
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Electrical and Electronic
Engineering

PROGRAMMABLE LOGIC CONTROLLER
(PLC)

Graduation Project
EE-400

Student: Husain Ahmed CAHALAN (991748)

· Supervisor: Mr. Özgür C. ÖZERDEM

Nicosia - 2003

ACKNOWLEGDMENT

"This projeci was not possible to be prepared without the guidance and the support of my

supervisor Mr. Özgür C Özerdem.

I am indebted to him for his complete support and showing me the guidance throughout all

the stages of the preparation, and providing his constructive comments.

So I would like to take this opportunity to thank Mr. Özgür for every single help and

support, not just throughout this project but also through the courses which he provides to

the students in the Department of Electrical and Electronic Engineering, because through

these courses have gained a lot of knowledge, which helped me in the preparation of this
project.

I thank my family specially my brother Ashraf for their constant encouragement and
support during the preparation of this project.

I would like also to thank my friends specially Amjad Hammouda , Mahnwud Almassri
for their advice and support. "

TABLE OF CONTENTS

ACKNOWLEGDMENT
ABSTRACT ..
TABLE OF CONTENTS
INTRODUCTION
1. Background of PLC

1.1. History of PLC
1.2. What is a PLC?
1.3. Today's PLC

2. Architecture and Operations of PLC
2.1. Ladder Logic

2.1 .1. A Recipe for Creating a Ladder Logic Diagram
2.1.2. Controller Ladder Diagram-Logixl'ro

2.2. Counter
2.3. Timers

2.3.1. On-Delay timer
2.3.2. Off-Delay timer
2 .3 .3. Timer Accuracy
2.3.4. Input error
2.3.5. Output error

2.4. Boolean Math
2.5. Basic Instructions

2.5.1. Load
2.5.2. LoadBar
2.5.3.1. Out
2.5.3.2. Outbar

2.6. PLC Registers
2.6.1. A Level Application
2.6.2. The Program Scan

2.7. PROGRAMMABLE CONTROLLER PLC's
2.7 .1. Introduction
2.7.2. Background
2.7.3. Teırninology-EC or PLC
2.7.4. PLC Hardware Design
2.7 .5. Input output I units
2.7.6. Central Processing Unit (CPU)
2.7.6.1. Memory
2.7.6.2. Memory size

2.8. Logic instruction set
2.9. Input\output numbering
2. 1 O. TYPES OF PLC

2.10.1. Small PLCs
2.10.2. Medium-sized PLC's
2.10.3. Large PLC
2.10.4. Remote input\output
2.10.5. Programming large PLC's

2.11. Developments

iii

i
Ji­
iii
V

1
1
2
3
4
4
4
11
12
16
16
16
19
19
20
21
25
25
25
26
26
28
30
32
34
34
35
37
37
38
41
41
42
42
43
45
46
48
48
49
49
50

2.12. DC and AC Inputs
2.12.L DC Inputs
2.12.2. AC Inputs

2.13. CHOQ.SING INSTALLATION AND COMMISSIONING OF
PLC SYSTEM

2 .13 .1. Feasibility Study
2.13.2. Design Procedure for PLC System
2.13.3. Choosing a programmable controller
2.13.4. Size and type of PLC system
2 .13 .4 .1. 1/0 requirements
2.13.42. Memory and programming requirements
2.13.4.3. Instruction set I CPU

2.14. Installation
2.15. Testing and Commissioning
2.16. Software testing and simulation
2.17. Installing and running the user control program

3. Application of PLC
3 .1. Introduction

3 .1. 1. Process
3 .1.2. How does it work?
3 .1.3. Software approach
3 .1.3. I . Ladder Program
3 .1.3 .2. Statement program

CONCLUSION
REFERANCES

iv

50
50
53

55
55
56
56
57
57
58
59
59
60
61
64
65
65
65
65
67
68
69

70
71

INTRODUCTION

A programmable logic controller (PLC) is a device that was invented to replace the

necessary sequential relay circuits for machine control. The PLC works by looking at its

inputs and depending upon their state, turning on/of its outputs. The user enters a program,

usually via software, that gives the desired results.

Pl C's are used in many real word applications. If there is industry present, chances are

good that there is a PLC present. If you are involved in a machining, packaging, material

handling, automated assembly or countless other industries you are probably already using

them. If you are not, you are wasting money and time.

Almost any application that needs some type of electrical control has for a PLC.
For example, let's assume that when a switch turns on we want tum a solenoid on for 5

seconds and then tum it off regardless ofhow long the switch is on for.

We can do this with a simple external timer. But what if the process included 10 switches

and solenoids? We would need IO external timers. What if the process also needed to count

how may time the switches individually turned on? We need a lot of external counters.

As you can see the bigger the process the more of a need eve have for a PLC.

We can simple program the PLC to count its inputs and tum the solenoids on for the

specified time.

This site gives enough formation to be able to write programs far more complicated than

the simply one above. We will take a look at what is considered to be the 'top 20' PLC

instructions. It can safely estimated that with a firm understanding of these instructions one

can solve more than 80% of the applications insistence.

V

1. Background of PLC

1.1. History of PLC

In the late 1960's large, complex panels of electromechanical relays controlled assembly

lines in the major automotive plants. These relay panels controlled the sequence of events

that was required to assemble a particular vehicle. At the end of each model year the relay

panels had to be extensively rewired requiring the plants to be shut down for up to a month.

Often it was more economical to scrap the old panels and replace them with new

ones. General Motors was looking for a way to save money on this costly, time-consuming

process. In 1968 its Hydra-Matic Division designed the first Programmable Logic
Controller (PLC).

The PLC replaced the relay panel with a computer. Rewiring the relay panel was

replaced with reprogramming the computer. The model changeover that once took weeks

was reduced to a matter of days. By the year 2000 the control of the assembly line had
evolved to the point where a plant like GM's Lords town Assembly Plant was able to

assemble Cavaliers and have 2 door and 4 door vehicles, vehicles in a variety of trims and

with a variety of options in many different colors, even vehicles with the steering wheel on

the right hand side, roll off the same assembly line one after the other.

Although the PLC was a great advance.in controllingcomplex processes, it took a while

to become widely adopted. Early PLCs had a reputation for being unreliable and required

highly trained programmers to make any changes to the program. By today's standards they

were also expensive and very limited in terms of their capabilities. Over the years

manufacturers 'hardened' their PLCs to withstand the industrial environments in which they

were installed. As computers advanced so did PLCs becoming more powerful and less

expensive. PLÇ programming also became more user friendly and more easily understood

by a much wider segment ofthe workforce.

1

1.2. What is a PLC?

PLCs are often defined as miniature industrial computers that contain hardware and
software that is used to perform control fünctions. A PLC consists of two basic sections:

the central processing unit (CPU) and the input/output interface system. The CPU, which

controls all PLC activity, can fürtlıer be broken down into the processor and memory

system. The input/output system is physically connected to field devices (e.g., switches,

sensors, etc.) and provides the interface between the CPU and the information providers

[inputs) and controllable devices (outputs). To operate, the CPU "reads" input data from

connected field devices through the use of its input interfaces, and then "executes", or

performs the control program that has been stored in its memory system. Programs are

typically created in ladder logic, a language that closely resembles a relay-based wiring

schematic, and are entered into the CPU's memory prior to operation. Finally, based on the

program, the PLC "writes", or updates output devices via the output interfaces. This

process, also known as scanning, continues in the same sequence without interruption, and

changes only when a change is made to the control program.

A PLC (i.e. ProgrammableLogic Controller) is a device that was invented to replace the

necessary sequential relay circuits for machine control. The PLC works by looking at its

inputs and dependingupon their state, turning on/off its outputs. The user enters a program,
usuallyvia software, that gives the desired results.

PLCs are used in many "real world" applications. If there is industry present, chances

are good that there is a plc present. If you are involved in machining, packaging, material

handling, automated assembly or countless other industries you are probably already using

them. If you are not, you are wasting money and time. Almost any application that needs
some type ofelectrical control has a need for a plc.

For example, let's assume that when a switch turns on we want to tum a solenoid on for

5 seconds and then tum it off regardless of how long the switch is on for. We can do this

with a simple external timer. But what if the process included 1 O switches and solenoids?
We wouldneed 1 O external timers.

What if the process also needed to count how many times the switches individually
turned on? We need a lot ofexternal counters.

2

As you can see the bigger the pq,cess the more of a need we have for a PLC. We can..
simply program the PLC to count its inputs and turn the solenoidson for the specified time.

This site gives you enough information to be able to write programs far more

complicated than the simple one above. We will take a look at what is considered to be the

"top 20" plc instructions. It can be safely estimated that with a firm understanding of these

instructionsone can solve more than 80% ofthe applications in existence.

1.3. Today's PLC
As PLC technologyhas advanced, so have programming languages and communications

capabilities, along with many other important features. Today's PLCs offer faster scan

times, space efficient high-density input/output systems, and special interfaces to allow

non-traditional devices to be attached directly to the PLC. Not only can they communicate

with other control systems, they can also perform reporting functions and diagnose their

own failures, as well as the failureofa machine or process.

Size is typically used to categorize today'sPLC, and is often an indication ofthe features

and types of applications it will accommodate. Small, non-modular PLCs (also known as

fixed I/O PLCs) generally have less memory and accommodate a small number of inputs

and outputs in fixed configurations. Modular PLCs have bases or racks that allow

installation of multiple I/O modules, and will accommodate more complex applications.

When you consider all of the advances PLCs have made and all the benefits they offer, it's

easy to see how they've become a standard in the industry, and why they will most likely

continue their success in the future.

3

2. Architecture and Operations of PLC

2.1. Ladder Logic

Ladder logic, ladder diagrams, ladder logic diagrams, elementary diagrams, and line

diagrams are all terms referring to a very popular graphical method of describing event

driven or time/event driven sequential processes. Ladder diagrams were originally

developed to represent non-electronic control circuits consisting of switches, relays,

solenoids, indicators, and other components used to control industrial machinery. They

earned the name ladder diagrams because they bear some resemblance to a ladder with a

number of circuits comprising the rungs of the ladder running between two vertical lines or

rails.

Since the vertical lines represent power lines to the controller, every complete path

between the two lines must contain exactly one relay coil, solenoid, indicator, or other

load. Like the lights in your house, the loads may be placed in parallel but not in series

combinations. Any path between the two lines that does not contain a load is a potential

short circuit. In addition to these basic rules other common practices for the format of

ladder diagrams include:

• All relay coils, solenoids, indicators, or other loads are on the right.

• Switches, contacts, or any other devices that make or break electrical contact are

on the left.

• Switches, contacts, or any other devices that make or break electrical contact may

be multiple contacts in series, parallel, or series-parallel combinations.

2.1.1. A Recipe for Creating a Ladder Logic Diagram

The following is as close as I have been able to come to a 'recipe' that guarantees success

when creating ladder logic diagram. The ladder diagrams that result from this recipe

usually have many more control relays and may at first look more complicated than ladder

diagrams obtained by other methods, but the logic is clear and all the rungs (In each portion

of the diagram - the control portion and the output portion) are very similar to each other.

4

The example we will use for our recipe is very simple. Suppose we have a tank where...
we wish to mix two liquids for a specified amount of time. When we press a start button

two solenoid operated valves (SOLA and SOLB) will open and the two liquids will begin

filling the taıık. The tank is equipped with two float switches, one near the bottom of the

tank to tell us if the tank is empty and one near the top of the tank to tell us if the tank is

full. We will say that the switches are designed so that when the tank is empty float switch

1, FS1 (near the bottom of the tank) will be closed (true) otherwise it will be open

(false). Float switch 2, FS2 (near the top of the tank) is designed so that when the tank is

full it is closed (true) otherwise it will be open (false). When the tank becomes full we

want the two-solenoidvalves to close and the mixer motor (Ml) to start.

The mixer motor should run for some predetermined amount of time, then stop, and a

third solenoidvalve (SOLC) should open to drain the tank. When the taıık is empty, SOLC

should close but the refilling process should not begin until the start button is once again
pressed.

• Define the Process

The first step is to define the process (figure 2.1). This often involves creating some

type ofdrawing or diagram of the process.

M1

LIQUID A- I SOLA

LIQUID s- SOLB

TAN~<
FS2

SOLC I DRAIN' '
FS1

Figure 2.1. Diagramof the mixing process

5

• Define the Steps or States

The second step _..is to define the steps or states of the process (figure 2.2). Two different

tools are used to assist us in defining the steps, the Sequential Function Chart and the State

Chart. A Sequential Function Chart for the mixing process is shown below. Each step

or state in the process has been numbered and is represented by a box. The flow is from

top to bottom in order of the numbers of the steps except after step number four the process

can repeat beginning at step one again. Since the flow is usually quite obvious, arrows are

generally not drawn on Sequential Function Charts. The condition for advancing from one

step to the next is written beside a horizontal line that crosses the transfer path between the

two steps. The transfer conditions are given labels of the form Ci.j, where i is the state that

the transfer is from and j is the state that the transfer is to.

O I INITIAL STATE

C0.1 = RESET

1 I WAITFORSTART

C1.2 = START

2 I FILL

C2.3 = TANK FULL
3 I MIX

C3.4 = PRESET MIXING TIME REACHED

4 I DRAIN

C4.1 = TANK EMPTY

Figure 2.2 Sequential function chart for the mixing process

6

A state chart is simply a truth table for the outputs from our controller. The steps are listed
~

in the first colurnri of the table and the outputs in the first row. An X indicates that an

output is ON while no mark indicates that it is off.

Table 2.1. State chart for the mixing process

• Define the Input and Output Conditions
Next, we must define the input and output conditions. The tool most often used to

define the input and output conditions is the timing diagram (figure 2.3). The timing

diagram has the states listed across the top and the inputs, outputs, and timers listed down

the left side. Each item down the side has a O (OFF or false) and a I (ON or true)

associatedwith it.

o 1 2 3 4
INITl,A,L VVAIT FOR FILL MIX DRAIN
STATE START

RESET
1 ,
o

START
1 n o

FS1
1 I o

FS2
1 I o

SOLA
1
o

SOLB
1
o

SOLC
1
o

M1
1
o

T1 1 n o

Figure 2.3. Timing diagram for the mixing process.

7

Some explanation is in order. Both the RESET and START are momentary contact push
~

button switches. The RESET really just provides us with a method to begin. We start in

the initial state and when the RESET button is pressed (RESET goes from O or OFF to 1 or

ON) we transition to state 1, waiting for the START button to be pressed. Notice that since

the RESET button is momentaıy contact, it does not remain in the true (1 or ON) condition

for long but returns to false-(0or OFF) when released a short time after it was pressed. We

don't really care how long the RESET button remains pressed as long as it is not through
the entire step 1.

The START button behaves similarly;however, when the STARTbutton is pressed we

also want SOLA and SOLB to activate allowing liquids A and B to flow into the tank. A
short time after the tank begins to fill FS1 becomes false

(i.e. the tank is no longer empty) and FS 1 goes from 1 to O. SOLA and SOLB remain

on until FS2 goes true (the tank becomes full) at which point they go off. When the tank

becomes full Ml must also go on. Not shown but also occurring at the transition between

states 2 and 3 is activation of the timer coil. This is when the timer begins to time. The

length oftime that the timer is preset for determines the length of the mix. When the timer

times out Tl goes true and we transition from state 3 to state 4. This marks the end of the

mix state and the beginning of the drain state so Ml goes off and SOLC goes on. A short

time after the tank begins to drain FS2 becomes false. In reality FS2 may have transitioned

between true and false many times as the liquid was mixed in the tank. We really don't care

as long as it makes the initial transition from false to true when the tank first becomes

full. Finally, the tank becomes empty and FSl becomes true. This marks the end of the

drain state, SOLC goes off, and we make the transitionback to the wait for START state.

• Define the Transition Conditions

Now we need to more carefully define the transition conditions (the Ci.j terms) that we

first put down on the sequential functionchart.

We do this by examining the timing diagram (Figure 3 above). We look for an input

(RESET, START, FSl, and FS2 are inputs) or perhaps a timer contact (Tl) that changes

exactly on the boundary between the present state and the next state. It is convenient, but

certainlynot necessaıy, that the input change from O to 1 at the boundary.

8

Often only one input changes and the choice is therefore obvious but sometimes more than

one input will change at the boundaıy and we must make an arbitraıy choice.

From the timing diagram we can make the following determination of the transition

conditions for the mixing process:

CO.I =RESET

Cl.2 = START

C2.3 = Tl

C4.l = FSI

\

• Define the Output Functions

The output functions can be defined from either the state chart (probably the easiest) or

the timing diagram. Simply list each of the outputs. The output function for any output is

the logical OR of all the steps for which it is energized. For the mixing process the output
functions are:

SOLA=STEP2
SOLB= STEP2

SOLC= STEP4

Ml =STEP3

Since all of the outputs in this example are only active for a single step we have no OR

operators in the output functions. Just to show you what that would look like suppose

SOLA needed to be on for both STEP 2 and STEP 3. In that case the first output function
would become SOLA= STEP 2 OR STEP 3.

• Define the Timer Functions

We must determine when the timer coil is to be energized, i.e. which step(s) we are

timing.

Tl= STEP 3.

9

Constıuct the Controller Ladder Diagram - We are now ready to actually begin to

constıuct the ladder diagram. Our ladder diagram will have two distinct parts, the

controller ladder diagram, and the output ladder diagram. We first work on the controller

ladder diagram section. The rungs in our controller ladder diagram will all be veıy similar.

Each one will be shown in figure 2.4:
\

I
I CRk CRi CRj
j--- I I 1------- I 1----. Ci. j. -------------------- (RLY) I
I I CRj I
I +--- I I------------+

Figure 2.4. Of ControllerLadder Diagram

Here i is the previous rung in the diagram,j is this ıung, and k is the next rung. The Ci.j

is just the transition condition defined above. One last thing before we constıuct the

controller portion of our ladder diagram. By looking at the sequential function chart we

can see that there are really two ways to get to STEP 1, either from STEP O by pressing the

RESET or simply recycling back after completing STEP 4. The OR function can be

implemented by placing contacts in parallel. The circuit will be completed (true) if one

contact OR the other (or both) are true.

(The AND function can be implementedby placing contacts in series).

10

The controller portion of the ladder diagram is finally shown in figure 2.5

I CR2 RESET CR1
1---1/1-------11---------~----------------------(RLY) I
I I CR4 FS1 I
I 1--- I 1------- I I --- I
I I CR:t I
I +---11-------------+
I
I
I
I CR3 CR1 START CR2
2---1 /I------- I I -------1 I---------------------- (RLY) I
I I CR2 I
I +---1 1-------------+
I
I
I
I CR4 CR2 FS2 CR3
3---1/1-------1 1-------1 1----------------------(RLY) I
I I CR3 I
I +---1 1-------------+
I
I
I
I CR1 CR3 T1 CR4
4---1/1-------1 1-------1 1----------------------(RLY) I
I I CR4 I
I +---1 1-------------+

(

Figure 2.5.The controllerportion of the ladder diagram

2.1.2. Controller Ladder Diagram-LogixPro

The output section of our ladder diagram is veıy simple. We construct it by

inspecting the output definitions and timer definitions above. Note that ladder rung(s)

relating to the timer would normally be considered part of the controller section of the

ladder diagram but we place it here in the output section because it looks like the other
output rungs. (See figure2.6)

11

CR2 SOLA

5---ı -~1--(0UT) I

CR2 SOLB

6---, 1--(0UT) I

/

7---ı
CR4 SOLC

,---------- -------------------------------(OUT) I

8---ı
Ml

CR3 ---------(OUT) I1---------------------------------

9---ı
Tl

CR3 ----------(TIM) I1--------------------------------

Figure 2.6. Controller Ladder Diagram-LogixProzx

2.2. Counters

A counter is a simple device intended to do one simple thing • count. Using them,

however, can sometimes be a challenge because every manufacturer (for whatever reason)

seems to use them a different way. Rest assured that the following information will let you

simply and easily program anybody's counters.

12

Kinds of counters up-counters (they only count up 1,2,3...). These are called CTU,•.
(count up) CNT, C, or CTR. There are down counters (they only count down 9,8,7 ...).

These are typically called CID (count down) when they are a separate instruction. There
"

are also up-down counters (they count up and/or down 1,2,3,4,3,2,3,4,5 ...) these are

typically called UDC (up-down counter) when they are separate instructions.

Many manufacturers have only one or two types of counters but they can be used to

count up, down or both. The theory is all the same regardless of what the manu:fucturers

call them. A counter is a counter is a counter. (

To further confuse the issue, inost manufacturers also include a limited number ofhigh­

speed counters. These are commonly called HSC (high-speed counter), CTH (Counter­

High speed).

Typically a high-speed counter is a "hardware" device. The normal counters listed above

are typically "software" counters. hı other words they don't physically exist in the PLCs but

rather they are simulated in software. Hardware counters do exist in the PLC and they are

not depending about time scan.

A good rule of thumb is simply to always use the normal (software) counters unless the

pulses you are counting will arrive faster than 2X the scan time. (i.e. if the scan time is 2ms

and pulses will be arriving for counting every 4ms or longer then use a software counter. If

they arrive faster than every 4ms (3ms for example) then use the hardware (high-speed)

counters. (2xscan time = 2x2ms= 4ms).

• To use them we must know 3 things:

Where the pulses that we want to count are coming from. Typically this is from one of

the inputs. (A sensor connected to input 0000 for example).

How many pulses we want to count before we react. Let's count 5 widgets before we

box them, for example.

When/how we will reset the counter so it can count again. After we count 5 widgets lets

reset the counter, for example.

When the program is running on the plc the program typically displays the current or

"accumulated" value for us so we can see the current count value.

13

Typically counters can count from O to 9999, -32,768 to +32,767 or O to 65535. Why the

weird numbers? Because riıost PLCs have 16-bit counters. We'll get into what this means in

a later chapter but for now suffice it to say that 0-9999 is 16-bit BCD (binaıy coded

decimal) and that -32,768 to 32767 and O to 65535 is 16-bit binary.

Here are some of the instruction symbols we will encounter (depending on which

manufacturer we choose) and how to use them. Remember that while they may look

different they are all used basically/the same way. If we can setup one we can setup any of

them.

RESET I C>c><X--
PULSE I YYY'/'/

In this counter we need 2 inputs:

• One goes before the reset line. When this input turns on the current (accumulated)

count value will return to zero.

• The second input is the address where the pulses we are counting are coming from.

For example, if we are counting how many widgets pass in front of the sensor that is

physically connected to input 0001 then we would put normally open contacts with the

address 0001 in front of the pulse line.

Cxxx is the name of the counter.

lfwe want to call it counter 000 then we would put "COOO" here.

yyyyy is the number of pulses we want to count before doing something.

lfwe want to count 5 widgets before turning on a physical output to box them we would

put 5 here. If we wanted to count 100 widgets then we would put 100 here, etc. When the

counter is finished (i.e. we counted yyyyy widgets) it will tum on a separate set of contacts

that we also label Cxxx.

Note that the counter accumulated value ONLY changes at the off to on transition of the

pulse input.

14

0002.,. .•.. LJ I I coo o
100~;()

cooo· 0500

Here's the symbol on a ladder showing how we set up a counter (we'll name it counter

000) to count 100 widgets from input 0001 before turning on output 500. Sensor 0002

resets the counter.
Below is one symbol we may encounter for an up-down counter. We'll use the same

abbreviationas we did forthe example above. (i.e. UDCxxx and yyyyy)

UP

UC::ıC:xx><
DOWN \/\/\/\/'..:'

l f ,' ,' ,'

RESET

In this up-down counter we need to assign 3 inputs. The reset input has the same

function as above. However, instead of having only one input for the pulse counting we

now have 2. One is for counting up and the other is for counting down. In this example we

will ·call the counter UDCOOO and we will give it a preset value of 1000. (We'll count 1000

total pulses) For inputs we'll use a sensor that will tum on input 0001 when it sees a target

and another sensor at input 0003 will also tum on when it sees a target. When input 0001

turns on we count up and when input 0003 turns on we count down. When we reach 1000

pulses we will turn on output 500.

15

The ladder diagram ıs

shown below. - 0001

0003 I UDCOOO
1000

0002

coo o 0500

2.3. Timers
A timer it is an instruction that waits a set amount of time before doing something.

Sounds simple doesn't it.

When we look at the different kinds of timers available the fun begins. As always,

different types of timers are available with different manufacturers. Here are most of them:

2.3.1. On-Delay timer

This type of timer simply "delays turning on". In other words, after our sensor

(input) turns on we wait x-seconds before activating a solenoid valve (output). This is the

most common timer. It is often called TON (timer on-delay), TIM (timer) or TMR (timer).

2.3.2. Off-Delay timer

This type of timer is the opposite of the on-delay timer listed above. This timer simply

"delays turning off'. After our sensor (input) sees a target we tum on a solenoid (output) .

. When the sensor no longer sees the target we hold the solenoid on for x-seconds before

turning it off. It is called a TOF (timer off-delay) and is less common than the on-delay

type listed above.

Retentive or Accumulating timer- this type of timer needs 2 inputs. One input starts the

timing event (i.e. the clock starts ticking) and the other resets it. The on/off delay timers

above would be reset if the input sensor wasn't on/off for the complete timer duration. This

timer however holds. or retains the current elapsed time when the sensor turns off in mid-

16

Below is the symbol shown on a ladder diagram:

0001 I TOOO
100

(~
TOOO 0500

In this diagram we wait for input 0001 to turn on. When it does, timer 'fOOO (a lOOms

increment timer) starts ticking. It will tick 100 times. Each tick (increment) is lOOms so the

timer will be a lOOOOms (i.e. 10 second) timer. lOOticks X lOOms = 10,000ms. When 10

seconds have elapsed, the TOOO contacts close and 500 turns on. When input 0001 turns off

(false) the timer TOOO will reset back to O causing its contacts to turn off (become false)

thereby making output 500 tum back off.

An accumulating timer would look similar to this:

E~·.JABLEI Txxx

RESET YYYYY

This timer is named Txxx. When the enable input is on the timer starts to tick. When it

ticks yyyyy (the preset value) times, it will turn on its contacts that we will use later in the

program. Remember that the duration of a tick (increment) varies with the vendor and the

tinıe base used. (i.e. a tick might be lms or 1 second or ...) If however, the enable input

turns off before the timer has completed, the current value will be retained. When the input

turns back on, the timer will continue from where it left off. The only way to force the

timer back to its preset value to start again is to turn on the reset input.

The symbol is shown in the ladder diagram below.

18

0002

TOOO
0001 I 100

TOOO 0500

In this diagram we wait for input 0002 to tum on. When it does timer TOOO (a lOms

increment timer) starts ticking. It will tick 100 times. Each tick (increment) is lOms so the

timer will be a lOOOms (i.e. 1 second) timer. lOOticksX lOms = 1,000ms.When 1 second
has elapsed, the TOOO contacts close and 500 turns on. If input 0002 turns back off the

current elapsed time will be retained. When 0002 turns back on the timer will continue

where it left off. When input 0001 turns on (true) the timer TOOO will reset back to O

causing its contacts to tum off (become false) thereby making output 500 tum back off.

2.3.3. Timer Accuracy

When we are creating a timer, we can typically not be very concerned about their

precision because it's usually insignificant.However, when we're creating timers that have

duration in the millisecond (lms= 1/1000 second) range we must be concerned about their

precision. There are general two types of errors when using a timer. The first is called an

input error. The other is called an output error. The total error is the sum ofboth the input

and output errors.

2.3.4. Input error

An error occurs depending upon when the timer input turns on during the scan cycle.

When the input turns on immediately after the PLC looks at the status of the inputs during

the scan cycle, the input error will be at its largest. (i.e.more than 1 full scan time!).

This is because, as you will recall, the inputs are looked at once during a scan. If it

wasn't on when the PLC looked and turns on later in the scan we obviously have an error.

Further we have to wait until the timer instruction is executed during the program execution

part of the scan. If the timer instruction is the last instructionon the ıung it could be quite a

big error!

19

2.3.5. Output error
~

An another error occurs depending upon when in the ladder the timer actually "times

out" (expires) and when the PLC finishes executing the program tp get to the part of the

scan when it updates the outputs. This is because the timer finishes during the program
execution but the PLC must first finish executing the remainder of the program before it

can tum on the appropriateoutput.

Below figure 2.7. is a diagram illustrating the worst possible input error. You will note

from it that the worst possible input error would be 1 complete scan time + 1 program

execution time. Remember that a program execution time varies from program to program.

(Dependshow many instructions are in the program)

Figure 2.7. Illustrating the worst possible input error.

Figure2.8. Shown below is a diagram illustrating the worst possible output error, You

can see from it that the worst possible output error would be 1 complete scan time.

f1UTF'ISfi If WUT I E EC puTPU~

1--

+---ı -- r- ·· -
. I

Tii.iıH: A,_.TUALL' F IIJI:'HES TI/ı./ı.l! I(~
(;IIH' T Ti l~'f' ;:; nr I

Figure 2.8. Illustratingthe worst possible output error.

Based upon the above informationwe can now see that the total worst possible timer
error= 1 scan time + 1 program execution time +1 scan time.
=2 scan times + 1 program execution time.
It means that even though most manufacturers currently have timers with 1 ms increments

they really shouldn't be used for durations less than a few milliseconds.

20

This assumes that your scan time is l ms. If your scan tiıne is 5ms you had better not use a

timer with a duration less'than about 15ıns. The point is however, just so that we will know

what errors we can expect. If we know what error to expect, we can then think about

whether this amount of error is acceptable for our application. In most applications this

error is insignificant but in some high speed or veıy precise applications this error can be

veıy significant.

We should also note that the above errors are only the "software errors". There is also a

hardware input error as well as a hardware output error.

The hardware input error is caused by the time it takes for the plc to actually realize that

the input is on when it scans its. inputs. Typically this duration is about 1 Oms. This is

because many PLCs require that an input should be physically on for a few scans before it

determines it's physically on. (To eliminate noise or "bouncing" inputs).

The hardware output error is caused by the time it takes from when the PLC tells its

output to physically tum on until the moment it actually does. Typically a transistor takes

about 0.5ms whereas a mechanical relay takes about 1 Oms.

The error keeps on growing doesn't it! If it. becomes too big for the application, consider

using an external "hardware" tiıner.

2.4. Boolean Math
Boolean math lets us do some vaıy basic functions with the bits in our registers. These

basic functions typically include AND, OR and XOR functions. Each is described below.

AND- this function enables us to use the truth table below. Here, we can see that the

AND function is very much related to multiplication. We see this because the only time the

Result is true (i.e. 1) is when ·both operators A AND B are true (i.e. 1).

The AND instruction is useful when your PLC doesn't have a masking function. Oh yeah, a

masking function enables a bit in a register to be "left alone" when working on a bit level.

This is simply because any bit that is ANDed with itself will remain the value it currently

is. For-example, if you wanted to clear (makethem O) only 12 bits in a 16-bit register you

might AND the register with O's everywhere except in the 4 bits you wanted to maintain the

status of.

See the truth table 2.2 below to figure out what we mean. (1 AND 1 = 1, O AND O= O)

21

Table 2.2. AND- Truth table

OR- this functions based upon the truth table below (table 2.3). Here, we can see that the

OR function is very much related to addition. We see this because the only time the Result

is true (i.e. 1) is when operator A ORB is true (i.e. 1). Obviously, when they are both true

the result is true. (If A OR B is true...)
r·--· .. ··-·-···- .. ------ ---------·· ..·····---··--·--···--·---··--····
j Result= A ORB

IA._l~~I~-. --·· .ci··H]0·········

[ô·--··-·=~=···--=~J_·~,--· --=-===. O •[1 • 1:ı=J2·.··.J1··········--
Table 2.3. OR-Truth table

EXOR- this function enables us to use the truth table below (table 2.4). Here, we can

see that the EXOR (XOR) function is not related to anything I can think ofl An easy way to

remember the results of this function is to think that A and B must be one or the other case,

exclusively.

In other words, they must be opposites of each other. When they are both the same (i.e.

A=B}the result is false (i.e. O).

22

This is sometimes useful when you want to compare bits in 2 registers and highlight

which bits are different. It's also needed when we calculate some checksums. A checksum

is commonly used as error checking in some communications protocols.
I Result= AXORB · · · · ·· ·r---· r ~------·-----·· I ;= 1.: . ~r:~,ult _.·_• =·-=
~--J-~ +,-~ .. -­
L! b f~0-··

Table 2.4. XOR- Truth table

The ladder logic instructions are commonly called AND, ANDA, ANDW, OR, ORA,

ORW, XOR, BORA XORW.
As we saw with the MOV instruction there does generally the majority of plc makers use

two common methods. The first method includes a single instruction that asks us for a few

key pieces of information. This method typically requires:

Source A- this is the address of the first piece·of data we will use. In other words its the

location in memory of where the A is.
Source B- this is the address of the second piece of data we will use. In other words it's

the location in memory of where the Bis.
Destination- this is the address where the result will be put. For example, if A AND B =

O the result (O) would automatically be put into this destination memory location.

AND
DMlOO
DM101

jDM102 I AND symbol

23

\
The instructions above typically have a symbol that looks like that shown here. Of

course, the word AND would be replaced by OR or XOR. In this symbol, The source A is

DMlOO, the source Bis DM101 and the destination is DM102.

Therefore, we have simply created the equation DMIOO AND DMIOI = DM102. The

result is automatically stored into DM102.

The Boolean functions on a ladder diagram are shown in fig

0000 1000

HbIFU
1000 !AND

DM100
DM101

DM102

Please note that once again we are using a one-shot instruction. As we've seen before,

this is because if we didn't use it, we would execute the instruction on every scan. Odds are

good that we'd only want to execute the function one time when input 0000 becomes true.

~,uıL,~ AND symbol (dual instruction method)

The dual instruction method would use a symbol similar to that shown above. In this

method, we give this symbol only the Source B location. The Source A location is given by

the LDA instruction. The Destination would be included in the STA instruction.

Below is a ladder diagram showing what is meant:

0000 1000

HDIFU
1000 DM100
I I I

LOA

./ı.l·IC.,
I

DM102
I I
STA

24

(

The results are the same as the single instruction method shown above. It should be
noted that although the symbol and ladder diagram above show the AND instruction, OR or

EXOR can be used as well. Simply substitute the word "AND"within the instruction to be

either "OR" or "EXOR". The results will be the same as shown in their respective truth
tables.

We should always remember that the theory is most important. Ifwe can understand the

theory of why things happen as they do, we can use anybody's PLC. If we refer to the

manufacturers documentation we can find out the details. for the particular PLC we are

using. Try to find the theory in that documentation and you might come up short. The

details are insignificantwhile the theory is very significant.

2.5. Basic Instructions

2.5.1. Load

The load (LD) instruction is a normally open contact. It is sometimes also called

examine if on. (XIO) (As in examine the input to see if it's physically on).

The symbol for a load instruction is shownbelow.

A_Load(contact) symbol

This is used when an input signal is needed to be present for the symbol to tum on.

When the physical input is on we can say that the instruction is True. We examine the input

for an on signal. If the input is physically on then the symbol is on. An on condition is also

referred to as a logic 1 state.

This symbol normally can be used for internal inputs, external inputs and external output

contacts. Remember. that internal relays don't physically exist. They are simulated

(software)relays.

2.5.2. LoadBar

The LoaDBar instruction is a normally closed contact. · It is sometimes also called

LoaDNot or examine if closed. (XIC) (As in examine the input to see if its physically

closed) The symbol for a LoaDBar instruction is shownbelow.

25

-2J/~A LoaDNot (noımally closed contact) symbol

This is used when an input signal does not need to be present for the symbol to tum on.

When the physical input is off 'Ye can say that the instruction is True. We examine the

input for an off signal. If the input is physically off then the symbol is on. An off condition

is also referred to as a logic O state.

This symbol normally can be used for internal inputs, external inputs and sometimes,

external output contacts. Remember again that internal relays don't physically exist. They
are simulated (software)relays. It is the exact opposite ofthe Load instruction.
(See table2.5)

Table 2.5. NOT- gate
2.5.3.1. Out

The Out instruction is sometimes also called an Output Energize instruction.The output

instruction is like a relay coil. Its symbol looks as shown below.

-o
An OUT (coil) symbol

When there is a path of True instructionspreceding this on the ladder rung, it will also

be True. When the instruction is True it is physically On. We can think of this instructionas

a normally open output This instructioncan be used for internal coils and external outputs.

2.5.3.2. Outbar

The Outbar instruction is sometimes also called an OutNot instruction. Some vendors

don't have this instruction. The outbar instruction is like a normally closed relay coil. Its
symbol looks like that shown below.

26

/'

-!Z)- t\11 OUThar (normally closed coil) symbol

When there is a path of False instructions preceding this on the ladder rung, it will be

True. When the instruction is True it is physically On.

We can think of this instruction as a normally closed output. This instruction can be used

for internal coils and external outputs.

It is the exact opposite of the Out instruction. (See table2.6)

r···- ····--·---·--··· --·-·I Logic State

[·.~.---~--==·· ·····-
t - __ı_
~------'--------=~ .•.•.•.•••..••.

·~·.. ~~-=n=·-.~~,; Out L___?utBar
~··-== ~r··---·· . -- --j False • True

r i~e--~-·~-=·

Table 2;6. Out and Outbar table

Let's compare a simple ladder diagram with its real world external physically connected

relay circuit and see the differences.

In the above circuit, the coil will be energized when there is a closed loop between the +
and - terminals of the battery. We can simulate this same circuit with a ladder diagram. A

ladder diagram consists of individual rungs just like on a real ladder. Each rung must

contain one or more inputs and one or more outputs. The first instruction on a rung must

always be an input instruction and the last instruction on a rung should always be an output

(or its equivalent).

!ılPUT':1 OUTPUT
S\ı/1 S\ı/2 COIL

H

27

In this simple one rung ladder diagram we have recreated the external circuit above with
~

a ladder diagram. Here we used the Load and Out instructions. Some manufacturers require

that every ladder diagram include an END instruction on the last rung. Some PLCs also

require an ENDH instruction on the rung afterthe END rung.

2.6. PLC Registers
Now take the previous example and change switch 2 (SW2) to a normally closed symbol

(LoadBar instruction). SWl will be physically OFF and SW2 will be physically ON

initially. The ladder diagram now looks like this:

iNFUTı~; CJUTPU·r
0000 0001 0500

Notice also that we now gave each symbol (or instruction) an address. This address sets

aside a certain storage area in the PLCs data. files so that the status of the instruction (i.e.

true/false) can be stored. Many PLCs use 16 slot or bit storage locations. (See tablez.")

In the example above we are using two different storage locations or registers.

Table 2.7. Two different registers.

28

In the tables above we can see that in register 00, bit 00 (i.e. input 0000) was a logic O and

bit 01 (i.e. input OOOf) was a logic 1. Register 05 shows that bit 00 (i.e. output 0500) was

logic O. (See table2.8)

The logic O or 1 indicates whether an instruction is False or True.

Table 2.8. Logical condition of symbols

The PLC will only energize an output when all conditions on the rung are TRUE. So,

looking at the table above, we see that in the previous example SWl has to be logic 1 and

SW2 must be logic O. Then and ONLY then will the coil be true (i.e. energized). If any of

the instructions on the rung before the output (coil) are false then the output (coil) will be

false (not energized).
Let's now look at a truth table 2.9 of our. previous program to further illustrate this

important point. Our truth table will show ALL possible combinations of the status of the

two inputs.

Table 2.9. Possible combinationsofthe status ofthe two inputs.

29

Notice from the chart that as the inputs change their states over time, so will the outputs.

The output is only true (energized) when all preceding instructions on the rung are true.

2.6.1. A Level Application

We've seen how registers work; let's process a program like PLCs do to enhance our

understanding of how the program gets scanned.

Let's consider the following application:

We are controlling lubricating oil being dispensed from a tank. This is possible by using

two sensors.

We put one near the bottom and one near the top, as shown in the figure 2 .9.

high level 11
low level --+--

Drain

Figure 2.9.Dispensing oil from a tank

Here, we want the fill motor to pump lubricating oil into the tank until the high level

sensor turns on. At that point we want to turn off the motor until the level falls below the

low level sensor. Then we should tum on the fill motor and repeat the process.

Here we have a need for 3 I/O (i.e. Inputs/Outputs). 2 are inputs (the sensors) and 1 is an

output (the fill motor). Both of our inputs will be NC (normally closed) fiber-optic level

sensors. When they are NOT immersed in liquid they will be ON. When they are immersed

in liquid they will be OFF.

We will give each input and output device an address. This lets the PLC know where

they are physically connected.

30

The addresses are shown in the table2.l O.

Table 2.10. Addresses of inputs an outputs

Below is what the ladder diagram will actually look like. Notice that we are using an

internal utility relay in this example. You can use the contacts of these relays as many times

as required. Here they are used twice to simulate a relay with 2 sets of contacts. Remember,

these relays DO NOT physically exist in the plc but rather they are bits in a register that

you can use to SIMULATE a relay.

0000 0001 1000

100tr
0500

END

We should always remember that the most common reason for using PLCs in our

applications is for replacing real-world relays. The internal utility relays make this action

possible. It's impossible to indicate how many internal relays are included with each brand

of PLC. Some include lOO's while other include lOOO's while still others include lO's of

1 OOO's ! Typically, PLC size (not physical size but rather I/O size) is the deciding factor, If

we are using a micro-PLC with a few 1/0 we don't need many internal relays. If however,

we are using a large PLC with lOO's or lOOO's of I/O we'll certainly need many more

internal relays.

31

If ever there is a question as to whether or not the manufacturer supplies enough internal
~

relays, consult their specification sheets. In all but the largest of large applications, the

supplied amount should be MORE than enough.

2.6.2. The Program Scan

Let's watch what happens in this program scan by scan.

0000 0001 1 000

1000r
0500

END

Initially the tank is empty. Therefore, input 0000 is TRUE and input 0001 is also TRUE.

True True

Falsr
True True

Truer
True True

True True

END END

Scan 1 Scan 2-100

Gradually the tank fills because 500(fill motor) are on.

After 100 scans the oil level rises above the low level sensor and it becomes open.

(i.e. FALSE)

32

END

Scan 101-1000

Notice that even when the low level sensor is false there is still a path of true logic from

left to right. This is why we used an internal relay. Relay 1000 is latching the output (500)

on. It will stay this way until there is no true logicpath from left to right.

(i.e. when 0001 becomes false)
After 1000 scans the oil level rises above the high level sensor at it also becomes open

(i.e. false)

END

Scan 1001

Faise False

Faist
False

END

Scan 1002

Since there is no more true logic path, output 500 is no longer energized (true) and

therefore the motor turns off.
After 1050 scans the oil level falls below the high level sensor and it will become true

again.

33

F alss True

Faist
END

Scan 1050

After 2000 scans the oil level falls below the low level sensor and it will also become

true again. At this point the logic will appear the same as SCAN 1 above and the logic will

repeat as illustratedabove.

2.7. PROGRAMMABLE CONTROLLER PLC's

2.7 .1. Introduction
The need for low cost, versatile and easily commissionedcontrollers has resulted in

the development of programmable-control systems standard units based on a hardware

CPU and memory for the control of machines or processes. Originally designed as a

replacement for the hard-wired relay and timer logic to be found in traditional control

panels, PLC's provides ease and flexibility of control based on programmingand executing

simple logic instructions. PLC's have internal functions such as timers, counters and shift

registers, making sophisticatedcontrol possible using even the smallest PLC.
A programmable control operates by examining the input signals from a process

and carrying out logic instructions on these input signals, producing output signal to drive

process equipment or machinery. Standard interfaces build into PLC's allow them to be

directly connected to process actuators and transducers (pumps and valves) without the

need for intermediatecircuitry or relays.
Through using PLC's it became possible to modify a control system without having

the disconnect or re-route a signal wire. It was necessary to change only the control

program using a keypad or VDU terminal. Programmable controllers also require shorter

installationand commissioningtimes than do hardwired systems.

34

Although PLC's are similar to conventional computers in terms of hardware technology,

they have specific features suited to industrial control:

• Rugged, noise immune equipment;

• Modular plug-in construction, allowing easy replacement\addition of units

(input\output);

• Standard input\output connections and signal levels;

• Easily understood programming language (ladder diagram and function chart), ,

ease of programming and reprogramming in-plant.

These features make programmable controllers highly desirable in a wide variety of

industrial-plant and process-control situations.

2.7.2. Background

The programmable controller was initially conceived by a group of engineers from

General Motors in 1968, where an initial specification was provided: the controller must

be:
Easily programmed and reprogrammed, preferably in-plant to alter its sequence of

operations.
Easily maintained and repaired- preferably using plug-in modules.

(a)-More reliable in plant environment.

(b)-Smaller than it is relay equivalent.
Cost competitive,with solid-state and relay panels than in use.
This provoked a keen interest from engineers of all disciplines in how to PLC could be

used for industrial control. With this came demands for additional PLC capabilities and

facilities, which were rapidly implementedas the technologybecame available.
The instruction sets quickly moved from simple logic instructions to include counters,

timers and shift registers, than onto more advanced mathematical functions on the

machines. Developments hardware were also occurring, with larger memory and greater

numbers of input I output points featuring on new models. hı 1976 became possible to

control remote I I O racks, where large numbers of distant I I O points were monitored

updated via a communications link, often several hundred meters from the main PLC. The

Allan-BradleyCorporation in America introduced a microprocessor-basedPLC in 1977.

35

It was based on an 8080 microprocessor but used an extra processor to banu\e 'oit \ogic

instruction at high speed. ,.
The increased rate of application of programmable controllers within industıy has

encouraged manufacturers to develop whole families of microprocessor-based systems

having various levels of performance.

The range of available PLC's now extends from small self-contained units with 20

digital I I O points and 500 program steps, up to modular systems with add-on function

modules:

-Analogue I/O;

-PID control (proportional, integral and derivative terms);

-Communications;

-Graphics display;

-Additional I/O;

-Additional memory.

This modular approach allows the expansion or upgrading of a control system with

minimum cost and disturbance.
Programmable controllers are developing at a virtually the same pace as

microcomputers, with particular emphasis on small controllers, positioning\numeric control

and communication networks. The market for small controllers has grown rapidly since the

early 1980's when a number of Japanese companies introduced very small, low cost units

that were much cheaper than others available at that time.

This brought programmable controllers within the budget of many potential users in the

manufacturing and process industries, and this trend continues with PLC's offering ever-

increasing peıformance at ever-decreasing cost.

The Mitsubishi F40 PLC is a typical example of a modem small PLC, providing 40 I/0

points, 16 timers and counters, plus other functions. The controller uses a microprocessor

and has 890 RAM locations fur user programs.

36

The 24-input channels of the F40 operate at 24 V d.c. Whilst 16 outputs may be 24 V
~

d.c. Or 240 V a.c. to provide easy interfacing to industrial equipment.

2.7.3. Terminology-PC or PLC

There are several different terms used to describe programmable controllers, most

referring to the functional operation of the machine in question:

PC programmable controller

PLC programmable logic controller

PBS programmable binary system

By their nature these terms tend to describe controllers that normally work in a binary

environment. Since all but the smallest programmable controllers can now be equipped to

process analogue inputs and outputs these labels are not representative of their capabilities.

For these reason the overall term programmable controller has been widely adopted to

describe the family of freely programmable controllers. However, to avoid confusion with

the personal computer PC, this text uses the abbreviation PLC for programmable (logic)

controller.

2.7.4. PLC Hardware Design

Programmable controllers are purpose-built computers consisting of three functional

areas:

-Processing

-Memory

-Input I output

Input conditions to the PLC are sensed and than stored in the memory, where the PLC

performs the programmed logic instructions on these input states. Output conditions are

then generated to drive associated equipment. The action taken depends totally on the

control program held in memory.

hı smaller PLC these functions are performed by individual printed circuit cruds within a

single compact unit, whilst larger PLC's are constructed on a modular basis with function

modules slotted in to the backplane connectors of the mounting rack.

37

This allows simple expansion of the system when necessary. In botlı these cases the

individual" circuit 'board are easily removed and replaced, facilitating rapid repair of the

system should faults develop.

In addition a programming unit is necessary to download control programs to the PLC

memoıy.

2.7.5. Input output I units
Most PLC'S operate internally at between 5 and 15 V d.c. (Common TTL'and CMOS

voltages), whilst process signals much greater, typically 24 V d.c. to 240 V a.c. at several
)

amperes.

The I I O units form the interface between the microelectronics of the programmable

controller and real world outside, and must therefore provide all, necessary signal

conditioning and isolation functions. This often allows a PLC to be directly connected to

process actuators and transducers (pumps and valves) without the need for intermediate

circuitry and relays.

To provide this signal conversion programmable controllers are available with a choice

of input I output units to suit different requirements.

For example;

Inputs 5 V (TTL level) switched I/ P

24 V switched I/ P

11 O V switched I/ P

240 v switched I/ P

Outputs 24 V 100 mA switched O/ P

llOVlmA

240 V 1 A a.c. (triac)

240 V 2 A a.c. (relay)

38

It is standard practice for all I/O channels to electrically isolated from the controlled

process, using opto-isolator circuits on the I/O modules. An opto-isolator circuit consists of

a light emitting diode and a phototransistor, forming an opto coupled pair that allows small

signals to pass through, but will clamp any high voltage spikes or surges down to the same

small level. This provides protection against switching transients and power-supply surges,

normally up to 1500V.

In small self contained PLC's in which all II O points are physically located on the one

casing, all inputs will be of one type, (e.g. 24 V) and the same for outputs (e.g. all 240 V

triac). This is because manufacturers supply on the standard function boards for economic

reasons. Modular PLC's have greater flexibility of I/ O, however, since the user can select

from several different types and combinations of input and output modules.

In all cases the input/output units are designed with the aim of simplifying the connections

of process transducers and actuators to the programmable controller. For these purpose all

PLC'S are equipped with standard screw terminals or plugs on every 1\0 point, allowing

the rapid and simple removal and replacement of a faulty I/ O card. Every input\output

point has a unique address or channel number, which is using during program development

to specify to monitoring of an input or the activating of a particular output within the

program. Indication of the status of input\output channels is provided by light-emitting

diode (LED's) on the PLC or II O unit, making it simple to check the operation of process

inputs and outputs from the PLC itself. (See figure2.10).

39

Prograrruıı ao: ='
~, lcıgic:

conuollır

Mi rıi rr.;ıl

c--·· ı PLC (">Ol ~'"~' I ?tocess A::.::i; 12 ı,rP · . ·1
I'

~ .•Q V a.c; ı A

Graphiı:: I ı: : B O(P
req:;.ı iteı:ı ents

p,ogramınıır II , ,
I ~

i: l40 'I. 2 A
öl; ı ıa1e:c- out:putş
: I irelı:y or triac:•

~tr 4
:tı; I Progra-r. AII
It
II
II
II
II
II
il
II

(~emove<! e.ftu II
II

progı l'ımmiııgl II
r ı
II
II

II j ~ı,Jw,ıt l ,ntiierfaçi:19
L--- PLC IF40: ' I Fıoce$~ e

24 1/?' · . 24 \ı d .Ç.

. ..i\ req1Jirements
ıı; ow

I
r· _.,.. .•

t.am
output s

'P:ogra-r: B LJ
PLC C,;ıntre.
ı'!aııiıy ;ı,,ogrcımımoı.ı/••ııeıf.oıl I>\' the lJSE=ı
useıı far swiıc!'ıı:;' inpu:il)ııtpuı.

ıııput
from
mıcroıırıı ce sı.or

~

ı---- - - -- ---·---~
I •

L . ··-@·ıght , Opta-
emittiııg I I COLJPl~f r-......ı. I Ph::to
diode JJ ,':.-- ~ 'v-'1,1 : 'i.ra~Stiı&ır

I
:_ El~ı;:tri.ı:al isolation __ j

Ouıput ta
._ periı)he:r.ıl

;~ process

Figure 2.10.0pto-isolator circuit

40

2.7.6. Central Processing Unit (CPU)

The CPU controls and supervises all operations within the PLC, carrying out

programmed instructions stored in memory. An internal communications highway or bus

system caıries information to and from the CP, memory and II O units, under control of the

CPU. The CPU is supplied with a clock frequency by an external quartz crystal or RC

oscillator, typically between 1 and 8 megahertz depending on the microprocessorused and
the area of application,

The clock determines the operating speed of the PLC and provides

timing\synchronization for all elements in the system. Virtually all-modem programmable

controllers are microprocessor based using a micro as a system CPU. Some larger PLC's

also employ additional microprocessor to control complex, time-consuming functions such
as mathematicalprocessing, three terms PlD control.

2.7.6.1. Memory

(a) For program storage all modern programmable controllers use semiconductor

memory devices such as RAM read\write memory, or a programmable· read-only
memory of the EPROM or EEPROM families.

In the virtually all cases RAM is used for initial program development and testing, as it

follows changes to be easily made in program. The current trend is to be providing CMOS

RAM becauseofit is very low power consumption,to provide battery back-up to this RAM

in order to maintain the contents when the power is removed from the PLC system. This

battery has a lifespan of at least one year before replacement is necessaıy, or alternatively a

rechargeable type may be supplied with the system being recharge whenever the main PLC
power supply is on.

This feature makes programs stored in RAM virtually permanent. Many users operate

their PLC systems on this basis alone, since it permits future program alterations if and
when necessary.

After a program is fully developed and tested it may be loaded (blown) into a PROM or

EPROM memory chip, which are normally cheaper than RAM devices.

PROM programming is usually carried out with a special purpose programming unit,

although many programmable controllersnow have this facilitybuilt-in, allowingprograms

41

in the PLC RAM to be down loaded into a PROM IC placed in a socket provided on the

PLC itself

(b) In addition to program storage, a programmable controller may require memory for

other functions:

Temporary buffer store for input\output channels status- I/ O RAM

Temporary storage for status ofintemal function (timers, counters, marker relays)

Since these consist of changing data they require RAM read\write memory, which may

be battery-backed in sections.

2.7.6.2. Memory size

Smaller programmable controllers normally have a fixed memory size, due in part

to the physical dimensions of the unit. This varies in capacity between 300 and 1000

instructions depending on the manufacturer. This capacity may not appear large enough to

be very useful, but it has been estimated that 90 % of all binary control tasks can be solved

using less than 1000 instructions, so there is sufficient space to meet most users needs.

Larger PLC's utilize memory modules of between IK and 64K in size, allowing the

system to be expanded by fitting addition RAM or PROM memory cards to the PLC rack.

As integrated circuit memory costs continue to fall, the PLC manufacturers are

providing larger program memories on all products.

2.8. Logic instruction set

The most common technique for programming small PLC's is to draws ladder diagram

of the logic to be used, and then convert this in to mnemonic instructions, which will be

keyed in to programming panel attached to the programmable controller. These instıuctions

are similar in appearance to assembly-type codes, but refer to physical inputs, outputs and

functions within the PLC itself

The instruction set consists of logic instıuctions (mnemonics) that represent the actions

that may be performed within a given programmable controller. Instructions sets vary

between PLC's from different manufacturers, but are similar in terms of the control actions

peıformed.

42

Because the PLC logic instruction set tends to be small, it can be quickly mastered and

used by control technicians and engineers.

Each program instructions are made up of two parts: a mnemonic operation component

or opcode, and an address or operand component that identifies particular elements

(E.g. outputs) within the PLC.

For example:

Opcode

OUT
Operand

Y430

Device symbol Identifier

Here the instruction refers to output (Y) number 430.

2.9. Input\output numbering

These instructions are used the program logic control circuits that have been

designed in ladder diagram form, by assigning all physical inputs and outputs with an

operand suitable to the PLC being used. The numbering system used differs between

manufacturers, but certain common terms exist. For example, Texas instrument and
Mitsubishi use the symbolX to represent inputs, and Y to label outputs.

ProgrammableController

Program Functions

Inputs X OutputsY
Figure 2.11. ProgrammableController

A range ofaddresses will be allocated to particular elements:

43

For example:

Mitsubishi F40 PLC: 24 inputs: X400 - 407, 41 O - 413

xsoo - 507, 51 O - 513

16 Outputs: Y430 - 437

Y530-537

Inspections of these numbers ranges will reveal that there is no overlap of addresses

between functions; that is, 400 must be an input, 533 must be an output. Thus for these

programmable controllers the symbol X or Y is redundant, being used purely for the benefit

of the user, who is unlikely to remember what element 533 represents. However, for many

PLC's both parts of the address are essential, since the 1\0 number ranges are identical. For

example the Kleckner-Moeller range of controllers (see figure 2.12)

Sucos PS 21 PLC: 8 inputs IO to 7, etc. 8 Outputs QO to 7, etc

) Y431Y430

Figure 2.12.Ladder Diagram

To program the ladder diagram given in figure 2.12, the following code would be

written, and then programmed in to a keypad or terminal.

1- LD X400 starts a rung with a normally open contact

2-0R Y430 connect a normally open contact in parallel

3-ANI X401 connect a normally closed contact in series

4- OUT Y430 drive an output channel

5- OUT Y431 drive another channel

6-END end of program-return to start

44

Notice the contact Y430 that forms a latch across X400. The Y contact is not a physical

element, but is simulated within the programmable controller and will operate 'in unison

with the output point Y430. The programmer may create as many contacts associated with

an output as necessary.

2.10. TYPES OF PLC
The increasing demand from industry for progranınıable controllers that can be applied

to different forms and sizes of control tasks has resulted in most manufacturers producing a

range of PLC's with various levels of performance and facilities.

Typical rough definitions of PLC size are given in terms of program memory size and

the maximum number of input\output points the system can support. table 2.11 gives an

example of these categories.

PC size Max I \ O points Use memory size

Small 40/ 40 lK

Medium 128 I 128 4K

Large > 128 I> 128 >4K

Table 2.11. Categories of PLC

However, to evaluate properly any programmable controller we must consider many

additional features such as its processor, cycle time language facilities, functions, and

expansion capabilities.

A brief outline of the characteristics of small, medium of large programmable controller

is given below, together with typical applications.

45

2.10.1. SmaU PLCs
In general, small and 'mini' PLC's are designed as robust, compact units, which

can be mounted on or beside the equipment to be controlled. They are mainly used the

replaced hard-wired logic relays, timers, counters. That control individual items of plant or
machinery, but can also be used to coordinate several machines working in conjunction

with each other.
Small programmable controllers can normally have their total I/ O expanded by adding

one or two II O modules, but if any further developments are required this will often mean

replacementof the completeunit. This end of the market is very much concerned with non­

specialist and users; therefore ease of programming and a 'familiar' circuit format are

desirable. Competition between manufacturers is extremely fierce in this field, as they vie

to obtain a maximum share in this partially developed sector ofthe market.
A single processor is normally used, and programming facilities are kept a fairly basic

level, includingconventional sequencingcontrols and simple standard functions: e.g. timers

and counters. Programming of small PLC's is by way oflogic instruction list (mnemonics)

or relay ladder diagrams.
Program storage is given by EPROM or battery-backed RAM. There is now a trend

towards EEPROM memorywith on-board programmingfacilities on several controllers.

(See table 2.11).

46

Electrical:

240 V a.c. supply;

24 V d.c. On-board for in

requirements;
12 input, 8 outputpoints;
LED indicatorson all I/ O points;

All 1\0 Opto-isolated

Choice ofoutput:

Relay (240 V 2 a rated)

Triac (240 V 1 A rated)

Transistor (24 V d.c. 1 A)

320- step memory
(CMOS battery-backed

RAM)

Programming:

Ladder logic or instruction set

usıng hand-held or graphic LCD

programmer, with editor, test and

monitor facilities;

Facilities:

8 counters, range 1-99 (can be

cascaded)
8 timers, range O.l-99s (can be

cascaded)
64 markers\auxiliary relays; can be

used individually or in blocks forming

shift registers;

Special functionrelays;

Jump capability;

Table 2.11.Featuresof a typical small PLC - Mitsubishi F20

47

l.10.2. Medium-sized PLC'S•.
In this range modular construction predominates with plug-in modules based

around the Euro card 19-inch rack format or another rack mounting system. This

construction allows the simple upgrading or expansion of the system. This construction

allows the simple upgrading or expansion of the system by fitting additional I/ O cards in to

the cards into the rack, since most rack, systems have space for several extra function cards.

Boards are usually 'rugged zed' to allow reliable operation over a range of environments.

In general this type of PLC is applied to logic control tasks that can not be met by small

controllers due to insufficient I\O provision, or because the control task is likely to be

extended in the future. This might require the replacement of a small PLC, where as a

modular system can be expanded to a much greater extent, allowing for growth. A medium­

sized PLC may therefore be :financially more attractive in the long term.

Communications of a single and multi-bit processor are likely within the CPU. For

programming, standard instructions or ladder and logic diagrams are available.

Programming is normally carried out via a small keypad or a VDU terminal. If different

sizes of PLC are purchased from a single manufacturer, it is likely that programs and

programming panels will be compatible between the machines.

2.10.3. Large PLC

Where control of very large numbers of input and output points is necessary and

complex control functions are required, a large programmable controller is the obvious

choice. Large PLC's are designed for use in large plants or on large machines requiring

continuous control. They are also employed as supervisory controllers to monitor and

control several other PLC's or intelligent machines. e.g. CNC tools.

Modular construction in Euro card format is standard, with a wide range of function

cards available including analogue input output modules.

There is a move towards 16-bit processor and also multi-processor usage in order to

efficiently handle a large range of differing control tasks.

For example;

-l ô-bit processor as main processor for digital arithmetic and text handling.

-Single-bit processor as co-or parallel processor for fast counting, storage etc.

48

-Peripheral processor for handling additional tasks, which are time-dependent or
/

time-critical.such as:

- Closed-loop (PID) control

- Position controls

-Floating-pointnumerical calculations

-Diagnosticand monitoring

-Communicationsfor decentralized

-Remote input\output racks.
This multi-processor solution optimizes the performance of the overall system as

regards versatility and processing speed, allowing to PLC to handle very large programs of

100 K instructionsor more. Memory cards can now provide several megabytes of CMOS

RAM or EPROM storage.

2.10.4. Remote input\output

When large numbers of input I output points are located a considerable distance

away from the programmable controller, it is uneconomic to run connecting cables to every

point. A solution to this problem is to site a remote II O unit near to the desired I/ O

points. This acts as a concentrator to monitor all inputs and transmit their status over a

single serial communications link to the programmablecontroller. Once output signals have

been produced by the PLC they are feedback along the communicationscable to the remote

II O unit, which converts the serial data into the individual output signals to drive the

process.

2.10.5. Programming large PLC's

Virtually any function can be programmed, using the familiar ladder symbols via

a graphics terminal or personal computer. Parameters are passed to relevant modules either

by incorporatingconstants in to the ladder, or via on screenmenus for that module.

There may in addition be computer-oriented languages, which allow programming of

function modules and subroutines.

49

There is progress towards standardization of programming languages; with

programs becoming easier to over-view through improvement of text handling, hand

improved documentation facilities. This is assisted by the application of personal

computers as workstations.

2.11. Developments
Present trends include the integration of process data from a PLC into

management databases, etc. This allows immediate presentation of information to those

involved in scheduling,production and planning.
The need to pass process informationbetween PC's and PLC sandother devices within a

automatedplants has resulted in the provision of a communicationscapability on all but the

smallest controller. Tue development of local area networks (LAN) and in particular the

recent MAP specificationby General Motors (manufacturingautomationprotocol) provides

the communicationlink to integrate all levels ofcontrol systems.

2.12. DC and AC Inputs

2.12.1. DC Inputs

This will give us a better understandingof how we should wire them up. Bad things

can happen ifwe wire them up incorrectly!

Typically, de input modules are available that will work with 5, 12, 24, and 48 volts. Be

sure to purchase the one that fits your needs based upon the input devices you will use.
We'll first look at how the de inputs work. DC input modules allow us to connect either

PNP (sourcing)or NPN (sinking) transistor type devices to them.

If we are using a regular switch (i.e. toggle or pushbutton, etc.) we typically don't have

to worry about whether we wire it as NPN or PNP. We should note that most PLCs won't

let us mix NPN and PNP devices on the same module. When we are using a sensor (photo­

eye, prox, etc.) we do, however, have to worry about its output configuration. Always

verify whether it's PNP or NPN. (Check with the manufacturerwhen unsure)
The difference between the two types is whether the load (in our case, the plc is the

load) is switched to ground or positive voltage. An NPN type sensor has the load switched

to ground whereas a PNP device has the load switched to positive voltage.

50

...

Below is what the outputs look like for NPN and PNP sensors.

Nt>N(SINIUN(n SENSOR
·ı·o ııow INPUT

SENSOR -K-- - · ıou1·ı•u·r
crncm'f 11..

unoFNU (ffV)

On the NPN sensor we connect one output to the PLCs input and the other output to the

power supply ground.
If the sensor is not powered from the same supply as the PLC, we should connect both

grounds together. NPN sensors are most commonly used in North America.

Many engineers will say that PNP is better (i.e. safer) because the load is switched to

ground, but whatever works for you is best. Just remember to plan for the worst.

On the PNP sensor we connect one output to positive voltage and the other output to the

PLCs input. If the sensor is not powered from the same supply as the PLC, we should

connect both V+ together. PNP sensors are most commonly used in Europe.

ı:ıNP ·(SOUIH!ING) SU.NSOll
'l'O l'0Sl'1'1H1(\1+)

SENSOll-K
Oll'l'lllJ'f -
CH\CUl'f - r·4

·ro Ptt nn~uı

Inside the sensor, the transistor is just acting as a switch. The sensors internal circuit tells

the output transistor to turn on when a target is present. The transistor then closes the circuit

between the 2 connections shown above. (:I+ and PLC input).

51

COJHION INPU'f mmo INPU'f •••mı

IN·'lllmNAL CIIU~UI'l'

Figure 2.13. Transistor inside the sensor

The only things accessible to the user are the terıninals labeled COMMON, INPUT

0000, INPUT 0001, INPUTxxxx ... The common terminal either gets connected to V+ or

ground. Where it's connected depends upon the type of sensor used. When using an NPN

sensor this terminal is connected to V+. When using a PNP sensor this terminal is

connected to OV (ground).
A common switch (i.e. limit switch, pushbutton, toggle, etc.) would be connected to the

inputs in a similar fashion. One side of the switch would be connected directly to V+. The

other end goes to the PLC input terminal. This assumes the common terminal is connected

to OV (ground). If the common is connected to V+ then simply connect one end of the

switch to OV (ground)and the other end to the PLC input terminal.
The photo couplers are used to isolate the PLCs internal circuit from the inputs. This

eliminates the chance of any electrical noise entering the internal circuitry. They work by

converting the electrical input signal to light and then by converting the light back to an

electrical signal to be processed by the internal circuit. (see figure2.13)

52

•

2.12.2. AC Inputs
'An ac voltage is non-polarized. Put simply, this means that there is no positive or

negative to "worry about". However, ac voltage can be quite dangerous to work with if we

are careless. Typically, ac input modules are available that will work with 24, 48, 110, and
220 volts. Be sure to purchase the one that fits your needs based upon the input devices

(voltage) you will use.
AC input modules are less common these days than de input modules. The reason being

that today's sensors typically has transistor outputs. A transistor will not work with an ac
voltage. Most commonly, the ac voltage is being switched through a limit switch or other

switch type. If your application is using a sensor it probably is operating on a de voltage.

ı•ıı:
Figure 2.14. AC Input

We typically connect an ac device to our input module as shown in figure 2 .14

Commonly the ac "hot" wire is connected to the switch while the "neutral" goes to the

plc common. The ac ground (3rd wire where applicable) should be connected to the frame

ground terminal of the plc. (not shown) As is true with de, ac connections are typically

color coded so that the individual wiring the device knows which wire is which.

This coding varies from country to country but in the US is commonly white (neutral),

black (hot) and green (3rd wire ground when applicable). Outside the US it's commonly

coded as brown (hot), blue (neutral) and green with a yellow stripe (3rd wire ground where

applicable).
The PLC AC input module circuit shown in figure 2.15.

53

CUlDION
01nnm 1N11u•n•

•

IN'l'ERNAI, cıacnrr

Figure 2.15. PLC AC input module circuit

The only things accessible to the user are the terminals labeled COMMON, INPUT

0000, JNPUTxxxx... The commonterminal gets connected to the neutral wire.
A common switch (i.e. limit switch, pushbutton, toggle, etc.) would be connected to the

input terminals directly. One side of the switch would be connected directly to INPUT

XXX. The other end goes to the ac hot wire. This assumes the common terminal is

connected to neutral.
The photo couplers are used to isolate the PLCs internal circuit from the inputs. This

eliminates the chance of any electrical noise entering the internal circuitry. They work by

converting the electrical input signal to light and then by converting the light back to an

electrical signal to be processed by the internal circuit.
One last note, typically an ac input takes longer than a de input for the plc to see. In most

cases it doesn't matter to the programmer because an ac input device is typically a

mechanical switch and mechanical devices are slow. It's quite common for a plc to require

that the input be on for 25 or more milliseconds before it's seen. This delay is required

because ofthe filtering,which the plc internal circuit needs.

54

2.13. CHOOSING INSTALLATION AND COMMISSIONING OF
~

PLC SYSTEM

2.13.1. Feasibility Study
Under certain circumstances an initial feasibility study may be suggested or

warranted prior to any decision on what solution will be adopted for a particular task. The

feasibility study may be carried out either by in house experts or by external consultants.

Often an independent specialist is preferred, having few or no ties to specific vendor

equipment.
The scope of such a study can vary enormously, from simply stating the feasibilityof the

proposal, through to a comprehensive case analysis with complete equipment

recommendations.
Typically, though, a feasibility study of this nature encompassesseveral specific areas of

investigation:

(a) Economic feasibility.
Consisting of the evaluation of possible installation and development costs weighed

against the ultimate income or benefits resulting from a developed system.

(b) Technical feasibility.
Where the target process and equipment are studied in terms of function, performance

and constraints that may relate to achieving an acceptable system.

(c) Alternatives
With an investigation and evaluation of alternative approaches to the

ofthe acceptable system.

development

Area (a), economic feasibility and worth, can only be addressed fully once the result of

areas (b) and (c) are available, with estimated castings, and direct indirect benefits being

considered. Area (b) is detailed in the following sections, with background information for

area (a) usually being compiled through liaison with companypersonnel.

The achievementof a complete technical proposal requires us to know what the present

and future company needs are in terms of plant automation and desired information

systems.

55

_L.

Once the control :function has been accurately defined, a suitable programmable control

system has to be chosen from the wide range available. Following the identification of a

suitable PLC, work can begin on aspects of electrical hardware design and software design.

2.13.2. Design Procedure for PLC System

Because the programmable controller is based on standard modules, the majority of

hardware and software design and implementation can be carried out independently of, but

concurrently with, each other.

Developing the hardware and software in parallel brings advantages both in terms of

saving time and of maintaining the most flexible an adaptable position regarding the

eventual system function. This allows changes in the actual control functions through

software, until the final version is placed in the system memory and installed in the PLC.

An extremely important aspect of every design project is the documentation.

Accurate and up-to-date documentation of all phases of a project need to be fully

documented and updated as the job progresses through to completion. This information will

form part of the total system documentation, and can often be invaluable during later stages

of commissioning and troubleshooting.

2.13.3. Choosing a programmable controller

There is a massive range of PLC Systems available today, with new additions or

replacement continually being produced with enhanced features of one type or another.

Manufacturers quickly adopt advances in technology in order to improve the perfunnance

and market status of their products. However, irrespective of make, the majority of PL Cs in

each size range are very similar in terms of their control facilities. Where significant

differences are to be found is in the programming methods and languages, together with

differing standards of manufacturer support and backup.

This latter point is often overlooked when choosing a· suitable make of controller, but the

value of good, reliable manufacturers assistance cannot be overstated, both for present and

future control needs.

56

2.13.4. Size and type of PLC system
This may be decided in conjunction with the choice of manufacturer, on the basis

that more than one make of machine can satisfy a particular application, but with the vast

choice of equipment now available, the customer can usually obtain similar systems from

several original equipment manufacturers (OEM's).

Where the specification requires certain types of function or input/output, it can result in

one system from a single manufacturer standing out as far superior or cost-effective than

the competition, but this is rarely the case. Once the stage of deciding actual size of the

PLC system is reached, there are several topics to be considered:

• Necessary input/output capacity; types of I/ O required;

• Size of memory required;

• ~ Speed and power required of the CPU and instruction set.

All this topics are to a large extent interdependent, with the memory size being directly

tied to the amount of I/ O as well as program size. As the 1/ O memory size rises, this takes

longer to process and requires a more powerful, faster central processor if scan times arc

remain acceptable.

2.13.4.1. 1/0 requirements
The I/ O sections of a PLC system must be able to contain sufficient modules to

connect all signal and control lines for the process. These modules must conform to the

basic system specificationsas regards voltage levels, loading, etc.,

• The number and type ofl/ O points requiredper 'nodule;

• Isolation requiredbetween the controller and the target process;

• The need for high speed VO, or remote I/ O, or any other special facility;

•Future needs ofthe plant in terms of both expansionspotential and installed spare

I/ O points,
•Power supply requirements of I/ O points are an on board PSU needed to drive any

transducer or actuators?

In certain cases there may he a need for signal conditioning modules to be included in

the system, with obvious space demands on the main or remote racks. When the system is

57

to he installed over a wide area, the use of a remote or decentralized form of II O working

can give significanteconomies in cabling the sensors and actuators to the PLC.

2.13.4.2. Memory and programming requirements
Depending on the type of programmable control let being considered, the system

memory may be implemented on the same card as the CPU, or alternatively on dedicated

cards. This ladder method is the more adaptable, allowing memory size to be increased as

necessary-up to the system maximum, without a reciprocal change in CPU card.

As stated in the previous section, memory size is normally related to the amount ofl/ O

points required in the system. The other factor that affects the amount ofmemory required

is ofcourse the control program that is to be installed.

The exact size of any program cannot be defined until of the softwarehas been designed,

encoded, installed and tested. However, it is possible to accurately estimate this size based

on average program complexity A control program with complex, lengthy interlocking or

sequencing routines obviously requires more memory than one for a simple process.

Program size is also related to the number of II O points, since it must include instructions

for reading from or writing to each point. Special functions are required for the control task

may also require memory space in the unit PLC memory map to allow data transfer

between cards. Finally additional space should be provided to allow for changes in the

program, and for future expansion of the system.

There is often a choice of available memory type RAM or EPROM. The RAM form is

the most common, allowing straightforwardand rapid program alterations both before and

after the system is installed. RAM contents are made semi-permanentby the provision of

battery backing on their power supply. RAM must always be used for II O and data

functions, as these involve dynamicdata.
EPROM memory can be employed for program storage only, and requires the use of a

special EPROM eraser I programmer to alter the stored code. The use ofEPROMS is ideal

where identical programmablecontrollers running the same control several machines.

However, until a program has been a hilly developed and tested, RAM storage should be

used.

58

As mentioned in earlier chapters, microcomputers arc commonly used as program

development stations. The large amounts of RAM and disk storage space provided in these

machines allow the development and storage of many PLC programs, including related text

and documentation. Programs can be transferred between the microcomputer and the target

PLC for testing and alteration. EPROM programming can also often be carried out via the

microcomputer.
)

2.13A.3. Instruction set CPU
Whatever else is left undefined; any system to be considered must provide an

instruction set that is adequate for the task. Regardless of size, all PLCs can handle logic

control, sequencing,etc. Wheredifferences start to emerge are in the areas ofdata handling,

special functions and communications.Larger programmable controllers tend to have more

powerful instructionsthan smaller ones in these areas, but careful scrutinyof small medium

machines can often reveal the capability to perform specific functions at surprisingly good

levels ofperformance.

In modular programmable controllers there may be a choice of CPU card, offering

different levels of performance in terms of speed and functionality.As the number of II O
and function cards increases, the demands on the CPU also increase, since there ate greater

numbers of signals to process each cycle. This may require the use of a faster CPU card if

scan time is not to suffer.
Following the selection of the precise units that will make up the programmable

controller for a particular application, the software and hardware design functions can be

carried out independently.

2.14. Installation
The hardware installation consists · öf building up to necessary racks and cubicles, then

installing and connecting the cabling.
The cabinet that contains the programmable controller and associated sub-racks must be

adequate for the intended environment, as regards security safety band protection from the

elements:

59

Security in the form of a. robust, lockable cabinet; safety, by providing automatic cut off

facilities alarms if the cabinet door is opened; protection from humid or corrosive

atmospheres by installation of airtight seals on the cubicle. Further electrostatic shielding

by earthing the cubicle body.
For maintenance purposes, there must be easy access to the PLC racks for card

inspection, changing etc. Main on/ off and status indicators can be built in to the cabinet

doors, and glass or Perspex windows fined to allow visual checking of card status or relay/

contactor operation.

2.15. Testing and Commissioning
Once the installation work is completed, the next step is to consider the testing and

commissioningofthe PLC system.
Commissioningcomprises two basic stages:

I -Checking the cable connectionsbetween the PLC and the plant to be controlled.

2-Installing the completed control software and testing its operation on the target

process.
The system interconnectionsmust be thoroughly checked out to ensure all input' output

devices are wired to the correct II O points. In a conventional control system buzzing out

the connections with suitable continuity test instruments would do this. With a

programmable, however, the programming panel may be used to monitor the status of

inputs points directly this is long before the control software is installed which will only be

done after all hardware testing is satisfactorily completed. Before any hardware testing is

started, a thorough test ofall mains voltages, earthing, etc. must be carried out.

With the programmer attached to the PLC, input points are monitored as the related

transducer is operated, checking that the correct signal is received by the PLC. The same
technique is used to test the various function cards installed in the system. For example,

altering can check analog inputs the analog signal and observing a corresponding change in

the data stored in the memory table.
In tum, the output devices can be forced by instructions from the programming panel.

Checking their connection and operation.

60

The commissioning team must ensure that any operation or disoperation of plant

actuators will not result in damage to plant or personnel.
I

Testing of some PLC functions at this stage is not always practical, such as for PID
loops and certain communications channel. These require a significant amount of

configuring by software before they can be operated, and are preferably tested once the

control softwarehas been installed.
Some programmable controllers contain in built diagnostic routines that can be used to

check out the installed cards, giving error codes on a VDU or integral display screen. These

diagnostic are run by commands from the programming panel, or from within a control

program once the system is fullyoperational.

2.16. Software testing and simulation
The preceding sections have outlined the various stages in hardware design and

implementation. Over the same period of time, the software to control the target process is

developed, in parallel, for the chosen PLC system. These program modules shouldbe tested

and proved individually wherever possible, before being linked together to make up' the

complete applications program. It is highly desirable that any faults or error be removed

before the program is installed 4ı the host controller.
The time required to rectify faults can be more than doubled once the software is

ruıming in the host PLC.
Virtually all-programmablecontrollers, irrespectiveof size, contain elementary software

checking facilities. Typically these can scan through an installed program to check for

incorrect labels. Double output coils etc, Listings of all I/ O points used. counter/ timer

settings and other infoımation is also provided. The resulting information is available on

the programmer screen or as a printout. However, this form of testing is only of limited

value, since there is no facility to check the operation of the residentprogram.

In terms of time and cost economies, an ideal method for testing program modules is to

reproduce the control cycle by simulation; since this activity can be carried out in the

design workshop withouthaving the actually connect up to the physical process. Simulation

oftile process is done in a number ofways, dependingon the size of process involved.

61

When the system is relatively small with only a handful of II O channels it is often

possible to adequately simulate the process by using. Sets of switches connected up to the

PLC as inputs, with outputs represented by connecting arrays of small lambs or relays 41
the figure 10.4. This allows inputs to be offered to a test bed controller containing software

under test, checking the action of the control program by noting the operation and sequence

of the output lambs or relays. By operating the input switches in specific sequences, it is

possible to test sequence routines within a program. Where fast response times are

involved, the tester should use the programming panel to force larger time intervals into the

timers concenıed, allowing that part of the circuit to be tested by the manual switch

method.

Most II O modules have LED indicators that show tile status of the channels. These can

be used instead of additional test actuators where digital outputs arc concerned Analog

inputs can be simulated in part by using potential dividers suitably connected to the input

channel, and corresponding analog outputs connected either to variable devices such as

small motors or to a moving coil meter configured to measure voltage or current. Standard

sets of input switches and output actuators are normally available from PLC manufacturers.

When the system is larger with input/output channels and longer, more complex

programs, the simple form of simulation described above becomes inadequate. Many larger

PLC Systems are fitted an integral simulation unit that reads and writes information directly

into the I/ O memory, removing the need to connect external switches, etc. The simulator is

controlled from an associated terminal, which can force changes in input status and record

all changes in output status as the program runs, for later scrutiny by the test team.

Tue program monitoring facility provided with most programming terminals should be

used in virtually all these proceedings, since it allows the dynamic checking of all elements

in the program including preset and remaining values as the program cycles.

It is important to realize that the display on the programmer does not up date as rapidly

as the control program is executing, due to the delays in transmitting the data across to the

terminal.

62

~---------- ••••••••••• 1111111111-111111111111111

Contacts and other elements that are operated for only a few scans are unlikely to affect

the display, but since a human observer could not detect this fast a change this is not a

significant disadvantage. To display all changes, the PLC should be run in single step

mode.
The monitor display shows a select portion of the ladder program, using standard symbols

to depict contacts, output and present functions. All elements within the display are

dynamically monitored. (See figure 2.16 and 2.17).

D sph,ıy_/pfiı'ltOi.lt

Y43C 1 o
YJ31 1 1 EO
y,32 1 o
¥433 O 1
V!Jj O

Error mossııgıı

EO: Toe eeil is usic more tha~ one time
;n a progra111.

E1; Tbe CQnt~.;t iıı used without t.'le
ccrr:ısı:oncinıı oı::pı..ıt.

E2: The n-Jtpııt is u5ed \vithoı.ıttt-,e
corresponding irıll'Jt.

H The cour.w ar thi:ı re~sier iş. ,.-ı;ac
wi:houl ,tıa RST.

E4: lhe ti!""a! ar ~ıltl:"ıt~r is U$&d
vıithoııt the e :.,nı;ıar.t K.

• Even :f the eonısc; ot c~i! ıs used
more thıııı o~•ce. a nu'Tlbar ·, i&
display·e,

Contııct __J
When tht eıern~nı ıs used
fottna cor,:t~t .•... ,. .•... 1 •
If not•................ 0

Coil......:...----
Wlıan ıhe e-e"'r\erıt is used
fc: nıı :o!I•.1 •
11 not•.............•. 0

Figure 2.16.PLC printout ofl/0 static diagnostics information

63

' Switcn inputs Lamp/relay
outpu~~Test-bed

prograrrmab~
~ontroller

I

~----ol'~---~
I
I

Program .ırıoer
test -- -- Cfı~ __ J

L - __, "1{!J
Analog ovtpıJ
ımeterl

Analog input
(potential divider)

Figure 2.17.Process simulationusing switches and lambs

2.17. Installing and running the user control program
Once the control softwarehas been proved as far as possible by the above, methods on a

test machine, the next step is to try out the program on the tested PLC hardware

installation. Ideally each section of code should be downloaded and tested individually,

allowing faults to be quickly localized if the plant misoperates during the program test. If

this subdivided testing is not possible, another method is to include JUMP commands in the
complete program to miss out all instructions except those in the section to be tested. As

each section is proved, the program is amended to place the JUMP instructions so as to

select the next section to be tested.

Where a programmable controller supports single step operation, this can be used the

examine.individualprogram steps for correct sequencing.Again the programming terminal

should be utilized to monitor II O status or any other area of interest during these tests.

With continuousprintouts if this is possible.

64

3. Application of PLC

3.1. Introduction
After we explore the mechanism and PLC types, now we have sufficient idea about

PLC.
For more understanding a practical example will be discussed in this chapter, it is a

machine, which carries a particle from one place to the other, it will be controlled by PLC.

3.1.1. Process

Two methods can be used to program the machine,Ladder or Statement.

Actually there are no significant differences between the tow programs, they both carry

the same algorithm, but in Ladder program visual symbols are used and in Statement

program written syntaxes are used.

The program can convert from one method to the other.

3.1.2. How does it work?

The machine is used shown in figure 3 .1.

A 8

Q0.5

Mota,

c~ I ~~"io, Gupo

Figure 3.1. Shownthe machine schematic

65

Where:

IO .O Left Limit
10.l Upper Limit
IO .2 Right Limit

QO.O Lowering
QO. l Grasp Open
Q0.2 Grasp Close
Q0.3 Lifting
Q0.4 Tum Right
Q0.5 Tum Left

Step 1

Computer sends the program orders to the PLC device, which is connected to the

machine by input and output wires.

An advantage of PLC device that has the ability to save the program in its memory, so

existence of the computer is no more important.

Step2
When the winch in A position, the Grasp is opened and the winch is lowering.

Step3
When the limit of timer (37) is reached lowering process will stop, and Grasp will work

and catch the object.

Step4

After caching the object, the winch will move into B position. ~

Steps

When the winch reaching B position the Grasp will open and let the object goes,

Step6

Then the winch will go up until it cuts the beams of sensor (IO.I), then the sensor will

tum off.

66

Step7
When the sensor tum off the winch will go back to A position.

Steps
Using a counter; which is found in the main program, controls repeating the process.

3.1.3. Software approach
In this section the used prograni for this project will be shown in tow method ladder and

Statement.

67

3.1.3.1. Ladder Program

I
Netvvork 1

I
I O.O T 37 Q O.O

I I I/I (J
Netvvork 2 I O.O Q O.O T 37 Q 0.1

I
I I I I 1//1 C J

II 0.2

I I
Netv,..ıor-k 3

Q 0.1
Q 0.2

I
/I l J

Net..,.ork 5 t 0.1' I 0.2 Q 0.2 Q 0.4

I I I I/I I I (J
Net.,..,ork 6

I
I 0.1 I 0.2 Q 0.3

I I I t J
N.et •••.• ark 7

I
I 0.1 10.0 Q 0.6

~/I I/I ()
Netwç,rl~ 8

10.0 T 37

İN TON

100 PT

N·et..,ork Ş

I O.O C30

I 0.4 1 I '2 Jc~ cTU I
~ ~

Net..,ork 10

.I
(END)

Block diagram 3.1. Ladder program

68

3.1.3.2. Statement program

II
//PROGRAM TITLE COMMENTS
II
//Press Fl for help and example program
II

NETWORK 1 //NETWORK TITLE (single line)
II
//NETWORK COMMENTS
II
LO IO.O
AN T37

QO.O

NETWORK 2
LD IO.O
A QO.O
AN T37
o I0.2

Q0.1
NETWORK 3

LON Q0.1
Q0.2

NETWORK 4
LON 10.2
A Q0.2
A I0.1

Q0.4
NETWORK 5

LO IO,l
A 10.2

Q0.3
NETWORK 6

LDN ro.ı
AN IO.O

Q0.5
NETWORK 7

LO IO.O
TON T37, +100

NETWORK 8
LD IO.O
LO I0.4
CTU C30, +12

NETWORK 9
MEND

Fig.ure 3.1. Statement program

69

CONCLUSION

When developing this project we see that PLC is making the operation in industrial

places, and that's the reasons,why it's gaining interest. (Notice ofmost of the companies.)

With the information observed from the lecturer and our researchers for this topic PLC,

is a convenient tool wit a wide range of useful ways to be used. Such examples can be
mentioned several machines cab be used at the same time, easy adjustments from the PLC

program can be made within a few minutes by the keyboard, installed PLC programs can

be controlled or checked before within the once laboratory, even the PLC program as for
firm can be meet at the home.

Its very portative and safe for the workers which they protected the danger,

communication programs of PLCs within each other or within operates can happen with

the PLC; the developed lances have constructed the productivity, security establishment

security fast productivity, quality and we can see that PLC is a very cheap program that can
be fundamentallyused.

70

REFERENCES

Books:
(1) Hugh Jack (June 1999). Programmable Logic controllers.

(2) Alan J.Crispin. Programmable Logic controller and their engineering applications.

(3) Ian G. Warnock. Programmable controllers operation and application.

Websites

1- www.plcs.com.

2- www.serch.kent.edu.com

71

