
- - - ---··-- - . - - ·---- . =--·-----

Near East University

Faculty of Engineering

Department of Computer Engineering

Air Ticket Reservation System

Graduation Project
COM-400

Student: Abdul Manan Qureshi{980859)

Supervisor: Mr. Umit llhan

Nicosia - 2002

.•

---·-

Acknowledgments

First of all the author would like to thank the Almighty for giving him this chance
at higher education and giving him a chance to put his constructive abilities to
work.
Second, the author would like to thank his advisor without whom this project
couldn't have gone forward and whose valuable advice kept the project on track ,
and on time.
Third of all, the author wishes to thank his parents for their unwavering support
and love that saw him through, even in the most difficult of times. They have spent
their lifetime working hard to ensure a bright future, may God give the author the
ability never to let them down and to be of service to parents, Religion and
Country.

Abstract

This project basically deals with the construction of a program that handles
reservations for a Air ticketing System. This system would accept search patterns
from the user and would plough through its databases to manipulate what is
required from it to fulfill the user's request.

This report has been split up into three parts, the first part deals with the
history of the coding language in which the program is written and then a brief
introduction as to what the VCl language stands for and its properties and its
relational importance in this project. The third part deals with the project source
code it self, starting of from the peripherals and then going on to step by step
analysis of the code functionality.

It has been the author's utmost wish to keep the report simple and to reduce
the complexity as much as possible. The report ends with a conclusion,
summarizing the insight; and technical enhancements gained by the author as a
result of this project.

ii

Table of Contents

NAME PAGE#

ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION

l

n
Ill

IV

CHAPTER ONE: LITERATURE RESEARCH
1.1.Introduction to Delphi™ 02
1.2.Introduction to OOP 02

1.2.1. Components of OOP 03
1.2.2. Program Structure and Syntax 05
1.2.3. The Program Heading 06
1.2.4. The program Uses clause 06
1.2.5. The block 06
1.2.6. Fundamental Syntactic Elements 06

1.2.6.1. Special Symbols 07
1.2.6.2. Identifiers 07
1.2.6.3. Qualified Identifiers 07
1.2.6.4. Directives 08
1.2.6.5. Numerals 08
1.2.6.6. Labels 09
1.2.6. 7. Character strings 09

1.2. 7. Components and compiler directives l 0
1.2. 7 .1. Operators 10
1.2.7.2. Boolean Operators 11
1.2.7.3. Complete vs. Shortcut

Boolean evaluation 11
1.2. 7.4. Logic (Bitwise) Operators 12
1.2.7.5. String Operators 12
1.2.7.6. Pointer Operators 13

1.2.8. Libraries and packages 13
1.2.8.1. Calling Dynamically

Loadable Libraries 13
1.2.8.2. Static Loading 14
1.2.8.3. Dynamic Loading 14

iii

1.2.8.4. Writing Dynamically
loadable Libraries

1.2.8.5. The Exports Clause
1.2.8.6. Library Initialization Code
1.2.8.7. Global variables in a library
1.2.8.8. Libraries and System vars.
1.2.8.9. Exceptions and runtime

errors in Libraries
1.3.Devaloping applications Using Delphi

1.3 .1. Designing applications
1.3.2. Devaloping applications
1.3 .3. Creating projects
1.3 .4. Editing Code
1.3.5. Compiling Applications
1.3.6. Debugging applications
1.3.7. Deploying applications

15
16
17
18
18
18

19
20
20
20
21
21
22
22

CHAPTER TWO: PROGRAM LOGIC VISUALIZATION
2.1 .Introduction to the problem 23
2.2.Databases 23

2.2.L detailed Account of Eac DB 24
2.2.1.1.1. Aircraft.db 24
2.2.1.1.2. Airlines.db 25
2.2.1.1.3. Class.db 25
2.2.1.1.4. Cost.db 26
2.2.1.1.5. Cust.db 27
2.2.1.1.6. Flights.db 27
2.2.1.1. 7. Reservation.db 27
2.2.1.1.8. Routes.db 28
2.2.1.1.9. Seats.db 28

2.2.2. Inter-Table Connections nad relationships 29
2.2.2.1. In-depth look 30

CHAPTER THREE: SOFTWARE STRUCTURE AND DETAIL
3.1.Forms and units 33
3.2.Flow of control 40

CONCLUSION 53
REFERENCES 54

iv

- --· - ---~--~------~

Introduction

First of all an air ticket reservation system, is a very complex and highly
connected software system to construct, as it takes into account many different
factors that affect the outcome of the result.

It consists of many layers of cod, logic, and structural design,
necessary to ensure a smooth functionality status. Implementation of such a
program in different coding languages surely will result in a different outlook for
the program.

The author developed the program using the Delphi 6.0 coding
language. Delphi 6.0 is actually a RAD tool that consists of a package of software
that enables a developer to base his code easily and on a multiplatform basis. Main
examples of, such a system are KYLIX TM . KYLIX TM is a software platform that
allows the code to manipulated in such a way that it can perform optimally in
different OS environments.

The author developed the program using Windows based version.
Hence negating the need here to farther explain the usage of the properties of
KYLIX ™, but for the readers own good, a brief decryption of the Delphi 6.0,
VCL and other topics crucial to understanding the core of the program are
explained in the opening chapter.

The first chapter of this report deals with the brief history,
understand and the implementation of VCL in modern day programming. It
explains the different terms and terminology used in Delphi and its inherent use in
developing software packages

The second chapter deals with logic of the programming of the
system. During the quest for a solution for a particular system, the main thing to
be given special focus to is the logic of the program, or the solution. The logic is
the core, the design part is just cosmetics. Because if the logic of the program
tackles the problem efficiently then the rest is downhill from there. So in this
chapter, a detailed look at the logic of the system has been discussed and with the
aid of visual examples, an attempt has been made by the author to make the logic
easily understandable.

The third and the last chapter deals with the design phase of the code. As is
the case of every software, user friendliness and ease of use make for efficient use
of time and energy. In this last chapter, the coding of the program is discussed in
detail and with the help of screenshots and coded examples , the author has
attempted to explain the design phase of the code.

The project ends with a conclusion highlights the significant gain in
programming hours and experienced that the author has gained during the
preparation of this program and its productivity for the author.

V

Chapter 1

Literature research

1. 1 Introduction to Delphi™

Delphi is an object-oriented, visual programming environment for rapid
application development (RAD). Using Delphi, you can create highly efficient
applications for Microsoft Windows 2000, Windows 98, and Windows NT with a
minimum of manual coding. Delphi also provides a simple cross-platform
solution when used in conjunction with Kylix, Borland's RAD tool for Linux.
Delphi provides all the tools one needs to develop, test, and deploy applications,
including a large library of reusable components, a suite of design tools,
application and form templates, and

programming wizards.

Delphi is basically OOP version of the 70s PASCAL programming
language, henceforth before delving into further detail a explanation OOP is
required and is presented below

1.2 Introduction to OOP
Most modem programming languages support object-on ented

programming (OOP).languages are based on three fundamental concepts:
encapsulation (usually implemented with classes), inheritance, and
polymorphism (or late binding).

You can write Delphi applications even without knowing the details of
Object Pascal. As you create a new form, add new components, and handle
events, Delphi prepares most of the related code for you automatically. But
knowing the details of the language and its implementation will help you to
understand precisely what Delphi is doing and to master the language
completely.

A single chapter doesn't allow space for a full introduction to the
principles of object-oriented programming and the Object Pascal language.
Instead, I will outline the key OOP features of the language and show how they
relate to everyday Delphi programming. Even if you don't have a precise
knowledge of OOP,'the chapter will introduce each of the key concepts so that
you won't need to refer to other sources.

The Object Pascal language used by Delphi is an OOP extension of the
classic Pascal language, which Borland pushed forward for many years with its
Turbo Pascal compilers. The syntax of the Pascal language is known to be quite
verbose and more readable than, for example, the C language. Its OOP extension
follows the same approach, delivering the same power of the recent breed of
OOP languages, from Java to C#.

Page# 1

In this chapter, I'll discuss only the object-oriented extensions of the
Pascal language available in Delphi. However, I'll highlight recent additions
Borland has done to the core language. These features have been introduced in
Delphi 6 and are, at least partially, related to the Linux version of Delphi.

New Pascal features include the $IF and $ELSEIF directives for
conditional compilation, the $WARN and $MESSAGE directives, and the
platform, library, and deprecated hint directives. These topics are discussedln the
following sections. Changes to the assembler (with new directives, support for
MMX and Pentium Pro instructions, and many more features) are really beyond
the scope of this book.

Other relatively minor changes in the language include a change in the
default value for the $WRITEABLECONST compiler switch, which is now
disabled. This option allows programs to modify the value of typed constants and
should generally be left disabled, using variables instead of constants for
modifrable values. Another change is the support for the lnt64 data type in
variants. Finally, you can assign specific values to the elements of an
enumeration (as in the CIC++ language), instead of using the default sequence of
values.

1.2. l Program Organization
Programs are usually divided into source-code modules called

units. Each program begins with a heading, which specifies a name for the
program. The heading is followed by an optional uses clause, then a block of
declarations and statements. The uses clause lists units that are linked into the
program; these units, which can be shared by different programs, often have uses
clauses of their own.

The uses clause provides the compiler with information about
dependencies among modules. Because this information is stored in the modules
themselves, Object Pascal programs do not require makefiles, header files, or
preprocessor "include" directives. (The Project Manager generates a makefile
each time a project is loaded in the IDE, but saves these files only for project
groups that include more than one project.)
1.2, 1 Components of OOP

The compiler expects to find Pascal source code in files of three kinds:

unit source files (which end with the .pas extension)
project files (which end with the .dpr extension)
package source files (which end with the .dpk extension)

Unit source files contain most of the code in an application. Each
application has a single project file and several unit files; the project file-which
corresponds to the "main" program file in traditional Pascal-organizes the unit
files into an application. Borland development tools automatically maintain a
project file for each application.

Page# 2

If you are compiling a program from the command line, you can put all
your source code into unit (.pas) files. But if you use the IDE to build your
application, you must have a project (.dpr) file.

Package source files are similar to project files, but they are used to
construct special dynamically linkable libraries called packages.

In addition to source-code modules, Borland products use several non
Pascal files to build applications. These files are maintained automatically and
include

form files, which end with the .dfm (Delphi) or .xfm (Kylix) extension,
resource files, which end with the .res extension, and
project options files, which end with the .dof (Delphi) or .kof

(Kylix) extension.

A form file is either a text file or a compiled resource file that can contain
bitmaps, strings, and so forth. Each form file represents a single form, which
usually corresponds to a window or dialog box in an application. The IDE allows
you to view and edit form files as text, and to save form files as either text or
binary. Although the default behavior is to save form files as text, they are
usually not edited manually; it is more common to use Borland's visual design
tools for this purpose. Each project has at least one form, and each form has an
associated unit (.pas) file that, by default, has the same name as the form file.

In addition to form files, each project uses a resource (.res) file to hold the
bitmap for the application's icon. By default, this file has the same name as the
project (.dpr) file. To change an application's icon, use the Project Options
dialog.

A project options (.dof or .kof) file contains compiler and linker settings,
search directories, version information, and so forth. Each project has an
associated project options file with the same name as the project (.dpr) file.
Usually, the options in this file are set from Project Options dialog.

Various tools in the IDE store data in files of other types. Desktop settings
(.dsk or .desk) files contain information about the arrangement of windows and
other configuration options; desktop settings can be project-specific or
environment-wide. These files have no direct effect on compilation.

Figure 1.2.2.a shows a simple program generated in Delphi, explicitly
showing the tyes of files generated wghen yyusin OOP . i.e. DELPHI 6.0

Page# 3

Modified:
6/7/02 3:57 AM

Size: 188 bytes

figure 1.2.1.a
A figure showing a simple program when saved to a folder, generates the

files necessary to continue functionality.

1.2.2 Program structure and syntax
A program contains
• a pro gram heading,
• a uses clause (optional), and
• a block of declarations and statements.
The program heading specifies a name for the program. The uses clause

lists units
used by the program. The block contains declarations and statements that

are
executed when the program runs. The IDE expects to find these three

elements in a
single project (.dpr) file.
The example below shows the project file for a program called Editor.
1 program Editor;
2
3 uses
4 Forms, { change to QForms in Linux}
5 REAbout in 'REAbout.pas' {AboutBox},
6 REMain in 'REMain.pas' {MainForm};
7
8 {$R *.res}
9
10 begin
11 Application.Title:= 'Text Editor';
12 Application.CreateForm(TMainForm, MainForm);

Page# 4

13 Application.Run;
14 end.
Line 1 contains the program heading. The uses clause is on lines 3 through

6. Line 8 is
a compiler directive that links the project's resource file into the program.

Lines 10 through 14 contain the block of statements that are executed when the
program runs.

Finally, the project file, like all source files, ends with a period.
This is, in fact, a fairly typical project file. Project files are usually short,

since most ofa program's logic resides in its unit files. Project files are generated
and maintained automatically, and it is seldom necessary to edit them manually.

1.2,3The program heading
The pro gram heading specifies the pro gram's name. It consists of the

reserved word program, followed by a valid identifier, followed by a semicolon.
The identifier must match the project file name. In the example above, since the
program is called Editor,the project file should be called EDITOR.dpr.

In standard Pascal, a program heading can include parameters after the
program

name:
program Calc(input, output);
Borland's Object Pascal compiler ignores these parameters.

1.2.4.The program uses clause
The uses clause lists units that are incorporated into the program. These

units may in turn have uses clauses of their own. For more information about the
uses clause.
1.2.5. The block

The block contains a simple or structured statement that is executed when
the program runs. In most programs, the block consists of a compound
statement-bracketed between the reserved words begin and end-whose
component Object Pascal uses the ASCII character set, including the letters A
through Z and a through z, the digits O through 9, and other standard characters.
It is not casesensitive.

The space character (ASCII 32) and the control characters (ASCII 0
through 31-including ASCII 13, the return or end-of-line character) are called
blanks. Fundamental syntactic elements, called tokens, combine to form
expressions, declarations, and statements. A statement describes an algorithmic
action that can be executed within a program. An expression is a syntactic unit
that occurs within a statement and denotes a value. A declaration defines an
identifier (such as the name of a function or variable) that can be used in
expressions and statements, and, where appropriate, allocates memory for the
identifier.

1.2.6.Fundamental syntactic elements
On the simplest level, a program is a sequence of tokens delimited by

separators. A token is the smallest meaningful unit of text in a program. A

Page# 5

separator is either a blank or a comment. Strictly speaking, it is not always
necessary to place a separator between two tokens; for example, the code
fragment

Size:=20;Price:= 1 O;
is perfectly legal. Convention and readability, however, dictate that we

write this as
Size:= 20;
Price:= 10;
Tokens are categorized as special symbols, identifiers, reserved words,

directives, numerals, labels, and character strings. A separator can be part of a
token only if the token is a character string. Adjacent identifiers, reserved words,
numerals, and labels must have one or more separators between them.
1.2.6.1.Special symbols

Special symbols are nonalphanumeric characters, or pairs of such
characters, that have fixed meanings. The following single characters are special
symbols. # $ & ' () * + , - . I : ; < = > @ [] (\ { } The following character pairs
are also special symbols. (* (. *) .) .. II := <= >= <> The left bracket-[-is
equivalent to the character pair of left parenthesis and period-(.; the right
bracket-]-is equivalent to the character pair of period and right parenthesis-.)
. The left-parenthesis-plus-asterisk and asterisk-plus-rightparenthesis -(* *)
are equivalent to the left and right brace-{ }. Notice that !, "(double quotation
marks),%,?,\,_ (underscore), i (pipe), and - (tilde) are not special characters.
1.2.6.2.ldentifiers

Identifiers denote constants, variables, fields, types, properties,
procedures.functions, programs, units, libraries, and packages. An identifier can
be of any length, but only the first 255 characters are significant. An identifier
must begin with a letter or an underscore (_) and cannot contain spaces; letters,
digits, and underscores are allowed after the first character. Reserved words
cannot be used as identifiers.

Since Object Pascal is case-insensitive, an identifier like Calculate Value
could be written in any of these ways:

Calculate Value
calculate Value
calculateval ue
CALCULATEVALUE
On Linux, the only identifiers for which case is important are unit names.

Since unit names correspond to file names, inconsistencies in case can sometimes
affect compilation.
1.2.6.3.Qual ified identifiers

When you use an identifier that has been declared in more than one place,
it is sometimes necessary to qualify the identifier. The syntax for a qualified
identifier is

identifier 1. identifier2
where identifier! qualifies identifier2. For example, if two units each

declare a variable called CurrentValue, you can specify that you want to access
the CurrentValue in Unit2 by writing

Page# 6

U nit2. CurrentVa lue
Qualifiers can be iterated. For example,
Form 1. Button l .Click

calls the Click method in Buttonl of Form 1.
If you don't qualify an identifier, its interpretation is determined by the

rules of scope described in "Blocks and scope" on page 4-27.

Reserved words
The foHowing reserved words cannot be redefined or used as identifiers.

Table 4.1 Reserved 'i\\Jrcls

as
AS01

b~gin
crise

class
const
coastructor
dcsfmd·O'f

dispinteiiace
di"
do

t.~xcept

exports
file
fin aliza ti n:n
fi:n.ill'ly

for
fundcion

goto
if

in
inhe,ited

lniti al iza ti on
lnlme
interface
is
l,1l;e\

library
1.nnd
n,l

obj,,et
nt

or

out

packed
p:rot:et{tf.re

program
property
.raise
recot\;1

n1pt'~lt
1-.,sou:rcestriug

set

shl

~hr

~Iring

tbm
thni,,dvar
in

try
type
unit
untl l

while
with
xnr

In addition to the words in Table 4.1, private, protected, public, published,
and automated act as reserved words within object type declarations, but are
otherwise treated as directives. The words at and on also have special meanings.
1.2.6.4.Directives

Directives are words that are sensitive in specific locations within source
code. Directives have special meanings in Object Pascal, but, unlike reserved
words, appear only in contexts where user-defined identifiers cannot occur.
Hence- although it is inadvisable to do so-you can define an identifier that
looks exactly like a directive.
n.h,.solute

abstract
assembler
aut iHtl~lh:~-d

con.taJins

default
deprecat,,,d,

dt,pid

dyna.mk
export

external
fa.r

fo:r=1,v·;;,1:rd

:finplen1ents
.. J
ll\lJ.t2X

lihNry
:lm'..1!

n e a r
1.wddc.rnh

«verload
OY·Cl':tide

pa.-cka.ge
piLS<:,1]

platfnrm

pdv,rte

protected

pnblk
pubH,h"d
.r~nd
t'l!t,1donly

register
re bntr-od1u.~e

s,1foc1ll

stdcal]

varaiss
virtual
wri.te
wriJeonl}'

1.2.6.5.Numerals
Integer and real constants can be represented in decimal notation as

sequences of digits without commas or spaces, and prefixed with the + or -
operator to indicatesign. Values default to positive (so that, for example, 67258 is
equivalent to +6725 8) and must be within the range of the largest predefined real
or integer type. Numerals with decimal points or exponents denote reals, while
other numerals denote integers. When the character E or e occurs within a real, it

Page# 7

means "times ten to the power of'. For example, 7E-2 means 7 ?10-2, and 12.25e+6
and 12.25e6 both mean 12.25 ?106.

The dollar-sign prefix indicates a hexadecimal numeral-for example,
$8F. For the Integer type (16-bit integer), the sign of a hexadecimal is determined
by the leftmost (most significant) bit of its binary representation. For all other
types, you must use a prefixed + or - operator to indicate sign.

For more information about real and integer types, see Chapter 5, "Data
types, variables, and constants". For information about the data types of
numerals, see "True constants" on page 5-39.
1.2.6.6.Labels

A label is a sequence of no more than four digits-that is, a numeral
between O and 9999. Leading zeros are not significant. Identifiers can also
function as labels. Labels are used in goto statements. For more information
about goto statements and labels, see "Goto statements" on page 4-18.
1.2.6. 7 .Character strings

A character string, also called a string literal or string constant, consists of
a quoted string, a control string, or a combination of quoted and control strings.
Separators can occur only within quoted strings.

A quoted string is a sequence of up to 255 characters from the extended
ASCII character set, written on one line and enclosed by apostrophes. A quoted
string with nothing between the apostrophes is a null string. Two sequential
apostrophes in a quoted string denote a single character, namely an apostrophe.
For example,·
'BORLAND' {BORLAND}
'You"II see' { You'll see}
"" { ' }
" { null string}
' ' { a space}

A control string is a sequence of one or more control characters, each of
which consists of the # symbol followed by an unsigned integer constant from 0
to 255 (decimal or hexadecimal) and denotes the corresponding ASCII character.
The control string
#89#111#117
is equivalent to the quoted string
'You'

You can combine quoted strings with control strings to form larger
character strings. For example, you could use
'Line l'#l3#10'Line 2'

to put a carriage-return-line-feed between "Line 1" and "Line 2".
However, you cannot concatenate two quoted strings in this way, since a pair of
sequential apostrophes is interpreted as a single character. (To concatenate
quoted strings, use the+ operator described in "String operators" on page 4-9, or
simply combine them into a single quoted string.)

A character string's length is the number of characters in the string. A
character string of any length is compatible with any string type and with the
PChar type. A character string of length 1 is compatible with any character type,
and, when extended syntax is enabled ({$X+}), a character string of length n =1 is
compatible with zero-based arrays and packed arrays of n characters. For more

Page# 8

