
- - - ---··-- - . - - ·---- . =--·-----

Near East University

Faculty of Engineering

Department of Computer Engineering

Air Ticket Reservation System

Graduation Project
COM-400

Student: Abdul Manan Qureshi{980859)

Supervisor: Mr. Umit llhan

Nicosia - 2002

.•

---·-

Acknowledgments

First of all the author would like to thank the Almighty for giving him this chance
at higher education and giving him a chance to put his constructive abilities to
work.
Second, the author would like to thank his advisor without whom this project
couldn't have gone forward and whose valuable advice kept the project on track ,
and on time.
Third of all, the author wishes to thank his parents for their unwavering support
and love that saw him through, even in the most difficult of times. They have spent
their lifetime working hard to ensure a bright future, may God give the author the
ability never to let them down and to be of service to parents, Religion and
Country.

Abstract

This project basically deals with the construction of a program that handles
reservations for a Air ticketing System. This system would accept search patterns
from the user and would plough through its databases to manipulate what is
required from it to fulfill the user's request.

This report has been split up into three parts, the first part deals with the
history of the coding language in which the program is written and then a brief
introduction as to what the VCl language stands for and its properties and its
relational importance in this project. The third part deals with the project source
code it self, starting of from the peripherals and then going on to step by step
analysis of the code functionality.

It has been the author's utmost wish to keep the report simple and to reduce
the complexity as much as possible. The report ends with a conclusion,
summarizing the insight; and technical enhancements gained by the author as a
result of this project.

ii

Table of Contents

NAME PAGE#

ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION

l

n
Ill

IV

CHAPTER ONE: LITERATURE RESEARCH
1.1.Introduction to Delphi™ 02
1.2.Introduction to OOP 02

1.2.1. Components of OOP 03
1.2.2. Program Structure and Syntax 05
1.2.3. The Program Heading 06
1.2.4. The program Uses clause 06
1.2.5. The block 06
1.2.6. Fundamental Syntactic Elements 06

1.2.6.1. Special Symbols 07
1.2.6.2. Identifiers 07
1.2.6.3. Qualified Identifiers 07
1.2.6.4. Directives 08
1.2.6.5. Numerals 08
1.2.6.6. Labels 09
1.2.6. 7. Character strings 09

1.2. 7. Components and compiler directives l 0
1.2. 7 .1. Operators 10
1.2.7.2. Boolean Operators 11
1.2.7.3. Complete vs. Shortcut

Boolean evaluation 11
1.2. 7.4. Logic (Bitwise) Operators 12
1.2.7.5. String Operators 12
1.2.7.6. Pointer Operators 13

1.2.8. Libraries and packages 13
1.2.8.1. Calling Dynamically

Loadable Libraries 13
1.2.8.2. Static Loading 14
1.2.8.3. Dynamic Loading 14

iii

1.2.8.4. Writing Dynamically
loadable Libraries

1.2.8.5. The Exports Clause
1.2.8.6. Library Initialization Code
1.2.8.7. Global variables in a library
1.2.8.8. Libraries and System vars.
1.2.8.9. Exceptions and runtime

errors in Libraries
1.3.Devaloping applications Using Delphi

1.3 .1. Designing applications
1.3.2. Devaloping applications
1.3 .3. Creating projects
1.3 .4. Editing Code
1.3.5. Compiling Applications
1.3.6. Debugging applications
1.3.7. Deploying applications

15
16
17
18
18
18

19
20
20
20
21
21
22
22

CHAPTER TWO: PROGRAM LOGIC VISUALIZATION
2.1 .Introduction to the problem 23
2.2.Databases 23

2.2.L detailed Account of Eac DB 24
2.2.1.1.1. Aircraft.db 24
2.2.1.1.2. Airlines.db 25
2.2.1.1.3. Class.db 25
2.2.1.1.4. Cost.db 26
2.2.1.1.5. Cust.db 27
2.2.1.1.6. Flights.db 27
2.2.1.1. 7. Reservation.db 27
2.2.1.1.8. Routes.db 28
2.2.1.1.9. Seats.db 28

2.2.2. Inter-Table Connections nad relationships 29
2.2.2.1. In-depth look 30

CHAPTER THREE: SOFTWARE STRUCTURE AND DETAIL
3.1.Forms and units 33
3.2.Flow of control 40

CONCLUSION 53
REFERENCES 54

iv

- --· - ---~--~------~

Introduction

First of all an air ticket reservation system, is a very complex and highly
connected software system to construct, as it takes into account many different
factors that affect the outcome of the result.

It consists of many layers of cod, logic, and structural design,
necessary to ensure a smooth functionality status. Implementation of such a
program in different coding languages surely will result in a different outlook for
the program.

The author developed the program using the Delphi 6.0 coding
language. Delphi 6.0 is actually a RAD tool that consists of a package of software
that enables a developer to base his code easily and on a multiplatform basis. Main
examples of, such a system are KYLIX TM . KYLIX TM is a software platform that
allows the code to manipulated in such a way that it can perform optimally in
different OS environments.

The author developed the program using Windows based version.
Hence negating the need here to farther explain the usage of the properties of
KYLIX ™, but for the readers own good, a brief decryption of the Delphi 6.0,
VCL and other topics crucial to understanding the core of the program are
explained in the opening chapter.

The first chapter of this report deals with the brief history,
understand and the implementation of VCL in modern day programming. It
explains the different terms and terminology used in Delphi and its inherent use in
developing software packages

The second chapter deals with logic of the programming of the
system. During the quest for a solution for a particular system, the main thing to
be given special focus to is the logic of the program, or the solution. The logic is
the core, the design part is just cosmetics. Because if the logic of the program
tackles the problem efficiently then the rest is downhill from there. So in this
chapter, a detailed look at the logic of the system has been discussed and with the
aid of visual examples, an attempt has been made by the author to make the logic
easily understandable.

The third and the last chapter deals with the design phase of the code. As is
the case of every software, user friendliness and ease of use make for efficient use
of time and energy. In this last chapter, the coding of the program is discussed in
detail and with the help of screenshots and coded examples , the author has
attempted to explain the design phase of the code.

The project ends with a conclusion highlights the significant gain in
programming hours and experienced that the author has gained during the
preparation of this program and its productivity for the author.

V

Chapter 1

Literature research

1. 1 Introduction to Delphi™

Delphi is an object-oriented, visual programming environment for rapid
application development (RAD). Using Delphi, you can create highly efficient
applications for Microsoft Windows 2000, Windows 98, and Windows NT with a
minimum of manual coding. Delphi also provides a simple cross-platform
solution when used in conjunction with Kylix, Borland's RAD tool for Linux.
Delphi provides all the tools one needs to develop, test, and deploy applications,
including a large library of reusable components, a suite of design tools,
application and form templates, and

programming wizards.

Delphi is basically OOP version of the 70s PASCAL programming
language, henceforth before delving into further detail a explanation OOP is
required and is presented below

1.2 Introduction to OOP
Most modem programming languages support object-on ented

programming (OOP).languages are based on three fundamental concepts:
encapsulation (usually implemented with classes), inheritance, and
polymorphism (or late binding).

You can write Delphi applications even without knowing the details of
Object Pascal. As you create a new form, add new components, and handle
events, Delphi prepares most of the related code for you automatically. But
knowing the details of the language and its implementation will help you to
understand precisely what Delphi is doing and to master the language
completely.

A single chapter doesn't allow space for a full introduction to the
principles of object-oriented programming and the Object Pascal language.
Instead, I will outline the key OOP features of the language and show how they
relate to everyday Delphi programming. Even if you don't have a precise
knowledge of OOP,'the chapter will introduce each of the key concepts so that
you won't need to refer to other sources.

The Object Pascal language used by Delphi is an OOP extension of the
classic Pascal language, which Borland pushed forward for many years with its
Turbo Pascal compilers. The syntax of the Pascal language is known to be quite
verbose and more readable than, for example, the C language. Its OOP extension
follows the same approach, delivering the same power of the recent breed of
OOP languages, from Java to C#.

Page# 1

In this chapter, I'll discuss only the object-oriented extensions of the
Pascal language available in Delphi. However, I'll highlight recent additions
Borland has done to the core language. These features have been introduced in
Delphi 6 and are, at least partially, related to the Linux version of Delphi.

New Pascal features include the $IF and $ELSEIF directives for
conditional compilation, the $WARN and $MESSAGE directives, and the
platform, library, and deprecated hint directives. These topics are discussedln the
following sections. Changes to the assembler (with new directives, support for
MMX and Pentium Pro instructions, and many more features) are really beyond
the scope of this book.

Other relatively minor changes in the language include a change in the
default value for the $WRITEABLECONST compiler switch, which is now
disabled. This option allows programs to modify the value of typed constants and
should generally be left disabled, using variables instead of constants for
modifrable values. Another change is the support for the lnt64 data type in
variants. Finally, you can assign specific values to the elements of an
enumeration (as in the CIC++ language), instead of using the default sequence of
values.

1.2. l Program Organization
Programs are usually divided into source-code modules called

units. Each program begins with a heading, which specifies a name for the
program. The heading is followed by an optional uses clause, then a block of
declarations and statements. The uses clause lists units that are linked into the
program; these units, which can be shared by different programs, often have uses
clauses of their own.

The uses clause provides the compiler with information about
dependencies among modules. Because this information is stored in the modules
themselves, Object Pascal programs do not require makefiles, header files, or
preprocessor "include" directives. (The Project Manager generates a makefile
each time a project is loaded in the IDE, but saves these files only for project
groups that include more than one project.)
1.2, 1 Components of OOP

The compiler expects to find Pascal source code in files of three kinds:

unit source files (which end with the .pas extension)
project files (which end with the .dpr extension)
package source files (which end with the .dpk extension)

Unit source files contain most of the code in an application. Each
application has a single project file and several unit files; the project file-which
corresponds to the "main" program file in traditional Pascal-organizes the unit
files into an application. Borland development tools automatically maintain a
project file for each application.

Page# 2

If you are compiling a program from the command line, you can put all
your source code into unit (.pas) files. But if you use the IDE to build your
application, you must have a project (.dpr) file.

Package source files are similar to project files, but they are used to
construct special dynamically linkable libraries called packages.

In addition to source-code modules, Borland products use several non
Pascal files to build applications. These files are maintained automatically and
include

form files, which end with the .dfm (Delphi) or .xfm (Kylix) extension,
resource files, which end with the .res extension, and
project options files, which end with the .dof (Delphi) or .kof

(Kylix) extension.

A form file is either a text file or a compiled resource file that can contain
bitmaps, strings, and so forth. Each form file represents a single form, which
usually corresponds to a window or dialog box in an application. The IDE allows
you to view and edit form files as text, and to save form files as either text or
binary. Although the default behavior is to save form files as text, they are
usually not edited manually; it is more common to use Borland's visual design
tools for this purpose. Each project has at least one form, and each form has an
associated unit (.pas) file that, by default, has the same name as the form file.

In addition to form files, each project uses a resource (.res) file to hold the
bitmap for the application's icon. By default, this file has the same name as the
project (.dpr) file. To change an application's icon, use the Project Options
dialog.

A project options (.dof or .kof) file contains compiler and linker settings,
search directories, version information, and so forth. Each project has an
associated project options file with the same name as the project (.dpr) file.
Usually, the options in this file are set from Project Options dialog.

Various tools in the IDE store data in files of other types. Desktop settings
(.dsk or .desk) files contain information about the arrangement of windows and
other configuration options; desktop settings can be project-specific or
environment-wide. These files have no direct effect on compilation.

Figure 1.2.2.a shows a simple program generated in Delphi, explicitly
showing the tyes of files generated wghen yyusin OOP . i.e. DELPHI 6.0

Page# 3

Modified:
6/7/02 3:57 AM

Size: 188 bytes

figure 1.2.1.a
A figure showing a simple program when saved to a folder, generates the

files necessary to continue functionality.

1.2.2 Program structure and syntax
A program contains
• a pro gram heading,
• a uses clause (optional), and
• a block of declarations and statements.
The program heading specifies a name for the program. The uses clause

lists units
used by the program. The block contains declarations and statements that

are
executed when the program runs. The IDE expects to find these three

elements in a
single project (.dpr) file.
The example below shows the project file for a program called Editor.
1 program Editor;
2
3 uses
4 Forms, { change to QForms in Linux}
5 REAbout in 'REAbout.pas' {AboutBox},
6 REMain in 'REMain.pas' {MainForm};
7
8 {$R *.res}
9
10 begin
11 Application.Title:= 'Text Editor';
12 Application.CreateForm(TMainForm, MainForm);

Page# 4

13 Application.Run;
14 end.
Line 1 contains the program heading. The uses clause is on lines 3 through

6. Line 8 is
a compiler directive that links the project's resource file into the program.

Lines 10 through 14 contain the block of statements that are executed when the
program runs.

Finally, the project file, like all source files, ends with a period.
This is, in fact, a fairly typical project file. Project files are usually short,

since most ofa program's logic resides in its unit files. Project files are generated
and maintained automatically, and it is seldom necessary to edit them manually.

1.2,3The program heading
The pro gram heading specifies the pro gram's name. It consists of the

reserved word program, followed by a valid identifier, followed by a semicolon.
The identifier must match the project file name. In the example above, since the
program is called Editor,the project file should be called EDITOR.dpr.

In standard Pascal, a program heading can include parameters after the
program

name:
program Calc(input, output);
Borland's Object Pascal compiler ignores these parameters.

1.2.4.The program uses clause
The uses clause lists units that are incorporated into the program. These

units may in turn have uses clauses of their own. For more information about the
uses clause.
1.2.5. The block

The block contains a simple or structured statement that is executed when
the program runs. In most programs, the block consists of a compound
statement-bracketed between the reserved words begin and end-whose
component Object Pascal uses the ASCII character set, including the letters A
through Z and a through z, the digits O through 9, and other standard characters.
It is not casesensitive.

The space character (ASCII 32) and the control characters (ASCII 0
through 31-including ASCII 13, the return or end-of-line character) are called
blanks. Fundamental syntactic elements, called tokens, combine to form
expressions, declarations, and statements. A statement describes an algorithmic
action that can be executed within a program. An expression is a syntactic unit
that occurs within a statement and denotes a value. A declaration defines an
identifier (such as the name of a function or variable) that can be used in
expressions and statements, and, where appropriate, allocates memory for the
identifier.

1.2.6.Fundamental syntactic elements
On the simplest level, a program is a sequence of tokens delimited by

separators. A token is the smallest meaningful unit of text in a program. A

Page# 5

separator is either a blank or a comment. Strictly speaking, it is not always
necessary to place a separator between two tokens; for example, the code
fragment

Size:=20;Price:= 1 O;
is perfectly legal. Convention and readability, however, dictate that we

write this as
Size:= 20;
Price:= 10;
Tokens are categorized as special symbols, identifiers, reserved words,

directives, numerals, labels, and character strings. A separator can be part of a
token only if the token is a character string. Adjacent identifiers, reserved words,
numerals, and labels must have one or more separators between them.
1.2.6.1.Special symbols

Special symbols are nonalphanumeric characters, or pairs of such
characters, that have fixed meanings. The following single characters are special
symbols. # $ & ' () * + , - . I : ; < = > @ [] (\ { } The following character pairs
are also special symbols. (* (. *) .) .. II := <= >= <> The left bracket-[-is
equivalent to the character pair of left parenthesis and period-(.; the right
bracket-]-is equivalent to the character pair of period and right parenthesis-.)
. The left-parenthesis-plus-asterisk and asterisk-plus-rightparenthesis -(* *)
are equivalent to the left and right brace-{ }. Notice that !, "(double quotation
marks),%,?,\,_ (underscore), i (pipe), and - (tilde) are not special characters.
1.2.6.2.ldentifiers

Identifiers denote constants, variables, fields, types, properties,
procedures.functions, programs, units, libraries, and packages. An identifier can
be of any length, but only the first 255 characters are significant. An identifier
must begin with a letter or an underscore (_) and cannot contain spaces; letters,
digits, and underscores are allowed after the first character. Reserved words
cannot be used as identifiers.

Since Object Pascal is case-insensitive, an identifier like Calculate Value
could be written in any of these ways:

Calculate Value
calculate Value
calculateval ue
CALCULATEVALUE
On Linux, the only identifiers for which case is important are unit names.

Since unit names correspond to file names, inconsistencies in case can sometimes
affect compilation.
1.2.6.3.Qual ified identifiers

When you use an identifier that has been declared in more than one place,
it is sometimes necessary to qualify the identifier. The syntax for a qualified
identifier is

identifier 1. identifier2
where identifier! qualifies identifier2. For example, if two units each

declare a variable called CurrentValue, you can specify that you want to access
the CurrentValue in Unit2 by writing

Page# 6

U nit2. CurrentVa lue
Qualifiers can be iterated. For example,
Form 1. Button l .Click

calls the Click method in Buttonl of Form 1.
If you don't qualify an identifier, its interpretation is determined by the

rules of scope described in "Blocks and scope" on page 4-27.

Reserved words
The foHowing reserved words cannot be redefined or used as identifiers.

Table 4.1 Reserved 'i\\Jrcls

as
AS01

b~gin
crise

class
const
coastructor
dcsfmd·O'f

dispinteiiace
di"
do

t.~xcept

exports
file
fin aliza ti n:n
fi:n.ill'ly

for
fundcion

goto
if

in
inhe,ited

lniti al iza ti on
lnlme
interface
is
l,1l;e\

library
1.nnd
n,l

obj,,et
nt

or

out

packed
p:rot:et{tf.re

program
property
.raise
recot\;1

n1pt'~lt
1-.,sou:rcestriug

set

shl

~hr

~Iring

tbm
thni,,dvar
in

try
type
unit
untl l

while
with
xnr

In addition to the words in Table 4.1, private, protected, public, published,
and automated act as reserved words within object type declarations, but are
otherwise treated as directives. The words at and on also have special meanings.
1.2.6.4.Directives

Directives are words that are sensitive in specific locations within source
code. Directives have special meanings in Object Pascal, but, unlike reserved
words, appear only in contexts where user-defined identifiers cannot occur.
Hence- although it is inadvisable to do so-you can define an identifier that
looks exactly like a directive.
n.h,.solute

abstract
assembler
aut iHtl~lh:~-d

con.taJins

default
deprecat,,,d,

dt,pid

dyna.mk
export

external
fa.r

fo:r=1,v·;;,1:rd

:finplen1ents
.. J
ll\lJ.t2X

lihNry
:lm'..1!

n e a r
1.wddc.rnh

«verload
OY·Cl':tide

pa.-cka.ge
piLS<:,1]

platfnrm

pdv,rte

protected

pnblk
pubH,h"d
.r~nd
t'l!t,1donly

register
re bntr-od1u.~e

s,1foc1ll

stdcal]

varaiss
virtual
wri.te
wriJeonl}'

1.2.6.5.Numerals
Integer and real constants can be represented in decimal notation as

sequences of digits without commas or spaces, and prefixed with the + or -
operator to indicatesign. Values default to positive (so that, for example, 67258 is
equivalent to +6725 8) and must be within the range of the largest predefined real
or integer type. Numerals with decimal points or exponents denote reals, while
other numerals denote integers. When the character E or e occurs within a real, it

Page# 7

means "times ten to the power of'. For example, 7E-2 means 7 ?10-2, and 12.25e+6
and 12.25e6 both mean 12.25 ?106.

The dollar-sign prefix indicates a hexadecimal numeral-for example,
$8F. For the Integer type (16-bit integer), the sign of a hexadecimal is determined
by the leftmost (most significant) bit of its binary representation. For all other
types, you must use a prefixed + or - operator to indicate sign.

For more information about real and integer types, see Chapter 5, "Data
types, variables, and constants". For information about the data types of
numerals, see "True constants" on page 5-39.
1.2.6.6.Labels

A label is a sequence of no more than four digits-that is, a numeral
between O and 9999. Leading zeros are not significant. Identifiers can also
function as labels. Labels are used in goto statements. For more information
about goto statements and labels, see "Goto statements" on page 4-18.
1.2.6. 7 .Character strings

A character string, also called a string literal or string constant, consists of
a quoted string, a control string, or a combination of quoted and control strings.
Separators can occur only within quoted strings.

A quoted string is a sequence of up to 255 characters from the extended
ASCII character set, written on one line and enclosed by apostrophes. A quoted
string with nothing between the apostrophes is a null string. Two sequential
apostrophes in a quoted string denote a single character, namely an apostrophe.
For example,·
'BORLAND' {BORLAND}
'You"II see' { You'll see}
"" { ' }
" { null string}
' ' { a space}

A control string is a sequence of one or more control characters, each of
which consists of the # symbol followed by an unsigned integer constant from 0
to 255 (decimal or hexadecimal) and denotes the corresponding ASCII character.
The control string
#89#111#117
is equivalent to the quoted string
'You'

You can combine quoted strings with control strings to form larger
character strings. For example, you could use
'Line l'#l3#10'Line 2'

to put a carriage-return-line-feed between "Line 1" and "Line 2".
However, you cannot concatenate two quoted strings in this way, since a pair of
sequential apostrophes is interpreted as a single character. (To concatenate
quoted strings, use the+ operator described in "String operators" on page 4-9, or
simply combine them into a single quoted string.)

A character string's length is the number of characters in the string. A
character string of any length is compatible with any string type and with the
PChar type. A character string of length 1 is compatible with any character type,
and, when extended syntax is enabled ({$X+}), a character string of length n =1 is
compatible with zero-based arrays and packed arrays of n characters. For more

Page# 8

information about string types, see Chapter 5, "Data types, variables, and
constants".
1.2.7.Comments and compiler directives

Comments are ignored by the compiler, except when they function as
separators (delimiting adjacent tokens) or compiler directives.

There are several ways to construct comments:
{ Text between a left brace and a right brace constitutes a comment.}
(* Text between a left-parenthesis-plus-asterisk and an
asterisk-plus-right-parenthesis also constitutes a comment. x)
I I Any text between a double-slash and the end of the line constitutes a comment.

A comment that contains a dollar sign ($) immediately after the opening {
or (* is a compiler directive. For example,
{$WARNINGS OFF}

tells the compiler not to generate warning messages.

E.xpressfons
An exprc&sion is a construction that returns a value, For example,

Cah.<X, 'r!
); ' y

3ccJE.:iJ'i)
Ttcr.d.=?.A:n l
r~+:-ga::ian a£ a E(..»t.>l.~n i

C in Ren:;el
not n"',~

The simplest expressions are variables and constants (described in Chapter
5, "Data types, variables, and constants"). More complex expressions are built
from simpler ones using operators, function calls, set constructors, indexes, and
typecasts.
1.2. 7 .lOperators

Operators behave like predefined functions that are part of the Object
Pascal language. For example, the expression (X + Y) is built from the variables X and
Y - called operands- with the + operator; when X and Y represent integers or
reals, (X + Y) returns their sum. Operators include @, not, /\' *, I, div, mod, and,
shl, shr, as,+,-, or, xor, =, >, <, <>, <=,>=,in, and is.

The operators @, not, and I\ are unary (taking one operand). All other
operators are binary (taking two operands), except that + and - can function as
either unary or binary. A unary operator always precedes its operand (for
example, -B), except for ", which follows its operand (for example, PA). A binary
operator is placed between its operands (for example, A = 7).

Some operators behave differently depending on the type of data passed to
them. For example, not performs bitwise negation on an integer operand and
logical negation on a Boolean operand. Such operators appear below under
multiple categories. Except for '\ is, and in, all operators can take operands of
type Variant. For details, see "Variant types" on page 5-30.

The sections that follow assume some familiarity with Object Pascal data
types. For information about data types, see Chapter 5, "Data types, variables,

Page# 9

and constants". For information about operator precedence in complex
expressions, see "Operator precedence rules" on page 4-12.

Arithmetic operators
Arithmetic operatcm,, which take real or [nlcger operands. include+,-:, *, I, div, and
mod,

Table 4.3 Bl nary arithmetic operators

div
mnd

subtraction
multiplication
real div isirm
inh~gPr divisicn
n~n1alndPr

i111Pgl~r, rea l
it1.teg1.ff, real
in1:Bg,1r, rm!
integt~r

ink!ger

inh1ge1· 1 n.'.m]

i.rttnger r real

real

Fk·mtl.t. .~ 'I

ilTl:Pg/!.1'

"i.[lh?gPI'

r ,i 2
7ot.iil div !Jrii tShe

Y mud f,

The following rules apply to arithmetic operators.
• The value of x/y is of type Extended, regardless of the types of x and y.

For other arithmetic operators, the result is of type Extended whenever at least
one operand is a real; otherwise, the result is of type Int64 when at least one
operand is of type Int64; otherwise, the result is of type Integer. If an operand's
type is a subrange of an integer type, it is treated as if it were of the integer type.

• The value of x div y is the value of x/y rounded in the direction of zero
to the nearest integer.

• The mod operator returns the remainder obtained by dividing its
operands. In other words, x mod y = x- (x div y) * y.

• A runtime error occurs when y is zero in an expression of the form x/y, x
div y, or x mod y.
1.2. 7 .2.Boolean operators

The Boolean operators not, and, or, and xor take operands of any Boolean
type and return a value of type Boolean.

Ta:ble 4.5 Boolean cperatcrs
Gperaftt;tlf ·

not :n~gati.on

,t;>perandJyp~
,:::; ;.:·.:;

Bcolean
!Joofr1m
Rno{em1
Doolmn

aad conjun ction Bc:ok•an

disjunc ti o:n Bool i?a:n
exclusive d:isjn nction Boolean XQ1'

These operations are governed by standard rules of Boolean logic. For
example, an expression of the form x and y is True if and only if both x and y are
True.
1.2.7.3.Complete versus short-circuit Boolean evaluation

The compiler supports two modes of evaluation for the and and or
operators: complete evaluation and short-circuit (partial) evaluation. Complete
evaluation means that each conjunct or disjunct is evaluated, even when the
result of the entire expression is already determined. Short-circuit evaluation
means strict left-to-right evaluation that stops as soon as the result of the entire
expression is determined. For example, if the expression A and B is evaluated
under short-circuit mode when A is False, the compiler won't evaluate B; it
knows that the entire expression is False as soon as it evaluates A.

Page# 10

Short-circuit evaluation is usually preferable because it guarantees minimum
Execution time and, in most cases, minimum code size. Complete evaluation is
Sometimes convenient when one operand is a function with side effects that alter
the execution of the program. Short-circuit evaluation also allows the use of
constructions that might otherwise result in illegal runtime operations. For
example, the following code iterates through
the string S, up to the first comma.
while (I <= Length(S)) and (S[IJ <> ',') do
begin
J
lnc(I);
end;
In a case where S has no commas, the last iteration increments I to a value which
is greater than the length of S. When the while condition is next tested, complete
evaluation results in an attempt to read S[I], which could cause a runtime error.
Under short-circuit evaluation, in contrast, the second part of the while
condition- (S[I] <> ',')-is not evaluated after the first part fails. Use the $B
compiler directive to control evaluation mode. The default state is {$B-},
which enables short-circuit evaluation. To enable complete evaluation locally,
add the { $B+} directive to your code. You can also switch to complete
evaluation on a project-wide basis by selecting Complete Boolean Evaluation in
the Compiler Options dialog. Note If either operand involves a variant, the
compiler always performs complete evaluation (even in the {$B-} state).
1.2.7.4.Logical (bitwise) operators
The following logical operators perform bitwise manipulation on integer
operands. For example, if the value stored in X (in binary) is 001101 and the
value stored in Y is 100001, the statement

OJ

bitwise negation inmger
bitwise and iniEger
bit-wise or in h2gPr

bitwise .Y.OJ' J:nl1-1ge1'

bitwise slri ft: left lntege!'
bitwise shift ri.gh t int,wger

integer
ir1.tuge.r
ird1~g~r
int-Pg er.

intJJger
i.nJegi:?.r

not X

X and Y
not

and

i\hl
shr

X XO!'!'

X .shl 1

i' shr I

The fellowing rules apply to bitwise operators.
• The result of ,1 not operation if; of the same typed& the operand.

• If the operands of an and, or, or xor operation are both integers, the result is of
the predefined integer type with the smallest range that includes all possible
values of both types.
• The operations x shl y and x shr y shift the value of x to the left or right by y
bits, which is equivalent to multiplying or dividing x by 2y; the result is of the
same type as x. For example, ifN stores the value 01101 (decimal 13), then N shl
1 returns 11010 (decimal 26). Note that the value of y is interpreted modulo the
size of the type of x. Thus for example, if x is an integer, x shl 40 is interpreted
as x shl 8 because an integer is 32 bits and 40 mod 32 is 8.
1.2.7 .5.String operators
The relational operators=, <>, <, >, <=, and>= all take string operands (see

Page# 11

"Relational operators" on page 4-10). The+ operator concatenates
1.2.7 .. 6.Pointer operators
The relational operators<,>,<=, and>= can take operands of type PChar (see
"Relational operators" on page 4-10). The following operators also take pointers
as The I\ operator dereferences a pointer. Its operand can be a pointer of any type
except the generic Pointer, which must be typecast before dereferencing.
P = Q is True just in case P and Q point to the same address; otherwise, P <> Q is
True. You can use the + and - operators to increment and decrement the offset of
a character pointer. You can also use - to calculate the difference between the
offsets of two character pointers. The following rules apply.
• If I is an integer and P is a character pointer, then P + I adds I to the address
given by P; that is, it returns a pointer to the address I characters after P. (The
expression I + P is equivalent to P + I.) P - I subtracts I from the address given
by P; that is, it returns a pointer to the address I characters before P.
• If P and Q are both character pointers, then P - Q computes the difference
between the address given by P (the higher address) and the address given by Q
(the lower address); that is, it returns an integer denoting the number of
characters between P and Q. P + Q is not defined. You can use the + and -
operators to increment and decrement the offset of a character pointer. You can
also use - to calculate the difference between the offsets of two character
pointers. The following rules apply.
• If I is an integer and P is a character pointer, then P + I adds I to the address
given by P; that is, it returns a pointer to the address I characters after P. (The
expression I + P is equivalent to P + I.) P - I subtracts I from the address given
by P; that is, it returns a pointer to the address I characters before P.
• If P and Q· are both character pointers, then P - Q computes the difference
between the address given by P (the higher address) and the address given by Q
(the lower address); that is, it returns an integer denoting the number of
characters between P and Q. P + Q is not defined.
1.2.8.Libraries and packages
A dynamically loadable library is a dynamic-link library (DLL) on Windows or a
shared object library file on Linux. It is a collection of routines that can be called
by applications and by other DLLs or shared objects. Like units, dynamically
loadable libraries contain sharable code or resources. But this type of library is a
separately compiled executable that is linked at runtime to the programs that use
it. To distinguish them from standalone executables, on Windows files
containing compiled DLLs are named with the .DLL extension. On Linux, files
containing shared object files are named with a .so extension. Object Pascal
programs can call DLLs or shared objects written in other languages, and
applications written in other languages can call DLLs or shared objects written in
Object Pascal.
1.2.8.1.Calling dynamically loadable libraries
You can call operating system routines directly, but they are not linked to your
application until runtime. This means that the library need not be present when
you compile your program. It also means that there is no compile-time validation
of attempts to import a routine. Before you can call routines defined in a shared

Page# 12

object, you must import them. This can be done in two ways: by declaring an
external procedure or function, or by direct calls to the operating system.
Whichever method you use, the routines are not linked to your application until
runtime. Object Pascal does not support importing of variables from shared
libraries.
1.2.8.2.Static loading
The simplest way to import a procedure or function is to declare it using the
external directive. For example,
On Windows: procedure DoSomething; external 'MYLIB.DLL';
On Linux: procedure DoSomething; external 'mylib.so';
If you include this declaration in a program, MYLIB.DLL (Windows) or
mylib.so (Linux) is loaded once, when the program starts. Throughout execution
of the program, the identifier Do Something always refers to the same entry point
in the same shared library. Declarations of imported routines can be placed
directly in the program or unit where they are called. To simplify maintenance,
however, you can collect external declarations into a separate "import unit" that
also contains any constants and types required for interfacing with the library.
Other modules that use the import unit can call any routines declared in it. For
more information about external declarations, see "External declarations" on
page 6-6.
1.2.8.3.Dynamic loading
You can access routines in a library through direct calls to OS library functions,
including LoadLibrary, FreeLibrary, and GetProcAddress. In Windows, these
functions are declared in Windows.pas; on Linux, they are implemented for
compatibility in SysUtils.pas; the actual Linux OS routines are dlopen, dlclose,
and dlsym (all declared in Kylix's Libc unit; see the man pages for more
information). In this case, use
procedural-type variables to reference the imported routines.
For example, on Windows or Linux:
uses Windows, ... ; {On Linux, replace Windows with SysUtils}
type
TTimeRec = record
Second: Integer;
Minute: Integer;
Hour: Integer;
end;
TGetTime = procedure(var Time: TTimeRec);
THandle = Integer;
var
Time: TTimeRec;
Handle: THandle;
GetTime: TGetTime;
f
begin
Handle:= Loadlibrary('libraryname');
if Handle <> 0 then
begin
@GetTime := GetProcAddress(Handle, 'GetTime');
if @GetTime <> nil then
begin
GetTime(Time);
with Time do
Writeln('The time is', Hour,':', Minute,':', Second);

Page# 13

end;
Freelibrary(Ha nd le);
end;
end;
When you import routines this way, the library is not loaded until the code
containing the call to LoadLibrary executes. The library is later unloaded by the
call to FreeLibrary. This allows you to conserve memory and to run your
program even when some of the libraries it uses are not present. This same
example can also be written on Linux as follows:
uses Li be, ... ;
type
TTimeRec = record
Second: Integer;
Minute: Integer;
Hour: Integer;
end;
TGetTime = procedure(var Time: TTimeRec);
THandle = Pointer;
var
Time: TTimeRec;
Handle: THandle;
GetTime: TGetTime;
f
begin
Handle := dlopen('datetime.so', RTLD_LAZY);
if Handle <> 0 then
begin
@GetTime := dlsym(Handle, 'GetTime');
if @GetTime <> nil then
begin
GetTime(Time);
with Time do
Writeln('The time is', Hour,':', Minute,':', Second);
end;
dlclose(Handle);
end;
end;
In this case, when importing routines, the shared object is not loaded until the
code containing the call to dlopen executes. The shared object is later unloaded
by the call to dlclose. This also allows you to conserve memory and to run your
program even when some of the shared objects it uses are not present.
1.2.8.4.Writing dynamically loadable libraries
The main source for a dynamically loadable library is identical to that of a
program, except that it begins with the reserved word library (instead of
program). Only routines that a library explicitly exports are available for
importing by other libraries or programs. The following example shows a library
with two exported functions, Min and Max.
library MinMax;
function Min(X, Y: Integer): Integer; stdcall;
begin
if X < Y then Min := X else Min := Y;
end;
function Max(X, Y: Integer): Integer; stdcall;
begin
if X > Y then Max := X else Max := Y;
end;
exports
Min,

Page# 14

---··

Max;
begin
end.
If you want your library to be available to applications written in other
languages, it's safest to specify stdcall in the declarations of exported functions.
Other languages may not support Object Pascal's default register calling
convention. Libraries can be built from multiple units. In this case, the library
source file is frequently reduced to a uses clause, an exports clause, and the
initialization code. For
example,
library Editors;
uses Edlnit, EdlnOut, EdFormat, EdPrint;
exports
I nitEditors,
DoneEditors name Done,
lnsertText name Insert,
DeleteSelection name Delete,
FormatSelection,
PrintSelection name Print,
f
SetErrorHand!er;
begin
I nitlibrary;
end.
You can put exports clauses in the interface or implementation section of a unit.
Any library that includes such a unit in its uses clause automatically exports the
routines listed the unit's exports clauses-without the need for an exports clause
of its own. The directive local, which marks routines as unavailable for export, is
platformspecific and has no effect in Windows programming. On Linux, the local
directive provides a slight performance optimization for routines that are
compiled into a library but are not exported. This directive can be specified for
standalone procedures and functions, but not for methods. A routine declared
with local-for example,
function Contraband(I: Integer): Integer; local;
-does not refresh the EBX register and hence
• cannot be exported from a library.
• cannot be declared in the interface section of a unit.
• cannot have its address taken or be assigned to a procedural-type variable.
• if it is a pure assembler routine, cannot be called from another unit unless the
caller sets up EBX.
1.2.8.5.The exports clause
A routine is exported when it is listed in an exports clause, which has the form
exports entnn, ... , entrv»; where each entry consists of the name of a procedure,
function, or variable (which
must be declared prior to the exports clause), followed by a parameter list (only if
exporting a routine that is overloaded), and an optional name specifier. You can
qualify the procedure or function name with the name of a unit.
(Entries can also include the directive resident, which is maintained for backward
compatibility and is ignored by the compiler.)
On Windows only, an index specifier consists of the directive index followed by
a numeric constant between 1 and 2,147,483,647. (For more efficient programs,

Page# 15

use low index values.) If an entry has no index specifier, the routine is
automatically assigned a number in the export table.
Note Use of index specifiers, which are supported for backward compatibility
only, is discouraged and may cause problems for other development tools.
A name specifier consists of the directive name followed by a string constant. If
an entry has no name specifier, the routine is exported under its original declared
name, with the same spelling and case. Use a name clause when you want to
export a routine under a different name. For example,
exports
DoSomethingABC name 'DoSomething';
When you export an overloaded function or procedure from a dynamically
loadable library, you must specify its parameter list in the exports clause. For
example,
exports
Divide(X, Y: Integer) name 'Divide_lnts',
Divide(X, Y: Real) name 'Divide_Reals';
On Windows, do not include index specifiers in entries for overloaded routines.
An exports clause can appear anywhere and any number of times in the
declaration part of a program or library, or in the interface or implementation
section of a unit. Programs seldom contain an exports clause.
1.2.8.6.Library initialization code
The statements in a library's block constitute the library's initialization code.
These statements are executed once every time the library is loaded. They
typically perform tasks like registering window classes and initializing variables.
Library initialization code can also install an exit procedure using the ExitProc
variable, as described in "Exit procedures" on page 12-4; the exit procedure
executes when the library is unloaded.
Library initialization code can signal an error by setting the ExitCode variable to
a nonzero value. ExitCode is declared in the System unit and defaults to zero,
indicating successful initialization. If a library's initialization code sets ExitCode
to another value, the library is unloaded and the calling application is notified of
the failure. Similarly, if an unhandled exception occurs during execution of the
initialization code, the calling application is notified of a failure to load the
library. Here is an example of a library with initialization code and an exit
procedure.
library Test;
var
SaveExit: Pointer;
procedure LibExit;
begin
f I I library exit code
ExiWroc := SaveExit; I I restore exit procedure chain
end;
begin
f I I library initialization code
SaveExit := ExitProc; I I save exit procedure chain
ExitProc := @LibExit; I I install LibExit exit procedure
end.
When a library is unloaded, it's exit procedures are executed by repeated calls to
the address stored in ExitProc, until ExitProc becomes nil. The initialization parts
of all units used by a library are executed before the library's initialization code,

Page# 16

and the finalization parts of those units are executed after the library's exit
procedure.
1.2.8.7.Global variables in a library
Global variables declared in a shared library cannot be imported by an Object
Pascal application.
A library can be used by several applications at once, but each application has a
copy of the library in its own process space with its own set of global variables.
For multiple libraries-or multiple instances of a library-to share memory, they
must use memory-mapped files. Refer to the your system documentation for
further information.
1.2.8.8.Libraries and system variables
Several variables declared in the System unit are of special interest to those
programming libraries. Use IsLibrary to determine whether code is executing in
an application or in a library; IsLibrary is always False in an application and True
in a library. During a library's lifetime, Hlnstance contains its instance handle.
CmdLine is always nil in a library.
The DLLProc variable allows a library to monitor calls that the operating system
makes to the library entry point. This feature is normally used only by libraries
that support multithreading. DLLProc is available on both Windows and Linux
but its use differs on each. On Windows, DLLProc is used in multithreading
applications; on Linux, it is used to determine when your library is being
unloaded. You should use finalization sections, rather than exit procedures, for
all exit behavior. (See "The finalization section" on page 3-5.)
To monitor operating-system calls, create a callback procedure that takes a single
integer parameter-for example,
procedure DLLHandler(Reason: Integer);
-and assign the address of the procedure to the DLLProc variable. When the
procedure is called, it passes to it one of the following values.
On Linux, these are defined in the Libc unit. In the body of the procedure, you
can specify actions to take depending on which
parameter is passed to the procedure.
1.2.8.9.Exceptions and runtime errors in libraries
When an exception is raised but not handled in a dynamically loadable library, it
propagates out of the library to the caller. If the calling application or library is
itself written in Object Pascal, the exception can be handled through a normal
try ... except statement.
Note Under Linux this is only possible if the library and application have both
been built with the same set of (base) runtime packages (which contains the EH
code) or if both link to ShareExcept.
If the calling application or library is written in another language, the exception
can be handled as an operating-system exception with the exception code
$0EEDF ACE. The first entry in the Exceptionlnformation array of the operating
system exception record contains the exception address, and the second entry
contains a reference to the Object Pascal exception object.
Generally, you should not let exceptions escape from your library. On Windows,

Page# 17

Delphi exceptions map to the OS exception model; Linux does not have an
exception model.
If a library does not use the SysUtils unit, exception support is disabled. In this
case, when a runtime error occurs in the library, the calling application
terminates. DLL_PROCESS_DETACH Indicates that the library is detaching
from the address space of the calling process as a result of a clean exit or a call to
FreeLibrary or (dlclose on Linux). DLL _ THREAD _ATTACH Indicates that the
current process is creating a new thread (Windows only).
DLL_THREAD _DETACH Indicates that a thread is exiting cleanly (Windows
only). Because the library has no way of knowing whether it was called from an
Object Pascal program, it cannot invoke the application's exit procedures; the
application is simply aborted and removed from memory.
1.3.Devaloping Applications Using Delphi
Borland Delphi is an object-oriented, visual programming environment for rapid
development of 32-bit applications for deployment on Windows and Linux.
Using Delphi, you can create highly efficient applications with a minimum of
manual coding.Delphi provides a comprehensive class library called the Visual
Component Library (VCL), Borland Component Library for Cross Platform
(CLX), and a suite of Rapid Application Development (RAD) design tools,
including application and form templates, and programming wizards. Delphi
supports truly object-oriented programming:
• the VCL class library includes objects that encapsulate the Windows API as
well as other useful programming techniques (Windows)
• the CLX class library includes objects that encapsulate the Qt library (Windows
or Linux)
This chapter briefly describes the Delphi development environment and how it
fits into the development life cycle. The rest of this manual provides technical
details on developing general-purpose, database, Internet and Intranet
applications, and includes information on creating ActiveX and COM controls
and writing your own components. Integrated development environment When
you start Delphi, you are immediately placed within the integrated development
environment, also called the IDE. This enviromnent provides all the tools you
need to design, develop, test, debug, and deploy applications. Delphi's
development environment includes a visual form designer, Object Inspector,
Object TreeView, Component palette, Project Manager, source code editor,and
debugger among other tools. Some tools may not be included in all versions of
the product. You can move freely from the visual representation of an object (in
the form designer), to the Object Inspector to edit the initial runtime state of the
object, to the source code editor to edit the execution logic of the object.
Changing code-related properties, such as the name of an event handler, in the
Object Inspector automatically changes the corresponding source code. In
addition, changes to the source code, such as renaming an event handler method
in a form class declaration,is immediately reflected in the Object Inspector. The
IDE supports application development throughout the stages of the product life
cycle-from design to deployment. Using the tools in the IDE allows for rapid
prototyping and shortens development time. A more complete overview of the

Page# 18

~

development environment is presented in the Quick Start manual included with
the product. In addition, the online Help system provides help on all menus,
dialogs, and windows.

1.3.1.Designing applications
Delphi includes all the tools necessary to start designing applications:
• A blank window, known as a form, on which to design the UI for your
application.
• Extensive class libraries with many reusable objects.
• An Object Inspector for examining and changing object traits.
• A Code editor that provides direct access to the underlying program logic.
• A Project Manager for managing the files that make up one or more projects.
• Many other tools such as an image editor on the toolbar and an integrated
debugger on menus to support application development in the IDE.
• Command-line tools including compilers, linkers, and other utilities.
You can use· Delphi to design any kind of 32-bit application-from general
purpose utilities to sophisticated data access programs or distributed applications.
Delphi's database tools and data-aware components let you quickly develop
powerful desktop database and client/server applications. Using Delphi's data
aware controls, you can view live data while you design your application and
immediately see the results of database queries and changes to the application
interface. Many of the objects provided in the class library are accessible in the
IDE from the Component palette. The Component palette shows all of the
controls, both visual and nonvisual, that you can place on a form. Each tab
contains components grouped by functionality. By convention, the names of
objects in the class library begin with a T, such as TStatusBar. One of the
revolutionary things about Delphi is that you can create your own components
using Object Pascal. Most of the components provided are written in Object
Pascal. You can add components that you write to the Component palette and
customize the palette for your use by including new tabs if needed. You can also
use Delphi for cross platform development on both Linux and Windows by using
CLX. CLX contains a set of classes that, if used instead of those in the VCL,
allow your pro gram to port between Windows and Linux.
1.3.2.Developing applications
As you visually design the user interface for your application, Delphi generates
the underlying Object Pascal code to support the application. As you select and
modify the properties of components and forms, the results of those changes
appear automatically in the source code, and vice versa. You can modify the
source files directly with any text editor, including the built-in Code editor. The
changes you make are immediately reflected in the visual environment as well.
1.3.3.Creating projects
All of Delphi's application development revolves around projects. When you
create an application in Delphi you are creating a project. A project is a
collection of files that make up an application. Some of these files are created at
design time. Others are generated automatically when you compile the project
source code. You can view the contents of a project in a project management tool

Page# 19

called the Project Manager. The Project Manager lists, in a hierarchical view, the
unit names, the forms contained in the unit (if there is one), and shows the paths
to the files in the project. Although you can edit many of these files directly, it is
often easier and more reliableto use the visual tools in Delphi. At the top of the
project hierarchy, is a group file. You can combine multiple projects into a
project group. This allows you to open more than one project at a time in the
Project Manager. Project groups let you organize and work on related projects,
such as applications that function together or parts of a multi-tiered application.
If you are only working on one project, you do not need a project group file to
create an application.
Project files, which describe individual projects, files, and associated options,
have a .dpr extension. Project files contain directions for building an application
or shared object. When you add and remove files using the Project Manager, the
project file is updated. You specify project options using a Project Options dialog
which has tabs for various aspects of your project such as forms, application,
compiler. These project options are stored in the project file with the project.
Units and forms are the basic building blocks of a Delphi application. A project
can share any existing form and unit file including those that reside outside the
project directory tree. This includes custom procedures and functions that have
been written as standalone routines. If you add a shared file to a project, realize
that the file is not copied into the current poject directory; it remains in its current
location. Adding the shared file to the crrent project registers the file name and
path in the uses clause of the project file. Delphi automatically handles this as
you add units to a project. When you compile a project, it does not matter where
the files that make up the project reside. The compiler treats shared files the same
as those created by the project itself.
1.3.4.Editing code
The Delphi Code editor is a full-featured ASCII editor. If using the visual
programming environment, a form is automatically displayed as part of a new
project. You can start designing your application interface by placing objects on
the orm and modifying how they work in the Object Inspector. But other
programming tsks, such as writing event handlers for objects, must be done by
typing the code. The contents of the form, all of its properties, its components,
and their properties can be viewed and edited as text in the Code editor. You can
adjust the generated code in the Code editor and add more components within the
editor by typing code. As you type code into the editor, the compiler is constantly
scanning for changed and updating the form with the new layout. You can then
go back to the form, view and test the changes you made in the editor and
continue adjusting the form from there. The Delphi code generation and property
streaming systems are completely open to inspection. The source code for
everything that is included in your final executable file-all of the VCL objects,
CLX objects, RTL sources, all of the Delphi project files can be viewed and
edited in the Code editor.
1.3.5.Compiling applications
When you have finished designing your application interface on the form,
writing additional code so it does what you want, you can compile the project

Page# 20

from the IDE or from the command line. All projects have as a target a single
distributable executable file. You can view or test your application at various
stages of development by compiling, building, or running it:
• When you compile, only units that have changed since the last compile are
recompiled.
• When you build, all units in the project are compiled, regardless of whether or
not they have changed since the last compile. This technique is useful when you
are unsure of exactly which files have or have not been changed, or when you
simply want to ensure that all files are current and synchronized. It's also
important to use Build when you've changed global compiler directives, to ensure
that all code compiles in the proper state. You can also test the validity of your
source code without attempting to compile the project.
• When you run, you compile and then execute your application. If you modified
the source code since the last compilation, the compiler recompiles those
changed modules and relinks your application. If you have grouped several
projects together, you can compile or build all projects in a single project group
at once. Choose Projectk.ompile All Projects or Projectllsuild All Projects with
the project group selected in the Project Manager.
1.3.6.Debugging applications
Delphi provides an integrated debugger that helps you find and fix errors in your
applications. The integrated debugger lets you control program execution,
monitor variable values and items in data structures, and modify data values
while debugging. The integrated debugger can track down both runtime errors
and logic errors. By running to specific program locations and viewing the values
of variables, the functions on the call stack, and the program output, you can
monitor how your program behaves and find the areas where it is not behaving as
designed. The debugger is described in online Help. You can also use exception
handling to recognize, locate, and deal with errors. Exceptions in Delphi are
classes, like other classes in Delphi, except, by convention, they begin with an E
rather than the initial T for other classes.
1.3. 7 .Deploying applications
Delphi includes add-on tools to help with application deployment. For example,
Install Shield Express (not available in all versions) helps you to create an
installation package for your application that includes all of the files needed for
running a distributed application. Refer to Chapter 13, "Deploying applications"
for specific information on deployment.
Note Not all versions of Delphi have deployment capabilities.
TeamSource software (not available in all versions) is also available for tracking
application updates.

Page# 21

Chapter 2.

Project Logic Visualization

2.1 Introduction to the problem
The main logic behind the program is the construction of a system that can

handle a linkage variance of different types of stored data and then through the
use of data aware controls manipulate these controls and perform basic
reservation, calculation, functions.
i.e. Reservation and confirmation of a seat, Search the flight database, Addition
or removal of different datasets in different tables. The first thing required by
such a system is a network of interlinked tables that can e made use of through
internal interconnections.
2.2 Databases

Any such problem must have a storage base upon which data can be
written and stored when need be. All the tables made were constructed in
Paradox format. And the program used for their construction was Database
Desktop that comes with the complete Borland Delphi 6. 0 package.

figure 2.2.a. Database Desktop Initial Launch status

Now, Let us examine the Databases required for the program they are listed below:

Page# 22

• Aircraft.db
• Airlines .db
• Class .db
• Cost.db
• Cust.db
• Flights.db
• Reservation. db
• Routes.db
• Seat.db
• Status.db

2.2.1 Detailed Account of Each Database
Now let us examine each and every database in detail as to understand what it consists
of and why have the fields that comprise the table are henceforth chooses

2.2.1.1. Detailed Account of Each Database

2.2. 1.1.1. Aircraft .db

fig ure2. 2.1.1.1. a Aircraft. db

Airlines. Db consists of the following files
1. Aname
2. Atype
3. AseatCap

Aname represnts the name of the airline , Atype represents the type of airline, and the
3rd filed represents the seating capacity of the aircraft.

Page# 23

2.2.1.1.2. Airlines .db

figure2.2.1.1.l.b Airlines.db
This table consists of the following Fields
1.Aname
2.Acode

Aname represents the name of the airlines as show in the diagram and Acod represents
the code of the airlines used in the program,

2.2.1.1.3. Class .db
fig ure2. 2.1.1.1. b Airlines. db

fig ure2. 2.1.1.1. c Class. db
This table includes the flowing fields.
1.CSclassname // deals with the name
2.Cseatcap II Capacity of the seats
3.Cemptyseats //No of empty seats
4.Creseredseats // Reservedseats

2.2.1.1.5. Cost .db

Page# 24

figure2.2.1.l.ld Class.db

Tins contains the following
l.CFtype
2.CCname
3.CAname

2.2.1.1 .6. Cust .db

figure2.2.1.1.l.f Cust.db

this database consists of the following fields
l. Custno
2. Surname
3. age
4. passportno
5. streedadd
6. postalcode
7. htell
8. Htel2
9. Mob
10. email
11. fax

Page# 25

2.2.1.1.7. Flights .db

figure2.2.1.1.1.g Fligts.db

This table consists of the following fields:
1. Fno
2. Fdeptime
3. Farrtime
4. Fduration
5. Fdepsource
6. Farrsdestin
7. Faircraft
8. Ftype
9. Froute
10. Fairlines

2.2.1.1.8. Reservation .db

figure2.2.l.1.lh Reservation.db

This table Consists of the following fields

1. Rno
2. Rpinno
3. Rcustno
4. RFno

2.2.1.1.9. Routes .db

Page# 26

figure2.2.1.1.li Routes.db

This table consists of the following elements
1. RFno
2. RFtype
3. Rname

2.2.1.1.10. Seats .db

figure2.2.1.1.fi Seats.db

This table consists of the following Fierlds

1. SFno
2. SFtype
3. Stotalseats
4. Sclasstype
5. Sseatstaken

2.2.1.1.11.Status .db

Page# 27

- ·- --

figure2.2.1.1.lk Status.db

This table consists of the following elements

1. SRcustno
2. SRpinno
3. Sstatus
4. StFno

Page# 28

~,·.-· -·~ --- ~~-

Routes

Rname
RF no
Rairlines

Aircraft

Ana me
A type
AseatCap Routes

Fno
. fdeptime

I Farrtime
Fduration

' F depsource
Farrsdestin
Faircraft
Ftype
froute
Fairfines

RF no
RFtype
Rname

Airlines

Ana me
Acode

~

Seats.db

~
SFytpe

I I Stotalseats
! Sdassname
! Sseatsl:aken

Cust.db

Custno

Rpinno
Reust no
Rfno

Surname
firstName
Age
Passportno
Streetadd
Postalcode
Hte11
Htel2
Mob
email
fax

Status

SRcustno
SRpinno
StFno

Reservation

Rno

_) -----------

figure2.2.2a Flow of Control and Interconnections

First of all let us tae a in depth look ate the core concept of the logic
behind this program. This program as the author has mentioned before deals with
the Reservation of a flight based on certain search patterns dictated by the user.

Now ,first of all note that the main table henceforth is the Flights
table(Flights. db), this table has the info as mention in earlier sections about all
the flights and their respective fields. As is the case in every program built for
purpose built scenarios, some events and handlers have been preconceived.

2.2.2.1. In depth look

In this section we will look at the figure 2.2.2.a in depth and examine th
various linked fields or data patterns that emerge in this logic definition.
As we have mentioned before this program has many databases , which were
constructed to hold specific data , but in doing so it was kept in mind that the
modularity of the logic was not fragmented. Hence, Each table was split into
sister tables that made it easier for data to flow and distribute itself.
An example of this given below:

Page# 29

2.2,2. Inter-Table Connections and relationships
(Flow of control)

Aircraft

Ana me
Atype
AseatCap

Airlines
Flights.db Ana me

Acode
Fno

I

fdeptime

I Farrtime
Fduration
Fdepsource
Farrsdestin
Faircrait
Ftype
froute
Fairlines

figure2.2.2b Flow of Control and Interconnections

The above diagram show three tables flights.db.Aircraft.db.Airlines.db
respectively. Now a closer look reveals that there are some fields common to all
three of the tables.i.e. Fairlines.Aname.Aname. Now this is due to the
modularity of the process that has been followed a to keep the data as widely
and as modular as possible.

Now a mechanism has been developed in the program that allows database
editing in such a way that editing one liked record automatically updates the
same filed in the linked status.
More detailed account of this will follow in the coming chapters.

Flights.db

Fno
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---t~eptime 

Farrtime 
Fduration 
fdepsource 
farrsdestin 
Faircrcff 
Ftypt 
froute 
Fa;rlin~s 

Reservation Seats.db 

Rno SF no 
SFytpe 
Stotalseats 
Sclassname 
Sseatstaken 

Rpinno 
Rcustno 
Rfno 

figure2.2.2c Flow of Control and Interconnections 

++As the above figure reveals that All these three tables share atleast one 
field,. In the case of the last two, the number of shared fields is two. This 

Page# 30 



modular distribution of data Is intentionally kept simple as there is no need to 
further complicate the already very shady logic. 
A few more examples are given below ; 

Reservation 

Rno 
, Rpinno 

Rcustno 
/ - Rfno 

I Custno 
Surname 
firstName 
Age 
Passportno 
Streetadd 
Postakode 
Hte11 

Status Htel2 

'- Mob 
SRcustno email ~ SRpinno fax 
StFno 

figure2.2.2d Flow of Control and Interconnections 

A word of caution must be uttered here, during the programming phase of 
the project which will be covered later in detail it was discovered that modularity 
is both productive and counterproductive, in every sense of the word. 

Page# 31 



---------- ----------~-~ 

modular distribution of data Is intentionally kept simple as there is no need to 
further complicate the already very shady logic. 
A few more examples are given below; 

Reservation 

Rno 
,, Rpinno 

Rcustno 
/ - Rfno 

! Custno 
Surname 
FirstName 
Age 
Passportno 
Streetadd 
Postal code 
Htel1 

Status Hte12 
Mob 

'- SRcustno email - SRpinno fax 
Stfno 

figure2.2.2d Flow of Control and Interconnections 

A word of caution must be uttered here, during the programming phase of 
the project which will be covered later in detail it was discovered that modularity 
is both productive and counterproductive, in every sense of the word. 

Page# 31 



Chapter3 

Software Structure and detail 

3.1 Forms and Units 

First of all lets take a look at all the forms and units used in this project, 
we start of by showing the figure below the Project inspector which as the name 
implies keeps a track of the number of units and the inherent information about 
them. 

~ Projectlirouo'l 
!~H~ Project texe 

i+l I Unit1 
!frl] Unit10 
i±J iJ Unit11 
$·eJ Unit12 
$ iJ Unit2 
~J!IJ Unit3 
$iJ Unit4 
[¥··\i1 Unit5 
¢1 liJ Unit6 
$~ Unit? :t~=- 

C: \Program Files\B orland\D elphi6\Projects 
C:\Wll"DOWS\Proliles\Manan\My Documents\My Delphi Proiects'Bp 
C:\WINDOWS\Proliles\Manan\My Documents\My Delphi Projects'Airline Ticket Reservation System 
C:\WINDOWS\Proliles\1,lanan\My Documents\My Delphi Proiects\ll.irline Ticket Reservation System 
C:\WINDOWS\Profiles\Manan\My Documents\My Delphi Projects\ll.irline Ticket Reservation System 
C\Wll"DOWS\Profiles\Manan\My Documents\My Delphi Projects\ll.irline Ticket Reservation System 
C:\WINDOWS\Profiles\Manan\My Documents\My Delphi Proiects\ll.irline Ticket Reservation System 
C:\WINDOWS\Profiles\Manan\My Documents\My Delphi Projects\ll.irline Ticket Reservation System 
C:\WINDOWS\Profiles\Manan\My Documents\~ly Delphi Projects\ll.irline Ticket Reservation System 
C:\WINDOWS\Profiles\1,ianan\My Documents\My Delphi Projects'Airline Ticket Reservation System 
C:\WINDOWS\Profiles\Manan\My Documents\My Delphi Projects'Airline Ticket Reservation System 
C:\WINDOWS\Proliles\Manan\My Documents\My Delphi Projects\ll.irline Ticket Reservation System 
C:\WINDOWS\Profiles\Manan\My Documents\My Delphi Projects\ll.irline Ticket Reservation System 
C:\WINDOWS\Profiles\Manan\My Documents\My Delphi Projects\ll.irline Ticket Reservation System 

figure 3.1.i Object Manager 

The object Inspector can be reached by clicking the View menu and then 
clicking on the OBJECT INSPECTOR menu or by using a keyboard shortcut 
namely Ctrl+Alt+Fl 1. 

Moving on to the forms, When the program icon is double-clicked by the 
user the form that appears is the main form or the form that is the first in the 
order of appearance, 

figure s.i.u Form] 

Page# 32 



the source code window of the main form is given below 

TForrnl.ViewlClick(Sender: TObject): 

TForrn1.Custorner1Click(Sender: TObject); 

figure 3.1.iii Source Code window for FOR¥] 

Now lets look at the form in detail, The form is a simpleone with a single 
menu and the menu can be accessed using the following 

Form1 
R·lli\ MainMenu1 
f±J~Blilll 
It) ~ &Edit {Editl} 
B-- Ii~ Reservation {R eservation2} 

' "*"$ Chart {Chart1) 
:----t'-f Confirm {Confirm1} 
- fy\ Edit {Edit2) 
' · ~ Cance! {Cance11) 

[£---~ &Search {Search1) 
1£1 fyi Database {D atabase2} 
L .. ~ &Help {Help1} 

figure 3.1.iv Main Menu and Object Inspector for Main Menu 

The above shows the Exact dimensions and contents of the Menu, which 
holds simple menus for simple operations. 

The second form which can be accessed using the Reservation I Chart 
menu is shown below 

Page# 33 



----- 

figure 3.1. v Form2 

Yindows1 Messages, SysUtils, Variants, Classes, Graphics, Controls 
Dialogs, CornCtr ls, StdCtr ls, ExtCtr ls, DB, DBTalJles, Grids, DBGri 

Buttons; 

TReservation = c1ass(TForm) 
PageControll: TPageControl; 
TabSheetl: TTabSheet; 
TabSheet2: TTabSheet; 
TabSheet3: TTabSheet; 
Bevell: TBevel; 
Labell: TLabel; 
Lab e 12: TLabe l; 

TLabel; 
TLabel; 

figure 3.1.vi Source code/or Form2 

as evident from diagram the form has many components and notice the 
tab component has 3 tabs but only the Chart component is highlighted as it's the 
only component that should be highlighted as the chart command was chosen. 

The next for in the list is the Generate form, which is shown below, 

Page# 34 



figure 3.1. vii Generate 

the next form in the list is the Databases form , a prototype picture of 
which is provided below 

figure 3.1. viii Databases 
The next form in the list one of the DB manipulation forms which deals 

with direct in put of data from the user.() 

Page# 35 



figure 3.1.ix Database Entry Subsets 

As its evident from the picture that, as mentioned in the previous chapters, 
there are some linked filed appearing here, and also as mentioned befor ... fields 
wioll be updated as one of them is filled, namely the primary one. 

The next form in the list is the GenerateO 1 form, that primarily deals with 
the hardest part of all thatis the generation of Customer Pin numbers for the 
customer and the manipaulation of different table datas. A pictorial description of 
the table is given below. 

Page# 36 



figure 3.1.x GenerateOJ 

The form is the Customer Info entry form that intakes info Simulatanoeus 
in steps along with the GenerateO l form 

figure 3.1.xi Customer Information 
The next form is also a DB input form and the name is Form 10 

Page# 37 



figure 3.1.xii Database Entry Susbset 

Form 11 in the list is the search form, and a the picture s given below 

File {Customer1} 
l±l 4 Edit {edit1} 

Heip {Help1} 

figure 3.1.xiii Main Menu and Object Inspector for Main Menu 

The above forms deals with the Customer and Flight data, and the Details 
of the menu item inside is also given in the above diagram. 

Form 12 in this list of forms is the Customer list Form that deals with the 
customer info, the details of which will be provided in the coming sections. 

Page# 38 



----- - 

3,2 Flow of control 
(Procedures and Functions) 

As in any program, this software has many concrete steps , sort of small 
leaps, that are taken each time, user activates a handle that in tum activates a 
function that produces a certain result, as per to the requirements of the user.\ 

Before going into the depth of the code involved in various stages of the 
software, the authors deems necessary that a pictorial presentation of the flow of 
the program be made, so it is shown below; 

(Note: The pictorial Representation provided below is just a n example of 
a reservation procedure, due to the lack of space all procedures will not be 
accommodated)) 

3.2.2.Step 2 

figure 3.2.2.i Form] 

Procedures and Functions Involved: 

In this step when the Reservation I Chart menu is selected , the 
following piece of code is executed: and we jump to step no 3. 

Page# 39 



figure 3.2.2.ii Source Code for Reservation I Chart 

3.2.3. Step 3 
This is a very crucial step in the reservation procedure of an air ticket, as it 

accepts a user defined pattern and performs a search and comes up with results 
matching the user's query. Note that the tow List boxes present here Represent, 
Help Boxes, Any text written in them shall yield a list f results from which the 
user can select his item of choice and move on . 

figure 3.2.3.i Reservation Form 

Procedures and Functions Involved: 

As it can be seen from the above diagram that this from has 5 buttons 
Each button performs a specific task, Let us study each and every one 

separately 
3.2.3.1 Generate button Procedure 
The generate button accepts data form the 4 edit boxes in the form and 

performs a LOCATE search in the respective databases, the details of which can 
be seen in the diagram below; 

Page# 40 



Boolean; 
TLocateOpt ions; 

s eercncp c i ona = [loPa1.:tialKey] / 
Loc a t e Suc ce.s s = Tablel '. Locate('Fdepsou.rce' ~ Reservation. edit 1. text, Sea~chOp 

.if ( (tablel[ 'fa1:r.sdestin' ]=edit.2. text) and 
(tablel['ftype1J=edit3. text)) then 

g·ene.t·a t e, Lis tBoxl. It ema, ddd (tabl el [ r F120']) / 

while not cablel.Eot do 
begin 

i:f ((tablel('fdepsource')=editl.text) and 
(tablel[1farr5de~tin']•edit2.text)) then 
aene r ece . ListBox1, rt.ems . add (tablel [ 'Fno')); 

table! .Next: 
end; 

figure 3.2.3.1.i Generate Button Procedure 

3.2.3.2 Show button Procedure 
_ There are 2 show buttons in the form and each one of them perform 

user defined search and comes up with answers that aid the user in progressing 
further in the program. Only one of the two Show buttons shall be explained due 
to the usage of the same procedures with minor differences of search parameters. 

mr;·:J'.1J'il'l"i1J~;t¥I&i~ffiffl'M"B'§f:ffiffl'M!fi'"1llit''fi-'l!II 

( (editS. Te x t.= 1 ao ur ce 1) at· (editS. text=' Source·)) then 
l>egin 

while not tablel.Eof do 
begin 

l isc.box 1. i terns. add (tab le 1 [ 1 Fdepsourc:e') ) ; 
tablel .Next; 

encl; 
emi; 

figure 3.2.3.2.i 

The above procedure is a simple procedure , it only lists the data required by the 
user in an indexed form in the specific list box. 

3.2.4. Step4 
In this step, The Text boxes are static meaning that they only convey usage 
info from the previous operation, and the search results that the search 
patterns churn out are listed in the List box on the right of the form. 

Page# 41 



figure 3.2.4.i Generate Form 

Procedures and Functions Involved: 

3.2.4.1. Forward Button Procedure 
The forward button is just a simple item selection procedure it basically 

selects an item clicked by the user and forwards it as the name implies to the 
next st~p- of the solution. 

figure 3.2.4.1.i Source Code for Forward Button 

3.2.5 .. StepS. 

This is the most crucial stage of the solution, and a very hectic stage on the 
part f the author, as it requires a multidimensional thinking pattersn to be 
established , because many different things happen here, which affect many 
different forms and thus tremors are felt in many different places. 
A mistake here could have been very costly as the complexity would have 
made it difficult to pin point the source of discontent. 

Page# 42 



figure 3.2.5.i 

One has to bear in mind that, when this form is activated , the user has not yet 
confirmed or temporarily booked his/her flight, there fore the status of the 
reservation should by default be N , and to do this , the following procedure is 
undertaken, 

{ to check weatheL ctll three fileds h.!ive een gene1.·dted by the use.r o.r not 
if they d .. t:e M<pty ... not}ung hdppens} 

((ectitl.Text"''') or 
(e:dit2.text "'") or 
(edit3.text m'')) then 
)1egin 

button-'l. Visible: =r e t se 
ed i tl. Color: "'cl3ctl1ght 
edit2 .cc rccr=c i acn tcnc 
edit3 .Calor: •• cl3dlight 

edit 1. enec led: =fal:,e; 
edit2. enabled: =false: 
editl .enabled: mfal:3e; 

tend ot: the .r.routine} 
(to set the det'dult s e e e e ot' buteon6} 
button6. rout . style:• [ fsbold] ; 

jwhen the form is ac e Lvac e« the staus of the .res e rve c.ron .z s null} 

figure 3.2.5.ii Source Code for Form Activate Procedure 

And now lets scrutinize the butto by button procedures. 

3.2.5.1. Generate button (Reservation it) 

Page# 43 



reservation. Table2. Open; 
reservation. table2. Last; 
c us t no : =r e ae r ve c t cn . Tab le2. Fie lclVal ues [ 'Rno 1] 

; 

generateOl. edit l. Te x t.e= int tostr ( new) ; 
reservation.t.able2.Close; 
buttonl.ene.bled:s:false; 

locks the cezne.ee e e button 
as to prevent acc~dental or 

figure 3.2.5.1.i Generate Button (Reervation #) 

This is actually a very simple look and tell procedure, it basically goes to the cust 
table and checks weather a Reservation exits, if one does that it automatically 
numbers the current record as one after that. And this accomplished with the help 
of statements evident in the diagram. 

3.2.5.2. Generate button (Cust #) 

This procedure generates a Randomly Generated customer # specific to 
that specific customer and the format of the no is NNAA, where N stands for a 
number between 0-9 and A stands for a Uppercase Alphabetic Character 
between A-Z. 

The coding of this procedure is achieved using the following code. (the 
graphic could not be shown due to the length of the procedure.) 

procedure TGenerate01.Button3Click(Sender: TObject); 
var 

i: Integer; 
r1 ,r2,r3,r4,r5,r6,r7: integer; 
dO l,d02,d03,d06: char; 

begin 
{random Pl N generator---------------------} 
randomize; 

for i:=l to 9 do 
r4:=random(i); 

for i:=l to 9 do 
rS:=random(i); 

{----------------- for dO 1--------} 
for i:=1 to 26 do 
begin 
rl :=Random(i); 

Page# 44 



case rl of 

1: dOl := 'A'; 
2: dOl := 'B'; 
3: dOI := 'C'; 
4: dOI := 'D'; 
5: d01 := 'E'; 
6: dOl := 'F'; 
7: dOI := 'G'; 
8: dOl := 'H'; 
9: dOl := 'I'; 
10: dOI := 'J'; 
11: dOl := 'K'; 
12: dOl := 'L'; 
13: dOl := 'M'; 
14: dOI := 'N'; 
15: dOl := '0'; 
16: dOl := 'P'; 
17: dOI := 'Q'; 
IS: dOl := 'R'; 
19: dOI := 'S'; 
20: dOl := 'T'; 
21: d01 := 'U'; 
22: dOl := 'V'; 
23: dOI := 'W'; 
24: d01 := 'X'; 
25: dOl := 'Y'; 
26: dOl := 'Z'; 

END; 
end; 
{-------- -------------------------} 
{----------------- for d02--------} 
for i:=1 to 26 do 
begin 
r2:=Random(i); 

case r2 of 

1: d02 := 'A'; 
2: d02 := 'B'; 
3: d02 := 'C'; 
4: d02 := 'D'; 
5: d02 := 'E'; 
6: d02 := 'F'; 
7: d02 := 'G'; 
8: d02 := 'H'; 
9: d02 := 'I'; 
10: d02 ;= 'J'; 
11: cl02 := 'K'; 
12: cl02 := 'L'; 
13: d02 := 'M'; 
14: d02 := 'N'; 
15: d02 := '0'; 
16: d02 := 'P'; 
17: d02 := 'Q'; 
18: d02 := 'R'; 
19: cl02 := 'S'; 
20: d02 := 'T'; 

' 21: cl02 := 'U'; 

Page# 45 



22: d02 := 'V'; 
23: d02 := 'W'; 
24: d02 := 'X'; 
25: d02 := 'Y'; 
26: d02 := 'Z'; 

END; 
end; 
{---------------------------------} 

edit3. Text:=inttostr(r4 )+inttostr(r5)+d0 I +d02; 
{end of generatror----------------------} 
{normaliztion of Edit I field} 
button3.enabled:=false; 
edit3.Enabled:=false; 
edit3.Color:=cl3dlight; 
editd.font.Stylet=jfsfluld]; 
{---------------------------} 

end; 

3.2.5.3. Generate button (Pinna #) 

This procedure generates a Randomly Generated customer # specific to 
that specific customer and the format of the no is AAANNANA, where N stands 
for a number between 0-9 and A stands for a Uppercase Alphabetic Character 
between A-Z. 

The coding of this procedure is achieved using the following code. (the 
graphic could not be shown due to the length of the procedure.) 

procedure TGenerateO l .Button2Click(Sender: TObject); 
var 

i: Integer; 
rl ,r2,r3,r4,r5,r6,r7: integer; 
d01,d02,d03,d06: char; 

begin 
{random PIN generator---------------------} 
randomize; 
{----------------- for dO 1--------} 
for i:=l to 26 do 
begin 
rl := Random(i); 

case rl of 

1: dOl := 'A'; 
2: dOl := 'B'; 
3: dOl := 'C'; 
4: dOl := 'D'; 
5: dOl := 'E'; 
6: dOl := 'F'; 
7: dOl := 'G'; 

Page# 46 



8: dOl := 'H'; 
9: dOI := 'l'; 
10: dOI := 'J'; 
11: dOl := 'K'; 
12: dOl := 'L'; 
13: dOl := 'M'; 
14: dOl := 'N'; 
15: dOl := 'O'; 
16: dOJ := 'P'; 
17: dOl := 'Q'; 
18: dOl := 'R'; 
19: dOl := 'S'; 
20: dOl := 'T'; 
21: dOl := 'U'; 
22: dOl := 'V'; 
23: d01 := 'W'; 
24: dOl := 'X'; 
25: d01 := 'Y'; 
26: dOl := 'Z'; 

END; 
encl; 
{-------- -------------------------} 
{----------------- for d 02--------} 
for i:=1 to 26 do 
begin 
r2:=Random(i); 

case r2 of 

1: d02 := 'A'; 
2: d02 := 'B'; 
3: d02 := 'C'; 
4: d02 := 'D'; 
5: d02 := 'E'; 
6: d02 := 'F'; 
7: d02 := 'G'; 
8: d02 := 'H'; 
9: d02 := 'I'; 
10: d02 := 'J'; 
11: d02 := 'K'; 
12: d02 := 'L'; 
13: d02 := 'M'; 
14: d02 := 'N'; 
15: d02 :== '0'; 
16: d02 := 'P'; 
17: d02 := 'Q'; 
18: d02 :== 'R'; 
19: d02 := 'S'; 
20: d02 :== 'T'; 
21: d02 := 'U'; 
22: d02 := 'V'; 
23: d02 := 'W'; 
24: d02 :== 'X'; 
25: d02 :== 'Y'; 
26: d02 := 'Z'; 

END; 
end; 
{----------------------------- ----} 
{----------------- for dO 1--------} 

for i:=l to 26 do 

Page# 47 



begin 
r3:=Random(i); 

case r3 of 

I: d03 := 'A'; 
2: cl03 := 'B'; 
3: d03 := 'C'; 
4: d03 := 'D'; 
5: d03 := 'E'; 
6: d03 := 'F'; 
7: d03 := 'G'; 
8: d03 := 'H'; 
9: d03 := 'I'; 
10: d03 := 'J'; 
11: d03 := 'K'; 
12: d03 := 'L'; 
13: d03 := 'M'; 
14: d03 := 'N'; 
15: d03 := '0'; 
16: d03 := 'P'; 
17: d03 := 'Q'; 
18: d03 := 'R'; 
19: d03 := 'S'; 
20: d03 := 'T'; 
21: <103 := 'U'; 
22: d03 := 'V'; 
23: d03 := 'W'; 
24: d03 := 'X'; 
25: d03 := 'Y'; 
26: d03 := 'Z'; 

END; 
end; 
{----- ------------ ----------------} 
for i:=1 to 9 do 

:r4:=random(i); 

for i:=1 to 9 do 
r5:=random(i); 

{----------------- for cl O 1--------} 
for i:=1 to 26 do 
begin 
r6:=Random(i); 

case r6 of 

l: d06 := 'A'; 
2: d06 := '8'; 
3: d06 := 'C'; 
4: d06 := 'D'; 
5: d06 := 'E'; 
6: d06 := 'F'; 
7: d06 := 'G'; 
8: d06 := 'H'; 
9: d06 := 'I'; 
10: d06 := 'J'; 
11: d06 := 'K'; 
12: d06 := 'L'; 
13: d06 := 'M'; 

Page# 48 



14: d06 := 'N'; 
15: d06 := '0'; 
16: d06 := 'P'; 
17: d06 := 'Q'; 
18: d06 := 'R'; 
19: d06 := 'S'; 
20: d06 := 'T'; 
21: d06 := 'U'; 
22: d06 := 'V'; 
23: d06 := 'W'; 
24: d06 := 'X'; 
25: d06 := 'Y'; 
26: d06 := 'Z'; 

END; 
end; 
{-------------------------- -------} 

for i:=1 to 9 do 
r7:=random(i); 

ed it2. Text: =dO I +d02+d03+in ttostr( r4 )+in ttostr( r5)+d 06+in ttostr( r7); 
{end of generatror----------------------} 
{normaliztion of Edit! field} 
button2.enabled:=false; 
edit2.font.Style:=[ fsBold l; 
{---------------------------} 

end; 
3.2.5.3. Customer Information Button 
This button launches the Customer Information form, for the entry of customer 
information and cosequential storage in the cust database. 

HffiffiMffffiffi1.i.h,L1:ntllhlit&fil1fflfil'ffi2¥iHrltifl@N -··- . -- _-,-,;:~-=- 

p r o oedu r e TGenerateOl. Button5Cl ic:k (Sender: TObj ecr.) ; 

Customer Information. sncv: 
Customer: Information Edit 1'1. Text: =GenerateOl. edi t3 . Text :I 

figure 3.2.5.3.i Customer Information Button 

3.2.5.4. Unlock Button 
As mentioned before, In order to prevent from accidental double clicking 

of the 2 generate buttons, they are one touch only and will be disabled after 
being clicked one time, this procedures lifts that restriction temporarily and 
opens those two buttons 

Page# 49 



":f button6. Capt ion= 1 Un Ioc k I then. 
begin 
button6,Caption:=' Lock'; 
button!. Enabled: =true; 
button2. Enabled: =t.r ue : 
button3. Enabled: =tr:ue; 

end 
eise if button6.Caption=1Lock1 then 

begin 
button6.Caption:=1Un1ock'; 
buttonl. Enabled: =false; 
button2. Enabled: =fal::ie; 
button3. Enabled: =false; 
end; 

figure 3.2.SA.i Unlock Button 

3.2.5.5. Save Button 
This button is saves the generated random patterns to a database, this is achieved 
by the following. 

[M8'.d41\fffifff 

figure 3.2.5.5.i Save 

3.2.5.6. Execute Button 

This button does three things,it makes a temporary reservation for a user, enters it 
into status.db and also it reduces the no of empty seats in the seats.db by one for 
each reservation. And it posts a T instead of a N in status box of the from and the 
database. 
This is done miraculously by the following code 

Page# 50 



execu c.i on cormiand tow th.ings must be done. 

db must he.reduced by one 

db must be filled 

r e ee rve c ion. t-able9. Eof clo 
begin 

if reservation. ceble9 [' Sfno 1] =Gene r at.e . edit.4, Text then 
begin 
reservation. table9 [ 'Sseatstaken'] : =reservation. table9 l ' saeec s cexen"j +l; 
r e eecvat.Lcn , table9 ( • Stotal3eat31 J : •reservation. table9 [' S~otalsee.ts'] -1; 
GenerateOl. Ed1tS. text: =reservation. table9 (' Stotalseats' J ~ 
en1I; 
reservation. table9. next; 

end; 
.. 2. to set the statusof the status.db) 

reservation. tablelO. insert; 
r e se rveu Lon, tab lelO ( 'SRcustno'] : =GenerateOl. edic.3, Text.; 
reservation. tablelO f' s ap i nno ' J : =oene r at.ec r . Edic.2. Text; 
reservation. tablelO (' Stfno'] : -cenccet.eu i . edit.4. Text; 

r eae rvat.f on , tab le10 [' Ssu,tus'] : •' T' ; 
GenerateOl. Edit 5. t.e xt t « reservac.ion. tablelO[' Sstacus']; 
reservaeion. cable 10, pose: 

figure 3.2.5.6.i Execute Button 

3.2.6. Step 6 

figure 3.2.6.i Customer Info 

This part deals with storage of personal info of the customer in database. The 
Saving is done by the following procedure: 

Page# 51 



reservation.Table3.0pen; 
reservation.Table3.Insert; 
reservation. Table3 [' cuat.no r j : =editl'!. text; 
reservation. Table3 [' First Name'] : =edit2. text; 
reservation. Tab le3 [ ' Surname' ] : =edit 1. text; 
reservation. Tab le3 [ ' Age'] : =e t r t.o int ( edi t3 . text) ; 
reservation. Table3 [' Passport no'] : =edit5. text+' '+edit?. text; 
reservation. Table3 [' St.reetadd'] : =ectit6. text; 
reservation. Tab le3 [' Postalcode'] : =strtoint (edit8. text); 
reservation.Table3['Htell'J :=strtoint(edit9.text); 
reservation. Table3 [' Htel2'] : =strtoint (editlO. text); 
reservation.Table3['Mob'] :=strtoint(edit11.text); 
reservation. Tab le3 [' Email'] : =edit 12. text; 
reservation. Tab le3 [' Fax' ] : =strtoint (edit 13. text) ; 
resei:vation.Table3.post; 
reservation.Table3.Close; 

figure 3.2.6.ii OK button 

Page# 52 



Conclusion 

During the course of the preparation of this system, the author has made 
many improvements in the way he perceive data flow in complex data system. The 
complexity of such big data systems amazingly reduces the logic construction 

time. One thing that was of rime concern to the author, during the preparation of 
the project was the handling and distribution of data. At the end it was clear that 
modular non linear distribution of data is a very effective way of bringing down 
the system size and considerably reducing the risk of cogging or jam during 
operation. 

The development of big data system which have a lot of parallel 
functionality is done by distributing tasks, in our case, distribution of functionality 
is done by assigning one execution element to perform many duties at one certain 
time. Another very interesting fact that the author accidentally stumbled upon 
was the fact that large databases are very easy to navigate and manipulate when 
the commands of manipulation are distributed. 

The analysis of the system source code reveals and fortifies all what has 
been said In the paragraphs above. 



REFRENCES 

[l] Borland Software Corporation,100 Enterprise Way, Scotts Valley, CA 95066- 
3249,Borland®Delphi™ 6for Windows 

Page# 54 


	Page 1
	Titles
	Near East University 
	Faculty of Engineering 


	Page 1
	Titles
	Acknowledgments 


	Page 2
	Titles
	Abstract 

	Images
	Image 1


	Page 3
	Titles
	Table of Contents 

	Images
	Image 1


	Page 4
	Images
	Image 1


	Page 5
	Titles
	- --· - ---~--~------~ 
	Introduction 


	Page 6
	Titles
	Chapter 1 
	1. 1 Introduction to DelphiŽ 
	1.2 Introduction to OOP 

	Images
	Image 1


	Page 7
	Titles
	1.2, 1 Components of OOP 

	Images
	Image 1
	Image 2


	Page 8
	Images
	Image 1


	Page 9
	Titles
	1.2.2 Program structure and syntax 

	Images
	Image 1
	Image 2


	Page 10
	Titles
	1.2,3The program heading 
	1.2.4.The program uses clause 
	1.2.5. The block 
	1.2.6.Fundamental syntactic elements 

	Images
	Image 1


	Page 11
	Titles
	1.2.6.1.Special symbols 
	1.2.6.2.ldentifiers 
	1.2.6.3.Qual ified identifiers 

	Images
	Image 1
	Image 2


	Page 12
	Titles
	Reserved words 
	1.2.6.4.Directives 
	1.2.6.5.Numerals 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 13
	Titles
	1.2.6.6.Labels 
	1.2.6. 7 .Character strings 

	Images
	Image 1


	Page 14
	Titles
	1.2.7.Comments and compiler directives 
	E.xpressfons 
	1.2. 7 .lOperators 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 15
	Titles
	Arithmetic operators 
	1.2. 7 .2.Boolean operators 
	1.2.7.3.Complete versus short-circuit Boolean evaluation 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 17
	Titles
	1.2.8.Libraries and packages 
	1.2.8.1.Calling dynamically loadable libraries 

	Images
	Image 1
	Image 2


	Page 18
	Titles
	1.2.8.2.Static loading 
	1.2.8.3.Dynamic loading 

	Images
	Image 1
	Image 2


	Page 19
	Titles
	1.2.8.4.Writing dynamically loadable libraries 

	Images
	Image 1
	Image 2


	Page 20
	Titles
	1.2.8.5.The exports clause 


	Page 21
	Titles
	1.2.8.6.Library initialization code 

	Images
	Image 1
	Image 2


	Page 22
	Titles
	1.2.8.7.Global variables in a library 
	1.2.8.8.Libraries and system variables 
	1.2.8.9.Exceptions and runtime errors in libraries 

	Images
	Image 1
	Image 2


	Page 23
	Titles
	1.3.Devaloping Applications Using Delphi 

	Images
	Image 1
	Image 2


	Page 24
	Titles
	1.3.1.Designing applications 
	1.3.2.Developing applications 
	1.3.3.Creating projects 

	Images
	Image 1


	Page 25
	Titles
	1.3.4.Editing code 
	1.3.5.Compiling applications 

	Images
	Image 1
	Image 2


	Page 26
	Images
	Image 1
	Image 2


	Page 27
	Titles
	Chapter 2. 
	Project Logic Visualization 
	2.1 Introduction to the problem 
	2.2 Databases 

	Images
	Image 1
	Image 2
	Image 3


	Page 28
	Titles
	2.2.1 Detailed Account of Each Database 
	2.2.1.1. Detailed Account of Each Database 
	2.2. 1.1.1. Aircraft .db 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 29
	Titles
	2.2.1.1.2. Airlines .db 
	2.2.1.1.5. Cost .db 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 1
	Titles
	figure2.2.1.l.ld Class.db 
	2.2.1.1 .6. Cust .db 
	figure2.2.1.1.l.f Cust.db 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 2
	Titles
	2.2.1.1.7. Flights .db 
	2.2.1.1.8. Reservation .db 
	2.2.1.1.9. Routes .db 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 3
	Titles
	2.2.1.1.11.Status .db 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 4
	Titles
	figure2.2.1.1.lk Status.db 

	Images
	Image 1
	Image 2


	Page 5
	Titles
	2.2.2.1. In depth look 

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 6
	Titles
	2.2,2. Inter-Table Connections and relationships 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 7
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 8
	Images
	Image 1

	Tables
	Table 1


	Page 9
	Titles
	Chapter3 
	Software Structure and detail 
	3.1 Forms and Units 
	:t~=- 
	figure 3.1.i Object Manager 
	figure s.i.u Form] 
	Page# 32 

	Images
	Image 1
	Image 2
	Image 3


	Page 10
	Images
	Image 1
	Image 2
	Image 3


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Images
	Image 1
	Image 2


	Page 14
	Images
	Image 1
	Image 2
	Image 3


	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 16
	Titles
	3,2 Flow of control 
	(Procedures and Functions) 

	Images
	Image 1
	Image 2
	Image 3


	Page 17
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 19
	Images
	Image 1
	Image 2
	Image 3


	Page 20
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 21
	Images
	Image 1
	Image 2
	Image 3


	Page 22
	Titles
	{-------- -------------------------} 
	Page# 45 

	Images
	Image 1


	Page 23
	Titles
	END; 
	{---------------------------------} 
	{---------------------------} 
	Page# 46 

	Images
	Image 1


	Page 24
	Titles
	{-------- -------------------------} 
	Page# 47 

	Images
	Image 1
	Image 2


	Page 25
	Titles
	Page# 48 

	Images
	Image 1
	Image 2


	Page 26
	Titles
	END; 
	{-------------------------- -------} 
	{---------------------------} 
	This button launches the Customer Information form, for the entry of customer 
	HffiffiMffffiffi1.i.h,L1:ntllhlit&fil1fflfil'ffi2¥iHrltifl@N -··- . -- _-,-,;:~-=- 
	figure 3.2.5.3.i Customer Information Button 
	Page# 49 

	Images
	Image 1
	Image 2


	Page 27
	Titles
	figure 3.2.SA.i Unlock Button 
	3.2.5.5. Save Button 
	by the following. 
	figure 3.2.5.5.i Save 
	3.2.5.6. Execute Button 

	Images
	Image 1
	Image 2
	Image 3


	Page 28
	Images
	Image 1
	Image 2


	Page 29
	Titles
	figure 3.2.6.ii OK button 
	Page# 52 

	Images
	Image 1
	Image 2
	Image 3


	Page 30
	Titles
	Conclusion 

	Images
	Image 1


	Page 31
	Titles
	REFRENCES 

	Images
	Image 1



