
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Electrical and Electronic
Engineering

PROGRAMMABLE LOGIC CONTROLLER
(PLC)

Graduation Project
EE-400

Student: Husain Ahmed CAHALAN (991748)

· Supervisor: Mr. Özgür C. ÖZERDEM

Nicosia - 2003

ACKNOWLEGDMENT

"This projeci was not possible to be prepared without the guidance and the support of my

supervisor Mr. Özgür C Özerdem.

I am indebted to him for his complete support and showing me the guidance throughout all

the stages of the preparation, and providing his constructive comments.

So I would like to take this opportunity to thank Mr. Özgür for every single help and

support, not just throughout this project but also through the courses which he provides to

the students in the Department of Electrical and Electronic Engineering, because through

these courses have gained a lot of knowledge, which helped me in the preparation of this
project.

I thank my family specially my brother Ashraf for their constant encouragement and
support during the preparation of this project.

I would like also to thank my friends specially Amjad Hammouda , Mahnwud Almassri
for their advice and support. "

TABLE OF CONTENTS

ACKNOWLEGDMENT
ABSTRACT ..
TABLE OF CONTENTS
INTRODUCTION
1. Background of PLC

1.1. History of PLC
1.2. What is a PLC?
1.3. Today's PLC

2. Architecture and Operations of PLC
2.1. Ladder Logic

2.1 .1. A Recipe for Creating a Ladder Logic Diagram
2.1.2. Controller Ladder Diagram-Logixl'ro

2.2. Counter
2.3. Timers

2.3.1. On-Delay timer
2.3.2. Off-Delay timer
2 .3 .3. Timer Accuracy
2.3.4. Input error
2.3.5. Output error

2.4. Boolean Math
2.5. Basic Instructions

2.5.1. Load
2.5.2. LoadBar
2.5.3.1. Out
2.5.3.2. Outbar

2.6. PLC Registers
2.6.1. A Level Application
2.6.2. The Program Scan

2.7. PROGRAMMABLE CONTROLLER PLC's
2.7 .1. Introduction
2.7.2. Background
2.7.3. Teırninology-EC or PLC
2.7.4. PLC Hardware Design
2.7 .5. Input output I units
2.7.6. Central Processing Unit (CPU)
2.7.6.1. Memory
2.7.6.2. Memory size

2.8. Logic instruction set
2.9. Input\output numbering
2. 1 O. TYPES OF PLC

2.10.1. Small PLCs
2.10.2. Medium-sized PLC's
2.10.3. Large PLC
2.10.4. Remote input\output
2.10.5. Programming large PLC's

2.11. Developments

iii

i
Ji
iii
V

1
1
2
3
4
4
4
11
12
16
16
16
19
19
20
21
25
25
25
26
26
28
30
32
34
34
35
37
37
38
41
41
42
42
43
45
46
48
48
49
49
50

2.12. DC and AC Inputs
2.12.L DC Inputs
2.12.2. AC Inputs

2.13. CHOQ.SING INSTALLATION AND COMMISSIONING OF
PLC SYSTEM

2 .13 .1. Feasibility Study
2.13.2. Design Procedure for PLC System
2.13.3. Choosing a programmable controller
2.13.4. Size and type of PLC system
2 .13 .4 .1. 1/0 requirements
2.13.42. Memory and programming requirements
2.13.4.3. Instruction set I CPU

2.14. Installation
2.15. Testing and Commissioning
2.16. Software testing and simulation
2.17. Installing and running the user control program

3. Application of PLC
3 .1. Introduction

3 .1. 1. Process
3 .1.2. How does it work?
3 .1.3. Software approach
3 .1.3. I . Ladder Program
3 .1.3 .2. Statement program

CONCLUSION
REFERANCES

iv

50
50
53

55
55
56
56
57
57
58
59
59
60
61
64
65
65
65
65
67
68
69

70
71

INTRODUCTION

A programmable logic controller (PLC) is a device that was invented to replace the

necessary sequential relay circuits for machine control. The PLC works by looking at its

inputs and depending upon their state, turning on/of its outputs. The user enters a program,

usually via software, that gives the desired results.

Pl C's are used in many real word applications. If there is industry present, chances are

good that there is a PLC present. If you are involved in a machining, packaging, material

handling, automated assembly or countless other industries you are probably already using

them. If you are not, you are wasting money and time.

Almost any application that needs some type of electrical control has for a PLC.
For example, let's assume that when a switch turns on we want tum a solenoid on for 5

seconds and then tum it off regardless ofhow long the switch is on for.

We can do this with a simple external timer. But what if the process included 10 switches

and solenoids? We would need IO external timers. What if the process also needed to count

how may time the switches individually turned on? We need a lot of external counters.

As you can see the bigger the process the more of a need eve have for a PLC.

We can simple program the PLC to count its inputs and tum the solenoids on for the

specified time.

This site gives enough formation to be able to write programs far more complicated than

the simply one above. We will take a look at what is considered to be the 'top 20' PLC

instructions. It can safely estimated that with a firm understanding of these instructions one

can solve more than 80% of the applications insistence.

V

1. Background of PLC

1.1. History of PLC

In the late 1960's large, complex panels of electromechanical relays controlled assembly

lines in the major automotive plants. These relay panels controlled the sequence of events

that was required to assemble a particular vehicle. At the end of each model year the relay

panels had to be extensively rewired requiring the plants to be shut down for up to a month.

Often it was more economical to scrap the old panels and replace them with new

ones. General Motors was looking for a way to save money on this costly, time-consuming

process. In 1968 its Hydra-Matic Division designed the first Programmable Logic
Controller (PLC).

The PLC replaced the relay panel with a computer. Rewiring the relay panel was

replaced with reprogramming the computer. The model changeover that once took weeks

was reduced to a matter of days. By the year 2000 the control of the assembly line had
evolved to the point where a plant like GM's Lords town Assembly Plant was able to

assemble Cavaliers and have 2 door and 4 door vehicles, vehicles in a variety of trims and

with a variety of options in many different colors, even vehicles with the steering wheel on

the right hand side, roll off the same assembly line one after the other.

Although the PLC was a great advance.in controllingcomplex processes, it took a while

to become widely adopted. Early PLCs had a reputation for being unreliable and required

highly trained programmers to make any changes to the program. By today's standards they

were also expensive and very limited in terms of their capabilities. Over the years

manufacturers 'hardened' their PLCs to withstand the industrial environments in which they

were installed. As computers advanced so did PLCs becoming more powerful and less

expensive. PLÇ programming also became more user friendly and more easily understood

by a much wider segment ofthe workforce.

1

1.2. What is a PLC?

PLCs are often defined as miniature industrial computers that contain hardware and
software that is used to perform control fünctions. A PLC consists of two basic sections:

the central processing unit (CPU) and the input/output interface system. The CPU, which

controls all PLC activity, can fürtlıer be broken down into the processor and memory

system. The input/output system is physically connected to field devices (e.g., switches,

sensors, etc.) and provides the interface between the CPU and the information providers

[inputs) and controllable devices (outputs). To operate, the CPU "reads" input data from

connected field devices through the use of its input interfaces, and then "executes", or

performs the control program that has been stored in its memory system. Programs are

typically created in ladder logic, a language that closely resembles a relay-based wiring

schematic, and are entered into the CPU's memory prior to operation. Finally, based on the

program, the PLC "writes", or updates output devices via the output interfaces. This

process, also known as scanning, continues in the same sequence without interruption, and

changes only when a change is made to the control program.

A PLC (i.e. ProgrammableLogic Controller) is a device that was invented to replace the

necessary sequential relay circuits for machine control. The PLC works by looking at its

inputs and dependingupon their state, turning on/off its outputs. The user enters a program,
usuallyvia software, that gives the desired results.

PLCs are used in many "real world" applications. If there is industry present, chances

are good that there is a plc present. If you are involved in machining, packaging, material

handling, automated assembly or countless other industries you are probably already using

them. If you are not, you are wasting money and time. Almost any application that needs
some type ofelectrical control has a need for a plc.

For example, let's assume that when a switch turns on we want to tum a solenoid on for

5 seconds and then tum it off regardless of how long the switch is on for. We can do this

with a simple external timer. But what if the process included 1 O switches and solenoids?
We wouldneed 1 O external timers.

What if the process also needed to count how many times the switches individually
turned on? We need a lot ofexternal counters.

2

As you can see the bigger the pq,cess the more of a need we have for a PLC. We can..
simply program the PLC to count its inputs and turn the solenoidson for the specified time.

This site gives you enough information to be able to write programs far more

complicated than the simple one above. We will take a look at what is considered to be the

"top 20" plc instructions. It can be safely estimated that with a firm understanding of these

instructionsone can solve more than 80% ofthe applications in existence.

1.3. Today's PLC
As PLC technologyhas advanced, so have programming languages and communications

capabilities, along with many other important features. Today's PLCs offer faster scan

times, space efficient high-density input/output systems, and special interfaces to allow

non-traditional devices to be attached directly to the PLC. Not only can they communicate

with other control systems, they can also perform reporting functions and diagnose their

own failures, as well as the failureofa machine or process.

Size is typically used to categorize today'sPLC, and is often an indication ofthe features

and types of applications it will accommodate. Small, non-modular PLCs (also known as

fixed I/O PLCs) generally have less memory and accommodate a small number of inputs

and outputs in fixed configurations. Modular PLCs have bases or racks that allow

installation of multiple I/O modules, and will accommodate more complex applications.

When you consider all of the advances PLCs have made and all the benefits they offer, it's

easy to see how they've become a standard in the industry, and why they will most likely

continue their success in the future.

3

2. Architecture and Operations of PLC

2.1. Ladder Logic

Ladder logic, ladder diagrams, ladder logic diagrams, elementary diagrams, and line

diagrams are all terms referring to a very popular graphical method of describing event

driven or time/event driven sequential processes. Ladder diagrams were originally

developed to represent non-electronic control circuits consisting of switches, relays,

solenoids, indicators, and other components used to control industrial machinery. They

earned the name ladder diagrams because they bear some resemblance to a ladder with a

number of circuits comprising the rungs of the ladder running between two vertical lines or

rails.

Since the vertical lines represent power lines to the controller, every complete path

between the two lines must contain exactly one relay coil, solenoid, indicator, or other

load. Like the lights in your house, the loads may be placed in parallel but not in series

combinations. Any path between the two lines that does not contain a load is a potential

short circuit. In addition to these basic rules other common practices for the format of

ladder diagrams include:

• All relay coils, solenoids, indicators, or other loads are on the right.

• Switches, contacts, or any other devices that make or break electrical contact are

on the left.

• Switches, contacts, or any other devices that make or break electrical contact may

be multiple contacts in series, parallel, or series-parallel combinations.

2.1.1. A Recipe for Creating a Ladder Logic Diagram

The following is as close as I have been able to come to a 'recipe' that guarantees success

when creating ladder logic diagram. The ladder diagrams that result from this recipe

usually have many more control relays and may at first look more complicated than ladder

diagrams obtained by other methods, but the logic is clear and all the rungs (In each portion

of the diagram - the control portion and the output portion) are very similar to each other.

4

The example we will use for our recipe is very simple. Suppose we have a tank where...
we wish to mix two liquids for a specified amount of time. When we press a start button

two solenoid operated valves (SOLA and SOLB) will open and the two liquids will begin

filling the taıık. The tank is equipped with two float switches, one near the bottom of the

tank to tell us if the tank is empty and one near the top of the tank to tell us if the tank is

full. We will say that the switches are designed so that when the tank is empty float switch

1, FS1 (near the bottom of the tank) will be closed (true) otherwise it will be open

(false). Float switch 2, FS2 (near the top of the tank) is designed so that when the tank is

full it is closed (true) otherwise it will be open (false). When the tank becomes full we

want the two-solenoidvalves to close and the mixer motor (Ml) to start.

The mixer motor should run for some predetermined amount of time, then stop, and a

third solenoidvalve (SOLC) should open to drain the tank. When the taıık is empty, SOLC

should close but the refilling process should not begin until the start button is once again
pressed.

• Define the Process

The first step is to define the process (figure 2.1). This often involves creating some

type ofdrawing or diagram of the process.

M1

LIQUID A- I SOLA

LIQUID s- SOLB

TAN~<
FS2

SOLC I DRAIN' '
FS1

Figure 2.1. Diagramof the mixing process

5

• Define the Steps or States

The second step _..is to define the steps or states of the process (figure 2.2). Two different

tools are used to assist us in defining the steps, the Sequential Function Chart and the State

Chart. A Sequential Function Chart for the mixing process is shown below. Each step

or state in the process has been numbered and is represented by a box. The flow is from

top to bottom in order of the numbers of the steps except after step number four the process

can repeat beginning at step one again. Since the flow is usually quite obvious, arrows are

generally not drawn on Sequential Function Charts. The condition for advancing from one

step to the next is written beside a horizontal line that crosses the transfer path between the

two steps. The transfer conditions are given labels of the form Ci.j, where i is the state that

the transfer is from and j is the state that the transfer is to.

O I INITIAL STATE

C0.1 = RESET

1 I WAITFORSTART

C1.2 = START

2 I FILL

C2.3 = TANK FULL
3 I MIX

C3.4 = PRESET MIXING TIME REACHED

4 I DRAIN

C4.1 = TANK EMPTY

Figure 2.2 Sequential function chart for the mixing process

6

A state chart is simply a truth table for the outputs from our controller. The steps are listed
~

in the first colurnri of the table and the outputs in the first row. An X indicates that an

output is ON while no mark indicates that it is off.

Table 2.1. State chart for the mixing process

• Define the Input and Output Conditions
Next, we must define the input and output conditions. The tool most often used to

define the input and output conditions is the timing diagram (figure 2.3). The timing

diagram has the states listed across the top and the inputs, outputs, and timers listed down

the left side. Each item down the side has a O (OFF or false) and a I (ON or true)

associatedwith it.

o 1 2 3 4
INITl,A,L VVAIT FOR FILL MIX DRAIN
STATE START

RESET
1 ,
o

START
1 n o

FS1
1 I o

FS2
1 I o

SOLA
1
o

SOLB
1
o

SOLC
1
o

M1
1
o

T1 1 n o

Figure 2.3. Timing diagram for the mixing process.

7

Some explanation is in order. Both the RESET and START are momentary contact push
~

button switches. The RESET really just provides us with a method to begin. We start in

the initial state and when the RESET button is pressed (RESET goes from O or OFF to 1 or

ON) we transition to state 1, waiting for the START button to be pressed. Notice that since

the RESET button is momentaıy contact, it does not remain in the true (1 or ON) condition

for long but returns to false-(0or OFF) when released a short time after it was pressed. We

don't really care how long the RESET button remains pressed as long as it is not through
the entire step 1.

The START button behaves similarly;however, when the STARTbutton is pressed we

also want SOLA and SOLB to activate allowing liquids A and B to flow into the tank. A
short time after the tank begins to fill FS1 becomes false

(i.e. the tank is no longer empty) and FS 1 goes from 1 to O. SOLA and SOLB remain

on until FS2 goes true (the tank becomes full) at which point they go off. When the tank

becomes full Ml must also go on. Not shown but also occurring at the transition between

states 2 and 3 is activation of the timer coil. This is when the timer begins to time. The

length oftime that the timer is preset for determines the length of the mix. When the timer

times out Tl goes true and we transition from state 3 to state 4. This marks the end of the

mix state and the beginning of the drain state so Ml goes off and SOLC goes on. A short

time after the tank begins to drain FS2 becomes false. In reality FS2 may have transitioned

between true and false many times as the liquid was mixed in the tank. We really don't care

as long as it makes the initial transition from false to true when the tank first becomes

full. Finally, the tank becomes empty and FSl becomes true. This marks the end of the

drain state, SOLC goes off, and we make the transitionback to the wait for START state.

• Define the Transition Conditions

Now we need to more carefully define the transition conditions (the Ci.j terms) that we

first put down on the sequential functionchart.

We do this by examining the timing diagram (Figure 3 above). We look for an input

(RESET, START, FSl, and FS2 are inputs) or perhaps a timer contact (Tl) that changes

exactly on the boundary between the present state and the next state. It is convenient, but

certainlynot necessaıy, that the input change from O to 1 at the boundary.

8

Often only one input changes and the choice is therefore obvious but sometimes more than

one input will change at the boundaıy and we must make an arbitraıy choice.

From the timing diagram we can make the following determination of the transition

conditions for the mixing process:

CO.I =RESET

Cl.2 = START

C2.3 = Tl

C4.l = FSI

\

• Define the Output Functions

The output functions can be defined from either the state chart (probably the easiest) or

the timing diagram. Simply list each of the outputs. The output function for any output is

the logical OR of all the steps for which it is energized. For the mixing process the output
functions are:

SOLA=STEP2
SOLB= STEP2

SOLC= STEP4

Ml =STEP3

Since all of the outputs in this example are only active for a single step we have no OR

operators in the output functions. Just to show you what that would look like suppose

SOLA needed to be on for both STEP 2 and STEP 3. In that case the first output function
would become SOLA= STEP 2 OR STEP 3.

• Define the Timer Functions

We must determine when the timer coil is to be energized, i.e. which step(s) we are

timing.

Tl= STEP 3.

9

Constıuct the Controller Ladder Diagram - We are now ready to actually begin to

constıuct the ladder diagram. Our ladder diagram will have two distinct parts, the

controller ladder diagram, and the output ladder diagram. We first work on the controller

ladder diagram section. The rungs in our controller ladder diagram will all be veıy similar.

Each one will be shown in figure 2.4:
\

I
I CRk CRi CRj
j--- I I 1------- I 1----. Ci. j. -------------------- (RLY) I
I I CRj I
I +--- I I------------+

Figure 2.4. Of ControllerLadder Diagram

Here i is the previous rung in the diagram,j is this ıung, and k is the next rung. The Ci.j

is just the transition condition defined above. One last thing before we constıuct the

controller portion of our ladder diagram. By looking at the sequential function chart we

can see that there are really two ways to get to STEP 1, either from STEP O by pressing the

RESET or simply recycling back after completing STEP 4. The OR function can be

implemented by placing contacts in parallel. The circuit will be completed (true) if one

contact OR the other (or both) are true.

(The AND function can be implementedby placing contacts in series).

10

The controller portion of the ladder diagram is finally shown in figure 2.5

I CR2 RESET CR1
1---1/1-------11---------~----------------------(RLY) I
I I CR4 FS1 I
I 1--- I 1------- I I --- I
I I CR:t I
I +---11-------------+
I
I
I
I CR3 CR1 START CR2
2---1 /I------- I I -------1 I---------------------- (RLY) I
I I CR2 I
I +---1 1-------------+
I
I
I
I CR4 CR2 FS2 CR3
3---1/1-------1 1-------1 1----------------------(RLY) I
I I CR3 I
I +---1 1-------------+
I
I
I
I CR1 CR3 T1 CR4
4---1/1-------1 1-------1 1----------------------(RLY) I
I I CR4 I
I +---1 1-------------+

(

Figure 2.5.The controllerportion of the ladder diagram

2.1.2. Controller Ladder Diagram-LogixPro

The output section of our ladder diagram is veıy simple. We construct it by

inspecting the output definitions and timer definitions above. Note that ladder rung(s)

relating to the timer would normally be considered part of the controller section of the

ladder diagram but we place it here in the output section because it looks like the other
output rungs. (See figure2.6)

11

CR2 SOLA

5---ı -~1--(0UT) I

CR2 SOLB

6---, 1--(0UT) I

/

7---ı
CR4 SOLC

,---------- -------------------------------(OUT) I

8---ı
Ml

CR3 ---------(OUT) I1---------------------------------

9---ı
Tl

CR3 ----------(TIM) I1--------------------------------

Figure 2.6. Controller Ladder Diagram-LogixProzx

2.2. Counters

A counter is a simple device intended to do one simple thing • count. Using them,

however, can sometimes be a challenge because every manufacturer (for whatever reason)

seems to use them a different way. Rest assured that the following information will let you

simply and easily program anybody's counters.

12

