first search
tegy.

TABLE 3.5 : Travelling Salesman Problem, SHA

Number of Nodes Time Speed- Pseudo
Processors Ex12anded (seconds) UQ Efficiency

1 1526 203.7 1.0 100.00
2 1457 97.3 2. 1 99.9
4 1456 48.8 4.2 99.6
8 1459 24.9 8.2 97.8
16 1746 15.0 13.6 97.1

Table 3.5 shows that the SHA strategy performs consistently well and gets some slight speed
p anomalies in some cases. The number of problem-states expanded is reasonably predictable

and the performance is therefore also fairly predictable. ,

TABLE 3.6: Travelling Salesman Problem, SHL

Number of Nodes Time Speed- Pseudo
Processors Ex12anded (seconds) UQ Efficiency

1526 201.9 1.0 100.00
2 1713 104.8 1.9 108.1
4 2078 67.9 3.0 101.2
8 2211 36.6 5.5 99.9
16 3310 29.3 6.9 93.4

55

Table 3.6 however shows how important it is to ensure that high priority work is distributed
_. enly between the processors. Although this strategy is very efficient at expanding work, much

.: this work is unnecessary and speed up is therefore not as good as may be expected.

TABLE 3. 7 : Travelling Sa~esman Problem, SHL(1 O)

Number of Nodes Time Speed- Psedo
Processors Ex12anded (seconds) u12 Efficiency

1 1526 201.9 1.0 100.00
2 1510 94.3 2.1 105.9
4 1512 45.6 4.4 109.6
8 1766 27.7 7.3 105.4
16 1965 16.3 12.4 99.8

TABLE 3.8: Travelling Salesman Problem, SHL(l)

Number of Nodes Time Speed- Psedo
Processors Ex12anded (seconds) u12 Efficiency

1 1526 201.9 1.0 100.0
2 1462 96.5 2. 1 100.2
4 1499 49.4 4. 1 100.3
8 1565 25.4 8.0 101.9
16 1565 12.9 15.7 100.6

Tables 3.7 and 3.8 show that by sending unsolicited work between the processors the high
priority work is spread more evenly and the number of nodes expanded is considerably reduced.
A small communication overhead therefore leads to a great saving in unnecessary work, as can
be seen by the 16 processor version of SHLı which is still achieving very near linear speed up.

56

Chapter 4

DISTRIBUTED PROCESSING

4 .1 PROCESSES AND THREADS

A Process is a logical representation of a physical processor that executes program code and
associated state and data (a process is sometimes described as a virtual processor). A cess is also
the unit of resource allocation and so is defined by the resources it uses and by location at which
it is executing. A process can run either in a separate address space (i.e. a private range of
addresses available to it) or may share the same address space. processes are created either
implicitly (for example by the operating system when a program is to be executed) or explicitly
using an appropriate language construct or operating system function such as fork () in the UMX
environment.

In uni-processor computer systems many processes appear to be running at the same time. In
reality there is never more than one process executing on a single CPU; a time slicing tech- nique
is used to enable multiple processes to use it, switching between them so rapidly that, under the
right conditions, each process seems to be executing continuously. Switching between processes
involves saving the state of the currently active process and setting up the state of another process
(this is sometimes known as context switching). Context switching is carried out by very low
level code in the operating system kernel. Many operating systems (e.g. UNIX) allow programs
to create additional processes (other than the one it is running in) thus enabling multiple
concurrent 'child' processes to be executing, each competing for CPU and other resources as with
other processes. In the UMX fork () mechanism, when a child process is created using fork () all
the resources belonging to the original program (running in the 'parent' process) are duplicated
thus making them available to child processes. Thus child processes have their own address
spaces but with duplicated resources.

It is a common requirement for a program to create multiple processes which are required to
share memory and other resources. For example, a program may wish to create a subprocess to
wait for a particular event. Some operating systems support this situation efficiently by allowing
a number of processes to share a single address space. Processes in this context are often referred
to as lightweight processes or threads and the operating system is said to support multi
threading. A thread is thus the unit of scheduling and execution in a multi-threaded OS. Memory
and other resources are allocated to the address space within which threads are executing (an
'address space' and associated resources are variously known as a task, actor, process, cluster,
etc.). Context switching between threads in the same address space is much faster than context
switching between (heavyweight) processes in separate address spaces. The main drawback is
that because all threads share memory and other resources, there is much more scope for conflicts
and programs need to be carefully written to detect and recover from such conflicts. This can be
achieved by use of semaphore and locking mechanisms for co-ordinating actions on specific
resources as discussed in the next section. In this part, the term 'process' is used to refer to
heavyweight and lightweight processes (threads) unless stated otherwise.

In multi-processor systems multiple processes and threads can execute simultaneously (in
parallel); one per active CPU without the need to re-write programs. Thus, this approach to
implementing concurrent programs is independent of the underlying processor architecture.

57

4.2 SYNCHRONIZATION OF CO-OPERATING PROCESSES

There are two main reasons why there is a need for synchronization mechanisms .
1. Two or more processes may need to co-operate in order to complete a given task. This

implies that the operating mechanism must provide facilities for identifying (naming) co
operating processes and synchronization of processes with each other.

2. Two or more processes may need to compete for access to shared services or resources.
The main implication is that the synchronization mechanism must provide facilities to allow one
process to wait for a resource to become available and another process to signal the release of a
resource.

When processes are running on the same computer, process synchronisation is straight for
ward since all processes use the same physical clock and can share memory. Synchronisation via
shared memory is achieved using well-known mechanisms such as semaphores which are
designed to provide mutually exclusive access to a non-shareable resource by preventing concur
rent execution of the critical region of program code through which the non-shareable resource is
accessed. Mutual exclusion is achieved by enclosing each critical section of code by WAIT
(mutex) and SIGNAL (mutex) semaphore operations where mutex is the name of the semaphore
and is initialised to the value 1. For example, if a semaphore called mutex has been allocated and
initialised to 1, then the program code fragment in following below Figure 4. 1 illustrates how the
critical section is coded. Semaphores can also be used to synchronize co-operating processes by
ensuring that one process will wait on another based on the occurrence of a particular event, and
for the waiting process to be signalled that it can now proceed. For example, Table 4.1 shows the
use of WAIT and SIGNAL operations to synchronize two concurrent processes.

/* execute non-critical section of code */

/* block the current process until it can

acquire the mutual exclusion lock:- */

WAIT(mutex);

/* execute critical section of code
*/ critical section()

*/

/* release the mutual exclusion lock:
SIGNAL (mutex) ;

*/

/* execute non-critical section of code */

Figure 4.1 Mutual exclusion using semaphores.

58

Table 4 .1 Synchronization using semaphores

Process A Process B

/*synchronize with process B */
WAIT(sync)

/* proceed since now synchsonized */ SIGNAL (sync)

Semaphores can be used as a synchronisation mechanism in all types of process interactions
when processes share memory by using multiple semaphores with appropriate initial values. The
initial value of a semaphore is the maximum concurrent usage of a resource. The value of a
semaphore at any instance indicates the number of units of resource available.

An alternative approach to synchronisation of concurrent server processes is eventcounts and
sequencers (Reed and Kanodia, 1979). Eventcounts allow processes to co-ordinate their actions
by observing the sequencing of event occurrences. An eventcount is an object that keeps count of
the number of events of a particular type that have occurred so far. It is typically represented by a
non-decreasing integer variable, initialised to zero, and with the following primitive operations:

ADVANCE (eventcount) - signals the occurrence of an event associated with an eventcount

by increasing the eventcount by 1.

READ(eventcount) - returns the current value of eventcount.

AWAIT(eventcount, value) - blocks the calling process until the eventcount is greater or
equal to value.

Sequencers are required to totally order events. A sequencer is also typically represented by a
non-decreasing integer variable, initialised to zero, but with the following primitive operation:
TICKET(sequencer) - returns the current value of sequencet then increases the value.

The TICKET operation is analogous to the use of numbered tickets in restaurants and busy
hops to control the order of service. Customers are served in the order of the number on their

ticket. To illustrate the use of eventcounts and sequencers, suppose a banking service is defined
with an operation CreateAC which creates a new bank account so that, for example, unique
account and PIN numbers are generated and to ensure that account data consistency is
maintained. An eventcount and sequencer can be used to implement a mutual exclusion (mutex)
mechanism to ensure that only one CreateAC operation can execute the critical section of code at
any moment in time. When a server receives a client request it creates a child process to handle it.
Thus multiple child processes may be executing in the non-critical section of the CreateAC
operation. An eventcount called CREATE EC and sequencer called CREA TE SQ are defined
and initialised on server startup. A child process about to enter the critical section first acquires a
ticket by executing:

59

myturn = TICKET(CREA TE -SQ)

which returns a value in the variable mytum to represent the position of the process in the queue
of client processes waiting to execute the critical section. An AWAIT (CREA TE - EC,
myturn) operation is executed which has the effect of blocking the child process until CREA TE
EC is greater or equal to mytum. When this occurs, the child process has permission to execute
the critical section. When the critical section has been executed, the child process hands control
to another process by executing operation ADVANCE (CREATE-EC) ,which effectively allows
the next child process to enter the critical section.

4.3 INTER-PROCESS COMMUNICATION

When processes in the same computer wish to interact they need to make use of an inter
process communication (IPC) mechanism which is usually provided by the native operating
system or presentation management components. A number of mechanisms are available. Perhaps
the most primitive IPC is a synchronous filter mechanism. Most UNIX and MS-DOS users are
familiar with the pipe mechanism which is an example of a filter mechanism. for example:

ls -1 I more

The commands ls and more run as two concurrent processes, with the output of ls connected
to the input of more. This has the overall effect of listing the contents of the current directory one
screen at a time. Many processes can be piped together in this way. As a synchronisation
mechanism, normally the source process will write to the pipe until it is full (the maximum size
of a pipe data stream is implementation dependent) then block until some data is read by the
target process. If the target process reads an empty pipe which has not been closed by the source
process it will block until the source process writes some data to the pipe. If the source process
closed its end of the pipe, a read on an empty pipe receives an end-of-file condition. The main
advantage of pipes is simplicity. Pipe linkage mechanisms are unidirectional and bound to
specific source and target processes, however, and do not offer a secure means of
communication.

Named pipes overcome some of these limitations by allowing a pipe link to exist without
being bound to source and target objects. Unrelated processes can establish communication using
a named pipe facility because the interface is much like an ordinary file, indeed, named pipes are
often registered in the operating system's file system with an access control list equivalent to an
ordinary file for security purposes. Once named pipes are created they behave in a similar manner
to ordinary pipes.

An alternative IPC mechanism is use of the local file. The principal advantages of this
method are that it can handle large volumes of data and it is a well-understood approach which
has been the basis of online information systems for decades. A database is a collection of data
items which can be read from or written to by co-operating processes as a means of passing data
or synchronising. The main drawbacks are that there are no inherent synchronisation mechanisms
between communicating processes to avoid state data corruption, therefore synchronisation
mechanisms (e.g. file and record locking) need to be developed to allow many concurrent
processes to communicate while preserving data consistency. Secondly, communication is
inefficient since it usually relies on a relatively slow, non-volatile disk storage facility.

Since all processes are local, the computer's random-access memory can be used to
implement a shared memory facility using random-access memory. A common region of memory
addressable by all concurrent processes is used to define shared variables which are used to pass
data or for synchronisation purposes. Processes must use semaphores or other techniques since
there is no inherent synchronisation mechanism. This is a very efficient mechanism but normally

60

cannot cope with large data transfers. An example of a shared memory mechanism is a clipboard
facility supplied by most presentation management software.

A common asynchronous linkage mechanism is a message queuing mechanism which
provides the ability for any process to write to a named queue and for any process to read from a
named queue. Synchronisation is inherent in the read/write operations and the message queue
which together support asynchronous communications between many different processes.
Messages are identified by a unique identifier or by message type. Security is implemented by
associating an access control mechanism which identifies the owner process and read/write
rights permission for other processes. The main limitation is that these systems are designed to
hold relatively small amounts of data.

A common synchronous IPC is the use of normal procedure calls using dynamic link
libraries. When a procedure which resides in a dynamic link library is called, the binding between
caller and called procedure is resolved at that point. This mechanism is widely used since it is
well defined and well understood by application developers and facilitates software component
reuse. Data is passed as parameters of the procedure call which means that only relatively small
amounts of data can be passed between processes.

4.4 STRUCTURING A DISTRIBUTED SYSTEM

Six main paradigms are commonly used to structure an information system

• the master-slave model
• the client/server model
• the peer-to-peer model
• the group model
• the distributed object model
• the multimedia streams model.

ı

4.4.1 The master slave model
A master-slave model may be an appropriate model for structuring a distributed system. In

this model, a master process initiates and controls any dialogue with other (slave) processes.
Slave processes exhibit very little intelligence, responding to commands from a single master
process and exchange messages only when invited to by the master process. The master process
defines the command set and appropriate responses associated with the dialogue. The slave
process merely complies with the dialogue rules .. This model has limited application in a
distributed IT infrastructure because it does not make best use of distributed resources and the
master process represents a single point of failure.

4.4.2 The client/server model
The client/server model is the most widely used paradigm for structuring distributed

systems. A client requests a particular service. One or more processes called servers are
responsible for he provision of a service to clients. Services are accessed via a well-defined
interface which is made known to the client community. On receipt of a valid request, a server
executes the appropriate operation and sends a reply back to the client.

This type of interaction is known as a equest/reply or interrogation. Alternatively, an
interaction could be initiated by a client resulting in the conveyance of information to the server
requesting a function to be performed by the server process. This type of interaction is known as
an announcement and is clearly one-way communication as no reply is sent back to the client.

61

A client can potentially generate a request for service at any time. A server can have
multiple interfaces (e.g. a management interface and a separate interface through which client
requests are handled).

Both clients and servers normally run as user processes. A single computer may run a single
client or server process or may run multiple client or server processes (or both). A server process
is normally persistent (non-terminating) and provides services to more than one client process.

The main distinction between master-slave and client/server models lies in the fact that client
and server processes are on an equal footing but with distinct roles. The use of a (small)
manageable number of servers (i.e. increased centralisation of resources) improves systems
management compared with the case where potentially every computer can be configured as
client and server. This model, known as a peer-to-peer model, is so-named because every
process has the same functionality as a peer process as illustrated .

4.4.3 The group model
Client/server interaction involves two communicating parties: a client and a server. Another

model which is appropriate to some types of distributed systems is the group model. In many
circumstances, a set of processes need to co-operate in such a way that one process may need to
send a message to all other processes in the group and receive responses from one or more
members. For example, in a video conference involving multiple participants and a whiteboard
facility, when someone writes to the whiteboard, every other participant must receive the new
image. A second example is a computer conferencing system (e.g. the Internet USENET system).
When a subscriber sends a message to a news item, all other subscribers receive it. This is
modelled conveniently as set of group members which behaves as a single unit called a group.
When a message is sent to the group interface, all members of the group receive it. How does a
'group' message get routed to every member? There are three main approaches

1. Send a separetecopy of the message to be individually routed to each member. This is
known as unicasting.An implicit assumption is that the sender knows the address of every
member in the group. This may not be possible in some system. In the absence of more
sophisticated mechanisms, a system can resort to unicasting if member addresses are known.
The number of members in the group.

2. Send a single message with a group address which can be used for routing purposes. This is
known as multicasting and relies on an underlying multicasting network facility. For
example, multicasting is supported in most LAN protocols and the TCP/IP protocol. . when a
group is first created it is assigned a unique group address. When a member is added to a
group, it is instructed to listen for messages stamped with the group address as well as ,for its
own unique address. This is an efficient mechanism since the number of network
transmissions is significantly less than for unicasting. -

3. Broadcast the message by sending a single message with a broadcast address. The
mesage is sent to every possible entity on the network. Every entity must read the message
and determine whether they should take action or discard it. This may be an appropriate
mechanism in the case when the address of members is not known since most network
protocols implement a broadcast facility. If messages are broadcasted frequently, however,
and there is no efficient network broadcast mechanism, the network soon becomes saturated
as broadcasts are propagated over an internet (known as a broadcast storm). Therefore
broadcast-based group communications do not scale well unless an efficient low-level
broadcast facility is available.

In some cases, a group message (e.g. an update request to a group ofreplica servers) must be
received by all group members or none at all. Group communication, in this case, is said to be
atomic or all-or-nothing. Achieving atomicity in the presence of failures is difficult, resulting in
many more messages being exchanged. Another aspect of group communications is the ordering

62

of group messages. For example, in a computer conferencing system a user would expect to
receive the original news item before any response to that item is received. This is known as
ordered multicast and the requirement to ensure that all multicasts are received in the same
order for all group members is common in distributed systems. Atomic multicasting does not
guarantee that all messages will be received by group members in the order in which they were
sent. Clearly, implementing group communications protocols is non-trivial. An example of a
group communication system which addresses ordered multicasts and, to some extent, atomic
multicast, is the ISIS system developed at Cornell University In ISIS, broadcast primitives are
defined to ensure that all messages arrive in the same order to all parties (e.g. group members)
with fault tolerant features. ISIS is described in detail in Tanenbaum (1995); and Coulouris et
al.(994).

Often group processes are directly supporting groups of people who are working informally
or formally on projects for which co-operation is of mutual benefit. Information system to
support computer-supported co-operative (or group) working (commonly abbreviated to CSCW)
are commonly based on the group model,

4.4.4 The distributed object model
The terms object and object-oriented programming are used ambiguously in the field of

computer science which causes much confusion if not appropriately defined. Object technology
offers a different programming model from traditional structured programming which is based
on the separation of data and the processing of data through functions and procedures. An object
is a computational entity which encapsulates both private data describing its state and a set of
associated operations as a representation of a real-world object. An object is described in terms
of its attributes (internal state data) and methods (procedures which operate on the state data).

An object's state is visible only within the object and is completely protected and hidden
from other objects as a way of hiding complexity and as a protection from misuse. The only way
to examine or modify an object's state data is by sending a message to the object which has the
effect of invoking one of a well-defined set of methods that define the object's inter- face to the
outside world. Thus without knowing the detail of how an object is implemented, it can be used
by simply knowing the methods that define the object's interface. An object may invoke other
objects, allowing the creation of a potentially complex web of object invocations. An object
based or object-oriented model is recognized as offering important advantages in the
development and maintenance of distributed information systems for the following reasons.

Implementation detail is hidden and the use (and re-use) of objects emphasized through the
definition of well-defined object interfaces. This can lead to greater development productivity,
and reduced software maintenance costs.

Objects can be written to handle a wide range of media types (including text, voice, animation
and video) using essentially the same object interface which provides a consistent approach to
handling multimedia objects.

It provides the foundation for DIS integration into specific line-of-business solutions by re
packaging existing functionality.

An object is a natural unit of distribution. The message-passing nature of inter-object
communications maps easily to a distributed systems environment. A message-passing or RPC
remote IPC mechanism can be used to implement the communications channel through which
messages can be passed between objects.

A class is a template from which objects may be created (every object is therefore an
instance of some class in as much as a class exists at program compile time, but objects exist at
execution time with state representations and associated operations as defined by the class).
Inheritance İs a mechanism that permits new classes to be defined as an extension of another
(previously defined) class which provides support for creating new objects by extending existing

63

.emplates. polymorphism (which means 'many forms') provides the ability for different (but
related) objects to share the same method names, thus allowing different objects to be accessed
through the same interface. A technique called overloading implements polymorphism by
ensuring that, even though there may be multiple methods with the same name but different
:nethod definitions, the method definition used is one which is appropriate to the type of object
.nvolved, The overall effect is, for example, of multiple object types each representing a different
'.Tiedia type which can be hidden behind a common object interface (e.g. all objects define open,
create, display, print and delete methods but with different method definitions).

Programming languages that support objects as a language feature are known as object based
and object oriented if they also support inheritance. The sequential object. model is based on the
notion of active and passive objects. An object is activated when it receives a message from
another object. The object that sent the message becomes passive as control is transferred, and
waits for a result. After servicing the message and sending the result, control is transferred to the

aiting object which now becomes active and the sender passive. At any instant, only one object
in the system is active. This is similar to process activation and passivation.

Current widely-used object-oriented systems usually assume the sequential object model
with all objects running in a single name space on a single computer. The distributed object
model allows objects to persist in an active state irrespective of whether they have sent a message
or received a result. In fact the model allows an object to send messages to multiple objects
oncurrently and receive results asynchronously.

Programming languages that support distributed objects define an object as the unit of
distribution. The distributed object interaction model differs from the client/server model in that
an object can both request and provide services . In this sense, objects interactions resemble peer
to-peer interactions except that objects can exhibit different functionality. Since each object-to
object interaction is request/reply dialogue, for the purposes of object modelling it can be useful
to view an object as a composite client and server assemblage. A popular standard for
implementing distributed objects is the Object Management Group's common object request
broker architecture (CORBA).

4.4.5 The multimedia stream model

Modelling of interactions between multimedia objects uses object-oriented and distributed
object paradigms. Object-orientation is particularly appropriate as features such as exchanging
object references and content-specific operations (using polymorphism) are readily supported. A
multimedia stream can be described as a continuous medium with a well-defined start and end,
which takes place at a defined rate and exhibits unstructured behaviour (Linington 1994). Thus,
time is a very important parameter. A stream. may be labelled with a set of events which can
signify changes in presentation state or used to trigger display actions. A multimedia stream may
also have attributes such as the default display size. One important consequence of the
encapsulation of potentially diverse, unstructured data is th-e need to provide the controlling
application with more freedom to configure resources to support it.

A multimedia stream interface is one in which all interactions are flows. A flow is an
abstraction of a sequence of interactions, resulting in conveyance of information from a
producer object to a consumer object. For example, a videoconferencing stream interface may
consist of three flows: audio, video and data. In the MIME convention this was modelled as a
multipart I parallel content-type

Each stream interface comprises a finite set of action templates, one for each flow type in
the stream interface. Each action template for a flow contains:
1. the name of the flow;
2. the information type of the flow (e.g. audio, video or data);
3. whether it is a consumer or producer (but not both).

64

A flow has a set of frames (or signals).
A frame has a name and a set of typed arguments (attributes).

Streams are themselves typed and can be conformance type checked. The analogy here is the
content-type field in MIME which can be regarded as indicating the type of the MIME stream.
Frames are transmitted by producer via non-blocking writes and read by consumers via blocking
reads. This is analogous to writing frames to a buffer; and application reads from the buffer.
This model provides a flexible approach to modelling multimedia streams.

4.5 REMOTE IPC
In a distributed TT infrastructure, processes interact in a logical sense by exchanging

messages across an information network. We refer to this form of communication as remote !PC
As with local processes, remote processes are either co-operating to complete a defined task or
are competing for the use of a resource. In the physical network remote IPC can be implemented
using the message passing paradigm or the shared memory paradigm. typical remote IPC
functions based on the message passing paradigm are:
• process registration for the purposes of identifying communicating processes;
• establishing communication channels between processes;
• reliably routing messages to the destination process;
• synchronisation of processes in the case where processes are competing or co-operating in a
y that requires it
• closing down communication channels.

In general, the message passing paradigm is more widely used in commercial systems.
Object-oriented concepts naturally embrace the concept of message passing and therefore map
easily to message passing or remote procedure calls as remote IPC mechanisms for inter object
communication in a distributed object environment.

4.5.1 Binding
At some point, a process needs to determine the identity of the process with which it desires

to establish a connection. This is known as binding. A process generally can be bound to another
process at one of two stages:
1. Destination processes are identified explicitly at program compile time (and therefore cannot
easily be changed). This is known as static or early binding;

2. Source to destination bindings are created, modified and deleted at program run-time. This is
known as dynamic or late binding.

While static binding is the most efficient approach and is most appropriate when a client
almost always binds to the same server, in some systems (e.g. accessing external information
services) it is often not possible to identify all potential destination processes. Dynamic binding
facilitates location and migration transparency when processes are referred to indirectly (e.g. by
name) and mapped to the location (address) at run-time. This is often facilitated by a facility,
known as a directory service, which can be used by the sender to locate a server. When a server
is first activated it exports information to the directory service regarding the type of service being
offered and where it can be located. The sender imports its requirements to the directory service,
which returns the address of a server which can meet its requirements .. This is analogous to
finding the telephone number of 'Harry Smith' in a telephone directory and, like the telephone

65

z.rectory enquiry service, is normally implemented as a 'global directory service' that provides
is service.

Both binding mechanisms connect source to destination regardless of the quality of
nnection required by the application. For example, an application may be time sensitive and a

s.ow network link is almost as catastrophic as a network failure. It may be that judicious choice
i network connection and protocols and with priority access, a more acceptable quality of

service may have been negotiated. This leads to the idea of explicit binding which gives
applications control over the binding mechanism, allowing negotiation of much more complex

nfigurations to meet a particular application's quality of service requirements. If the
requirements cannot be met, the application can take appropriate action. To facilitate explicit
rinding, each client and server must initiate some negotiation which establishes whether the
~ecessary resources can be marshalled to meet the particular quality of service (Qos) specified
usually by the client). A binding manager (also known as a binding object) encapsulates the

explicit binding mechanism and is visible to client and server processes. An explicit binding
-nanager: (1) negotiates with other binding managers with a view to matching user quality-of
service requirements to IT infrastructure component capabilities (QoS para- meters are crucial as
.:. basis for matching requirements to capabilities); and (2) assists in local resource scheduling and
control.

4.5.2 Connectionless and connection-oriented communication
A consideration when supporting process interactions is whether to establish successful con

tact first (a connection) with the destination process before any messages are sent. If this con
nection-oriented (also known as virtual circuit) approach to IPC is used then it minimises the
overheads of subsequent message transfer by, for example, setting up a routing path during
connection which all messages follow avoiding the need to send full addressing information for
each subsequent message sent (a connection identifier is used instead which requires fewer
ytes). Also it is more straightforward to employ error control, flow control, sequence control and

other protocols for enhanced reliability. If the destination process is contacted initially then this is
an opportunity for negotiation of some aspects relating to subsequent dialogue. At the end of the
dialogue, the connection must be closed down to release network resources .the telephone system
is a good example of use of the connection-oriented approach.

However, if a relatively small number of messages are exchanged during a dialogue between
co-operating processes then the protocol overhead due to connection establishment and
ubsequent close down is significant. In this case a connectionless (also known as data grams)

approach is appropriate whereby no initial connection is made; instead, each message is
transported as an independent unit of transfer and carries data sufficient for routing from
originating process to destination process. The postal system is an example of the use of this
approach. The use of elaborate protocols to enhance reliability is normally dispensed with in
order to minimize end-to-end transmission delay. Further error control can be achieved using
higher-level protocols implemented on the end host computers.

The rule-of-thumb guideline for selecting the most appropriate communication type is to use
the connectionless approach when a typical dialogue consists of the exchange of a small number
of messages only, otherwise connection-oriented is more efficient. Most practical
implementations of message passing support both approaches.

66

4.5.3 Synchronization
Another consideration in remote IPC mechanisms is whether a process should be delayed

(known as synchronous or blocked until it receives a response from the destination process. A
primitive is non-blocking (or asynchronous) if its execution never delays the invoking process.

on-blocking primitives must buffer messages to maintain synchronization. Non- blocking
clearly maximizes flexibility but often make application development difficult due to the
increased complexity of asynchronous time-dependent programs. Synchronization is easy to
maintain and programs easier to write when blocking versions of message passing operations are
used. When the send message operation is executed, the invoking process is blocked until the
receiver actually receives the message. A subsequent receive message operation again blocks the
invoking process until a message is actually received. This has the effect of synchronize sending
and receiving processes. Co-operating processes, however, may need to synchronize without
using blocking operations.

4.6 REMOTE IPC: MESSAGE PASSING
A 'low-level' remote IPC (in as much as the application developer is usually explicitly aware

of the message used in communication and the underlying message transport mechanisms used in
message exchange) is message passing. Processes communicate directly using send and receive
or equivalent language primitives to initiate message transmission and reception, explicitly
naming the recipient or sender, for example:

send(message, destination-process)
receive(message, source-process)

This is known as message passing using direct communication. Message passing is the
most flexible remote IPC mechanism in that it can be used to support all types of process
interactions (e.g. client/server, group or distributed object) and underlying transport protocols and
can be configured by the application according to the needs of the application.

Another useful technique for identifying co-operating processes is known as indirect
communication. Here the destination and source identifiers are not process identifiers. Instead, a
port (also referred to as a mailbox) is specified which represents an abstract object at which
messages are queued. Potentially, any process can write to a port or read from it. To send a
message to a process using this mechanism, the sending process simply issues a send operation
specifying the well-known port number which is associated with the destination process. For
example:

send(message, destination-port)
receive(message, source-port)

Normally, the receiver creates the port (i.e. is the owner). To receive the message, the
recıpient simply issues a receive specifying the same port number. Security constraints can be
introduced by allowing the owning process to specify access control rights on a port. Messages
are not lost providing the queue size is adequate for the rate at which messages are being queued
and dequeued. Clearly multiple ports can be associated with communication between two
processes thus supporting multiple, unidirectional or bi-directional channels. A good example of
this approach is the UNIX Sockets IPC which will be examined in the next section. This
approach provides the flexibility for programming distributed systems and is used extensively in
implementing distributed services.

An extension of message passing by indirect communication is known as message queuing.
In this higher-level form of message passing, store-and-forward techniques are used to propagate
general-purpose messages reliably and asynchronously from a local message queue (usually held
on non-volatile storage) to a remote queue associated with the destination process. The creation

·67

of message queues and routing of messages is handled by queue managers. One significant
advantage of message queuing is the ease in which it supports parallel communication with
multiple processes. Message queuing also moves much of error handling logic to systems
oftware which is hidden from users.

4.7 REMOTE IPC THE REMOTE PROCEDURE CALL

The client/server model is essentially a request/reply interaction. This interaction is very
imilar to the traditional procedure call in a high-level programming language except that the

caller and procedure to be executed are on a different computer. A procedure call mechanism
which permits the calling and called procedures to be running on different computers is known as
a remote procedure call (RPC) (Birrell and Nelson, 1984). RPC is a popular mechanism for
developing distributed systems because it looks and behaves like a well- understood,
conventional procedure call in a high-level language (all programmers are familiar with the
concept of calling a subroutine or procedure). A procedure call has proved to be an effective tool
for implementing abstraction since to use a procedure all one needs to know is the name of the
procedure and the arguments associated with it. RPC is therefore a remote operation with call
semantics similar to a local procedure call, and can provide a degree of:
· access transparency since a call to a remote procedure may be similar to a call to a local
procedure. In practice, there will be differences in semantics due to the need, for example, to
handle a wider variety of exceptions;

location transparency since the developer can refer to the procedure by name, unaware of
where exactly the remote procedure is located;

synchronisation between processes since the process invoking the RPC call is normally
uspended (blocked) until the remote procedure is completed, just as in a call to a local

procedure.

n RPC protocol is implemented in the following way

I. When a process makes an RPC call (e.g. RemoteProcX (x,y, z, result)), the address of the
server process is first determined (e. g. via a directory service). The call parameters x, y and z are
packed into a data structure suitable for transfer across the network. This is called marshalling.
These steps could be carried out by the client process, but to simplify the RPC interface from the
perspective of the application developer, the potentially complex steps of name resolution and
marshalling are carried out by a special procedure called the client stub.
2. The data is then passed to lower level RPC transport protocol (e .g. message passing using
Send and Receive primitives) for transporting the RPC call and call parameters across the
network.
3. The server process unmarshalls the call parameters from the data structure in a form suiable
for making a local procedure call. The server process has an associated server stub that carries
this out transparent to the server process.
4. The call is then made to the required procedure (in this case RemoteProcX (x, y, z)).
5. The procedure result is marshalled by the server stub and sent back across the network to the
client process using the same low-level RPC transport protocol
6. The client stub unmarshalls the result and passes the result (and control) back to the client
process.

68

4.7.1 RPC exceptions
The above mechanism, however, needs to cope with a wider range of exceptions than is

rypiçal of a local procedure call. For example:
• what if parameters x ,y and z are either global variables or pointers? Many programming
anguages can support parameter passing using call-by-value (a copy of data is passed) or call-by-

:eference (a pointer to the data item is passed);
• what if there are differences in the way that client and server computers represent integers,
floating point and other data types?
• what if the RPC call fails? Can the call be recovered?
• is the client authorized to call the named procedure?

Marshalling is complicated by use of global variables and pointers as they only have
meaning in the client's address space. Client and server processes run in separate address spaces
on separate machines. One solution may be to pass the data held by the global variable or pointed
to by the pointer. However, there are cases when this will not suffice, for example, when a linked
list data structure is being passed to a procedure that manipulates the list.

Differences in data representation can be overcome by use of an agreed language for
representing the data being passed between client and server processes. For example, a common
syntax for describing the structure and encoding of data, known as abstract syntax notation
(ASN.l) (ISO 8824) was defined by as an international standard by the International
Organisation for Standardisation (ISO) for this purpose. ASN. l is very similar to the data
declaration statements in a high-level programming language, and a useful description is found in
Tang and Scoggins (1992). Marshalling is then a case of converting the data types from the
machine's representation to a standard representation (e.g. ASN.l) before transmission. At the
other end, the data is converted from the standard to the machine's internal representation.

4. 7.2 Failure handling
RPC failures can be difficult to handle. There are four generalized types of failure that can

occur when a RPC call is made:
1. the client request message gets lost;
2. the client process fails while the server is processing the request;
3. the server process fails while servicing the request;
4. the reply message is lost.

If the client message gets lost then the client will wait forever unless a time-out/retry error
detection mechanism is employed. If the client process fails, the server will carry out the remote
operation unnecessarily. If the operation involves updating a data value (e.g. updating bank
account details) then this can result in loss of data integrity. Furthermore, the server would
generate a reply to a client process that does not exist. This must be discarded by the client
machine's communication system. When the client process re-starts, it may send the request again
(as if for the first time) causing the server to execute the same operation more than once.
A similar situation arises when the server crashes. The server could crash just prior to execution
of the remote operation or just after execution completes but before a reply to the client is
generated. In this case, clients will time-out and continually generate retries until either the server
restarts or the retry limit is met.

69

4. 7.3 Execution semantics
The number of times a remote procedure executed can be difficult to determine in the

presence of failures. Three kinds of RPC execution semantics are defined which can be
guaranteed by a particular RPC mechanism in failure situations:
1- At-most-once semantics: the RPC mechanism guarantees that the remote procedure is
either never executed or executed partially or once. This requires the server to keep track
of invocation identifiers of all procedures previously executed to avoid duplication.
2- Exactly-once semantics: the RPC mechanism guarantees that the remote procedure is
executed exactly once. This is difficult to achieve given the nature of failures which may
occur.
3- At-least-once semantics: the RPC mechanism guarantees that the remote procedure is
executed at least partially or once. This is easily achieved by re-requesting remote procedure
execution if failures occur. Clearly, at-least-once semantics is appropriate only if executing a
remote procedure once has exactly the same outcome as executing the same request multiple
times An operation with this characteristic is said to be idempotent. An example of an
idempotent operation is a read operation on a data file. Any operation which does not change the
state of remote data can be classed as idempotent.

4- Transactional (zero-or-once) semantics: the RPC mechanism guarantees that the remote
procedure is either never executed or executed once. This requires the server to keep track of
invocation identifiers of all procedures previously executed to avoid duplication. The server must
also ensure that state data is either updated permanently by an operation taking it from one
consistent state to another, or that it is left in its original state if the operation is aborted. This type
of RPC is commonly known as transactional RPC.

Ensuring that a remote operation is carried out exactly once is difficult under these
circumstances. The server needs to distinguish between new requests and duplicate requests for
execution of an operation that has been completed already. This state data must remain consistent
despite client and server crashes or lost messages in order to ensure at-most-once RPC semantics.
Many servers do not retain state data and are therefore known as 'stateless' servers. In this case,
clients are responsible for retaining state data on past requests (e.g. the value of the read-write
pointer in file operations). Stateless servers can at best support only at- least-once RPC
semantics.

The complexity of error recovery is reduced when it can be assumed that requests are idem
potent, since the simpler to implement at-least-once RPC semantics can be implemented
effectively. For example, a number of distributed file server protocols (e.g. Sun Microsystems'
NFS) are designed to assume that all requests such as file open, read, write, delete, etc. exhibit
idempotent behaviour (strictly speaking some operations are not idempotent but can be written to
exhibit idempotent behaviour). The stateless servers and _at-least-once RPC semantics are
implemented to avoid the protocol overhead associated with suppressing duplicate requests after
recovering from a failure. However, stateless servers do not cope well with concurrent access as
concurrency control requires the retention of state data to facilitate locking.

At-most-once RPC semantics can be achieved only if both client and server reliably detect
failure conditions. Use of techniques such as sequence control, connection-oriented RPC
transport services and retention of state data to maintain mutual state and so on, implies a
significant protocol overhead. However, these techniques must be implemented if non
idempotent requests are to be supported successfully.

In the discussion so far, we have assumed that any client can invoke any remote operation on
any server via an RPC mechanism. In practice, before a remote operation is executed by a server,
they should authenticate each other. This requires a sub-dialogue that is initiated when the server
receives a client request. The sub-dialogue may involve the use of an 'authentication server' and
uses encryption techniques for further security. This requires both the client and server to

70

maintain state data for security purposes which means that sophisticated security techniques
require stateful servers.

4.8 ADVANTAGES OF DISTRIBUTED SYSTEM

The. main advantageş of distributed systems is their ,ability to allow the sharing; of
information and resources over a wide geographic area, giving. a systems designer freedom ta
optimize the placement of distributed system components such as. data processing. This. then
supports: improved flexibility. Çomputers and other IT infrastructure components can flexibility .
Located at points within the organization where they can be. utilized most effectively.
components can be added upgraded, moved and removed (usually in small increments over a
wide range of capacities) without. impacting upon other components to meet present and future
needs The. ability of an IT infrastructure or application to grow to meet increasing. user or
application demand while, minimizing, disruption is known as scalability.
Local autonomy, by allowing domains of control to be defined where decisions are made
relating to purchasing, ownership, IT budgets, operating priorties, IS development and
management, etc. Each, domain decides where .resources (including manpower and .IT
infrastructure components). under its control are located, This autonomy is recognition of the
distributed nature of many organizational activities. Domains can be federated when
necessary for mutual benefit.
• Increased reliability and availability. In a centralized system, a component (hardware or

software) failure can mean that the whole system is down, stopping all users from getting
work done. In a distributed system, multiple components of the same type çan .be configured
to fail independently and (e.g. through replication) provide a level of fault tolerance. Thus,
failure of one component may isolate a group of users, but does not necessarily prevent others
from operating.

• Improved performance. Large centralized systems can be slow performers due mainly to the
sheer volume of data and transactions being handled. A service which is partitioned over
many server computers, each supporting a smaller set of applications and users with access to
local data and resources, results in faster access (response times). Another performance
advantage is the support for parallel access (updates and retrievals) to distributed data across
the organization

• Security breaches are localized. In distributed system with multiple security control
domains, a security breach in one domain does not compromise the whole system. Each
security domain has varying degrees of security authentication, access control and auditing.

4.9 DISADVANTAGE DISTRIBUTED SYSTEM

Against the above advantages are a number of disadvantages, most of which correspond to
the advantages of centralized systems:
• It is more difficult to manage and secure. Centralized systems are inherently easier to

secure (offering a single security domain, controlled by a single authority) and easier to
manage. Distributed systems require more complex process for security, administration,
maintenance and user support due to greater levels of co-ordination and control required.
This usually results in higher costs associated with managing and securing distributed
systems environment.

• Reduced reliability-and availability. In contrast to the potential improvements in reliability
and availability discussed above, a centralized system can often offer more controlled
physical, operational and environmental conditions borne out of years o development and

71

improvement. Moreover, a diştributed system consists of many more components which can
potentially fail, causing loss of availability.
A shortage of skilled support and development staff. In a decentralized operation scarce
support and development can be dispersed, resulting in a lossof economies of scale which, in
turn, leads to higher costs. Another issue is the level of support offered b; vendors. The
commitment and level of support offered by vendors of distributed software and hardware to
'corporate' organizations grappling with the issues of building large-scale distributed
systems is not yet comparable to the traditional large mainframe-base vendors. This is due in
part to the fact that many vendors are supplying only a small part of the overall system. In
practice, whereas in a centralized system the mainframe supplier provided the equipment and
integration support as a single package, distributed system implementation commonly
involves multiple vendors and therefore requires the skills of systems integrator. Problem
isolation and resolution can be much more difficult and costly when multiple vendors are
involved. This is exacerbated by the need for staff to develop wide range of knowledge and
skills. thus, distributed systems are not a panacea tor all the world computing problemş.
Like many innovations they provide a solution to many problems, but also. introduce new.
ones. With the potentially significant disadvantages highlighted above why should any
organization take the risk of implementing a distributed system? The answer is that although
.overcoming ,the disadvantages represents a significant challenge to any organization, it is ..
often perceived that the . advantages (which are .generally user-centred) significantly.
outweigh. the disadvantages (which are generally centred around Staffing, management and
administration). Implementing a distributed IT infrastructure gives an organization the
flexibility to choose an appropriate balance between the high levels of discipline and co
ordination associated with ,centralized control, and the flexibility and local autonomy offered
by decentralization.A distributed IT infrastructure supports tight management of corporate
data by locating it on a limited number .of tightly managed server computers, easily
accessible to users via a desktop computer. Data can be duplicated in a controlled manner to
improve performance and availability. Thus an appropriate balance between ,control,
efficiency; flexibility and local autonomy can be realized.

CHAPTERS

TYPES OF DISTRIBUTED SYSTEMS

There are several types of distributed processing systems in which the components are
hooked together by telecommunications. This chapter categorizes them and gives examples.

5.1 HORIZONTAL. VERTICAL DISTRIBUTION

First we shall distinguish between horizontal and vertical distribution. By vertical
distribution we mean that there is a hierarchy of processors the transaction may enter and leave
the computer system at the lowest level. The lowest level may be able to process the transaction
or may execute certain functions and pass it up to the next level. Some, or all, transactions
eventually reach the highest level, which will probably have access to on-line files or data bases.

The machine at the top of a hierarchy might be a computer system in its own right,
performing its own type of processing on its own transactions. The data it uses is, however,
passed to it from lower-level systems. The machine at the top might be a head-office system
which receives data from factory, branch, warehouse, and other systems.

By horizontal distribution we imply that the distributed processors do not differ in rank. They
are of equal status-peers-and we refer to them as peer-coupled systems. A transaction may use
only one processor, although there are multiple processors available. On some peer-coupled
systems a transaction may pass from one system to another, causing different sets of files to be
updated.

5.1.1 COOPERATIVE OPERATION?

In some networks the user has a choice of computer systems available to him, but he
normally employs only one computer at a time. The computers are programmed independently,
and each computer performs its own functions.

In other networks the computers are programmed to cooperate with one another to solve a
common set of problems. This is often the case in a vertical system The lower-level machines
are programmed to pass work to the higher-level machines. This is sometimes true also in a
horizontal system. The processing of one transaction may begin on one machine and pass to
another. The different computers perform different functionş or maintain and update different
files. The machines may be minicomputers in the same location or computers scattered across the
world on a network.

5.1.2 FUNCTION DISTRIBUTION VS. SYSTEM DISTRIBUTION

In some distributed systems, usually vertical systems, functions are distributed, but not the
capability to fully process entire transactions. The lower-level machines may be intelligent
terminals or intelligent con- trollers in which processors are used for functions such as message
editing, screen formatting, data collection dialogue with terminal operators, security, or message
compaction or concentration. They do not complete the processing of entire transactions.

73

We refer to this distribution as function distribution and contrast it with system distribution in
which the lower-level machines are systems in their own right, processing their own transactions,
and occasionally passing transactions or data up the hierarchy to higher level machines.

In a systems distribution environment the lower machines may be entirely different from, and
incompatible with, the higher machines. In afunction distribution environment, close cooperation
between the lower-level and higher-level machines is vital. Overall system standards are
necessary to govern what functions are distributed and exactly how the lower and higher
machines form part of a common system architecture with appropriately integrated control
mechanisms and software.

5.1.3 COMBINATIONS

Many configurations of the future will be neither purely vertical nor purely horizontal;
neither purely homegeneous nor entirely heterogeneous They will be combinations of these, and
function distribution and systems distribution will be combined in one configurations The system
contains both function distribution and vertical systems distribution.

5.2FUNCTION DISTRIBUTION

When the peripheral nodes are not self-sufficient systems but perform a function subservient
to a higher-level distant computer, we speak of intelligent terminals, intelligent terminal cluster
controllers. or intelligent concentrators. These terms imply a vertical distribution of function in
which all or most transactions have to be transmitted, possibly in a modified form, to a higher
level computer system, or possibly to a network of higher-level computer systems.

The centralised teleprocessing system of 1970 employed simple terminals and carried out
almost all of its functions in the central computer. At first system control and housekeeping
functions were moved out, then functions such as data collection, editing, and dialogue with
terminal operators, and finally many of the application programs themselves.

;ı
·~

1-In the host computer
2-In a line control unit or front end network control computer

Many functions are necessary to control a terminal network. If the host computer performs
all the operations itself, it will be constantly interrupting its main processing, and many machine
cycles will be needed for line control. Some of the line control functions may be performed by a
separate line control unit. In some systems, all of them are performed by a separate and
specialised computer. The proportion of functions which are performed by a line control unit,
which by the host computer hard- ware and which by its software, varies widely from system to
system. Some application functions could be performed by the subsystem computer-for example,
accuracy checking and message logging.

A major advantage of using a front-end network-control computer is that when the host
computer has a software crash or brief failure, the network can remain ,functionally operational.
Restart and recovery of the network without errors or lost transactions is a tedious and often time
consuming operation, and if it happens often it can be very frustrating to the end users.

3. In the mid-network nodes

The midnetwork nodes or concentrators may take a variety of different forms. They may
be relatively simple machines with unchangeable logic. They may have wired-in logic, part or all

74

of which can be changed by an engineer. They may be microprogrammed. Or they may be
stored-program computers, sometimes designed solely for concentration or switching, but
sometimes also capable of other operations and equipped with files, high-speed printers, and
other input-output equipment.

4.In the terminal control unit

Terminal control units also differ widely in their complexity, ranging from simple hardwired
devices to stored program computers with much software Increasingly they are computers with
storage units and there is a trend towards greater power and larger storage. They may control one
terminal or many. They may be programmed to ınteract with the terminal operator to provide a
psyhologically effective dialogue in which-only an essential kernel is transmitted to or from the
host computer. They may generate diagrams on a graphics terminal or interact with the operators
use of a light pen . They are often the main component in carrying out the assortment of
distributed functions which this chapter will list.

5. In the terminal

Intelligent terminals" are becoming more intelligent. T'heir processing functions range from
single operations such as accumulating totals in a system which handles financial transactıons, to
dialogues with operators involving much programming. Some intelligent terminals do substantial
editing of input and output data. Some terminals perform important security functions.

Where several terminals share a control unit, F, such functions are probably better performed
in the control unit, leaving the terminal a simple inexpensive mechanism in which the main
design concern may be tailoring the keyboard and other operator mechanisms to the applications
in question.

6. In a "back-end" file or data base management processor
File or data base operations may be handled by a "back-end" processor. This can carry out

the specialised functions of data base management or file searching operations. It can prevent
interference between separate transactions updating the same data. It can be designed to give a
high level of data security protection.

"Back-end" processors, where they exist today, are normally cable-connected to their local
host computer. They could, especially when high-bandwidth networks or communications
satellite facilities are available, be remote from the host computers which use them.

5.2.1 CHOICE OF FUNCTION LOCATION

The designer, faced with different locations in which he could place functions, may choose
his configuration with objectives such as the following:

1. Minimum total system cost. There is often a trade-off between distributed function cost and
telecommunications cost. -
2. High reliability. The value attached to system availability will vary from one system to an
other. The systems analyst must evaluate how much extra money is worth spending on duplexing,
alternate routing and distributed processing to achieve high availability. On some systems
reliability is vital. A supermarket must be able to keep its cash registers going when a
communication line or distant host computer fails.
3. Security.
In some systems function distribution is vital for system security (as we discuss later).

4. Psychologically effective dialogue with terminal users. Function distribution is used to make
the dialogue fast, effective and error-free.
5. Complexity
Excessive complexity should be avoided. The problems multiply roughly as the square of the
complexity.

75

6. Software cost. Some types of function distribution occuring throughout a network incur a high
programming expenditure. The use of stored-program peripheral machines may inflate cost.
7. Flexibility and expandability.

It is necessary to choose hardware and software techniques that can easily be changed and
expanded later, especially because telecommunications and networking technology are changing
so fast. Some approaches make this step difficult.

5.3 REASONS FOR FUNCTION

The following lists the main reasons for function distribution. They fall into three categories:

1. Reasons associated with the host
Many machine instructions are needed to handle all of the telecommunications functions.

The load on a central machine could be too great if it had to handle all of these functions. A
single computer operates in a largely serial fashion executing one instruction at a time. It seems
generally desirable to introduce parallelism into computing so that the circuits execute many
operations simultaneously. This is the case when machine functions are distributed to many small
machines.
2. Reasons associated with the network

There are many possible mechanisms which can be used to make the network function
efficiently. We will discuss them later in the book. These mechanisms are used to lower the
overall cost of transmission and increase its reliability. The network configuration is likely to
change substantially on most systems, both because of application development and increasing
traffic, and because of changes in networking technology which are now coming at a fast and
furious rate. Function-distribution may be used to isolate the changing network from other parts
of the so that the other parts do not have to be modified as the network changes.The term
transparency is used to imply that changes which occur in the network be not evident to and not
affect the users.

5.3.1 Reasons for function distribution

partl:
1. Psychologically Effective Dialogues

Local interaction.

Much of the dialogue interaction takes place locally rather than being transmitted, and hence can
be designed without concern for transmission constraints.
· Local panel storage.
Panels or graphics dısplayed as part of the dialogue can be stored locally.
· Speed

Local responses are fast. Time delays which are so frustrating in many terminal dialogues can
be largely avoided. The delays that do occur when host response is needed can be absorbed into
the dialogue structures.

76

2. Reduction of Telecommunications Costs
· Reduction of number of messages.

In many dialogues the number of messages transmitted to and fro can be reduced by an order of
magnitude because dialogue is carried on within the terminal or local controller.
· Reduction of message size.

Messages for some applications can be much shortened because repetitive information is
transmıtted.
· Reduction of number of line turnarounds.

Because the number of messages is reduced; and because a terminal cluster controller or
concentrator can combine many small messages into one block for transmission.
· Bulk transmission.

Nontime-critical items can be collected and stored for later batch transmission over a switched
connection.
· Data compaction.

There are various ways of compressing data so that fewer bits have to be transmitted. This
effectively increases the transmission speed.
· Minimum cost routing.

The machine establishing a link could attempt first to set up a minimum-cost connection, e.g.,
a corporate tie-line network. If these are busy it could try progressively more expensive
connections (e.g., WATS, direct distance dialing).
· Controlled network access.
Terminal users may be prevented from making expensive unauthorised calls. 'I'ı

3 . Reliability
· Local autonomy.

A local operation can continue, possibly in a fallback mode (using a minimal set of functions),
when the location is cut off from the host computer by a circuit, network, or host failure. On
certain systems this is vital.
· Automatic dial backup.

A machine may be able to dial a connection if a leased circuit fails.
· Automatic alternate routing.

A machine may be able to use an alternate leased circuit or network path when a network
failure occurs.
· Control procedures.

Control procedures can be used to recover from errors, os failures and to ensure that no
messages are Jost or double-processed.
· Automatic load balancing.

A machine may be able to dial an extra circuit or use a different computer to handle high
traffic peaks.
4. Less Load on Host
Parallel operations.

The parallel operation of many small processors relieves the host computer of much of its work
load, and lessens the degree of multiprogramming. In some systems this is vital because the host
is overburdened with data base operations.
Permits large numbers of terminals.
Some systems require too many terminals for it to be possible to connect them directly to a host

computer. Distributed control and operations make the system possible.

77

5. Fast Response Times
Process mechanisms.

Local controllers can read instruments rapidly and give a rapid response to process control
mechanısms when necessary.
Human mechanisms.

Fast reaction is possible to human actions such as the use of a plastic card or the drawing of a
curve with a light pen.

· Dialogue response times.

Dialogues requiring fast response times (such as multiple menu selection) can be handled by
local controllers.

6. Data Collection
· Data entry terminals.

Many inexpensive data entry terminals (for example, on a factory shop floor) can be connected
to a local controller which gatfi.ersdata for later transmıssion.
· Local error checking.

Local checks can be made on the accuracy or syntax of terminal entries. An attempt is made to
correct the entries before transmitting them to the host.
. Instrumentation.

Loca controllers scan or control instruments, gathering the result for transmission
to a host computer.

7. More Attractive Output
· Local editing. ·

Editing of output received at terminals can lay out the data attractively for printers or screen
displays, Repetitıve headings, lines, or text, and page numbers can be added locally. Multiple
editing formats can be stored ıocally.

8. Peaks
· Interactive and real-time systems often have peaks of traffic which are difficult or expensive to
accommodate without functıon distribution. Storage at the periphery allows the peak transactions
to be buffered or filed until they can be transmitted and processed economically.

9. Security
· Cryptography.

Cryptography on some systems _gives a high measure of _prqtection from wire- tapping
tamperıng wıth magnetıc-strıpe plastıc cards, etc. Cryptography ıs vıtal on certaın electronıc fund
transfer systems.
· Access control.

Security controls can prevent calls from unauthorized sources from being accepted, and
prevent terminals from contacting unauthorized machines.

1 O. Network Independence
· Network transparency.

Programmers of machines using networks should not be concerned with details of how the
network functions. They should simply pass messages to the network interface and receive
messages from it.
· Network evolution.

As networks grow and evolve, and as different networks are merged, programs in machines
using the networks should not have to be rewritten.

78

79

Probably the most important of the three categories is that associated with the end user. On
many systems built prior to the era of function distribution, the dialogue that takes place between
the terminal and its operator is technically crude. It is often difficult for the user to learn, and
clumsy and frustrating in operation. The user is forced to learn mnemonics and to remember
specific sequences in which items must be entered. The response times are often inappropriate.
The majority of the users who should be employing terminals are unable to make the machines
work, and generally discount the possibility of ever using them because they perceive them as
being difficult-designed for technicians, programmers, or a specially trained and dedicated staff.
One psychologist describes many of these user-terminal interfaces as "unfit for human
consumption."

In the past there has been good reason for the crudity of terminal dialogues. The terminals had
no intelligence. Every character typed and displayed had to be transmitted over the network. The
network often used leased voice lines serving many terminals.sand to minimize the network cost,
the number of characters transmitted was kept low. The response times were often higher than
psychologically appropriate because of the queries on the lines.

With intelligent terminals or controllers the dialogue processing can take place in the local
machine. Most of the characters are not transmitted over the telephone lines. The only characters
transmitted are those which take essential information to the central computer and carry back
essential information to the terminal. These characters will often be only a small fraction of the
total characters typed and displayed in a psychologically effective dialogue.
Much of the future growth of the computer industry is dependent on making the machines easy to
use and understand for the masses of people in all walks of life who will employ them, and
distributed intelligence can play a vital part in this.

3. Reasons associated with the end user

Mechanisms relating to the network may reside in any of the locations .A terminal or a
controller for a cluster of terminals may have mechanisms intended to minimise the transmission
cost. A front-end communications processor may relieve the host of all network functions, and
maintain network operations without loss of data if the host or its software fails. Intelligence may
also reside in midnetwork nodes such as packet-switching devices, concentrators, intelligent
ex- changes, or telephone company equipment in systems such as AT&T's ACS. The phrase
"intelligent network" is increasingly used to imply that the network itself uses computers to share
transmission links or other resources in an efficient, dependable manner.

11. Terminal Independence
· New terminals.

Terminal design is changing fast. If a new terminal is substituted, the old pro- grams should not
have to be rewrıtten. Software in terminal controllers may make the new terminals appear like theold.
· Virtual terminal features.

Application programs may be written without a detailed knowledge of the terminal that they
will use. For example, the screen size or print-line size may not be known. The programmers use
specified constraints on output, and the distributed- intelligence mechanisms map their output to
the device in question.

· New networks.
Network technology is changing fast. As af.plications are switched to new types of networks

(e.g:, DDS, value-added networks, Datadia, satellite networks), the programs in the using
machines should not have to be rewritten.

5.4 HIERARCHICAL DISTRIBUTED PROCESSING
So far this chapter has discussed function distribution in which the peripheral machines are

not self-sufficient when isolated from their host by a telecommunications or other
failure. Now let us expand the discussion to processing distribution in which the peripheral
processors keep their own data and can be self- sufficient, but which are connected to hıgher level
systems.

There is not necessarily a sharp boundary line between function distribution and system
distribution. In some cases there has tended to be growth from function distribution to system
distribution, with more and more power being demanded in peripheral machines. In other cases
the reripheral machines started as standalone minicomputers and became linked into a higher
leve system.

The application programming steps for most (but not all) commercial transactions do not
require a large computer. Small, inexpensive, mass-produced processors such as those discussed
in the previous chapter could usually handle the whole transaction. They would handle it with a
much smaller software path length than a large computer. The difference in software path length
greatly reinforces the arguments about there no longer being economies of scale. Some large
mainframes with complex data base management systems more than 100.000 software
instructions per transactıon and only a few thousand application instruction per transaction.

In some cases there criteria does not apP.lY, then the transaction reguıres centrally. In other
cases the data also can be kept in storage attached to the local machine.

As we commented earlier, criteria for determining whether a transaction ıs transmitted could
be

I .It needs the power a large computer
2.It needs data which are stored centrally

If one of these criteria does not apply, ten the transaction is processed locally. Most
commercial transaction and many scientific calculations do not need the power of a large
computer .. there are exceptions such as simulations and complex models. Many of these
exceptions would not use the teleprocessing anyway. But the second criterion-centralızed data
is important to some , but not all data. Consequently data base and data communications
techniques are closely related, end computer manufacturers produce data base data
communications (DBDC) software.

5.4.1 EXAMPLES OF HIERARCHICAL CONFIRATIONS

Some examples of hierarchical configurations as follows:

1. Insurance
The branches of an insurance company each have their own processor with a printer and

terminals. This processor handles most of the computing requirements of the branch. Details of
the insurance contracts made are sent to a head office computer for risk analysis and actuarial
calculations The head-office management has up-to-the- minute information on the company's
financial position and exposure, end can adjust the quotations given by the salesmen accordıngly

2. A chain store
Each store in a chain has a minicomputer which records sales and handles inventory control

and accounts receivable. It prints sales slips (receipts) for customers at the time of sale. Salesman
and office personnel can use the terminals to display pricing, inventory and accounts receivable
information and customer statement the store management can display salesman performance
information and goods aging and other
analysis reports.

The store systems transmit inventory and sales information to the head office system. At
night they receive inventory change information. The fast receipt of inventory and sales

80

information enables the head office system to keep the inventory of the entire organization to a
mınımum.

The store systems run unattended. Any program changes are transmitted to the systems from
the head office computer.

3. Production control

Various different production departments in a factory complex each have a minicomputer.
Work station terminals on the shop floor are connected to the minicomputer and the workers
enter details of the operations they perform. The task of scheduling the operations so as to make
the best utilisation of men and machines is done by the minicomputer. The shop foreman displays
these operations schedules and often makes changes to them because of local problems and
priorities. He frequently makes a change and instructs the machine to reperform its scheduling
program.

Details of the work to be done are made up by a higher-level computer which receives
information about sales and delivery dates, and performs a gross and net breakdown of the parts
that must be manufactured to fill the orders. The central computer passes its job requirements to
the shop floor minicomputers, and receives status reports from them.

5.4.2 PROCESS CONTROL

Hierarchies of processors were common in process control applications before ,they were
used in commercial data processing. Many instruments taking readings in an industrial or
chemical process are connected to a small reliable computer which scans the readings looking for
exceptions or analysing trends. The same computer may automatically control part of the
operation, setting switches, operating relays, regulating temperatures, adjusting values, and so on.
Response time must be fast on some process control applications. A local mini- computer is used
to ensure fast response. Increasingly today, tiny cheap microprocessors are being employed in
instruments and control mechanisms. Many such devices may be attached to a minicomputer
which stores data relating to the process being controlled.

A higher-level computer may be concerned with planning the operations, optimisation,
providing information for management control, or general data processing ..

In hospitals, the elaborate patient instrumentation used in intensive-care wards is monitored
and controlled by small, local and highly reliable computers. These in turn are linked to higher
level machines which can perform complex analyses, provide information to stations, record
patient histories, and so on.

5.4.3 CAUSALLY COUPLED?

In some configurations the design of the peripheral systems is largely independent of the
design of the higher level systems. In others the periphery and the center are so closely related
that they are really separate components of the same system.

An example of a causally coupled configuration is a corporate head-office information
system which derives its data from separate systems, separately installed in different corporate
departments. These systems transmit data at the end of the day to the control system where it is

81

edited, reformatted, and filed in a different manner to that in the peripheral systems, to serve a
different purpose. The installers of the peripheral systems designed them for their own needs and
were largely unaware of the needs of the central system.

An example of a closely coupled design is a banking system in which all customer data is
stored by a central computer. (This does not apply to all banks. Some have loosely distributed
systems.) A small computer in each branch, or group of branches, serves the processing needs of
that branch, providing the tellers and the officer with the information they need at the terminals.
Customer data is also stored in the branch computers, largely in case of a failure of the central
system or the telecommunications link to it. The peripheral files are strictly subsets of the central
file. The programs developed for the peripheral computers are compiled on the central computer,
and loaded from it into the peripheral computers. Changes in the peripheral programs are made
centrally and transmitted. Account balancing requires tight cooperation of the peripheral and
central machines.

5.4.5. MUL TiPLE LEVELS
Vertically distributed configurations many contain more than two levels of processor

The lowest level may consist of intelligent terminals for data entry, or microprocessors in a
factory, scanning instruments.

The next level may be a computer in a sales region assembling and storing data that relates to
that region, or a computer in a factory assembling the data from the microprocessors and being
used for production planning.

The third level is a conventional large computer system in the divisional head office,
performing many types of data processing and maintaining large data bases for routine
operations. This computer center receives data from the lower systems and sends instructions to
them.

The highest level is a corporate management information system, with data structured
differently from that in the systems used for routine operations. This system may be designed to
assist various types of high-management decision making. It may run complex corporate
financial models or elaborate programs to assist in optimising certain corporate operations, for
example, scheduling a tanker fleet. It receives summary data from other, lower systems.

5.4.6 REASONS FOR HIERARCHIES
Reasons for using hierarchical systems distribution are summarised in part.2 The set of

reasons should include those in part 1 on function distribution.
An important group of reasons on some configurations is related to data where it is kept and

how it is maintained. Also of great importance are arguments relating to human, political, and
organisational reasons, in addition to technical .reasons .

5.5 HORIZONTAL DISTRIBUTION

So far we have discussed vertically distributed systems. Now we will consider
horizontal distribution.

Some software, control mechanisms and system architectures are primarily oriented to
vertical distribution, and some are primarily for peer-coupled systems. A transport subsystem
which merely transmits data between computers could be designed to serve a horizontal or
vertical configuration equally well. The differences are more important in the higher-level
activities such as file management, or data base management, intelligent terminal control, data
compression, editing, man-machine dialogues, recovery, restart, and so on.

82

In reality, major differences are found in the transport subsystems also. A transport
subsystem designed for vertical distribution can have simpler flow control and routing control
mechanisms, and hence simpler recovery procedures. It may use elaborate concentrators or other
devices for maximising network utilisation, and may employ some of the function distribution
features listed the following below.

Part2 Technical reasons for using hierarchical distributedprocessing

There are also human, political, and organisational reasons which are often more important
than these technical reasons.

· Cost.
Total system cost may be lower. There is less data transmission and many functions are moved
from the host machine.
· Capacity.
The host may not be able to handle the workload without distribution. Distribution permits many
functions to be performed in parallel.
· Availability.
Fault tolerant design can be used. Critical applications continue when there has been a host or
telecommunications failure. The small perıpheral processors may be substitutable. In some
systems high reliability is vital; e.g., a supermarket system, or hospital patient monitoring.
· Response time.
Local responses to critical functions can be fast; no telecommunications delay; no scheduling
problems; instruments are scanned and controlled by a local device.
· User interface.
A better user interface can be employed, e.g., better terminal dialogue, when the user interacts
with a local machine; also better graphics or screen design; more responses, faster response time.
· Simplicity.
Separation of the peripheral functions can give a simpler, more modular system design.
· More function.
More system functions are often found because of ease of implementing them on the peripheral
machines. Salary savings often result from increased peripheral functions.
· Separate data organizations.
The data on the higher-level system may be differently organized from those on the peripheral
systems (e.g., corporate management information organized for spontaneous searching versus
local detailed operational data tıghtly organized for one application).

Part3 Reasons for horizontal computer networks

· Resource sharing.
Expensive or unique resources can be shared by a large community of users, as on ARP ANET.
· Diversity.
Users have access to many different computers, programs, and data banks.
· Transaction interchange

Transactions are passed from one system to another or from one corporation to another: e.g.
financial transactions passed between banks on SWIFT; airline reservations or messages passed
between computers in separate airlines, as on SITA.

83

· Separate systems linked.
Separate previously existing systems are linked so that one can use another's data or programs,

or to permıt users to access all of them.
· Local autonomy.

Local autonomous minicomputer systems are favored, with their own files, and some
transactions need data which reside on the file of a separate system.

· Functional separation.
Instead of one computer center performing all types of work, separate centers specialise in
different types. For example, one does large-scale scientific computation. One does ınformation
retrieval. One has a data base for certain classes of application. One does mass printing and
mailing.
· Transmission cost.
Separate systems share a common network designed to minimise the combined data (and possibly
voice) transmission cost
· Reliability and security.
When one system fails, others can process transactions. If one system is destroyed, its files can be
reconstructed on another.
· Load sharing.
Unpredictable peaks of work on one machine can be off-loaded to other machines.
· Encouragement of development.
A corporate network can permit small data processing groups to develop applications.

5.6 PATTERNS OF WORK

Because of the mechanisms built into software or systems architecture, designers sometimes
try to make all configurations vertical, or all configurations horizontal. Thıs can result in
excessive overhead, system inflexibility, or clumsy control. Whether or not a configuration
should be vertical, or horizontal, or both, depends upon the patterns of work the configuration
must accomplish and the patterns of data usage.

In designing a distributed system we are concerned with such questionş as:

Where are the units of processing work required?
· How large are these units? What size of processing machine do they need?
· Are the units independent, or does one depend on the results of another?
· What stored data do the work units employ?
· Do they share common or independent data?
· What transactions must pass between one unit and another? What are the patterns of transaction
flow?
· Must transactions pass between the units of work immediately, or is a delay acceptable?
What is the cost of delay?

The answers to these questions differ from one organisation to another. The patterns of
work are different. The patterns of information flow between work units are different. Different
types of corporations tend, therefore, to have their own natural shapes for distributed processing.
What is best for an airline is not necessarily best for an insurance company.

The nature of the work units may be such that they can be independent of one another and
have no need to know what each of the others is doing. They may be standalone units having no
communication with any other unit-possibly standalone minicomputers. On the other hand, they
may need to share common data which resides centrally. In this case there are vertical links to a

84

!,ı,
I,

I
I
I I

,I, I
•!

85

4. In a group of banks, each handles its own customers with its own data processing system. A
customer in one bank, however, can make monetary transfers to customers in other banks. A
network is set up by the banks to perform such transfers electronically. The money is moved very
rapidly and hence is available for use or interest-gathering by banks for a longer period. The use
of this "float" more than pays for the network. In this example we have a peer-coupled
configuration with need for a horizontal transfer between the work units.

!•

1. An airline reservation system requires a common pool of data on seat availability.
Geographically scattered work units use, and may update, the data in this pool. Each of them
needs data which is up-to-date second by second. This data needs to be 'kept centrally. The
bulkiest data are those relating to passengers. A passenger may telephone the aırline in cities far
apart; when he does so the agent to whom he talks must be able to access needed data. In order to
rınd the data it is easier to keep it centrally also.

2. A car rental firm may permit its customers to pick up a car at one location and leave it at
another. When the car is picked up a computer terminal prepares the contract. When the car is left
a terminal is used to check the contract and calculate the bıll. If a minicomputer at each location
performed these functions, horizontal communication would be needed between the destination
location and the location where the car was picked up. However, some centralized work is also
needed because it is necessary to keep track of the company's cars and ensure that they are
distributed appropriately for each day's crop of customers. Credit and other details about regular
customers may also be kept centrally.

The shape of the work therefore indicates both vertical and horizontal distribution.
However, because the centralised (vertical) links are needed, the customer contracts may also be
kept centrally and the same links used to access them. The rental offices may then use intelligent
terminals rather than complete minicomputers.

3. Insurance companies have offices in different locations. They keep details about customers
and their policies. An office does not normally need to share these data with another office or
pass transactions to it. The offices could therefore use standalone machines. Customers in
different locations may have different requirements. In the U.S. different states have different
insurance regulations and tax laws. The different machines may therefore be programmed
somewhat differently. The insurance company's head office, however, needs to know enough
details of all customers policies to enable it to evaluate the company's cash flow, and risks, and to
perform actuarial calculations which enable it to control the company's financial exposure.
enough data for this purpose is therefore passed upwards to the head office. This vertical
communication does not need to be real-time, as in the case of an airline reservation system. It
can be transmitted in periodic batches.

Although the pattern of the work in an insurance company is appropriate for a decentralized
system, that does not necessarily mean that a decentralized system will be the cheapest or best.
There are various arguments for centralization, among them economies of scale, centralized
control of programming, and use of data base software. A function-distribution rather than a
processing-distribution configuration is used in some insurance companies.

EXAMPLES

common data store. there may be multiple such data stores which themselves pass
information to a higher system. Alternatively the work units at one level may be such that they
need to pass information to other units at the same level. This situation may lead naturally to
horizontal communication; but it could also, if necessary, be handled vertically with a centralized
processor relaying transactions between the units.

5.7 DEGREE OF HOMOGENEITY

We may classify horizontal configurations according to the degree of homogeneity of the
systems which communicate. This affects the design, the choice of software and network
techniques and, often, the overall management.

At one extreme we have identical machines running the same application programs in the same
corporation. In other words the processing load has been split between several identical
computers. At the other extreme we have incompatible machines running entirely different
programs in different organisations, but nevertheless interconnected by a network. One of the
best known examples of this is ARPANET.

5.8 NONCOOPERATIVE SYSTEMS

We may subdivide confirations into those composed of cooperative and noncooperative
sysems. A noncooperative configuration consists of computer systems installed indepently by
different authorities with no common agency controlling their design but linked by a common
shared network.

When the networking capability becomes accepted and understood by the various system
development groups, there may be slightly less noncooperation. Developers know that a certain
data base exits on the another system.They may leran to link in terms of interchanging
data,sharing resources and estaslishing compatible transaction formats.

Because the cost and ease of networking will improve greatly in the future, some
corporations have attempted to impose certain standards on their diverse systems groups, which
will eventually make interconnections of the systems more practical or more valuable. Among
the types of standards imposed or attempted have been the following

I, Standardisation of transaction formats.
2. Standardisation of line control discipline.
3. Use of compatible computers (one large corporation decreed that all minicomputers should be
DEC machines, possibly anticipating future use of DEC's network architecture).
4. Standardisation of data field formats and use of an organisation-wide data dictionary.
5. Standardisation ofrecord or segment formats.
6. Use of a common data descriptıon language (e.g .. CODASYL DDL, or IBM's Dl/In
7. Use of a common data base management software.
8. Use of a common networking architecture.

5.9 COOPERATING SYSTEM

Cooperating systems are designed to achieve a common purpose, serve a single
organisation, or interchange data in an agreed-upon manner. We can subdivide cooperating
systems into those in which the separate systems are used by the same organisation and
those in which separate corporations are interlinked. Networks which interlink separate
corporations are found today in certain industries. In the future they may become common in
most industries to bypass the labor- intensive steps of mailing, sorting, and key-entering orders,
invoices, and other documents which pass from a computer in one organisation to a computer in
another.

Industries with intercorporate computer networks today include banking and airlines. Most
major airlines have reservation systems in which terminals over a wide geographic area are

86

connected to a central computer. Worldwide airlines have world- wide networks. Many booking
requests cannot be fulfilled completely by the airline to which they were made. The airline might
have no seats available, or the journey may necessitate flights on more than one carrier. Bookıng
messages therefore have to be passed from the computer in one airline to the computer in another1
and often the response is passed back swiftly enough to inform the booking agent who initiatea
the request at his terminaf. In order to achieve this linking of separate systems all participating
airlines must agree to a rigorously defined format for the messages passing between the airlines.
This format is standardised by an industry association, ATA ın the Unıted States and IATA
internationally. To operate the interlinking network, the air- lines set up independent nonprofit
organisations, ARINC (Aeronautical Radıo Incorporated) in the U.S., and SITA internationally
(Societe International de Telecommunications Aeronautigue). The separate airlines must sena
ATA- or !ATA-format messages using the ARINC or SITA protocols. These networks began as
networks for sending low-speed off-line teleprinter messages. As the need arose they were
upgraded to handle fast-response messages between computers as well as conventional teleprinter
traffic.

5.10 SYSTEMS UNDER ONE MANAGEMENT

Much of the use of distributed computing is within one corporation under one management.
This could result in a compatible configuration using a common networking architecture. Often,
however, the systems to be linked were installed separately in separate locations without any
thought about eventual interconnection. The files or data bases are incompatible; the same data
field is formatted differently in different systems; programs cannot be moved from one computer
to another without rewriting; where teleprocessing is used the terminals are incompatible; and
even the line control procedures are different so the terminals cannot be changed without a major
upheaval in the systems they are connected to. In this environment a major reprogramming and
redesign effort is needed before networking becomes of much value, and often this effort is too
expensive.

It is necessary that systems in different functional areas of a corporation be developed by
different groups.Corporate data processing is much too complex for one group to develop more
than a portion of it.The current trend to to decentralization is resulting in more 'and more
autonomous groups earring out application development.This a valuable trend because it results
in more people involved in application development,and the development being done locally
where the application problem are understood.

5.11 INTERFACES

In order to make computer networking of value, it is desirable that the interfaces between the
separately developed systems be rigorously defined and adhered to. If the interfaces are
preserved, each development group can work autonomously. There are several levels of interface:

I. Interface to the transport subsystem which permits blocks qf data to be moved between distant
machines. This interface can be defined independently of the application or the firms which use
the network.

2. Interfaces for the software services which are external to the transport subsystem but not part
of the application programs; for example software for remote file access, compaction, con
version, cryptography, setting up sessions, editing messages, and so on.

3. Applications interfaces defining what transaction types are interchanged between different
application systems. These can be defined independently of the choice of networking software or
hardware.

87

Interface 1, is provided by some common carrier systems for computer networking (the
CCITT X.25 standard, for example). Interfaces 1 and 2 are provided by some of the
manufacturers' protocols for computer networks and distributed processing (for example IBM's
and DEC's architectures for networks). Interface 3, is usually up to the systems analysts. A
typiçal transaction would be given a rigorously defined format. When they are transmitted
between machines, data would be in the format with additional headers and a trailer prescribed by
interfaces 1 and 2.

As changing costs take the computer industry increasingly toward distributed processing, one
highly desirable characteristic is portability of programs. Programs should be capable of being
moved from one processor to another and gaining access to distributed data instead of centralised
data. There are arguments for, and against, distributed processing, and there are many possible
distributed configurations. It is advantageous for a manufacturer's product lines to possess the
flexibility to change system configurations without the need to rewrite programs.

The interfaces and protocols that are desirable for distributed processing make the software
complex, as we shall see. Furthermore there are so many different configurations, functions,
machines, operating systems, access methods and data base management systems that need to be
supported that it will be years before the software for distributed systems can do everything that
is theoretically desirable. New machines, operating systems, and other software will increasingly
be designed to plug into the rigorously defined architectures for distributed systems.

Computer networks and distributed processing are a vitally important and fundamental step
in the growth of the computing and telecommunications industries. There is a long road ahead,
and the journey will take years to come.

88

CONCLUSION

The brief survey of trends in applications, computer architecture, and networking
suggests a future in which parallelism pervades not only supercomputers but also
workstations, personal computers, and networks. In this future, programs will be
required to exploit the multiple processors located inside each computer and the
additional processors available across a network. Because most existing algorithms
are specialized for a single processor, this situation implies a need for new algorithms
and program structures able to perform many operations at once. Concurrency
becomes a fundamental requirement for algorithms and programs.

This survey also suggests a second fundamental lesson. It appears likely that
processor counts will continue to increase perhaps, as they do in some environments
at present, by doubling each year or two. Hence, software systems can be expected to
experience substantial increases in processor count over their lifetime. In this
environment, scalability resilience to increasing processor counts is as important as
portability for protecting software investments. A program able to use only a fixed
number of processors is a bad program, as is a program able to execute on only a
single computer. Scalability is a major theme that will be stressed throughout this
book.

Computers capable of executing several instructions or processing several data
items simultaneously are referred to as parallel. Parallism can be achived by using
multiple copies of a processor such as an ALU or CPU, or by designing the system in
the form of a multistage pipeline, or by a combination of these approaches. The
motivations for parallel processing are to increase throughput beyond what is possible
with sequential computers and also, in some instances, to enhance flexibility and
reliability.

The performance of a parallel processor is difficult to analyze since it depends,
often in compex ways,. on system architeture and program organisation. A sipmle
numerical measure of performance is the speed up, defined as the ratio of the
execution time of a particular task on a system whose degree of parallelism is one.

A single computer system containig more than one CPU is called a
multiprocessor. A multiprocessor has higher potential troughput and reliability than
the corresponding uniprocessor. Multiprocessors are distinguished by the way the
processors communicate with one other. This communication may be tightly coupled
via shared memory, or loosely coupled via messages transmitted between the
processors IO subsystems. Multiprocessors also have special programming
requirements to permit a programmer to indicate groups of instructions that can be
executed in parallel, and to specify communication between loosely coupled
processors. It is generally difficult to redesign (parallelize) sequential code to run
efficiency on a multiprocessor.

Multiprocessors have been designed around a variety of interconnection
networks, of which the (multiple) shared bus is perhaps the easiest to implement, and
therefore the most common for smaller multiprocessors. Recent advances in VLSI
technology have made it feasible to construct massively parallel distributed-memory
machines based on such interconnection structures as (statis) meshes, trees, and
hybercubes. These machines exhibit various tradeoffs between processor troughput,

89

06

·su'a!s;;ıp U! s;;ımıu;;ıJ ıu;;ı!:::ıypu!
10 ;;ı1qu1u:::ısuou ıq'a!Jq'a!q oı p;;ıpu;;ııu! cm suousonb 1uw10JU! ;;ıs;;ıqı ·pgdopA;;ıp ;;ı1u A:;;ıqı
SB SU'a!sgp ;;ııunJBA;;J ot pgsn gq UBJ ıuqı SJSJPf_:JJlp u27sap pcptxoıd OSJB ;;JABq dftl

·A:ı!1unb 'au!dduw gA01dw! oı
pgsn ;;ıq trao sonbnrqooı 'aunnpgq:::ıs)[SBl 10 'au!:::ıuu1uq puoı ·gwq uo!ın:::ı;;ıxg 1-uıoı
'au!Z!lli!U!lli JO JBO'a ;;ıqı ql!M A:nu:::ı!dA:ı 'sıosscoord oı S)[SBl dtnu ;;JM 'A:nuu!.:I ·17

·;;ı1q!ssod J! Al!Eq!xgg 'au!U!BlU!Blli gpqM 'sısoo
ıuouıdojcxop puu uonaonmuıuroo gsu;;ıD;;ıp ot uo7ıv.,ı_auıoz22v osn gM 'ugqı ·s

·sgmpmıs uoneonmuıuıoo
snouorqou/se puu snouorqou/s puu 'pormoruısım puu p;;ımpmıs
'onırau/p puu oıraıs 'JBqo1'a puu 1u:::ıo1 u;;ı;;ıMıgq qs!n'aU!lS!P trno ;;ıNı,._ 'uotınoaxa
)[SBl JOJ pcnnbcr BlBP U!uıqo oı pormbaı uoııooıunıaıuoo gqı gz!uufüo gM 'ıxgN ·z:

-sonbnrqooı
uoutsoduıooop JBUO!PUTIJ 10 _ U!Blliüp roquo 'aU!Sn ,{q p;;ıAg!lPB oq UBJ
'aU!UO!l!µBd S!qı "S)[SBl 10 'soootd nuws AUBUJ Olli! uıojqoıd B UOJJJJJ.Ddıs1y dftl . I

:SMOHOJ
SB poooord puu UO!lBJypgds uıojqoıd B ql!M ırms dM q:::ı!qM U! U'a!sgp wqıpo'aJB
pnBrnd oı qonorddu doıs-rnoj B p;;ıqp:::ısgp gAuq gM 'roıdeıp puo:::ıgs gqı ur

·swu1'a01d pnu1ud JO uotıonrısuoo rn1npow gqı JOJ S!SBq u 'aU!P!AOJd A:q puu 'uorqsej
ıtrapuodapın-aurqoauı u U! uoueotunuıuıoo puu 'A:ıqu:::ıoı ',{::,ug11n:::ıuoJ moqn)[lBl oı
sn MOHB ıuqı SUO!PBllSqB 'aU!P!AOJd ,{q s1;;ıındUJOJ!lJTIUl JO 'aU!UllliBl'aOJd ;;ıqı sgy!Jdlli!S
szauuvıp puu s11svı uo p;;ısuq [opour 'au!wwu1'ao1d v ·swu1'a01d ı;;ınurnd gıquµod
puB ;;ı1qu1u:::ıs JO u'a!sgp gqı JOJ S!suq u sopıxoıd ıuqı ppow gu!q:::ıuw J!lS!JBgJ puu g1dw!s
B S! ıı ·)[10Mı;;ıu uouoctruoorcıut tm A:q paioouuoo sıoınduıoo tnmumcjq uox crouı
10 ouo JO SlS!SUOJ .csmduıooııınıa gqı ·uo!ıuıugnı;;ı1dw! puu 'S!SAJBUB 'U'a!sgp UJql!lO'aJB
pnu1ud JO uo!SSTIJS!P ıuonbcsqns U! posn gq TEM rcıdaqo s!ql U! paonporıut ppow
'au!wwu1'a01d puuBq:::ıpysuı ;;ıqı puB ppow ;;ıu!q:::ıBw pnurnd roınduıooujnuı =ıı

·;§u!ındwo:::ı 1-u!ıu;;ınbgs SB 1PM su 'au!ındwo:::ı
pnurnd u! ''au!1;;ı;;ıu!'aug ;;ı1BM:JJOS JO ıoodsa JBpu;;ıssg ue S! sıuouoduıoo rojduıts
oıut sg!pıu;;ı xojduıoo JO uoursoduroocp gqı NJJ.DJnpoJıV ·s;;ımpgı!q:::ırn roınduıoonjnuı
uo gJUBUllOJJ;;ld q'a!q oı A;;l)[;;ıqı S! S!qı '.(uopBJ!UTIUllliOJ) scssoooe Al0Uldlli
cıouıaı oı sosscooa A:10nıgnı 1u:::ıo1 JO otrnı q'a!q u sıraouı NJJD:>07 -sıucuruonxus
ısouı U! MOJ'a oı AJd)[!l reodde sıımoo rosscoord SB 'ıuaııodun A:nunb;;ı S! pun sıtmoo
rossooord 'au!sug1:::ıu! oı ;;ı::,u;;ı!psg1 soınorput NJJJqDJD:JS -sıosscoord A:uuw uo omooxo
oı S! uraıfiord u J! JB!ıu;;ıss;;ı S! s!ql '.A:1sno;;ıuuı1nw!s suonoe A:uuw uııojrcd oı Al!J!qu ;;ıqı
oı s1gp1 rC:>ua.J.J.n:>uo:J ·A:ıpu1npow puu 'Al!JBJOJ 'A:ımquJBJS 'A::::ım11n:::ıuo:::ı :;;ırnMyos pun
swqı!1o'a1u pnurnd JO soınqtrua g1qu1!s;;ıp moJ pg:::ınpo1ıu! suq roıdeqo ıs1y ;;ıqı

·1!-udg1 puu gmpBJ oı somu uacuı Sl! puu 'Al!J!qBpBAB Sl! 'Al!J!qB!Pl
Sl! A:q pamsaouı ;;ıq uno ıınuJ JO gg1'agp sroınduıoo v ·wgısA:s xojdnp B 'ooumesut
JOJ 'su p;;ııu:::ındnp ısu;;ıı ıu gq gmpBJ ot ioofns sıuouoduıoo gqı lBqı sormbor qoeordds
:::l!UlBUAp S!qı "UO!lBJ;;ıdo ggJJ-lITIBJ JBUJJOU oı w;;ııs,{sgqı 'aupoısgJ A:q A]gı\QJgJ cprutısm
oı puu 'rmdcr 10 uouamfiuuoocr A:q uıoısxs gqı WOJJ w;;ıqı;;ııuu!lli!P oı 'sıınuJ sousarp
puu p;;ıı;;ıp oı sgmp:::ıuJ 'aU!P!AOJd A:q poımnqo ;;ıq soıu ABW cotrarojoı ıınud ·sıınuJ
JO couosaıd ;;ıqı U! SJBU'a!S ıocıroo ;;ıqı oınuııaıap oı Sl!TI:::ll!J J;;llOı\ ql!M 'aUOJB 'ıuasard
am ıuouoduıoo B JO sotdoo u q:::ı!qM U! (l!wu) A::::ıuupunpg1 rn1npow-u srqı JO g1dnıBx;;ı
uv · D.d::) ;;ıqı ;;ı)[!l sıucuoduıoo ;;ı1BMp1uq (pıotıuo) JO sotdoo ojdnpıuı JO couosaıd gqı su
tpns ,{::,uupunp;;ı1 JO UllOJ ;;JUJOS ,{q pgA!q:::ıu S! 1-uo'a S!qı ·g::,um;;ııoı lJTIBJ Sl! 'aU!SBgJJU!
JO JBO'a AJBUl!ld gql ql!M UJglSAS B U! gpnpu! ugyo gJB SJOssg::,01d gJd!llTIJı'J

·A:nug!JYP sormonns UO!P;;JUUOJJglU! Jgqıo oıamuns oı A:ımqu J!gqı ,{q
p;;ıs!JgpgrnqJ gq OSJB UBJ ,{gqı ·A:ı!xgdnıo:::ı 'aU!UllliBJ'aOJd pıra 'SABJdP uoqBJ!UTIUJUJOJ

Successful application of this design methodology, produces one or more parallel
algorithms that balance in an appropriate fashion the potentially conflicting
requirements for concurrency, scalability, and locality. The next stage in the design
process is to consider how such algorithms fit into the larger context of a complete
program.

It was shown how the Branch-and-Bound paradigm may be expressed formally
and have shown several ways in which Branch-and-Bound algorithms can be
implemented on a parallel machine. As it was dicussed anomalies in both speed up
and efficiency and have shown that both of these do occur in real problems. Results
from further experiments have shown the overheads of sychronisation and the dangers
of not following the priority function closely.

In the fourth chapter the basic concepts of distributed processing have been
explored. Six models for structuring a distributed system were identified: master
slave, client/server, peer-to-peer, group, multimedia stream and the distributed object
model. The issues of identifying processes, remote IFC, process synchronization and
remote operations are all fundamental to the successful implementation of a DIS. The
message passing and RPC mechanisms provide the basic techniques for implementing
a distributed system according to a specific model (e.g. the' client/server model). The
distributed object model provides an alternative paradigm for designing and
implementing distributed systems. An object is a natural unit of distribution.
Implementing a DIS using these mechanisms, however, is very challenging for an
application developer. In practice much of the requirements can be specified in an
interface definition language from which much of the required program code can be
generated automatically by pre-processors much in the same way as visual
programming environments which are available for more conventional environments.
Message passing and RPC remain the most common underlying (low-level)
mechanisms for sup- porting inter-process and inter object interactions.

İn this project have described the main driving forces responsible for the evolution
of distributed information systems implemented over a distributed IT infrastructure.
The main challenge to organizations is how to utilize this new approach to build
systems which deploy informaton technology mpore effectively to support operational
and strategic business goals,and provides a more formal definition of a DIS and
underlying distributed IT infrasucture

Distributing data introduces a number of new complex problems such as
distributed transaction recovery, distributed query processing and the need to hide
complexity from the users.and this project identified the characteristic of distributed
information system, distributed IT infrastructures .The notion of a DIS as an
information system with distributed components leads,to the identification of several
key distributed services.

91

REFERENCES

BOOKS

Advances in Parallel Algorithms : Lydia KRONJO,Dean SHUMSHER.

Computer Architecture and Organisation : John P.HAYES.

Distributed Systems - Software Design and Implementation : Albert
FEISCHMANN.

Computer Networks and Distributed Processing Sames MARTIN.

Distributed Information Systems : Errol SIMON.

Principles of Distributed Systems : M. Tamer OZTURKI Patrick
VALDURIES.

WEB PAGES

http://www.ieee.org.

http://www.cs.reading.ac.uk.

http://ptools.org.

92

	Page 1
	Titles
	NEAR EAST UNIVERSITY

	Images
	Image 1

	Page 1
	Titles
	ACKNOWLEDGEMENT

	Page 2
	Titles
	ABSTRACT

	Page 3
	Titles
	TABLE OF CONTENTS

	Page 4
	Page 5
	Page 6
	Titles
	INTRODUCTION

	Page 7
	Page 8
	Titles
	CHAPTER!
	1.1 Parallelism and Computing
	1.1.1 Trends in Applications

	Images
	Image 1

	Page 9
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 10
	Titles
	1.1.2 Trends in Computer Design
	1.1.3 Trends in Networking

	Page 11
	Titles
	John
	I J 26 I
	CPU
	1.2.1 The Multicomputer

	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Titles
	u

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	o
	o
	•
	Example]. 1 Bridge Construction:

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 17
	Titles
	(b)

	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Titles
	1.3.2 Other Programming Models

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Titles
	1.4.1 Search

	Images
	Image 1

	Page 20
	Titles
	1.4.2 Parameter Study

	Images
	Image 1

	Page 21
	Images
	Image 1
	Image 2

	Page 22
	Titles
	... 1 Methodical Design

	Images
	Image 1
	Image 2
	Image 3

	Page 1
	Titles
	PROBLEM

	Images
	Image 1

	Page 2
	Titles
	Partitioning
	2.2.1 Domain Decomposition

	Page 3
	Titles
	1-D
	2-D
	3-D
	2.2.2 Functional Decomposition

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	2.2.3 Partitioning Design Checklist

	Images
	Image 1

	Page 5
	Titles
	2.3 Communication

	Page 6
	Titles
	2.3.1 Local Communication
	2.3.2 Global Communication
	®
	.:

	Images
	Image 1
	Image 2

	Page 7
	Titles
	2.3.3 Unstructured and Dynamic Communication
	2.3.4 Asynchronous Communication

	Images
	Image 1
	Image 2

	Page 8
	Titles
	@
	2.4 Agglomeration

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 9
	Titles
	(a)
	(b)
	•
	(c)
	(d)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 10
	Titles
	2.4.1 Increasing Granularity

	Page 1
	Titles
	(a)
	(b)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1
	Image 2

	Page 4
	Titles
	2.4.2 Preserving Flexibility

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 5
	Titles
	2.4.3 Reducing Software Engineering Costs
	2.4.4 Agglomeration Design Checklist

	Images
	Image 1

	Page 6
	Titles
	-·5 Mapping

	Page 7
	Titles
	. ..,..
	.
	.
	·-- -·-- ---t·---~·-t··1···-t·-·1··--~-·i··- ·-· ··-·t··- --·
	2.5.1. Load-Balancing Algorithms

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 8
	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Titles
	manager

	Images
	Image 1
	Image 2

	Page 1
	Page 2
	Titles
	CHAPTER3
	Parallel Branch-and-Bound
	. General Overview
	. 2. An Informal Description

	Page 3
	Titles
	3.3 The 0/1 Knapsack Problem
	3.3.1 An Example

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	3.4 Parallel Branch-and-Bound

	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	3.4.3 Parallelisation of Branch-and-Bound Algorithms

	Page 6
	Page 7
	Titles
	3.5 Architectures for Branch-and-Bound

	Images
	Image 1

	Page 8
	Titles
	3.5.1 The MANIP Architecture
	3.5.2 MIMD Approaches

	Images
	Image 1

	Page 9
	Page 10
	Titles
	3.6 Parallel Implementations
	3.6.1 Pardalos and Rodgers
	ıı

	Images
	Image 1
	Image 2

	Page 1
	Titles
	3.6.2 Clausen and Traff
	3.6.3 Quinn
	.,

	Page 2
	Titles
	3.6.4 McKeown et al.

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Tables
	Table 1

	Page 6
	Tables
	Table 1
	Table 2
	Table 3

	Page 7
	Tables
	Table 1
	Table 2

	Page 8
	Tables
	Table 1
	Table 2

	Page 9
	Titles
	Chapter 4
	4 .1 PROCESSES AND THREADS

	Page 10
	Titles
	4.2 SYNCHRONIZATION OF CO-OPERATING PROCESSES

	Page 11
	Page 12
	Titles
	4.3 INTER-PROCESS COMMUNICATION

	Images
	Image 1

	Page 13
	Titles
	4.4 STRUCTURING A DISTRIBUTED SYSTEM
	4.4.1 The master slave model
	4.4.2 The client/server model

	Page 14
	Titles
	4.4.3 The group model

	Page 15
	Titles
	4.4.4 The distributed object model

	Page 16
	Titles
	4.4.5 The multimedia stream model

	Images
	Image 1

	Page 1
	Titles
	4.5 REMOTE IPC
	4.5.1 Binding

	Page 2
	Titles
	4.5.2 Connectionless and connection-oriented communication

	Page 3
	Titles
	4.5.3 Synchronization
	4.6 REMOTE IPC: MESSAGE PASSING
	·67

	Images
	Image 1

	Page 4
	Titles
	4.7 REMOTE IPC THE REMOTE PROCEDURE CALL

	Images
	Image 1

	Page 5
	Titles
	4.7.1 RPC exceptions
	4. 7.2 Failure handling

	Images
	Image 1

	Page 6
	Titles
	4. 7.3 Execution semantics

	Page 7
	Titles
	4.8 ADVANTAGES OF DISTRIBUTED SYSTEM
	4.9 DISADVANTAGE DISTRIBUTED SYSTEM

	Page 8
	Page 9
	Titles
	CHAPTERS
	TYPES OF DISTRIBUTED SYSTEMS

	Images
	Image 1

	Page 10
	Titles
	5.2 FUNCTION DISTRIBUTION
	·~

	Page 11
	Titles
	5.2.1 CHOICE OF FUNCTION LOCATION

	Page 12
	Titles
	5.3 REASONS FOR FUNCTION
	5.3.1 Reasons for function distribution

	Page 13
	Page 14
	Titles
	78

	Page 15
	Page 16
	Titles
	5.4 HIERARCHICAL DISTRIBUTED PROCESSING

	Page 17
	Page 18
	Titles
	5.5 HORIZONTAL DISTRIBUTION

	Page 19
	Page 20
	Titles
	5.6 PATTERNS OF WORK

	Page 21
	Page 22
	Titles
	5.7 DEGREE OF HOMOGENEITY
	5.8 NONCOOPERATIVE SYSTEMS
	5.9 COOPERATING SYSTEM

	Images
	Image 1

	Page 23
	Titles
	5.11 INTERFACES

	Images
	Image 1

	Page 24
	Page 25
	Titles
	CONCLUSION

	Page 26
	Page 27
	Page 28
	Titles
	REFERENCES
	BOOKS
	WEB PAGES

