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ABSTRACT

Increasing the complexity of the technological processes, the presence of hard formalized

and unpredictable information, the uncertainty of environment leads to non-adequate

description of these processes by deterministic methods, and so the development of control

system with low accuracy. The effective way to solve this problem is the use of arti Iicia!

intelligence ideas, such as neural networks. Neural networks have been successfully applied

in the field of pattern recognition research. In pattern recognition one is interested in

techniques to capture the human ability to recognise and classify patterns.

Humans are very good at recognizing and classifying patterns and thereby extracting

knowledge from their environment. Autonomous Systems must also be able to recognize and

classify objects from input data obtained from their environment.

This Project aims to provide a thorough grounding in the theory and application of pattern

recognition, classification, categorization and concept acquisition. Neural networks and

graphical models are flexible tools for modeling data, which can be employed, in a principled

statistical way, in pattern recognition schemes.
The main purpose to use neural networks graphical models and related methods to analyze

and solve real problems. Also, symbolic algorithms are introduced for extracting knowledge

from large datasets of patterns (data mining techniques) where it is important to have explicit

rules governing pattern recognition. Problems of coping with noisy and/or missing data as

well as temporal and sequential patterns are addressed. The obtained results show the

efficiency of the application of pattern recognition system.
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INTRODUCTION

Artificial intelligence (Al) is the sub-field of computer science that attempts to develop

machines which are capable of emulating human perception. Initial research into AI was

mainly directed toward non-numeric computation and symbolic reasoning, because it was

realized that these formed the basis of cognitive activities. Various forms of symbolic

notation were defined and clever methodologies were devised to assist in reasoning, planning,

and learning in problem domains where conventional numerical approaches were deemed

inadequate. Although many of these techniques were successfully applied to practical

problems in areas such as speech recognition, image recognition and pattern recognition.

Artificial Neural Networks Based on biological theory of human brain, neural networks

(NN) are models that attempt to parallel and simulate the functionality and decision-making

processes of the human brain. In general, a neural network is referred to as mathematical

models of theorized mind and brain activity. Neural network features corresponding tu the

synapses, neuron, and axons of the brain are input weights. Processing Elements (PE) is the

analogs to the human brain's biological neuron. A processing element has many input paths,

analogous to brain dendrites. The information transferred along these paths is combined by

one of a variety of mathematical functions. The result of these combined inputs is some level

internal activity for the receiving PE. The combined input contained within the PE is modified

by the transfer function before being passed to other connected PEs whose input paths are

usually weighted by the perceived synaptic strength of neural connections. Neural networks

have been applied in many applications such as: automotive, aerospace, banking, medical,

and robotics.
The objective of this project is to design a neural network for the application of paueı il

recognition system and investigate the accuracy and time. Also diagnostics the effects of

neural networks by recognize the Noisy patterns.

Chapter one describes the introduction of the pattern recognition. And give details about

Pattern classification system (supervised and unsupervised). 1t explaineu three major

approaches of pattern recognition system; Statistical, Syntactic or structural and ı..tificial

neural networks.
Chapter two which describes the biological Neural Networks, some explanatiou of

Artificial Neural Networks and Learning Methods. Modification of the weigh ls to the training

process and the network subject to this process. A couple of examples of a Hopfıeld network,

one of them for pattern recognition.



Chapter three, is about the application of pattern recognition using neural network back

propagation technique which is a supervised learning. It provides the training of back

propagation and the problem of the error measure solved in detail. A flowchart of the network

and the implementation using the C++ programming language is also explained.
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CHAPTER ONE

INTRODUCTION TO PATTERN RECONGITION

1.1 Overview
In what follows this chapter is intended to help the reader understand what the pattern is

and discuss a wide range of methods for pattern recognition by neural networks. lrı general, it

will begin with a discussion of underlying theory. This more generic discussion will be

followed by specific implementations and practical suggestions. A detailed about pattern

recognition systems is provided; definitions, examples and variations found in the literature

along with reported results. And last thing the summary of this chapter

1.2 What is a Pattern?
What is a pattern? A pattern is essentially an arrangement or an ordering in which some

organization of underlying structure can be said to exist. We can view the world as made up

of patterns. Watanabe (1985) [1] defines a pattern as an entity, vaguely defined, that could be

given a name.
A pattern can be referred to as a quantitative or structural description of an object or some

other item of interest. A set of patterns that share some common properties can be regarded as

a pattern class. The subject matter of pattern recognition by machine deals with techniques for

assigning patterns to their respective classes, automatically and with as little human

intervention as possible. For example, the machine for automatically sorting mail based on 5-

digit zip code at the post office is required to recognize numerals. In this case there are ten

pattern classes, one for each of the 10 digits. The function of the zip code recognition

machine is to identify geometric patterns (each representing an input digit) as being a member

of one of the available pattern classes.
A pattern can be represented by a vector composed of measured stimuli or attributes

derived from measured stimuli and their interrelationships. Often a pattern is characterized by

the order of elements of which it is made, rather than the intrinsic nature of these elements.

Broadly speaking, pattern recognition involves the partitioning or assignment of

measurements, stimuli, or input patterns into meaningful categories. It naturally involves

extraction of significant attributes of the data from the background of irrelevant details.

Speech recognition maps a waveform into words. ln character recognition a matrix of pixels

(or strokes) is mapped into characters and words. Other examples of pattern recognition
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include: signature verification, recognition of faces from a pixel map, and friend-or-foe

identification. Likewise, a system that would accept sonar data to determine whether the input

was a submarine or a fish would be a pattern recognition system.

1.3 Pattern Recognition Systems

For a typical pattern recognition system the determination of the class is only one of the

aspects of the overall task. In general, pattern recognition systems receive data in the fonn of

"raw" measurements which collectively form a stimuli vector. Uncovering relevant attributes

in features present within the stimuli vector is typically an essential part of such systems (in

some cases this may be all that is required). An ordered collection of such relevant attributes

which more faithfully or more clearly represent the underlying structure of the pattern is

assembled into a feature vector.
Class is only one of the attributes that may or may not have to be determined depending on

the nature of the problem. The attributes may be discrete values, Boolean entities, syntactic

labels, or analog values. Learning in this context amounts to the determination of rules of

associations between features and attributes of patterns.

Practical image recognition systems generally contain several stages in addition to the

recognition engine itself. Before moving on to focus on neural network recognition engines

we will briefly describe a somewhat typical recognition system Chen, (1973) [I].
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Figure 1.1. Components of a pattern recognition system.

Figure 1.1 shows all the aspects of a typical pattern recognition task:

• Preprocessing partitions the image into isolated objects (i.e., characters, etc.). In

addition it may scale the image to allow a focus on the object.

• Feature extraction abstracts high level information about individual patterns to

facilitate recognition.

• The classifier identifies the category to which the pattern belongs or, in general, the

attributes associated with the given pattern

• The context processor increases recognition accuracy by providing relevant

information regarding the environment surrounding the object. For example, in the

case of character recognition it could be the dictionary and/or language model support.

Figure 1.2 shows the steps involved in the design of a typical pattern recognition system.

The choice of adequate sensors, preprocessing techniques, and decision-making algorithm is

dictated by the characteristics of the problem domain. Unlike the expert systems, the dou.ain­

specific knowledge is implicit in the design and is not represented by a separate module.
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Figure 1.2. A flow chart of the process of designing a learning machine for pattern

recognition

A pattern classification system is expected to perform:

(1) Supervised classification, where a given pattern has to be identified as a member of

already known or defined classes; or
(2) Unsupervised classification or clustering, where a pattern needs to be assigned to a so far

unknown class of patterns.
Pattern recognition may be static or dynamic. In the case of asynchronous systems, the

notion of time or sequential order does not play any role. Such a paradigm can be addressed

using static pattern recognition, Image labeling/understanding falls into this category. In cases

of dynamic pattern recognition, where relative timing is of importance, the temporal

correlations between inputs and out-puts may a major role. The learning process has to

determine the rules governing these temporal correlations. This category includes such

applications as control using artificial neural networks or forecasting using neural nets. In the

6



case of recognizing handwritten characters, for example, the order in which strokes emerge

from a digitizing tablet provides much information that is useful in the recognition process.

The task of pattern recognition may be complicated when classes overlap (see Figure 1.3).

In this case the recognition system must attempt to minimize the error due to

misclassification. The classification error is significantly influenced by the number of samples

in the training set. Several researchers (for example, Jain and Chandrasekaran (] 982) [2],

Fukunaga and Hayes (1989) [3], Foley (1972) [4] have addressed this issue.

X X X
X X X

X X X

X X X X 
X

X X X X

X X X
l(

Figure 1.3. Two categories of patterns plotted in the pattern space. Patterns belonging to both

classes can be observed in the overlapping region.

The three major approaches for designing a pattern recognition are :

• Statistical

• Syntactic or structural

• Artificial neural networks.
Statistical pattern recognition tecl;niques use the results of statistical communication and

estimation theory to obtain a mapping from the representation space to the interpretation

space. They rely on the determination of an appropriate combination of feature values that

provides measures for discriminating between classes. However, in some cases, the features

are not important in themselves. Rather the critical information regarding pattern class, l,,

patterns attributes, is contained in the structural relationships among the features.

Applications involving recognition of pictorial patterns (which are characterized by

recognizable shapes) such as character recognition, chromosome identification, elementary

particle collision photographs, etc. fall into this category. The subject of syntactic pattern

recognition deals with this aspect, since it possesses the structure-handling capability lacked
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by the statistical pattern recognition approach. Many of the techniques in this field draw from

the earlier work in mathematical linguistics and results of research in computer languages.

1.4 Motivation For ANN Approach

The development of a computer as something more than a calculating machine marked the

birth of the field of pattern recognition. We have witnessed increased interest in research

involving use of machines for performing intelligent tasks normally associated with human

behavior. Pattern recognition techniques are among the most important tools used in the field

of machine intelligence. Recognition after all can be regarded as a basic attribute of living

organisms. The study of pattern recognition capabilities of biological systems (including

human beings) falls in the domain of such disciplines as psychology, physiology, biology, and

neuroscience. The development of practical techniques for machine implementation of a

given recognition task and the necessary mathematical framework for designing such systems

lies within the domain of engineering, computer science, and applied mathematics. With the

advent of neural network technology a common ground between engineers and students of

living systems (psychologists, physiologists, linguists, etc.) was established. We would like to

point out that mathematical operations used in theories on pattern recognition and neural

networks are often formally similar and identical. Thus, there is good mathematical

justification for teaching the two areas together.

Recognizing patterns (and taking action on the basis of the recognition) is the principal

activity that all living systems share. Living systems, in general, and human beings, in

particular, are the most flexible, efficient, and versatile pattern recognizers known; and their

behavior provides ample data for studying the pattern recognition problem. For example, we

are able to recognize handwritten characters in a robust manner, despite distortions,

omissions, and major variations. The same capabilities can be observed in the context of
'speech recognition. Humans also have the ability to retrieve information, when only a part of

the pattern is presented, based on associated cues. Take, for example, the cocktail party

phenomena. At a party you can pick up your name being mentioned in a conversation all the

way across the hall even when most of the conversation is inaudible due to a clutter of noise.

Similarly, you can recognize a friend in the crowd at a distance even when most of the image

is occluded.
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Decision-making processes of a human being are often related to the recognition of regularity

(patterns). Humans are good at looking for correlations and extracting regularities based vii

them. Such observations allow humans to act based on anticipation which cuts down the

response time and gives an edge over reactionary behavior. Machines are often designed to

perform based on reaction to the occurrence of certain events which slows them clown ın

applications such as control.

The nature of patterns to be recognized could be either sensory recognition or conceptual

recognition. The first type involves recognition of concrete entities using sensory

information, for example, visual or auditory stimulus. Recognition of physical objects,

characters, music, speech, signature, etc. can be regarded as examples of this type of act. On

the other hand, conceptual recognition involves acts such as recognition of a solution to a

problem or an old argument. It involves recognition of abstract entities and there is no need to

resort to an external stimulus in this case. In this book, we shall be concerned with

recognition of concrete items only.

The real problem of pattern recognition, however, is to generate a theory that specifies

the nature of objects in such a way that a machine will be able to robustly identify them. A

study of the way living systems operate provides great insight into addressing this problem.

The image in Figure 1.4 indicates the complexity of the type of problem we have been

discussing. The image in Figure l .4(a) shows the face with distinct boundaries between

pixels. Thus an image understanding/pattern recognition algorithm, which labels areas with

different intensities as parts of different surfaces, would have difficulties in recognizing this

pattern of a face. On the other hand, for a human observer it is easier to see that blurring of

the boundaries between pixels, as shown in Figure 1.4(b), would result in a easily

recognizable face. The ability may be attributed to the existence of interacting high and low

spatial frequency channels in the human visual system.
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Figure 1.4(a). A facial image with low resolution seen with pixel grid.

One strong objective of the engineering and the artificial intelligence community has

been the creation of "intelligent" systems which can exhibit human-like behavior. Such

intelligent behavior would enable humans/machine interactions to occur in some fashion that

is more natural for the human being. That is, we would like to provide perceptual am]

cognitive capabilities enabling computers to communicate with us in a fashion that is natural

and intuitive to us. One of the goals is to design machines with decision-making capabilities.

To accomplish this it is essential that such machines achieve the same pattern information

processing capabilities that human beings possess.

Some of the early work in building pattern recognition systems was indeed biologically

motivated. The most common historical references are to the devices called perceptron and

adaptive linear combiner (ADALINE), respectively. The objective of these studies was to

develop a recognition system whose structure and strategy followed the one utilized by

humans. Subsequently, with the advent of other, more powerful neural techniques, the field of

neural network research is again vigorous. The current serious activity in the area of artificial

neural networks and connectionist paradigms is reminiscent of the early period when

neurocomputing research flourished.
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Figure l.4(b). Same image blurred to deemphasize the boundaries between pixels.

Some of the early disappointments with the perceptron approach, led some of the

researchers to concentrate on the mathematical or computer science aspects of pattern­

formatted information processing. For example, emphasis shifted Lo statistical pattern

recognition and classification of patterns with syntactic structures. The neural network, or

connectionist paradigm, provides a promising path toward computer systems possessing truly

intelligent capabilities. The recent advances in the field of artificial neural networks over the

last decade has therefore brought us that much closer to the goal of creating systems

exhibiting human-like behavior. Jain and Mao(1994)[5] provide a good discussio» on

common links between artificial neural network approaches and the statistical pattern

recognition approach.

1.5 A Prelude To Pattern Recognition

A pattern can be represented by a set of n numerical measurements or an n-dimensional

pattern or measurement vector, Z:

(1.1)

Subsequently a feature vector, X, may be derived from the pattern vector:

(1.2)
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Thus a pattern can be viewed as a point in either Nm-dimensional measurement hyperspace

or the N-dimensiona1 feature hyperspace. Typically, feature spaces are chosen to be of lower

dimensionality than the corresponding measurement space. Pattern classification involves

mapping a pattern correctly from the feature/measurement space into a class-membership

space. Thus the decision-making process in pattern classification can be summarized as

follows. Consider a pattern represented by an n-dimensional feature vector:

(1.3)

where T indicates a transpose.

The task is to assign it to one of the K categories, C ,, C2, ••• , CK. Note that the

measurement vector represents the sensed data, where N; is the number of measurements. If,

for example, an image is represented by an m x ın array of pixels with 16 gray levels, we

have the dimensionality of the pattern vector, n = m', Each component Z; of the vector Z

assumes the appropriate gray level, from the 16 possible values.

Consider the problem of recognizing speech patterns. In this case, the acoustic signals are

a function of time. The entities of interest are continuous functions of a variable ı, unlike the

discrete gray-scale values in the previous example. In order to perform this type of

classification we must first measure the observable characteristics of the samples, which

involves observing the speech waveform over a period of time in this case. A pattern vector

can be formed by sampling these functions at discrete time intervals, ı; tı, ... , ı; etc. Figure

1.5 shows measurements of time sampled values for a waveform given by z(tı), z(t2), ... ,

z(tn)•

12
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Figure 1.5. Sampling of a waveform at discrete time intervals

A feature vector for speech recognition might, for example, consist of the first lv Fourier

coefficients of the captured waveform.

Design of a pattern recognition system also involves choosing an appropriate approach

into the description of patterns in a form acceptable to the machine in consideration. This

decision is also influenced by the nature of the problem domain to which the recognition

system will be applied. For example, in the face recognition problem, the image may be

converted to an array of pixels with gray-scale representation by means of a photosensitive

matrix device (or a camera with a frame grabber). In an application involving color codes, it

may be more appropriate to use intensity levels of each of the red, blue, and green (RBG)

signals.

Thus, first the feature extractor is designed to find the appropriate features for representing

the input patterns, such that the difference between patterns from different classes is enhanced

in this feature space. After the feature set is defined and the feature extraction algorithm is in

place, a typical recognition process involves two phases: training and prediction. Once the

mapping into the feature space has been established, the training phase may begin. Training

data that are representative of the problem domain must be obtained. The recognition engine

is adjusted such that it maps feature vectors (derived from the training data) into categories

with a minimum number of misclassifications. In the second phase (prediction phase), the

trained classifier assigns the unknown input pattern to one of the categories/clusters based on

the extracted feature vector. The process could be iterative where if prediction results are not

acceptable, the choice of features can be revisited or the training can be performed again with

different parameters .

13



Neither raw data representation (bit map or stroke in the case of character recognition) is

particularly good for direct input to a neural recognizer. As will be seen, the degree of

"badness" will, to a varying extent, differ with the characteristics of the recognizer ın

question. Some of the problems inherent in using the raw data input formats above as direct

inputs to a neural recognizer are

• They are nonorthogonal.

• They are unlikely to represent salient features of the patterns to be recognized.

• They are verbose. Unnecessarily large input vectors lead to a larger than necessary

network in which performance during both training and recognition are degraded.

• They are sensitive to slight variations in the image, i.e., font/stroke variations in

characters.

• They are likely to contain a good deal of extraneous or nonrelevant information thus

providing an invitation to overfitting/oveıtraining in the recognizer.

• They will not be invariant with respect to translation rotation, etc.

1.6 Statistical Pattern Recognition

In this field the problem of pattern classification is formulated as a statistical decision

problem. Statistical pattern recognition is a relatively mature discipline and a number of

commercial recognition systems have been designed based on this approach. Pao (1989) [6] is

an excellent source of the most relevant techniques from the perspective of practical

engineering applications. These present pattern recognition as a problem of estimating density

functions in a high-dimensional space and dividing this hyperspace into regions of categories

or classes. Decision making in this case is performed using appropriate discriminant

functions. Thus mathematical statistics forms the foundation of this subject.

This discipline is also referred to as the decision-theoretical approach s..ıce it uıilizc.,

decision functions to partition the pattern space. These functions, which are also called

discriminant functions, are scalar functions of the pattern x. Regions in the pattern space

14



enclosed by these boundaries provided by the decision functions are labeled as individual

classes. A decision function, for n-dimensional pattern space can be expressed as:

k = 1,2, ...• M (1.4)

where w's are coefficients of the decision function corresponding to class Ck and the /(x) are

real, single-valued functions of the pattern, x.

The approach is to establish M decision functions dı(x), dz(x), ... , dix), one for each class,

such that if a pattern x belongs to class C;, then:

i ;;;:: I, 2, ...• kl, j ¢ i (1.5)

Thus we have a relationship that specifies a decision rule. In order to classify a given pattern

it is first substituted into all decision functions. Then the pattern is assigned to the class which

yields the largest numerical value. Then we have the equation of the decision boundary:

d,(x)-dı(:ı,} = O (1.6)

which separates classes C; and Ci. Figure 1.6 shows the block diagram of an automatic

classification scheme using discriminant function generators (DFGs).

De cısrorı
Function

ı Generator
;~----------·

...
Dee1sion
Purıcriorı
Generaıor

treoe.oo
Making 
Proces5 

Oec'lsion
Funciiorı
Generaıor

Deosjon
Funchorı
Generaıor '1 d <x)

L--- -·---------., M

Figure 1.6. Block diagram of a pattern classifier which uses discriminant function generators

(DFGs). (Adapted from Tou and Gonzalez (1974) [7]).

15



Consider a simple example where two measurements are performed on each entity

yielding a two-dimensional pattern space which is easy to visualize, lor example, the class

consisting of professional football players and the class of professional jockeys. Each pattern

in this case can be characterized by two measurements: height and weight. Figure 1.7 shows

two pattern classes C1 and Cı in this two-dimensional pattern space. Thus, M = 2, and for all

patterns of class C1:

••
d(:ıc:) ax w1 x1+ wıtzx2 +w3 • O

c,

Figure 1.7. Scatter diagram for the feature vectors of two disjoint pattern classes. A simple

linear decision function can be used to separate them. (Adapted from Tou and Gonzalez

(1974) [7]).

(1.7)

and, conversely, for all patterns in class C2:

(1.8)

We can now define:

(1.9)
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such that it leads to the condition:

d(x} > O for x e C1 (1.10)

and

d(x)<O for xECı (.1.11)

ln the case of two classes in Figure 1.7 it can be seen that a straight line can separate them.

Then we have:

(1.12)

which is a special case of the decision rule stated in equation! .4. Note that (xı, x2) 

represents a pattern in this case, and thew's are parameters. The patterns of class C2 lie on the

negative side of this boundary; conversely, all patterns in class Cı lie on the positive side.

Note that the decision function in equation 1.4 is quite general in the sense it can represent

a variety of complex (including nonlinear) boundaries in n-dimensioııal pattern space. There

are various classification methods that can be used to design a recognition engine for the

system. The choice depends on the kind of information that is available about the class­

conditional densities. Class-conditional density is the probability function (which estimates

the distribution) of pattern x, when x, is from class C;, and can be given as follows:

(1.13)

If all the class-conditional densities are completely known a priori, the decision

boundaries between pattern classes can be established using the optimal Bayes decision ruıe

(see Figure 1.8). Since the problem in this case is statistical hypothesis testing, the Ba, ı::s

classifier gives the smallest error we can achieve from the given distributions. Thus the Bayes

classifier is optimal. However, in practical applications the pattern vectors are often of very

high dimensionality. This is due to the fact that the number of measurements, n, becomes higıı

in order to ensure that the measurements carry all of the information contained in the original

data. ln such cases, implementation of the Bayes classifier turns out to be quite difficult due

to its complexity.
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Figure 1.8. Bayes classifier. (Adapted from Tou and Gonzalez (1974) [7]).

A]so, in practice, the class-conditional densities are rarely known beforehand and a set of

training patterns is needed to determine them. In some cases the functional form of the class­

conditional densities is known and the task is to determine the exact values of some of the

parameters that are not known. Such a problem is referred to as the parametric decision­

making problem. In such cases simpler parametric classifiers are considered. Classifiers with

linear, quadratic, and piecewise discriminant functions are the most common choices.

In cases where the precise form of the density function is not known, either it must be

estimated or nonparametric methods must be used to obtain a decision rule. pattern

recognition as such, statistical teclmiques do play a role in some neural approaches. The K­

nearest-neighbor algorithm, which is of nonparametric category. The Karhurıen-Loeve

technique is often useful in determining which particular features set is accurate within the

degree of tolerance. The radial basis function networks also rely on statistical clustering

methods for training the hidden layer neurons. Figure 1.9 shows a tree diagram of various

dichotomies which appear in the design of statistical pattern recognition ( Jain and ıvlao,

(1994) [5] for details).
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Figure 1.9. Dichotomies in the design of a statistical pattern recognition system. (Adapted

from Jain and Mao (l 994) [5]).

I.7 Syntactic Pattern Recognition

I

ln applications involving patterns that can be represented meaningfully, using vector

notations the statistical pattern recognition approach is ideal. However, this approach lacks a

suitable formalism for handling pattern structures and their relationships. For example, in

applications like scene analysis, the structure of a pattern plays an important role in the

classification process. ln this case, a meaningful recognition scheme can be established only

if the various components of fundamental importance are identified and their structure, as

well as relationships among them, are adequately represented.

In the 1950s several researchers (for example, Chomsky, (1956) [8]) in the field of formal

language theory developed mathematical models of grammar. The linguists attempted to

apply these mathematical models for describing natural languages, such as English. Once the

model is successfully developed it would be possible to provide the computers with the ability

to interpret natural languages for the purpose of translation and problem solving. So far these

expectations have been unrealized, but such mathematical models of grammar have

significantly impacted research in the areas of compiler design, computer languages, and
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automata theory. Syntactic pattern recognition is influenced primarily by concepts from

formal language theory. Thus, the terms linguistic, grammatical, and structural pattern

recognition are also often used in the literature to denote the syntactic approach.

In the syntactic approach the patterns are represented in a hierarchical fashion. That is,

patterns are viewed as being composed of subpatterns. These subpatterns may be composed

of other subpatterns or they can be primitives. Figures 1.1 O (a) and (b) show the different

chromosome structures. Figure 1.1 O (a) shows a prototype pattern for the class named

submedian chromosomes, while Figure 1.1 O(b) shows the prototype for the second class,

called telocentric chromosomes. These patterns can be decomposed in terms of primitives

which define various curved shapes (see Figure 1.1 O[c]). Each chromosome shown in Figure

1.1 O can now be encoded as a string of qualifiers by tracking each structure boundary in a

clockwise direction. For the submedian chromosome we detect these primitives which can be

represented in the form of a string abcbabdbabcbabdb. The telocentric chromosome can be

represented by the string ebabcbab.

We can view the underlying similarities within various structures belonging to the class,

subrnedian chromosomes, as a set of rules of syntax for generation of strings from primitives.

A set of rules governing the syntax can be viewed as a grammar for the generation of

sentences (strings) from the given symbols. Each primitive can be interpreted as a symbol

permissible in some grammar. Thus, we-carı envision two grammars G 1 and G2 whose rules

allow the generation of strings that correspond to submeclian and telocenıric chromosomes,

respectively. In other words the language L(G 1 ), consisting of sentences (strings)

representing submedian chromosomes, can be generated by Gl . Similarly, the language

L(G2) generated by G2 would consist of sentences representing telocerıtric chromosomes.

Thus, for the determination of the class of the chromosome using the syntactic pattern

recognition approach first the two grammars GI and G2 have to be established. In order to

establish a given input pattern (i.e., determine which type of chromosome it is) it is

decomposed into a string of primitives. This sentence represents the input pattern and now the

problem is to determine the language in which this input pattern represents a valid sentence.

In the chromosome identification application if the sentence corresponding to the input

pattern belongs to the language L(Gl), it is classified as a submedian chromosome. On the

other hand, if it belongs to language L(G2), it is classified as telocerıtric chromosome. l fit

belongs to both L(Gl) and L(G2), it is declared ambiguous. If the sentence representing the

input pattern is found to be invalid over both the languages, the input pattern is assigned to a
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rejection class consisting of all invalid patterns. Techniques for establishing the class

membership of syntactic structures, as well as issues involved in forming gramn.ars, are

discussed in Gonzalez and Thomason (1978) [9].
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Figure 1.10. A submedian chromosome; (b) a telocentric chromosome; (c) five primitives

that can be used to code the two types of chromosomes.

For multiclass pattern recognition problems more grammars (at least one for each class)

have to be determined. The pattern is assigned to class i if it is a sentence of only L(Gi) and

no other language. Thus the syntactic pattern recognition approach in this case is the same as

that described for the two-class problem.

The foregoing concepts are valid even in cases where patterns are represented by other

data structures instead of strings (i.e., trees and webs (undirected, labeled graphs)).Figure l . 1 I

shows a typical pattern recognition system designed for classifying patterns using a syntactic

approach.
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1.8 The Character Recognition Problem 

The problem of designing machines that can recognize patterns is highly diverse. It

appears in many different forms in a variety of disciplines. The problems range from practical

to the profound. The great variety of pattern recognition problems makes it diıficult to say

what pattern recognition is. However, a good idea of the scope of the field can be given by

considering some typical pattern recognition tasks.
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Figure 1.ll. Block diagram of a syntactic pattern recognition system for classification.

Frequently a great deal of preprocessing may be required before the "act of recognition"

can even begin. We therefore will focus primarily on character recognition since there is an

abundance of available data and a minimum of preprocessing. After all, character recognition

is one of the classic examples of pattern recognition. There is little loss of generality in that

the fundamental neural recognition techniques will be similar to those used in other problem

domains. Furthermore, our objective of taking a hands-on practitioners approach is facilitated

by using character recognition as an exemplar problem.
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The character recognition problem is widely studied in the pattern recognition literature,

yet is far from being a solved problem. Nevertheless, it is tractable in the sense that a great

amount of data can be easily obtained. One of the most common divisions between character

recognition systems lies in whether the recognizer is focused on handwritten text oı machine

printed text.

Handwritten text data presented to the system may be either on-line or off-line. On-line

handwritten text input from a tablet is presented as a sequence of coordinates v(x, y, t) where ı

is time. Stroke order is available in this context as an aid to recognition. The down side is that

handwritten text is significantly less constrained than printed text. Another issue that arises in

the context of handwritten text is that of both word and character segmentation.

Determination of which strokes should be grouped together to form characters and of where

word boundaries exist is a nontrivial problem. There are three major categories into which

noncursive text may be grouped from a segmentation point of view. These are

• Box mode - Characters are written in a predefined box.

• Ruled mode - Characters (and words) are written on a predefined line.

• Unruled mode - Characters (and words) may be written anywhere on the input

surface and may also slope arbitrarily.

In box mode, segmentation is trivial. In ruled and unruled mode, segmentation problems

could turn out to be very difficult. The crucial importance of segmentation should not be

underestimated. Incorrect segmentation can and will lead to poor recognition by the overall

system. These and other issues render the recognition of handwritten characters more

formidable than the machine printed character recognition problem even where the goal ıs

omnifont recognition.

ln the case of optical character recognition (OCR) (which can also be regarded as off-line),

printed or handwritten text will be represented by a bit-mapped image typically from a

scanner. Segmentation is less of a problem in this context although a preprocessing stage is

stil I required. Even though printed text is more constrained than handwritten, the recognition

of machine printed text remains challenging. Figure 1.12 below illustrates character confusion

in machine printed text recognition.
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Figure 1.12. Some machine printed text with noisy characters.

In what follows we will not make a great deal of distinction between handwritten as

opposed to printed characters in that there will be no attempt to deal with using stroke order

information. fn this sense we deal with handwritten characters (as seems to be the case in

most of the literature) as though they were a kind of very highly unconstrained printed text.

1.9 Summary 

The chapter presented the introduction of pattern recognition, and provides the different

definitions and examples about pattern and pattern recognition systems. It shows all aspects

of a typical pattern recognition, components of pattern recognition system. And gives details

about Pattern classification system (supervised and unsupervised). It explained three major

approaches of pattern recognition system; Statistical, Syntactic or structural, and Artificial

neural networks.
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CHAPTER TWO 

NEURAL NETWORKS 

2.1 Overview 
This chapter is an overview of neural networks which helps the reader to understand what

Artificial Neural Networks are, how to use them, and where they are currently being used. A

detailed biological neural network background is provided; definitions and the biological

nervous system, such as the brain will be presented, and how the artificial neurons work.

Also we will see the different between the neural network computing and both of the ıradiuon

computing and expert computing. Advantages and disadvantages of neural networks. And

last thing the summary of this chapter.

2.2 Biological Neural Networks 
The current view of the nervous system owes much to the two pioneers, Rarnony Cajal

(1934) and Sherrington (1933) [1 O] who introduced the notion that the brain is composed of

distinct cells (neurons). The brain has approximately 100 billion (l011) nerve cells (neurons)

and it is estimated that there are about 100 trillion (1014) connections (synapses) having a

density of JOOO connections per neuron. As a result of this truly staggering number of neurons

and synapses, the brain is an enormously efficient structure, even though neurons are much

slower computing elements compared with the silicon logic gates. ln a silicon chip, events

happen at the rate of few nanoseconds (10·9 seconds), while neural events occur at the rate of

milliseconds (10-3 seconds). ~

The nervous system of humans and other primates consists of three stages as shown in

Figure 2.1. The sensory stimuli from the environment or human body is converted into

electrical impulses by the receptors, such as eyes, ears, nose, skin, etc. These information­

bearing signals are then passed on through forward links to the brain which is central to the

nervous system. The brain in Figure 2. 1 is represented by a neural network.

25



EHectors

Mıv"·r
\ oerurat org~~~.

\

Nmvou;; speech
sy_sisnı . generators

"-~:..,... . "'
~ NsnJ<:,I .

...ı, Networks ı t/---;,,

··--tntorrı;:ıl .

Internal I Fesdbacf;'
Fetıtmack

~I Noss

A Taste

"'
etc .

•

eıc
..,,._,. •..,,.....,._.,._.....

c~emarFeedbac\<.

Figure 2.1. Block diagram of the nervous system showing the information flow through the

links.

The brain continually receives information which it processes, evaluates, and compares to

the stored information and makes appropriate decisions. The necessary commands are then

generated and transmitted to the effectors (motor organs like tongue, vocal cords, etc. for

speech) through forward links. The effectors convert these electrical impulses into discernible

responses as system outputs. At the same time motor organs are monitored in the central

nervous system by feedback links that verify the action. The implementation of these

commands function through both external and internal feedback for acts, such ..ı.s hand-eye
"coordination. Thus, the overall system bears some resemblance to a closed-loop control

system.

Figure 2.2 shows the schematic diagram of a "generic neuron" with its main components

labeled as axon, cell body (soma), dendrites, and synapses. Figure 2.2 also shows the

characteristic ions (Na+ K+, and CJ·) where they are prevalent inside and outside the cell

membrane.
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Figure 2.2. A neuron with its components labeled.

Dendrites (with many small branches resembling a tree) are the receptors of electrical

signals from other cells. Axons, the transmission lines, carry the signals away ırouı the

neuron. They have a smoother surface, fewer branches, and greater length compared with

dendrites which have an irregular surface. The soma (cell body) contains the cell nucleus (the

carrier of the genetic material) and is responsible for providing the necessary support

functions to the entire neuron. These support functions include energy generation, protein

synthesis, etc. The soma acts as an information processor by summing the electrical potentials

from many dendrites.

The interactions between the neurons are mediated through elementary structural and

functional units, called synapses. The synapses could be electrical, where the action potential

(shown in Figure 2.2) travels between cells by direct electrical condition. However, chemical

synapses, where conduction (information transfer) is mediated by a chemical transmitter, are

more common. The synapse can impose excitation or inhibition on the receptive neuron.

The chemical synapse operates as follows :

• The transmitting neuron, called presynaptic cell, liberates a transmitter substance that

diffuses across the synaptic junction. Thus an electrical signal is converted to a

chemical signal.
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• The chemical neurotransmitter causes a positive increase (for an excitatory

connection) and a decrease (for an inhibitory connection) in the postsynaptic

membrane potential. The receiving neuron is called the postsynaptic cell.

• Thus, at the postsynaptic cell, the chemical signal is converted back into atı electrical

potential which now propagates through to the other components of the neural

network.

In various parts of the brain there are a wide variety of neurons, each with a different

shape and size. Also, the number of different types of synaptic junctions between the cells is

quite large. The cell membrane, shown in Figure 2.1, consists of myelin sheaths (electrically

insulating layer) with nodes of Ranvier acting as channels for ion transfer. lt plays a very

imporlant ro\e in the activities of the nerve cell, such as impulse propagation.

Figure 2.3 (a) shows a trace of the nerve impulse waveform (action potential) as it would

appear on an oscilloscope. Such a nerve impulse train can be recorded by placing a

microelectrode near an axon. Figure 2.3 (b) shows the corresponding nerve impulse train.

Long-term memories are thought to be defined in the nervous system in terms of variations iı,

synaptic strengths. The changes in synaptic efficiency are mediated through biochemical

changes associated with learning and memory. Experimental evidences supporting this

universal assumption are as follows:

• Changes in strength in specific synapses in hippocampal neurons depend on

combined activity of multiple inputs;

• Changes in the morphology of dendritic spines contribute substantially to learning

and memory in central neurons;

• Calcium ions mediate changes in synaptic efficiency contributing to increases post­

synaptic receptors, proteins synthesis involved in spine swelling, transport of

dendritic microtubules, and output of pre-synaptic transmitter.
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Figure 2.3. (a) Trace of a nerve impulse waveform;

(b) corresponding nerve impulse train.

2.3 Hierarchical Organization in the Brain 

Extensive research on the analysis of local regions in . the brain Churchla.«l and

Sejnowski,(1992) [11] has revealed the structural organization of the brain with differen

functions taking place at higher and lower levels in the brain. Figure 2.4 shows the hierarchy

of the levels of organization in the brain. The traditional digital computers can also be viewed

as a structured system, but the organization is radically different. Thus, a look into the levels

of organization of the nervous system may provide new insights into designing computers

with a radically different organization.

At the top the behavior of an individual is determined at the "whole brain" level. The

behavior is mediated by topographic maps, systems and pathways at the inter-regional circuit

level beneath it. Topographic maps involve multiple regions located in the different parts of

the brain and they are organized to respond to the sensory information. In fact the visual

system, the motor system, and the auditory system taken as a whole fit into this category. The

third level of complexity is called local circuitry and is made up of neurons with similar o,

different properties. These neuronal assemblies are responsible for local processing. The next

level is the neuron itself, about 100 micrometer in size, containing several dendric subunits.

Below this level lies the neural microstrucıure (like a silicon chip made up of an assembly of

transistors in the case of a computer) which produces various functional operations. These are

structures that affect areas around the synapses and are of the size of a few microns, with a

speed of operation of a few milliseconds (quite slow compared with a speed of nanoseconus
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for transistors in traditional computers). The fact that neurons are such slow, millisecond

devices may partially account for the massive parallelism required for a large biological

computer (i.e., the brain). The next level consists of synaptic junctions where cells transmit

signals from one to another. Synapses in turn rely on the actions of the molecules and ions at

the level below
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Figure 2.4. Structural organization of levels in biological nervous systems

Neuroscientists have identified different regions of the brain in terms of their

specialization for complex tasks, such as vision, speech, hearing, etc. The visual information
I

is analyzed in the back side of the brain (in the occipital lobe). The auditory sensors send

information to the auditory cortex ( upper part of the temporal lobe) where they are analyzed.
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The visual cortex in fact contains a map that reflects the layout of the surface of the retina.

The cochlea is the part of the inner ear that receives auditory input and the map on the

auditory cortex reflects the sheets of receptors in the cochlea. The parietal lobe articipates in

processing information from the skin and body. The association cortex carries out higher

brain functions like cognition, perception, etc.

The major neural structures within or below the cerebral cortex are shown in Figure 2.5.

The cerebellum, at the bottom, is involved in muscular activities such as walking, jumping,

playing a musical instrument, etc., which require sensory-motor coordination. Next to it the

brainstern is concerned with respiration, heart rhythm, and gastrointestinal functions. The

spinal cord, below the brain, transmits signals to and from the brain and generates appropriate

reflex actions. The hippocampus in primitive animals participates in finding appropriate

responses to various smells in the environment, but in humans it takes on new roles.
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Figure 2.5. Major neural structures in the brain

In the case of the visual system, the retina is the sensory organ that acts as a transducer.

This transducer converts the photons (stimulus energy) into corresponding neural signals

which are subsequently processed in the brain by the visual cortex. The retina which senses

the stimulus for the visual system. The retina itself has five layers, with receptor cells

consisting of rods and cones) receiving light signals from outside. These signals arc then

transmitted through different layers of cells where some horizontal preprocessing occurs.

Finally the ganglion cells transmit the signals to the primary visual cortex, such that they

encode the local areas of the visual stimulus. shows the visual pathways, originating from Llıe
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retina, via the lateral geniculate nucleus (LGN), to the primary visual cortex. The brain makes

a map of the visual field, called topographic maps, at the visual cortex, showed that various

neurons in the cat's visual system respond selectively to borders, orientation, motion, length

of line, etc. Similarly, in the auditory system the cochlea (the sensory organ; converts the

sound waves (stimulus) into neural signals which are subsequently processed by the auditory

cortex.

In fact, a tremendous amount of data exists regarding the anatomy of the brain. The

locations and functions of various major structures within the nervous system are veı y weli

understood. However, the precise conclusions about the role of each part of the neural

circuitry are lacking. Neural network models are likely to contribute toward gaining a better

understanding of mechanisms and circuitry involved in various functions carried out by the

brain.

2.4 Neural networks 

Neural networks today began with the pioneering work of McCulloch and Pitts (I 943)

[12] and has its roots in a rich interdisciplinary history dating from the early 1940s.

McCulloch was trained as a psychiatrist and neuroanatomist, while Pitts was a mathematical

prodigy. Their classical study of all-or-none neurons described the logical calculus of neural

networks.

Figure 2.6 shows a McCulloch-Pitts model of a neuron with inputs x;, for i = I, 2, ... , N.

•· L-------••·O•••

Figure 2.6. A McCulloch-Pitts model of neuron.

W; denotes the multiplicative weight (synaptic strength) connecting the r input to the neuron.

Theta is the neuron threshold value, which needs to be exceeded by the weighted sum of

inputs for the neuron to fire (output = O is the output of the neuron. The weight, W;, is

positive if the connection (synapse) is excitatory and negative if the connection is inhibitory.
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The inputs, X; are binary (O or I) and can be from sensors directly or from other neurons. The

following relationship defines the firing rule for the neuron:

," \f \

O ;;; ol·' -~ \Vx · J.· .. o Lı ı ,:
-····· '
hl ,I (2.J) 

where g(x) is the activation function defined as:

... - - p jf X 2: H
6(x) - 1

lU if x<H (2.2)

This simplistic model could demonstrate substantial computing potential, since by

appropriate choice of weights it can perform logic operations such as AND, OR, NOT, etc.

Figure 2.7 shows the appropriate weights for performing each of these operations. As we

know, any multivariate combinatorial function can be performed using either the NOT and

AND gates, or the NOT and OR gates. If we assume that a unit delay exists between input

and output of a McCulloch-Pitts neuron (as shown in Figure 2.6), we can indeed build

sequential logic circuitry with it. Figure 2.8 shows an implementation of a single memory cell

that can retain the input.

As seen from the figure, an input of l at x1 sets the output (O= l) while the input of I at x2 

resets it (O = O). Due to the feedback loop the output will be sustained in the absence of

inputs.

wıı;:,_· ~
IIL.... ·,,rW,· ._ -~')

(a') (O)

-~-,=e-+---/.:.'.cc--- ·... -_-,_,·- ·o~i- ··. - J

x~ _ıl__. . - -
lç!

Figure 2.7. (a) Implementation of a NOT gate; (b) an OR gate; and (c) an AND gate

implementation
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Figure 2.8. Implementation of a memory cell by using a feedback and assu.rıing a delay of

one unit oftime.

This led to the computer-brain analogy, called cybernetics, based on the fact that neurons

are binary, just like switches in a digital computer. Wiener (1948)[13] described important

concepts of control, communications, and signal processing based on his perception of

similarities between computers and brains, which spurred interest in developing the science of

cybernetics. He discussed the significance of statistical mechanics in the context of learning

systems, but it was Hopfield (1982, 1984)[14], who established the real linkage between

statistical mechanics and neural assemblies. Von Neumann used the idealized switch-delay

elements derived from the neuronal models of McCulloch and Pitts to construct the EDVAC

computer. He in fact suggested that research in using "brain language" to design brain-like

processing machines might be interesting (von Neumann, 1958)[15]. The next major

development came when a psychologist, Hebb (1949)(16] proposed a learning scheme for

updating the synaptic strengths between the neurons. He proposed that as the biological

organisms learn different functional tasks, the connectivity in the brain continually changes.

He was also first to propose that neural assemblies are created by such changes. His famous

postulate of learning, which we now refer to as the Hebbian learning rule, stated that

information can be stored in synaptic connections and the strength of a synapse would

increase by the repeated activation of one neuron by the other one across that synapse.

"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently

takes part in firing it, some growth process or metabolic changes take place in one or both

cells such that A's efficiency as one of the cells firing B, is increased."
J

This learning rule, called the Hebb rule or correlation learning rule, has had a profound

impact on the future developments in the field of computational models of learning and
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adaptive systems. The original Hebb rule did not contain a provision for selectively

weakening (or eliminating) a synapse. Rochester et al.(1956)[17] performed simulations on

digital computers to test Hebb's theory of learning in the brain, on an assembly of neurons.

They demonstrated that it was essential to add inhibition for the theory to actually work for a

neuronal assembly.

Figure 2.9 shows a simple perceptron with sensory elements (S elements), association

units (A units), and response units (R units). The sensors could be photoreceptive devices for

optical patterns in analogy to the retina where the light impinges.Several S elements, which

respond in all-or-none fashion, are connected to each A unit in the association area through

fixed excitatory or inhibitory connections. A units in turn are connected to R units in the

response area through modifiable connections.

Figure 2.9. A simple perceptron structure with connections between units in three different

areas

A perceptron with a single R unit can perform classification when only two classes are

involved. For classification involving more than two categories, several R units are required

in the response layer. The learning procedure (algorithm) for adjusting the free parameters iıı
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the network shown in Figure 2.9. The proof of convergence of the algorithm, known as the

perceptron convergence algorithm, states that if the parameters used to train the perceptron

are drawn from two linearly separable classes, then the perceptron algorithm converges and

positions the decision surface in the form of a hyperplane between the two classes. A learning

mechanism where the summed square error in the network output was minimized. So

introduced a device called ADALINE (for adaptive linear combiner) based on this powerful

learning rule. During the 1960s ADALINE and its extensions to MADALINE (for many

ADALIN Es) were used in several pattern recognition and adaptive control applications. In the

communications industry they were applied as adaptive filters for echo suppression İıi Jong­

distance telephone communication.

2.5 Artificial Neural Networks 

In its most general form a network of artificial neurons, as information processing units, is

inspired by the way in which the brain performs a particular task or function of interest. Or

neural network in a broader sense such that the neural nets of the actual brain are included in

the field of study and provide room for a consideration of biological findings. when we are

talking about a neural network, we should more properly say "artificial neural network"

(ANN), because that is what we mean most of the time. Biological neural networks are much

more complicated than the mathematical models we use for ANNs. But it is customary to be

lazy and drop the "A" or the "artificial". An Artificial Neural Network (ANN) is an

information-processing paradigm that is inspired by the way biological nervous systems, such

as the brain, process information. The key element of this paradigm is the novel structure of

the information processing system. It is composed of a large number of highly interconnected

processing elements (neurons) working in unison to solve specific Problems. ANNs, like

people, learn by example. An ANN is configured for a specific application, such as pattern

recognition or data classification, through a learning process. Learning in biological systems

involves adjustments to the synaptic connections that exist between the neurons. This is true

of ANNs as well.

• Definition: 

A neural network is a massively parallel-distributed processor made up of simple

processing units, which has neural propensity for storing experiential knowledge making it

available for use. It resembles the brain in two respects:
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I .The network from its environment through a learning process acquires knowledge.

2.lnterneuron connection strength, known as synaptic weights, is used to store the acquired

knowledge.

A neural network is a massively parallel-distributed processor that has a natural propensity

for storing experiential knowledge and making it available for use.

It resembles the brain in two respects:

I .Knowledge is acquired by the network through a learning process.

2.Interneuron connection strengths known as synaptic weights are used to store

the knowledge.

2.6 Neural Networks, Traditional Computing and Expert Systems 

Neural networks offer a different way to analyze data, and to recognize pauerns within that

data, than traditional computing methods. However, they are not a solution for all computing

problems. Traditional computing methods work well for problems that can be well

characterized. Balancing checkbooks, keeping ledgers, and keeping tabs of inventory are well

defined and do not require the special characteristics of neural networks. Table L. J identifies

the basic differences between the two computing approaches.

• Traditional computers are ideal for many applications. They can process data,

track inventories, network results, and protect equipment. These applications do

not need the special characteristics of neural networks.

• Expert systems are an extension of traditional computing and are sometimes

called the fifth generation of computing. (First generation computing used

switches and wires. The second generation occurred because of the development

of the transistor. The third generation involved solid-state technology, the use of

integrated circuits, and higher level languages like COBOL, FORTRAN, and

"C". End user tools, "code generators," are known as the fourth gcnera.ion.) The

fifth generation involves artificial intelligence.
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Table 2.1. Comparison of Computing Approaches.

ı CHARACTERISTICS 
TRADITIONAL 
COMPUTING 

(including Expert Systems) 

ARTIFICIAL NEURAL 
NETWORKS 

Processing style
Functions

. Sequential
l Logically (left brained)
i via Rules Concepts
Calculations
Memory and Processing
elements separate

ı Cycle time in nanosecond
;

Parallel
Gestault (right brained)

: via Images
' Pictures
, Controls

Memory and Processing
I elements are collected
r Cycle time in milliSec.

Learning Method
; Applications

, By rules (didactically)
• Accounting
, Word Processing
· Math inventory
, Digital Communications

By example (Socratically)
Sensor Processing
Speech Recognition
Pattern Recognition

: Text Recognition

Typically, an expert system consists of two parts, an inference engine and a knowledge

base. The inference engine is generic. It handles the user interface, external files, program

access, and scheduling. The knowledge base contains the information that is specific to a

particular problem. This knowledge base allows an expert to define the rules which govern a

process. This expert does not have to understand traditional programming. Thul person siıııply

has to understand both what he wants a computer to do and how the mechanism of the expert

system shell works. It is this shell, paıt of the inference engine that actually tells the computer

how to implement the expert's desires. This implementation occurs by the expert system

generating the computer's programming itself; it does that through "programming" of its own.

This programming is needed to establish the rules for a particular application. This method of

establishing rules is also complex and does require a detail oriented person. Efforts to make

expert systems general have run into a number of problems. As the complexity of the system

increases, the system simply demands too much computing resources and becomes too slow.

Expert systems have been found to be feasible only when narrowly confined.

Artificial neural networks offer a completely different approach to problem solving and

they are sometimes called the sixth generation of computing. They try to provide a tool that
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both programs itself and learns on its own. Neural networks are structured to provide the

capability to solve problems without the benefits of an expert and without the need of

programming. They can seek patterns in data that no one knows are there.

2.7 Structure and processing of Artificial Neurons 

A neural network is a computational structure inspired by the study of biological neural

processing. There are many different types of neural networks, from relatively simple to very

complex, just as there are many theories on how biological neural processing works. We will

begin with a discussion of a layered feed-forward type of neural network.

A layered feed-forward neural network has layers, or subgroups of processing elements. ı~

layer of processing elements makes independent computations on data that it receives and

passes the results to another layer. The next layer may in turn make its independent

computations and pass on the results to yet another layer. Finally, a subgroup of one or more

processing elements determines the output from the network. Each processing element makes

its computation based upon a weighted sum of its inputs. The first layer is the input layer and

the last the output layer. The layers that are placed between the first and the last layers are the

hidden layers. The processing elements are seen as units that are similar to the neurons in a

human brain, and hence, they are referred to as cells, neuromimes, or artificial neurons. A

threshold function is sometimes used to qualify the output of a neuron in the output layer.

Even though our subject matter deals with artificial neurons, we will simply refer to them as

neurons. Synapses between neurons are referred to as connections, which are represented by

edges of a directed graph in which the nodes are the artificial neurons.

Figure 2.1 O is a layered feed-forward neural network. The circular nodes represent

neurons. Bere there are three layers, an input layer, a hidden layer, and an output layer. The

directed graph mentioned shows the connections from nodes from a given layer to other

nodes in other layers.
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Figure 2.10. A typical neural network

• Output of a Neuron 

Basically, the internal activation or raw output of a neuron in a neural network is a

weighted sum of its inputs, but a threshold function is also used to determine the final

value, or the output. When the output is 1, the neuron is said to fire, and when it is O, the

neuron is considered not to have fired. When a threshold :function is used, different results

of activations, all in the same interval of values, can cause the same final output value.

This situation helps in the sense that, if precise input causes an activation of 9 and noisy

input causes an activation of 10, then the output works out the same as if noise is filtered

out.

• Weights 

The weights used on the connections between different layers have much significance

in the working of the neural network and the characterization of a network. The following

actions are possible in a neural network:

Start with one set of weights and run the network. (NO TRAINING)

40



Start with one set of weights, run the network, and modify some or al I the weights, and

run the network again with the new set of weights. Repeat this process until some

predetermined goal is met. (TRAINING)

• Training 

Since the output(s) may not be what is expected, the weights may need tu be altered.

Some rule then needs to be used to determine how to alter the weights. There should also

be a criterion to specify when the process of successive modification of weights ceases.

This process of changing the weights, or rather, updating the weights, is called training. A

network in which learning is employed is said to be subjected to training. Training is an

external process or regimen. Learning is the desired process that takes place internal lo the

network.

• Feedback 

If you wish to train a network so it can recognize or identify some predeıerrnineu

patterns, or evaluate some function values for given arguments, it would be importauı to

have information fed back from the output neurons to neurons in some layer before that,

to enable further processing and adjustment of weights on the connections. Such feedback

can be to the input layer or a layer between the input layer and the output layer,

sometimes labeled the hidden layer. What is fed back is usually the error in the output,

modified appropriately according to some useful paradigm. The process of feedback

continues through the subsequent cycles of operation of the neural network and ceases

when the training is completed.

2.8 Supervised or Unsupervised Learning 

A network can be subject to supervised or unsupervised learning. The learning would be

supervised if external criteria are used and matched by the network output, and if not, the

learning is unsupervised. This is one broad way to divide different neural network

approaches. Unsupervised approaches are also termed self-organizing. There ıs more

interaction between neurons, typically with feedback: and intralayer connections between

neurons promoting self-organization.
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Supervised networks are a little more straightforward to conceptualize than unsupervised

networks. You apply the inputs to the supervised network along with an expected response,

much like the Pavlovian conditioned stimulus and response regimen. You mold the network

with stimulus-response pairs. A stock market forecaster may present economic data (the

stimulus) along with metrics of stock market performance (the response) to the neural

network to the present and attempt to predict the future once training is complete.

We provide unsupervised networks with only stimulus. We may, for example, want an

unsupervised network to correctly classify parts from a conveyor belt into part numbers,

providing an image of each part to do the classification (the stimulus). The unsupervised

network in this case would act like a look-up memory that is indexed by its contents, or a

Content-Addressable-Memory (CAM).

2.9 Neural Network Construction 
There are three aspects to the construction of a neural network:

1. Structure-the architecture and topology of the neural network

2. Encoding-the method of changing weights

3. Recall-the method and capacity to retrieve information

Let's cover the first one-structure. This relates to how many layers the network should

contain, and what their functions are, such as for input, for output, or for feature extraction.

Structure also encompasses how interconnections are made between neurons in the network,

and what their functions are. The second aspect is encoding. Encoding refers to the paradigm

used for the determination of and changing of weights on the connections between neurons.

In the case of the multilayer feed-forward neural network, you initially can define weights by

randomization. Subsequently, in the process of training, you can use the backpropagaıion

algorithm, which is a means of updating weights starting from the output backwards. When

you have finished training the multilayer feed-forward neural network, you are finished with

encoding since weights do not change after training is completed.

Finally, recall is also an important aspect of a neural network. Recall refers to getting an

expected output for a given input. lf the same input as before is presented to the network, the

same corresponding output as before should result. The type of recall can characterize the

network as being autoassociative or heteroassociative. Autoassociation is the phenomenon of

associating an input vector with itself as the output, whereas heteroassociation is that of

recalling a related vector given an input vector. You have a fuzzy remembrance of a phone
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number. Luckily, you stored it in an autoassociative neural network. When you apply the

fuzzy remembrance, you retrieve the actual phone number. This is a use of autoassociatiorı.

Now if you want the individual's name associated with a given phone number, that would

require lıeteroassociation.

The three aspects to the construction of a neural network mentioned above essentially

distinguish between different neural networks and are part of their design process.

2.10 Sample Applications 

One application for a neural network is pattern classification, or pattern matching. The

patterns can be represented by binary digits in the discrete cases, or real numbers representing

analog signals in continuous cases. Pattern classification is a form of establishing an

autoassociation or heteroassociation. Recall that associating different patterns is building the

type of association called lıeteroassociation. If you input a corrupted or modified pattern A to

the neural network, and receive the true pattern A, this is termed auıoassociation. What use

does this provide? In the human brain example, say you want to recall a face in a crowd and

you have a hazy remembrance (input). What you want is the actual image. Autoassociation,

then, is useful in recognizing or retrieving patterns with possibly incomplete information as

input. What about heteroassociation? Here you associate A with B. Given A, you get B and

sometimes vice versa. You could store the face of a person and retrieve it with the person's

name, for example. Tt's quite common in real circumstances to do the opposite, and

sometimes not so well. You recall the face of a person, but can't place the name.

2.11 Example-A Feed-Forward Network 

A sample feed-forward network, as shown in Figure 2.11, has five neurons arranged in

three layers: two neurons (labeled x. and x2) in layer 1, two neurons (labeled x, and x4) in

layer 2, and one neuron (labeled x5) in layer 3. There are arrows connecting the neurons

together. This is the direction of information flow. A feed-forward network has information

flowing forward only. Each arrow that connects neurons has a weight associated with it (like,

w 31 for example). You calculate the state, x, of each neuron by summing the weighted val ues

that flow into a neuron. The state of the neuron is the output value of the neuron and remains

the same until the neuron receives new information on its inputs.
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Figure 2.11. A feed-forward neural network with topology 2-2-l.

For example, for X3 and xs:

X3 = W32 X2 + W31 XI

The training algorithms for the feed-forward network called Backpropagation. Note that

present information to this network at the leftmost nodes (layer 1) called the input layer. we

can take information from any other layer in the network, but in most cases do so from the

rightmost node(s), which make up the output layer. Weights are usually determined by a

supervised training algorithm, where you present examples to the network and adjust weights

appropriately to achieve a desired response. Once you have completed training, you can use

the network without changing weights, and note the response for inputs that you apply. Note

that a detail not yet shown is a nonlinear scaling function that limits the range of the weighted

sum. This scaling function has the effect of clipping very large values iu positive and

negative directions for each neuron so that the cumulative summing that occurs across the

network stays within reasonable bounds. Typical real number ranges for neuron inputs and

outputs are -1 to + 1 or O to + 1. Now let us contrast this neural network with a completely

different type of neural network, the Hopfield network, and present some simple applications

for the Hopfield network.
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2.12 Example--A Hopfıeld Network

The neural network we present is a Hopfield network, with a single layer. We place, in

this layer, four neurons, each connected to the rest, as sh:own in Figure 2. 12. Some of the

connections have a positive weight, and the rest have a negative weight. The network will be
I 

presented with two input patterns, one at a time, and it is supposed to recall them. The inputs
I 

would be binary patterns having in each component a O or 1. If two patterns of equal length

are given and are treated as vectors, their dot product; is obtained by first multiplying
I 

corresponding components together and then adding these products. Two vectors are said to
! 

be orthogonal, if their dot product is O. The mathematics involved in computations done for
I 

neural networks include matrix multiplication, transpose i of a matrix, and transpose of a
I 

vector. The inputs (which are stable, stored patterns) to be given should be orthogonal to one

another.

' · 1 I \,:t·,. ! 

I 

Figure 2.12. Layout of a Hopfıeld network.
!

The two patterns we want the network to recall are A= (1, Q, 1, O) and B = (O, 1, O, 1 ), which
i 

you can verify to be orthogonal. Recall that two vectors A land B are orthogonal if their do
I 

product is equal to zero. This is true in this case since

A1B1 + A2 B2 + A3B3 + A4B4 = (lxü + Oxl + lxü + Ox1) 'i° O
I 

The following matrix W gives the weights on the connections in the network.
I 

o -3 3 -3 
-3 o -3 3 

w = 3 -3 o -3 
-3 3 -3 o
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We need a threshold function also, and we define it as follows. The threshold value [theta] is

O. 

I ift >= [theta]

f(t) = { 

O ift < [theta]

We have four neurons in the only layer in this network. We need to compute the activation

of each neuron as the weighted sum of its inputs. The activation at the first node is the dot

product of the input vector and the first column of the weight matrix (O -3 3 -3). We get the

activation at the other nodes similarly. The output of a neuron is then calculated by evaluating

the threshold function at the activation of the neuron. So if we present the input vector A, the

dot product works out to 3 and f(J) = 1. Similarly, we get the dot products of the second,

third, and fourth nodes to be -6, 3, and -6, respectively. The corresponding outputs therefore

are O, l, and O. This means that the output of the network is the vector (l, O, 1, O), same as the

input pattern. The network has recalled the pattern as presented, or we can say that pattern A

is stable, since the output is equal to the input. When B is presented, the dot product obtained

at tlie first node is -6 and the output is O. The outputs for the rest of the nodes taken together

with the output of the first node; gives (O, 1, O, 1), which means that the network has stable

recall for B also. So far we have presented easy cases to the network-vectors that the

Hopfield network was specifically designed (through the choice of the weight matrix) to

recall. What will the network give as output if we present a pattern different from both A and

B? Let C = (O, I, O, O) be presented to the network. The activations would be -3, O, -3, 3,

making the outputs O, 1, O, 1, which means that B achieves stable recall. This is quite

interesting. Suppose we did intend to input B and we made a slight error and ended up

presenting C, instead. The network did what we wanted and recalled B. But why not A? To

answer this, let us ask is C closer to A or B? How do we compare? We use tlı~ distance

formula for two four-dimensional points. If (a, b, c, d) and (e, f, g, h) are two four­
dimensional points, the distance between them is:

[radic][(a - e)2 + (b - f)2 + (c - g)2 + (d - h)2]
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The distance between A and C is [radic ]3, whereas the distance between B and C is just 1. So

since B is closer in this sense, B was recalled rather than A. verify that if we do the same

exercise with J) = (O, O, 1, O), note that the network recalls A, which is closer than B to D. 

? .13 Example-Hopfield Network through a bipolar vector

An application of Kohonen's feature map for pattern recognition. Here we give an

example of pattern association using a Hopfıeld network. The patterns are some characters. A 

pattern representing a character becomes an input to a Hopfıeld network through a bipolar

vector. This bipolar vector is generated from the pixel (picture element) grid for the character,

with an assignment of a 1 to a black pixel and a -1 to a pixel that is white. A grid size such as

5x7 or higher is usually employed in these approaches. The number of pixels involved will

then be 35 or more, which determines the dimension of a bipolar vector for the character

pattern.

We will use, for simplicity, a 3x3 grid for character patterns in our example. This means

the Hopfield network has 9 neurons in the only layer in the network. Again for simplicity, we

use two exemplar patterns, or reference patterns, which arc given in Figure 2.13. Consider the

pattern on the left as a representation of the character "plus", +, and the one on the right that

of"ıninus", - .

LJIID--· n•o
DOD ••• onn

Figure 2.13. The "plus" pattern and "minus" pattern.

The bipolar vectors that represent the characters in the figure, reading the character pixel

patterns row by row, left to right, and top to bottom, with a l for black and -1 for white pixels,

are C+ = (-1, I, -1, l, l, 1, -1, 1, -1), and C- = (-1, -1, -1, I, I, l, -1, -J, -1). The weight matrix

Wis:
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o o 2 -2 -2 -2 2 o 2 
o o o o o o o 2 o
2 o O -2 -2 -2 2 o 2 
2 O -2 o 2 2 -2 O -2 

W= 2 O -2 2 o 2 -2 O -2 
2 O -2 2 2 O --2 O -2 
2 o 2 -2 -2 -2 o o 2 
o 2 o o o o o o o
2 o 2 -2 -2 -2 2 o o

The activations with input C+ are given by the vector (-12, 2, -12, 12, 12, 12, -12, 2, -12).

With input C-, the activations vector is (-12, -2, -12, 12, 12, 12, -12, -2, -12).

When this Hopfield network uses the threshold function

ifx >= O

f(x) = { 

- l if X [le] Ü 

the corresponding outputs will be C+ and C-, respectively, showing the stable recall of the

exemplar vectors, and establishing an autoassociation for them. When the output vectors are

used to construct the corresponding characters, you get the original character patterns.

Let us now input the character pattern in Figure 2.14

DD
•• ODD

Figure 2.14. Corrupted "minus" pattern

We will call the corresponding bipolar vector A= (1, -1, -1, 1, 1, 1, -1, -1, -1). You get the

activation vector (-12, -2, -8, 4, 4, 4, -8, -2, -8) giving the output vector, C- = (-1, -1, -1, l, l,

1, - l, -1, -1 ). In other words, the character -, corrupted slightly, is recalled as the character -

by the I-Iop:fıeld network. The intended pattern is recognized.

We now input a bipolar vector that is different from the vectors corresponding to the

exemplars, and see whether the network can store the corresponding pattern. The vector we

choose is H = (1, -1, 1, -1, -1, -1, 1, -1, 1). The corresponding neuron activations are given by
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the vector ( 12, -2, 12, -4, -4, -4, 12, -2, 12) which causes the output to be the vector (1, -1, 1, - 

J, -1, -1, l , -1, l ), same as B. An additional pattern, which is a 3x3 grid with only the corner

pixels black, as shown in Figure 2.15, is also recalled since it is autoassociated, by this

Hopfield network

•o 
ODD 
D 

Figure 2.15. Pattern result

If we, omit part of the pattern in Figure 2.15, leaving only the top corners black, as in 

"'Figure 2.16, we get the bipolar vector D = (l, -1, 1, -1, -l, -1, -1, -1, -1). You can consider

this also as an incomplete or corrupted version of the pattern in Figure 2.15. The network

activations turn out to be (4, -2, 4, -4, -4, -4, 8, -2, 8) and give the output (l, -1, 1, -1, -1, -1, 1,

-1, 1), which is B.

D 
ODD 
DOD 

Figure 2.16. A partly Jost Pattern of Figure 2.15.
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2.14 Advantage and Disadvantage of Neural Networks

\ rti (icia I Neural Networks has several advantages and disadvantages. Because A.N.N. is

similar to B.N.N, if parts of the network are damaged, it can still carry on its works. Another

advantage is it ability to learn from limited sets of examples. However, unlike traditional

program, it part'> of the program are damaged, it could no longer function. Furthermore, the

same neural network can be used for several programs without any modification.

The speed of the A.N.N. can be both its advantage and disadvantage. Depending on the lev

of AJ required, a network with a larger input, hidden, and output layers may be required. If

the computer is not fast enough to process the information, a tremendous amount of time may

be required to process a simple question. The complexity of the network is considered to be

its disadvantage because you do not know whether the network has "cheated" or not. Because

a neural network can memorize and recognize patterns, it is almost impossible to find out how

the network comes up with its answers. This is also known as a black box model. For

example, you can provide a neural network with several pictures of a person and ask it to

recognize him/her. Due to the problem just described, it is essential test network after its

training by introducing it to other inputs that network has never experienced.

2.15 Summary
In this chapter we introduced a neural network as a collection of processing elements

distributed over a finite number of layers and interconnected with positive or negative

weights, depending on whether cooperation or competition (or inhibition) is intended. The

activation of a neuron is basically a weighted sum of its inputs. A threshold function

determines the output of the network. There may be layers of neurons in between the input

layer and the output layer, and some such middle layers are referred to as hidden layers,

others by names such as Grossberg or Kobonen layers, named after the researchers Stephen

Grossberg and Teuvo Kohoneıı, who proposed them and their function. Modification of the

weights is the process of training the network, and a network subject to this process is said to

be learning during that phase of the operation of the network. In some network operations, a

feedback operation is used in which the current output is treated as modified input to the same

network.

A couple of examples of a Hopfield network, one of them for pattern recognition.
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~~~.·· C:, '\ 'l'5'~
Neural networks can be used for problems that can't be solved with a known formula and-for '.)

recognition problems.

problems with incomplete or noisy data. Neural networks seem to have the capacity to
'

recognize patterns in the data presented to it, and are thus useful in many types of pattern".
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CHAPTER THREE

PATTERN RECOGNITION WITH SUPERVISED LEARNING

3 1 Overview
In this chapter, l will describe my application of Pattern recognition using Neural Network

Back propagation technique. This process starts with training, defining an error measure, and

the flow chart of the back propagation. Then describe the source code of the application. Two

data files test.dat which have the test patterns and learn.dat which have the target patterns also

given in this chapter. At the end, the application layout and the procedure that how to use this

application is also explained.

3.2 Training with Back Propagation

To begin discussion of training the network we must first recognize the need for a

measure of how close the network has come to an established desired value. This measure is

the network error. Since we are dealing with supervised training, the desired value is known

to us for the given training set. The proper selection of a training set will be a crucial factor in

· any successful network application. The training set must be of an appropriate size and it must

be reasonably well representative of the problem space. For now we assume that such a

training set exists so we may interrogate how to use it to train a network.

3.2.1 Defining an error measure

Typically for the back propagation (Rumelhart et al., 1986)[18] training algorithm, an

error measure known as the mean square error is used. This is in fact not a requirement. Any

continuously differentiable error function can be used, but the choice of another error function

does add additional complexity and should be approached with a certain amount of caution.

Whatever function is chosen for the error function must provide a meaningful measure of the

"distance" between desired and actual outputs of the network. The mean square error is

defined as follows:

(3.1)
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Where Er is the error for the ptıı presentation vector; t11j is the desired value for the)" output

neuron (i.e., the training set value); and oııj is the actual output of thej" output neuron.

Each term in the sum is the error contribution of a single output neuron. By taking the

square of the absolute error, the difference between desired and actual, we cause outputs that

are distant from the desired value to contribute most strongly to the total error. Increasing the

exponent, if we chose to do what, would augment this effect.

Back propagation is one of the simpler members of a family of training algorithms

collectively termed gradient descent. The idea is to minim ize the network total error by

adjusting the weights. Gradient descent, sometimes known as the method of steepest descent,

provides a means of doing this. Each weight may be thought of as a dimension in an N­

dimensional error space. ln error space the weights act as independent variables and the shape

of the corresponding error surface is determined by the error function in combination with the

training set.

The negative gradient of the error function with respect to the weights then points in the

. direction which will most quickly reduce the error function. lf we move along this vector in

weight space, we will ultimately reach a minimum at which the gradient becomes zero.

Unfortunately this may be a local minimum, Figure 3.1 illustrates the operation of the gradient

in the context of a two-dimensional cross section of the error space.

Global
Minima

Figure 3.1. Surface gradient diagram
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We can express the above observations mathematically as:

(3.2)

The term, L'ı/Jiı;, designates the change in the weight connecting a source neuron, i, in layer

L-1 and a destination neuron,), in layer L. This change in the weight results in a step in the

weight space (Figure 3.1) toward lower error.

The objective is to determine how we must adjust each weight to achieve convergence for

the network. Equation 3.2 states that the change in each weight 1-ıı;i will be along the negative

gradient leading to a steepest descent along the local error surface.

The task now is to convert equation 3.2 into a difference equation suitable for use in a

computer implementation. To accomplish this evaluate the partial derivative, ôE/ôw;i· begin

by applying the chain rule:

(3.3)

However, we know that net, is given by:

net,,1 =: L ı1ı·1,0pı

I
(3.4)

Where the sum in equation 3.4 is taken over the output, Opı, of all neurons in the L-1 layer.

We may therefore evaluate ônetp/ôwi;, the second term in equation 3.3, as follows

dnelı>f :;;~ L,wJIOırl
awji chv ji J -

(3.5)

By expanding equation 3.5 we obtain:

dnet . a (~ o ' o ):- o:.......:JL = ~-ı. 4'. wJI' pr+ w/i rıı , - ,,,
dWji dWµ f;.i _

(3.6)

Substituting equation 3.6 into equation 3.3 we obtain:

(3. 7)
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Now we define the en-or signal <\ as:

;JFL
s !'} == - a;;; t ,,1 (3.8)

By combining equations 3.7 and 3.8 we have:

_ ~Ep = Bf!İo,,ı
jw,,.o ıı

(3. 9)

We may rewrite equation 3.2 by substituting equation 3.9 and supplying a constant of
proportionality, ıı.

(3.10)

The constant ıı is known as the learning rate. As its name implies, it governs the distance
traveled in the direction of the negative gradient when a step in weight space is taken.

In order to achieve a usable difference equation, the task of evaluation 8Pi still remains.
Once again we must apply the chain rule:

&E aE ao,S .. =- -L =- .:...::J!_ ..:........£!.
l'l onet . ao ' anet '

PJ Pl 1'1

(3.11)

Now recal I that the output OPi is directly a :functionof net, as follows:

of}~- t(net,,J (3.12)

so - '(· :t .).t.:«: ""'f ne PJ.

anetp/
(3.13)

where./() is the squashing function.

To evaluate 8Ep/80pj (the first term of equation 3.11), we must consider two cases
individually:

l. The destination neuron) is an output neuron.

2. The destination neuron) is a hidden layer neuron.

For a destination neuron j in the output layer we have direct access to the error Ep as <1.

function of Or.i· Therefore we write:

(3.14)
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With equation 3. J 4 we have specialized the algorithm to the specific error function. An

alternate choice of error function will lead to a different difference equation. Substituting

equations 3.13 and 3.14 into equation 3.11 we may now write c\ (for destination neurons in

the output layer) as:

s ,,.ı = ( t.,,, - O,.1 ) l' (net r.J) (3.15)

For destination neurons that reside in hidden layers we cannot differentiate the error

function directly. Therefore we must once again apply tbe chain rule to obtain

(3.16)

In equation 3. 16 the sum k is over all neurons in the L + l layer. Recalling the definition of

netıık> we may evaluate the second factor in equation 3.16 as follows:

(3.17)

Substituting equation 3.17 back into equation 3.16 yields:

(3.18)

Now we have it by definition that:

iJE,,
ô -p ····· .·

pt - ,dnet,,.ı: (3.19)

Substituting equation 3.19 into equation 3.18 yields:

iJE r··__ P = Ôao ..ı pl: wl:J 
pi tl

(3.20)
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Finally combining equation 3.1 l , 3.13, and 3.20 we can represent the error signal dpj for

hidden layers as:

6 . == r(· net .)~ 6 • w,.,PJ ·. Plk P~ •ı
J;

(3.21)

To summarize the results so far, equation 3.10 provides the difference equation in terms of

Öııi· This is valid for both hidden and output layer weights. Equations 3.15 and 3.21 specify c\,j
for the output layer and hidden layer weights, respectively. Equation 3.14 particularized our

solution to the mean square error. Therefore to use an alternative error function equation 3. I 4

would require modification. To obtain a difference equation suitable for use on a digital

computer it now only remains to evaluate f (netvi). To do this we must again particularize our

solution by choosing a specific squashing function f (rıet.}. We now proceed using the

sigmoid function as follows:

1
o~} =f(nelpj)~ ı+e-r.ıeı#+i (3.22)

From equations 3.13 and 3.22 we may write/ (netPD as:

a ( ı )·f'(netrı)= ane\1 ı+.e-tt,\"4 ·• (3.23)

Evaluating the derivative in equation 3.23 leads to:

!'( t )-(. ·. +İ • ). a (t -neıpj'+(!}ne - 2 - +e .
p} ' (ı+e-nurr.ı-0) dnet.r} . .

(3.24)

Continue the evaluation off (netr) as follows:
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f'( ) l -1 J-ncı,,, ...s o ( tı). net . ;=; · 2 e -- -rıet . + .;ı
• .rı (l+ e-i'¢•rı•+$) . dnet,,j . ,,,.

( 1 x· ı )= 1 -neı,ı·'.i1! 1- I -rıcı,J To .+.e · +e

(3.25)

(3 26)

(3.27)

{3 28)

We may now express .f (netPJ in term of OPi by substituting equation 3.22 into equation
3.28. We then obtain:

(3.29)

Taken together equations 3.10, 3.15, 3.21, and 3.29 provide all that is necessary to write

the difference equation needed to implement training by back propagation on a digital

computer where the error function is the mean square error and the squashing function is the

sigmoid. As we have proceeded through this derivation we have taken pains to show the

points at which modifications would be required for alternative error or activation functions.

<

To summarize, the difference equation required for back-propagation training is

(3. 30)

Where ıı refers to the learning rate; 8Pi refers to the error signal at neuronj in layer L; and

O"; refers to the output of neuron i in layer L-1.

With the error signal, 8pj, given by:

6 ~(ı. -O .. )o .(ı-o _\ tor oetput ueurons
Pl Pl r.ı P.f PıJ

ôri = O,,1(ı - OrJ }2, 6_,,t w,Al for hidden neurons
k

(3.31)

(3.32)

Where Oııi refers to layer L; Op; refers to layer L - J; and 8ıık refers to layer L + I.
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True gnıdient descent would proceed in infinitesimal steps along the direction established

by the gradient. Since this is obviously impractical for our purposes, the learning rate, 11, is

defined (equation 3.30). It can be seen that equation 3.30 results in a finite step size in the

direction of the gradient. Here 11 is a constant which acts like a gain to determine the step size.

The idea is to choose 11 large enough to cause the network to converge quickly without

introducing overshoot and therefore oscillations. Later we will look at the conjugate gradient

technique which in effect uses the rate at which the gradient is changing to establish a step

ize. Understanding the effect of the learning rate can help to choose its value judiciously.

Even so, a certain amount of experimental tuning is generally required to optimize this

parameter.

For clarity, the application of equations 3.30, 3.31, and 3.32 is shown in Figure 3.2. In

particular, this figure is useful to clarify which layers are involved when calculating the

various components of the difference equation. The top half of the figure delineates the

training of the output layers. The bottom half depicts training in hidden layers. A cautionary

reminder is that the above difference equation is valid only for mean square error with a

sigınoidal activation function. To use alternate error or activation functions with back

propagation the difference equation must be modified as shown in the derivation.

In practice a momentum term is frequently added to equation 3.30 as an aid to more rapid

convergence in certain problem domains. The momentum takes into account the effect of past

weight changes. The momentum constant, a, determines the emphasis to place on this term.

Momentum has the effect of smoothing the error-surface in weight space by filtering out high­

frequency variations. The weights are adjusted in the presence of momentum by:

t.\w .. (n+ l) ~ 11(ö . .O .)+aAw .. (n)fl.· ·pJpJ· /I
(3. 33)
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Figure 3.2. Back-propagation interaction between layers

The momentum term is but the first of several departures from what might be described as

pure gradient descent that is intended to augment the algorithm with respect to its ability to

converge more rapidly. At this point we remark that there is much in back propagation and its

variations that are .largelyempirical.
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3.3 Back-Propagation flow chart

The overall process of back-propagation learning including both the forward and

backward pass is presented in Figure 3.2 above. To apply the back-propagation algorithm the

network weights must first be initialized to small random values. It is important to make the

initial weights "small". Choosing initial weights too large will make the network unattainable.

After initialization, training set vectors are then applied to the network. Running the network

forward will yield a set of actual values. Back propagation can then be utilized to establish 8

new set of weights. The total error should decrease over the course of much such iteration. If

it does not, an adjustment to the training parameters, a and TJ, may be required. (Contradictory

data, a training vector duplicated with an oppositely sensed desired value, will inhibit the

network ability to converge irrespective of training parameter. In the event that extreme

difficulty is encountered, verification of the training data set can prove to be worthwhile.)
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Figure 3.3. Back-propagation flow chart

One full presentation of all the vectors in the training set is termed an epoch. When the

weights approach values such that the total network error, over a full epoch, falls below a

preestabl islıed threshold, the network is said to have converged. The error does not fall
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necessarily uniformly. Local fluctuations in the total network error are normal and expected,

especially early in the training cycle. It is useful to look at error profiles as a function of

iteration to gain insight into the convergence. Figure 3.4 shown below illustrates convergence

behavior during a typical training cycle .

.,...- Won;t En,or
0.8 

~ 0,6'i--

~
Average Error

Figure 3.4. Back-propagation convergence curves. The worst error is the maximum error over

a full epoch. The average error is the average over a full epoch.

3.4 Code implementing using C++

Now we will look at the C++ code implementing back propagation. The representation of

the network in this code is much more basic. This simplicity will allow us to focus on the

subject at hand, training with back propagation. The program source code listing is shown in

APPENDIX A on page 72.

3.5 Data Files

In our program there are two dat files one is know as target file (Learn.dat), this file is

consists of different patterns that are ]-9 digits and a Jetter "A". All patterns are made using

the 5 X 7 matrix. These patterns are learnt to the program and after learning we want to check

this network. For this purpose we made a fıle(Test.dat) this file is also consists of patterns 1-9

cınd a letter "A" but these all patterns are uncompleted patterns we can say them noisy

patterns. Now we check our network efficiency using this test file.
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• File Learn.dat
This file have the target patterns of 1-9 and letter "A"

O O 1 O O o l l 1 O O 1 l I o
o ] l o o 1 O O O 1 1 O O O 1 
o o l o o O O O O 1 O O O O 1 
O O 1 O O O O 1 1 o o o l 1 o 
o o l o o O 1 l o o o o o o l
o o ı o o l o o o o J o o o l
o J ı ı o l ] 1 1 1 o ı 1 1 o 

"1" "2" "3"

O 1 O l o 1 1 l l 1 o o o l o 
o l o J o 1 O O O O O O 1 O O 
O 1 O 1 O 1 1 1 1 O o ] o o o 
o l 1 1 O o o o o l o ] ı ı o 
o o o l o O O O O 1 o l o o l
o o o l o l o o o l O 1 O O l 
o o o l o O 1 l 1 O o o l 1 O 

"4" "5" "6"

O I l 1 l O O 1 1 O o o ] 1 O 
O O O O I O 1 O O 1 O l O O 1 
O O O I O O 1 O O 1 O I o o l
O O 1 O O O O 1 1 O O O 1 1 l
o o I o o O 1 O O 1 O O O O 1 'f
o o l o o O 1 O O 1 o o o l o 4

o o l o o O O I 1 O o o ] o o 
"7" "8" "9"

o o l o o 
O 1 O 1 O 
1 O O O 1 
1 l l l l
l o o o 

O O O 1 
o o o l
"A"
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• File Test.dat
This file has test patterns which are noisy patterns to check the trained
Network.

o o ] o o o o o o o I o l I o 
o 1 1 o o 1 O O O 1 o o o o ı
o o l o o o o o o l O O O O 1 

O O 1 O O o o l l o l o 1 1 O 

o o ] o o O 1 1 O O o o o o l

O 1 l I O I O O O O O O O O 1 

o o l o o l l 1 1 1 l o l 1 o 
"Noisy 1" "Noisy 2" "Noisy 3"

o l O 1 O 1 l 1 1 l O O O 1 o 
o 1 O l O o o o o o o o o o o 
O 1 O 1 O 1 l 1 1 O o o o o o 
o 1 1 l o O O 1 O 1 o J 1 1 O 

o o o l o O O O 1 1 o ı o o ] 
o o o l o 1 O O O J O l O O 1 

o o o l o O 1 1 1 O o o l l o 
"Noisy 4" "Noisy 5" "Noisy 6"

o l 1 1 1 O O 1 1 1 o o I I o 
o o o o I O 1 O O J o l l I l

O O O 1 O l 1 O O 1 o l l 1
o ] ] 1 o O O 1 1 o o o ] 1 l 

o o l o o o o o o l o o o o l

O O I o o o l o o l o o o l o 
O O 1 O O O O 1 1 O O O 1 O O 

"Noisy 7" "Noisy 8" "Noisy 9"

o o l o o 
O 1 O 1 O 
1 O O O 1 
l o o o J
l o o o l
1 O O O 1 
1 O O O 
"Noisy A"
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lr\p\J1 Oı.ıtput

Figure 3.5. Character bit map "A" feeding into network

3.6 Software operating procedure

This software is limited to the ten different patterns 1-9 and a letter 'A'. It requires two data

files, learn.dat for the numbers to learn and test.dat for testing. Both files get read on startup,

and stored in arrays so you can browse them graphically without doing and training or testing.

To look at the data it will learn and test, use the spin buttons under the "Training" and

"Classify" buttons (Figure 3.6) to browse through the testing buttons. Now, to train the

perceptrons to recognize the data, merely click on "Train" and the learning process will start.

With the data set provide with the program, the iterations should not really get much higher

than 20. As a safe-guard, the program will time-out after 500 iterations, we can also change

the data files.
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-----------------------
(ji~nı:ı-ating noby •.:ıta.-,
Lear~iııg...
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ıtı,ıııtions: --· CHn '". -------14 J

~ı,-·-·----~: ;
' '' '' '' ': :
' 'J_. - -- - -- ~

Trni~ J ID<IT J
-----·------

---------------

Figure 3.6. Layout of the application software

C' When learning has finished, the "Classify" button will enable. To then test what has been

learnt, use the spin buttons under the "Classify" button to select a data entry that you would

like to test. Press "Classify", and the program will write what it thinks the number is

underneath. Note: l supplied a test set that produces very good results - with one exception.

Try testing the '3' a few times, and you will find the perceptron will occasionally think it's an

eight.

The program is VERY easy to expand if you want too (even without understand the code).

All you will need to do is change the NN_NUMBERS define clause (in OCRDlg.h) and

change the data tests. You might also want to edit the "GetText" function to return the

necessary results.
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3.6 Results

The convergence criteria require that the mean square for all patterns be less than the error

tolerance over a full epoch. For now a simple and intuitive metric is the accuracy. I achieved

recognition rates of I 00% on the training set and 84.3% on the test set.

Accuracy = Nun1be~ .of corre<:t ~lassifica~o~s
Total number of patterns

(3. 33)

3.6 Summary

The chapter is about the application of pattern recognition using neural network back

propagation technique which is a supervised learning. lt provides the training of back

propagation and the problem of the error measure solved in detail. A flowchart of the network

and the implementation using the C++ programming language is also explained. There are

two data files use in the program one is target file consist of I O different patterns. These

patterns are given to the network and after learning the network accuracy can be tested using

the test.dat file. This test set produces very good results. Try testing the '3' a few times, and

, you will find the perceptron will occasionally think it's an eight. The successful results of the

trained network are more than 80%.
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CONCLUSION

lıı this project I have tried to give an overview of the Pattern Recognition System using

neural networks. Jt's a big topic and there are many details missing but I believe, however,

that] gave the general flavor of Pattern Recognition and the philosophy behind its design.

In pattern recognition, one is interested in techniques to capture the human ability to

recognise and classify patterns. The basic assumption in this field is that examples can be

characterised (uniquely) by a set of (relevant) measurements, called features. After measuring

those particular features, a sample can be classified by inspecting the measured feature values.

Pattern classification systems are two types superevised and unsupervised. There are three

approaches of pattern recognition systm; Statistical, Syntactic or structural and artificial

neural networks.

Jntroduced a neural network as a collection of processing elements distributed over a

finite number of layers and interconnected with positive or negative weights, depending on

whether cooperation or competition (or inhibition) is intended. The activation of a neuron is

basically a weighted sum of its inputs. A threshold function determines the output of the

network. There may be layers of neurons in between the input layer and the output layer, and

some such nı idd le layers are referred to as hidden layers, others by names such as Grossberg

or Ko hon en layers, named after the researchers Stephen.

Back Propagation technique which is a supervised learning is the one of the best

technique to train the network. In my application I used this technique and trained my

' network with a data file learn.dat. That file has ten different patterns after training I check the

trained network with tesı.dat. I got successful results, the recognition rates of 100% on the

training set and 84.3% on the test set. This concludes that it is so effective and accurate. It has

many advantages and benefits, It solved lot of things seem to be easy.
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APPENDIX A

II OurDlg.cpp : implementation file

#include "stdafx.h"
#include "Onr.h"
#include "OıırDlg.h"

#include <fstream.h>
#include <tiıne.h>
#include <stdlib.h>

#ifdef DEBUG
#define new DEBUG NEW
#undefTHIS FILE
static char THIS_FILE[] = _FILE_;
#enclif

I I I I I II I I I II I I III II I I I I I I I I I I I I I I I I II I I I I II I IllI I I I II I I I I I I Ill I II II I I II II I I I I
II CAboutDlg dialog used for App About
#include "l-lyperlink.h''
class CAboutDlg : public CDialog
{
public:

CAboutDlg();
II Dialog Data

II { { AFX_DATA(CAboutDlg)
enum { I DD = IDD_ABOUTBOX } ;
CHyperLink m_hLiıık;
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDXIDDV support
II} }AFX_VlRTUAL

II Implementation
protected:

II { {A FX_MSG(CAboutDlg)
virtual BOOL OnJnitDialog();
II} }AFX_MSG
DECLARE_MESSAGE_MAP()

} ;
CAboutDlg::CAboutDlg(): CDialog(CAboutDlg::IDD)
{

II{ {AFX_DATA_TNIT(CAboutDlg)
II} }AFX_DATA_lNIT

}
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void CA bou tD I g: :Do DataExchange( CDataExchan ge * pD X)

CDialog: :DoDataExchange(pDX);
//{ {AFX __DATA_MAP(CAboutDlg)
DDX_Coııtrol(pDX, JDC_LINK, m_hLink);
//} }AFX_DATA_MAP

}
BEGIN_MESSAGE _MAP(CAboutDlg, CDialog)

//{{AFX_MSG_MAP(CAboutDlg)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

BOOL CAboutDlg::OninitDialog()
{ CDialog::OnlnitDialog();

m_hLink.SetURL("c:/ıny application");
return TRUE;

//II/I// I///// II/I///I// II////////I/ I////// II// I////I/////// IIII/I/// III/////
II COnrDlg dialog

COnrDlg::COnrDlg(CWnd* pParent): CDialog(COnrDlg::IDD, pParent) {
//{ {ı\FX_DATA_INIT(COnrDlg)
//} }AFX_DATA_INJT
nı_hlcon = AfxGetApp()->Loadlcon(IDR_MAlNFRAME);

}

void COnrDlg::DoDataExchange(CDataExchange* pDX) {
CDialog::DoDataExchange(pDX);
II { { AFX_DATA_MAP(COnrDlg)
DDX_Coııtrol(pDX, IDC_TRAINSPIN, m_Trainspiıı);
DDX_Control(pDX, IDC_TESTSPIN, m_Testspin);
DDX_Control(pDX, IDC_TRAININFO, m_Trainlnfo);
DDX_Coııtrol(pDX, IDC_INFOBOX, m_cinfoBox);
DDX_Control(pDX, lDC_TESTWINDOW, m_TestWindow);
//}}AFX_ DATA_MAP

}

PRG!N_MESSAGE_MAP(COnrDlg, CDialog)
//{ {AFX_MSG_MAP(COnrDlg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGlCON()
ON_BN_CLICKED(IDC_TRAIN, OnTrain)
ON_BN_CLJCKED(JDC_CLASSIFY, OrrClassify)
ON_NOTIFY(UDN_DELTAPOS, IDC_TRAINSPIN, OnDeltaposTrainspin)
ON_NOTIFY(UDN_DELTAPOS, IDC_TESTSPIN, OnDeltaposTestspin)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()
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BOOL COnrDlg::OninitDialog() {
CDialog::OnlnitDialog();

II lDM_ABOUTBOX must be in the system command range.
ASSERT((lDM_ABOUTBOX & OxFFFO)== lDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL) {

CString strAboutMenu;
strAboutMenu. LoadString(IDS_ABOUTBOX);
if (!strAboutMenu.IsEmpty()) {

pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRlNG, IDM_ABOUTBOX,

strAboutMemı);
}

}

Setrcon(m_hlcon, TRUE); // Set big icon
Setlcon((HICON)( LoadImage(AfxGetResourceHandle(),

MAKElNTRESOURCE(IDR_MAlNFRAME), IMAGE_ICON, 16, 16, O)),
FALSE);

II Set the spin control ranges.

m_Testspin.SetRange(O,NN_NUMBERS-1);
nı_Trainspin.SetRange(O,NN_NUMBERS-1);
111 _Testspin.SetPos(O);
rn_Trainspin.SetPos(O);

II Open the necessary files.
ifstream data(" learn.dat", ios::nocreate);
ifstream test("test.dat", ios::nocreate);

II Check whether they exist.
if (!test II !data) {

MessageBox("No learning or test data present.", "Cannot run... ",
MB_OK I MB_ICONERROR);

Ii Now read them.
for(int i=O;i<NN_NUMBERS;i++) {

for(intj=O;j<NN_RESX * NN....:RESY;j++){
int onoff;
test>> onoff;
ın_bTestData[i]O] = onoff;
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data >> onoff;
m_bNuınbers[i] [j] = onoff;

}
}

II Set the initial pointer to the drawing data.

m_ipDrawNuın = &ın_bNumbers[O][O];
return true;

}
void COnrDlg::OnSysCommand(UfNT nlD, LPARAM !Param) {

if ((nlD & OxFFFO) == JDM'-ABOUTBOX) {
CAboutDlg dlgAbout;
dlgAbout.DoModal();

}
else {

CDialog::OnSysCornmand(nID, !Param);
}

}

void COnrDlg::OnPaint() {
if (Jslconic()) {

CPaintDC dc(this); II device context for painting
SendMessage(WM _ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), O);

II Center icon in client rectangle
int cxicon = GetSystemMetrics(SM CXJCON);
int cylcon = GetSystemMetrics(SM_CYlCON);
CRect rect;
GetClientRect(&rect);
int x = (rect.Width() - cxlcon + I) I 2;
int y = (rect.H.eight() - cylcon + l) I 2;

II Draw the icon
dc.Drawlcon(x, y, rn_hlcon);

} else {
CPaintDC dc(this);
CDialog: :OnPaint();

II This seems to be a rather complicated way of
II drawing a rectangle where I want it...but it
II works.
CRect rect;

111_TestWiııdow.GetClientRect( &rect);
m_TestWindow.ClientToScreen(&rect);
ScreeııToClient(&rect);
dc.FranıeRect(&rect, &CBrush(RGB(0,0,0)));
rect.DeflateRect(l, 1 );
ele.FillSolidRect(rect, RGB(255,255,255));

•
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II Now draw the number.

DrawNurnber(&dc, ın_ipDrawNum, &rect);
}

}

T-lCURSORCOnrDlg::OnQueryDraglcon() {
return (l-lCURSOR) nı_lılcon;

}

!/I/!!II////!I!I//IIIII!/II/IIIII/IIII/IIIIII//IIII/IIII/II
// "MAXfMUM SPEED" OPT[MIZATIONS CAUSE ONR TO FALLFOR
II SOME REASON. OPTIMlZATIONS ARE RE-ENABLED AFTER NN CODE
I/II/I/I/IIIIIIII///// IIIIIII/III!////IIII/IIII!I/II/III///

#pragma optimize("", off)

void COnrDlg::OnTrain() {
srand((unsigned)time(NULL));
m_clnfoBox.ResetContent();

II Seed.

II Initialize weights.

nıemset(&nı_fWeights,O,sizeof(m_fWeights));

II Now, generate some noisy data to learn from.
m_clnfoBox.lnsertString(-1, "Generating noisy data... ");
int nunı = O;
for (int i=O;i<NN_NUMBERS * NN_NOISY;i++) {

for(intj=O;j<NN_RESX * NN_RESY;j++) {
if (rand()% 100 < 7) {

m_iNoisy[i]O] = !m_bNumbers[nurn]O];
} else m_iNoisy[i]Li]= m_bNumbers[num]ü];

}
if ((fioat)(i+J)/NN_NOISY = (i+l)/NN_NOISY && i != O)

num++;
}

m_cinfoBox.JnsertString(-1, "Learning ...");

RunNet(true);

rn_Trainlnfo.SetWinclowText("Coınplete ... ");
m_clnfoBox.InsertString(-1,"Training Complete!");
GetDlgl tern(]DC_CLASSIFY)->Enable Winclow(true);

}

void COnrDlg::DrawNumber(CDC *de; int *cell, CRect *rect) {
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II Calculate areas to centre the images, I use the
II pointer to the CRect to get the offset, since we
II are drawing directly onto the dialog box.
CPoint ti;
tl.x = rect->Width()l2 - (NN_RESX* 10)/2;
tl.y = rect->Height()/2 - (NN_RESY*10)12;

II Offset all the coordinates calculated to draw
II in our rectangle. Also remember the initial x
II coordinate.
tl.Offset(rect->TopLeft());
int ix= tl.x;

II Create those little dashed red lines. More
II cosmetic than any else...
CPen pen;
if (pen.CreatePen(PS_DOT, 1, RGB(l27,0,0))) {

CPen *pOldPen = dc->Selectübject(&pen);

CPoint ptl = rect->TopLeft();
CPoint pt2 = rect->BottornRight();
dc->MoveTo(tl.x-5, tl.y-2);
dc->LineTo(tl.x+NN _RESX* 10+5, tl.y-2);
dc->MoveTo(tl.x-5, tl.y+ 1 O*NN_RESY+l);
dc->LineTo(tl.x+NN _RESX* 10+5, tl.y+ 1 O*NN_RESY+l);
dc->MoveTo(tl.x-2, tl.y-7);
dc->LineTo(tl.x-2, tl.y+NN_RESY*10+7);
dc->MoveTo(tl.x+NN _RESX* 1 O+2, tl.y-7);
dc->LineTo(tl.x+NN_RESX*10+2, tl.y+NN_RESY*l0+7);

dc->SelectObject(pOldPen);
}

II Draw the text if necessary.

CRect forınat(tl.x+ 1, tl.y+NN_RESY* l O+2,
tl.x+NN_RESX*l0-1, tl.y+NN_RESY* I 0+18);

if (rn_bDisplayString) {
CFont fnt;
if (fnt.CreatePointFont(80,"Arial")) {

CFoııt* pOldFont = dc->SelectObject(&fnt);

dc->SetTextColor(RGB(O,O,127));
dc->DrawText(rn_Str,forrnat,DT_CENTER);
dc->SelectObject(pOldFont);

}
}
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II Draw the number.
for(int i=O;i<NN_RESX*NN_RESY;i++) {

if ((*cell)== I) {
dc->Fi l lSolidRect(tl.x,tl.y, 1 O, l O,RGB(0,0,0));

}
tl.x += 1 O;
if (tl.x ==ix+ lü*NN_RESX) {

tl.x= ix;
tl.y += l O;

}
cell++·,

}
}

void COnrDlg::OnCJassify() {
int pos= (BYTE)m_Testspin.GetPos();

ın_ipDrawNum = &m_bTestData[pos][O];
In validateNuınber();

float d[NN_NUMBERS];
for(intj=O;j<NN_NUMBERS;j++) {

d[j] = O;
for(int k=O;k<NN_RESX * NN_RESY;k++) {

dü] +=0 m_l:Weights[j][k]*m_bTestData[pos][k];
ı
J

}

int bestind = O;
for(i=l;j<NN_NUMBERS;j++) if (d[j] > d[bestind]) bestind = j;

II Calculate areas to draw the text.

CRect size;
ın_TestWindow.GetClientRect(&size);
int x = size.Width()l2 - (NN_RESX*10)12;
int y = size.Height()l2 - (NN_RESY* 10)12;
CRect format(x,size.Height()-y+ 1, size.Widthı)-x, size.Height()-5);

m_bDisplayString = true;
GetText(m_Str, bestind+]);

}

void COnrDlg::RunNet(bool training) {

II Test the noisy data.

float d[NN_NUMBERS];
int cycles = O;
boo! correct;
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do {
correct = true;
for(int i=O;i<NN_NUMBERS * NN_NOISY;i++) {

for(intj=O;j<NN_NUMBERS;j++) {
dOJ = O;
for(int k=O;k<NN_RESX * NN_RESY;k+·+) {

dü] += m_fWeightsfj][k]*m_iNoisy[i][k];

}

int bestind = O;
forQ=l;j<NN_NUMBERS;j++) if (dü] > d[bestind]) bestirıd = j;

int realval = (int)(i/NN _NOISY);
if (bestind == real val) continue;

if (training) {
CString result;
result.Format("Guessed %d instead of %d.",bestind, real val ı:
m_Traininfo.SetWindowText(result);
correct= false;

forQ=O;j<NN_RESX * NN_RESY;j++) {
m_fWeights[bestind][i] -= m_iNoisy[i]IJ];
m_fWeights[realval]O] += m_iNoisy[i]O];

}
}

}

SetDlgltemlnt(LDC_ITERATE, ++cycles);
} while (!correct && cycles c= NN_MAXlTER);

if (cycles >= NN_MAXITER) {
Message:Box("Training has timed-out.",

"Error in Training", MB_OK I MB_ICONINFORMATlON);
return;

}
}

ifpragma optimize("", on)

void COnrDlg::OnDeltaposTrainspin(NMHDR* pNMHDR, LRESULT* pResult) {
NM_UPDOWN* pNMUpDown = (NM_UPDOWN*)pNMl-lDR;
int iPos = pNMUpDown->iPos;
int iDelta = pNMUpDown->iDelta;

nı_bDisplayString = false;

if ((iPos == O && iDelta == -1) 11 (iPos = NN_NUMBERS-1 && iDelta == 1)) {
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if(iDelta= -1) {
m_ipDrawNum = &m_bNumbers[O][O];
InvalidateNumber();

} else {
m_ipDrawNum = &m_bNumbers[NN_NUMBERS-1][0];
JnvalidateNumber();

}
} else {

nı_ipDrawNum = &ın_bNumbers[iPos+iDelta][O];
lnvalidateNumber();

}

*pResult = O;

void COnrDlg::OnDeltaposTestspin(NMHDR* pNMHDR, LRESULT* pResult) {
NM_UPDOWN* pNMUpDown = (NM_UPDOWN*)pNMHDR;
int iPos = pNMUpDown->iPos;
int iDelta = pNMUpDown->iDelta;

m_bDisplayString = false;

if ((iPos == O && iDelta == -1) II (iPos = NN_NUMBERS-1 && iDelta == l)) {
if(iDelta== -1) {

ın_ipDrawNum = &m_bTestData[O][O];
InvalidateNumber();

} else {
m_ipDrawNum = &m_bTestData[NN_NUMBERS-1][0];
InvalidateNumber();

}
} else {

m_ipDrawNuın = &m_bTestData[iPos+iDelta](O];
lnvalidateNumber();

}

*pResult = O;
}

void COnrDlg: :GetText(CString &str, int nuın) {
switch (nuın) {
case l:

str = "One"; break;
case 2:

str = "Two"; break;
case 3:

str = "Three"; break;
case 4:

str = "Four"; break;
case 5:

str = "Five"; break;
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case 6:
str = "Six"; break;

case 7:
str = "Seven"; break;

case 8:
str = "Eight"; break;

case 9:
str = "Nine"; break;

case 1 O:
str = "Letter 'A"'; break;

default:
str = "Undetermined";

}

void COnrDlg::lnvalidateNumber() {
CRect rect;

m__TestWindow.GetClientRect(&rect);
m__TestWindow.CI ientToScreen(&rect);
ScreenToClient(&rect);

lnvalidateRect(rect, false);
}

ll / I //I I I I I//// II/ I //////I// I I// I///I /II//// I /I// I I//// I/ I I/ I/////I//I///I ///I/I I////////// I/// I/////// I// I I I I I I I I I I I I I 

II HyperLink.h : header file

# if !defıned(AFX__HYPERLINK __H_Dl625061 __574B__ l lDl __ABBA__
OOA0243Dl382_1NCLlJDED_J
#define AFX HYPERLINK H Dl625061 574B l 1D1 ABBA- - -- - - -
OOA024301382 INCLUDED
#if MSC VER>= 1000-- --
#pragına once
#endif// MSC VER>= 1000

II/// /II I Ill I I I! //II I I I !II I I I I I I I /Ill I/ I I//// I ///I// I II /Ill/I// II/// Ill II II// 
II CHyperLink window

class CHyperLink : public CStatic
{
II Construction/destruction
public:

CHyperLink();
virtual -Cl+yperl.inkf);

II Attributes
public:
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II Operations
puhl ic:

void SetURL(CStriııg strURL);
CString GetURL() { return m_strURL; }
void Set:Colours(COLORREF crLink:Colour, COLORREF crVisitedColour);
COLORREF GetLink:Colour() { return ın_crLinkColour;}
COLORREF GetVisitedColour() { return m_crVisitedColour; }

void SetVisited(BOOL bVisited = TRUE);
BOOL GetVisited() { return m_bVisited;}
void SetLiıık:Cursor(T--ICURSOR hCursor) { m_hLinkCursor = hCursor; }
void SetUnderline(BOOL bUnderline = TRUE);
BOOL GetUnderline() { return m_bUnderline;}
void SetAutoSize(BOOL bAutoSize = TRUE);
BOOL GetAutoSize() { return m_bAdjustToFit;}

II Overrides
II Class Wizard generated virtual function overrides
//{ {AFX_ VIRTUAL(CHyperLink)
public:
virtual BOOL PreTranslateMessage(MSG* pMsg);
protected:
virtual void PreSubclassWindow();
//}}AFX_ VIRTUAL

II Implementation
protected:
HlNSTANCE GotoURL(LPCTSTR ur!, int showcınd);
void ReportError(int nError);
LONG GetRegKey(HKEY key, LPCTSTR subkey, LPTSTR retdata);
void Position Window();

II Protected attributes
protected:
COLORREF m_crLinkColour, m_crVisitedColour;
BOOL nı_bVisited;
BOOL m_bUnderline;
BOOL m_bAdjustToFit;
CString m_strURL;
CFont m Font;
HCURSOR m_hLinkCursor;
CToolTipCtrl nı_ToolTip;

II Hyperlink colours

//underline hyperlink?
II Adjust window size to fit text?
II hyperlink URL
II Underline font if necessary
I I Cursor for hyperl ink
II The tooltip

II Generated message map functions
protected:

//{ {AFX_MSG(CHyperLiıık)
afx rnsg HBRUSH CtlColor(CDC* pDC, UINT ııCtlColor);
afx rnsg BOOL OnSetCursor(CWnd* pWnd, UlNT nHitTest, UlNT message);
II}} A FX_MSG
afxmsg void OnClicked();
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DECLARE_ MESSAGE_ MAP()
1 .
J '

#end if
/I !deflııed(AFX_flYPERLINK_H __Dl625061_574B_l JDl_
ABBA_OOA0243Dl382_1NCLUDED_)
I I I I I I/ I I I I I I I I II II II I I Ill III II I Ill II I I I I II I IllI II IllI I II Ill II II II I I IllII I I/ I I II I I I I I II/I I I I II II/// I II I I I I I II/ I I I I I I

II Oıır.lı : main header file for the ONR application

#if !defined(AFX ONR H B68A5325 43BO l 1D3- - - - - -
96EE_FOA5A92B9882_INCLUDED_)

#define AFX ONR H B68A5325 43BO I 1D3 96EE- - - - - -
FOA5A92B9882 INCLUDED

#if MSC VER>= I 000- -
#pragrna once
#end if
#ifndef AFXWlN H

II MSC VER>= 1000- -

#error include 'stdafx.h' before including this file for PCH
#end if

#include "resource.h" II main symbols

II Ill II I I IllI I IllII I/ I I Ill/Ill II I II II I I II II I I IllII I II I I I IllIllIll II I IllII I I I I

II COnrApp:
II using Onr.cpp for the implementation of this class
II

class COnrApp: public CWinApp
{
public:

COnrApp();

II Overrides
II Class Wizard generated virtual function overrides
II{ {AFX_VIRTUAL(COnrApp)
public:
virtual BOOL lnitlnstance();
II} }AFX_VIRTUAL

II Implementation

II{ {AFX_MSG(COnrApp)
II NOTE - the ClassWizard will add and remove member functions here.
II DO NOT EDLTwhat you see in these blocks of generated code !

II} }AFX_MSG
DECLARE MESSAGE MAP()-- -

l •
J'
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I I I I I II I II I I I I I II I I II I I II I II I II I Ill II I I I I IllI I I I I I I I II I I I I I IllII I IllI II I II I I I

#endif II !defined(AFX_ONR_H_B68A5325_ 43B0_l 1D3_
II 96EE_FOA5A92B9882_INCLUDED_)

I*=============================================*\
* File: OnrDlg.lı *
1' Description: Header file for the main dialog, *
* has all the important functions. *

\ -~ ============================================= * I 

#ifndef ONRDLG H- - -
#define ONRDLG H

#if MSC VER>= 1000- -
#pragma once
#endif

#define NN NUMBERS 1 O
#define NN RESX 5
#define NN RESY 7
#define NN NOISY 25
#define NN MAXJTER 500

class COnrDlg : public CDialog {
public:

COnrDlg(CWnd* pParent = NULL);

II{ {AFX_DATA(COnrDlg)
enum { 1DD=1DD_ONR_D1ALOG };
CSpinButtoııCtrl m_Trainspin;
CSpinButtonCtrl m_Testspin;
CStatic m_Train [nfo;
CListBox m_clnfoBox;
CStatic · m_TestWindow;
II} }AFX_DATA

II { {AFX_VIRTUAL(COnrDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
II} }AFX_VIRTUAL

protected:
int m_bTestData[NN_NUMBERS][NN_RESX * NN_RESY];
int m_bNumbers[NN_NUMBERS][NN_RESX * NN_RESY];
int m_iNoisy[NN_NUMBERS * NN_NOISY][NN_RESX *

NN RESY];
int *m__ipDrawNum;

boo! m_bDisplayString;
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float ın_fWeights[NN_NUMBERS][NN_RESX * NN_RESY];

HICON m_hlcon;
CString nı_Str;

"Oİd JnvalidateNumber();
void GetText(CString &, int);
void RunNet(bool training);
void DrawNumber(CDC *,int*, CRect *);

II Generated message map functions

//{ {AFX_MSG(COnrDlg)
virtual BOOL OnlnitDialog();
afx_nısg void OnSysCommand(UINT nID, LPARAM IParam);
afxmsg void OnPaint();
afxrnsg HCURSOR OnQueryDragicon();
afx_nısg void OnTrain();
afx_msg void OnClassify();
afxrnsg void OnDeltaposTrainspin(NMHDR* pNMHDR, LRESULT* pResult);
afxrnsg void OnDeltaposTestspin(NMHDR* pNMHDR, LRESULT* pResult);
II} } ı\FX _MSG
DECLARE_ MESSAGE_MAP()

l ·
J '
//{ {AFX_lNSERT_LOCATION}}
#end if
!!lll!/lll/l/l!lll/!l/!!ll//!!////l/!!lll!///l/l/ll/!//l/!lllll/lll////l///////ll/lll/l/ll/!//II/IIII/II/I////I//III//II//I/I///IIIIII/ 
////I//! I// !I I Ill/!// I/! /I /I// I I/// I// END OF P ROG RAMi i ! /i //////II! I/////// Ill/ I/Ill/ I/ Ill //I/ I/ I 
I I III I III I I I I III If IIIIIIII II I I/// I I I I I I I I I I I I I I II III I I I I II I I II I I I I I III I I I IfII I I I I I I II I I I If I I I I I I I I I I I II I I I I II I I I I I I/ I/ II III I I I/ If I I/ I/ If///// III I///
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