
NEAR EAST UNIVERSITY

I

Faculty of Engineering

Department of Computer Engineering

PARALLEL VIRTU.AL MACHINE SYSTEM

Graduation Project
Com -400

Student: Serdar AYDIN

Supervisor : Mr. Halil ADAHAN

Nicosia - 2003

ACKNOWLEDGE

I would like to thank all those who offered encouragement and advice.throughout this project.

Especially, I'd like to thank Halil ADAHAN for advised and helped. Also I would like to

thank Arzu YILMAZ sterling support and conversation.In particular, my family offered

helpful comments along the way. Last, but no means least.I would like to thank Muhsin

GEMICI for helping. If there were no in my side,it would be hard and take a long time.

CONTENTS

lSTRACT

TRODUCTION

iAPTER 1: THEPVM SYSTEM

PVM User Interface

.. 1 Message Buffer

How PVM Works

Setup to Use PVM

l.AJ>TER 2: STARTING PVM

PVM Console Details

Basic Programming Techniques

1 Common Parallel 'Programming Paradigms

_ Crowd Computation

3 Tree Computation

Workload Allocation

Data Decomposition

_ Function Decomposition

Core Features of PVM

Data Transfer and Barrier Synchronization

- Shared Memory and Mutual Exlusion

Implementation

Point-to-Point Data Transfer

Performance Consideration ofPVM

_ Raw Communications Performance ofPVM

Scientific Computing

Begining Programing

Compiling and Running Program

Communication Between Tasks

Dynamic Process Group

11

1

11

13

14

15

19

23

24

25

27

28

29

30

33

35

35

36

37

37

38

38

39

40

40

41

Load Balancing

Distributed Computing

Message Buffers

Matrix Multiplication

Simulation and Test Results

RENCES

111

42

43

43

45

46

47

55

56

CONTENT OF THE FIGURE

1. FIGURE 1.1: PVM Sytem Overview 7

2. FIGURE 1.2: PVM System Overview 8

3. FIGURE 2.1: XPVM System Adding Hosts 20

4. FIGURE 2.2.2.1: Master-Slave Paradigm 26

5. FIGURE 2.2.2.2: General Crowd Computation 26

6. FIGURE 2.2.3 .1: Function Decomposition Example 31

7. FIGURE 3.3.1: PVM Startup Protocol 34

lV

CONTENT OF THE TABLE

Tablel.3.1: PVM ARCH names used in PVM 3

V

16

ABSTRACT

The PVM (Parallel Virtual Machine) system is a programming environment for the

development and execution of large concurrent or parallel application that consists of many

interacting, but relatively independent, components. It is also named as, a software framework

for heterogeneous concurrent computing in networked environments has evolved into a viable

technology for distributed and parallel using the combined resources of heterogeneous

networked computing platforms to deliver high multiprocessors, or general-purpose

computers, enabling application components to execute on of the PVM system, its computing

model, programming interface it supports, and typical application implementation such as

matrix multiplication using MPP.

INTRODUCTION

Parallel processing, the method of having many small tasks solve one large problem, has

emerged as a key enabling technology in modern computing. The past several years have

witnessed an ever-increasing acceptance and adoption of parallel processing, both for high

performance scientific computing and for more "general-purpose" applications, was a result

of the demand for higher performance, lower cost, and sustained productivity. The acceptance

has been facilitated by two major developments: massively parallel processors (MPPs) and

the widespread use of distributed computing.

MPPs are now the most powerful computers in the world. These machines combine a few

hundred to a few thousand CPUs in a single large cabinet connected to hundreds of gigabytes

of memory. MPPs offer enormous computational power and are used to solve computational

Grand Challenge problems such as global climate modeling and drug design. As simulations

become more realistic, the computational power required to produce them grows rapidly.

Thus, researchers on the cutting edge turn to :MPPs and parallel processing in order to get the

most computational power possible.

The second major development affecting scientific problem solving is distributed computing.

Distributed computing is a process whereby a set of computers connected by a network are

used collectively to solve a single large problem. As more and more

1

organizations have high-speed local area networks interconnecting many general-purpose

workstations, the combined computational resources may exceed the power of a single

high-performance computer. In some cases, several MPPs have been combined using

distributed computing to produce unequaled computational power.

The most important factor in distributed computing is cost. Large MPPs typically cost

more than $10 million. In contrast, users see very little cost in running their problems on

a local set of existing computers. It is uncommon for distributed-computing users to

realize the raw computational power of a large MPP, but they are able to solve problems

several times larger than they could using one of their local computers.

Common between distributed computing and MPP is the notion of message passing. In

all parallel processing, data must be exchanged between cooperating tasks. Several

paradigms have been tried including shared memory, parallelizing compilers, and

message passing. The message-passing model has become the paradigm of choice, from

the perspective of the number and variety of multiprocessors that support it, as well as in

terms of applications, languages, and software systems that use it.

The Parallel Virtual Machine (PVM) system described in this book uses the message

passing model to allow programmers to exploit distributed computing across a wide

variety of computer types, including MPPs. A key concept in PVM is that it makes a

collection of computers appear as one large virtual machine , hence its name.

The PVM system is a software infrastructure that evolves a generalized distributed

memory multiprocessor in heterogeneous networked environments. The PVM system has

gained acceptance and adoption of parallel processing, both for high scientific computing

as well as for more "general-purpose" applications. Moreover, the message-passing

model of PVM has gained predominance from the perspective of the number of variety

of multiprocessors, and also in term of application, languages, and software system. The

PVM approach has proven to be a viable and cost-effective technology for concurrent

computing in many application domains. The PVM system has gained widespread

2

acceptance, to the extent that is referred to as the "de-facto" standard for distributed

memory concurrent computing.

Many application that are adaptable to concurrent execution can be programmed using

either message passing or share memory algorithms. A hybrid algorithm, at a sufficiently

high level of granularity may be used when computing supporting environments are

available. As an example is matrix multiplication. In an environment consisting of
different types of scalar machines and multiprocessors, highly effective and efficient

algorithms for matrix multiplication can be implemented, with some subblocks being

multiplied using static rescheduling or shared memory machines strategies on distributed

memory.

Most typica1 computing environments already process the hardware diversity to such

large, parallel applications, and also contain support for multiple concurrent computation

models. High speed local networks and graphics workstation, high-performance scalar

engines, and vector computer are that norm rather than theexception, and will continue to

be over the coming years. However, to implement this collection of capabilities and to

utilize it productively requires considerable efforts is coordination and reconciliation

between different computation models and architectures. The PVM system attempts to

provide a unified framework within which a obje·ctive of the PVM system is to permit a

collection of heterogeneous machines on a network to be viewed as a general-purpose

concurrent computation resource.

The PVM system provides a set of user interface primitives that may be incorporated into

existing languages. Primitives exist for the invocation of processes, message transmission

and reception, broadcasting, synchronization via barriers, mutual exclusion, and shared

memory. Processes may be initiated synchronously or asynchronously, and may be

conditions upon the initiation or termination of another process, or upon the availability

of data values. The PVM constructs permit the most appropriate programming paradigm

and language to be used for each individual component of a parallel system, while

retaining the ability for components to interact and cooperate.

3

1.2 Heterogeneous Network Computing

Heterogeneous, network-base, concurrent computing refers to an evolving methodology

for general-purpose concurrent computing, described by two major actions.

1. Interconnected by one or more network types, the hardware platform consists of a

collection of multifaceted computer system of varying architectures.

2. Applications are viewed as comprising several sub-algorithms, each of, which is

potentially different in terms of its most appropriate programming model,

implementation language, and resource requirements

Heterogeneous network computing refers to models, techniques, and toolkits to match
heterogeneous environments with complete applications, consisting of different subtask.

The PVM system was designed to realize a more general and encompassing interpretation

of heterogeneous computing. PVM supports heterogeneous machines, applications and

networks. The future extension of PVM research is mainly to propose a heterogeneous

application development model and associated programming frameworks, and to provide

adequate infrastructure for heterogeneous debugging, utilization, profiling and

monitoring. In high performance of scientific and robust emulation's of heterogeneous

concurrent machines, have proven to be valuable and effective for more traditional

application.

4

CHAPTER 1: The PVM SYSTEM

PVM (Parallel Virtual Machine) is a byproduct of an ongoing heterogeneous network

computing research project involving the authors and their institutions. The general goals

of this project are to investigate issues in, and develop solutions for, heterogeneous

concurrent computing. PVM is an integrated set of software tools and libraries that

emulates a general-purpose, flexible, heterogeneous concurrent computing framework on

interconnected computers of varied architecture. The overall objective of the PVM

system is to enable such a collection of computers to be used cooperatively for concurrent

or parallel computation. Detailed descriptions and discussions of the concepts, logistics,

and methodologies involved in this network-based computing process are contained in

the remainder of the book. Briefly, the principles upon which PVM is based include the

following:

1. User-configured host pool : The application's computational tasks execute on a set of

machines that are selected by the user for a given run of the PVM program. Both

single-CPU machines and hardware multiprocessors (including shared-memory and

distributed-memory computers) may be part of the host pool. The host pool may be

altered by adding and deleting machines during operation (an important feature for

fault tolerance).

2. Translucent access to hardware: Application programs either may view the hardware

environment as an attributes collection of virtual processing elements or may choose

to exploit the capabilities of specific machines in the host pool by positioning certain

computational tasks on the most appropriate computers.

3. Process-based computation: The unit of parallelism in PVM is a task (often but not

always a Unix process), an independent sequential thread of control that alternates

between communication and computation. No process-to-processor mapping is

implied or enforced by PVM; in particular, multiple tasks may execute on a single

processor.

4. Explicit message-passing model: Collections of computational tasks, each performing
'

a part of an application's workload using data-, functional-, or hybrid decomposition,

5

cooperate by explicitly sending and receiving messages to one another. Message size

is limited only by the amount of available memory.

5. Heterogeneity support: The PVM system supports heterogeneity in terms of

machines, networks, and applications. With regard to message passing, PVM permits

messages containing more than one data type to be exchanged between machines

having different data representations.

6. Multiprocessor support: PVM uses the native message-passing facilities on

multiprocessors to take advantage of the underlying hardware. Vendors often supply

their own optimized PVM for their systems, which can still communicate with the

public PVM version.

Key Featues
1. Easily obtainable public domain package.

2. Easy to install.

3. Easy to configure.
4. Many different virtual machines may co- exist on the same hardware.

5. Program development using a widely adopted message passing library.

6. Supports C and Fortran.
7. Installation only requires a few Mb of disk space.

8. Simple migration path to MPI.

The PVM system is composed of two parts. The :first part is a daemon , called pvmd3 and

sometimes abbreviated pvmd, that resides on all the computers making up the virtual

machine. (An example of a daemon program is the mail program that runs in the

background and handles all the incoming and outgoing electronic mail on a computer.)

Pvmd3 is designed so any user with a valid login can install this daemon on a machine.

When a user wishes to run a PVM application, he :first creates a virtual machine by

starting up PVM. The PVM application can then be started from a Unix prompt on any of

the hosts. Multiple users can configure overlapping virtual machines, and each user can

execute several PVM applications simultaneously. The second part of the system is a

library of PVM interface routines. It contains a functionally complete repertoire of

primitives that are needed for cooperation between tasks of an application. This library

6

contains user-callable routines for message passing, spawning processes, coordinating

tasks, and modifying the virtual machine. The PVM computing model is based on the

notion that an application consists of several tasks. Each task is responsible for a part of

the application's computational workload. Sometimes an application is parallelized along

its functions; that is, each task performs a different function, for example, input, problem

setup, solution, output, and display. This process is often called functional parallelism . A

more common method of parallelizing an application is called data parallelism . In this

method all the tasks are the same, but each one only knows and solves a small part of the

data. This is also referred to as the SPMD (single-program multiple-data) model of

computing. PVM supports either or a mixture of these methods. Depending on their

functions, tasks may execute in parallel and may need to synchronize or exchange data,

although this is not always the case. An exemplary diagram of the PVM computing

model is shown in Figurel and an architectural view of the PVM system, highlighting the

heterogeneity of the computing platforms supported by PVM, is shown in Figure 1.1

®=..:..
/ ' ~ Cmnp2.

~
~
/

" /

~~t&
~ D.iaplay

ID.t,n,,u,m~ ••••••• & ·-- 1n.--.-- -& .,.,_

Figure 1.1: PVM System Overview

7

EJ ,,,
I / I
V I

I Ve<>tm." SC

Figure 1.2: PVM System Overview

The PVM system currently supports C, C++, and Fortran languages. This set oflanguage

interfaces have been included based on the observation that the predominant majority of

target applications are written in C and Fortran, with an emerging trend in experimenting

with object-based languages and methodologies. The C and C++ language bindings for

the PVM user interface library are implemented as functions, following the general

conventions used by most C systems, including Unix-like operating systems. To

elaborate, function arguments are a combination of value parameters and pointers as

appropriate, and function result values indicate the outcome of the call. In addition,

macro definitions are used for system constants, and global variables such as errno and

pvm_errno are the mechanism for discriminating between multiple possible outcomes.

Application programs written in C and C++ access PVM library functions by linking

against an archival library (libpvm.l.a) that is part of the standard distribution. Fortran
language bindings are implemented as subroutines rather than as functions. This

approach was taken because some compilers on the supported architectures would not

reliably interface Fortran functions with C functions. One immediate implication of this

is that an additional argument is introduced into each PVM library call for status results

to be returned to the invoking program. Also, library routines for the placement and

retrieval of typed data in message buffers are unified, with an additional parameter

indicating the data type. Apart from these differences (and the standard naming prefixes -

8

pvm_ for C, and pvmffor Fortran), a one-to-one correspondence exists between the two

language bindings. Fortran interfaces to PVM are implemented as library stubs that in

turn invoke the corresponding C routines, after casting and/or dereferencing arguments as

appropriate. Thus, Fortran applications are required to link against the stubs library

(libfpvm3.a) as well as the C library. All PVM tasks are identified by an integer task

identifier (TID). Messages are sent to and received from TIO. Since TID must be unique

across the entire virtual machine, they are supplied by the local pvmd and are not user

chosen. Although PVM encodes information into each TID the user is expected to treat

the TID as opaque integer identifiers. PVM contains several routines that return TIO

values so that the user application can identify other tasks in the system. There are

applications where it is natural to think of a group of tasks . And there are cases where a

user would like to identify his tasks by the numbers O - (p - 1), where pis the number of

tasks. PVM includes the concept of user named groups. When a task joins a group, it is

assigned a unique "instance" number in that group. Instance numbers start at O and

count up. In keeping with the PVM philosophy, the group functions are designed to be

very general and transparent to the user. For example, any PVM task can join or leave

any group at any time without having to inform any other task in the affected groups.

Also, groups can overlap, and tasks can broadcast messages to groups of which they are

not a member. To use any of the group functions, a program must be linked with

libgpvm3.a .

The general paradigm for application programming with PVM is as follows. A user

writes one or more sequential programs in C, C++, or Fortran 77 that contain embedded

calls to the PVM library. Each program corresponds to a task making up the application.

These programs are compiled for each architecture in the host pool, and the resulting

object files are placed at a location accessible from machines in the host pool. To execute

an application, a user typically starts one copy of one task (usually the "master" or

"initiating" task) by hand from a machine within the host pool. This process subsequently

starts other PVM tasks, eventually resulting in a collection of active tasks that then

compute locally and exchange messages with each other to solve the problem. Note that

while the above is a typical scenario, as many tasks as appropriate may be started

9

manually. As mentioned earlier, tasks interact through explicit message passing,

identifying each other with a system-assigned, opaque TID.

mainO

{

int cc, tid, msgtag;

char buf[l 00];

printfl'Tm t%x\n", pvm jnytidfj);

cc= pvm_spawn("hello_other", (char**)O, 0, "", 1, &tid);

if(cc = 1) {
msgtag = 1;
pvm _recv(tid, msgtag);

pvm _ upkstr(but);

printf{"from t%x: %s\n", tid, but);

} else
printft"can't start hello_other\n");

pvm jexitt);

}

This program is intended to be invoked manually; after printing its task id (obtained with

pvm _ mytidO), it initiates a copy of another program called hello_ other using the

pvm jspawnt) ,function. A successful spawn causes the program to execute a blocking

receive using pvm _recv. After receiving the message, the program prints the message sent
by its counterpart, as well its task id; the buffer is extracted from the message using

pvm _ upkstr. The final pvm _ exit call dissociates the program from the PVM system.

#include "pvm3.h"

10

main()

{

int ptid, msgtag;

char buf[lOO];

ptid = pvm _parent();

strcpy(buf, "hello, world from ");

gethostname(buf + strlen(buf), 64);
msgtag= 1;
pvm _initsend(PvmDataDefault);

pvm _pkstr(buf);

pvm _ send(ptid, msgtag);

pvmexin);

}

Its first PVM action is to obtain the task id of the "master" using the pvm_yarent call.

This program then obtains its hostname and transmits it to the master using the three-call

sequence - pvm _initsend to initialize the send buffer; pvm _ykstr to place a string, in a

strongly typed and architecture-independent manner, into the send buffer; and pvm _send

to transmit it to the destination process specified by ptid, "tagging" the message with the

number 1.

1.1. PVM User Interface

In this chapter we give a brief description of the routines in the PVM 3 user library. This

chapter is organized by the functions of the routines. For example, Message Passing is a

discussion of all the routines for sending and receiving data from one PVM task to

another and a description ofPVM's message passing options. The calling syntax of the C

and Fortran PVM routines are highlighted by boxes in each section.

11

In PYM 3 all PYM tasks are identified by an integer supplied by the local pvmd. In the

following descriptions this task identifier is called TID. It is similar to the process ID

(PID) used in the Unix system and is assumed to be opaque to the user, in that the value

of the TID has no special significance to him. In fact, PYM encodes information into the

TID for its own internal use

All the PYM routines are written in C. C++ applications can link to the PYM library.

Fortran applications can call these routines through a Fortran 77 interface supplied with

the PYM 3 source. This interface translates arguments, which are passed by reference in

Fortran, to their values if needed by the underlying C routines. The interface also takes

into account Fortran character string representations and the various naming conventions

that different Fortran compilers use to call C functions.

The PYM communication model assumes that any task can send a message to any other

PYM task and that there is no limit to the size or number of such messages. While all

hosts have physical memory limitations that limits potential buffer space, the

communication model does not restrict itself to a particular machine's limitations and

assumes sufficient memory is available. The PYM communication model provides

asynchronous blocking send, asynchronous blocking receive, and non-blocking receive

functions. In our terminology, a blocking send returns as soon as the send buffer is free

for reuse, and an asynchronous send does not depend on the receiver calling a matching

receive before the send can return. There are options in PYM 3 that request that data be

transferred directly from task to task. In this case, if the message is large, the sender may

block until the receiver has called a matching receive.

A non-blocking receive immediately returns with either the data or a flag that the data has

not arrived, while a blocking receive returns only when the data is in the receive buffer.

In addition to these point-to-point communication functions, the model supports multicast

to a set of tasks and broadcast to a user-defined group of tasks. There are also functions to

perform global max, global sum, etc., across a user-defined group of tasks. Wildcards can

be specified in the receive for the source and label, allowing either or both of these

12

contexts to be ignored. A routine can be called to return information about received

messages.

The PVM model guarantees that message order is preserved. If task 1 sends message A to

task 2, then task 1 sends message B to task 2, message A will arrive at task 2 before

message B. Moreover, if both messages arrive before task 2 does a receive, then a

wildcard receive will always return message A.

Message buffers are allocated dynamically. Therefore, the maximum message size that

can be sent or received is limited only by the amount of available memory on a given

host. There is only limited flow control built into PVM 3.3. PVM may give the user a

can't get memory error when the sum of incoming messages exceeds the available

memory, but PVM does not tell other tasks to stop sending to this host.

1.1.1 Message Passing

Sending a message comprises three steps in PVM. First, a send buffer must be initialized

by a call to pvm _initsendO or pvm _ mkbu/O. Second, the message must be "packed" into

this buffer using any number and combination of pvm __pk*O routines. (In Fortran all
message packing is done with the pvmfpackt) subroutine.) Third, the completed message

is sent to another process by calling the pvm jsendt) routine or multicast with the

pvm _ mcastt) routine. A message is received by calling either a blocking or non-blocking

receive routine and then "unpacking" each of the packed items from the receive buffer.

The receive routines can be set to accept any message, or any message from a specified

source, or any message with a specified message tag, or only messages with a given
message tag from a given source. There is also a probe :function that returns whether a

message has arrived, but does not actually receive it.

If required, other receive contexts can be handled by PVM 3. The routine pvm recvft)

allows users to define their own receive contexts that will be used by the subsequent

PVM receive routines.

13

1.2 H~w PVM Works

This section describes the implementation of the PVM software and the reasons behind

the basic design decisions. The most important goals for PVM 3 are fault tolerance,

scalability, heterogeneity, and portability. PVM is able to withstand host and network

failures. It doesn't automatically recover an application after a crash, but it does provide

polling and notification primitives to allow fault-tolerant applications to be built. The
virtual machine is dynamically reconfigurable. This property goes hand in hand with fault

tolerance: an application may need to acquire more resources in order to continue running

once a host has failed. Management is as decentralized and localized as possible, so

virtual machines should be able to scale to hundreds of hosts and run thousands of tasks.

PVM can connect computers of different types in a single session. It runs with minimal

modification on any flavor of Unix or an operating system with comparable facilities

(multitasking, networkable). The programming interface is simple but complete, and any

user can install the package without special privileges.

To allow PVM to be highly portable, we avoid the use of operating system and language

features that would be hard to retrofit if unavailable, such as multithreaded processes and

asynchronous 1/0. These exist in many versions of Unix, but they vary enough from
product to product that different versions of PVM might need to be maintained. The

generic port is kept as simple as possible, though PVM can always be optimized for any

particular machine.

We assume that sockets are used for inter-process communication and that each host in a

virtual machine group can connect directly to every other host via TCP [9] and UDP [1 O]
protocols. The requirement of full IP connectivity could be removed by specifying

message routes and using the pvmds to forward messages. Some multiprocessor machines

don't make sockets available on the processing nodes, but do have them on the front-end .

14

1.3 Setup to Use PVM

One of the reasons for PVM's popularity is that it is simple to set up and use. PVM does

not require special privileges to be installed. Anyone with a valid login on the hosts can

do so. In addition, only one person at an organization needs to get and install PVM for

everyone at that organization to use it.

PVM uses two environment variables when starting and running. Each PVM user needs

to set these two variables to use PVM. The first variable is PVM_ROOT, which is set to

the location of the installed pvm3 directory. The second variable is PYM_ ARCH , which

tells PVM the architecture of this host and thus what executables to pick from the

PVM_ROOT directory.

The easiest method is to set these two variables in your .cshrc file. We assume you are

using csh as you foJlow along this tutorial. Here is an example for setting PVM_ROOT:

setenv PVM_ROOT $HOME!pvm3

It is recommended that the user set PYM_ ARCH by concatenating to the file .cshrc, the

content of file $PVM_ROOT/lib/cshrc.stub. The stub should be placed after PATH and

PVM_ROOT are defined. This stub automatically determines the PVM_ARCH for this

host and is particularly useful when the user shares a common file system (such as NFS)

across several different architectures.

PVM ARCH Machine Notes

AFX8

ALPHA

BAL

BFLY

Alliant FX/8

DEC Alpha

Sequent Balance

BBN Butterfly TC2000

DEC OSF-1

DYNIX

BSD386 80386/486 PC runnning Unix BSDI, 386BSD, NetBSD

CM2 Thinking Machines CM2 Sun front-end

CMS Thinking Machines CM5 Uses native messages

15

CNVX Convex C-series IEEE f.p.

CNVXN Convex C-series native f.p.

CRAY C-90, YMP, T3D port available UNICOS

CRA Y2 Cray-2
CRA YSMP Cray S-MP

DGAV Data General Aviion

E88K Encore 88000

HP300 HP-9000 model 300 HPUX

HPPA HP-9000 PA-RISC

1860 lntel iPSC/860 Uses native messages

lPSC2 lntel iPSC/2 386 host SysV, Uses native messages

KSRl Kendall Square KSR-1 OSF-1, uses shared memory

LlNUX 80386/486 PC running Unix LlNUX

MASP AR Maspar

MlPS MlPS 4680

NEXT NeXT
PGON Intel Paragon Uses native messages

PMAX DECstation 3100, 5100 Ultrix

RS6K IBMIRS6000 AlX 3.2

RT IBMRT
SGI Silicon Graphics lRIS IRIX 4.x

SGlS Silicon Graphics lRIS lRIX 5 .x

SGlMP SGI multiprocessor Uses shared memory

SUN3 Sun 3 SunOS 4.2

SUN4 Sun 4, SPARCstation

SUN4SOL2 Sun 4, SPARCstation

SUNMP SP ARC multiprocessor

SYMM SequentSymmetry

TlTN Stardent Titan

SunOS 4.2

Solaris 2.x
Solaris 2.x, uses shared memory

U370 IBM370
, UV AX DEC MicroVAX

AIX

16

--------------------------,----------------------------- ---

Table 1.3.1: PVM_ARCH names used in PVM 3

Table 1.3 .1 lists the PVM _ ARCH names and their corresponding architecture types that

are supported in PVM 3 .3.

The PVM source comes with directories and makefiles for most architectures you are

likely to have.

17

CHAPTER 2: Starting PVM

Before we go over the steps to compile and run parallel PVM programs, it should be

appropriate to start up PVM and configure a virtual machine. On any host on which PVM

has been installed you can type

%pvm

and you should get back a PVM console prompt signifying that PVM is now running on

this host. You can add hosts to your virtual machine by typing at the console prompt

pvm> add hostname

And you can delete hosts (except the one you are on) from your virtual machine by

typing

pvm> delete hostname

If you get the message "Can't Start pvmd", then check the common startup problems

section and try again.

To see what the present virtual machine looks like, you can type

pvm> conf

To see what PVM tasks are running on the virtual machine, you type

pvm> ps-a

Of course you don't have any tasks running yet; that's in the next section. If you type

"quit" at the console prompt, the console will quit but your virtual machine and tasks will

continue to run. At any Unix prompt on any host in the virtual machine, you can type

%pvm

and you will get the message "pvm already running" and the console prompt. When you

are finished with the virtual machine, you should type

pvm> halt

This command kills any PVM tasks, shuts down the virtual machine, and exits the

console. This is the recommended method to stop PVM because it makes sure that the

virtual machine shuts down cleanly.

18

You should practice starting and stopping and adding hosts to PVM until you are

comfortable with the PVM console. A full description of the PVM console and its many

command options is given at the end of this chapter.

If you don't want to type in a bunch of host names each time, there is a hostfile option.

You can list the hostnames in a file one per line and then type

% pvm host:file

PVM will then add all the listed hosts simultaneously before the console prompt appears.

Several options can be specified on a per-host basis in the hostfile . These are described

at the end of this chapter for the user who wishes to customize his virtual machine for a

particular application or environment.

There are other ways to start up PVM. The functions of the console and a performance

monitor have been combined in a graphical user interface called XPVM , which is

available precompiled on netlib. lfXPVM has been installed at your site, then it can be

used to start PVM. To start PVM with this X window interface, type;

%xpvm

The menu button labled "hosts" will pull down a list ofhosts you can add. If you click on

a hostname, it is added and an icon of the machine appears in an animation of the virtual

machine. A host is deleted if you click on a hostname that is already in the virtual

machine (see Figure 2.1). On startup XPVM reads the file $HOME/.xpvm_hosts, which

is a list of hosts to display in this menu. Hosts without leading"\&" are added all at once

at startup.

The quit and halt buttons work just like the PVM console. If you quit XPVM and then

restart it, XPVM will automatically display what the running virtual machine looks like.

Practice starting and stopping and adding hosts with XPVM. If there are errors, they

should appear in the window where you started XPVM.

19

.:. J - •• --------· •••• ·-------·" " •• ·-------- •• " "------· •• " .!.

~=~~i1~..:.,:1 ~--,, ._-,.r
:•••w : ~, ..
! .,.,t•
;~
?•11,
; •.....
!~
i••r•
f •• ;:·~
j.:..:..:=:.._ =····.> : .., .. g-F:::~ I:~.-~·---· .,., ... r- ---~.-..::.::.·------ -- .•. ;

I ,t:1 S f·•l f•I ii>I fT; n ••••••.•••• s- .. 'tl,>OUC I . " ,.. • ~~-

]
-1~ ,._ ,........... -~ .. ,~-··

~I : I. ,..1, •• , 1•• t
; Lata

"·1 f•I fo.l

~!l·-·- ;gj
••• .>

<•••····- ".Adi•• ... _.., •. _

Figure 2.1: XPVM System Adding Hosts

2.1 PVM Console Details

The PVM console, called pvm, is a stand-alone PYM task that allows the user to

interactively start, query, and modify the virtual machine. The console may be started and

stopped, multiple times on any of the hosts in the virtual machine without affecting PYM

or any applications that may be running. When started, pvm determines whether PYM is

already running; if it is not, pvm automatically executes pvmd on this host, passing pvmd

the command line options and hostfile. Thus PVM need not be running to start the

console.

pvm [-n<hostname> J [host.file]

The -Il option is useful for specifying an alternative name for the master pvmd (in case

hostname doesn't match the IP address you want). Once PYM is started, the console

prints the prompt;

pvm>

and accepts commands from standard input. The available commands are

20

add

alias

corif

delete

echo

halt

help

id

jobs

kill

ms tat

ps-a

I
followed by one or more host names, adds these hosts to the virtual machine.

defines or lists command aliases.

lists the configuration of the virtual machine including hostname, pvmd task ID,

architecture type, and a relative speed rating.

followed by one or more host names, deletes these hosts from the virtual machine.

PVM processes still running on these hosts are lost.

echo arguments.

kills all PVM processes including console, and then shuts down PVM. All

daemons exit.

can be used to get information about any of the interactive commands. Help may

be followed by a command name that lists options and flags available for this

command.

prints the console task id.

lists running jobs.

can be used to terminate any PVM process.

shows the status of specified hosts.

21

lists all processes currently on the virtual machine, their locations, their task id's,

and their parents' task id's.

pstat

shows the status of a single PYM process.

quit

exits the console, leaving daemons and PYM jobs running.

reset

kills all PYM processes except consoles, and resets all the internal PYM tables

and message queues. The daemons are left in an idle state.

setenv

displays or sets environment variables.

sig

followed by a signal number and TIO, sends the signal to the task.

spawn

starts a PYM application. Options include the following:

-count
number of tasks; default is 1.

-host

spawn on host; default is any.

-ARCH

spawn of hosts of type ARCH.

-?

enable debugging.

->
redirect task output to console.

->file

redirect task output to file.

->>file

redirect task output append to file.

-@
trace job, display output on console

22

-@file

trace job, output to file

trace

sets or displays the trace event mask.

unalias
undefines command alias.

version
prints version ofPVM being used.

The console reads $HOMEl.pvmrc before reading commands from the tty, so you can do

things. like

alias? help

alias h help

aliasj jobs

setenv PVM_EXPORT DISPLAY

print my id

echo new pvm shell

id

PVM supports the use of multiple consoles . It is possible to run a console on any host in

an existing virtual machine and even multiple consoles on the same machine. It is also

possible to start up a console in the middle of a PVM application and check on its

progress.

2.2 Basie Programming Techniques

Developing applications for the PVM system-in a general sense, at least-follows the

traditional paradigm for programming distributed-memory multiprocessors such as the

nCUBE or the Intel family of multiprocessors. The basic techniques are similar both for

the logistical aspects of programming and for algorithm development. Significant

differences exist, however, in terms of (a) task management, especially issues concerning

23

dynamic process creation, naming, and addressing; (b) initialization phases prior to actual

computation; (c) granularity choices; and (d) heterogeneity. In this chapter, we discuss

the programming process for PYM and identify factors that may impact functionality and

performance.

2.2.1 Common Parallel Programming Paradigms

Parallel computing using a system such as PYM may be approached from three

fundamental viewpoints, based on the organization of the computing tasks. Within each,

different workload allocation strategies are possible and will be discussed later in this

chapter. The first and most common model for PYM applications can be termed crowd

computing : a collection of closely related processes, typically executing the same code,
perform computations on different portions of the workload, usually involving the

periodic exchange of intermediate results. This paradigm can be further subdivided into

two categories:

1. The master-slave (or host-node) model in which a separate "control" program

termed the master is responsible for process spawning, initialization, collection

and display of results, and perhaps timing of functions. The slave programs

perform the actual computation involved; they either are allocated their workloads

by the master (statically or dynamically) or perform the allocations themselves.

2. The node-only model where multiple instances ofa single program execute, with

one process (typically the one initiated manually) taking over the non

computational responsibilities in addition to contributing to the computation itself

The second model supported by PYM is termed a "tree" computation . In this scenario,

processes are spawned (usually dynamically as the computation progresses) in a tree-like

manner, thereby establishing a tree-like, parent-child relationship (as opposed to crowd

computations where a star-like relationship exists). This paradigm, although less

commonly used, is an extremely natural fit to applications where the total workload is not

known a priori.

24

The third model, which we term "hybrid", can be thought of as a combination of the tree

model and crowd model. Essentially, this paradigm possesses an arbitrary spawning

structure: that is, at any point during application execution, the process relationship

structure may resemble an arbitrary and changing graph.

These three classifications are made on the basis of process relationships, though they

frequently also correspond to communication topologies. Nevertheless, in all three, it is

possible for any process to interact and synchronize with any other. Further, as may be

expected, the choice of model is application dependent and should be selected to best

match the natural structure of the parallelized program.

2.2.2 Crowd Computation

Crowd computations typically involve three phases. The first is the initialization of the

process group; in the case of node-only computations, dissemination of group

information and problem parameters, as well as workload allocation, is typically done

within this phase. The second phase is computation. The third phase is collection results

and display of output; during this phase, the process group is disbanded or terminated.

The master-slave model is shown in Figure 2.2.2.1, using the well-known Mandelbrot

set computation which is representative of the class of problems termed "embarrassingly"
parallel . The computation itself involves applying a recursive function to a collection of

points in the complex plane until the function values either reach a specific value or begin

to diverge. Depending upon this condition, a graphical representation of each point in the

plane is constructed. Essentially, since the function outcome depends only on the starting

value of the point (and is independent of other points), the problem can be partitioned

into completely independent portions, the algorithm applied to each, and partial results

combined using simple combination schemes. However, this model permits dynamic load

balancing, thereby allowing the processing elements to share the workload unevenly. In

this and subsequent examples within this chapter, we only show a skeletal? form of the

algorithms, and also take syntactic liberties with the PVM routines in the interest of

25

clarity. The control structure of the master-slave class of applications is shown in Figure

2.2.2.1.

Figure 2.2.2.1: Master-Slave Paradigm

The master-slave example described above involves no communication among the slaves.

Most crowd computations of any complexity do need to communicate among the

computational processes to we illustrate the structure of such applications using a node

only example for matrix multiply using Cannon's algorithm. The matrix-multiply

example, shown pictorially in Figure 2.2.2.2. multiplies matrix sub-blocks locally, and

uses row-wise multicast of matrix A sub-blocks in conjunction with column-wise shifts

of matrix B subblocks.

C
•• 2 ~lt:l'PIY flllC'rp --.t:Tt:r :aad matri:Z' n

A.
C.u c.; •• c.:;Q
c: •. c .. <;:ii
c,.. C., <;..

Figure 2.2.2.2: General Crowd Computation

{Matrix Multiplication Using Pipe-Multiply-Roll Algorithm}

{Processor O starts up other processes}

if(<my processor number>= 0) then

for i := 1 to MeshDimension*MeshDimension

26

pvm_spawn(<component name>, ..)

end for

endif

forall processors Pij, 0 <= iJ < MeshDimension

fork := 0 to MeshDimension-1

{Pipe.}

if myrow = (mycolumn+k) mod MeshDimension

{Send A to all Pxy, x = myrow, y <> mycolumn}

pvm_mcast((Pxy, x = myrow, y <> mycolumn),999)

else

pvm _recv(999) {Receive A}

endif

{Multiply. Running totals maintained in C.}

Multiply(A,B,C)

{Roll.}

{ Send B to Pxy, x = myrow-1, y = mycolumn}

pvm_send((Pxy, x = myrow-l , y = mycolumn),888)

pvm _recv(888)

endfor

endfor

{Receive B}

2.2.3 Tree Computations

Tree computations typically exhibit a tree-like process control structure which also

conforms to the communication pattern in many instances. To illustrate this model, we

consider a parallel sorting algorithm that works as follows. One process (the manually

started process in PVM) possesses (inputs or generates) the list to be sorted. It then
spawns a second process and sends it half the list. At this point, there are two processes

each of which spawns a process and sends them one-half of their already halved lists.

This continues until a tree of appropriate depth is constructed. Each process then

independently sorts its portion of the list, and a merge phase follows where sorted sublists

are transmitted upwards along the tree edges, with intermediate merges being done at

27

each node. This algorithm is illustrative of a tree computation in which the workload is

known in advance; a diagram depicting the process is given in Figure 2.2.3.1; an

algorithmic outline is given below.

Time

Figure 2.2.3.1: Tree-Computation Example

2.3 Workload Allocation

The common parallel programming paradigms with respect to process structure, and we

outlined representative examples in the context of the PVM system. This section

addresses the issue of workload allocation, subsequent to establishing process structure,

and describe some common paradigms that are used in distributed-memory parallel

computing. Two general methodologies are commonly used. the first, termed data

decomposition or partitioning, assumes that the overall problem involves applying

computational operations or transformations on one or more data structures and, further,

that these data structures may be divided and operated upon. The second, called function

decomposition, divides the work based on different operations or functions. The PVM

computing model supports both function decomposition and data decomposition.

28

2.3.1 Data Decomposition

As a simple example of data decomposition, consider the addition of two vectors, A[l .. N]

and B[l..N], to produce the result vector, C[l..N]. If we assume that P processes are

working on this problem, data partitioning involves the allocation of NIP elements of

each vector to each process, which computes the corresponding NIP elements of the

resulting vector. This data partitioning may be done either "statically", where each

process knows a priori (at least in terms of the variables N and P) its share of the

workload, or "dynamically", where a control process (e.g., the master process) allocates

subunits of the workload to processes as and when they become free. The principal

difference between these two approaches is "scheduling". With static scheduling,

individual process workloads are fixed; with dynamic scheduling, they vary as the

computation progresses. In most multiprocessor environments, static scheduling is

effective for problems such as the vector addition example; however, in the general PVM

environment, static scheduling is not necessarily beneficial. The reason is that PVM

environments based on networked clusters are susceptible to external influences;

therefore, a statically scheduled, data-partitioned problem might encounter one or more

processes that complete their portion of the workload much raster or much slower than

the others. This situation could also arise when the machines in a PVM system are

heterogeneous, possessing varying CPU speeds and different memory and other system

attributes.

In a real execution of even this trivial vector addition problem, an issue that cannot be

ignored is input and output. In other words, how do the processes described above receive

their workloads, and what do they do with the result vectors? The answer to these

questions depends on the application and the circumstances of a particular run, but in

general:

1. Individual processes generate their own data internally, for example, using

random numbers or statically known values. This is possible only in very special

situations or for program testing purposes.

29

2. Individual processes independently input their data subsets from external devices.

This method is meaningful in many cases, but possible only when parallel I/0

facilities are supported.

3. A controlling process sends individual data subsets to each process. This is the

most common scenario, especially when parallel 1/0 facilities do not exist.

Further, this method is also appropriate when input data subsets are derived from

a previous computation within the same application.

The third method of allocating individual workloads is also consistent with dynamic

scheduling in applications where inter process interactions during computations are rare

or nonexistent. However, nontrivial algorithms generally require intermediate exchanges

of data values, and therefore only the initial assignment of data partitions can be

accomplished by these schemes. In order to multiply two matrices A and B, a group of

processes is first spawned, using the master-slave or node-only paradigm. This set of

processes is considered to form a mesh; the matrices to be multiplied are divided into

sub-blocks, also forming a mesh. Each sub-block of the A and B matrices is placed on the

corresponding process, by utilizing one of the data decomposition and workload

allocation strategies listed above. During computation, sub-blocks need to be forwarded

or exchanged between processes, thereby transforming the original allocation map, as

shown in the figure. At the end of the computation, however, result matrix sub-blocks are

situated on the individual processes, in conformance with their respective positions on the

process grid, and consistent with a data partitioned map of the resulting matrix C. The

foregoing discussion illustrates the basics of data decomposition. In a later chapter,

example programs highlighting details of this approach will be presented.

2.3.2 Function Decomposition

Parallelism in distributed-memory environments such as PYM may also be achieved by

partitioning the overall workload in terms of different operations. The most obvious

example of this form of decomposition is with respect to the three stages of typical

program execution, namely, input, processing, and result output. In function

decomposition, such an application may consist of three separate and distinct programs,

30

each one dedicated to one of the three phases. Parallelism is obtained by concurrently

executing the three programs and by establishing a "pipeline" (continuous or quantized)

between them. Data parallelism may also exist within each phase. An example is shown

in Figure 2.3.1, where distinct functions are realized as PVM components, with multiple

instances within each component implementing portions of different data partitioned

algorithms.

Although the concept of function decomposition is illustrated by the trivial example

above, the term is generally used to signify partitioning and workload allocation by

function within the computational phase. Typically, application computations contain

several different sub-algorithms-sometimes on the same data (the MPSD or multiple
program single-data scenario), sometimes in a pipelined sequence of transformations, and

sometimes exhibiting an unstructured pattern of exchanges. We illustrate the general

functional decomposition paradigm by considering the hypothetical simulation of an

aircraft consisting of multiple interrelated and interacting, functionally decomposed sub

algorithms. A diagram providing an overview of this example is shown in Figure 2.3.1.

Figure 2.3.1: Function Decomposition Example

In the figure 2.3.1, each node or circle in the "graph" represents a functionally

decomposed piece of the application. The input function distributes the particular

problem parameters to the different functions 2 through 6, after spawning processes

corresponding to distinct programs implementing each of the application sub-algorithms.

The same data may be sent to multiple functions (e.g., as in the case of the two wing

31

functions), or data appropriate for the given function alone may be delivered. After

performing some amount of computations these functions deliver intermediate or final

results to functions 7, 8, and 9 that may have been spawned at the beginning of the

computation or as results become available. The diagram indicates the primary concept of

decomposing applications by function, as well as control and data dependency

relationships. Parallelism is achieved in two respects-by the concurrent and independent

execution of modules as in functions 2 through 6, and by the simultaneous, pipelined,

execution of modules in a dependency chain, as, for example, in functions 1, 6, 8, and 9.

32

• ,\

CHAPTER 3: PVM Application

3.1 Core Features of PVM

The routines supplied by PVM include adding and deleting hosts from the virtual

machine, enabling a user to process to register-to-leave a collection of cooperating

processes, to synchronize with and send signals to and other PVM tasks, to initiate and

terminate tasks, and routines to obtain information about the virtual machine

configuration and active tasks. Synchronization of tasks is achieved by sending a signal

from the host to another task of different host or by using barriers. Another

synchronization method would be notifying a set of tasks of an event occurrence by

sending them a message with the user-specified tag that the application can check for.

The notification of events includes the exiting of a task, the deletion of a host, and

addition of a new host.

The packing and sending of messages between tasks is provided by PVM routines. The

communication routines include an asynchronous send to a single task, and multicast to

list of tasks. Messages are moved over the underlying network by PVM using UDP, TCP,

or some other high speed interconnects available between the two hosts. A routine can be

called to return information about received messages such as the source, tag, and size of

the data. The message buffers are allocated dynamically, permitting messages limited in

size only by native machine parameters. There are, however, routines for creating and

managing multiple send and receive buffers. The user can thus write PVM math libraries

and graphical interfaces that can be called inside other PVM applications.

.,,,, ,,•'

A process in PVM can belong to multiple groups, and groups can change dynamically at

any time of computation. Dynamic process groups are layered above the core PVM

routines. The PVM routines are provided for tasks to join and leave the named group.

Members of the group are numbered from zero to the number of group members-I. Tasks

can also query for information about other group members.

33

Messages designated for an external host are routed via the user's PVM daemon on the

multiprocessor, while messages between two nodes use its native message-passing

routines. The data movement can be implemented with shared buffer tool and lock

primitives on shared-memory-systems. The daemon that manages the allocation and

reallocation of nodes on the multiprocessor is the construct ofMPP system ofPVM. The

second part ofMPP is a specialized libpvm library for this architecture that contains the

fast routing calls between nodes of this host.

The daemon pvmd keeps track of the entire task management. The first pvmd is the

master and the hoster process becomes the slave. The master pvmd is used to startup slave

daemons on other hosts. The hoster process starts automatically and is running as a task

on the virtual machine. The PVM startup protocol is given in figure 3 .1.

,rocesses

• j pvm_console e Q Master pvmd
,.. ~~ Oeamon

---- provtdesocbl
port

~ -
~, ,notntryfor ·-- - , _ ;J

llllindor for Hoster Process

~C) ~. ·-· --- ii 11 I I::=- -·· "pvm_rea..-.- ~ I I Stave pvmd Oeamon

:Ell~
l'lll/19DC -- ---- ---I I ••.. _conflg ----u -'*' __ ,,..... ..-

Figure 3.1: PVM Startup Protocol

34

3.1.1 Data Transfer and Barrier Synchronization

Inter-process communication via message passing is one of the basic facilities supported

by PVM. Since the physical location of processes is transparent to user programs, a pair

identifies message destinations. Furthermore, owing to the heterogeneous nature of the

underlying hardware that PVM executes on, it is necessary for user programs to send and

receive typed data in a machine independent form.
Synchronization via barriers is a common operation in many applications. Using PVM,

barrier synchronization is accomplished using the barrier construct. The PVM system

attempts to detect and correct barrier deadlocks by notifying invoking processes if some

instances of a component terminate before they reach a barrier, and a residual number of

instances of a component terminate before they reach the barrier, and the residual number

of instances cannot form a barrier.

3.1.2 Shared Memory and Mutual Exclusion

The use of shared memory to synchronize and communicate between processes is a

convenient paradigm, and the PVM system provides such an interface for algorithms that

are best expressed in these terms. Since shared memory is emulated by PVM on

distributed memory architectures, some performance degradation is inevitable when the

granularity of the access is fine. This can be demonstrated by the following example:

When using the "bag of tasks" and "worker poof' approach, the shared memory model

permits greater control, increased overall throughput, and is affected less by load

imbalances, provided the tasks are sufficiently large in size. Since, PVM permits each

worker in the pool to run on different architectures, the individual worker components

may be written to internally use either message passing or shared memory.

35

3.2 Implementation

The PVM support software executed as a user-level process on each host in the

participant pool. Additions or deletions are possible during the operation by means of an
administration interface. The PVM System is designed to be implemented in a manner

that requires no operating system changes or modifications, and porting efforts to varied

operating system environments are minimal. The PVM support process on a host is

responsible for all application component process executing on that host. Control is

completely distributed in the interest of avoiding performance bottlenecks and increasing

fault tolerance. The pvmd processes are initiated on each participating host either

manually, through the administration interface, or via a machine Operating System

dependent mechanism.

The PVM system is composed of two parts. The pvmd3, which is the first part called the

daemon, resides on all of the computers making the virtual machine. This daemon is

designed to run applications. This is achieved by executing pvmd3 on each of the

computers making up the user-defined virtual machine. The PYM application can then be

started from any host's machine's prompt.

The second part of the systems is a library of PVM interface routines, which consists of

callable routines for message-passing, spawning processes, coordinating tasks, and

modifying the virtual machine. Application programs developed must be linked to this

library.

The PVM system assumes only that unreliable, unsequnced, point-to-point data transfer

facilities are supported by the hardware platform on which it executes. The required

reliability and sequencing, as well as other necessary operations such as broadcast are

built into the PVM system.

The pvmd processes across the network communicate using the UDP datagrams. The

"well known port" approach is used for addressing where all incoming messages are

36

received by pvmd processes on a predetermined port number. The first communication

instance between any two entries is routed through the pvmd process on the source and

destination machines. Location and port number information is appended to this

exchange where the PVM routines that implement send and receive cache this
information, thus enabling direct communication for subsequent changes. Local user

processes communicate with pvmd using the most efficient machine dependent

mechanism.

3.2.1 Point-to-Point Data Transfer

The pvmd processes use a positive acknowledgement scheme and additional header that

contains sequence numbers as well as fragmentation and reassemble information to

achieve reliable and sequenced point-to-point communications. Unacknowledged

transmissions are retried a parameterized number of times after which recipient process

or processor is presumed to be uncooperative. The sequence numbers are destination

specific and are used by the message recipient for sequencing as well as for duplicate

detection. The header is placed at the end of a UDP datagram to reduce copying

overheads, and single datagram sizes are restricted to the smallest maximum transmission

unit of all participating hosts. When first initiated, pvmd processes determine the protocol

specific addresses of all participating hosts and proceed to service incoming requests

from the network or user processes.

3.3 Performance Considerations ofPVM

PVM and virtual machines usually operate in general-purpose networked environments,

where no dedication of the CPU of the individual machines nor the interconnection

network are considered. Due to variations in network traffic delay the raw performance or

speedup of a given application is hard to measure. To improve performance on dedicated

networks, the traffic rate should be minimal. Even in a dedicated networked environment,

the above assumption is true since operating system activity, window and file system

37

overheads, and administrative network traffic can contribute to deviated measurements.

The network computing systems behave in a manner that is reasonable, predictable if

these factors are ignored. Since parallelism granularity is at the process level, most of the

focus is on communication overhead; CPU optimizations can be approached

independently using traditional methods.

3.3.1 Raw Communications Performance of PVM

The performance considerations of PVM can be analyzed with data transfer costs, The

time required for processes to exchange messages is dependent on several factors,

including the host machines, network speeds, and most predominantly, the message size.

Apart from point-to-point data transfer, group communication facilities are also an

important measure of communications performance.

The communication throughput approaching the medium capacity can be achieved in
PVM, provided large messages are transferred. Under situations involving multiple,

simultaneous message passing, high performance of the aggregate bandwidth of the

medium is utilizable by PVM application processes. The factor that is difficult to

optimize is latency, implying poor efficiency and speedup when message exchanges are

short.

3.4 Scientific Computing

Many important scientific, industrial, and mechanical problems are being solved using

PVM over a cluster of workstations. The driving force behind the initial popularity of
PVM was to get very good price performance ratio. In general a cluster of about 10 high

performance workstations is potentially capable of solving a problem as fast as a

supercomputer costing much more. This attractive popularity has inspired third parity

software vendors to develop tools, which assist in paralleling, a user's application by

placing PVM calls. High degree of portability and a straightforward, robust interface that

is well suited for scientific application development are other motivations for the

increasing use of PVM.

38

3.5 Beginning Programming

There are a few structures that are common to all PYM programs written in C. Every

PYM program should include the PYM header file. This contains needed information
about the PYM programming interface. This is done by putting

#include "pvm3.h" at the beginning of a C program or #include "fpvm3.h" in a Fortran
program.

The first PYM function called by a program, commonly

info=pvm jnytidi), enrolls the process in PYM. info is an integer returned by the

function. Like all PYM functions,pvm_mytidO will return a negative number if an error

occurs. Programs should check for these errors, and respond appropriately. When a PYM

program is done, it should call pvm _ exiu).

In order to write a parallel program, tasks must be executed on different processors. This

is accomplished by callingpvm_spawnO. The man pages explain this function in detail.

Here is an example of a typical call to pvm _spawnO.

numt=pvm_spawn("my_task", NULL, PvmTaskDefault, 0, n fask, tids)

This spawns n_ task copies of the program "my_ task" on the computers that PYM

chooses. The actual number of tasks started is returned to numt. The task id of each task

that is spawned is returned in the integer array Tills. Every PYM process has a unique
integer that identifies it.

PYM has many useful information functions built into it. Some examples are

pvm_parentO, pvm_configO,pvm_tasksO, etc ... These can give your programs access to
the types ofinformation available at the PYM console.

39

3.5.1 Compiling and Running Your Program

In order to run your programs, you must compile them. On my machine, cc -

L-/pvm3/lib/ALPHA foo.c -lpvm3 -o foo will compile a program called foo.c. You will have to
change the name ALPHA to the architecture name of your computer. After compiling,

you must put the executable file i11 the directory -/pvm3/bin/ARCH. Also, you need to

compile the program separately for every architecture in your virtual machine. If you use

dynamic groups, you must also add -lgpvm3 to the compile command.

Your executable file can then be run. To do this, you should first run PVM. After PVM is

running, your executable may be run from the Unix command line, like any other

program.

3.5.2 Communication Between Tasks

Once you have learned how to spawn tasks and compile your programs, you are ready to

do some actual parallel programming. To do this, you must learn how to let different

tasks communicate with each other. In PVM, task-to-task communication is done with

message passing.

When you are ready to send a message from task A to task B, task A must first call

pvm fnitsendt), This clears the default send buffer and specifies the message encoding.

bufid=pvm _initsend(PvmDataDefault) is a typical use of this. After initialization, the

sending task must then pack all of the data it wishes to send into the sending buffer. This

is done with calls to the pvm packt) family of :functions. pvm packft) is a printf-like

function for packing multiple types of data. There are also functions for packing arrays of

a single type of data, such as pvm jpkdblt] for packing doubles. The man pages have all

the details on the different packing :functions under pvm _yackO.

After the data have been packed into the sending buffer, the message is ready to be sent.

This is accomplished with a call to pvm sendt), info=pvmeendttid, msgtag) will send

40

the data in the sending buffer to the process with the task id of tid. It tags the message

with the integer value msgtag. A message tag is useful for telling the receiving task what

kind of data it is receiving. For example, a message tag of5 might mean add the numbers

in the message, while a tag of 10 might mean multiply them. pvm _ mcastt) is a similar

function. It does the same thing as pvm sendt), except it takes an array oftids instead of

just one. This is useful when you want to send the same message to a set of tasks.

The receiving task makes a call to pvm .r=o to receive a message. bufid=pvm _recv(tid,

msgtag) will wait for a message from task tid with tag msgtag to arrive, and will receive it

when it does. A -1 can be specified for either the tid or msgtag, and will match anything.

PVM 3.3 adds pvm_trecvO, which has the added ability to time out after a specified

length of time. pvm _ nrecvt) can also be useful. This does a non-blocking receive=if'there

is a suitable message it is received, but if there isn't, the task does not wait. Sometimes

pvm _probeO can be helpful as well. This will tell if a message has arrived, but takes no

further action.

When a task has received a message, it must unpack the data from the receiving buffer.

pvm _ unpacks) accomplishes this in the same manner that pvm _padfO uses to pack the

data in. All data must be unpacked in exactly the same order as it was packed. Note that

C structures must be packed element by element.

PVM 3 .3 adds the function pvm _psendO for convenience. This packs and sends data in

one call. PVM also includes routines for manipulating send and receive buffers directly.

See the man pages on pvm _mkbuf!O and pvm JreebufO if you are interested in this.

3.6 Dynamic Process Groups

Dynamic process groups can be used when a set of tasks performs the either the same

function or a group of closely related functions. Users are able to give a name to a set of

PVM processes, which are all given a group instance number in addition to their tid.

41

When a task calls inum=pvm _joingroup("group _name''), it will be added to the group

"group_name". If no such group exists, it will be created. The group instance number is

returned in inum. This will be O for the first group member, and the lowest available

integer for the rest of the group members. A task may belong to more than one group at a

time. To leave a group, a tasks makes a call to pvm _lvgroupO.

There are group information functions. pvm getinstt), pvm_gettidO , and pvm_gsizeO

return a process's group instance, tid, and group size, respectively. Other useful group

functions are pvm bcastt) and pvm harriert). pvm hcastt] is very similar to

pvm jncastt), but instead of sending a message to an array of TIO, it sends it to all

members of a group. pvm _ barriert) is used for synchronization. A task that calls

pvm _ barriert) will stop until all the members of its group call pvm _ barrieri) as well.

There are other group functions. pvm _gatherO, pvm _scatterO, and pvm _reduceO are

some examples of group functions you may find useful.

3. 7 Load Balancing

Load balancing is very important for applications. Making sure that each host is doing its

fair share of work can be a real performance enhancer.

The simplest method is static load balancing. In this method, the problem is divided up

and tasks assigned to processors only once. The partitioning may occur before the job

starts, or as an early step in the application. The size and number of tasks can be varied
depending on the processing power of a given machine. On a lightly loaded network, this

scheme can be quite effective.

When computational loads vary, a more sophisticated dynamic method ofload balancing

is required. The most popular method is called the Pool of Tasks paradigm. This is

typically implemented as a master/slave program where the master manages a set of

tasks. It sends slaves jobs to do as they become idle. This method is used in the sample

42

program xep supplied with the distribution. This method is not suited for applications

which require task to task communication, since tasks will start and stop at arbitrary

times. In this case, a third method may be used. At some predetermined time, all the

processes stop; the work loads are then reexamined and redistributed as needed.

Variations of these methods are possible for specific applications.

3.8 Distributed Computing

Advantages:

1. Using existing hardware, keeps costs low

2. Performance can be optimised by assigning each individual task to the most

appropriate architecture

3. Exploitation of the heterogeneous nature of a computation ie provides access to

different types of processors for those parts of an application that can only run on
a certain platform

4. Virtual computer resources can grow in stages and take advantage of the latest
computational and network technologies

5. Program development can be enhanced by using a familiar environment ie editors,
compilers, debuggers that are available on individual machines

6. Individual computers and workstations are usually stable and substantial expertise
in their use should be available

7. User-level or program-level fault tolerance can be implemented with little effort

either in the application or in the underlying operating system

8. Facilitates collaborative work

3.9 Message Buffers

If the user is using only a single send buffer (and this is the typical case) then

pvm _initsendO is the only required buffer routine. It is called before packing a new

message into the buffer. The routine pvm jnitsend clears the send buffer and creates a

new one for packing a new message. The encoding scheme used for this packing is set by

43

encoding. The new buffer identifier is returned in bufid. The encoding options are as

follows:

The following message buffer routines are required only if the user wishes to manage

multiple message buffers inside an application. Multiple message buffers are not required

for most message passing between processes. In PVM 3 there is one active send buffer

and one active receive buffer per process at any given moment. The developer may create

any number of message buffers and switch between them for the packing and sending of

data. The packing, sending, receiving, and unpacking routines affect only the active

buffers.

int bufid = pvm _ mkbuf(int encoding)

call pvmfmkbuf(encoding, bufid)
The routine pvm_mkbuf creates a new empty send buffer and specifies the encoding

method used for packing messages. It returns a buffer identifier bufid.

int info = pvmJreebuf(int bufid)

call pvmffreebuf(bufid, info)

The routine pvm JreebufO disposes of the buffer with identifier bufid. This should be done

after a message has been sent and is no longer needed. Call pvm_mkbufO to create a

buffer for a new message if required. Neither of these calls is required when using

pvm _initsendO, which performs these functions for the user.

int bufid = pvm _getsbuf(void)

call pvmfgetsbuf(bufid)

int bufid = pvm _getrb,uf(void)
call pvmfgetrbuf(bufid)

pvm _getsbufO returns the active send buffer identifier. pvm _getrbufO returns the active

receive buffer identifier.

int oldbuf = pvm _setsbuf(int bufid)

call pvmfsetrbuf(bufid, oldbuf)

int oldbuf = pvm_setrbuf(int bufid)

44

call pvmfsetrbuf(bufid, oldbuf)

These routines set the active send (or receive) buffer to bufid, save the state of the

previous buffer, and return the previous active buffer identifier oldbuf.

If 'bufid is set to O in pvm_setsbufO or pvm_setrbufO, then the present buffer is saved and

there is no active buffer. This feature can be used to save the present state of an

application's messages so that a math library or graphical interface which also uses PVM

messages will not interfere with the state of the application's buffers. After they complete,

the application's buffers can be reset to active.

It is possible to forward messages without repacking them by using the message buffer

routines. This is illustrated by the following fragment.

bufid = pvm _recv(src, tag);

oldid = pvm_setsbuf(bufid);

info = pvm_send(dst, tag);

info = pvm_freebuf(oldid);

3.10 Matrix Multiplication

One of the PVM applications that would be an impact on MPP systems is matrix

multiplication. Since matrix multiplication consumes CPU time and memory, it's one of

the basic examples to be implemented under PVM to validate performance measures. The

general algorithm of matrix multiplication is described below, and implemented with

parallel running machines on a local network environment.

The tasks in PVM for matrix multiplication is thought to be two dimensional conceptual

torus, for which there is no restriction on which tasks may communicate with each other.

Groups are formed, matrix_group to enumerate the tasks. Group ids are used to map

tasks. The first task to join the group is assigned an id of zero. The first task spawns the

other tasks and sends the parameters for matrix multiply to those tasks. When all the

45

parameters are transmitted, and all the tasks have been spawned, a barrier program,

pvm_barrierO, is executed to ensure that all tasks have joined the group. Then all the

task ids are stored to array myrow by calculating the group ids for all the tasks and

asking PVM for the entire task id for the corresponding group id.

The program calculates C=AB, where C, A, and Bare square matrices. There are m x m

Tasks required :finding the solution. Each sub-block ofresulting matrix will be calculated

by each task. The matrices A and B are also stored and distributed over m x m tasks.

The row and column of block C is calculated based on the value of the group id. The

group ids range from O to m - 1 .

In order to perform matrix multiplication's, the tasks on the diagonal multicast their block

of A to other tasks in their row. The shifting to the B blocks vertically occurs after the

sub-blocks have been multiplied and added to the C block.

The blocks to be computed are first initialized by calling lnitBlockO, where A is assigned

random variables, B to identity matrix, and C to zero. Verification at the end of the

program is performed by checking A=C.

3.11 Simulation and Test Results

To demonstrate the matrix multiplication program, the PVM test bed was set up. The

PVM software along with remote shell (rsh) for adding hosts was loaded on each

machine under Windows NT Operating System. All the tests for matrix multiplication

were performed under a local network domain.

The PVM module is loaded on each of the PC workstation modules, and remote rshd

software running on every machine interconnected by the local network domain. Each

PVM software is installed on every machine as a server module to corporate the task

management between the processes. The program is modified such that spawning occurs

on between active tasks.

46

To verify test simulation results, various changes have been performed on the program

provided within the PVM book. The program provided can be modified to apply for any

two type of matrix multiplication with ease. Thus, it can be used as a reference tool in

general for two-matrix multiplication being square matrices of different block size

lengths, which would give reliable test results under PVM. The simulation test results

yield to the following conclusions.

1. The response time of the PVM system would give less performance measure when

host machines are interconnected by the network compared to the theoretical results.

This is due to delay in network response time, which reduces the computational

power of PVM due to message passing delays in the network. Different

measurements have been taken of the matrix multiplication program, and the best

results of the response time were obtained when the network was idle.

2. The response time of a single host machine running under PVM with increasing the

number ofblock sizes of matrices increases exponentially with time. From 100 to 600

block size, the response time is slower compared to response time between -600 to

1200.

You can see Matrix Multiplication in PVM in Appendix A.

Appendix A:

/***

*******/

I* This program multiplies two square Matrices A and B, resulting to C */

I* under PVM. Matrix A is assigned using random variables, and B to identity.*/

I* The resulting C matrix = A. */

/* The program also measures the response time taken in calculating C. *I

/***

*******/

I* *I

47

817

} (++f :)J[q > f :o = D lOJ
} (++! :)JJq > ! :o = !) lOj

{: o · o = [pm] :,: ff oo 11(ooo I %Opuru)(wou)=[ptn]s}

(++PU! :ug[> pu! :o = PU!) 101
:)Jlq*)JJq = U;}J

:(OP!lAUl - rnAd)purus

:fr lU!

:pll! 'U;}J lU!

}

(JOJ lll! 'MOl lU! ')JJq lU! ':,* lt?OlJ 'q* lt?OlJ 't?* lt?OlJ))JJOJ8l!UJ

P!OA

gug:gp#

gug:gp#

guygp#

guygp#

DY1Jt'JIG

fDYlS:

ZDYlY

I* Siml ;}13t?SS;}W_ */

0 l A\OIDCYW ;}U!PP#

OO~T SGilNXVW guygp#

h UMt?dS [[!A\ rnt?180Jd S!l{l ug1pnq:JJO roqumjq wnwprnw */

<q·sop> gpnpurn

<•rqnpis> gpnpurn

<q· O!PlS> gpnpurn

<l{.flUAd> gpnJJU!#

I* A.Iruqn WAd gqi lOJ sgc:L(ioio1d gql sguyga */

/**/

·1gpugs 13Il!lt?Il!8µo gqi wo.:g */

I*
pamsaour ouru duipunor l{l!M 8uod-8u!d prepums t? S! iuouromsaeur gql */

if (row= col)

bLi*blk+i] = (i==j)? 1.0 : 0.0;

else

bLi*blk+i] = 0.0;

}

}

}

void
BlockMult(float *c, float *a, float *b, int blk)

{

int ij,k;

for (i = O; i < blk; i++)

for G = O;j < blk;j++)
for (k = O; k < blk; k++)
c[i*blk+j] += (a[i*blk+k] * b[k*blk+j]);

}

/* Start PVM Clock Timer*/

clock_t start, end;

int
main(int argc, char* argv[))

{

/* Number of Tasks to Spawn, Using 2 as Default */

int ntask = 2;

I* Return Code From PVM Calls * I

int info;

49

I* My Task and Group id*/

int mytid, mygid;

I* Children Task id Array*/

int child[MAXNTIDS-1];

int i, m, blksize;

/* Array of the TIDS in My Row*/

int myrow[MAXROW];

float *a, *b, *c, *atmp;

int row, col, up, down;

FJLE *ff= fopen("d:\\pvmtmp\\matrix\\mymatrix\\mmult.out", "w");

printf(''Please Wait While PVM Starts Matrix Multiplication ... \n");

/* Find out Task id Number*/

mytid = pvm jnytidt);

//pvm _ setopt(PvmRoute, Pvmkoutefrirect);

/* Check For Error*/

if (mytid < 0) {

/* Print Out The ERROR * I

pvm _perror(argv[O]);

/* Exit the Program * I

return -1;

}

start = clockt);

/* Join the MMULT Group*/

mygid = pvm joingroup("mmult");

if (mygid < 0) {

pvm_perror(argv[O]); pvmexitt); return -1;

}

50

I* If My Group id is O then I Must Spawn the Other Tasks*/

if (mygid == O){

I* Find Out How Many Tasks to Spawn * I

if(argc = 3) {

m = atoi(argv[l]);

blksize = atoi(argv[2]);

}
if (argc < 3) {

fprintflff "usage:mmult m blk\n");

pvm_lvgroup("mmult"); pvmexiu); return -1;

}

I* Make Sure ntast is Leagal */

ntask= m*m;

if((ntask < 1) 11 (ntask>= MAXNTIDS)) {

fprintfiff "ntask = %d not valid.\n", ntask);

pvm_lvgroup("mmult"); pvmexiu); retum-1;

}

I* No Need To Spawn ifThere is Only One Task*/

if (ntask == 1) goto barrier;

I* Spawn The Child Tasks * I
info= pvm_spawn("mmult", (char**)O, PvmTaskDefault, (char*)O,

ntask-l , child);

I* Make Sure Spawn Succeeded*/

if'(info l=ntask-I) {

pvm_lvgroup("mmult"); pvmexiu); return -1;

}

I* Send The Matrix Dimension * I

51

pvm -r-r- initsend(PvmDataDefault);

pvm ykint(&m, I, 1);

pvm__pkint(&blksize, 1, 1);

pvm _ mcast(child, ntask-1, DIMT AG);

}

else {

/* Receive Matrix Dimension*/

pvm _recv(pvm _gettid("mmult", 0), DIMT AG);

pvm_upkint(&m, 1, 1);

pvm_upkint(&blksize, 1, I);

ntask= m=m;

}

/* Make Sure All Tasks Have Joined The Group*/

barrier:

info = pvm _ barrier("mmult", ntask);

if (info< 0) pvm__perror(argv[O]);

/* Find the tids In My Row*/

for (i = O; i < m; i++)

myrow[i] = pvm_gettid("mmult", (mygid/m)*m +i);

/* Allocate The Memory For The Local Blocks*/

a= (tloat*)malloc(sizeof(tloat)*blksize*blksize);

b = (float*)malloc(sizeoftfloat)*blksize*blksize);

c = (tloat*)malloc(sizeof(tloat)*blksize*blksize);

atmp = (:float*)malloc(sizeofttloat)*blksize*blksize);

/* Check for the Valid Pointers * I

if(!(a && b && c && atmp)) {

fprintflff "%s:out of memory!\n", argv[O]);

free(a); free(b); free(c); free(atmp);

pvm_lvgroup("mmult"); pvm exiu); return -1;

}

52

/

I* Find My Block's row and column*/

row= mygid/m; col = mygid % m;

/*Calculate the Neighbour's Above and Below*/

up= pvm_gettid("mmult", ((row)?(row-1):(m-l))*m+col);

down= pvm _gettid("mmult", ((row== (m-I))?col:(row+ 1)*m+col));

I* Initialize The Blocks*/
lnitBlock(a, b, c, blksize, row, col);

I* Do The Matrix Multiply*/

for (i = O; i < m; i++) {

/*mcast the Block of Matrix A *I

if(col == (row +i)%m) {

pvm _initsend(PvmDataDefault);

pvm_pkfloat(a, blksize*blksize, l);

pvm _ mcast(myrow, m, (i+ 1)* AT AG);

BlockMult(c, a, b, blksize);

}

else {

pvm _ recv(pvm _gettid("mmult", row*m + (row+ i)%m), (i+ 1)* AT AG);

pvm _ upkfloat(atmp, blksize*blksize, 1);

BlockMult(c, atmp, b, blksize);

}

/*Rotate the Colums ofB */

pvm _initsend(PvmDataDefault);

pvm _pkfloat(b, blksize*blksize, 1);

pvm_send(up, (i+ l)*BTAG);

pvm _recv(down, (i+ 1)*BT AG);

53

pvm _ upkfloat(b, blksize*blksize, 1);

}
/* End PVM Timer*/

end = clockt);
printf("\nThe Response Time of PVM was: %f ", (float)(end - start) I

(float)CLK _ TCK);

printf("sec \n");

I* check it*/
for (i = O; i < blksize*blksize; i++)

if (a[i] != c[i])
printf("Error a[o/od] (%g) !=c[%d] (%g) \n", i, a[i], i, c[i]);

printf{"PVM Matrix Multiplication Completed and Checked ... \n");

free(a); free(b); free(c); free(atmp);

pvm _lvgroup("mmult");

pvrnexiu);

return O;

}

54

CONCLUSION

The primary motivation for the PVM are derived from the existing and anticipated need

for general, flexible, and inexpensive concurrent programming environment The PYM

system provides heterogeneous framework environment that can executed on existing

hardware bases, with the benefits of a procedural programming interface and
straightforward construct for access to various resources. Another feature of PYM is its

generality in supporting both shared-memory and message passing paradigms on

heterogeneous collection of machines. The framework provided by PYM enables

interaction between application components and machine architectures that are normally

incompatible. Furthermore, PYM features have been built such that large and complex

parallel system will require error indication and failure detection capabilities. From the
performance point of view, PVM has been proven to be acceptable even when application

with high communication to communication ratio, although it's primary intent is to

support applications with much larger grainsize and less interaction. In situations where

PVM gains more importance is the ability of PYM to utilize resource that already exist
and would be a wasted otherwise, not to mention its value as a prototyping tool for new

algorithms or applications. The simplicity of porting the PYM system as well as

application software also enhances its appeal and will contribute to its increased use.

There are many applications areas in which PYM needs to be improved. Some future

work application are discussed, A very valuable addition would be to a supplemental
toolkit that assisted in algorithm partitioning and scheduling, as well as support for

automatic compilation of different object modules for different architectures. From the
system implementation point of view, it will be evident that the data transfer, broadcast,

and mutual exclusion protocols are the most crucial primitives, and work in progress to
optimize these. From the application point of view, certain additional features might be

desirable such as the ability to coalesce emulated and real shared memory, and to

dynamically optimize message passing, locking, and design of a graphical interface for

the specification of component execution order and interactions, as well as debugging

and execution history trace facilities.

55

REFERENCES

[IJ Lecture Notes of Corn 442 given by Mr Hali! ADAHAN, 2002

[2] www.PVM.com, The PVM main page, 2003

[3] Introduction to PVM,

[4] www.google,com

[5] www.yahoo.com

(6] www.msn.com

56

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 4
	Page 5
	Titles
	1

	Page 6
	Page 7
	Page 8
	Page 9
	Titles
	5

	Page 10
	Page 11
	Titles
	®=..:..

	Images
	Image 1
	Image 2

	Page 12
	Titles
	EJ

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Tables
	Table 1

	Page 1
	Page 2
	Page 3
	Images
	Image 1

	Page 4
	Titles
	~!l·-·-
	<ŁŁŁ····-
	; Ł.....
 s- .. 'tl,>OUC I . " ,.. Ł ~~-
] -1~ ,._ ,........... -~ .. ,~-··

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 5
	Titles
	I

	Page 6
	Titles
	->
	->file

	Page 7
	Images
	Image 1

	Page 8
	Titles
	24

	Page 9
	Images
	Image 1

	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Page 5
	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1

	Page 8
	Page 9
	Titles

	-
	·-- -
	, _ ;J
	·-·

	ii 11 I I::=-
	:Ell~
	--

	---I I ŁŁ.. _conflg
	----u -'*'
	__ ,,..... ..-

	Images
	Image 1
	Image 2

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Titles
	I*
	*I

	Page 8
	Titles
	} (++f :)J[q > f :o = D lOJ

	Images
	Image 1

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Titles
	}
	}

	Page 11
	Images
	Image 1

	Page 12
	Titles
	}
	}

	Page 13
	Titles
	}

	Images
	Image 1

	Page 14
	Page 15
	Page 16
	Titles
	REFERENCES

	Images
	Image 1

