
NEAR EAST UNIVERSITY 

Faculty of Engineering 

Department Of Computer Engineering 

STUDENT INFORMATION SYSTEM 
USING VISUAL BASIC 

Graduation Project 
COM-400 

Student: Bekir $imfek 

Number: 20001739 

Supervisor: Mr. Omit ilhan 

Nicosia - 2005 



ACKNOWLEDGEMENTS 

"First I would like to thank my supervisor Mr Umit Ilhan for his great advice and 

recommendations to finish this work properly. 

Although !faced many problem collections data but has guiding me the appropriate 

references. (Dear Abiyev, Okan Donangil) thanks a lot for your invaluable and continual 

support. 

Second, I would like to thank my family for their constant encouragement and support during 

the preparation of this work specially my father (Dervis Simsekt.my mother (Emine Simsek) 

my brothers(Adem, Omer, Yusef Simseki.My sister (Havva Simsek), . 

Third, I thank all the staff of the faculty of engineering for giving me the facilities to practice 

and solving any problem I was facing during working in this project. 

Forth I do not want to forget my best friends (Mehmet Kamiloglu}, (SiHuseyin Ozgun), 

(Ozgur Berbergil), (Necati Agbulut), (Hakan Topal), (Muslum Senel) and all friends for 

helping me to finish this work in short time by their invaluable encouragement. 

Finally thanks for all of my friends for their advices and support. 



ABSTRACT 

Visual Basic Applications provides a complete integrated development environment (IDE) 

that features the same elements familiar to developers using Microsoft Visual Basic, including 

a Project Window, a Properties Window, and debugging tools. VBA also includes support for 

Microsoft Forms, for creating custom dialog boxes, and ActiveX Controls, for rapidly 

building user interfaces. Integrated directly into a host application, VBA offers the advantages 

of fast, in-process performance (up to 200 times faster than other stand-alone development 

tools), tight integration with the host application ( code behind documents, cells, and so forth), 

and the ability to build solutions without the use of additional tools. To gain access to a 

remote ODBC data source, you usually have to provide a valid user ID and password 

combination. These values can be provided in the Connect property of the Data control or in 

the connect string that is supplied as an argument to the OpenDatabase method. If these 

values are not supplied, the ODBC Driver Manager exposes a dialog to collect the user name, 

password, and other missing information needed to establish the connection. There is no way 

to disable this dialog with ADO and Jet. However, by using the ODBCDirect or RDO prompt 

arguments, this dialog can be disabled and your code can intercept a trappable error. 

11 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

ABSTRACT 

TABLE OF CONTENTS 

INTRODUCTION 

CHAPTER ONE: VISUAL BASIC 

i 

ii 

iii 

What you need to know before starting this training 

1 

2 

2 

What Is Visual Basic for Applications? 

Visual Basic Editions 

Competitive Advantage 

Benefits to Developers 

3 

3 

5 

6 

CHAPTER TWO: DATABESES 

Accessing SQL Views Using ADO 

Accessing Stored Procedures Using ADO 

Closing ADO ODBC Connections with Jet 

11 

12 

12 

12 

Providing User ID and Password 14 

Opening Connections Directly 14 

Opening Connections Indirectly 

Handling Remote ADO Messages and Errors 

Managing ADO Data Source Name Entries 

14 

15 

15 

Setting the Default Database 

Managing ADO Network Traffic 

Managing ADO ODBC Users 

Managing ADO Query Result Set Size 

Remote Data Access Using ADO and ODBCDirect 

Remote Data Access Using ADO and ODBCDirect 

16 

16 

17 

18 

18 

18 

111 



The T-SQL Debugger 

Setup and Compatibility 

Server-Side Setup 

Unassigned Parameters Dialog box 

19 

19 

20 

21 

Views and Options 22 

Exiting from the T-SQL Debugger 

Using ADO to Select a Remote Query Processor 

Using ADO to Select the Jet Query Processor 

Using ADO to Share Remote Data 

Using SQL PassThrough Queries with ADO 

Microsoft Acces Database 

22 

23 

24 

24 

25 

25 

CHAPTER THREE: SCHOOL REG/STRATON PROGRAM 

3.1 Pasword Dialog 

3.2 Main Page 

3.3 Select School Year 

3.4 Student Record 

3.5 Record New Sudent 

3.6 Existing Studen Option 

3. 7 Student Advisor Selections 

3.8 Advanced Search For Student 

3.9 View Option 

3.10 Select Level 

3.11 List Of Advisor For Semester Year 

3.12 List Of Levels 

3.13 Add New Level 

3.14 List Of School Year 

3.15 Print Option 

3.16 Regitration Slip Report 

3.17 Print Option For Student List 

30 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

lV 



APPENDIX 47 

Program Source Codes 47 

CONCLUSION 123 

REFERENCES 124 

V 



INTRODUCTION 

In first chapter, we will see the visual basic and aplications. Visual Basic for Applications 

delivers a competitive advantage for ISV s seeking to provide full customization and 

integration capabilities to customers. With VBA-enabled products, ISV s can build broad 

capabilities into their core product while providing a technology for customers to tailor the 

application and add features and functionality specific to their requirements. The Enterprise 

edition allows professionals to create robust distributed applications in a team setting. It 

includes all the features of the Professional edition, plus Back Office tools such as SQL 

Server, Microsoft Transaction Server, Internet Information Server, Visual SourceSafe, SNA 

Server, and more. Printed documentation provided with the Enterprise edition includes the 

Visual Studio Enterprise Features book plus Microsoft Developer Network CDs containing 

full online documentation. 

The next chapter begins with the acces and sql database. There are two other advantages to 

using Acces as a production tool. First, it provides exactly the same options for the problems 

you write as it does for the problems you select from a database. Second, the process of 

writing or selecting problems is almost completely independent of page layout decisions. This 

means you can do things in almost any order: select some problems, see how they look on a 

certain type of document, make some changes, try a different type of document, and so on. 

Acces handles all the finer details of production and, as you will quickly discover, it is 

extremely good at what it does. SQL Server's server-side cursors support multiple operations 

on a single connection as implemented with ODBCDirect and RDO. However, there is no 

support for server-side cursors with Jet.When Jet needs to open a connection, it first checks its 

internal connection cache. If there is a connection in the cache that uses the same DSN and 

database parameters, and there are no uncompleted queries pending on the connection, it is 

reused. Back-end database systems that support pending results on a single connection may 

not need additional connections to perform simultaneous read/write operations 

The last chapter introduce student registration systems program .The chapter shows all 

program form and information.And explain how we can use this program. 

1 



CHAPTER ONE :VISUAL BASIC 

What you need to know before starting this training 

If you are new to computer programming, you should consider Visual Basic as your language 

of choice for learning how to develop computer programs. Another popular language used in 

teaching programming is Pascal. But Visual Basic is generally more popular than Pascal. 

Microsoft claims that there are over 3 million Visual Basic programmers. Whatever the 

number, Visual Basic is popular because it is easy to learn, fun to use, and has evolved into a 

very powerful development tool. But programming in Visual Basic or any other 

programming language is a challenging task. It is a little more complicated than learning how 

to use Microsoft Word or Excel. But if you want to become a computer programmer, you will 

find Visual Basic to be the easiest way to teach yourself programming. You can get the 

training series (above) that includes the complete set of 17 Multimedia CD-ROMs or Videos. 

You will hear and see your trainer on your computer screen as he teaches you beginner to 

advanced level Visual Basic concepts. But most of the time, you will learn Visual Basic by 

seeing your trainer perform real world examples with Visual Basic 6.0 and by writing the 

example programs or your own programs and running them with the Visual Basic 6.0 

software included in this package. The best way to learn Visual Basic is by examples, and 

that is what this course presents a lot of. If you are new to Visual Basic, you should start with 

the first 8 levels (i.e. Level 1 to Level 8). Then later as you build your skills, you can 

purchase the rest of the training if you want to become a certified or advanced level Visual 

Basic Developer. If you spend about 1 to 2 hours each day training with Visual Basic, you 

should become proficient in about 3 months. The rule to becoming a good or competent 

programmer is practice, practice, practice! If you want tips on how to become more 

productive with Visual Basic very quickly, especially if you are new to programming, please 

do not hesitate to contact us toll free at 1-888-797-4040 (or 301-589-3349) and a technical 

support person with development experience will assist you. Remember, the best 

programmers are those who enjoy programming; so just relax and program for fun and treat 

programming as a hobby. You will be amazed at the progress you will make and success you 

will have as a developer. 

2 



What Is Visual Basic for Applications? 

Microsoft Visual Basic for Applications (VBA) is a powerful development technology for 

rapidly customizing rich-client desktop packaged applications and integrating them with 

existing data and systems. VBA offers a sophisticated set of programming tools based on the 

Microsoft Visual Basic development system, the world's most popular rapid application 

development system, which developers can use to harness the power of packaged 

applications. VBA enables customers to buy off-the-shelf software and customize it to meet 

their specific business processes, rather than build solutions from scratch. This helps them 

save time and money, reduce risks, leverage their programming skills, and deliver precisely 

what users need. 

Visual Basic for Applications provides a complete integrated development environment (IDE) 

that features the same elements familiar to developers using Microsoft Visual Basic, including 

a Project Window, a Properties Window, and debugging tools. VBA also includes support for 

Microsoft Forms, for creating custom dialog boxes, and ActiveX Controls, for rapidly 

building user interfaces. Integrated directly into a host application, VBA offers the advantages 

of fast, in-process performance (up to 200 times faster than other stand-alone development 

tools), tight integration with the host application (code behind documents, cells, and so forth), 

and the ability to build solutions without the use of additional tools. 

Software programs that include VBA are called customizable applications-applications that 

can be tailored to fit specific business needs. This class of applications enables developers to 

quickly build solutions that require less end-user training. For MIS and business managers, 

customization means that solutions can be developed quickly and deployed easily, with 

minimal maintenance. In an industry familiar with two-year backlogs for new applications 

and high end-user training costs, these solutions provide a tremendous business benefit in 

terms of return on investment (ROI) and timeliness. 

Visual Basic Editions 

Visual Basic is available in three editions, each geared to meet a specific set of development 

requirements. The features available to you depend on which product you have purchased. 

3 



Visual Basic Enterprise Edition Features 

The Enterprise edition allows professionals to create robust distributed applications in a team 

setting. It includes all the features of the Professional edition, plus Back Office tools such as 

SQL Server, Microsoft Transaction Server, Internet Information Server, Visual SourceSafe, 

SNA Server, and more. Printed documentation provided with the Enterprise edition includes 

the Visual Studio Enterprise Features book plus Microsoft Developer Network CDs 

containing full online documentation. 

Visual Basic Professional Edition 

The Professional edition provides computer professionals with a full-featured set of tools for 

developing solutions for others. It includes all the features of the Learning edition, plus 

additional ActiveX controls, the Internet Information Server Application Designer, Integrated 

Data Tools and Data Environment, and the Dynamic HTML Page Designer. Documentation 

provided with the Professional edition includes the Visual Studio Professional Features book 

plus Microsoft Developer Network CDs containing full online documentation. 

Visual Basic Learning Edition 

The Visual Basic Learning edition allows programmers to easily create powerful applications 

for Microsoft Windows and Windows NT. It includes all intrinsic controls, plus grid, tab, and 

data-bound controls. Documentation provided with this edition includes Learn VB Now, plus 

Microsoft Developer Network CDs containing full online documentation. 

Benefits of Visual Basic for Applications Licensing 

The increasing number of VBA-enabled applications provides opportunities for greater 

application customization and integration by developers, allowing them to leverage their 

investments in training in and knowledge of Visual Basic. Ultimately, these developer 

benefits extend to the organizations and users who select VBA-enabled applications over 

"build from scratch" solutions. Additional benefits are outlined here: 

4 



Licensing Visual Basic for Applications (VBA) enables ISV s to concentrate on their core 

competency, rather than on language development. It enables them to offer customers an 

award-winning development environment, and means that ISV s don't have to build 

proprietary technologies with differing tools and languages. 

Competitive Advantage 

Visual Basic for Applications delivers a competitive advantage for ISV s seeking to provide 

full customization and integration capabilities to customers. With VBA-enabled products, 

ISV s can build broad capabilities into their core product while providing a technology for 

customers to tailor the application and add features and functionality specific to their 

requirements. 

Simplified and extended applications. 

VBA provides ISV s with a way to build VBA-based wizards directly into their products to 

walk users through simple or complex operations. After products ship, VBA enables ISV s to 

provide Web-based updates to the core application, delivering new features and functionality 

between product cycles. 

Macro Recording. 

With VBA and Macro Recording, ISV s can provide a simple way for end users to automate 

repetitive tasks while providing developers with an easy way of learning the application 

programming model. 

An enormous developer community. 

By licensing Visual Basic for Applications, ISVs can take advantage of the 3.2 million 

developers already familiar with the Visual Basic programming technology who can use an 

ISV's packaged applications as development platforms. 

ISV s investing in VBA can extend their applications and deliver the tools for meeting 

customers' specific demands. VBA-enabled products impact the bottom line by providing a 

5 



built-in customization technology, enabling customers to pursue a "buy and customize" 

alternative to building applications from scratch. 

Benefits to Developers 

Each VBA-hosted application exposes its functionality through an object model, expanding 

the ActiveX-based component set available for developers to use as building blocks for 

custom solutions. 

Developers can become more marketable because they can use their skill set across many 

applications. 

The ability to reuse code is an immediate advantage because the same Visual Basic is used 

everywhere. 

Visual Basic for Applications enables customization of applications to provide solutions 

tailored to customers' needs. 

With the increasing availability of VBA-enabled applications, developers can now integrate 

these applications to share data and information more easily and seamlessly. 

Perhaps most dramatically, Visual Basic for Applications enables developers to build 

solutions that previously were cost-prohibitive, because functionality is now available through 

the integration of different applications or from different vendors. 

With VBA available across a broad range of applications, developers can customize and 

integrate line-of-business applications while leveraging their existing skill set. 

Benefits to MIS Managers 

Developer knowledge can be used across a broad range of applications. 

MIS managers can choose to buy instead of build, while enabling application customization to 

meet specific business requirements. 

MIS managers can adapt to changing resource requirements by taking advantage of the huge 

number of developers skilled in Visual Basic ( over 3 .2 million worldwide). 

The backlog of end-user application demands can be reduced through code reuse, resulting in 

a faster response. 

Developers can be moved across development projects easily. 

6 



Visual Basic for Applications can also play a large role in helping MIS managers and their 

companies lower training costs by reducing the number of development environments or 

languages in which their developers need to be trained. 

Benefits to End Users of Application-Based Solutions 

Solutions perform faster, thanks to tight integration between VBA and host applications. 

Solutions look and work like the applications users already know, so less training is required. 

Solutions can be user-customized, with respect to print options or query creation, for example. 

There is greater participation in the solution design process-users can create the output, 

reports, and documents that they want automatically generated. 

Overall, users will benefit the most from improved solution quality and customized 

functionality, as the applications they use today incorporate richer functionality and 

integration, and are tailored to meet their needs. 

Visual Basic for Applications 

With the release of VBA 6.3 in March 2001, Microsoft has built on the power of VBA 6.0, 

and has included new features that extend the power, flexibility, and security of the 

development environment. This has opened the door for new ISV s to develop even more 

powerful solutions using new features, such as multithreaded VBA-based projects, developer 

productivity add-ins, and support for digital signatures. And with new integration 

technologies built by Microsoft, ISV s can integrate VBA into their applications more quickly 

and easily than ever. 

Visual Basic for Applications 6.3 is a core component of Microsoft Office XP (it's now in the 

Microsoft Outlook messaging and collaboration client and the FrontPage Web site creation 

and management tool, as well as Microsoft Access, Microsoft Excel, Microsoft Word, and the 

Microsoft PowerPoint presentation graphics program). Through the VBA licensing program, 

Microsoft is making the same version of Visual Basic for Applications in Microsoft Office 

broadly available for use in non-Microsoft applications, providing the same ease of use and 

power of Visual Basic to a broad range of new applications. 

7 



How Does Visual Basic for Applications Fit with Other Microsoft Tools? 

Microsoft offers a number of development tools aimed at specific developer skills and needs. 

These include the Microsoft Visual C#, Microsoft Visual C++, Microsoft Visual J++, and 

Microsoft Visual FoxPro development systems; Microsoft Office Developer; and the Visual 

Basic family: Visual Basic .NET, Visual Basic for Applications, and Visual Basic Scripting 

Edition (VBScript). Tools such as Visual C#, Visual C++, Visual J++, Visual FoxPro, and the 

Visual Basic programming system support developers who build their solutions from scratch 

to meet highly specific market needs. Microsoft Office Developer and Visual Basic for 

Applications support those developers who choose to buy and customize packaged 

applications rather than build from scratch. Buying and customizing off-the-shelf software 

reduces the cost and time of solution development when compared with building from 

scratch. The Visual Basic family is designed to offer powerful programming capabilities 

based on an easy-to-learn and easy-to-use programming language. 

Each member of the Visual Basic family also has specific uses. VBScript is designed to offer 

lightweight scripting capabilities for low-memory environments, such as Web browsers, and 

is most commonly used in creating HTML Web pages. Visual Basic is the world's most 

popular rapid-application development tool for creating stand-alone software components, 

including executable programs, ActiveX Controls, and COM components. Finally, Visual 

Basic for Applications takes the same power available through the Visual Basic programming 

system and applies it to highly functional applications, enabling infinite levels of automation, 

customization, and integration. 

Visual Basic 

You can access the Visual Basic sample code files in one of two ways: 

• Look through the documentation abstracts. When you find an interesting sample, click 

on the link at the top of the abstract to download the sample files. 

The following lists show the Visual Basic sample programs, organized by category. 

ActiveX 

ActXDoc.vbp ActiveX Document tutorial. AXData.vbg ActiveX components acting as data 

sources for other controls. Coffee Creating and using ActiveX components. 

8 



CtlPlus.vbp Creating an ActiveX control. DatAware.vbp Creating classes that can act as 

sources or consumers of data. GeoFacts.vbp Demonstrates the use of Excel objects in a Visual 

Basic application. 

Controls 

ChrtSamp.vbp Using MSChart control to display data from an Excel worksheet. Controls.vbp 

Shows use of controls such as the TextBox, CommandButton, and Image. CtlsAdd.vbp 

Adding controls to an application at run time.Datatree.vbp Using the TreeView, ListView, 

and ProgressBar.Dialer.vbp Using MSComm control and a modem to dial a phone number. 

ListCmbo.vbp Data-binding to a list box and combo bo~.MCITest.vbp Shows basic 

functionality of the Multimedia MCI Control. OleCont.vbp OLE Container control. 

RedTop.vbp Creates an animation of a spinning top. VBMail Demonstrates the use of the 

MAPI controls by sending and receiving electronic mail. VBTerm.vbp Terminal emulation 

using the MSComm control. WinSeek.vbp Searching for specific files; uses ListBox controls. 

Data Access and Data Binding 

AXData.vbg ActiveX components acting as data sources for other controls. BookSale.vbp 

Uses an Automation server to encapsulate the logic of business policies and rules. Data 

Environment Demonstrates the new Data Environment designer. Data Report Demonstrates 

the new Data Report designer. DatAware.vbp Creating classes that can act as sources or 

consumers of data. Datatree.vbp Using the TreeView, ListView, and ProgressBar. 

FirstApp.vbp Using the Data control and other data-aware controls.ListCmbo.vbp Data 

binding to a list box and combo box.Loan.vbp Using ADO and creatable recordsets to 

dynamically populate a DataGrid control. MSFlexGd.vbp Using the MS FlexGrid control. 

Visdata.vbp ADO techniques. 

Enterprise 

Callback Server-initiated callback to the client. Hello World Remote Automation Simple 

remote automation. Interface Uses the COM apartment model resource allocation algorithm. 

Message Queue Enterprise messaging. Passthrough Server Simple pass-through server. 

Pool Manager Clients ask the pool manager for a pointer to an object. 

9 



General Programming 

ATM.vbp How to use a resource file.CallDlls.vbp Calling procedures in dynamic-link 

libraries.Controls.vbp Shows use of controls such as the TextBox, CommandButton, and 

Image. Errors.vbp Error-handling techniques.FirstApp.vbp Using the Data control and other 

data-aware controls.MdiNote.vbp Making a simple multiple-document interface application. 

Menu creation.Optimize.vbp Optimization techniques. ProgWOb.vbp Programming with 

objects. SdiNote.vbp Making a simple single-document interface application. Menu and 

toolbar creation.TabOrder.vbp Reset the tab order of a given form using Visual Basic 

Extensibility model. 

Graphics 

Blanker.vbp General graphics techniques. Palettes.vbp PaletteMode settings; the Picture 

object. 

Web 

ActXDoc.vbp ActiveX Document tutorial. DhShowMe.vbp DHTML techniques.PropBag.vbp 

Storing state values between HTML pages. Support! .vbp Using webclass andADOtechnology 

to create an application. Wcdemo.vbp WebClass demonstration. 

10 



CHAPTER TWO : DATABESES 

Caching ADO ODBC Connections with Jet 

A key part of connection management is that Jet caches either one or two connections, 

depending on the server. For servers such as Oracle, which allow pending results on a 

connection, Jet caches one connection. For servers such as Microsoft SQL Server, which do 

not allow pending results on a connection, Jet caches two connections. 

Note SQL Server's server-side cursors support multiple operations on a single connection as 

implemented with ODBCDirect and RDO. However, there is no support for server-side 

cursors with Jet. 

When Jet needs to open a connection, it first checks its internal connection cache. Ifthere is a 

connection in the cache that uses the same DSN and database parameters, and there are no 

uncompleted queries pending on the connection, it is reused. Back-end database systems that 

support pending results on a single connection may not need additional connections to 

perform simultaneous read/write operations. 

Note Jet caches the user ID and password along with the connection, so that youre not 

repeatedly prompted. This means that if your application needs to log on to the server with a 

different user ID and password, you will be unable to do so unless you force the closure of 

any existing connections. 

Jet ages each connection based on elapsed time and its activity. After a configurable 

connection timeout period (which defaults to 10 minutes), Jet automatically closes and drops 

any dormant connections. For a connection to be considered dormant, it must have no open 

Database or Workspace objects associated with it. Jet will not close connections if there are 

uncommitted transactions, or queries with unfetched results. Since Jet automatically closes 

connections, this implies that Jet automatically re-opens connections as needed. 

Note The ConnectionTimeout setting can be adjusted by accessing the Windows system 

registry.If your application needs access to a connection that Jet has timed out and closed, the 

connection is automatically reopened. Assuming that the connection is re-established, this 

should not cause a problem with your application. 

11 



In some cases, if a shared DSN is identical, queries against a second Database object might be 

blocked while Jet waits for the DSN to become available. 

Accessing SQL Views Using ADO 

If the remote database only exposes SQL views, you can access this data by attaching those 

views to a Jet database and creating pseudo indexes to the view using a ADO action query. 

Although not actually an index, a pseudo index allows Jet to create an updatable recordset on 

the view. You dont need to create a pseudo index if you are not updating server data.SQL 

views can also be accessed by ADO through ODBCDirect. In some cases these views are 

updatable using the indexes already available on the remote server. 

Accessing Stored Procedures Using ADO 

In some environments, access to server data is limited to a set of server-based stored 

procedures. In this case, some or all data requests and updates are carried out through these 

stored procedures - especially when you have no direct access to the remote tables. In such 

an environment, you rriust use SQL pass-through queries exclusively or use ODBCDirect if 

you choose to use ADO. If your server forces all queries and updates to be executed through 

stored procedures, then you can use SQL pass-through queries to execute the UPDATE stored 

procedures as well as the SELECT stored procedures. You can then base other Jet QueryDef 

objects on these queries as if they were attached tables. 

Closing ADO ODBC Connections with Jet 

When you close a Recordset or Database object, or when these objects are no longer in scope, 

the connections they use are released to the connection cache. For example, if you declare a 

Recordset object in a procedure, and that procedure ends, the recordset is automatically closed 

and any connections needed to support it are released to the cache. When your code visits the 

last record of a Recordset object, as when you execute the MoveLast method, the connection 

used to populate the recordset is released to the cache. A single connection is maintained to 

perform updates or other action queries against all open Recordset objects.When your code 

closes a Database object or the object loses scope, Jet closes the Database and any associated 

Recordset objects. Any connections associated with those objects are releasedtothe cache 

Each Data control functions like an OpenRecordset method. That is, each Data control creates 

one or two connections ( depending on the size of the result set and the functionality of the 

server being accessed) when they are initialized. Visual Basic automatically populates 

12 



Recordset objects created by the Data control to release connections as quickly as possible. 

This happens during idle time, and at a configurable rate determined by the MSysConf table 

settings. Generally, Jet maintains a single connection to perform updates, but until the result 

set associated with each Data control is fully populated, a second connection must remain 

open to return the rows. When your code positions the recordset to the last row, as when you 

execute a MoveLast method, this extra connection is no longer needed and is returned to the 

pool. 

ADO Remote Data Access Using Jet 

This section discusses ADO functionality when it is connected to the Jet engine. The 

Microsoft Jet database engine is a stand-alone database management system that is capable of 

both processing queries and routing queries to remote servers as needed. Accessing Jet 

through ADO adds to Microsoft Visual Basics ease of development by providing an object 

oriented development paradigm and accessibility to data-aware bound controls. 

By using the Data control, ADO, or Microsoft Access, you can create code that is virtually 

database-independent, because Jet automatically performs all syntax and data manipulation 

translations for you. For example, you can write an application that accesses different types of 

data sources without making reference to specific remote server features. These data sources 

could be Open Database Connectivity (ODBC) databases, such as Microsoft SQL Server; 

Index Sequential Access Method (ISAM) databases, such as Microsoft FoxPro, Paradox, or 

dBASE; or other Jet databases.Unlike most stand-alone database engines, Jet can perform 

heterogeneous joins across several dissimilar databases. If you are working with departmental 

data stored in ISAM format, and need to merge it with data on a centralized server, this is an 

essential feature. 

Establishing ADO ODBC Connections with Jet 

Jet requires at least one connection when fetching data from a remote data source. If you 

indicate that the result set is to be updated, Jet attempts to open an additional connection 

unless an existing connection can be used. That is, one connection is used to populate the 

result set, and another to update it. However, once the result set is fully populated - as when 

you use the MoveLast method - the first connection can be closed or returned to the 

connection cache. 

13 



Providing User ID and Password 

To gain access to a remote ODBC data source, you usually have to provide a valid user ID 

and password combination. These values can be provided in the Connect property of the Data 

control or in the connect string that is supplied as an argument to the OpenDatabase method. 

If these values are not supplied, the ODBC Driver Manager exposes a dialog to collect the 

user name, password, and other missing information needed to establish the connection. There 

is no way to disable this dialog with ADO and Jet. However, by using the ODBCDirect or 

RDO prompt arguments, this dialog can be disabled and your code can intercept a trappable 

error. 

Opening Connections Directly 

Jet follows these guidelines when managing connections to Microsoft SQL Server: 

• When using the OpenDatabase method, Jet opens a new connection, or attempts to re- 

use an existing connection if an identical DSN exists in the cache. The connection remains 

open after the Database object is closed (in anticipation of later use), unless there is 

already a cached connection to that server available. Only one connection for each DSN 

remains open in the cache. 

• When you open a connection directly using the OpenDatabase method, the ADO/Jet 

model is forced to query the database to determine the name of each available table there. 

This information is cached in the Database object and exists ( does not have to be 

refetched) as long as the Database object remains instantiated. 

• With OpenRecordset, Jet tries to share an existing connection, reuse a cached 

connection, or, failing both of those, opens a new connection to the server and executes a 

query based on the source argument (or the SQL property of a QueryDef object). As soon 

as a MoveNext method is executed, Jet fetches the first 100 rows. If this does not complete 

the query, an additional connection is opened to support updates. The first connection 

must remain open until the recordset is fully populated or closed to support updates. 

Opening Connections Indirectly 

It usually more efficient to open connections to a remote data source by having Jet perform 

the operation. This is accomplished by simply opening a Jet database that contains linkages to 

remote database tables or views. When you access these attached (linked) objects, Jet 

14 



establishes the connection using cached connection information that you provided when 

creating the attachments. However, if Jet is unable to complete the connection for whatever 

reason, the ODBC driver manager exposes a series of dialogs to attempt to collect logon and 

DSN information so the connection can be established. Using ADO with Jet, there is no way 

to disable these dialogs.Another alternative is to provide the needed connection information to 

ADO and Jet by setting the Connect property on an open ADO/Jet Database object. Using this 

technique, you can then use SQL PassThrough queries just as if you had opened the 

connection directly. 

Handling Remote ADO Messages and Errors 

Remote server systems generate their own litany of errors and messages. The database itself 

may contain procedures that generate user-defined messages or errors. Once ADO and the Jet 

database engine receive any error, regardless of the cause, the query that triggered the error is 

terminated. For those databases that use the SQL Server RaisError function to indicate 

warning-level messages, this may be problematic.When using QueryDef objects to execute 

SQL pass-through queries, other messages received from ODBC and the remote server can be 

trapped. For example, SQL Server SQL PRINT statements generate a message that can be 

trapped by your code. To enable message trapping, your code must create a property named 

LogMessages for a specific QueryDef object, and set this property to True. Once set, 

messages generated by the selected Query Def are recorded in a Jet table.Each SQL query that 

Jet or the remote query processor executes can generate one or more ODBC or other remote 

engine errors. All of these errors are stored in the Errors collection, which is accessible either 

during break mode or at run time. Documentation is available for some of these messages, 

especially those mapped by Jet to its own error numbers. Most ODBC operations will 

generate a generic ODBC trappable error that is explained more fully in messages found in 

other members of the Errors collection. 

Managing ADO Data Source Name Entries 

Generally, an ODBC connection requires a Data Source Name (DSN) entry. Depending on 

the operating system, these entries are either kept in the ODBC.ini file (16-bit systems) or in 

the system registry (32-bit systems). You should not attempt to change these entries manually. 

Instead, use the Windows Control Panel ODBC Administration applet or the 

RegisterDatabase method. 

15 



Note When using the ADO/Jet model, ODBCDirect, Remote Data Objects, or the ODBC 

API, it is not always necessary to create or reference a registered DSN if enough information 

about the remote server is provided in the connect string. 

Setting the Default Database 

Your code should ensure that the correct default database is set during the connection process. 

The user may specify a user ID that does not have permission to access the database your 

application expects to use, or uses a different default database. The default database can be 

established by: 

• Including the default database name in the DSN entry. 

• Including the DAT ABASE= argument in the connect string. 

• Establishing a default database on the server based on the user name. 

• Submitting an action query that changes the default database once the connection is 

open 

Managing ADO Network Traffic 

When using ADO with the Jet engine, a primary consideration is the amount of data that your 

network is required to carry. This is especially true if your design includes a shared Jet 

database that contains local, unattached data. In this case, the network will carry all disk 1/0 

traffic as multiple users compete for shared data pages. If the shared database is simply a 

repository for one or more attached tables, in most cases only the query results need to be 

transmitted over the network.Your application can control network traffic indirectly, through 

judicious use of Recordset object size and choice of query processor. In many cases, the Jet 

query processor can create Recordset objects with comparatively little network traffic. 

However, some designs may not accommodate its use, and may consequently create more 

network traffic than would occur with other programming models. By tuning the SQL query 

passed to the Jet query processor, you can often make better use of its power while improving 

network performance.When accessing attached tables with the Jet engine, only the linkage 

information and the results of the query need to be transmitted over the network. If, however, 

the query processor is forced to download part or all of a remote table, network load increases 

dramatically. 

16 



Using a wide area network (WAN) with a Jet database is possible, and with careful error 

management, WAN applications can be implemented with a degree of security. Your design 

should, however, take additional precautions and include extremely robust error management 

that anticipates the loss of network access to the remote server and often dramatically longer 

response times. Since WAN networks can be significantly slower than conventional local area 

networks, special care should be given to the amount of network traffic generated and ADO 

timeout values. Examine the SQL trace logs for a better understanding of the number and 

complexity of the queries generated to remote ODBC servers. It is always good design 

practice to use more robust error handling for all network operations regardless of the 

topology. 

Enabling Trace Logs 

One of the most helpful debugging and tuning tools you have at your disposal is the ability of 

the ODBC Driver Manager to log all ODBC operations to an external file. You can enable 

this file using the ODBCDirect LogMessages property or by selecting the associated option in 

the Windows control panel ODBC Administration dialog. Be sure to tum off logging before 

your application goes into production, as the logging process can significantly impact 

performance.Another option available to Microsoft SQL Server developers is the new 

SQLTrace utility that can let developers interactively view the queries submitted by all 

applications against a SQL Server. Once started, the SQL Trace utility exposes a window that 

displays each query or other operational request made. 

For More Information See Choosing a. ADO Query Processor for Use with Jet and 

Managing ADO ODBC Connections with Jet. 

Managing ADO ODBC Users 

Each instance of your database application uses some number of connections and data page 

( or row) locks on the server, and creates a measurable load on the network. Since each 

additional user contends for many of the same resources, the number of users the system can 

support is directly proportional to the number of resources each instance of your application 

requires.To reduce the number of locks, users should not be permitted to sit on unpopulated 

Recordset objects. The application should populate the recordset as quickly as possible using 

ADO, the Data control, or one of the background population techniques. 

17 



Your design should also include management of user logon IDs and passwords. If your design 

uses a shared Jet (.mdb) database, you must also address Jet security systems.Because all 

users must disconnect from Jet databases (that contain data) for periodic maintenance, you 

should include a way to notify users to disconnect from the shared Jet database or provide a 

way to signal applications to disconnect automatically on their own. If the maintenance 

operations are executed during nonpeak hours, and applications automatically disconnect 

from the Jet database after a length of idle time, maintenance programs can execute without 

disturbing uncompleted result sets or pending updates. 

Managing ADO Query Result Set Size 

The Jet database engine is capable of retrieving data from databases of any size. However, as 

the number of records processed increases, be aware of the increased amount of required 

TEMP storage space. Any design that opens tables directly, without benefit of a SQL query 

that limits scope, should be reconsidered. Jet will generate a trappable error if local disk space 

is exhausted while Jet is building a keyset. This is not really a limitation in Jet but of system 

resources, and it is characteristic of poor application design. Any application design that 

requires the database engine to create a physical pointer to each row of the result set data, 

such as when a keyset is created, has a theoretical upper limit set by the capacity of the media 

where the keyset is stored.In some cursor models, only a subset of the keyset is maintained on 

the client machine, or the keysets are built on the server. Although Jet supports a table-type 

recordset that permits browsing tables without impacting client resources, this is not available 

when accessing remote (ODBC) data. Instead, only the dynaset-type and snapshot-type 

Recordset objects are supported.Both of these build the keyset on the client system, 

overflowing to TEMP space on disk if necessary. The snapshot-type recordset also downloads 

data, which may further limit the size of the recordset that can be built. In any case, your data 

access strategy should involve restraining the result set scope. That is, you should limit the 

number of rows returned by the query. 

Remote Data Access Using ADO and ODBCDirect 

Visual Basic version offers an additional option that can be used with ADO to access remote 

database engines: ODBCDirect. This ADO option permits your application to choose the 

database engine and interface used by ADO. Basically, you have two choices: 

18 



• · The Microsoft Jet database engine. By default, ADO uses Jet to perform all data 

access operations. 

• ODBCDirect. When this option is enabled, ADO loads the Remote Data Objects 

(RDO) 2.0 libraries and delegates all data access operations to the ODBC data source. 

Basically, ODBCDirect maps each of the Data Access Objects to an equivalent Remote Data 

Object. While not all of the RDO functionality is implemented with ODBCDirect, this 

approach permits you to leverage existing ADO-based applications using a familiar object 

model when accessing remote database systems. 

For More Information Information about ODBCDirects relationship to RDO is also 

discussed throughout "Using Remote Data Objects and the Remote Data Control." 

The T-SQL Debugger 

The T-SQL debugger is integrated with the Data Environment designer. It allows you to 

interactively debug remote stored procedures written in Microsoft SQL Server's Transact SQL 

dialect, from within the Visual Basic development environment. Using the T-SQL debugger, 

you can: 

• Display the SQL call stack, local variables, and parameters for the SQL stored 

procedure. 

• Control and manage breakpoints. 

• View and modify local variables and parameters. 

• View global variables. 

Setup and Compatibility 

In order to use the T-SQL debugger, you must have SQL Server version 6.5 with Service 

Pack 3 or later installed as your database server. The debugger uses the functionality exposed 

by SQL Server's Sdi.dll, and exposes that functionality through Remote Automation.The 

client-side components of the T-SQL debugger are correctly installed and configured when 

you choose to install all the Enterprise tools in your Visual Basic installation. If it is necessary 

to repeat the setup process, select "Custom" from the CD Installation dialog box, and choose 

"Select All" for the Enterprise Tools selection. 

19 



Server-Side Setup 

With SQL Server version 6.5 and Service Pack 3 or later installed, you can install and register 

the SQL Debugger interface and Remote Automation component on the server. These 

components are located at \Program files\Common Files\Microsoft Shared\SQL Debugging. 

On Windows NT 4.0 or later, simply run the setup program Sdi_nt4.exe.Note For setup on 

NT Server 3.51, you must manually copy and register the necessary files. Complete 

instructions for this process are included in the Readme.txt file in the \Program Files\Common 

Files\Microsoft Shared\SQL Debugging folder. 

Using the T-SQL Debugger 

There are different methods you can use to invoke T-SQL debugging. 

1. To debug a stored procedure or batch query at design time, add the T-SQL Debugger 

Add-In via Visual Basie's Add-In Manager (on the Add-Ins menu). Then you can start the 

add-in by clicking T-SQL Debugger on the Add-Ins menu. You then simply select a 

DSN, and either Stored Procedure or Batch SQL and click the Execute button. This will 

invoke the debugger and allow you to debug the SQL you are interested in. 

2. To debug stored procedures while debugging Visual Basic code (run-time debugging), 

select T-SQL Debugging Options on Visual Basie's Tools menu. The options dialog box 

allows you to: 

• Tum on automatic step into stored procedures, which will bring up the T-SQL 

Debugger whenever you step into an ADO or RDO method that executes a stored 

procedure. 

• Tum Safe Mode on, which will automatically roll back any design-time 

queries that you debug. 

• Limit the number of rows that appear in the T-SQL Debugger output window 

when debugging design time queries. 

• Set the login timeout value that the debugger uses to connect to the database, to 

get internal SQL State. Once you have selected the Automatically step into Stored 

Procedures check box, if you step into (F8) a line of code that executes an ADO or 

RDO method that invokes a stored procedure, the debugger will automatically be 

20 



started. You can then step through the stored procedure and then continue debugging 

your Visual Basic code. 

Note SQL Server will return from a stored procedure before it has finished executing if 

the stored procedure returns enough data to fill its buffers. If this happens, both the T-SQL 

Debugger and the Visual Basic debugger will be active at the same time. Your Visual 

Basic code must fetch the results from ADO or RDO before the stored procedure will 

complete its execution. If this happens, make sure your basic code reads the result sets by 

placing Visual Basic in Run Mode (F5) and setting breakpoints where you would like to 

stop execution. You can toggle back and forth between Visual Basic and the T-SQL 

Debugger by using the taskbar or using the ALT+ TAB key combination. 

3. You can also launch the T-SQL Debugger: 

• From the Data Environment designer 

• While stepping through ADO or RDO code 

• By right-clicking a stored procedure in the Data View window and choosing 

the Debug command 

• From the U serConnection designer 

Once you have started the debugger, it establishes the ODBC connection and displays the 

Enter Unassigned Parameters dialog box, as shown. 

Unassigned Parameters Dialog box 

Enter values for any unassigned parameters in the Value field, then click OK. The T-SQL 

debugger interface appears and displays the text of the stored procedure: 

Debugging Options 

With the SQL statement displayed, several debugging options are available on the toolbar 

buttons and on the Debug menu. These options include: 

• 2Go 

• Set and clear breakpoints 

21 



• Step 

• Step into subexpression 

• Step over subexpression 

• Run to cursor 

• Stop debugging 

• Restart 

Views and Options 

In addition to the code window containing the SQL statement you are debugging, the T-SQL 

debugger interface presents separate output windows for local and global variables, and for 

the output (result set) of the query. The View menu also allows you to open a separate Call 

Stack window and a Temp Table Dump window, so that you can examine these as the code 

executes.The Options menu lets you customize the appearance of the T-SQL debugger by 

changing the fonts and colors used for display. 

Exiting from the T-SQL Debugger 

When you are finished with your debugging session, click Exit on the File menu to close the 

debugger. To execute a query again, click Restart on the Debug menu. 

Troubleshooting 

If you are having problems getting T-SQL debugging to work, you will need to check the 

event log on the server. SDI.DLL will log events in the application section of the event 

viewer. COM or distributed COM errors will log events in the system section of the viewer. 

• Make sure that the two computers can communicate with each other. The easiest 

mechanism to do this is by typing ping and the computer name of the client at a command 

prompt on the server if you are running TCP/IP. If this fails, fix the connectivity problem 

between the machines. 

• Make sure the file SDI.DLL resides in the same directory as SQLSERVR.EXE. This 

will be in the binn sub-directory under the main SQL Server directory. The default is 

c:\mssql\binn. 

22 



• Ensure that the RPC services are started on the server machine. You do this by starting 

the control panel, opening the services application and checking that the Remote 

Procedure Call ( RPC) Service is running and set to start automatically, as well as the 

Remote Procedure Call ( RPC ) Locator. 

• Ensure that SQL Server is not set to log on as the SystemAccount. You do this by 

starting the control panel, opening the services application and double clicking on the 

MSSQLServer service. If the service is set to run as the SystemAccount, change this so the 

server will log on to a specific account that is valid to the domain that you are in. If 

debugging still fails, make sure that the account SQL Server started as has sufficient rights 

to launch an automation server on the client machine. 

• If you see COM error 80080005 in the event log, make sure that you did not start 

remote automation (autmgr32) from the command prompt. Autmgr32.exe should only be 

running in the winstation of the account that SQL Server logged in as. Any other 

winstation will cause problems. If this is the case, close down autmgr32.exe via the task 

manager and let the sdi.dll and autprx32.dll load autmgr32 via COM. 

• Make sure Remote Automation is successfully installed on the server and client 

machines, if both the client and server do not have Distributed COM (DCOM) installed 

and loaded. 

• If your client system is running Windows NT 4.0 or later, run DCOMCNFG and make 

sure that everyone has launch and access permission for vbsdicli.exe. 

Using ADO to Select a Remote Query Processor 

Sometimes you need to force the remote query processor to execute the query. As discussed 

in "Managing ADO ODBC Connections with Jet," earlier in this chapter, opening a Database 

object directly can be very costly in time and network traffic because the structure of the 

remote database and its tables must be determined by sending a number of queries to the 

remote database.In cases where you must use remote database-specific SQL syntax, or you 

want to use the remote database engine's query processor, you must bypass the Jet query 

processor by using the dbSQLPassthrough option with the ADO Execute or OpenRecordset 

methods. It is also possible to create ADO QueryDef objects that bypass the Jet query 

processor.To use QueryDef objects, your application will need access to a Jet .mdb database. 

There are two kinds of QueryDef objects: 

23 



• Query Def objects used for pass-through queries, which use the servers syntax and cant 

refer to attached tables. 

• QueryDef objects used for non-pass-through queries, which use attached tables and 

attempt to translate and send as much of the query to the server as possible. 

Using ADO to Select the Jet Query Processor 

All queries executed by the Jet query processor must be written using Jet SQL syntax. 

However, Jets SQL syntax is not always the same as the SQL syntax used on your server 

database. Jets SQL dialect is the same, however, regardless of the database it needs to access. 

This feature can provide significant portability in your code and the ability to seamlessly 

access heterogeneous data.By default, the Jet query processor is invoked when any ADO 

query is executed. In other words, unless you use the dbSQLPassThrough option with the 

Execute or OpenRecordset methods or create a SQLPassThrough QueryDef object, the Jet 

query processor will parse and execute the query's SQL syntax, and attempt to perform 

whatever operations are needed on the workstation and the remote server to carry out the 

request. 

Using ADO to Share Remote Data 

In any client/server application, one of your primary design concerns will be how to best 

share the data resources. When using either the Jet or remote engine query processor, your 

design must include code that deals with conflicts caused by instances of your database 

application and other applications trying to access the same database. Any design must 

include robust error handling to deal with a variety of contingencies caused by conflicts that 

arise as multiple applications vie for the same server resources.If your design calls for a 

centrally shared Jet database that includes attached tables, each client system must also 

contain DSN s that are compatible with your database. Since the DSN is maintained on the 

client and only referenced by name in the shared database attachments, your setup routines 

must ensure the client DSN description is correct - and remains so - to eliminate any 

chance that the user might change one or more parameters.Although the remote database 

engine is responsible for managing its own page locks and resources, any application, 

including those that use the Jet query processor, can lock pages on the server for indefinite 

periods of time. 

24 



Using SQL PassThrough Queries with ADO 

In many applications, youll use both Jet queries (that is, queries executed by the Jet database 

engine) based on attached remote tables and SQL pass-through queries. With a Jet query, the 

query engine determines which parts of the query can be sent to the server and which parts 

must be processed locally, thereby combining the power of the server with the capabilities of 

the Jet database engine. With a ADO Jet SQL pass-through query, your code provides a SQL 

statement that Jet sends directly to the server without stopping to compile the query. Once the 

SQL pass-through query is complete, if it creates a result set, the Jet recordset processor 

creates a snapshot-type Recordset object to manage it. 

MICROSOFTACCESDATABASE 

Overview 

Acces is an electronic publishing system for teachers, sort of a combination between a 

database, desktop publisher, and word processor. The program stores test items and curricular 

material very efficiently, supports many different page layouts, and produces beautiful, 

typeset-quality documents. 

While some people like to call Acces a "test generator," it is really much more than that. In 

fact, it can be a great help to teachers in their regular instruction, and it can benefit students 

immensely. For example, teachers can use the software to: customize lessons for students with 

special needs. supplement textbooks with interesting and challenging questions. 

create a variety of classroom materials, such as overheads, flash cards, game cards, 

assignment schedules, and calendars. prepare students for state assessments and standardized 

tests like the SAT. produce daily assignments, review worksheets, class warm-ups, and other 

documents, that are closely aligned with a school district's or state's curriculum. 

Although Acces addresses many subjects, it is especially well-suited for mathematics, because 

it has built-in support for formulas, graphics, and special symbols. Therefore, most of our 

modules are designed for math teachers. However, do not be disappointed if you work in a 

different field; we also have science and language arts modules. History will be covered soon. 

If you are a curriculum supervisor, technology specialist, or testing coordinator, then you will 

definitely want to read on about Acces' capabilities. Making use of database modules 

One of Acces' most impressive features is the size of its database. Currently, the program 

offers more than 300,000 problems in over 40 modules. This is no doubt the largest computer 

based collection of math problems available-and it continues to grow! 

25 



When we use the term database, we are really talking about two things: a computerized 

storage and retrieval system, and various "add-on modules" or item banks that are available 

for Acces. In this section, we go over some general points about the database system and 

describe features that are common to all modules. We invite you to see our Add-on Modules 

page to determine which, if any, modules are appropriate for your needs. But please keep in 

mind that you can also use Acces to write your own problems and store them on the 

computer. Here is some general information about the database: Acces is a print-based 

system. This means that you select problems by looking at a printed catalog and telling the 

computer what you want. We adopted this method because it is much faster than scrolling 

through problems on the screen. It also makes locating specific kinds of problems very 

simple, because the catalogs are divided into sections ( or topics) with dozens of related 

problems on each page. The process is actually similar to flipping through a teacher's edition 

of a textbook. But the software has a tremendous advantage: it puts the equivalent of dozens 

of textbooks and your entire filing cabinet on the computer. Plus, it handles all of the cutting 

and pasting, so problem sets and exams are just a few keystrokes away. 

All of the material in Acces' database is authored by real people, then stored on the computer. 

The software does not "generate" items as do some other testing programs. This means you 

get lots of interesting and subtle variations of problems, rather than endless repeats. Put 

differently, there is no trade-off between quality and quantity; Acces not only gives you a 

huge number of problems, it provides an excellent balance between introductory and 

advanced topics, or between basic and higher-order thinking skills. (Another advantage of a 

real database system, as opposed to a "test generator," is in the archiving of existing material. 

The module containing New York Regents Exam questions or any of the math contest 

databases are good examples of this archival capability.) 

Acces never tries to outguess you. You select the items you want from the database in the 

order you want them. Since the questions are not generated on the fly, there are no surprises. 

Even the answers are shown in the printed catalog, so you know exactly what you are getting. 

But don't get us wrong, there are lots of ways to automate the selection process, if you wish. 

Acces can be told to pick problems at random, scramble their order, or produce an alternate 

version of a test or a quiz. The important point is that Acces follows your instructions: it is 

designed to make a teacher's job easier; it does not pretend to do the job better. 

Acces' database can be used to store just about any kind of problem: multiple-choice, free 

response, fill-in-the-blank, true-false, column-match, etc. The program can even handle some 

26 



very unusual question types, such as quantitative-comparisons found on the SAT I or grid-in 

answers found on many modem assessments. The kind of material you write and store on the 

computer is entirely your decision. EducAide's database modules tend to include either 

multiple-choice or free-response questions, but also have excellent open-ended questions. By 

the way, one of the options in the software is to hide the answers, so that a multiple-choice 

question can do "double duty" as a free-response question, or even be used with an answer 

grid. All database modules come complete with clipart (pictures), tables, charts, and any 

auxiliary files, such as reading passages, that are necessary to make use of the items. You 

simply install a module into Acces and the items are ready to go. As a side benefit, you can 

also make use of the included clipart in any new problems that you write, or you can "extract" 

an existing problem and make any changes to it that you like. This makes the material in the 

database go even further. Amazingly, everything is also portable between computer platforms. 

EducAide supplies different data discs for PCs and Macintoshes to make installation easier, 

but you pay for a module only once, regardless of how many platforms you intend to run it 

on. (You will, of course, have to license Acces for the different platforms.) If you build your 

own database module, it will also work on either a PC or Macintosh. Desktop publishing 

capabilitiesln addition to managing database modules ( or banks of questions), Acces is a very 

powerful authoring and publishing tool. If you like to create your own problem sets and 

exams on the computer, then Acces can serve as a complete replacement for your word 

processor or desktop publisher. In other words, you can do all of your writing inside the 

program, or do a combination of writing, selecting problems from the database, and 

modifying existing problems. 

As mentioned earlier, Acces is especially suitable for mathematical and scientific material, 

because it can create virtually every mathematical notation that you can think of. In some 

ways, Acces works like an equation editor, but it goes one step further: math is totally 

integrated with text, so problems are fast to write and easy to modify later. We have 

commented several times on Acces' documents. So as not to sound immodest, we should 

explain that Acces is built around a very powerful typesetting system called TeX (pronounced 

tech). The system is widely known in academic and publishing circles for producing beautiful 

documents. The system has particular advantages for Acces, because it is programmable. This 

has allowed us to create numerous document types or "templates" and to support page layouts 

that are too difficult even to consider doing with a word-processor-say, a two-column 

document with varying amounts of "workspace" and a rectangular answer box next to each 

problem. 

27 



Currently, Acces supports six document types. These are: Test/worksheet, Standardized test, 

Overheads, Flash cards, Weekly calendar, and Monthly calendar. There are numerous options 

for each document type, and you have essentially complete control over font size, page 

headers, margins, spacing, numbering, and many other fine-tuning features. You will likely 

find many creative uses for each document type. For example, with the overhead and flash 

card options, you can produce game cards, bookmarks, bulletin board items, and other 

classroom materials. The calendar templates are just as interesting; you can use them to create 

assignment schedules or to provide students with daily warm-up exercises. To switch from 

one document type to another, you simply indicate your preference to Acces. 

There are two other advantages to using Acces as a production tool. First, it provides exactly 

the same options for the problems you write as it does for the problems you select from a 

database. Second, the process of writing or selecting problems is almost completely 

independent of page layout decisions. This means you can do things in almost any order: 

select some problems, see how they look on a certain type of document, make some changes, 

try a different type of document, and so on. Acces handles all the finer details of production 

and, as you will quickly discover, it is extremely good at what it does. 

Finally, the reason Acces is so flexible is that it does something called dynamic formatting. 

Problems are not formatted when they are written or stored on the computer, but rather when 

they are made part of an actual document. This approach is considered state-of-the-art in 

electronic publishing, and it has much in common with HTML, the language of the World 

Wide Web. From the standpoint of database development, there are many advantages, 

including more efficient problem writing, where the focus is on content, not layout. Even if 

you are most interested in using existing problems from a database, and not writing your own, 

you still benefit from some amazing formatting capabilities. There is no question that Acces 

saves time, reduces the drudgery of certain tasks, and makes teachers' jobs more enjoyable. 

The time-savings alone is significant; Acces users tell us they are able to spend much more 

"quality time" with students, helping with their lessons and evaluating their work. But that is 

not actually what impresses teachers the most... 

28 



Acces is exceptionally easy to use. You can produce professional-looking documents in just a 

ew minutes, regardless of your level of experience. In fact, Acces is a great way to get "non 

computer" persons to start using technology. 

Acces is highly adaptable. You do not have to make any compromises in the way you do 

things. Acces' database modules are excellent sources of material. There are lots of interesting 

problems from which to choose and most topics in the curriculum are well covered. 

Acces makes testing much simpler and more secure. You can easily produce multiple versions 

of a test or quiz, and offer make-up tests without the usual hassles. 

Acces is really liked by students. No kidding! Many students are relieved not to be given 

handwritten problem sets (or word processing documents with missing symbols). But they are 

most happy to see materials targeted to their own needs. Plus, they feel better prepared for 

tests when they can get plenty of extra practice or review problems. Acces and its various 
- 

database modules are designed for use by elementary and secondary schools or college 

departments. Therefore, all of the list prices on our Web site include a Site License. 

Briefly, the Site License allows you to install Acces on any computer at your school (or 

department office) or at a teacher's home. Database modules are licensed in the same way, but 

there is an important rule governing the use of their items: you may reprint the items freely 

and as often as you like, but you may distribute them only to students and other teachers at 

your site. We have prepared a sample site license agreement for your review. Please note that 

this is only a copy of the Acces Site License Agreement that has been shipped with orders 

prior to March 2003. Since the Acces Site License Agreement is subject to change, the copy 

posted on this web site is for review only. All use of the software is governed by the license 

that is included in each shipment of Acces. 

29 



CHAPTER THREE :SCHOOL REGISTRA TON 

SYSTEMS PROGRAM 

3.1 Pasword Dialog 

Figure 3.1 Pasword Dialog Form 

Password dioalog form supply entry student information systems program.User can try three 

times for the entry.If password entry wrong program will be close. 

30 



3.2 Main Page 

There is a main form that contents connections for all sub forms(Look Figure 3.2) 

Figure3.2 Main Form 

In the main form there are 13 buttons for connections that mentioned before . With these 

buttons user can open related forms. These buttons can be forbidden for some users by 

Administrator. First button for Modify Student Record button, Second button for Choose 

Advisors, Third button select for t Student level, Fourth button select for School Year, Fifth 

button for Make Registration Slip.Sixth button for lvidual Report, Seventh button for Student 

Per Sections , Eight button for Student List, Ninety button for Population Report, Tenth 

button for Calculator,Eleventh button for Notepad,Twelfth button for Calendar and last button 

for About. 

31 



3.3 Select School Year 

Figure 3.3 Select School Year Form 

This form shows years and provides selected semester. 

32 



3.4 Student Record 

Figure 3.4 Student Record For School Year Form 

Student Record For School Year Form shows old recorded student .This form put forward 

new record button,Edit Button,Show Assign Section Button,Delete button,Reload record 

button,close button,View option button,Advanced search button. 

33 



3.5 Record New Sudent 

Figure 3.5 Record New Student Form 

This form supply new student record.Users fill in the all text box .if user click update button 

all information will be record. 

34 



3.6 Existing Studen Option 

Figure 3.6 Edit Existing Student Form 

Using this form users can changes information about exist students. 

35 



3. 7 Student Advisor Selections 

Figure 3.7 Edit Student Advisor Form 

This form shows advisor .User can changes and saves advisor name ,year and semester. 

36 



3.8 Advanced Search For Student 

Figure 3.8 Advanced Search For Student Form 

This form provides advanced searc.Users writes any contents in the text box and chose which 

types search form will be shows searc results. 

37 



3.9 View Option 

Figure 3.9 View Option Form 

View Option Form has got four radio box and two menu box.Radio box visible or hide about 

student information.By menu box users can choose advisor and school year. 

38 



3.10 Select Level 

Figure 3.10 Select Level Form 

By using this form users chooses semester year. 

39 



11 List Of Advisor For Semester Year 

Figure 3.11 List Of Advisor For Semester Year Form 

Using List Of Advisor Form users can add new advisor and change exist advisor options. 

40 



3.12 List Of Levels 

Figure 3.12 List Of Levels Form 

Using Thid form users can add new semester ,change exist semester and delete old semester. 

41 



3.13 Add New Level 

Figure 3.13 Add New Level Form 

Add New Level Form makes registers new level. 



3.14 List Of School Year 

Figure 3.14 List Of School Year Form 

This Form Provides many options.Users can add new semester year and change old semester 

options,delete old register. 

43 



3.15 Print Option 

Figure 3.15 Print Option For Student Record Form 

Print Option For Student Record Form supply search student and printout the student 

information. 

44 



3.16 Regitration Slip Report. 

Figure 3.16 Regitration Slip Report. 

· Report shows student information and makes printout. 

45 



.17 Print Option For Student List 

Figure 3.17 Print Option For Student List Form 

By using this dialog form users can print easly all student information. 

46 



APPENDIX 

Program Source Codes 
tion Explicit 

blic SY As String 
Public sy _ stat As String 

Private Sub Combo 1 _ Click() 
Combo I.Text= "Ascending Order" Then 
ListViewl.Sorted = True 
ListViewl.SortOrder = lvwAscending 

Elself Combol.Text = "Descending Order" Then 
List View I .Sorted= True 
List View I .SortOrder = lvwDescending 

Else 
Combol.SetFocus 

End If 
End Sub 

Private Sub Combol_KeyPress(KeyAscii As Integer) 
eyAscii = 0 

End Sub 

Private Sub Commandl_Click() 
If sy _stat= "Open" Then 
Form6.add state= True 
Form6.Show 
Me.Enabled = False 

Else 
MsgBox "You cannot record new student because the School Year" & SY & "was already 

closed." & vbCrLf & vbCrLf & "Note: You can re-open the School Year if you want by 
selecting 'Option' in the menu and select 'Re-open School Year'.", vbExclamation, "CSRS 
version I" 
End If End Sub 
Private Sub CommandlO_Click() 
If rs_stud.RecordCount < 1 Then MsgBox "No student in the list.Please check it!", 
vbExclamation, "CSRS version I": Exit Sub 
If rs_stud.Fields(12) <> "Drop" Then 
MsgBox "Please select a student that is currently dropped in the school.", vbExclamation, 

"CSRS version I" 
Else 
Dim rep As Integer 
rep = MsgBox("Are you sure you want to undrop the selected student?", vbQuestion + 

47 



vb YesNo, "CSRS version 1 ") 
If rep = vbNo Then Exit Sub: 
rep= 0 
Dim pos As Long 
With rs stud 

pos = .AbsolutePosition 
.Fields(12) = "Old" 
.Update 
Requery 
Call fill rec 
.AbsolutePosition = pos 

ListViewl .Listltems.Item(Val(.AbsolutePosition)).Ensure Visible 
ListViewl.Listltems.Item(Val(.AbsolutePosition)).Selected = True 

MsgBox "The student was sucessfully undropped in the school and change it's status to 
Old'.", vblnformation, "CSRS version 1" 

pos = 0 
End With 

Endlf 
End Sub 
Private Sub Command2_Click() 

rs_stud.RecordCount < 1 Then MsgBox "No student in the list.Please check it!", 
vbExclamation, "CSRS version l ": Exit Sub 
Form6.add state = False 
Form6.Show 
Me.Enabled = False 
End Sub 
Private Sub Command3 _ Click() 
If rs_stud.RecordCount < 1 Then MsgBox "No student in the list.Please check it!", 
vbExclamation, "CSRS version 1 ": Exit Sub 
If Not rs_stud.Fields(lO) =""Then 
'Show Section 
Form3.sAssign = False 
Form3.Show: Me.Enabled= False 

Else 
'Assign Section 
Form3.sAssign = True 
Form3.Show: Me.Enabled= False 

End If 
End Sub 

Private Sub Command4_Click() 
On Error Go To Err: 
With rs stud 
'Check if there is no record I 

If .RecordCount < 1 Then MsgBox "No student in the list.Please check it!", vbExclamation, 
"CSRS version l ": Exit Sub 
'Confirm deletion of record 
Dim ans As Integer 
Dim pos As Integer 

48 



ans = MsgBox("Are you sure you want to delete the selected record?", vbCritical + 
rb YesNo, "Confirm Record Delete") 
Me.MousePointer = vbHourglass 
If ans= vb Yes Then 

'Delete the record 
pos = Val(ListViewl.Selectedltem) 
Call delete _rec( en, "tblStudents", 

• al(List View 1.Selectedltem.ListSubltems( 1))) 
.Requery 
If .RecordCount > 0 Then 

.AbsolutePosition = pos 
If .EOF Then .MoveFirst 
'Fill listview 
pos = .AbsolutePosition 
Screen.MousePointer = vbHourglass 

"StudentNo", "" True, 

Call FillListView(ListViewl, rs_stud, 6, 1, True, True) 
Label20.Caption = "of" & List View I .Listltems.Count 
List View l .Listltems.Item(pos ).Ensure Visible 

ListViewl .Listltems.Item(pos).Selected = True 
.AbsolutePosition = ListViewl .Selectedltem 

Screen.MousePointer = vbDefault 
'End-fill listview 

Else 
ListViewl .Listltems.Clear 
Label20.Caption = "of O" 

End If 
MsgBox "Record has been successfully deleted.", vblnformation, "Confirm" 

End If 
ans= 0 
pos= 0 
Me.MousePointer = vbDefault 

End With 
Exit Sub 
Err: 
prompt_err (Err.Description & vbCrLf & vbCrLf & "Error Number: " & Err.Number): 

Me.MousePointer = vbDefault: Exit Sub 
End Sub 

Private Sub Commandfi , Click() 
Call reload rec 
End Sub 
Public Sub reload _rec() 

Screen.MousePointer = vbHourglass 

rs stud.Filter= adFilterNone 

49 



stud.Requery 
stud.Filter= "Status <>'Drop"' 

all FillListView(ListViewl, rs_stud, 6, 1, True, True) 
f Not rs stud.RecordCount < 1 Then rs stud.MoveFirst - - 

el20.Caption = "of" & ListViewl .Listltems.Count 

en.MousePointer = vbDefault 
d Sub 
lie Sub fill_rec() 

en.MousePointer = vbHourglass 

all FillListView(ListViewl, rs_stud, 6, 1, True, True) 
Not rs stud.RecordCount < 1 Then rs stud.MoveFirst - - 
el20.Caption = "of" & ListViewl .Listltems.Count 

een.MousePointer = vbDefault 
d Sub 

ivate Sub Command6_Click() 
.nload Me 
d Sub 

· vate Sub Command?_ Click() 
Textl.Text = "" Then MsgBox "Please enter some text to search.", vbExclamation, "CSRS 

·ersion 1 ": Textl.SetFocus: Exit Sub 
Dim c As Byte 
'ith Form? 
For c = 1 To rs stud.Fields.Count - 1 

. Combo l .Addltem rs_ stud.Fields.Item(Val( c) ).Name 
Nextc 
.Textl.Text = Textl.Text 
.Show 

End With 
_ .• e.Enabled = False 

'Clear Variable 

=O 
End Sub 

Private Sub Command8 _ Click() 
Form8.Show 
Me.Enabled = False 
End Sub 

Private Sub Command9 Click() 
If rs_stud.RecordCount < 1 Then MsgBox "No student in the list.Please check it!", 
vbExclamation, "CSRS version 1 ": Exit Sub 

50 



rs_stud.Fields(12) = "Drop" Then 
MsgBox "The student was already dropped.", vbExclamation, "CSRS version 1" 

Else 
Dim rep As Integer 
rep = MsgBox("Are you sure you want to drop the selected student?", vbQuestion + 

·b YesNo, "CSRS version 1 ") 
If rep = vbNo Then Exit Sub: 
rep= 0 

Dim pos As Long 
With rs stud 

pos = .AbsolutePosition 
.Fields(12) = "Drop" 
.Update 

.Requery 
Call fill rec 
If pos > .Record Count Then 

If Not .RecordCount < 1 Then .MoveFirst 
Else 

.AbsolutePosition = pos 
End If 

If Not .Record Count < 
ListViewl .Listltems.Item(Val(.AbsolutePosition)).Ensure Visible 

If Not .RecordCount < 
ListViewl .Listltems.Item(Val(.AbsolutePosition)).Selected = True 

1 Then 

1 Then 

MsgBox "The student was sucessfully dropped in the school.", vblnformation, "CSRS 
version 1" 

pos =O 
End With 

End If 
End Sub 

Private Sub Form_Activate() 
Commandl .SetFocus 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

'---------------------------- 
'For student view option 
I 

sds = 0 
sms = 1 
sfs = 1 
sns = 1 
sos= 1 

51 



• ---------------------------- 
'End-For student view option 

Call set_rec_getData(rs_stud, en, "Select qryStudents.* From qryStudents Where SchoolYear 
='" & SY & "' Order by Sex Desc,LastName Asc,FirstName Ase") 

reload rec 
ind controls 

Me.Caption = Me.Caption & "For School Year" & SY 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
unbind controls 

et rs_ stud = Nothing 

frm stud show = False - - 
Y="" 

sy_stat = "" 
Call save _pos(Me) 
End Sub 

Private Sub ListViewl_ItemClick(ByVal Item As MSComctlLib.Listltem) 
If Not rs stud.RecordCount < 1 Then rs stud.AbsolutePosition = ListViewl.Selectedltem - - 
End Sub 

Private Sub Textl_Change() 
If ListViewl.Listitems.Count < 1 Then Exit Sub 
Call search_in_listview(ListViewl, Textl.Text) 
End Sub 

Private Sub Textl GotFocus() 
Call highlight_focus(Textl) 
End Sub 

Private Sub Text18_Change() 
If Val(Textl8.Text) > ListViewl.Listltems.Count Or Val(Text18.Text) < 1 Then 
Text18.SetFocus: Exit Sub 
List View I .Listltems.Item(Val(Textl 8. Text)).Selected = True 
rs stud.AbsolutePosition = List View I .Selectedltem 
End Sub 
Sub bind_ controls() 

'Set the datasource 

Set Text2.DataSource = rs stud - 
Set Text3.DataSource = rs stud 
Set Text4.DataSource = rs stud 

52 



Set Text5.DataSource = rs stud 
Set Text6.DataSource = rs stud 
Set Text7.DataSource = rs stud - 
Set Text8.DataSource = rs stud 
Set T ext9 .DataSource = rs stud 
Set TextlO.DataSource = rs stud 
Set Textl 1.DataSource = rs stud 
Set Text12.DataSource = rs stud 
Set Text13.DataSource = rs stud 
Set Text14.DataSource = rs stud 
Set Textl5.DataSource = rs stud 
Set Textl6.DataSource = rs stud 
Set Textl 7.DataSource = rs stud 

'Set the datafield 

Text2.DataField = "FirstName" 
Text3.DataField = "MiddleName" 
Text4.DataField = "LastName" 
Text5.DataField = "Sex" 
Text6.DataField = "DateOfBirth" 
Text7.DataField = "Age" 
Text8.DataField = "PlaceOfBirth" 
Text9.DataField = "Address" 
TextlO.DataField = "FatherName" 
Textl l.DataField = "Occupation!" 
Text12.DataField = "MotherName" 
Text13.DataField = "Occupation2" 
Text14.DataField = "ParentAddress" 
Text15.DataField = "SchoolLastAttend" 
Textl 6.DataField = "Status" 
Textl 7.DataField = "DateEnrolled" 
End Sub 
Sub unbind_controls() 
I 

'Set the datasource 
'----------------------------------- 
Set Text2.DataSource = Nothing 
Set Text3.DataSource = Nothing 
Set Text4.DataSource = Nothing 
Set Text5.DataSource = Nothing 
Set Text6.DataSource = Nothing 
Set Text7 .DataSource = Nothing 
Set Text8.DataSource = Nothing 
Set Text9.DataSource = Nothing 
Set TextlO.DataSource = Nothing 
Set Textl l.DataSource = Nothing 
Set Textl2.DataSource = Nothing 
Set Text13.DataSource = Nothing 
Set Textl4.DataSource = Nothing 

53 



Set Text! 5.DataSource = Nothing 
Set Text16.DataSource = Nothing 
Set Text! 7.DataSource = Nothing 

et the datafield 

Text2.DataField = "" 
Text3.DataField = 1"1 

Text4.DataField = "" 
Text5.DataField = "" 
Text6.DataField = "" 
Text7.DataField = "" 
Text8.DataField = "" 
Text9.DataField = 1"' 

TextlO.DataField = "" 
Textl 1.DataField = "" 
Text12.DataField = 1111 

Text13.DataField = "" 
Text14.DataField = "" 
Text15.DataField = "" 
Text16.DataField = "" 
Text! 7.DataField = "" 
End Sub 

Private Sub Text18_GotFocus() 
Call highlight_ focus(Textl 8) 
End Sub 

Private Sub Text18_KeyPress(KeyAscii As Integer) 
If Not ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 

Private Sub Text18_LostFocus() 
Text18.Text = Val(Textl8.Text) 
End Sub 

Private Sub Text2_GotFocus() 
Call highlight_ focus(Text2) 
End Sub 
Private Sub Text3 _ GotFocus() 
Call highlight_ focus(Text3) 
End Sub 
Private Sub Text4_ GotFocus() 
Call highlight_focus(Text4) 
End Sub 
Private Sub Text5 _ GotFocus() 
Call highlight_ focus(T ext5) 
End Sub 
Private Sub Text6_GotFocus() 
Call highlight_focus(Text6) 

54 



End Sub 
Private Sub Text7 _ GotFocus() 
Call highlight_focus(Text7) 
End Sub 
Private Sub Text8_GotFocus() 
Call highlight_ focus(Text8) 
End Sub 
Private Sub Text9 _ GotFocus() 
Call highlight_ focus(Text9) 
End Sub 
Private Sub TextlO GotFocus() 
Call highlight_focus(Textl 0) 
End Sub 
Private Sub Text 11 _ GotF ocus() 
Call highlight_focus(Textl 1) 
End Sub 
Private Sub Textl2_GotFocus() 
Call highlight_focus(Text12) 
End Sub 
Private Sub Textl3 _ GotFocus() 
Call highlight_focus(Textl3) 
End Sub 
Private Sub Text14_ GotFocus() 
Call highlight_ focus(T ext 14) 
End Sub 
Private Sub Text15 GotFocus() 
Call highlight_ focus(Text 15) 
End Sub 
Private Sub Text16 GotFocus() 
Call highlight_focus(Textl 6) 
End Sub 
Private Sub Textl 7 _ GotFocus() 
Call highlight_focus(Textl 7) 
End Sub 

Public add state As Boolean 

Private Sub Commandl_Click() 
If is_empty(Textl) = True Then Exit Sub 

With rs level 
If add_state = True Then .AddNew: .Fields(O) = get_num("tblLevel", "LevelNo", en) 
.Fields(l) = Textl.Text 

.Update 
End With 
I ------------------------------ 
'Inform updates 
'------------------------------ 

55 



add state= True Then 
MsgBox "Adding of new level has been successfull.", vblnformation, "CSRS version 1" 
Dim rep As Integer 
rep = MsgBox("Do you want to add another level?", vbQuestion + vbYesNo, "CSRS 

version l ") 
If rep = vb Yes Then 
Textl.Text = "" 
Textl .SetFocus 
rs_ level.Requery 
F orm9 .load rec 

Else 
rs_level.Requery 
F orm9 .load rec 
Unload Me 

End If 
rep= 0 

Else 
MsgBox "Changes in record has been successfully saved.", vblnformation, "CSRS version 

l" 
Dim pos As Long 

pos = rs _level.AbsolutePosition 
rs_ level.Requery 
Form9.load rec 
rs_level.AbsolutePosition = pos 

Form9 .ListViewl .Listltems.ltem(pos ).Ensure Visible 
F orm9 .List View l .Listltems.Item(pos ).Selected = True 

pos = 0 
Unload Me 

End If 

'End-Inform updates 
' 
End Sub 

Private Sub Command2 _ Click() 
Unload Me 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

If add state= False Then 
Textl.Text = rs level.Fields(l) 
Me.Icon = Image List l .Listlmages( 1 ).Picture 
Me.Caption= "Edit Existing Level" 

End If 
End Sub 

56 



Private Sub Form_Unload(Cancel As Integer) 
Form9.Enabled = True 

Call save _pos(Me) 
End Sub 
Private Sub Textl_ GotFocus() 
Call highlight_focus(Textl) 
End Sub 

Option Explicit 

Private Sub Commandl_Click() 
Forml2.add state= True 
Forml2.Show 
Me.Enabled= False 
End Sub 

Private Sub CommandlO Click() 
If rs_sy.RecordCount < 1 Then MsgBox "No school year in the list.Please check it!", 
-bExclamation, "CSRS version 1 ": Exit Sub 
If rs_sy.Fields(l) = "Open" Then 

MsgBox "The school year is not closed.Please select a closed school year to re-open.", 
-bExclamation, "CSRS version 1" 
Else 

Dim rep As Integer 
rep= MsgBox("Are you sure you want to re-open the selected school year?", vbQuestion + 

vbYesNo, "CSRS version 1") 
If rep= vbNo Then Exit Sub: 
rep= 0 
Dim pos As Long 
With rs_sy 

pos = .AbsolutePosition 
.Fields(l) = "Open" 
.Update 

.Requery 
Call load rec 
.AbsolutePosition = pos 

ListViewl .Listltems.Item(Val( .AbsolutePosition)).Ensure Visible 
List View l .Listltems.Item(Val( .AbsolutePosition) ).Selected = True 

MsgBox "The school year was sucessfully re-opened.", vb Information, "CSRS version 
l" 

pos = 0 
End With 

End If 



End Sub 

Private Sub Command2 Click() 
If rs_sy.RecordCount < 1 Then MsgBox "No school year in the list.Please check it!", 
vbfixclamation, "CSRS version 1 ": Exit Sub 
If Not ListViewl.Selectedltem = "" And Not rs_sy.RecordCount < 1 Then 
rs_sy.AbsolutePosition = ListViewl.Selectedltem 
Forml2.add state= False 
Forml2.Show 
Me.Enabled = False 
End Sub 

Private Sub Command4 _ Click() 
On Error Go To Err: 
With rs_sy 

I 

'Check if there is no record 

If .RecordCount < 1 Then MsgBox "No school year in the list.Please check it!", 
vbfixclamation, "CSRS version 1 ": Exit Sub 

'Confirm deletion of record 

Dim ans As Integer 
Dim pos As Integer 
ans = MsgBox("Are you sure you want to delete the selected record?", vbCritical + 

vbYesNo, "Confirm Record Delete") 
Me.MousePointer = vbHourglass 
If ans = vb Yes Then 

'Delete the record 

pos = V al(List View 1. Selectedltem) 
Call delete rec( en, "tblSchoolY ear", 

List View I .Selectedltem.ListSubltems(l ), False, 0) 
.Requery 
If .RecordCount > 0 Then 

.AbsolutePosition = pos 
If .EOF Then .MoveFirst 

"School Year", 

'Fill listview 

pos = .AbsolutePosition 
load rec 
List View I .Listltems.Item(pos).EnsureVisible 
List View I .Listltems.Item(pos).Selected = True 
.AbsolutePosition = List View I .Selecteditem 
I --------------------------------- 
'End-fill listview 

58 



Else 
List View l .Listltems. Clear 

End If 
MsgBox "Record has been successfully deleted.", vblnformation, "Confirm" 

End If 
ans= 0 
pos = 0 
Me.MousePointer = vbDefault 

End With 
Exit Sub 
Err: 

prompt_err (Err.Description & vbCrLf & vbCrLf & "Error Number: " & Err.Number): 
Me.Mousel'ointer = vbDefault: Exit Sub 
End Sub 

Private Sub Commandc Click() 
_sy.Requery 
ad rec 

End Sub 

ivate Sub Command6_Click() 
.nload Me 
End Sub 

ivate Sub Command9 _ Click() 
rs_sy.RecordCount < 1 Then MsgBox "No school year in the list.Please check it!", 
Exclamation, "CSRS version 1 ": Exit Sub 
rs_sy.Fields(l) = "Close" Then 
MsgBox "The school year was already closed.", vbExclamation, "CSRS version 1" 

Dim rep As Integer 
rep= MsgBox("Are you sure you want to close the selected school year?", vbQuestion + 
,YesNo, "CSRS version 1 ") 
If rep= vbNo Then Exit Sub: 
rep= 0 
Dim pos As Long 
With rs_sy 

pos = .AbsolutePosition 
.Fields(l) = "Close" 
.Update 

.Requery 
Call load rec 
.AbsolutePosition = pos 

List View l .Listltems.Item(Val( .AbsolutePosition) ).Ensure Visible 
List View l .Listltems.Item(Val( .AbsolutePosition) ). Selected = True 

MsgBox "The school year was sucessfully closed.", vblnformation, "CSRS version l " 

59 



pos = 0 
End With 

End If 

End Sub 

Private Sub Form_Activate() 

If Not rs_sy.RecordCount < 1 Then rs_sy.AbsolutePosition = ListViewl .Selectedltem 
Command 1. SetF ocus 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Call set_rec_getData(rs_sy, en, "Select tblSchoolYear.* From tblSchoolYear Order by 
SchoolY ear Ase") 
oad rec 
End Sub 

ivate Sub Form_Unload(Cancel As Integer) 
t rs_sy = Nothing 

all save _pos(Me) 
End Sub 
ub load_ rec() 
een.MousePointer = vbHourglass 

all FillListView(ListViewl, rs_sy, 3, 1, True, True) 

·een.MousePointer = vbDefault 
End Sub 
Private Sub ListViewl_Click() 

Not rs_sy.RecordCount < 1 Then rs_sy.AbsolutePosition = ListViewl.Selectedltem 
End Sub 

Private Sub Textl_GotFocus() 

End Sub 

Option Explicit 

Public add state As Boolean 
Dim old_sy As String 

Private Sub Commandl_Click() 
If is_empty(Textl) = True Then Exit Sub 

60 



If Len(Textl.Text) < 9 Or Mid(Textl.Text, 5, 1) <>"-"Then MsgBox "Enry must be in this 
format (ex. yyyy-yyyy).", vbExclamation, "CSRS version 1 ": Textl.SetFocus: Exit Sub 

If old_sy <> Textl.Text Then 
If if_exist("tblSchoolYear", "SchoolYear", Textl) = True Then Exit Sub 

End If 

ith rs_sy 
If add state= True Then .AddNew 

.Fields(O) = Textl.Text 
.Update 

End With 

lnform updates 

add state= True Then 
MsgBox "Adding of new school year has been successfull.", vblnformation, "CSRS version 

" 
Dim rep As Integer 
rep= MsgBox("Do you want to add another school year?", vbQuestion + vbYesNo, "CSRS 

·ersion 1 ") 
If rep = vb Yes Then 

Textl.Text = "" 
Text 1. SetF ocus 
rs_ sy .Requery 
Forml 1.load rec 

Else 
rs_sy.Requery 
Forml 1.load rec 
Unload Me 

End If 
rep= 0 

Else 
MsgBox "Changes in record has been successfully saved.", vblnformation, "CSRS version 

" 
Dim pos As Long 

pos = rs_sy.AbsolutePosition 
rs_ sy .Requery 
Form 11.load rec 
rs_sy.AbsolutePosition = pos 

Forml 1.ListViewl .Listltems.Item(pos).Ensure Visible 
Forml 1.ListViewl .Listltems.Item(pos).Selected = True 

pos = 0 
Unload Me 

End If 

61 



'End-Inform updates 

End Sub 

Private Sub Command2_Click() 
Unload Me 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

If add state= False Then 
Textl.Text = rs_sy.Fields(O) 
old_sy = rs_sy.Fields(O) 
Me.Icon= ImageListl .Listlmages(l ).Picture 
Me.Caption= "Edit Existing School Year" 

End If 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
old_sy = "" 
Forml I .Enabled= True 

Call save _pos(Me) 
End Sub 
Private Sub Textl_ GotFocus() 
Call highlight_focus(Textl) 
End Sub 

Private Sub Textl_KeyPress(KeyAscii As Integer) 
If Not ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8 Or KeyAscii = 45) Then 
KeyAscii = 0 
End Sub 

Option Explicit 

Dim rs sel lv for sec As New ADODB.Recordset 

Private Sub Commandl_Click() 
IfListViewl.Listltems.Count < 1 Then Unload Me: Exit Sub 
With Form.14 

.lv _no= List View I .Selectedltem.ListSubltems(l) 

.lv_name = ListViewl.Selectedltem.ListSubltems(2) 

.Show 
End With 
Unload Me 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

62 



all set_rec_getData(rs_sel_lv_for_sec, en, "Select tblLevel.* From tblLevel Order by 
evelNo Ase") 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_sel_lv _for_sec = Nothing 

all save _pos(Me) 
End Sub 
ub load_ rec() 
reen.MousePointer = vbHourglass 

Call FillListView(ListViewl, rs sel lv for sec, 3, 1, True, True) - - - - 

Screen.MousePointer = vbDefault 
ListViewl.Listitems.Count < 1 Then Commandl.Caption = "&Close" 

End Sub 

Option Explicit 

Public lv _ name As String 
Public lv _ no As Long 

Private Sub Commandl_Click() 
Form15.add state= True 
Form15.Show 
Me.Enabled = False 
End Sub 

Private Sub Command2_Click() 
If rs_sec.RecordCount < 1 Then MsgBox "No section in the list.Please check it!", 
vbExclamation, "CSRS version 1 ": Exit Sub 
If Not ListViewl.Selectedltem = "" And Not rs sec.RecordCount < 1 Then 
rs sec.AbsolutePosition = List View I .Selectedltem 
Form15.add state= False 
Forml5.Show 
Me.Enabled = False 
End Sub 

Private Sub Command4_Click() 
On Error Go To Err: 
With rs sec 

I --------------------------------- 
'Check if there is no record 
I --------------------------------- 
If .RecordCount < 1 Then MsgBox "No section in the list.Please check it!", vbExclamation, 

"CSRS version 1 ": Exit Sub 

63 



I --------------------------------- 
'Confirm deletion of record 
'--------------------------------- 
Dim ans As Integer 
Dim pos As Integer 
ans = MsgBox("Are you sure you want to delete the selected record?", vbCritical + 

vbYesNo, "Confirm Record Delete") 
Me.MousePointer = vbHourglass 
If ans = vb Yes Then 

'Delete the record 

pos = Val(ListViewl.Selectedltem) 
Call delete_ rec( en, "tblSections", 

Val(List View 1. Selectedltem.ListSubltems( 1))) 
.Requery 
If .RecordCount > 0 Then 

.AbsolutePosition = pos 
If .EOF Then .MoveFirst 

"SectionNo", "" True, 

'Fill listview 

pos = .AbsolutePosition 
load rec 
List View 1.Listltems.Item(pos ).Ensure Visible 
ListViewl .Listltems.Item(pos).Selected = True 
.AbsolutePosition = List View I .Selectedltem 

'End-fill listview 
'--------------------------------- 

Else 
ListViewl .Listltems.Clear 

End If 
MsgBox "Record has been successfully deleted.", vbinformation, "Confirm" 

End If 
ans= 0 
pos = 0 
Me.MousePointer = vbDefault 

End With 
Exit Sub 
Err: 
prompt_err (Err.Description & vbCrLf & vbCrLf & "Error Number: " & Err.Number): 

Me.MousePointer = vbDefault: Exit Sub 
End Sub 

Private Sub Command5 _ Click() 
rs_ sec.Requery 
load rec 
End Sub 

64 



Private Sub Command6_Click() 
Unload Me 
End Sub 

Private Sub Form_Activate() 

If Not rs sec.RecordCount < 1 Then rs sec.AbsolutePosition = ListViewl .Selectedltem - - 
Command l .SetF ocus 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Me.Caption = Me.Caption & lv _name 
Call set_rec_getData(rs_sec, en, "Select tblSections.* From tblSections Where LevelNo =" & 
lv _no & " Order by SectionName Ase") 
load rec 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_sec = Nothing 

Call save _pos(Me) 
End Sub 
Sub load_rec() 
Screen.MousePointer = vbHourglass 

Call FillListView(ListViewl, rs_sec, 7, 1, True, True) 

Screen.MousePointer = vbDefault 
End Sub 
Private Sub ListViewl_Click() 

If Not rs sec.RecordCount < 1 Then rs sec.AbsolutePosition = ListViewl .Selectedltem 
End Sub 

Option Explicit 

Public add state As Boolean 

Sub Commandl_Click() 
_c:mpty(Textl) = True Then Exit Sub 
E-lrl"ext2.Text) = 0 Then MsgBox "The field must not be zero value.", vbExclamation, 

version 1 ": Text2.SetFocus: Exit Sub 
ext3.Text) = 0 Then MsgBox "The field must not be zero value.", vbExclamation, 
version l ": Text3.SetFocus: Exit Sub 
ext4.Text) = 0 Then MsgBox "The field must not be zero value.", vbExclamation, 
ersion 1 ": Text4.SetFocus: Exit Sub 

65 



If Val(Text2.Text) > Val(Text3.Text) Then MsgBox "The minimum average must not be 
greater than to " & Val(Text3.Text) & ".", vbExclamation, "CSRS version 1": 
Text3.SetFocus: Exit Sub 

With rs sec 
If add_state = True Then .AddNew: .Fields(O) = get_num("tblSections", "SectionNo", en): 

.Fields(l) = Form14.lv _no 
.Fields(2) = Textl .Text 
.Fields(3) = Val(Text2.Text) 
.Fields(4) = Val(Text3.Text) 
.Fields(5) = Val(Text4.Text) 

.Update 
With 

orm updates 

add state= True Then 
Msglsox "Adding of new section has been successfull.", vblnformation, "CSRS version 1" 
Dim rep As Integer 
rep = MsgBox("Do you want to add another section?", vbQuestion + vbYesNo, "CSRS 
ion 1 ") 

If rep = vb Yes Then 
Textl .Text= "" 
Text2.Text = "O" 
Text3.Text = "O" 
Text4.Text = "O" 
Text 1. SetF ocus 
rs_ sec.Requery 
Form14.load rec 

Else 
rs_ sec.Requery 
Form14.load rec 
Unload Me 

End If 
rep= 0 

Else 
MsgBox "Changes in record has been successfully saved.", vblnformation, "CSRS version 

1" 
Dim pos As Long 

pos = rs_ sec.AbsolutePosition 
rs_ sec.Requery 
Form14.load rec 
rs_sec.AbsolutePosition = pos 

Forml 4.ListViewl .Listltems.Item(pos ).Ensure Visible 
Form14.ListViewl.Listltems.Item(pos).Selected = True 

pos = 0 
Unload Me 

66 



If 

'End-Inform updates 

End Sub 

ivate Sub Command2_Click() 
.nload Me 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

add state = False Then 
Textl .Text= rs sec.Fields(2) 
Text2.Text = rs_sec.Fields(3) 
Text3.Text = rs_sec.Fields(4) 
Text4.Text = rs_sec.Fields(5) 
Me.Icon= ImageListl .Listlmages(l ).Picture 
Me.Caption= "Edit Existing Section" 

End If 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Form14.Enabled = True 

Call save _pos(Me) 
End Sub 
Private Sub Textl_GotFocus() 
Call highlight_ focus(Text 1) 
End Sub 
Private Sub Text2_ GotFocus() 
Call highlight_focus(Text2) 
End Sub 

Private Sub Text2_KeyPress(KeyAscii As Integer) 
IfNot ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 
Private Sub Text3 _ GotFocus() 
Call highlight_focus(Text3) 
End Sub 

Private Sub Text3_KeyPress(KeyAscii As Integer) 
If Not ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 

Private Sub Text4_GotFocus() 
Call highlight_focus(Text4) 
End Sub 

67 



Private Sub Text4_KeyPress(KeyAscii As Integer) 
If Not ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

MonthViewl.Value = Date 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Call save _pos(Me) 
End Sub 

Option Explicit 

Public prnt_sec As Long 

Dim rs_prnt_stud As New ADODB.Recordset 

Private Sub SSTab I_ Dbl Click() 

End Sub 

Private Sub Command!_ Click() 
If ListViewl.Listltems.Count < 1 Then MsgBox "No student record to print.", 
vbExclamation, "CSRS version 1 ": Exit Sub 
If Not rs_prnt_stud.RecordCount < 1 Then rs_prnt_stud.AbsolutePosition 
ListViewl .Selectedltem 

With rpt_ header 
.SchoolAddress = school address 
.SchoolName = school name 
.SY= "S.Y. " & rs_prnt_stud.Fields(l 1) 

End With 

Dim rpt_rs As New ADODB.Recordset 

Call set_rec_getData(rpt_rs, en, "Select qryStudents.* From qryStudents Where StudentNo =" 
& rs_prnt_stud.Fields(O) & "Order by Sex Desc,LastName Ase") 

Set DataReportl .DataSource = rpt_rs 
DataReportl .Show vbModal 

Set rpt_rs = Nothing 
End Sub 

Private Sub Command2 Click() 
If ListViewl.Listltems.Count < 1 Then MsgBox "No student record to print.", 

68 



vbExclamation, "CSRS version 1 ": Exit Sub 
If rs_pmt_stud.RecordCount < 1 Then Exit Sub 

With rpt_ header 
.SchoolAddress = school address 
.SchoolName = school name 
.SY= "S.Y. " & DataCombol.Text 

End With 

Set DataReport2.DataSource = rs_pmt_stud 
DataReport2. Show vb Modal 

End Sub 

Private Sub Command3 _ Click() 
Forml 8.Show: Me.Enabled= False 
End Sub 

Private Sub Command4 _ Click() 
If ListViewl.Listltems.Count < 1 Then MsgBox "No student record to print.", 
vbExclamation, "CSRS version 1 ": Exit Sub 
If Not ListViewl.Selectedltem = "" And Not rs_pmt_stud.RecordCount < 1 Then 
rs _pmt_ stud.AbsolutePosition = List View l .Selectedltem 

On Error Resume Next 

Kill Environ("TMP") & "\SupportDB.mdb" 
FileCopy App.Path & "\SupportDB.db", Environ("TMP") & "\SupportDB.mdb" 

Dim cn_tmp As New ADODB.Connection 
Dim rs_tmp As New ADODB.Recordset 
Dim pos, c As Long 

Call set_conn_getData(cn_tmp, Environ("TMP") & "\SupportDB.mdb", True, "reg386") 
Call set_rec_getData(rs_tmp, cn_tmp, "Select tblStudent.* From tblStudent") 

With rs_pmt_stud 
pos = .AbsolutePosition 

.MoveFirst 
For c = 1 To .RecordCount 
rs_tmp.AddNew 

rs_tmp.Fields(O) = c 
rs_ tmp.Fields( 1) = .Fields(23) 

rs_tmp.Update 

.MoveNext 
Next c 

69 



.AbsolutePosition = pos 
End With 

rs_ tmp.Requery 

With rpt_ header 
.SchoolAddress = school address 
.SchoolName = school name 
.SY= "S.Y. " & rs_pmt_stud.Fields(l 1) 
.SectionName = rs_pmt_stud.Fields("LevelName") & " - " & Text2.Text 

End With 

Set DataReport3 .DataSource = rs_ tmp 
DataReport3. Show vb Modal 

Set rs_ tmp = Nothing 
Set en_ tmp = Nothing 
End Sub 

Private Sub Commands_ Click() 
If is_empty(DataCombol) = True Then Exit Sub 
If is_empty(Text2) = True Then Exit Sub 
If Len(DataCombol.Text) < 9 Or Mid(DataCombol.Text, 5, 1) <> "-" Then MsgBox "Enry 
must be in this format (ex. yyyy-yyyy).", vbExclamation, "CSRS version l ": 
DataCombo l .SetFocus: Exit Sub 

rs_pmt_stud.Filter = adFilterNone 
rs _pmt_ stud.Requery 
If Text5.Text = "No" Then 
rs_pmt_stud.Filter = "SchoolYear ="' & DataCombol.Text & "' And Status <>'Drop' And 

SN =" & pmt_ sec 
Else 
rs_pmt_stud.Filter = "SchoolYear ="' & DataCombol.Text & "' And SN=" & pmt_sec 

End If 
Call fill rec 
End Sub 

Private Sub Command?_ Click() 
Unload Me 
End Sub 

Private Sub DataCombo 1 _ Change() 
Text2.Text = "" 
End Sub 

Private Sub DataCombol_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Form_Load() 

70 



Call use _pos(Me) 

Dim rs_sy As New ADODB.Recordset 
Call set_rec_getData(rs_sy, en, "Select tblSchoolYear.* From tblSchoolYear Order by 
SchoolYear Ase") 

Set DataCombo l .RowSource = rs_ sy 
DataCombol.ListField = "SchoolYear" 

Set rs_ sy = Nothing 

Call set_rec_getData(rs_pmt_stud, en, "Select qryStudents. * From qryStudents Order by Sex 
Desc,LastName Asc,FirstName Ase") 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_pmt_stud = Nothing 

Call save _pos(Me) 
End Sub 

Private Sub List View 1 _ Click() 

If Not rs_pmt_stud.RecordCount < 1 Then rs_pmt_stud.AbsolutePosition 
ListViewl .Selectedltem 
End Sub 

Private Sub Text2_ GotFocus() 
Call highlight_focus(Text2) 
End Sub 

Private Sub Text2_KeyPress(KeyAscii As Integer) 
Command3 Click 
End Sub 

Private Sub Text5_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Text5 _ Validate(Cancel As Boolean) 
IfText5.Text <> "No" And Text5.Text <> "Yes" Then MsgBox "Please select a valid entry in 
the list.", vbExclamation, "CSRS version 1 ":Cancel= True 
End Sub 
Public Sub fill_rec() 

Screen.MousePointer = vbHourglass 

Call FillListView(ListViewl, rs_pmt_stud, 6, 1, True, True) 
If Not rs_pmt_stud.RecordCount < 1 Then rs_pmt_stud.MoveFirst 

71 



Screen.MousePointer = vbDefault 
End Sub 

Option Explicit 

Public gen , ave As Integer 
Public lv _id As Long 

Dim rs sel sec As New ADODB.Recordset 
Private Sub Command! Click() 
If ListViewl .Listltems.Count < 1 Then Unload Me: Exit Sub 

Form I 7.pmt_sec = ListViewl.Selectedltem.ListSubltems(l) 
Form I 7.Text2 = List View I .Selectedltem.ListSubltems(2) 
Unload Me 

End Sub 

Private Sub Command3 _ Click() 
Form19.Show: Me.Enabled= False 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Call set_rec_getData(rs_sel_sec, en, "Select qrySections.* From qrySections Order by 
MinA ve Desc ") 

End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_sel_sec = Nothing 
Forml 7.Enabled = True 

Call save _pos(Me) 
End Sub 

Private Sub Label2 Click() 

End Sub 

Private Sub Text2 _ Change() 

rs sel sec.Filter= "LevelNo = " & lv id 

load rec 
End Sub 

Private Sub Text2_GotFocus() 

72 



Call highlight_focus(Text2) 
End Sub 

Private Sub Text2_KeyPress(KeyAscii As Integer) 
Command3 Click 
End Sub 
Sub load_rec() 
Screen.MousePointer = vbHourglass 

rs_ sel _ sec.Requery 
Call FillListView(ListViewl, rs_sel_sec, 6, 1, True, True) 

Screen.MousePointer = vbDefault 
If ListViewl.Listltems.Count < 1 Then 

Command I .Caption= "&Close" 
Else 
Commandl.Caption = "&Select" 

End If 
End Sub 

Option Explicit 

Dim rs sel lv As New ADODB.Recordset 

Private Sub Commandl_Click() 
If ListViewl .Listltems.Count < 1 Then Unload Me: Exit Sub 
Forml 8.lv _id= List View I .Selectedltem.ListSubltems(l) 
Forml 8.Text2 = List View I .Selectedltem.ListSubltems(2) 
Unload Me 
End Sub 

Private Sub Form_Load(J' 
Call use _pos(Me) 

Call set_rec_getData(rs_sel_lv, en, "Select tblLevel.* From tblLevel Order by LevelNo Ase") 
load rec 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_sel_lv = Nothing 
Forml 8.Enabled = True 

Call save _pos(Me) 
End Sub 
Sub load _rec() 
Screen.MousePointer = vbHourglass 

Call FillListView(ListViewl, rs_sel_lv, 3, 1, True, True) 

Screen.MousePointer = vbDefault 

73 



If ListViewl.Listitems.Count < 1 Then Commandl.Caption = "&Cancel" 
End Sub 

Option Explicit 

Dim rs_ssy As New ADODB.Recordset 

Private Sub Commandl_Click() 
With Forml 

.SY= ListViewl.Selectedltem.ListSubltems(l) 

.sy _stat= ListViewl.Selectedltem.ListSubltems(2) 

.Show 
frm stud show = True - - 

End With 
Unload Me 
End Sub 

Private Sub Command2 _ Click() 
Unload Me 
End Sub 

Private Sub DataCombol_Change() 
Me.Caption= rs_ssy.Fields(O) 
End Sub 
Private Sub Form_Load() 
Call use _pos(Me) 

Call set_rec_getData(rs_ssy, en, "Select tblSchoolYear.* From tblSchoolYear Order by 
SchoolYear Ase") 
If rs_ssy.RecordCount < 1 Then Commandl.Visible = False: Exit Sub 
' ---------------------------------- 
'Fill the list view 
' ---------------------------------- 
Call FillListView(ListViewl, rs_ssy, 3, 1, True, True) 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_ssy = Nothing 

Call save _pos(Me) 
End Sub 

Private Sub ListViewl_BeforeLabelEdit(Cancel As Integer) 

End Sub 

Option Explicit 

Dim rs_pmt_list As New ADODB.Recordset 

74 



Private Sub Checkl_Click() 

End Sub 

Private Sub Commandl_Click() 
If is_empty(DataCombol) = True Then Exit Sub 
If Len(DataCombol.Text) < 9 Or Mid(DataCombol.Text, 5, 1) <> "-" Then MsgBox "Enry 
must be in this format (ex. yyyy-yyyy).", vbExclamation, "CSRS version l ": 
DataCombol.SetFocus: Exit Sub 

If Checkl.Value = 1 Then 
rs_pmt_list.Filter = "SchoolYear ="' & DataCombol.Text & '"" 

Else 
rs_pmt_list.Filter = "SchoolYear ="' & DataCombol.Text & "' And Status <>'Drop"' 

End If 

If rs_pmt_list.RecordCount < 1 Then 
MsgBox "The selected school year does not have student record.", vbExclamation, "CSRS 

version l" 
DataCombo 1. SetF ocus 
Exit Sub 

End If 

With rpt_ header 
.SchoolAddress = school address 
.SchoolName = school name 
.SY= "S.Y. " & rs_pmt_list(l 1) 

End With 

Set DataReport4.DataSource = rs _pmt_list 
DataReport4.Show vbModal 

End Sub 

Private Sub Command2 _ Click() 
Unload Me 
End Sub 

Private Sub DataCombol_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Dim rs_sy As New ADODB.Recordset 
Call set_rec_getData(rs_sy, en, "Select tblSchoolYear.* From tblSchoolYear Order by 

75 



SchoolY ear Ase") 

Set DataCombol.RowSource = rs_sy 
DataCombol.ListField = "SchoolYear" 

Set rs_ sy = Nothing 

Call set_rec_getData(rs_pmt_list, en, "Select qryStudents.* From qryStudents Order by Sex 
Desc,LastName Asc,FirstName Ase") 

End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_pmt_list = Nothing 

Call save _pos(Me) 
End Sub 

Option Explicit 

Dim rs_pmt_list As New ADODB.Recordset 

Private Sub Commandl_Click() 
If is_empty(DataCombol) = True Then Exit Sub 
If Len(DataCombol.Text) < 9 Or Mid(DataCombol.Text, 5, 1) <> "-" Then MsgBox "Enry 
must be in this format (ex. yyyy-yyyy).", vbExclamation, "CSRS version l": 
DataCombol.SetFocus: Exit Sub 
On Error Resume Next 

Dim cn_tmp As New ADODB.Connection 
Dim rs_tmp As New ADODB.Recordset 
Dim rs lv As New ADODB.Recordset 

Call set_rec_getData(rs_lv, en, "Select tblLevel.* From tblLevel Order by LevelNo Ase") 
If rs_lv.RecordCount < 1 Then MsgBox "There is no level available.", vbExclamation, 
"CSRS version 1 ": Exit Sub 

Kill Environ("TMP") & "\SupportDB.mdb" 
FileCopy App.Path & "\SupportDB.db", Environ("TMP") & "\SupportDB.mdb" 

Call set_conn_getData(cn_tmp, Environ("TMP") & "\SupportDB.mdb", True, "reg386") 
Call set_rec_getData(rs_tmp, cn_tmp, "Select tblSummary.* From tblSummary") 

rs_pmt_list.Requery 
Do While Not rs lv.EOF 
If Checkl.Value = 1 Then 

76 



rs_tmp.AddNew 
rs_tmp.Fields(O) = rs_lv.Fields(l) 
rs_prnt_list.Filter = "SchoolYear ="' & DataCombol.Text & "' And LevelNo =" & 

rs_lv.Fields(O) & "And Sex ='Male"' 
rs _tmp.Fields(l) = rs _prnt_list.RecordCount 
rs_prnt_list.Filter = "SchoolYear ='" & DataCombol.Text & "' And LevelNo =" & 

rs_lv.Fields(O) & "And Sex ='Female"' 
rs_ tmp.Fields(2) = rs _prnt_list.RecordCount 
rs_prnt_list.Filter = "SchoolYear ="' & DataCombol.Text & "' And LevelNo =" & 

rs_ lv.Fields(O) 
rs_tmp.Fields(3) = rs_prnt_list.RecordCount 

rs_tmp.Update 
Else 

rs_ tmp.AddN ew 
rs_tmp.Fields(O) = rs_lv.Fields(l) 
rs_prnt_list.Filter = "Status <>'Drop' And SchoolYear ="' & DataCombol.Text & "' 

And LevelNo =" & rs_lv.Fields(O) & "And Sex ='Male"' 
rs_ tmp.Fields( 1) = rs _prnt_ list.RecordCount 
rs_prnt_list.Filter = "Status <>'Drop' And SchoolYear ="' & DataCombol.Text & "' 

And LevelNo =" & rs_lv.Fields(O) & "And Sex ='Female"' 
rs_ tmp.Fields(2) = rs _prnt_list.RecordCount 
rs_prnt_list.Filter = "Status <>'Drop' And SchoolYear ="' & DataCombol.Text & "' 

And LevelNo =" & rs_lv.Fields(O) 
rs_tmp.Fields(3) = rs_prnt_list.RecordCount 

rs_tmp.Update 
End If 

rs lv.MoveNext 
Loop 

With rpt_ header 
.SchoolAddress = school address 
.SchoolName = school name 
.SY= "S.Y. " & DataCombol.Text 

End With 

Set DataReport5 .DataSource = rs_ tmp 
DataReport5 .Show vbModal 

Set rs_lv = Nothing 
Set rs_tmp = Nothing 
Set cn_tmp = Nothing 

End Sub 

Private Sub Command2 _ Click() 
Unload Me 
End Sub 

Private Sub DataCombol_KeyPress(KeyAscii As Integer) 

77 



KeyAscii = 0 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Dim rs_sy As New ADODB.Recordset 
Call set_rec_getData(rs_sy, en, "Select tblSchoolYear.* From tblSchoolYear Order by 
SchoolYear Ase") 

Set DataCombo l .RowSource = rs_ sy 
DataCombo l .ListField = "SchoolY ear" 

Set rs_ sy = Nothing 

Call set_rec_getData(rs_pmt_list, en, "Select qrySummaryReport.* From qrySummaryReport 
Order by LevelNo Ase") 

End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_pmt_list = Nothing 

Call save _pos(Me) 
End Sub 

Option Explicit 

Dim rs set As New ADODB.Recordset 

Private Sub Commandl_Click() 
If is_empty(Textl) = True Then Exit Sub 
If is_empty(Text2) = True Then Exit Sub 

With rs set 
.Fields(O) = Textl .Text 
.Fields(l) = Text2.Text 
.Update 

End With 

school name= Textl .Text 
school address= Text2.Text 
MDIForml.Caption = Textl.Text & " - " & "Computerize School Registration Software 
version l" 

MsgBox "Changes has been successfully saved.", vblnformation, "CSRS version 1" 
Unload Me 
End Sub 

78 



Private Sub Command2_Click() 
Unload Me 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Call set_rec_getData(rs_set, en, "Select Systemlnfo.* From Systemlnfo") 

Textl.Text = rs_set.Fields(O) 
Text2.Text = rs_set.Fields(l) 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_set = Nothing 

Call save _pos(Me) 
End Sub 

Private Sub Textl_GotFocus() 
Call highlight_focus(Textl) 
End Sub 

Private Sub Text2_ GotFocus() 
Call highlight_focus(Text2) 
End Sub 

Private Sub Commandl_Click() 
Form26.Show 
Form26.SetFocus 
Form26.WindowState = 0 
End Sub 

Private Sub Command2_Click() 
Form25.Show 
Form25.SetFocus 
Form25.WindowState = 0 
End Sub 

Private Sub Command3 _ Click() 
Form22.Show 
Form22.SetFocus 
Form22.WindowState = 0 
End Sub 

Private Sub Command4_Click() 
Unload Me 

79 



End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Call save _pos(Me) 
End Sub 

Private Sub Label4_Click() 

End Sub 

Option Explicit 

Dim c_attempt As String 
Dim rs user As New ADODB.Recordset 
Dim conn user As New ADODB.Connection 

Private Sub Commandl_Click() 
end_app = True 
Unload Me 
End Sub 

Private Sub Command2 _ Click() 
I 

'Verify the fields if empty 
I 

If Textl.Text =""Then Textl.SetFocus: Exit Sub 
If Text2.Text =""Then Text2.SetFocus: Exit Sub 
I 
------------------------------------------------- 
'Check if the User Name is valid 
I 
------------------------------------------------- 
Ifrec_found(rs_user, "Usemame", Textl.Text) = False Then 

c _ attempt = c _ attempt - 1 
If c _ attempt < 0 Then 

MsgBox "You already used all attempt." & vbCrLf & "This will terminate the 
application.", vbCritical, "CSRS version 1" 

Else 
MsgBox "The User Name you entered is not valid." & vbCrLf & "Please try again." & 

vbCrLf & vbCrLf & "Warning: You only have " & c_attempt & " attempt.", vbCritical, 
"CSRS version 1" 

Label 7. Caption = c _ attempt 
End If 
Textl .SetFocus 
Call verify_ attempt 
Exit Sub 

End If 
I 
------------------------------------------------- 

80 



'Check if the Password is valid 
'------------------------------------------------- 
If Text2.Text <> rs_user.Fields(3) Then 

c _ attempt = c _ attempt - 1 
Label7.Caption = c_attempt 
If c _ attempt < 0 Then 

MsgBox "You already used all attempt." & vbCrLf & "This will terminate the 
application.", vbCritical, "CSRS version l" 

Else 
MsgBox "You did NOT enter the Correct Password." & vbCrLf & "Please try again." & 

vbCrLf & vbCrLf & "Warning: You only have " & c_attempt & " attempt.", vbCritical, 
"CSRS version 1" 

Label7.Caption = c_attempt 
End If 
Text2. SetF ocus 
Call verify_ attempt 
Exit Sub 

End If 

'Copy the Usemame and log-time to variable 
I ------------------------------------------------- 
user name= Textl.Text 
user_login = Now 
user_ type = rs_ user.Fields(2) 
I 

'This the Usemame and log-time to variable 
I ------------------------------------------------- 
Call record _login(user _login, user_ name) 
With MDIForml .StatusBarl .Panels 

.Item(3).Text = user_name 

.Item(6).Text = user_login 
End With 
Unload Me 
End Sub 

Private Sub Form_Activate() 
Textl .SetFocus 
End Sub 

Private Sub FormLoadi) 
I 

'Set the variables to have connection to database 

Call set_conn_getData(conn_user, App.Path & "\MasterFile.mdb", True, "reg386") 
Call set_rec_getData(rs_user, conn_user, "Select* From Users") 
I 

'Move them form to center 

Call center F orm(Me, Screen.Height, Screen. Width) 
I ------------------------------------------------- 

81 



'Initialize the number of attempt 
' ------------------------------------------------- 
c _ attempt = 3 
Label 7. Caption = c _ attempt 
End Sub 

Private Sub Form_ QueryUnload(Cancel As Integer, UnloadMode As Integer) 
I 

'If the user click the close button 

IfUnloadMode = 0 Then end_app = True 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
I 

'Clear variable from the computer memory 
I 

Set rs_user = Nothing 
Set conn_ user = Nothing 
End Sub 
Private Sub verify _attempt() 
I 

'If all attempt is used then terminate the application 
I 

If c_attempt < 0 Then end_app = True: Unload Me 
End Sub 

Private Sub Textl_ GotFocus() 
Call highlight_focus(Textl) 
End Sub 

Private Sub Text2_GotFocus() 
Call highlight_ focus(Text2) 
End Sub 

Private Sub Combol_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Commandl_Click() 
Unload Me 
End Sub 

Private Sub Command2 _ Click() 
If is_empty(Combol) = True Then Exit Sub 
If is_empty(Textl) = True Then Exit Sub 

If Len(Textl.Text) <> 4 Then MsgBox "Invalid entry. Please check it.", vbExclamation, 

82 



"CSRS version I": Textl.SetFocus: Exit Sub 

If Optionl.Value = True Then 
Dim rep As Integer 
rep= MsgBox("Are you sure you want to clear all log-in details?", vbCritical + vbYesNo, 

"CSRS version I") 
If rep = vb Yes Then Screen.MousePointer = vbHourglass: en.Execute "Delete * From 

UsersLog": Screen.MousePointer = vbDefault: MsgBox "All log-in details has been 
successfully cleared.", vbinformation, "CSRS version I" 
Else 
If month_ value( Combo 1. Text) = 0 Then MsgBox "Invalid selection.", vbExclamation, 

"CSRS version 1 ": Combol.SetFocus: Exit Sub 
Dim rs_log As New ADODB.Recordset 

Call set_rec_getData(rs_log, en, "Select qryUsers.* From qryUsers Where Month =" & 
month_value(Combol.Text) & "And Year=" & Val(Textl.Text) & "Order by Sort Ase") 

With rpt_ header 
.SchoolAddress = school address 
.SchoolName = school name 

End With 

Set DataReport6.DataSource = rs_log 
DataReport6.Show vbModal 

Set rs_log = Nothing 
End If 
End Sub 

Private Sub Framel_DragDrop(Source As Control, X As Single, Y As Single) 

End Sub 

Private Sub Optionl_Click() 
If Optionl .Value = True Then 

Frame2.Visible = False 
Else 

Frame2.Visible = True 
End If 
End Sub 

Private Sub Option2 _ Click() 
If Optionl.Value = True Then 

Frame2.Visible = False 
Else 

Frame2.Visible = True 
End If 
End Sub 
Private Sub Form_Load() 
Call use _pos(Me) 

83 



Optionl.Value = True 
With Combol 

.Additem "January" 

.Additem "February" 

.Addltem "March" 

.Additem "April" 

.Addltem "May" 

.Addltem "June" 

.Addltem "July" 

.Addltem "August" 

.Addltem "September" 

.Addltem "October" 

.Addltem "November" 

.Addltem "December" 
End With 
Textl.Text = Year(Date) 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Call save _pos(Me) 
End Sub 

Function month_value(ByVal Month_Name As String) As Byte 
month value= 0 
Month_Name = Left(UCase(Month_Name), 1) & Right(LCase(Month_Name), 
Len(Month_Name) - 1) 
Select Case Month Name 
Case "January": month_value = 1 
Case "February": month value = 2 
Case "March": month value= 3 
Case "April": month_ value= 4 
Case "May": month_ value = 5 
Case "June": month value= 6 
Case "July": month_value = 7 
Case "August": month_ value= 8 
Case "September": month value = 9 
Case "October": month value= 10 
Case "November": month value= 11 
Case "December": month value = 12 

End Select 
End Function 

Private Sub Textl_GotFocus() 
Call highlight_ focus(Textl) 
End Sub 

Private Sub Textl_KeyPress(KeyAscii As Integer) 
If Not ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 

84 



Private Sub Commandl_Click() 
Form27.add state= True 
Form27.Show 
Me.Enabled = False 
End Sub 

Private Sub Command2 _ Click() 
If rs_log.RecordCount < 1 Then MsgBox "No user in the list.Please check it!", 
vbExclamation, "CSRS version l ": Exit Sub 
If Not rs_log.RecordCount < 1 Then rs_log.AbsolutePosition = ListViewl.Selectedltem 
Form27.add state= False 
Form27.Show 
Me.Enabled = False 
End Sub 

Private Sub Command4_ Click() 
On Error Go To Err: 
With rs_log 

I 

'Check if there is no record 

If .RecordCount < 1 Then MsgBox "No user in the list.Please check it!", vbExclamation, 
"CSRS version 1 ": Exit Sub 
If Not rs_log.RecordCount < 1 Then rs_log.AbsolutePosition = ListViewl.Selectedltem 
If LCase(.Fields(l)) = LCase(user_name) Then MsgBox "Cannot delete because user is 

curently logged.", vbExclamation, "CSRS version 1 ": Exit Sub 

'Confirm deletion of record 
I --------------------------------- 
Dim ans As Integer 
Dim pos As Integer 
ans = MsgBox("Are you sure you want to delete the selected record?", vbCritical + 

vb Y esNo, "Confirm Record Delete") 
Me.MousePointer = vbHourglass 
If ans = vb Yes Then 

'Delete the record 

pos = Val(ListViewl.Selectedltem) 
Call delete_rec(cn, "Users", "Usemame", ListViewl.Selectedltem.ListSubltems(l), 

False, 0) 
.Requery 
If .RecordCount > 0 Then 

.AbsolutePosition = pos 
If .EOF Then .MoveFirst 

'Fill listview 

85 



'--------------------------------- 
pos = .AbsolutePosition 
load rec 
List View l .Listltems.Item(pos ).Ensure Visible 
List View l .Listltems.Item(pos ).Selected = True 
.AbsolutePosition = List View I .Selectedltem 

'End- fill listview 
'--------------------------------- 

Else 
List View I .Listltems.Clear 

End If 
MsgBox "Record has been successfully deleted.", vblnformation, "Confirm" 

End If 
ans= 0 
pos = 0 
Me.MousePointer = vbDefault 

End With 
Exit Sub 
Err: 
prompt_err (Err.Description & vbCrLf & vbCrLf & "Error Number: " & Err.Number): 

Me.MousePointer = vbDefault: Exit Sub 
End Sub 

Private Sub Command5_Click() 
rs_ log.Requery 
load rec 
End Sub 

Private Sub Command6 _ Click() 
Unload Me 
End Sub 

Private Sub Form_Activate() 

If Not rs_log.RecordCount < 1 Then rs_log.AbsolutePosition = ListViewl.Selecteditem 
Command I .SetFocus 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Me.Caption= Me.Caption 
Call set_rec_getData(rs_log, en, "Select Users.* From Users Order by Usemame Ase") 
load rec 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_log = Nothing 

86 



Call save _pos(Me) 
End Sub 
Sub load rec() 
Screen.MousePointer = vbHourglass 

Call FillListView(ListViewl, rs_log, 4, 1, True, False) 

Screen.MousePointer = vbDefault 
End Sub 

Private Sub Frame 1 _ DragDrop(Source As Control, X As Single, Y As Single) 

End Sub 

Private Sub ListViewl_Click() 

If Not rs_log.RecordCount < 1 Then rs_log.AbsolutePosition = ListViewl.Selectedltem 
End Sub 

Private Sub SSTabl_Click() 

End Sub 

Option Explicit 

Public add state As Boolean 

Private Sub Commandl_Click() 
If is_empty(Textl) = True Then Exit Sub 
If is_empty(Text3) = True Then Exit Sub 

With rs_log 
If add state = True Then .AddNew 

.Fields(l) = Textl.Text 

.Fields(2) = Text2.Text 

.Fields(3) = Text3.Text 
.Update 

End With 

'Inform updates 
I 

If add state = True Then 
MsgBox "Adding of new user has been successfull.", vbinformation, "CSRS version 1" 
Dim rep As Integer 
rep = MsgBox("Do you want to add another user?", vbQuestion + vbYesNo, "CSRS 

version l ") 
If rep = vb Yes Then 

87 



Textl.Text = "" 
Text2.Text = "User" 
Text3.Text = "" 
Textl .SetFocus 
rs _log.Requery 
Forrn.26.load rec 

Else 
rs_log.Requery 
Forrn.26.load rec 
Unload Me 

End If 
rep= 0 

Else 
IfLCase(user_name) = LCase(Textl.Text) Then 

user name= Textl.Text 
user_type = Text2.Text 
MDIForml.StatusBarl.Panels.Item(3).Text = user_name 

End If 
MsgBox "Changes in record has been successfully saved.", vblnformation, "CSRS version 

1" 
Dim pos As Long 

pos = rs _log.AbsolutePosition 
rs _log.Requery 
Forrn.26.load rec 
rs_log.AbsolutePosition = pos 

F orrn.26.ListView l .Listltems.Item(pos ).Ensure Visible 
Form26.ListViewl .Listltems.Item(pos).Selected = True 

pos= 0 
Unload Me 

End If 

'End-Inform updates 
I 

End Sub 

Private Sub Command2 _ Click() 
Unload Me 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

If add state = False Then 
Textl.Text = rs_log.Fields(l) 
Text2.Text = rs_log.Fields(2) 
Text3.Text = rs_log.Fields(3) 
Me.Icon= ImageListl .Listlmages(l ).Picture 

88 



Me.Caption= "Edit Existing User" 
End If 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Form26.Enabled = True 

Call save _pos(Me) 
End Sub 

Private Sub Labell _ Click() 

End Sub 

Private Sub Text 1 _ GotF ocus() 
Call highlight_ focus(Textl) 
End Sub 
Private Sub Text2_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Text2_ Validate(Cancel As Boolean) 
If Text2.Text <> "User" And Text2.Text <> "Admin" Then MsgBox "Please select a valid 
entry in the list.", vbExclamation, "CSRS version 1 ":Cancel= True 
End Sub 

Private Sub Text3_GotFocus() 
Call highlight_ focus(Text3) 
End Sub 

Option Explicit 

Public sAssign As Boolean 
Dim sEdit As Boolean 
Public sSec_Id As Long 

Private Sub Commandl_Click() 
If Commandl.Caption = "Cancel" And sEdit = True Then 

disable text 
Commandl.Caption = "&OK" 
Commandl .Default= True 
Command2.Caption = "&Edit" 
Command3.Visible = False 
Me.Caption= "Student Section" 

Else 
Unload Me 

End If 
End Sub 

89 



Private Sub Command2 _ Click() 
If rs_stud.Fields(12) = "Drop" Then MsgBox "Cannot Assign or Re-assign Section because 
the selected student was currently dropped in the school." & vbCrLf & vbCrLf & "Note: You 
can Undrop the Student if you want by selecting 'File' in the menu and then 'Student Record' 
and select 'Undrop Student'.", vbExclamation, "CSRS version 1 ": Exit Sub 
If Command2.Caption = "&Edit" Then 

sEdit = True 
enable text 
Text2.Locked = True 
Commandl.Caption = "&Cancel" 
Command2.Caption = "&Save" 
Command2.Default = True 
Command3.Visible = True 
Me.Caption= "Re-Assign Advisor" 

Else 
If is_empty(Textl) = True Then Exit Sub 
If is_empty(Text2) = True Then Exit Sub 
With rs stud 

.Fields(9) = Textl.Text 

.Fields(lO) = sSec_Id 

.Update 
Dim pos As Long 
pos = .AbsolutePosition 
.Requery 
.AbsolutePosition = pos 
pos = 0 

End With 
MsgBox "Updating of data has been successfull. ", vb Information, "CSRS version l" 
Unload Me 

End If 
End Sub 

Private Sub Command3 _ Click() 
If Val(Textl.Text) < 1 Then MsgBox "Please put the general average first.", vbExclamation, 
"CSRS version 1 ": Textl.SetFocus: Exit Sub 
If Text2.BorderStyle = 1 Then Form4.gen_ave = Val(Textl.Text): Form4.Show: Me.Enabled 
= False 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

If sAssign = True Then 
enable text 
Commandl.Caption = "&Cancel" 
Command2.Caption = "&Update" 
Command2.Default = True 
Command3.Visible = True 

90 



Me.Caption= "Assign Advisor" 
Else 
If Not rs stud.RecordCount < 1 Then 

With rs stud 
Textl.Text = .Fields(9) 
Text2.Text = .Fields(20) 
Text3.Text = .Fields(l 1) 
Text4.Text = .Fields(21) 
sSec_Id = .Fields(lO) 

End With 
End If 
Commandl .Default= True 

End If 
End Sub 

Private Sub Form_ Unload(Cancel As Integer) 
Forml.Enabled = True 

Call save _pos(Me) 
End Sub 

Private Sub Text 1 _ Change() 
If Text2.BorderStyle = 1 Then Text2.Text = "" 
End Sub 

Private Sub Textl_KeyPress(KeyAscii As Integer) 
If Not ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 

Private Sub Text2_GotFocus() 
Call highlight_focus(Text2) 
End Sub 

Private Sub Text2_KeyPress(KeyAscii As Integer) 
Command3 Click 
End Sub 

Private Sub Text3 _ GotFocus() 
Call highlight_focus(Text3) 
End Sub 
Private Sub Text 1 _ GotF ocus() 
Call highlightfocust'Textl ) 
End Sub 
Sub disable_text() 

Text I.Locked= True 
Textl.BorderStyle = 0 
Textl .BackColor = &H8000000F 
Text2.BorderStyle = 0 
Text2.BackColor = &HE6FFFF 

End Sub 

91 



Sub enable_text() 
Textl.Locked = False 
Textl.BorderStyle = 1 
Textl .BackColor = &H80000005 
Text2.BorderStyle = 1 
Text2.BackColor = &HE6FFFF 

End Sub 

Option Explicit 

Public gen_ ave As Integer 
Public lv _id As Long 

Dim rs sel sec As New ADODB.Recordset 
Dim rs cur stud As New ADODB.Recordset 

Private Sub Commandl_Click() 
If List View I .Listltems.Count < 1 Then Unload Me: Exit Sub 

IfVal(rs_cur_stud.RecordCount) + 1 > Val(ListViewl.Selecteditem.ListSubitems(5)) Then 
MsgBox "This section already have " & rs_ cur_ stud.Record Count & " student in this 

School Year" & Forml.SY & "." & vbCrLf & vbCrLf & "Note: This section allowed only" 
& ListViewl.Selectedltem.ListSubitems(5) & "students.", vbExclamation, "CSRS version 1" 
Else 

F orm3 .sSec _ Id = List View 1. Selectedltem.ListSubltems( 1) 
Form3.Text2 = ListViewl.Selectedltem.ListSubltems(2) 
Unload Me 

End If 
End Sub 

Private Sub Command3 _ Click() 
Form5.Show: Me.Enabled= False 
End Sub 

Private Sub Form_Activate() 

If ListViewl.Listltems.Count < 1 Then Exit Sub 
reset 
With ListViewl.Selectedltem 

Textl.Text = .ListSubltems(3) & " - " & .ListSubltems(4) 
Text3.Text = .ListSubltems(5) 

End With 
rs_cur_stud.Filter = "Sec = " & ListViewl.Selectedltem.ListSubltems(l) & " And 
SchoolYear ="' & Forml.SY & ""' 
Text4.Text = rs cur stud.RecordCount 
End Sub 

Private Sub Form_Load() 

92 



Call use _pos(Me) 

Call set_rec_getData(rs_sel_sec, en, 
MinA ve Desc ") 
Call set_rec _getData(rs _cur_ stud, 
qryStudentAndSection") 

"Select qrySections. * From qrySections Order by 

en, "Select qryStudentAndSection. * From 

Labell.Caption = Labell.Caption & gen_ave 

End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_sel_sec = Nothing 
Set rs_cur_stud = Nothing 
Form3.Enabled = True 

Call save _pos(Me) 
End Sub 

Private Sub ListViewl_ItemClick(ByVal Item As MSComctlLib.Listitem) 
If ListViewl.Listitems.Count < 1 Then Exit Sub 
reset 
With ListViewl.Selectedltem 

Textl.Text = .ListSubltems(3) & " - " & .ListSubltems(4) 
Text3.Text = .ListSubltems(5) 

End With 
rs_cur_stud.Filter = "((Sec) = " & ListViewl.Selectedltem.ListSubltems(l) & ") And 
((SchoolYear) ="' & Forml.SY & "') And ((Status)<> 'Drop')" 
Text4.Text = rs cur stud.RecordCount 
End Sub 
Sub reset() 
Textl.Text = "" 
Text3.Text = "" 
Text4.Text = "" 
End Sub 

Private Sub Text2_Change() 
If Text2.Text =""Then Exit Sub 

rs_sel_sec.Filter = "MinAve <=" & gen_ave & "And LevelNo =" & lv_id 

load rec 
End Sub 

Private Sub Text2_GotFocus() 
Call highlight_focus(Text2) 
End Sub 

Private Sub Text2_KeyPress(KeyAscii As Integer) 
Command3 Click 

93 



End Sub 
Sub load _rec() 
Screen.MousePointer = vbHourglass 

rs_ sel _ sec.Requery 
Call FillListView(ListViewl, rs_sel_sec, 6, 1, True, True) 

Screen.MousePointer = vbDefault 
If List View l .Listltems. Count < 1 Then 

Commandl.Caption = "&Close" 
Else 

Commandl.Caption = "&Select" 
End If 
End Sub 

Option Explicit 

Dim rs sel lv As New ADODB.Recordset 

Private Sub Commandl_Click() 
If ListViewl .Listltems.Count < 1 Then Unload Me: Exit Sub 
Form4.lv _id= ListViewl .Selectedltem.ListSubltems(l) 
Form4.Text2 = ListViewl.Selectedltem.ListSubltems(2) 
Unload Me 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Call set_rec_getData(rs_sel_lv, en, "Select tblLevel.* From tblLevel Order by LevelNo Ase") 
load rec 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_sel_lv = Nothing 
Form4.Enabled = True 

Call save _pos(Me) 
End Sub 
Sub load_rec() 
Screen.MousePointer = vbHourglass 

Call FillListView(ListViewl, rs_sel_lv, 3, 1, True, True) 

Screen.MousePointer = vbDefault 
If ListViewl .Listltems.Count < 1 Then Commandl .Caption= "&Cancel" 
End Sub 

Option Explicit 

94 



Public add state As Boolean 

Private Sub Cmnmandl_Click() 
I 

'Check the required field 
'------------------------------ 
If is_empty(Text2) = True Then Exit Sub 
If is_empty(Text3) = True Then Exit Sub 
If is_empty(Text4) = True Then Exit Sub 
If is_empty(Text5) = True Then Exit Sub 
If is_empty(Text6) = True Then Exit Sub 
If is_empty(Textl) = True Then Exit Sub 
If is_empty(Textl 7) = True Then Exit Sub 
If is_empty(Text7) = True Then Exit Sub 
If is_empty(Text8) = True Then Exit Sub 
If is_empty(Text9) = True Then Exit Sub 
If is_empty(TextlO) = True Then Exit Sub 
If is_empty(Textl 1) = True Then Exit Sub 
If is_empty(Textl2) = True Then Exit Sub 
If is_empty(Text13) = True Then Exit Sub 
If is_empty(Text14) = True Then Exit Sub 
If is_empty(Text15) = True Then Exit Sub 
If is_empty(Text16) = True Then Exit Sub 
I 

'End checking 
' 

'Updating Database 
I 

Dim c _ no As Long 
With rs stud 

If add_state = True Then .AddNew: c_no = get_num("tblStudents", "StudentNo", en): 
.Fields(O) = c_no: .Fields(! I)= Forml.SY 

.Fields(!)= Text4.Text 

.Fields(2) = Text2.Text 

.Fields(3) = Text3.Text 

.Fields(4) = Text5.Text 

.Fields(5) = Format(Text6.Text & "/" & Textl.Text & "/" & Textl 7.Text, 
"mm/dd/yyyy") 

.Fields(6) = Textr.Text 

.Fields(?)= Text9.Text 

.Fields(8) = Text15.Text 

.Fields(12) = Text16.Text 

.Fields(13) = DTPickerl.Value 

.Fields(14) = Text8.Text 

.Fields(15) = TextlO.Text 

95 



.Fields( 16) = Textl 1. Text 

.Fields(l 7) = Text12.Text 

.Fields(18) = Text13.Text 

.Fields(l9) = Text14.Text 
.Update 

End With 

'End-Updating Database 
I 

'Inform updates 
I 

If add state = True Then 
MsgBox "Adding of New Record has been successfull.", vbinformation, "CSRS version 1" 
Dim rep As Integer 
rep = MsgBox("Do you want to Record another student?", vbQuestion + vb YesNo, "CSRS 

version 1 ") 
If rep = vb Yes Then 

Command2 Click 
Call locate , new _rec( c _no) 

Else 
Call locate_ new _rec( c _no) 
Unload Me 

End If 
rep= 0 
c no= 0 

Else 
MsgBox "Changes in record has been successfully saved.", vblnformation, "CSRS version 

l" 
Dim pas As Long 

pas = rs_ stud.AbsolutePosition 
Forml .reload rec 
rs_ stud.AbsolutePosition = pas 

Forml .ListViewl .Listltems.Item(pos).Ensure Visible 
Farm I .List View l .Listltems.Item(pos ).Selected = True 

pas= 0 
Unload Me 

End If 

'End-Inform updates 
I 

End Sub 
Private Sub locate_new_rec(ByVal no As Long) 
Farm I .reload rec 
rs stud.Find "StudentNo =" & no & 1111 

If rs stud.EOF Then rs stud.MoveFirst - - 

96 



Form I .List View 1.Listltems.Item(rs _ stud.AbsolutePosition).Ensure Visible 
Form I .List View l .Listltems.Item(rs _ stud.AbsolutePosition).Selected = True 
End Sub 
Private Sub Command2_Click() 
Textl .Text="" 
Text2.Text = "" 
Text3.Text = '"' 
Text4.Text = "" 
Text5.Text = "Male" 
Text6.Text = '"' 
Text7.Text = "" 
Text8.Text = "" 
Text9.Text = '"' 
TextlO.Text = "" 
Textl I.Text="" 
Text12.Text = '"' 
Text13.Text = "" 
Text14.Text = "" 
Textl5.Text = "" 
Textl6.Text = "New" 
Textl 7.Text = "" 
DTPickerl.Value = Date 
Text2.SetFocus 
End Sub 

Private Sub Command3 _ Click() 
Unload Me 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

If add state= True Then 
Me.Caption= "Record New Student" 
DTPickerl.Value = Date 

Else 
Me.Icon= ImageListl .Listlmages(l ).Picture 
Me.Caption= "Edit Existing Student" 
Commandl.Caption = "&Save" 

'Get records 
I ------------------------------ 
With rs stud 

Text4.Text = .Fields(l) 
Text2.Text = .Fields(2) 
Text3.Text = .Fields(3) 
Text5.Text = .Fields(4) 

Text6.Text = Format(.Fields(5), "mm") 

97 



Textl.Text = Format(.Fields(5), "dd") 
Textl 7.Text = Format(.Fields(5), "yyyy") 

Text7.Text = .Fields(6) 
Text9.Text = .Fields(7) 
Text15.Text = .Fields(8) 

Text16.Text = .Fields(12) 
DTPicker 1. Value = .Fields( 13) 
Text8.Text = .Fields(14) 
TextlO.Text = .Fields(15) 
Textl 1.Text = .Fields(16) 
Textl2.Text = .Fields(l 7) 
Text13.Text = .Fields(18) 
Text14.Text = .Fields(19) 

End With 

'End-Get records 

End If 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Forml.Enabled = True 

Call save _pos(Me) 
End Sub 

Private Sub Frame2_DragDrop(Source As Control, X As Single, Y As Single) 

End Sub 

Private Sub Textl_KeyPress(KeyAscii As Integer) 
IfNot ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 

Private Sub Textl 1_ Validate(Cancel As Boolean) 
If Not Textl 1.Text =""And Len(Textl 1.Text) > 150 Then MsgBox "Please enter only 150 
characters.", vbExclamation, "CSRS version 1 ": Cancel = True 
End Sub 

Private Sub Textl3 _ Validate(Cancel As Boolean) 
If Not Text13.Text = "" And Len(Text13.Text) > 150 Then MsgBox "Please enter only 150 
characters.", vbExclamation, "CSRS version l ":Cancel= True 
End Sub 

Private Sub Text16_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

98 



Private Sub Text16_ Validate(Cancel As Boolean) 
If Textl6.Text <> "Drop" And Text16.Text <> "New" And Text16.Text <> "Old" Then 
MsgBox "Please select a valid entry in the list.", vbExclamation, "CSRS version 1 ": Cancel= 
True 
End Sub 

Private Sub Textl 7 _KeyPress(KeyAscii As Integer) 
If Not ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 

Private Sub Text2_GotFocus() 
Call highlight_focus(Text2) 
End Sub 
Private Sub Text3 _ GotFocus() 
Call highlight_ focus(Text3) 
End Sub 
Private Sub Text4_ GotFocus() 
Call highlight_ focus(Text4) 
End Sub 
Private Sub Textl_ GotFocus() 
Call highlight_focus(Textl) 
End Sub 

Private Sub Text5_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Text6_GotFocus() 
Call highlight_ focus(T ext6) 
End Sub 

Private Sub Text6_KeyPress(KeyAscii As Integer) 
If Not ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 

Private Sub Text7 _ GotFocus() 
Call highlight_focus(Text7) 
End Sub 
Private Sub Text8 GotFocus() 
Call highlight_focus(Text8) 
End Sub 
Private Sub Text9 _ GotFocus() 
Call highlight_focus(Text9) 
End Sub 
Private Sub TextlO_GotFocus() 
Call highlight_ focus(Textl 0) 
End Sub 
Private Sub Text12 GotFocus() 
Call highlight_focus(Textl2) 

99 



End Sub 
Private Sub Text14_ GotFocus() 
Call highlight_ focus(Text 14) 
End Sub 
Private Sub Text15_GotFocus() 
Call highlight_ focus(Text 15) 
End Sub 

Private Sub Text5 _ Validate(Cancel As Boolean) 
If Text5.Text <> "Male" And Text5.Text <> "Female" Then MsgBox "Please select a valid 
entry in the list.", vbExclamation, "CSRS version 1 ":Cancel= True 
End Sub 
Private Sub Text6 _ Validate(Cancel As Boolean) 
If Text6.Text =""Then Exit Sub 
If Val(Text6.Text) = 0 Or Val(Text6.Text) > 12 Then MsgBox "Please enter a valid 
dd/mm/yyyy date format.", vbExclamation, "CSRS version 1 ":Cancel= True: Exit Sub 
lfVal(Text6.Text) < 10 Then Text6.Text = "O" & Right(Text6.Text, 1) 
End Sub 
Private Sub Textl_ Validate(Cancel As Boolean) 
If Textl.Text =""Then Exit Sub 
If Val(Textl.Text) = 0 Or Val(Textl.Text) > 31 Then MsgBox "Please enter a valid 
dd/mm/yyyy date format.", vbExclamation, "CSRS version l ":Cancel= True: Exit Sub 
lfVal(Textl.Text) < 10 Then Textl.Text = "O" & Right(Textl.Text, 1) 
End Sub 
Private Sub Textl 7 _ Validate(Cancel As Boolean) 
If Textl 7.Text =""Then Exit Sub 
lfVal(Text17.Text) < 1900 Or Val(Text17.Text) > 2100 Then MsgBox "Please enter a valid 
dd/mm/yyyy date format.", vb Exclamation, "CSRS version 1 ": Cancel = True 
End Sub 

Private Sub Text7 _KeyPress(KeyAscii As Integer) 
If Not ((KeyAscii >= 48 And KeyAscii <= 57) Or KeyAscii = 8) Then KeyAscii = 0 
End Sub 

Private Sub Text7 _ Validate(Cancel As Boolean) 
If Not Text7.Text ='"'And Val(Text7.Text) < 1 Then MsgBox "Please enter the valid age of 
the student.", vbExclamation, "CSRS version 1 ":Cancel= True 
End Sub 

Option Explicit 

Private Sub Combol_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Combo2_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Command2 _ Click() 

100 



Unload Me 
End Sub 

Private Sub Commandl_Click() 
If Combol.Text =""Then Combol.SetFocus: Exit Sub 
If Option2.Value = True And Combo2.Text =""Then Combo2.SetFocus: Exit Sub 
Me.MousePointer = vbHourglass 
On Error Go To Err 
If Optionl .Value= True Then 
I 

'For quick search 
I 

rs stud.Filter= Combo I.Text & "like*" & Textl.Text & "*" 
MsgBox "There is/are " & rs_ stud.RecordCount & " record found in the search for " & 

Text I.Text & "." & vbCrLf & "'Click' reload button in the Student Record form if you want to 
show all data.", vblnformation, "CSRS version l" 
Else 

'For custom search 
'---------------------------- 
rs stud.Filter= Combo I.Text & " " & Combo2.Text & ""' & Textl.Text & ""' 
MsgBox "There is/are " & rs_stud.RecordCount & " record found in the search for " & 

Textl.Text & "." & vbCrLf & "'Click' reload button in the Student Record form if you want to 
show all data.", vblnformation, "CSRS version 1" 
End If 

'Load search result 

Forml .fill rec 
Me.MousePointer = vbDefault 
Unload Me 
Exit Sub 

'Prompt if their is an error 
I 

Err: 
Call prompt_ err(Err.Description) 
Me.MousePointer = vbDefault 
Unload Me 

End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Optionl.Value = True 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Forml.Enabled = True 

101 



Call save __pos(Me) 
· End Sub , 

Private Sub Optionl _ Click() 
Labell.Top = 1320 
Combol.Top = 1560 
Label2.Visible = False 
Label3.Visible = False 
Textl .Visible= False 
Combo2.Visible = False 
End Sub 

Private Sub Option2 _ Click() 
Labell.Top = 1320 
Combol.Top = 1560 
Label2.Visible = True 
Label3.Visible = True 
Textl .Visible= True 
Combo2.Visible = True 
End Sub 

Private Sub Text 1 _ GotF ocus() 
Call highlight_ focus(Textl) 
End Sub 

Option Explicit 

'Create variable to connect to DB 

Dim rsl As New ADODB.Recordset 
Dim rs2 As New ADODB.Recordset 
I 
-------------------------------------- 
'End-Create variable to connect to DB 

Private Sub Combol Click() 
If Combol.Text =""Then Exit Sub 
rs2.Filter = "LevelName ="' & Combol.Text & ""' 
Call fill combo(Combo2, rs2) 
End Sub 

Private Sub Command 1 _ Click() 
Dim sql As String 
I 

'Begin filtering of records 
I 

If Check2.Value = 0 And Check3.Value = 0 Then 
sql = "Sex ='None"' 

102 



Elself Check2.Value <> Check3.Value Then 
If Check2.Value = 1 Then sql ="Sex= 'Male"' 
If Check3.Value = 1 Then sql ="Sex= 'Female"' 

End If 

If sql = "" Then 
IfNot Combol.Text =""Then sql = "LevelName = "' & Combol.Text & ""' 
If Not Combo2.Text =""Then sql = sql & "And SectionName = "' & Combo2.Text & ""' 

Else 
IfNot Combol.Text =""Then sql = sql & "And LevelName = "' & Combol.Text & ""' 
If Not Combo2.Text = "" Then sql = sql & " And SectionName = "' & Combo2.Text & ""' 

End If 

If Checkl.Value = 0 And Check4.Value = 0 And Check5.Value = 0 Then 
If sql <>""Then 

sql = sql & "And Status= 'None"' 
Else 

sql = "Status = 'None"' 
End If 

Elself Checkl.Value <> Check4.Value Or Checkl.Value <> Check5.Value Or Check4.Value 
<> Check5. Value Then 
If Checkl.Value = 1 Then 
If sql <>'"'Then 

sql = sql & " And Status = 'Drop"' 
Else 

sql = "Status = 'Drop"' 
End If 

Else 
If sql <> "" Then 

sql = sql & " And Status <> 'Drop"' 
Else 

sql = "Status <> 'Drop"' 
End If 

End If 
If Check4.Value <> Check5.Value Then'/////////////////////////////////////// 
If Check4.Value = 1 Then 
If sql <> "" Then 
If Checkl.Value = 1 Then 

sql = sql & "Or Status= 'New"' 
Else 

sql = sql & "And Status= 'New"' 
End If 

Else 
sql = sql & "Status = 'New"' 

End If 
End If 

If Check5. Value = 1 Then 
If sql <>""Then 
If Checkl.Value = 1 Or Check4.Value = 1 Then 



sql = sql & " Or Status = 'Old"' 
Else 

sql = sql & " And Status = 'Old"' 
End If 

Else 
sql = sql & "Status = 'Old"' 

End If 
End If 
End If'/////////////////////////////////////// 

End If 

rs_stud.Filter = sql 
'-------------------------------------- 
'Save settings to variable 
I -------------------------------------- 
sds = Checkl.Value 
sms = Check2.Value 
sfs = Check3.Value 
sns = Check4.Value 
sos= Check5.Value 

'End-Clear variable 
I -------------------------------------- 
sql = "" 
I 

'Load search result 

Forml .fill rec 
Me.MousePointer = vbDefault 
Unload Me 
End Sub 

Private Sub Command2_Click() 
Unload Me 
End Sub 

Private Sub Combol_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Combo2_KeyPress(KeyAscii As Integer) 
KeyAscii = 0 
End Sub 

Private Sub Command3 _ Click() 
Checkl.Value = 0 
Check2.Value = 1 
Check3.Value = 1 
Check4.Value = 1 
Check5.Value = 1 

104 



Combol.Text = "" 
Combo2.Text = "" 

rs l .Requery 
rs2.Filter = adFilterNone '[ You can use also .Filter="" ] 
rs2.Requery 

Call fill combo(Combol, rsl) 
Call fill_combo(Combo2, rs2) 
End Sub 

Private Sub Form_Load() 
Call use _pos(Me) 

Checkl.Value = sds 
Check2.Value = sms 
Check3.Value = sfs 
Check4.Value = sns 
Check5.Value = sos 

'Set the variables 

Call set_rec_getData(rsl, en, "Select tblLevel.* From tblLevel Order by LevelName Ase") 
Call set_rec_getData(rs2, en, "Select qrySections.* From qrySections Order by SectionName 
Ase") 
I -------------------------------------- 
'End-Set the variables 
I -------------------------------------- 

I -------------------------------------- 
'Fill Combo control 
'-------------------------------------- 
Call fill_combo(Combol, rsl) 
Call fill_combo(Combo2, rs2) 
I 

'End-Fill Combo control 
'-------------------------------------- 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Forml.Enabled = True 

'-------------------------------------- 
'Clear variable 
I -------------------------------------- 
Set rsl = Nothing 
Set rs2 = Nothing 
'-------------------------------------- 

105 



'End-Clear variable 

Call save _pos(Me) 
End Sub 
Sub fill_combo(ByRef sCombo As ComboBox, ByRef sRS As ADODB.Recordset) 
sCombo.Clear 
If sRS.RecordCount < 1 Then Exit Sub 
sRS.MoveFirst 
Do While Not sRS.EOF 

sCombo.Additem sRS.Fields(l) 
sRS .MoveNext 

Loop 
sRS.MoveFirst 
End Sub 

Private Sub Framel_DragDrop(Source As Control, X As Single, Y As Single) 

End Sub 

Private Sub Commandl_Click() 
FormlO.add state= True 
FormlO.Show 
Me.Enabled= False 
End Sub 

Private Sub Command2_Click() 
If rs_level.RecordCount < 1 Then MsgBox "No level in the list.Please check it!", 
vbExclamation, "CSRS version l ": Exit Sub 
If Not ListViewl.Selectedltem = "" And Not rs level.RecordCount < 1 Then 
rs level.AbsolutePosition = List View 1. Selectedltem 
FormlO.add state= False 
FormlO.Show 
Me.Enabled = False 
End Sub 

Private Sub Command4_Click() 
On Error Go To Err: 
With rs level 

'Check if there is no record 

If .RecordCount < 1 Then MsgBox "No level in the list.Please check it!", vbExclamation, 
"CSRS version 1 ": Exit Sub 

'Confirm deletion of record 

Dim ans As Integer 

106 



Dim pos As Integer 
ans = MsgBox("Are you sure you want to delete the selected record?", vbCritical + 

vb YesNo, "Confirm Record Delete") 
Me.MousePointer = vbHourglass 
If ans = vb Yes Then 

'Delete the record 

pos = Val(ListViewl.Selectedltem) 
Call delete _rec( en, "tblLevel", 

Val(ListViewl .Selectedltem.ListSubltems(l ))) 
.Requery 
If .RecordCount > 0 Then 

.AbsolutePosition = pos 
If .EOF Then .MoveFirst 

"LevelNo", "" True, 

'Fill listview 

pos = .AbsolutePosition 
load rec 
ListViewl .Listltems.Item(pos ).Ensure Visible 
ListViewl .Listltems.Item(pos ).Selected= True 
.AbsolutePosition = ListViewl .Selectedltem 

'End-fill listview 

Else 
ListViewl .Listltems.Clear 

End If 
MsgBox "Record has been successfully deleted.", vblnformation, "Confirm" 

End If 
ans= 0 
pos = 0 
Me.MousePointer = vbDefault 

End With 
Exit Sub 
Err: 

prompt err (Err.Description & vbCrLf & vbCrLf & "Error Number: " & Err.Number): 
Me.MousePointer = vbDefault: Exit Sub 
End Sub 

Private Sub Command5 _ Click() 
rs_ level.Requery 
load rec 
End Sub 

Private Sub Command6 _ Click() 
Unload Me 
End Sub 

107 



Private Sub Form_Activate() 

If Not rs level.RecordCount < 1 Then rs level.AbsolutePosition = ListViewl .Selectedltem 
Command 1. SetF ocus 
End Sub 

Private Sub Form Load() 
Call use _pos(Me) 

Call set_rec_getData(rs_level, en, "Select tblLevel.* From tblLevel Order by LevelNo Ase") 
load rec 
End Sub 

Private Sub Form_Unload(Cancel As Integer) 
Set rs_level = Nothing 

Call save _pos(Me) 
End Sub 
Sub load_rec() 
Screen.MousePointer = vbHourglass 

Call FillListView(ListViewl, rs_level, 3, 1, True, True) 

Screen.MousePointer = vbDefault 
End Sub 
Private Sub ListViewl_Click() 

If Not rs level.RecordCount < 1 Then rs level.AbsolutePosition = ListViewl .Selectedltem - - 
End Sub 

Private Sub SSTabl_Click() 

End Sub 

Private Sub Textl_Change() 
If ListViewl.Listltems.Count < 1 Then Exit Sub 
Call search_in_listview(ListViewl, Textl.Text) 
End Sub 
Private Sub Textl_GotFocus() 
Call highlight_ focus(Text 1) 
End Sub 
Option Explicit 

' Reg Key Security Options ... 
Const READ CONTROL = &H20000 
Const KEY_ QUERY_ VALUE= &Hl 
Const KEY SET VALUE = &H2 - - 
Const KEY CREATE SUB KEY = &H4 - - - 
Const KEY ENUMERATE SUB KEYS = &H8 - - - 
Const KEY NOTIFY= &HlO 

108 



Const KEY CREA TE LINK= &H20 - - 
ConstKEY_ALL_ACCESS =KEY_QUERY_VALUE + KEY_SET_VALUE + _ 

KEY CREATE SUB KEY+ KEY ENUMERATE SUB KEYS + - - - - - - 
KEY NOTIFY+ KEY CREATE LINK+ READ CONTROL - - - - 

' Reg Key ROOT Types ... 
Const HKEY LOCAL MACHINE = &H80000002 - - 
Const ERROR SUCCESS = 0 
Const REG SZ = 1 
Const REG DWORD = 4 

'Unicode nul terminated string 
' 32-bit number 

Const gREGKEYSYSINFOLOC = "SOFTW ARE\Microsoft\Shared Tools Location" 
Const gREGV ALSYSINFOLOC = "MSINFO" 
Const gREGKEYSYSINFO = "SOFTW ARE\Microsoft\Shared Tools\MSINFO" 
Const gREGV ALSYSINFO = "PATH" 

Private Declare Function RegOpenKeyEx Lib "advapi32" Alias "RegOpenKeyExA" (ByVal 
hKey As Long, ByVal lpSubKey As String, ByVal ulOptions As Long, ByVal samDesired As 
Long, ByRefphkResult As Long) As Long 
Private Declare Function RegQueryValueEx Lib "advapi32" Alias "RegQueryValueExA" 
(By Val hKey As Long, By Val lp ValueName As String, By Val lpReserved As Long, ByRef 
lpType As Long, By Val lpData As String, By Ref lpcbData As Long) As Long 
Private Declare Function RegCloseKey Lib "advapi32" (ByVal hKey As Long) As Long 

Private Sub cmdSysinfo _ Click() 
Call StartSyslnfo 

End Sub 

Private Sub cmdOK _ Click() 
Unload Me 
End Sub 

Public Sub StartSysinfo() 
On Error GoTo SysinfoErr 

Dim re As Long 
Dim SysinfoPath As String 

' Try To Get System Info Program Path\Name From Registry ... 
If GetKeyValue(HKEY_LOCAL_MACHINE, gREGKEYSYSINFO, 

gREGV ALSYSINFO, SysinfoPath) Then 
' Try To Get System Info Program Path Only From Registry ... 
Elself GetKeyValue(HKEY _LOCAL_ MACHINE, gREGKEYSYSINFOLOC, 

gREGV ALSYSINFOLOC, SysinfoPath) Then 
'Validate Existance Of Known 32 Bit File Version 
If (Dir(SysinfoPath & "\MSINF032.EXE") <> "") Then 

SysinfoPath = SyslnfoPath & "\MSINF032.EXE" 

'Error - File Can Not Be Found ... 

109 



Else 
GoTo SysinfoErr 

End If 
'Error - Registry Entry Can Not Be Found ... 
Else 

GoTo SysinfoErr 
End If 

Call Shell(SysinfoPath, vbNormalFocus) 

Exit Sub 
SysinfoErr: 

MsgBox "System Information Is Unavailable At This Time", vbOKOnly 
End Sub 

Public Function GetKeyValue(KeyRoot As Long, KeyName As String, SubKeyRef As 
String, By Ref Key Val As String) As Boolean 

Dim i As Long 
Dim re As Long 
Dim hKey As Long 
Dim hDepth As Long 
Dim KeyValType As Long 
Dim tmpVal As String 
Dim KeyValSize As Long 
I 

' Loop Counter 
'Return Code 
'Handle To An Open Registry Key 
I 

' Data Type Of A Registry Key 
'Tempory Storage For A Registry Key Value 

' Size Of Registry Key Variable 

'Open RegKey Under KeyRoot {HKEY_LOCAL_MACHINE ... } 
I 

re= RegOpenKeyEx(KeyRoot, KeyName, 0, KEY_ALL_ACCESS, hKey) 'Open Registry 
Key 

If(rc <> ERROR_SUCCESS) Then GoTo GetKeyError 'Handle Error ... 

tmp Val = String$(! 024, 0) 
KeyValSize = 1024 

' Allocate Variable Space 
'Mark Variable Size 

'------------------------------------------------------------ 
' Retrieve Registry Key Value ... 
I 

re= RegQueryValueEx(hKey, SubKeyRef, 0, _ 
KeyValType, tmpVal, KeyValSize) 'Get/Create Key Value 

If(rc <> ERROR_SUCCESS) Then GoTo GetKeyError ' Handle Errors 

If (Asc(Mid(tmpVal, KeyValSize, 1)) = 0) Then ' Win95 Adds Null Terminated 
String ... 

tmpVal = Left(tmpVal, KeyValSize - 1) 'Null Found, Extract From String 
Else ' WinNT Does NOT Null Terminate String ... 

tmpVal = Left(tmpVal, KeyValSize) 'Null Not Found, Extract String Only 
End If 
'------------------------------------------------------------ 

110 



'Determine Key Value Type For Conversion ... 
' ------------------------------------------------------------ 
Select Case KeyValType 'Search Data Types ... 
Case REG_ SZ ' String Registry Key Data Type 
KeyVal = tmpVal 'Copy String Value 

Case REG_DWORD 'Double Word Registry Key Data Type 
For i = Len(tmpVal) To 1 Step -1 'Convert Each Bit 
KeyVal = KeyVal + Hex(Asc(Mid(tmpVal, i, 1))) 'Build Value Char. By Char. 

Next 
KeyVal = Format$("&h" + KeyVal) 'Convert Double Word To String 

End Select 

GetKeyValue = True 
re= RegCloseKey(hKey) 
Exit Function 

'Return Success 
' Close Registry Key 

'Exit 

GetKeyError: 
KeyVal = "" 
GetKeyValue = False 
re = RegCloseKey(hKey) 

End Function 

' Cleanup After An Error Has Occured ... 
'Set Return Val To Empty String 

' Return Failure 
' Close Registry Key 

Private Sub Label3 _ Clickt) 

End Sub 

Private Sub Form_Click() 
Unload Me 
End Sub 

Private Sub Form_KeyPress(KeyAscii As Integer) 
Unload Me 
End Sub 

Option Explicit 

Private Sub MDIForm_Activate() 
If end_ app = True Then End 
End Sub 

Private Sub MDIForm_Load() 
Call use_control_ vis(Toolbarl) 
Call use_ control_ vis(StatusBar 1) 
Call use_control_pos(Toolbarl) 

Call set_conn_getData(cn, App.Path & "\MasterFile.mdb", True, "reg386") 

Dim rs As New ADODB.Recordset 
Call set_rec_getData(rs, en, "Select Systemlnfo.* From Systemlnfo") 

111 



school_name = rs.Fields(O) 
school_ address = rs.Fieldst l) 

Set rs = Nothing 

Me.Caption= school_name & " - " & Me.Caption 

Me.Show 
frmSplash.Show vbModal 

Form24.Show vbModal 
End Sub 

Private Sub MDIForm_QueryUnload(Cancel As Integer, UnloadMode As Integer) 
Dim repp As Integer 
repp = MsgBox("This will terminate the application.Do you want to proceed?", 
vbExclamation + vb YesNo, "CSRS version l ") 
lfrepp = vbNo Then 

Cancel= 1 
End If 
End Sub 

Private Sub MDIForm_Unload(Cancel As Integer) 
I 

'Record user's logout time 
I 

Call record_logout(user_login, user_name) 

Set en= Nothing 

Call save _control_pos(Toolbar 1) 
Call save_control_ vis(Toolbarl) 
Call save_ control_ vis(StatusBar 1) 

'Terminate the entire application 
I 

End 
End Sub 

Private Sub mnuAbt_ Click() 
frmAbout.Show vbModal 
End Sub 

Private Sub mnuAI_ Click() 
Me.Arrange vbArrangelcons 
End Sub 

Private Sub mnuAO _ Click() 

112 



If user_type <> "Admin" Then MsgBox "This function is for administrator only. Please log-in 
as administrator to gain access.", vbCritical, "CSRS version 1 ": Exit Sub 

Form23.Show 
F orm23. SetF ocus 
Form23.WindowState = 0 
End Sub 

Private Sub mnuC _ Click() 
Me.Arrange vbCascade 
End Sub 

Private Sub mnuCalc _ Click() 
On Error Go To Err 
Shell "calc.exe", vbNormalFocus 
Exit Sub 
Err: 
MsgBox "You don't have a Calculator installed in your computer.", vbExclamation, "CSRS 

version 1" 
End Sub 

Private Sub mnuCalen _ Click() 
Forml6.Show 
Form16.SetFocus 
Forml6.WindowState = 0 
End Sub 

Private Sub mnuE _ Click() 
Unload Me 
End Sub 

Private Sub mnuHSM_Click() 
Toolbarl .Visible= Not Toolbarl .Visible 
End Sub 

Private Sub mnuHSS _ Click() 
StatusBarl.Visible = Not StatusBarl.Visible 
End Sub 

Private Sub mnuIR _ Click() 
Forml 7.Show 
Form I 7.SetFocus 
Forml 7.WindowState = 0 
Forml 7.Command2.SetFocus 
End Sub 

Private Sub mnuL _ Click() 
Form9.Show 
F orm9. SetF ocus 

113 



Form9.WindowState = 0 
End Sub 

Private Sub mnuMRS _ Clicki) 
Form I 7.Show 
Forml 7.SetFocus 
Forml 7.WindowState = 0 
Form 17. Command 1. SetF ocus 
End Sub 

Private Sub mnuMSR _ Click() 
If frm stud show= True Then Forml.SetFocus: Forml.WindowState = 0: Exit Sub - - 
Form2.Show 
End Sub 

Private Sub mnuMSY Click() 
Forml 1.Show 
Forml 1.SetFocus 
Forml l.WindowState = 0 
End Sub 

Private Sub innuPR_Click() 
Form21.Show 
F orm2 l . SetF ocus 
Form21.WindowState = 0 
End Sub 

Private Sub mnuS Clickt) 
Form13.Show 
Form13.SetFocus 
Form13.WindowState = 0 
End Sub 

Private Sub mnuSI_ Click() 

End Sub 

Private Sub mnuSL _ Click() 
Form20.Show 
Form20.SetFocus 
Form20.WindowState = 0 
End Sub 

Private Sub mnuSPS _ Click() 
Forml 7.Show 
Forml 7.SetFocus 
Form I 7.WindowState = 0 
Forml 7.Command4.SetFocus 
End Sub 

114 



Private Sub mnuT AB_ Click() 
Toolbarl.Align = 2 
End Sub 

Private Sub mnuTAL Click() 
Toolbarl .Align= 3 
End Sub 

Private Sub mnuT AP_ Click() 
Toolbarl.Align = 1 
End Sub 

Private Sub mnuTAR Click() 
Toolbarl.Align = 4 
End Sub 

Private Sub mnuTH _ Click() 
Me.Arrange vbTileHorizontal 
End Sub 

Private Sub mnuTV _ Click() 
Me.Arrange vb Tile Vertical 
End Sub 

Private Sub mnuNP _ Click() 
On Error Go To Err 
Shell "notepad.exe", vbNormalFocus 
Exit Sub 
Err: 

MsgBox "You don't have a NotePad installed in your computer.", vbExclamation, "CSRS 
version 1" 
End Sub 

Private Sub Toolbarl_ButtonClick(ByVal Button As MSComctlLib.Button) 
Select Case Button.Index 

Case 3: mnuMSR Click 
Case 4: mnuS Click 
Case 5: mnuL Click 
Case 6: mnuMSY Click 
Case 8: mnuMRS Click 
Case 9: mnuIR Click 
Case 10: mnuSPS Click 
Case 11: mnuSL Click 
Case 12: mnuPR Click 
Case 14: mnuCalc Click 
Case 15: mnuNP Click 
Case 16: mnuCalen Click 
Case 18: mnuAbt Click 

End Select 
End Sub 

115 



Option Explicit 

Public Sub use_pos(ByRef sForm As Form) 
On Error Resume Next 
Dim t, 1 As String 
Open App.Path & "\Settings\" & sForm.Name & ".pos" For Input As #1 
Input #1, t 
Input #1, 1 

Close #1 
t = Trim(t) 
1 = Trim(l) 
sForm.Top = Val(t) 
sForm.Left = Val(l) 
I 

'Clear variables 

t= 1111 

1 = "" 
End Sub 
Public Sub save_pos(ByVal sForm As Form) 
On Error Resume Next 
Call create_ save_ setting_ dir 
Open App.Path & "\Settings\" & sForm.Name & 11.pos" For Output As #1 

Print #1, sForm.Top 
Print #1, sForm.Left 

Close #1 
End Sub 
Public Sub use_ control_ vis(ByRef sControl) 
On Error Resume Next 
Dim t As String 
Open App.Path & "\Settings\" & sControl.Name & ".vis" For Input As #1 
Input #1, t 

Close #1 
t = Trim(t) 
sControl.Visible = t 
'------------------------- 
'Clear variables 
'------------------------- 
t = 1111 

End Sub 
Public Sub save_control_ vis(ByVal sControl) 
On Error Resume Next 
Call create_ save_ setting_ dir 
Open App.Path & "\Settings\" & sControl.Name & ".vis" For Output As #1 

Print #1, sControl.Visible 
Close #1 
End Sub 
Public Sub use_control_pos(ByRef sControl) 
On Error Resume Next 
Dim t As String 



Open App.Path & "\Settings\" & sControl.Name & ".pos" For Input As #1 
Input #1, t 

Close #1 
t = Trim(t) 
sControl.Align = Val(t) 
' ------------------------- 
'Clear variables 

t = "" 
End Sub 
Public Sub save_control_pos(ByYal sControl) 
On Error Resume Next 
Call create_ save_ setting , dir 
Open App.Path & "\Settings" & sControl.Name & ".pos" For Output As #1 

Print # 1, sControl.Align 
Close #1 
End Sub 
Private Sub create save se - 
On Error Resume Next 
MkDir (App.Path & 
End Sub 
Public Sub Filll.istviewiBvkef sListView As ListView, ByRef sRecordSource As 
ADODB.RecordseL B~-\-a1 s..."umOfFields As Byte, ByVal sNumico As Byte, ByVal 
with_num As Boolean. ByVal showfirstrec As Boolean) 
Dim X As V ariam '. Optional to be declare as variant! 
Dim i As Byte 
On Error Resume ;- 

l! 

If with num = T:_ 
Set X = 

sNumlco) 
Else 

Set X = slis~\ :~ 
End If 

· Items.Addi, , sRecordSource.AbsolutePosition, sNumlco, 

terns.Addi, , sRecordSource.Fields(O), sNumico, sNumico) 

eios - 1 
e.Fields(Val(i)) =""Then 
= True Then 

- = sRecordSource.Fields(Val(i) - 1) 

= sRecordSource.Fields(Val(i)) 

End 
Next i 

sRecordSo 
Loop 
i=O 
SetX= 
End Sub 

117 



Public Sub search_in_listview(ByRef sListView As ListView, ByVal sFindText As String) 
Dim tmp_listtview As Listltem 
Set tmp_listtview = sListView.Findltem(sFindText, lvwSubltem + lvwText, lvwPartial, 
lvwPartial) 
If Not tmp_listtview Is Nothing Then 
tmp _listtview.Ensure Visible 
tmp_listtview.Selected = True 

End If 
End Sub 
Public Sub highlight_focus(ByRef sText As TextBox) 
With sText 

.SelStart = 0 

.SelLength = Len(sText.Text) 
End With 
End Sub 
Public Sub prompt_err(ByVal sErrorDescription As String) 
MsgBox sErrorDescription & vbCrLf & vbCrLf & "*Note: Contact the programmer to learn 
more about this.", vbExclamation, "CSRS version 1" 
End Sub 

Public Sub delete_rec(ByRef sCONN As ADODB.Connection, ByVal sTable As String, 
ByVal sField As String, ByVal sString As String, ByVal isnumber As Boolean, ByVal snum 
As Long) 
If isnumber = True Then 

sCONN.Execute "Delete * From " & sTable & " Where " & sField & " =" & snum 
Else 

sCONN.Execute "Delete* From" & sTable & "Where" & sField & "="' & sString & ""' 
End If 
End Sub 
Public Function is_empty(ByRef sText As Variant) As Boolean 
If sText.Text =""Then 

is_ empty = True 
MsgBox "The field is required.Please check it!", vbExclamation, "CSRS version 1" 
sText.SetFocus 

Else 
is_empty = False 

End If 
End Function 
Public Function get_ num(ByVal sTable As String, By Val sField As String, By Ref sCN As 
ADODB.Connection) As Long 
On Error Go To Err 
Dim rs As New ADODB.Recordset 
rs.Open "SELECT Max(" & sTable & "." & sField & ") AS [Number] From" & sTable & " 
ORDER BY Max(" & sTable & " " & sField & ") DESC", sCN, adOpenStatic, 
adLockOptimistic 
get_num = rs.Fields(O) + 1 

sTable = "" 
sField = "" 
Set rs = Nothing 

118 



Exit Function 
Err: 

'Error when incounter a null value 
'--------------------------------- 
If Err.Number= 94 Then get_ num = 1: Resume Next 

End Function 
Public Function if_exist(ByVal sTable As String, ByVal sField As String, ByRef sEntryField 
As Variant) As Boolean 
Dim rs As New ADODB.Recordset 
if exist= False 
Call set_rec_getData(rs, en, "Select * From " & sTable & " Where " & sField & " ="' & 
sEntryField.Text & "'") 
If rs.RecordCount > 0 Then 

MsgBox "The adding of new entry cannot be done because "' & sEntryField.Text & "' is 
already" & vbCrLf & "exist in the record.Please check and change it." & vbCrLf & vbCrLf & 
"Note: Duplication of entries is not allowed in this form.", vbExclamation, "CSRS version l" 

sEntryField.SetFocus 
if exist = True 

End If 
Set rs = Nothing 
End Function 
Public Sub centerForm(ByRef sForm As Form, ByVal sHeight As Integer, ByVal sWidth As 
Integer) 
sForm.Move (sWidth - sForm.Width) I 2, (sHeight - sForm.Height) I 2 
End Sub 

Option Explicit 

Global school name 
Global school address 

As String 
As String 

Global user_type 
Global user name 
Global user_login 

As String 
As String 
As Date 

Global end_app As Boolean 

Global rs_log As New ADODB.Recordset 

'--------------------- 
'General connection 

Global en As New ADODB.Connection 

'For student 

Global frm stud show - - As Boolean 

Global sds, sms, sfs, sns, sos As Byte 

119 



Global rs stud As New ADODB.Recordset 

'For level 
'--------------------- 
Global rs level As New ADODB.Recordset · 

'For School Year 

Global rs_sy As New ADODB.Recordset 

'For Sections 

Global rs sec As New ADODB.Recordset 

'For printing 
I 

Global rpt_ header As report_ header 

Public Sub set_conn_getData(ByRef sConnection As ADODB.Connection, ByVal 
sDataLocation As String, ByVal sHavePassword As Boolean, ByVal sPassword As String) 
If sHavePassword = True Then 

sConnection.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & sDataLocation & 
";Persist Security Info=False.Jet OLEDB:Database Password=" & sPassword 
Else 

sConnection.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & sDataLocation & 
";Persist Security Info=False" 
End If 
End Sub 
Public Sub set rec _getData(ByRef sRecordset As ADODB.Recordset, By Ref sConnection As 
ADODB.Connection, ByVal sSQL As String) 
With sRecordset 

.CursorLocation = adUseClient 

.Open sSQL, sConnection, adOpenKeyset, adLockOptimistic 
End With 
End Sub 

Public Function rec_found(ByRef sRecordset As ADODB.Recordset, By Val sField As String, 
ByVal sFindText As String) As Boolean 
I 

'Move the recordset to the first record 

sRecordset.Requery '[ Use this instead of movefirst so that new record added can be used 
immediately ] 
'Search the record 
sRecordset.Find sField & "= "' & sFindText & ""' 

120 



'Verify if the search string was found or not 
I 

If sRecordset.EOF Then 
rec found = False 

Else 
rec found = True 

End If 
End Function 
Public Sub record_login(ByVal sTimeLogin As Date, ByVal sUserName As String) 
On Error Resume Next 

'Declare variables 

Dim rs_user_log As New ADODB.Recordset 
Dim conn_user_log As New ADODB.Connection 
I 

'Set the variables to have connection to database 

Call set_conn_getData(conn_user_log, App.Path & "\MasterFile.mdb", True, "reg386") 
Call set_rec_getData(rs_user_log, conn_user_log, "Select* From UsersLog") 
With rs_user_log 

.AddNew 
.Fields(O) = sUserName 
.Fields(l) = sTimeLogin 

.Update 
End With 

'Clear variables 

Set rs_user_log = Nothing 
Set conn_user_log = Nothing 
End Sub 
Public Sub record_logout(ByVal sTimeLogin As Date, ByVal sUserName As String) 
On Error Resume Next 
'------------------------------------------------- 
'Declare variables 
'------------------------------------------------- 
Dim rs_user_log As New ADODB.Recordset 
Dim conn_user_log As New ADODB.Connection 
I ------------------------------------------------- 
'Set the variables to have connection to database 

Call set_conn_getData(conn_user_log, App.Path & "\MasterFile.mdb", True, "reg386") 
Call set_rec_getData(rs_user_log, conn_user_log, "SELECT UsersLog.Usemame, 
UsersLog.[Log-in], UsersLog.[Log-out] From UsersLog WHERE (((UsersLog.Usemame)="' 
& sUserName & "') AND ((UsersLog.[Log-in])="' & sTimeLogin & '"))") 
With rs_ user_ log 

.Fields(2) = Now 
.Update 

End With 

121 



MsgBox s"CSc..:__,~ 
sTimeLogin 
'Clear variables 

- been sucessfully log-out.", vblnformation, "Log-out Time: " & 

Set rs_user_:::1 = _· •. ~ 
Set conn t:..<:c:" ~ - 

End Sub 

Option Expli 
Public Type re; 

Schoolxan;e __ 
SchootAddre 
SY As Ste:~ 
Sectionxzxe !._s~ 

End Type 
Private 

ls 
er.SchoolName 
er.SchoolAddress 
er.SY 

~ = rpc_header.SchoolName 
~ = q,t _ header.SchoolAddress 
JJcr:tm· = It' beader.SY 

End Sub 

er.SchoolName 
er.SchoolAddress 
er.SY 

.Itemt" 

.Item 

.Itemf 
End With 
End Sub 

.Item 

.Item 

.Item 

.Item 
EndWi 
End Sub 

beaaer.SchoolName 
er.SchoolAddress 

header.SY 
header.SectionN ame 

122 



CONCLUSION 

I believe that Student information systems is important because it set the "easly" for 

student registration and option. I collected information and notes and firstly began with page 

design.After I searched the visual basic program and what I will be able to do by this program 

The design of database system is code phase and the conclusion of the project and 

testing. I perceived to use the Visual Basic programming language more effective. I began to 

use the data report feature more effectively.We have learnt that without standards some 

aspects of computing would not work, without the good programs .. At the time of visual basic 

programming development several other commercial companies had been developing their 

own protocols. 

123 

------ -- --· --·------ 



REFERENCES 

[1] Adolfo Rodriguez .John Gatrell .John Karas .Roland Peschke 

[2] Cisco Systems, Inc 

[3] Near East University Library 

[ 4] Microsoft Corporation. me 

[5] Mr.Omit Ilhan 

[6] Mernik Y.[2001)_\·ll~cn!" 
Siirtim(BETA Basnn ~~ 

Basic for Windows 98/me/2000/xp Profesyonel 
A.S) 

[7] Pala, Z[2004JH Basic (Akcag Basim Yayim Dagrnm A.~) 

124 


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	ACKNOWLEDGEMENTS 

	Images
	Image 1


	Page 3
	Titles
	ABSTRACT 

	Images
	Image 1


	Page 4
	Titles
	TABLE OF CONTENTS 
	ACKNOWLEDGEMENTS 
	TABLE OF CONTENTS 
	CHAPTER ONE: VISUAL BASIC 
	CHAPTER TWO: DATABESES 
	1 
	2 

	Images
	Image 1


	Page 5
	Titles
	CHAPTER THREE: SCHOOL REG/STRATON PROGRAM 

	Images
	Image 1


	Page 6
	Images
	Image 1


	Page 7
	Titles
	INTRODUCTION 

	Images
	Image 1


	Page 8
	Titles
	CHAPTER ONE :VISUAL BASIC 

	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Images
	Image 1


	Page 13
	Images
	Image 1


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 16
	Images
	Image 1


	Page 17
	Titles
	CHAPTER TWO : DATABESES 

	Images
	Image 1


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1


	Page 20
	Images
	Image 1


	Page 21
	Images
	Image 1


	Page 22
	Images
	Image 1


	Page 23
	Images
	Image 1


	Page 24
	Images
	Image 1


	Page 25
	Images
	Image 1


	Page 26
	Titles
	Ł 
	Ł 
	Ł 

	Images
	Image 1


	Page 1
	Titles
	Ł 

	Images
	Image 1


	Page 2
	Images
	Image 1

	Tables
	Table 1


	Page 3
	Images
	Image 1


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1


	Page 9
	Titles
	- 

	Images
	Image 1


	Page 10
	Titles
	CHAPTER THREE :SCHOOL REGISTRA TON 

	Images
	Image 1
	Image 2


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Images
	Image 1


	Page 13
	Images
	Image 1


	Page 14
	Images
	Image 1
	Image 2
	Image 3


	Page 15
	Images
	Image 1
	Image 2


	Page 16
	Images
	Image 1
	Image 2
	Image 3


	Page 17
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Images
	Image 1
	Image 2
	Image 3


	Page 20
	Images
	Image 1


	Page 1
	Images
	Image 1
	Image 2
	Image 3


	Page 2
	Images
	Image 1
	Image 2


	Page 3
	Images
	Image 1


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Titles
	46 

	Images
	Image 1


	Page 7
	Titles
	APPENDIX 
	Program Source Codes 

	Images
	Image 1


	Page 8
	Images
	Image 1


	Page 9
	Titles
	"" 

	Images
	Image 1


	Page 10
	Titles
	=O 
	End Sub 

	Images
	Image 1


	Page 11
	Titles
	1 
	1 

	Images
	Image 1
	Image 2


	Page 12
	Images
	Image 1


	Page 13
	Images
	Image 1
	Image 2


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 16
	Titles
	' 

	Images
	Image 1


	Page 17
	Images
	Image 1
	Image 2


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1


	Page 20
	Titles
	End Sub 

	Images
	Image 1


	Page 21
	Titles
	" 
	" 

	Images
	Image 1


	Page 22
	Images
	Image 1


	Page 23
	Images
	Image 1


	Page 24
	Titles
	"" 

	Images
	Image 1


	Page 25
	Images
	Image 1
	Image 2


	Page 26
	Images
	Image 1


	Page 27
	Images
	Image 1


	Page 28
	Images
	Image 1


	Page 29
	Images
	Image 1
	Image 2


	Page 30
	Images
	Image 1


	Page 1
	Titles
	71 

	Images
	Image 1


	Page 2
	Images
	Image 1


	Page 3
	Images
	Image 1
	Image 2


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Images
	Image 1
	Image 2
	Image 3


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1
	Image 2


	Page 9
	Images
	Image 1
	Image 2


	Page 10
	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Images
	Image 1


	Page 13
	Images
	Image 1
	Image 2


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 16
	Images
	Image 1


	Page 17
	Images
	Image 1


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Images
	Image 1


	Page 20
	Images
	Image 1


	Page 21
	Images
	Image 1
	Image 2


	Page 22
	Images
	Image 1
	Image 2


	Page 23
	Images
	Image 1


	Page 24
	Images
	Image 1
	Image 2


	Page 25
	Images
	Image 1
	Image 2


	Page 26
	Images
	Image 1
	Image 2


	Page 27
	Images
	Image 1
	Image 2


	Page 28
	Images
	Image 1


	Page 29
	Images
	Image 1


	Page 30
	Images
	Image 1


	Page 1
	Images
	Image 1


	Page 2
	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Images
	Image 1
	Image 2


	Page 5
	Titles
	105 

	Images
	Image 1
	Image 2


	Page 6
	Titles
	106 

	Images
	Image 1


	Page 7
	Titles
	"" 

	Images
	Image 1


	Page 8
	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Images
	Image 1


	Page 13
	Images
	Image 1
	Image 2


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1
	Image 2


	Page 16
	Images
	Image 1
	Image 2


	Page 17
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1


	Page 20
	Images
	Image 1


	Page 21
	Images
	Image 1


	Page 22
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 23
	Titles
	CONCLUSION 


	Page 24
	Titles
	REFERENCES 
	[2] Cisco Systems, Inc 
	[3] Near East University Library 
	[ 4] Microsoft Corporation. me 
	[5] Mr.Omit Ilhan 
	[6] Mernik Y.[2001)_\·ll~cn!" 
	Basic for Windows 98/me/2000/xp Profesyonel 
	[7] Pala, Z[2004JH 
	Basic (Akcag Basim Yayim Dagrnm A.~) 
	124 

	Images
	Image 1
	Image 2
	Image 3
	Image 4



