
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

HOSPITAL AUTOMATION SYSTEM WITH V.B.NET

Graduation Project
COM400

Student: Kamil Selek(20011335)

Supervisor: Mr. Ümit İlhan

Nicosia-2006

ACKNOWLEDGMENTS

It is my pleasure to take this opportunity to express my greatest gratitude to man individuals

who have given me a lot of supports during my four-year Undergraduation program in the

Near East University. Without them, my Graduation Project would not have been

successfully completed on time.
First of all, I would like to express my thanks to my supervisor Mr. Ümit İlhan for

supervising my project. Under the guidance of him I successfully overcome many difficulties

and I learned a lot about web designing. In each discussion, he used to explain the problems

and answer my questions. He always helped me a lot and I felt remarkable progress during his

supervisior. Also I thankes for giving his time during the my study and my advisering.

I also want to thank all my friends and specially Adem Atçeken, Alper Karakuş, Yahya

Göksay and Sinan Çıklaçevik who supported and helped me all the time.

Finally, special thanks for my family, especially my parents for being patientfull during my

undergraduate degree study. I could never have completed my study without their

encouragement and endless support.

I

TABLE OF CONTENTS

ACKNOWLEDGEMENT
TABLE OF CONTENTS
ABSTRACT
INTRODUCTION
I.VISUAL BASIC.NET

1.2.The New Look of Visual Basic
1.3.Getting Started with VB.NET

1.3.1.Statements and Lines
1.3.2. Comments
1 . 3 .3.Operators
1 . 3.4.Using Procedures
1.3.4.1.Subroutines
1 .3 .4.2.Functions
1.3.5.Using Variables and Parameters
1.3.6.Understanding Visual Basic.NET Syntax and Structure

1.3.6.1. Constants
1 .3 .6.2.Implicit and Explicit Variable Declarations

1.3.6.3.0ption Explicit Versus Option Strict
1 .3 .6.4.Arrays

1 .3 .6.50ptional Parameters
1.3.7.Using Branching and Looping Structures

1.3.7.lBranching in VB.NET

1.3.7.1. 1 The If...Then ...Else Statement
1.3.7.1.2.The Select...Case Statement
l.3.7.2Looping in VB.NET
1.3.7.2.1 The Do ...Loop Statement
1.3.7.2.2.The While ...End While Statement

1.3.7.2.3.The For. ..Next Statement

1.3.7.2.4The For. ..Each Statement.
1.3.8.Creating Objects

1.3.9.00P Primer
1.3.9. l Objects and Classes
1.3.9.2Inheritance and Polymorphism

1.3. IO.Windows Forms
1.3.10.1. Creating a Form

1.3.10.1.1 Creating a Form Using Visual Studio .NET
1.3.10.2.Controls, Common Dialog Boxes, and Menus
1.3.10.2.1 Common Controls and Components
1.3.10.2.2.The Button Class
1.3.10.2.3. The CheckBox Class
1.3.10.2.4The ComboBox Class

1.3.10.2.5.The DateTimePicker Class

1.3.10.2.6.The GroupBox Class

I
II
IV

1
2
2
2
3
3
3
4
4
4
4
5
5
6

6
8

8
9
9

9
10
10
11
12

12

12
13

13
13
13

14
14

14
16
16
17
17
17

18

18

II

1.3.10.2.7.The ImageList Class 18
1.3.10.2.8.The Label Class 18

1.3.10.2.9.The LinkLabel Class 19

1.3.10.2.10.The ListBox Class 19

1.3.10.2.11 The ListBox.ObjectCollection Class 21

1.3.10.2.12.The ListView Class 23

1.3.10.2.13.The MonthCalendar Class 23

1.3.10.2.14.The Panel Class 23

1.3.10.2.15.The PictureBox Class 23

1.3.10.2.16.The RadioButton Class 24

1 .4.Developing Database Applications 24

1 .4. 1. A Brief History of Universal Data Access 25
1 .4.2. Managed Providers 25
1 .4.3 Connecting to a SQL Server Database 26
1 .4.5. Reading Data into a DataSet 27

2.SQL Server 2000 30
2. 1 .Introduction 30
2.2.How Will SQL Server 2000 Benefit My Organization? 30
2.3What language SQL Server uses to implement and maintain the 31

relational model
2.4.What software is used to access SQL Server 31
2.5.SQL Server 2000 Architecture 31

2.5.1.Relational Databases 33
2.5.1.1.Database 33
2.5.1.2Table 33
2.5.1.3Column 33
2.5.1.4.View 34
2.5.1.5.Trigger 34
2.5.1.6. Index 34
2.5.1.7.Key 34
2.5.1.8.Default 34
2.5.1.9.Constraint 34
2.5.1.10. Stored procedure 34
2.5.1.11 User-defined data type 34
2.5.1.12. User-defined function 34

3.DATABASE DESIGN OF THE PROGRAM & INTERFACE 35

3.lDatabase Design of The Program 35
3 .2.Interface 3 7

CONCLUSION 41
REFERENCES 42
APPENDIX: Program Codes 43

III

ABSTRACT

Automation programs with the development of the technology became compulsory software

to make easy the works of the human in large platforms. Because the computers take place in

every part of our lives.

At the beginning Data holded on paper, it is moved to the computer with the aim of decrease

the data loosing and after a time it spreat to data base usege as a result of being data security,

accessibility, data management and ordering facilities.

The program which I prepared for dental department of medicine is a software that can record

the patient personel informations safely, record the applied treatments easily with the help of

visual interface and control the treatment cost and payments with the help of data base

queryıng.

While preparing this project I used Visual Basic.Net as programing language and SQL Server

for database.

IV

INTRODUCTION

The technology is entered to every platform of our life, the usage of computer is spread

day by day. Without software the machines are nothing therefore there are software

need in many sectors human needed both software and hardware together. The main

point is making the user's job easy.

My project is a practise of software which is prepared to facilitate the studies in dental

department of medicine. software that can record the patient personel informations

safely, record the applied treatments easily with the help of visual interface and control

the treatment cost and payments with the help of data base querying .

Chapter 1 I explained the main structure, syntax, usage of Visual Basic.Net which I

used in preparing my project.

Chapter2 I explained structure and usage of SQL Server which I used for database.

Cahpter3 I showed the codes which I wrote, methods that I applied and the function of

project which I wrote.

1

1.VISUAL BASIC.NET

1.1. Why Should You Move toVisual Basic.NET?

One of the most common questions today is, "Why should I move to .NET?" .NET is

new, and there are many questions about what it can do for you. From a Visual Basic

standpoint, it's important to understand some of the dramatic benefits that can be

achieved by moving to VB.NET.

1.2.The New Look of Visual Basic
In moving to VB.NET, Microsoft has ditched a number of older, arcane features like

GoSub and default properties, and totally reworked features such as arrays and data

types. Other native features like the MsgBox function and the Cxxx convert functions

have been demoted. These demoted features are still in VB.NET but Microsoft is

recommending that you move to using the .NET System classes instead. Of course,

depending on your experience and base of existing legacy VB applications, some of the

changes may cause considerable pain. More than likely, however, you will soon grow to

appreciate the redesigned VB language.
What does the new Visual Basic.NET language mean to the average ASP developer

who has written thousands of lines of VBScript code but who has had little exposure to

VB proper? If you find yourself in this category of developer, you may experience a

short period of bewilderment, as you get accustomed to the wealth of new features

offered by VB.NET, features that VBScript never offered. But soon enough, you will

start to forget the limited VBScript language and grow to appreciate and even love the

much more nimble and full-featured VB.NET.

1.3.Getting Started with VB.NET
Compared to many programming languages, Visual Basic.NET is a fairly easy language

to learn. Unlike the C family of languages, VB.NET prefers to use the English language

rather than cryptic symbols like &&, II, and %. Unlike prior versions of the VB

language, however, VB.NET is a full-featured object-oriented language that can hold its

own when compared to C++, C#, or Java. The remainder of this chapter consists of a

walkthrough of the essential elements of the VB.NET language.

2

1.3.1.Statements and Lines
VB.NET statements can be placed on one or more lines. Unlike C++, C#, and Java,

there is no statement terminator character in VB. When continuing a statement across

more than one line, you must end continuation lines with a space followed by an

underscore character LJ.
For example, the following VB.NET statement spans two lines:

Function CreateFullName(LastName As String,_ FirstName As String)

1.3.2. Comments
You can add comments to your code using the apostrophe (') character. Everything to

the right of an apostrophe is ignored by the VB.NET compiler:

x = y + 5 'Add 5 to the value of y

1.3.3.0perators
Like any programming language, VB.NET has its assortment of operators. The most

common of these operators are summarized in Table 1.3.3.

Table 1.3.3

Continued Type Operator Purpose

Comparison
<
<=

>
>=

<>
Like

Is

Logical And

Or

Not

Xor

Exponentiates the value of a
variable by an expression and assigns
the result to the

variable*
Is equal to
Is less than
Is less than or equal to
Is greater than
Is greater than or equal to
Is not equal to
Matches a pattern*
Do object variables refer to same
object

True if both expressions are

true
True if one or both expressions
are true
True if the expression is False

True if one expression is true, but not
both*

Example
X /\= y

If (x = y)
If (x < y)
If (x <= y)
If (x > y)
If (x >= y)
If (x <> y)
If (x Like "p??r")
If (x Is y)

If (x = 3 And y =
4)

If (x = 3 Or y = 4)

If Not (x = 5)

If (x = 3 Xor y =
4)

3

* This operator was introduced in VB.NET.
You will find a number of examples that use the VB.NET operators scattered about the

chapter.

1.3.4.Using Procedures
The basic unit of executable code in VB.NET, as in most programming languages, is the

procedure. VB supports two basic types of procedures: the subroutine (or sub) and the

function.

1.3.4.1.Subroutines
You declare a subroutine with the Sub statement. For example

Sub HelloWorld() Response.Write("Hello World") End Sub

You call a sub using either of the following statements:

HelloWorld() Call HelloWorld()

1.3.4.2.Functions
Functions in VB.NET are similar in functionality to subroutines with one difference:

Functions can return a value to the calling program. You create a function with the

Function statement. For example, the following function returns "Hello World" to the

calling code:
Function SayHello() Return "Hello World" End Function

1.3.5.Using Variables and Parameters
You use the Dim, Private, Protected, Friend, or Public statements in VB.NET to declare

a variable and its data type. Which statement you use depends on where you wish to

declare the variable.
To declare a variable from within a subroutine or function, you use the Dim statement.

For example

Function DoSomething()

Dim Counter As Integer End Function
A variable declared using Dim is local to the procedure in which it is declared.

To declare a variable that's global to the entire page, you declare the variable outside of

any subroutine or function using the Private statement. For backward compatibility,

4

Dim also works in this context, but it's best to use Private instead. New for VB.NET,

you can both declare a variable and set its initial value in one statement.

For example
Dim Age As Integer= 23 Private Company As String = "Microsoft"

VB.NET supports the data types shown in Table 1.3.5.

Table 1.3.5

Visual Basic.NET Data .NET Runtime Storage Range of Values

Types Visual Basic
Data Type Data Type Size

Boolean System.Boolean 4 bytes True or False

Byte System.Byte 1 byte O to 255 (unsigned)

Char System.Char 2 bytes
1 Unicode""
character

Date System.DateTime 8 bytes January 1, 0001
to December 31 ,9999
12:00:00 AM

1.3.6.Understanding Visual Basic.NET Syntax and Structure
You may have noticed that there is no entry for Variant in Table 1.3.5. That's because

VB.NET no longer supports the Variant data type. However, you can use the generic

Object type any place you would have used Variant in prior versions of VB. (In

VB.NET, Variant is a synonym for Object.) Unlike prior versions of VB, if you use a

declare statement as shown in the following example, all three variables will be declared

as integers:

Dim x, y, z As Integer
In prior versions of VB, x and y would be declared as variant variables and only z

would be declared as an Integer.

1.3.6.1. Constants
You can use the Const statement to declare a constant. Like a variable, a constant holds

a value; however, a constant's value is set at design time and may not change. You can

include the Private or Public keyword within the Const statement to alter the scooping

of the constant declaration. Here are a few examples:

5

Const Pi As Double= 3.14159

Private Const CmPerinch As Double = 2.54

Public Const BookTitle As String= "ASP for Developers"

In addition to user-defined constants, VB.NET and the .NET Framework define a

number of intrinsic constants. For example, you can use the intrinsic constant CrLf

anytime you wish to add a carriage return and line feed to a string:

MsgString = "An error has occurred in the program." & _ CrLf & "Click on OK to

continue or CANCEL to abort."

1.3.6.2.Implicit and Explicit Variable Declarations
VB has always supported implicit variable declarations, which means that you are not

required to declare your variables or parameters before using them. However, most

professional developers agree that you should not take advantage of this VB feature

unless you like bugs in your code. The issue is best demonstrated with an example:

Function Multiply(numberl, number2)

Return numberl * numbr2 End Function

The Multiply function will always return O because we misspelled one of the

parameters. This happens because VB.NET implicitly declares numbr2 and initializes it

to O because it is used in a numeric context. You can avoid this type of hard-to-find bug

by using Option Explicit or Option Strict. In this example, if you had used either of

these options, VB.NET would generate a compile-time error when the page was

compiled.

1.3.6.3.0ption Explicit Versus Option Strict
VB has always had the Option Explicit declaration, which forces you to declare all your

variables, but VB.NET also introduces Option Strict, which goes one step further. In

addition to forcing you to declare all your variables, Option Strict restricts the types of

implicit conversions that the language allows. When you use Option Strict, VB won't

allow conversions where data loss would occur. Option Strict also disallows implicit

conversions between numeric and string data types.

6

To specify Option Explicit, you can use the following page directive at the top of the

ASP page:

<%@ Page Explicit="True" %>

To specify Option Strict, you can use the following page directive at the top of the ASP

page:
<%@ Page Strict="True" %>

7

1.3.6.4.Arrays
You create arrays in VB.NET using the Dim, Public, or Private statements. You use paren

theses to specify that you wish to declare an array rather than a scalar variable. For example,

the following statement creates an array of strings:

Dim Names() As String

Before using an array, you must specify the total number of elements in the array with the

ReDim statement:

Dim Names() As String ReDim Names(2) Names(O)= "Mike" Names(l) = "Paul"

All arrays have a lower bound of zero. The number you place between the parentheses of the

ReDim statement designates the total number of elements the array will hold. Thus, a value of

2 as shown in this example tells VB that the array will hold two string elements, numbered O

and 1.

1.3.6.50ptional Parameters
VB.NET supports optional parameters. To create an optional parameter you insert the

Optional keyword before the parameter name and you supply the parameter's default value

after the data type, like this:

Optional parameter_name As data_type = default_value

The following function takes a string and makes it into an HTML heading of a level specified

by the Level parameter. If Level is not specified, it is assumed to be 1:

The HelloWorld.aspx page calls CreateHead twice from the Page Load subroutine:

<script language="VB" runat="server">

Sub Page_Load(Src as Object, E as EventArgs)

If Not Page.IsPostBack Then

DisplayMsg.Text = CreateHead("Hello World!", 3)

DisplayMsg.Text &= CreateHead("Hello Universe!")

8

End If

End Sub ' ... </script>

<asp:label id="DisplayMsg" runat="server" />

The first time the code calls CreateHead with the phrase "Hello World" and Level is equal to

3. The second time the code calls CreateHead with the phrase "Hello Universe" and Levelis

not specified, which is interpreted to mean a heading level of 1. This produces a page like the

one shown in Figure 1.3.6.5.

Sample ASPx4Devs Page

Hello World!

Hello Universe!

Figure 1.3.6.5

This sample page illustrates the use of optional parameters.

Every parameter to the right of an optional parameter must also be optional.

1.3.7.Using Branching and Looping Structures
More than likely, you'll want to be able to conditionally branch in your code based on the

value of a variable or an expression. Or perhaps you'll want to repeatedly loop through a

section of code. VB.NET supports several branching and looping structures.

1.3.7.lBranching in VB.NET
You can branch in your code using the If. .. Then ... Else statement or the Select Case statement.

1.3.7.1.1The If...Then ...Else Statement
You use the If... Then ...Else statement (or simply the If statement) to conditionally execute a

piece of code based on the value of some expression. The simplest form of the If statement

contains an If clause without any Else clause. Such a statement was used in an earlier example

(from HelloWorld.aspx):

If Not Page.IsPostBack Then

DisplayMsg.Text = CreateHead("Hello World!", 3)

DisplayMsg.Text &= CreateHead("Hello Universe!") End If

9

In this example, the two assignment statements are executed only when Page.IsPostBack is

False. Otherwise, no statements are executed.

1.3.7.1.2. The Select ...Case Statement
You can also use the Select...Case statement for branching in VB.NET. The Select...Case

statement is useful when you wish to check the value of an expression against a list of

possible values and execute a different set of code for each value.
This example checks the value of the integer variable PayMethod against a list of possible

values. The Select...Case statement sets the value of two string variables to various values

depending on the value of PayMethod.

Select Case PayMethod

Case 1

PayMethText = "Visa"
SubmitText = "Complete Order and Bill My Credit Card" Case 2

PayMethText = "Mastercard"
SubmitText = "Complete Order and Bill My Credit Card" Case 3

PayMethText = "American Express"
SubmitText = "Complete Order and Bill My Credit Card" Case 4

PayMethText = "Company PO"

SubmitText = "Complete Order" Case 5

PayMethText = "Check"

SubmitText = "Complete Order" Case Else

PayMethText = "Error"
SubmitText = "Illegal Payment Method: please correct." End Select

Notice the Case Else clause, which is executed if none of the other cases is true.

1.3.7.2Looping in VB.NET
You can loop using the Do...Loop statement, the While...End While statement, the For...Next

statement, or the For...Each statement.

10

1.3.7.2.lThe Do ... Loop Statement
You can use the Do ... Loop statement (or simply Do loop) to execute a set of statements

repeatedly, either while some condition is true or until some condition becomes true.

For example, the following code from titles.aspx fills a dropdownlist control with records

from the titles table of the pubs sample SQL Server database. We have used a Do loop to

move through each of the records returned by the query and added them to the dropdownlist' s

Listltem collection. (See Chapter 10, "Designing Advanced User Interfaces with Web For

List Controls and Custom Web Controls," for more on Web Form list controls and Chapter

15, "Accessing SQL Server Data with the SQL Managed Provider," for more on using

ADO.NET with the SQL Managed Provider.)

Sub FillList() Dim ConnectString As String=_ "server=localhost;uid=sa;

pwd=;database=pubs"

Dim SQL As String

Dim PubsCnx As SQLConnection

Dim TitlesQry As SQLCommand

Dim TitlesRdr As SQLDataReader

Dim Titleltem As Listltem

PubsCnx = New SQLConnection(ConnectString)

PubsCnx.Open()
SQL = "SELECT title, title _id FROM titles ORDER BY title"

TitlesQry = New SQLCommand(SQL, PubsCnx)

TitlesQry.Execute(TitlesRdr)
Do While TitlesRdr.Read() Titleltem = New Listltem(TitlesRdr("title"), TitlesRdr("title _id"))

T itleList.Items .Add(Titleltem)

Loop End Sub
The Do ... Loop statement from the FillList subroutine uses the SQLDataReader's Read

method to retrieve the next record returned by the query. Read advances the current record

pointer and returns True if it was able to successfully retrieve a record or False if there are no

more records to retrieve.

11

1.3. 7 .2.2. The Wbile ... End While Statement
The While ... End While statement (or simply the While loop) is very similar to the Do ... Loop

statement. You can use it to execute a set of statements repeatedly, while some condition is

true. For example

While i<=Length IfMid(Phrase, i, 1) ="."Then

Exit While

End if

i += 1

End While

1.3.7.2.3.The For Next Statement
You can use the For Next statement (or simply the For loop) to repeatedly execute a block of

statements a specified number of times. While similar in concept to the Do and While loops,

the For loop differs in that it automatically increments a counter variable for you.

The For loop is especially useful for iterating through the items in an array. For example, the

following code iterates through all of the elements in the Colors array and displays them on

the page:

For i = O To UBound(Colors)

Response.Write("
" & i & "=" & Colors(i)) Next

1.3.7.2.4The For ... Each Statement
The For. .. Each statement is a special kind of For. .. Next loop that is useful for iterating

through members of a collection. A collection is an ordered set of items, usually objects, that

you can refer to and manipulate as a unit. For example, when working with ADO.NET, you

can work with the Errors collection of Error objects.

For example, the following function (from titles2.aspx) returns an HTML table containing a

row for each record in the titles table of the SQL Server Pubs database. The DataSet's Table

object contains a collection of rows and each row contains a collection of columns. The

DisplayTitles function employs two nested For...Each loops to iterate through the TitlesSet

dataset. (Datasets and ADO .NET are explained in more detail in Chapter 15 and Chapter 16,

"Accessing Non-SQL Server Data with the OLE DB Managed Provider.")

12

1.3.8.Creating Objects
Prior versions of VB lacked many object-oriented programming (OOP) features that other

languages such as C++, Java, and FoxPro have had for years. Fortunately, VB.NET includes

strong support for OOP.

1.3.9.00P Primer
Class, subclass, inheritance, constructor, polymorphism: Object-oriented programming uses

lots of fancy new terms that undoubtedly confuse the non-OOP programmer. In this section,

you'll find a 10-minute primer of OOP terminology.

1.3.9.lObjects and Classes
Objects are things that you want to represent in your code. Another way to think of an object

is as a grouping of properties, methods, and events that are logically tied together. You work

with an object by manipulating its properties and methods and reacting to its events.

A class is a template or schema for creating an object. At design time you create the class that

serves as the template for creating objects at runtime. An object is thus an instance of a class.

And that's one of the neat things about using classes: You can have as many instances of a

class as you want, and VB automatically keeps each object's data independent of each other

object's data. Another neat thing about classes is that they encapsulate the implementation of

the object into a neat package. Encapsulation allows you to separate the implementation of the

class (the code inside of the class that makes it work) from its interface (the public properties,

methods, and events of the class).

1.3.9.2Inheritance and Polymorphism
One of the big additions to VB.NET is its support for inheritance. Inheritance allows you to

create classes that are descendants of another class. When a class inherits from another class,

the original class is termed the base class(also sometimes referred to as the superclass or

parent class) and the class that inherits from the base class is called the derived class (also

sometimes referred to as the subclass or child class).

VB.NET supports the overriding of a base class's methods with alternate implementations.

Polymorphism is the ability of different classes to support the properties and methods with the

13

same name but with different implementations. VB.NET's support for overriding allows your

classes to support polymorphism.

1.3.10.Windows Forms
Windows Forms is a set of classes that encapsulates the creation of the graphical user

interface (GUI) portion of a typical desktop application. Previously, each programming

language had its own way of creating windows, text boxes, buttons, etc. This functionality has

all been moved into the .NET Framework class library-into the types located in the

System.Windows.Forms namespace. Closely related is the System.Drawing namespace,

which contains several types used in the creation of GUI

applications. The capabilities provided by the types in the System.Drawing namespace are

commonly referred to as GDI+ (discussed more fully later in this chapter). In this chapter,

we'll examine the form (or window) as the central component in a classic desktop application.

We'll look at how forms are programmatically created and how they're hooked to events.

We'll also examine how multiple forms in a single application relate to one another and how

you handle forms in an application that has one or more child forms. Finally, we'll discuss two

topics,printing and 2-D graphics, that are relevant to desktop application development.

1.3.10.1. Creating a Form
The easiest way to design a form is to use the Windows Forms Designer in Visual Studio

.NET. The developer can use visual tools to lay out the form, with the designer translating the

layout into Visual Basic .NET source code. If you don't have Visual Studio .NET, you can

write the Visual Basic .NET code directly and not use the designer at all. This section will

demonstrate both methods.

Programmatically, a form is defined by deriving a class from the Form class (defined in

System.Windows.Forms). The Form class contains the know-how for displaying an empty

form, including its title bar and other amenities that we expect from a Windows form. Adding

members to the new class and overriding members inherited from the Form class add visual

elements and behavior to the new form.

1.3.10.1.1 Creating a Form Using Visual Studio .NET
To create a GUI application in Visual Studio .NET:

1. Select File New Project. The New Project dialog box appears, as shown in

Figure 1.3.10.1.1.

14

\\fetı '\iıı'tftı 5¢ı ¥ie#
~~!

Figure 1.3.10.1.1

2. Select Visual Basic Projects in the Project Types pane on the left side of the dialog box.

3. Select Windows Application in the Templates pane on the right side of the dialog box.

4. Enter a name in the Name text box.
5. Click OK. Visual Studio .NET creates a project with a form in it and displays the form in a

designer, as shown in Figure 1.3. 1 O .1.2

15

Figure 1.3.10.1.2

1.3.10.2.Controls, Common Dialog Boxes, and Menus
By themselves, one or more forms provide very little functionality to most desktop

applications. For the most part, forms are valuable insofar as they serve as containers for

controls. In this chapter, we'll complete our discussion of building desktop applications by

focusing on the objects that forms contain-in particular, controls and components, common

dialogs, and menus.

1.3.10.2.1 Common Controls and Components
This section contains a summary of the controls and components defined in the

System.Windows.Forms namespace. Components are classes derived from the Component

class(defined in the System.ComponentModel namespace). They may or may not provide a

visual interface.
They are often used as elements of forms but don't have to be. Controls are classes derived

from the Control class (defined in the System.Windows.Forms namespace). Controls

16

generally are used to build the visual appearance of a form. The Control class itself is derived

from the Component class, so controls are also components.

The common dialog boxes are not listed here, even though they all derive from the

Component class. They are given their own section, Section 5 .4 later in this chapter.

1.3.10.2.2.The Button Class
This class represents a button control, which is one of the most commonly used controls in

Windows applications. The Button class's Click event, which it inherits from Control, is its

most commonly used event.
The Button class inherits two important properties from ButtonBase: FlatStyle and Image.

The first determines the appearance of the button and can take any value of the FlatStyle

enumeration: Flat, Popup, Standard (the default), and System. Buttons with these four settings

are shown in Figurel.3.10.2.2. Assigning FlatStyle.System as the value of the FlatStyle

property makes the appearance of the button dependent on the operating system

Figure1.3.10.2.2.

The Image property allows you to embed an image into a button. The following code shows

how to programmatically set the Image property of Button:

Buttonl .Image = New System.Drawing.Bitmap(filepath)

1.3.10.2.3. The CheckBox Class
The CheckBox class represents a checkbox control. Its appearance is determined by its

Appearance property, which can take either value of the Appearance enumeration: Button or

Normal (the default). The Button value is rarely used because this setting makes the checkbox

look like a Button to uncheck it.

1.3.10.2.4The ComboBox Class
Both the ComboBox and ListBox classes derive from the ListControl class; therefore, the

ComboBox class is very similar to the ListBox class and has properties and methods similar

to those of the ListBox class.

17

1.3.10.2.5.The DateTimePicker Class
The DateTimePicker class represents a control that allows users to select a date in the

calendar, just like the MonthCalendar control. Unlike MonthCalendar, however, the

DateTimePicker control only displays a box, which looks like a combo box, containing the

selected date. When the user clicks the arrow, the control displays a drop-down calendar

similar to the MonthCalendar control, from which the user can select a date. This drop-down

portion closes as soon as the user selects a date. T he usercan also click on the day, date,

month, or year portion of the control for editing. The DateTimePicker class has MinDate and

MaxDate properties that are similar to the ones in the MonthCalendar class. To set the current

date or to obtain the selected date, use the Value property of the DateTimePicker class. The

selected date is readily available as a DateTime data type.

1.3.10.2.6.The GroupBox Class
As the name implies, a GroupBox control is used for grouping other controls, such as radio

buttons or checkboxes; it corresponds to the Frame control in Visual Basic 6.0. A GroupBox

grouping two radio buttons is shown in The Controls property of GroupBox represents a

Control.ControlCollection class. It has methods such as Add, AddRange, Clear,

GetEnumerator, and Remove, which behave exactly as do the same methods in

Form.ControlCollection. For example, you can add several controls at once to a GroupBox

using its AddRange method, as demonstrated by the following code that adds two radio

buttons to a GroupBox named groupBox1:

groupBox1.Controls.AddRange(New Control() {radioButtonl, radioButton2})

1.3.10.2.7.The lmageList Class
The ImageList class allows you to manage a collection of images. The most important

property of this class is Images, which returns an ImageList.ImageCollection object. The

ImageList.ImageCollection class has methods to add and remove images from the collection.

The Add method of the ImageList.ImageCollection class adds a bitmap image or an icon to

the ImageList's image collection.

1.3.10.2.8.The Label Class
This class represents a Label control. Its appearance is determined by two properties:

BorderStyle and FlatStyle. The BorderStyle property defines the appearance of the control's

border and takes any of 190 the three members of the BorderStyle enumeration: None (the

default), FixedSingle, and Fixed3D.

18

1.3.10.2.9.The LinkLabel Class
The LinkLabel class represents a label that can function as a hyperlink, which is a URL to a

web site. Its two most important properties are Text and Links. The Text property is a String

that defines the label of the LinkLabel object. You can specify that some or all of the Text

property value is a hyperlink. For example, if the Text property has the value "Click here for

more details", you can make the whole text a hyperlink, or you can make part of it (e.g., the

word "here") a hyperlink. How to do this will become clear after the second property is

explained. For a LinkLabel to be useful, it must contain at least one hyperlink. The Links

property represents a LinkLabel.LinkCollection class of the LinkLabel object. You use the

Add method of the LinkLabel.LinkCollection class to add a LinkLabel.Link object. is linked

to the URL

The LinkLabel class has a number of properties that are related to the appearance of a

LinkLabel.

1.3.10.2.10.The ListBox Class
The ListBox class represents a box that contains a list of items. The following are its more

importantproperties:

Multi Column

This is a Boolean that indicates whether the listbox has more than one column. Its default

value is False.

Column Width

In a multicolumn listbox, this property represents the width of each column in pixels. By

default, the value of this property is zero, which makes each column have a default width.

Items

This is the most important property of the ListBox class. It returns the

ListBox.ObjectCollection class, which is basically the Items collection in the ListBox. You

can programmatically add an item using the Add method or add a range of items using the

AddRange method of the ListBox.ObjectCollection class. For example, the following code

adds the names of vegetables and fruits to a ListBox object named listBox 1:

listBoxl.Items.AddRange(New Object()_

{ "apple" "avocado" "banana" "carrot"' ' ' ,_
"mandarin", "orange"})

SelectionMode

19

This property determines whether multi-item selection is possible in a ListBox object. It can

be assigned any member of the SelectionMode enumeration: None, One (the default value),

MultiSimple, and MultiExtended. Both MultiSimple and MultiExtended allow the user to

select more than one item. However, MultiExtended allows the use of the Shift, Ctrl, and

arrow keys to make a selection.

Selectedlndex
This is the index of the selected item. The index is zero-based. If more than one item is

selected, this property represents the lowest index. If no item is selected, the property returns -

1.

Selectedlndices
This read-only property returns the indices to all items selected in a ListBox object in the

form of a ListBox.SelectedlndexCollection object. The ListBox.SelectedlndexCollection class

has a Count property that returns the number of selected indices and an Item property that

returns the index number. For example, the following code returns the index number of all

selected items in a ListBox control named listBoxl:

Dim selectedlndices As ListBox.SelectedlndexCollection

' Obtain the selected indices.

selectedlndices = listBox1 .Selectedlndices

' Get the number of indices.

Dim count As Integer= selectedlndices.Count

Dimi As Integer

For i = O To count - 1

Console.WriteLine(selectedlndices(i))

Next

Selectedltem
This read-only property returns the selected item as an object of type Object. You must cast

the returned value to an appropriate type, which is normally String. If more than one item is

selected, the property returns the item with the lowest index.

Selectedltems
This read-only property returns all items selected in a ListBox object in the form of a

ListBox.SelectedObjectCollection object. The ListBox.SelectedObjectCollection class has a

Count property that returns the number of items in the collection and an Item property that

you can use to obtain the selected item. For example, the following code displays all the

selected items of a ListBox control called listBoxl:

20

Dim selectedltems As ListBox. SelectedObj ectCollection

selectedltems = listBox 1 .Selectedltems

Dim count As Integer= selectedltems.Count

Dim iAs Integer

For i= O To count - 1

Console.WriteLine(selectedltems(i))

Next

Sorted
A value of True means that the items are sorted. Otherwise, the items are not sorted. By

default, the value of this property is False.

Text
This is the currently selected item's text.

Toplndex
This is the index of the first visible item in the ListBox. The value changes as the user scrolls

through the items.

1.3.10.2.11 The ListBox.ObjectCollection Class
This class represents all the items in a ListBox object. It has a Count property that returns the

number of items in the ListBox and an Item property that returns the item object in a certain

index position. The following sample code reiterates all the items in a ListBox control named

listBoxl:
Dim items As ListBox.ObjectCollection

items = ListBox 1 .Items

Dim count As Integer = items.Count

Dim i As Integer

For i = O To count - 1

Console.WriteLine(items(i))

Next
In addition, the ListBox.ObjectCollection class has the following methods:

Add
Adds an item to the ListBox object. Its syntax is:

ListBox.ObjectCollection.Add(item)
where item is data of type Object that is to be added to the collection. The method returns the

zero-based index of the new item in the collection.

21

AddRange

Adds one or more items to the ListBox object. Its most common syntax is:

ListBox.ObjectCollection.AddRange(items())
where items is an array of objects containing the data to be added to the ListBox.

Clear
Clears the ListBox, removing all the items. Its syntax is:

ListBox.ObjectCollection.Clear()

Contains
Checks whether an item can be found in the list of items. Its syntax is:

ListBox.ObjectCollection.Contains(value)
where value is an Object containing the value to locate in the ListBox. The method returns

True if value is found; otherwise, it returns False.

Copy To
Copies all items to an object array. Its syntax is:
ListBox.ObjectCollection.CopyTo(dest(), arraylndex) where dest is the Object array to

which the ListBox items are to be copied, and arraylndex is the starting position w_ithin dest at

which copying is to begin.

Index Of
Returns the index of a particular item. Its syntax is: ListBox.ObjectCollection.IndexOf(value)

where value is an Object representing the item to locate in the collection. The method returns

the item's index. If the item cannot be found, the method returns -1.

Insert
Inserts an item into the ListBox at the specified index position. Its syntax is:

ListBox.ObjectCollection.Insert(index, item)
where index is the zero-based ordinal position at which the item is to be inserted, and item is

an Object containing the data to be inserted into the collection.

Remove
Removes the item that is passed as an argument to this method from the ListBox. Its syntax is:

ListBox.ObjectCollection.Remove(value)
where value is an Object representing the item to remove from the collection.

RemoveAt
Removes an item at the specified index position. Its syntax is:

ListBox.ObjectCollection.RemoveAt(index) where index is the zero-based ordinal position in

the collection of the item to be removed.

22

1.3.10.2.12.The ListView Class
A ListView is a container control that can hold a collection of items. Each item in a ListView

can have descriptive text and an image, and the items can be viewed in four modes. The

righthand pane of Windows Explorer is a ListView control.

1.3.10.2.13.The MonthCalendar Class
The MonthCalendar class represents a control that displays days of a month. A

MonthCalendar control is shown in Figure 5-5. By default, when first displayed, the control

displays the current month on the user's computer system. Users can select a day by clicking

on it or select a range of dates by holding the Shift key while clicking the date _at the end of

the desired range. Users can also scroll backward and forward to previous or upcomıng

months, or they can click on the month part and more quickly

select one of the 12 months. To change the year, users can click on the year part and click the

scrollbar that appears.

1.3.10.2.14.The Panel Class
A panel is a container that can hold other controls. Panels are typically used to group related

controls in a form. Like the PictureBox class, the Panel class has a BorderStyle property that

defines the panel's border and can take as its value any member of the BorderStyle

enumeration: None (the default value), FixedSingle, and Fixed3D.

You can add controls to a Panel object using the Add method or the AddRange method of the

Control.ControlCollection class. The following code adds a button and a text box to a Panel

control called panel 1:

1.3.10.2.15.The PictureBox Class
The PictureBox class represents a control to display an image. Loading an image into this

control is achieved by assigning a System.Drawing.Bitmap object to its Image property, as the

following code does:

Dim pictureBox 1 As PictureBox = New PictureBox()

pictureBoxl.Image = New System.Drawing.Bitmap("c:\tv.bmp")

pictureBoxl.Location = New System.Drawing.Point(72, 64)

pictureBoxl.Size = New System.Drawing.Size(l44, 128)

23

Me. Controls.Add(pictureBox 1)

In addition, the PictureBox class has the BorderStyle and SizeMode properties. The

BorderStyle property determines the PictureBox object's border and can take as its value any

member of the BorderStyle enumeration: None (the default value), FixedSingle, and Fixed3D.

The SizeMode property determines how the image assigned to the Image property is

displayed. The SizeMode property can take any of the members of the PictureBoxSizeMode

enumeration: AutoSize, Centerlmage, Normal (the default value), and Stretchlmage.

1.3.10.2.16.The RadioButton Class
The RadioButton class represents a radio button. When you add more than one radio button to

a form, those radio buttons automatically become one group, and you can select only one

button at a time. If you want to have multiple groups of radio buttons on a form, you need to

use a GroupBox or Panel control to add radio buttons in the same group to a single GroupBox

or Panel. The following code shows how you can add two radio buttons to a GroupBox and

then add the Group Box to a form. Notice that you don't need to add each individual radio

button to a form:' Declare and instantiate a GroupBox and two radio buttons.

Dim groupBoxl As GroupBox = New GroupBox()

Dim radioButtonl As RadioButton = new RadioButton()

Dim radioButton2 As RadioButton = new RadioButton()

1.4.Developing Database Applications
Many software applications benefit from storing their data in database management systems.

A database management system is a software component that performs the task of storing and

retrieving large amounts of data. Examples of database management systems are Microsoft

SQL Server
All examples in this chapter assume that the following declaration appears in the same file as

the code:

Imports System.Data

Examples that use SQL Server also assume this declaration:

Imports System.Data.SqlClient

and examples that use Access assume this declaration:

Imports System.Data.OleDb

24

1.4.1. A Brief History of Universal Data Access
Database management systems provide APis that allow application programmers to create

and access databases. The set of APis that each manufacturer's system supplies is unique to

that manufacturer. Microsoft has long recognized that it is inefficient and error prone for an

applications programmer to attempt to master and use all the APis for the various available

database management systems. What's more, if a new database management system is

released, an existing application can't make use of it without being rewritten to understand the

new APis. What is needed is a common database APL
Microsoft's previous steps in this direction included Open Database Connectivity (ODBC),

OLE DB, and ADO (not to be confused with ADO.NET). Microsoft has made improvements

with each new technology.
With .NET, Microsoft has released a new mechanism for accessing data: ADO.NET. The

name is a carryover from Microsoft's ADO (ActiveX Data Objects) technology, but it no

longer stands for ActiveX
Data Objects-it's just ADO.NET. To avoid confusion, I will refer to ADO.NET as

ADO.NET and to ADO as classic ADO.
If you're familiar with classic ADO, be careful-ADO.NET is not a descendant, it's a new

technology. In order to support the Internet evolution, ADO.NET is highly focused on

disconnected data and on the ability for anything to be a source of data. While you will find

many concepts in ADO.NET to be similar to concepts in classic ADO, it is not the same.

1.4.2. Managed Providers
When speaking of data access, it's useful to distinguish between providers of data and

consumers of data. A data provider encapsulates data and provides access to it in a generic

way. The data itself can be in any form or location. For example, the data may be in a typical

database management system such as SQL Server, or it may be distributed around the world

and accessed via web services. The data provider shields the data consumer from having to

know how to reach the data. In ADO.NET, data providers are referred to as managed

providers.
A data consumer is an application that uses the services of a data provider for the purposes of

storing, retrieving, and manipulating data. A customer-service application that manipulates a

customer database is a typical example of a data consumer. To consume data, the application

must know how to access one or more data providers.

ADO.NET is comprised of many classes, but five take center stage:

25

Connection

Represents a connection to a data source.

Command
Represents a query or a command that is to be executed by a data source.

DataSet
Represents data. The DataSet can be filled either from a data source (using a DataAdapter

object) or dynamically.

DataAdapter
Used for filling a DataSet from a data source.

DataReader
Used for fast, efficient, forward-only reading of a data source.

With the exception of DataSet, these five names are not the actual classes used for accessing

data sources. Each managed provider exposes classes specific to that provider. For example,

the SQL Server managed provider exposes the SqlConnection, SqlCommand,

SqlDataAdapter, and SqlDataReader classes. The DataSet class is used with all managed

providers.
Any data-source vendor can write a managed provider to make that data source available to

ADO.NET data consumers. Microsoft has supplied two managed providers in the .NET

Framework:SQL Server and OLE DB.
The examples in this chapter are coded against the SQL Server managed provider, for two

reasons.
The first is that I believe that most programmers writing data access code in Visual Basic

.NET will be doing so against a SQL Server database. Second, the information about the SQL

Server managed provider is easily transferable to any other managed provider.

1.4.3 Connecting to a SQL Server Database
To read and write information to and from a SQL Server database, it is necessary first to

establish a connection to the database. This is done with the SqlConnection object, found in

the System.Data.SqlClient namespace. Here's an example:

' Open a database connection.

Dim strConnection As String=_

"Data Source=localhost;Initial Catalog=Northwind;" _

& "Integrated Security=True"

26

Dim en As SqlConnection = New SqlConnection(strConnection)

en.Open()

This code fragment instantiates an object of type SqlConnection, passing its constructor a

connection string. Calling the SqlConnection object's Open method opens the connection. A

connection must be open for data to be read or written, or for commands to be executed.

When you're finished accessing the database, use the Close method to close the connection: '

Close the database connection.

en.Close()

The connection string argument to the SqlConnection class's constructor provides information

that allows the SqlConnection object to find the SQL Server database. The connection string

shown in the earlier code fragment indicates that the database is located on the same machine

that is running the code snippet (Data Source=localhost), that the database name is Northwind

(Initial Catalog=Northwind), and that the user ID that should be used for logging in to SQL

Server is the current Windows login account (Integrated Security=True)

1.4.5. Reading Data into a Dataset
The DataSet class is ADO.NET's highly flexible, general-purpose mechanism for reading and

updating data. how to issue a SQL SELECT statement against the SQL Server Northwind

sample database to retrieve and display the names of companies located in London. The

resulting display is shown in Figure.

Figure 1 .4.5 .. The output generated by the code

Retrieving data from SQL Server using a SQL SELECT statement

' Open a connection to the database.

Dim strConnection As String=_

"Data Source=localhost; Initial Catalog=Northwind;"

& "Integrated Security=True"

Dim en As SqlConnection = New SqlConnection(strConnection)

en.Open()

27

'Set up a data set command object.

Dim strSelect As String = "SELECT * FROM Customers WHERE City= 'London"'

Dim dscmd As New SqlDataAdapter(strSelect, en)

' Load a data set.

Dim ds As New DataSet()

dscmd.Fill(ds, "London Customers")

' Close the connection.

en.Close()

'Do something with the data set.

Dim dt As DataTable = ds.Tables.Item("LondonCustomers")

Dim rowCustomer As DataRow

For Each rowCustomer In dt.Rows

Console.Write Line(rowCustomer .Item(" Company Name"))

Next

The code in Example 8-1 performs the following steps to obtain data from the database:

1. Opens a connection to the database using a SqlConnection object.

2. Instantiates an object of type SqlDataAdapter in preparation for filling a DataSet object.

SQL SELECT command string and a Connection object are passed to the SqlDataAdapter

object's constructor.

3. Instantiates an object of type DataSet and fills it by calling the SqlDataAdapter object's Fill

method.

1.5. The Dataset Class
The DataSet class encapsulates a set of tables and the relations between those tables.

The DataSet is alwayscompletely disconnected from any data source. In fact, the DataSet has

no knowledge of the source of its tables and relations. They may be dynamically created using

methods on the DataSet, or they may be loaded from a data source. In the case of the SQL

Server managed provider, a DataSet can be loaded from a SQL Server database using an

SqlDataAdapter object.

28

f'lWwııı:,ıi~ıniıH.~
!'1¢!11)0:;' --..-

Figure 1.5

29

2.SQL Server 2000

2.1.Introduction
Every organization has data close to its heart. Storing and caring for data are the roles of SQL

Server. SQL Server's robust RDBMS architecture supports hosting multiple, distinct

databases and, since version 7.0, provides native file system support, simplifying the

management of database files. Planning for the location and growth of these files is an

important process in designing and creating your database. This chapter discusses the

architecture of SQL Server, various storage systems for SQL database files, and how to

design an efficient database file structure for your application.
Creating databases in SQL Server can be as simple as responding to dialog box prompts using

the Create Database Wizard or as configurable as the T-SQL CREATE DATABASE

statement. We review the options available for creating databases and configuring options

such as database support for various collations,a new option in SQL Server 2000. Several

features are available for tasks such as moving databases and supporting database growth with

file autogrow and multiple data files.
Before you can begin creating the physical database and storage files, you need to understand

the database structure and its requirements. This chapter reviews the architecture of SQL

Server as well as the modeling techniques and tools available to design and implement your

database solution. Having a clear understanding of the database model is essential to planning

and modifying your physical database.

2.2.How Will SQL Server 2000 Benefit My Organization?
SQL Server 2000 includes many new and enhanced features that have proven beneficial to all

types of organizations and applications, including e-commerce, business intelligence, and

line-of-business applications. Integrated technologies such as XML support, OLAP, and data

mining engines offer an unprecedented list of features, allowing SQL Server to play an

integral role in every aspect of your organization-from business-to-business integration and

electronic commerce to back-office data analysis and decision support. The importance of

technologies such as XML continues to increase as organizations work toward greater

integration with business partners, providing higher levels of efficiency and access to new

customers. OLAP and data-mining capabilities result in more successful business decisions

based on the discovery of new information among your piles of data. Whether your

organization is a small business or a multinational corporation, SQL Server 2000 offers

advantages such as improved self-tuning, automatic file growth, and configuration wizards

30

through four-node fail-over clustering, federated servers, and support for up to 32 processors

and 64GB of memory. SQL Server 2000 offers compatible platform support ranging from

Windows CE to Windows 2000 Datacenter Server, allowing organizations to leverage

existing SQL programming skills to deliver applications on every Windows platform.

2.3What language SQL Server uses to implement and maintain the

relational model
Transact-SQL is a subset standard of SQL that SQL Server uses to implement, maintain, and

access databases.

2.4.What software is used to access SQL Server
SQL Server comes with several utilities that allow you to access its services. You can use

these utilities locally or remotely to manage a SQL Server system.

2.5.SQL Server 2000 Architecture
SQL Server 2000 consists of numerous components that interact to provide complete database

application capabilities, including relational database management, OLAP, data mining, full

text indexing, data import and export, and replication, as well as client access, as depicted in

Figure 2.5. In the later chapters of this book, we review each of these components in detail

and assist you in configuring and using them in your applications. This chapter begins by

exploring the base components of SQL Server and its databases. SQL Server 2000's relational

database architecture is highly scalable and reliable and continues to meet the growing

demands of thousands of customers with databases into the terabytes and users in the

thousands. The foundation of every
SQL Server solution begins with the same component: the database. Each SQL Server

instance can support up to 32,767 databases, each with a maximum database size of 1,048,516

terabytes (TB). SQL Server 2000 has also increased the maximum size of its log files from

4TB in version 7.0 to 32TB in SQL Server 2000, offering greater transactional capacity. Table

2.5 provides the maximum database properties of SQL Server 2000.

31

wıa Trarısformaı,ın
Sıni~:

SJ'll('!!I Cllll'/OLW Ull.'r
C\ılılbiı:~ Oat1tıı'ı?ı

Figure 2.5 SQL Server architecture overview.

Table 2.5 SQL Server Maximum Capacities

ObjectJProperty SQL Server 2000

ınstancss per server
Data bases per instance
Filegroups per database
FHes per cataoase
Database sıza
Data füe size
Log file size
Total datebesa ol!iects
Columns per tatıle

rs
32,767
256
32,767
1,048,516TB,
32TB
32TB
2,147A83,G47
1,024

2.5.1.Relational Databases
Although there are numerous methods of storing information, the relational database model

has grown to be recognized as the most efficient data storage model. Relational databases are

based on the need to efficiently organize and store data. Data in a relational database are

organized as entities and stored in tables. Each table consists of attributes, which result in the

columns that make up a table. The process of identifying the primary data items or entities

and efficiently laying out these tables and their attributes is accomplished through a process

called normalization. The process of normalization works to reduce data redundancy and

derivation, producing efficiency in both storage and data management. By eliminating

redundant and derived data (data that are the result ofother attributes), the physical storage

requirements are reduced. Additionally, the task of managing multiple copies of identical data

as well as computed or derived data is eliminated, resulting in a more accurate and

32

manageable database. Complex data items can be broken down into multiple tables to produce

a normalized database model, as shown in the example in Figure2.5.1 This simple model

depicts a portion of an order-entry database. This collection of "related" tables makes up a

relational database. SQL Server supports the requirements of a RDBMS by providing the

logical and physical storage architecture that are needed. At the core of the logical storage

architecture of SQL Server 2000 are databases, tables, and columns. The database represents

the overall data grouping and is the foundation of SQL Server applications. Tables store

individual data entities and consist of columns (attributes) that store the actual data item

values. Beyond the base components are several higher-level database items, commonly

referred to as database objects, such as views, triggers, indexes, keys, defaults, constraints,

stored procedures, user-defined data types, and user-defined functions. Each of these objects

plays a particular role in controlling the integrity of the data or effectively delivering it for

application use. The following list outlines each of the components of a relational database

solution in SQL Server 2000: gress.com

ı, '< •ıc,..i ;,:- ,,' , ·'duuıu£r,,yt,\,'.,.,< ·>o· ...-c·:,,,.·.··. ·--,·

FK I Orı:>ırrlıııer

&ustool1rlD
OroırCtıı,,

fforre
ldeptooı

.Emıil\
--
Proouml!JJ
Qıy Nane

D!".«çıion
Fmı

Figure 2.5.1 A normalized database example

2.5.1.1.Database
The database is the primary object and contains all the remaining database objects, such as tables, views, and the

like.

2.5.1.2Table
Each table represents a data item or entity. Tables are typically logical data containers, such as a customer table

or an order table in an order-entry database solution.

2.5.1.3Column
A column is a property of a table and represents an attribute or data item about the table.

33

2.5.1.4.View
A view is often called a virtual table and is typically used to combine several tables in to a meaningful

representation of the data. Views do not physically store the data; rather, they provide a combined presentation

of the underlying tables.

2.5.1.5. Trigger
Triggers are routines or stored procedures that execute automatically when an INSERT, UPDATE, or DELETE

action occurs against a table. Triggers are often used to enforce business rules in a database

application. For example, a trigger could send an e-mail message when the Orders table receives new data.

2.5.1.6. Index
An index relates to a table and speeds the retrieval of data from the table by providing a representation of the

data that is more efficient for locating the requested information.

2.5.1.7.Key
A key is a property of a table and is one or more columns that uniquely identify each record or row in the table.

2.5.1..8.Default
A default specifies the value of a column during an insert if an explicit value is not supplied.

2.5.1.9.Constraint
Constraints specify the valid values for a specific column and are commonly used to enforce integrity rules.

2.5.1.10. Stored procedure
A stored procedure is a predefined group of Transact- SQL statements that is commonly used as a routine to

manipulate or perform complex filter operations in order to retrieve specific data.

2.5.1.11 User-defined data type
A user-defined data type, or UDT, is used to enforce exact data types across multiple tables and is based on a

standard
data type-for example, a Social Security number (SSN) data type that represents an l l-character (nnn-nrı-nnnn)

data type.

2.5.1.12. User-defined function
A user-defined function is a reusable logic set that can be called to perform set actions and return a given result.

User-defined functions are similar to stored procedures except that they can return data type results, allowing

them to be used in line with TSQL statements.

34

3. DATABASE DESIGN OF THE PROGRAM & INTERFACE

3.lDatabase Design of The Program
My project database consists of five tables those are id(personel informations),treatment

(treatment informations treatment name price), illtr (appliedtreatment), payment, userk(login)

tables.

ID table contains sixteen fields :

• illname

• illsumame

• illid

• hphone

• wphone

• mphone

• Address

• Sex

• Blood

• Birth place

• Mail

• Age

• Regdate

• Anaınnes

• Notes

• Pie

ID table contains four fields :

• Trid

• Trtype

• Tmame

• Trprice

ILL TRtable contains six fields :

• illname

• illsumame

35

• illid

• trdate

• tr

• cost

• tno

PAYMENT table contains six fields :

• payid

• illno

• payment

• paydate

USERK table contains three fields :

• userid

• usemame

• userpassword
The relationships between tables will as follows:

In Id Table illid field is a primary key.

In Treatment Table trid is a primary key.

In Illtr Table illtm is a primary key.

In Payment Table Payid is a primary key.

In Userk Table userid is a primary key.

3.2.Interface

When you execute the program Login Form opens, then it will ask you usemame and

password. If you do not know usemame and password you can not login this program You

can see it in Fig 3.1.

36

Fig3.l.

If the entered user name and password is true than the program main pages aneble to use

After authorization new record page comes on screen.you can see it in fıgure3.2

..·.~.'a
.,,"RECOAOINFORlılATOI ,·

Fig 3.2.

Top of the page there is buttons for accessing other applications.This form prepared for

recording new patiend personal informations

37

Fig 3.3.

This form for finding recorded patients informations

Fig 3.4.

This is main application form of my project you can select patient and treatment than click a

tooth which treatment is applied and record it database, it can also show applied treatment and

cost information on datagrid ,anamneses and notes

38

Fig 3.5.

This form show financial detail of patient

Fig 3.6.

This form for admistrative applications add,delete, update user and treatment.

39

CONCLUSION

The validity of a software depents on the facility of usege and supplying the needs. Also the

productivity of a database depents and spedy of query and recording in a safety.

Practically implementation of software for business though it is related to any field needs a

devoted and complete life cycle. In this project I contact a dentist so that I can understand

their requirements and the problems, which may occur in the implementation. The software

was created after analysing all requirement and get necessary informations

The aim of this project is have to supply the informations to be kept in a data base in the

computer in a dental clinic so the data can be preserved longer and the loosing of the data will

decrease, accessibility, query, ordering, can be done easily so productivity of foundation will

increase.

40

"'

REFERENCES
The Visual Studio .NET online Help

The World Wide Web Consortium Web site (http://www.w3c.org)

The Microsoft ASP.NET public newsgroup (news://msnews.microsoft.com/

microsoft.public.dotnet.framework.aspnet)

http://www.microsoft.com/sql

http ://msdn.microsoft.com/ sglserver/

http://microsoft.com/technet/ sq1/

http://www.swynk.com

microsoft.public.sqlserver.server

microsoft.public.sqlserver.tools

41

APPENDIX : PROGRAM CODES
Public Class Forml

Inherits System.Windows.Forms.Form
Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Buttonl.Click

Dim conl As New SqlClient.SqlConnection
Dim coml As New SqlClient.SqlCommand
conl.ConnectionString = "data source=OEM;initial

CATALOG=kamil;integrated security=true"
conl. Open ()
coml.Connection = conl
Dim dr As SqlClient.SqlDataReader
Dims As Integer= O
If TextBoxl.Text =""Or TextBox2.Text =""Or

TextBox3.Text =""Or TextBox4.Text =""Then
MsgBox("enter values")
Exit Sub

End If
coml.CommandText =" update userk set username='" &

TextBox3. Text & "' , userpassword='" & TextBox4. Text & "'
where username='" & TextBoxl.Text & "' and userpassword='" &
TextBox2 . Text & " ' "

s = coml.ExecuteNonQuery
Ifs> O Then

MsgBox("changed")
End If
conl. Close ()
TextBoxl.Text = ""
TextBox2.Text - " "
TextBox3.Text = " "
TextBox4.Text - " "

End Sub

Private Sub Button3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

Dim conl As New SqlClient.SqlConnection
Dim coml As New SqlClient.SqlCommand
Dim com2 As New SqlClient.SqlCommand
conl.ConnectionString = "data source=OEM;initial

CATALOG=KAMİL;integrated security=true"
Dim dr As SqlClient.SqlDataReader
Dim sl As Integer= O
If TextBoxl.Text =""Or TextBox2.Text =""Then

MsgBox("USER PASSWORD OR NAME EMPTY")
Exit Sub

End If
Try

coml.CommandText ="select* from userk"

42

com2.CommandText =" insert into
userk(username,userpassword) values('" & TextBoxl.Text & "'
' " & TextBox2 . Text & " ') "

coml.Connection
com2.Connection
conl. Open ()
dr = coml.ExecuteReader
Do While ctr.Read

If TextBoxl.Text = dr("username") Then
MsgBox("farklı bir kullanıcı ismi

conl
conl

giriniz")
dr. Close ()
conl.Close()
Exit Sub

End If
Loop
ctr.Close()
sl = com2.ExecuteNonQuery
Dim a As String
a= TextBoxl.Text & "---" & TextBox2.Text
If sl > O Then MsgBox(a & "recorded")

Catch ex As Exception
MsgBox(ex.Message)

End Try
conl. Close ()
ctr.Close()
TextBoxl.Text
TextBox2.Text

End Sub
Private Sub Button2_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button2.Click
Dim con2 As New SqlClient.SqlConnection
Dim coml As New SqlClient.SqlCommand
con2.ConnectionString = ''data source=OEM;initial

CATALOG=kamil;integrated security=true"
Dim sl As Integer= O
If TextBoxl.Text =""Or TextBox2.Text =""Then

MsgBox("username and userpassword empty")
Exit Sub

" "
" ,,

End If
Try

coml.CommandText =" delete from userk where
username='" & TextBoxl.Text & "' and userpassword='" &
TextBox2.Text & •• ., ••

coml.Connection = con2
con2 . Open ()
sl = coml.ExecuteNonQuery
Dim a As String

43

a= TextBoxl.Text & "---" & TextBox2.Text
If sl > O Then

MsgBox (a & "deleted")
End If
If sl = O Then

MsgBox("not deleted")
End If

Catch ex As Exception
MsgBox(ex.Message)

Finally
con2.Close ()

End Try
End Sub

Private Sub Forml_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

trda.Fill(Trdsl.tratement)
Try

Dim co As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
con.Open ()
co.CommandText ="select* from tratement"
co.Connection= con
dr = co.ExecuteReader
ComboBoxl.Items.Clear()
ComboBox2.Items.Clear()

Do While ctr.Read
If ComboBoxl.Items.Contains(dr("trtype"))

False Then
ComboBoxl.Items.Add(dr("trtype"))

End If
If ComboBox2.Items.Contains(dr("trtype"))

False Then
ComboBox2.Items.Add(dr("trtype"))

End If
Loop

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con. Close ()
ComboBoxl.Focus()

End Try
End Sub

Private Sub RadioButtonl_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
RadioButtonl.CheckedChanged

44

Button3.Visible = True
Buttonl.Visible = False
Button2.Visible = False
TextBox3.Visible = False
TextBox4.Visible = False
Label3.Visible = False
Label4.Visible = False

End Sub

Private Sub RadioButton2_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
RadioButton2.CheckedChanged

Button3.Visible = False
Button2.Visible = False
Buttonl.Visible = True
TextBox3.Visible = True
TextBox4.Visible = True
Label3.Visible = True
Label4.Visible True

End Sub

Private Sub RadioButton3_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
RadioButton3.CheckedChanged

Button2.Visible = True
Button3.Visible = False
Buttonl.Visible = False
TextBox3.Visible = False
TextBox4.Visible = False
Label3.Visible = False
Label4.Visible = False

End Sub

Private Sub GroupBoxl_Enter(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GroupBoxl.Enter

End Sub

Private Sub Button7_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button7.Click

fl. Hide ()
£2. Show ()

End Sub

45

Private Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click

fl. Hide ()
f7. Show ()

End Sub

Private Sub ButtonS_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

fl. Hide ()
f 4. Show ()

End Sub

Private Sub Button8_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

fl.Hide()
f 6. Show ()

End Sub

Private Sub Button4_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button4.Click

fl. Hide ()
f5. Show ()

End Sub

Private Sub Button9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

Application.Exit()

End Sub

Private Sub Buttonl2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl2.Click

Dim co As New SqlClient.SqlCommand
Dim co2 As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
Dimi As Integer= O
Trdsl.tratement.Clear()
If TextBox8.Text =""And TextBox6.Text =""Then

MessageBox.Show("please fill tratement and price",
"fill empty spaces", MessageBoxButtons.OK,
MessageBoxicon.Warning)

Exit Sub
End If

Try

co2.CommandText "select* from tratement"

46

co.CommandText = "insert into
tratement(trname,trtype,trprice) values("' & TextBox8.Text &
"', '" & ComboBoxl.Text & "'," & TextBox6.Text & ")"

co.Connection= con
co2.Connection = con
con. Open ()
dr = co2.ExecuteReader
Do While ctr.Read

If TextBox8.Text = dr("trname") Then
MessageBox.Show(TextBoxl.Text & "this

tratement already exist", "please change tratement name",
MessageBoxButtons.OK, MessageBoxicon.Warning)

ctr.Close()
con.Close()
Exit Sub

End If
Loop
ctr.Close()

i = co.ExecuteNonQuery()
Dim a As String
a= "tratement=" & TextBox8.Text & vbCrLf &

"price=" & TextBox6.Text
If i > O Then MessageBox.Show(a & vbCrLf &

"Succesfully added to database", "Succesfully Added",
MessageBoxButtons.OK, MessageBoxicon.Information)

Catch ex As SqlClient.SqlException

MessageBox.Show(ex.Message)
Finally

trda.Fill(Trdsl.tratement)

End Try
TextBox8.Text
TextBox6.Text

" "
" "

con.Close()
ctr.Close()

End Sub

Private Sub Buttonll_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonll.Click

Dim co As New SqlClient.SqlCommand
Dim co2 As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
Dimi As Integer= O

47

Trdsl.tratement.Clear()
If TextBox8.Text =""Then

MessageBox.Show("please fill tratement name",

"fill empty spaces", MessageBoxButtons.OK,

MessageBoxicon.Warning)
Exit Sub

End If

Try
If TextBox8.Text =""Then

MessageBox.Show("please fill tratement name",

"fill empty spaces", MessageBoxButtons.OK,

MessageBoxicon.Warning)
Exit Sub

End If

co.CommandText = "update tratement set trprice=" &

TextBoxl2.Text & ", trtype='" & ComboBox2.Text & "' where

trname='" & TextBox8.Text & "'"

con. Open ()
co.Connection= con
i = co.ExecuteNonQuery()
Dim a As String
a= "New tratement=" & TextBox8.Text & vbCrLf &

"New cost=" & TextBoxl2.Text
If i > O Then MessageBox.Show(a & vbCrLf &

"Succesfully Updated", "Succesfully Updated",
MessageBoxButtons.OK, MessageBoxicon.Information)

Catch ex As SqlClient.SqlException
MessageBox.Show(ex.Message)

Finally
trda.Fill(Trdsl.tratement)
con.Close()

End Try
TextBoxl2.Text = ""
TextBox6.Text = ""

End Sub
Private Sub RadioButton6_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
RadioButton6.CheckedChanged

Buttonl2.Visible = True
TextBoxl2.Visible = False
Labelll.Visible = False
Label9.Visible = False
ComboBox2.Visible = False

End Sub

48

Private Sub RadioButton4_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
RadioButton4.CheckedChanged

Buttonl2.Visible = False
Buttonll.Visible = True
ComboBox2.Visible = True
TextBoxl2.Visible = True
Labelll.Visible = True
Label9.Visible = True

End Sub

Public Class Form2
Inherits System.Windows.Forms.Form

Public tar As DateTime
Public rdate As String
Public c As String

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Buttonl.Click

Dim conl As New SqlClient.SqlConnection
Dim coml As New SqlClient.SqlCommand
Dim com2 As New SqlClient.SqlCommand
conl.ConnectionString = "data source=OEM;initial

CATALOG=KAMİL;integrated security=true"
Dim dr As SqlClient.SqlDataReader
Dim sl As Integer= O
Dim a As String
Dims As String
tar= DateTimePickerl.Value
rdate = tar.Month & "." & tar.Day & "." & tar.Year
If TextBox22.Text =""Or TextBox21.Text =""Then

MsgBox("please fill name surname")
Exit Sub

End If
If CheckBoxll.Checked = True Then

a = a & ", " & CheckBoxll. Text
End If
If CheckBoxl2.Checked = True Then

a = a & ", " & CheckBoxl2. Text
End If
If CheckBoxl3.Checked = True Then

a = a & ", " & CheckBoxl3. Text
End If

49

If CheckBoxl.Checked = True Then
a = a & ", " & CheckBoxl. Text

End If
If CheckBox2.Checked = True Then

a= a & ", " & CheckBox2.Text
End If
If CheckBox3.Checked = True Then

a = a & ", " & CheckBox3. Text
End If
If CheckBox4.Checked = True Then

a = a & ", " & CheckBox4. Text
End If
If CheckBox5.Checked = True Then

a= a & ", " & CheckBox6.Text
End If
If CheckBox7.Checked = True Then

a = a & ", " & CheckBox7. Text
End If
If CheckBox8.Checked = True Then

a= a & ", " & CheckBox8.Text
End If
If CheckBox9.Checked = True Then

a= a & ", " & CheckBox9.Text
End If
If CheckBoxlO.Checked = True Then

a= a & ", " & CheckBoxlO.Text
End If
If RadioButton4.Checked = True Then

s = RadioButton4.Text
Elseif RadioButton3.Checked = True Then

s = RadioButton3.Text
End If

Try
conl. Open ()
coml.Connection = conl
com2.Connection = conl
coml.CommandText ="select* from id"
com2.CommandText =" insert into

id(illname,illsurname,hphone,wphone,mphone,address,birtplace,m
ail,age,notes,anemnes,sex,blood,pic,regdate) values("' &
TextBox22. Text & " ' , '" & TextBox21. Text & "' , '" &
TextBox20. Text & "', '" & TextBoxl8. Text & "', '" &
TextBox19.Text & "' ' " & TextBoxl 7 . Text & " ' , ' " &
TextBox2 4 . Text & " ' , ' " & TextBox2 3 . Text & " ' , ' " &
TextBoxl 6. Text & "' , ' " & TextBoxl. Text & "', '" & a & "', '" & s
& "', '" & ComboBoxl. Text & "', '" & c & "', '" & rdate & "')"

dr = coml.ExecuteReader

50

Do While ctr.Read
If TextBox22.Text = dr("illname") And

TextBox21.Text = dr("illsurname") Then
MsgBox("already exist record")
ctr.Close()
conl.Close()
Exit Sub

End If
Loop
ctr.Close()
sl = com2.ExecuteNonQuery

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
conl. Close ()
ctr.Close()

End Try
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button2.Click

Dim f As String
OpenFileDialogl.InitialDirectory = "c:\"
OpenFileDialogl. Fil ter = "Jpg files (*. jpg) I*. j pg"
OpenFileDialogl.ShowDialog()
If OpenFileDialogl.ShowDialog = DialogResult.OK Then

f = OpenFileDialogl.FileName.ToString
Me.Text= f
Dim dosya As New Fileinfo(f)
c = "C:\dental\img\ill\" & TextBox22.Text &

TextBox21.Text & "." & "jpg"

dosya.CopyTo(c, True)
PictureBoxl.Image = Image.FromFile(c)
MessageBox.Show("Your logo saved this " & c & "

directory", "Succesfully added to database",
MessageBoxButtons.OK, MessageBoxicon.Information)

Else
MessageBox.Show("Your logo not saved database

succesfully", "Not successful", MessageBoxButtons.OK,
MessageBoxicon.Warning)

End If
End Sub

Public Class Form3
Inherits System.Windows.Forms.Form

~Li~ct~S~G ~~tta~l_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Buttonl.Click

Dim c As New SqlClient.SqlConnection
Dim co As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader

51

Try
c.ConnectionString = "data source=OEM;initial

CATALOG=kamil;integrated security=true"
c. Open ()
co.Connection= c
co.CommandText ="select* from userk"
dr = co.ExecuteReader
Dims As Integer= O
Do While ctr.Read

If dr("username") = TextBoxl.Text And
dr("userpassword") = TextBox2.Text Then

s = 1
Exit Do

End If
Loop
Ifs= O Then

MsgBox ("user .or password not correct")
Exit Sub

End If
f3. Dispose ()
f2. Show ()

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

End Try
c. Close ()
dr. Close ()

End Sub
Public Class Form4

Inherits System.Windows.Forms.Form
Public a As Integer

Public t(32) As Integer
Public pie As String
Public id As Integer

Private Sub Form4_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Try
Dim co As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
con.Open ()
co.CommandText ="select* from tratement"
co.Connection= con
dr = co.ExecuteReader
ComboBoxl.Items.Clear()
Do While ctr.Read

If ComboBoxl.Items.Contains(dr("trname"))
False Then

52

ComboBoxl.Items.Add(dr("trname"))
End If

Loop
Catch ex As SqlClient.SqlException

MsgBox(ex.Message)
Finally

con.Close()
ComboBoxl.Focus()

End Try
Try

Dim com As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
con.Open()
com.CommandText ="select* from id order by

illname"
com.Connection= con
dr = com.ExecuteReader
ComboBox2.Items.Clear()
Do While ctr.Read

ComboBox2.Items.Add(dr("illname"))
Loop

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con.Close()

End Try
End Sub

Private Sub ComboBoxl_SelectedindexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ComboBoxl.SelectedindexChanged

TextBoxl.Text = "selected operation"+" "+

ComboBoxl.Text
Dim com As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
con. Open ()
com.CommandText = "select trprice from tratement

where trname='" & ComboBoxl.Text & "'"
com.Connection= con
dr = com.ExecuteReader
Do While ctr.Read

a = dr ("trprice")
Exit Sub

Try

Loop
Catch ex As SqlClient.SqlException

MsgBox(ex.Message)
Finally

53

con. Close ()
End Try

End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Buttonl.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr (illid, tr, cost, tno) values (" & TextBox2. Text & ", "' &
ComboBoxl . Text & " ' , " & a & " , " & 18 & ") "

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = ''illid=" & TextBox2.Text &

" "
con. Close ()

End Try
End Sub

Private Sub ComboBox2_SelectedindexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Bandles
ComboBox2.SelectedindexChanged

Try
ComboBox3.Items.Clear()
Dim com As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
con.Open()

54

'~,,ıt-:::~
>. \ l)ı,,ıf;:-·~

com. CommandText - "select * from id" !(~.?; ı..i'-""J'?.~-\>u'"
com.Connectıon - con ~-, _·ı

~ e~
dr = com. ExecuteReader \ ; .. ,~'
Do While dr. Read <,"'.,J. L~~~

If ComboBox3. Items. Contains (dr ("illsurna~"'=fJ

False Then
If ComboBox2.Text = dr("illname") Then

ComboBox3.Items.Add(dr("illsurname"))

End If
End If

Loop
Catch ex As SqlClient.SqlException

MsgBox(ex.Message)
Finally

con.Close()

End Try
End Sub

Private Sub ComboBox3_SelectedindexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ComboBox3.SelectedindexChanged

Try

Dim com As New SqlClient.SqlCommand
Dim com2 As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
Dim dr2 As SqlClient.SqlDataReader
con. Open ()
com.CommandText = "select ilid,pic,anemnes,notes

from id where illname='" & ComboBox2.Text & "' and
illsurname='" & ComboBox3.Text & "' "

com.Connection= con
dr = com.ExecuteReader
Do While ctr.Read

TextBox2.Text = dr("ilid")
id= dr("ilid")
pie= dr("pic")
TextBox4.Text = dr("anemnes")
TextBoxS.Text = dr("notes")

Loop
PictureBox2.Image = Image.FromFile(pic)
dr. Close ()
com2.CommandText = "select cost from"

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

55

Finally
con.Close()

End Try
End Sub

Private Sub Button8_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr (ill id, tr, cost, tno) values ('" & TextBox2. Text & "' , '" &

ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 48 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con. Close ()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button4_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button4.Click

Try
ds. Clear ()
Dim con As New SqlClient.SqlConnection

56

con.ConnectionString = "data source=oem;initial
catalog=kamil;integrated security=true"

Dim co As New SqlClient.SqlCommand
Dimi As Integer= O
con. Open ()
co.CommandText = "insert into

illtr (il lid, tr, cost, tno) values ("' & TextBox2. Text & '" , "' &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 17 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con.Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

""
End Try

End Sub

Private Sub ButtonlO_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonlü.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr (illid, tr, cost, tno) values ("' & TextBox2. Text & "' , "' &
ComboBoxl .Text & "', '" & CType (a, Integer) & "'," & 16 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

57

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con.Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

""
End Try

End Sub

Private Sub Button9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr (illid, tr, cost,tno) values (' " & TextBox2.Text & "' , '" &

ComboBoxl.Text & "', '" & CType (a, Integer) & "'," & 15 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close ()
dailltr.Fill(ds.illtr)

58

DataViewl.RowFilter "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button16_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button16.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

ill tr (ill id, tr, cost, tno) values ('" & TextBox2. Text & "', '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 14 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con.Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = ''illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button17_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button17.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

59

con. Open ()
co.CommandText = "insert into

illtr (illid, tr, cost, tno) values ('" & TextBox2. Text & "' , '" &
ComboBoxl.Text & "','" & CType(a, Integer) & "'," & 13 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If
Catch ex As SqlClient.SqlException

MsgBox(ex.Message)
Finally

con. Close ()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "

End Try
End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr (il lid, tr, cost, tno) values ('" & TextBox2. Text & "' , '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 12 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

60

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "

End Try
End Sub

Private Sub Button15_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button15.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 11 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

61

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Buttonl4_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl4.Click

Try
ds. Clear ()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr (illid, tr, cost, tno) values ('" & TextBox2. Text & "' , '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 21 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con. Close ()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" " .•.

End Try
End Sub

62

Private Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true''
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &

ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 22 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button22_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button22.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()

63

co.CommandText = "insert into
illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 23 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con. Close ()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button23_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button23.Click

Try
ds. Clear ()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr (illid, tr, cost, tno) values ('" & TextBox2. Text & "' , '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 24 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"ıinserted Succesfully", MessageBoxButtons .OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

64

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con.Close()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button2l_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button21.Click

Try
ds.Clear()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr (illid, tr, cost, tno) values ("' & TextBox2. Text & "', '" &
ComboBoxl.Text & "','" & CType(a, Integer) & "'," & 25 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con. Close ()

dailltr.Fill(ds.illtr)

65

DataViewl.RowFilter "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button30_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button30.Click

Try
ds.Clear()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr (illid, tr, cost, tno) values ('" & TextBox2. Text & "' , '" &
ComboBoxl.Text & "','" & CType(a, Integer) & "'," & 26 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

""

End Try
End Sub

Private Sub Button3l_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button31.Click

66

Try
ds.Clear()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con .Open ()
co.CommandText = "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 27 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con. Close ()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

""
End Try

End Sub

Private Sub Button32_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button32.Click

Try
ds. Clear ()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()

67

co.ComrnandText = "insert into
illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "','" &
ComboBoxl.Text & "','" & CType(a, Integer) & "'," & 28 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close ()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

"11

End Try
End Sub

Private Sub Buttonll_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonll.Click

Try
ds.Clear()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlComrnand
Dimi As Integer= O

con.Open ()
co.ComrnandText= "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & '","' &
ComboBoxl.Text & "', '" & CType (a, Integer) & "'," & 4 7 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

68

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con. Close ()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "

End Try
End Sub

Private Sub Button3_Click_l(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

Try
ds. Clear ()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O
con. Open ()
co.CommandText = "insert into

illtr (illid, tr, cost, tno) values ('" & TextBox2. Text & "' , '" &
ComboBoxl. Text & "', '". & CType (a, Integer) & "'," & 4 6 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",

"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

69

con.Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub ButtonS_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

Try
ds. Clear ()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &
ComboBoxl.Text & "','" & CType(a, Integer) & "'," & 45 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",

"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If
Catch ex As SqlClient.SqlException

MsgBox(ex.Message)
·Finally"'~

con.Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Buttonl9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl9.Click

Try
ds. Clear ()

Dim con As New SqlClient.SqlConnection

70

con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 44 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con. Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

""

End Try
End Sub

Private Sub Button18_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button18.Click

Try
ds. Clear ()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

ill tr (illid, tr, cost, tno) values ('" & TextBox2. Text & "', '" &
ComboBoxl.Text & "','" & CType(a, Integer) & "'," & 43 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

71

MessageBox.Show("Inserted succesfully",

"Inserted Succesfully", MessageBoxButtons.OK,

Messag-eBoxicon. Information)
Exit Sub

Elseif i = O Then
MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con. Close ()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button20_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button20.Click

Try
ds. Clear ()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &
ComboBoxl.Text & "','" & CType(a, Integer) & "'," & 42 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",

"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
- MessageBoxicon. Exclamation)

End If

Catch ex As SqlClient.SqlException

72

MsgBox(ex.Message)
Finally

con.Close()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "

End Try
End Sub

Private Sub Button12_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button12.Click

Try
ds.Clear()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con.Open ()
co.CommandText = "insert into

illtr (illid,tr, cost,tno) values ('" & TextBox2.Text & "' , '" &
ComboBoxl.Text & "', '" & CType (a, Integer) & "'," & 41 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con.Close()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "

End Try
End Sub

73

Private Sub Buttonl3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl3.Click

Try
ds.Clear()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &
ComboBoxl.Text & "','" & CType(a, Integer) & "'," & 31 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

""

End Try
End Sub

Private Sub Button7_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button7.Click

Try
ds.Clear()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand

74

Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 32 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",

"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If
Catch ex As SqlClient.SqlException

MsgBox(ex.Message)
Finally

con.Close()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button25_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button25.Click

Try
ds. Clear ()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O
con. Open ()
co.CommandText = "insert into

illtr (ill id, tr, cost, tno) values ('" & TextBox2. Text & "' , '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 33 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

75

•

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close ()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "

End Try
End Sub

Private Sub Button24_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button24.Click

Try
ds.Clear()
Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O
con.Open ()
co.CommandText = "insert into

illtr (illid, tr, cost,tno) values ('" & TextBox2.Text & "' , '" &
ComboBoxl.Text & "','" & CType(a, Integer) & "'," & 34 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

76

con. Close ()
dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "

End Try
End Sub

Private Sub Button26_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button26.Click

Try
ds.Clear()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCornrnand
Dimi As Integer= O

con. Open ()
co.CornrnandText = "insert into

ill tr (il lid, tr, cost, tno) values ("' & TextBox2. Text & "' , "' &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 35 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con. Close ()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

""
End Try

End Sub

Private Sub Button27_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button27.Click

Try

77

ds. Clear ()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

ill tr (ill id, tr, cost, tno) values ('" & TextBox2. Text & "' , '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 36 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con. Close ()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "

End Try
End Sub

Private Sub Button29_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button29.Click

Try
ds. Clear ()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

78

con.Open()
co.CommandText = "insert into

illtr (illid, tr, cost, tno) values ('" & TextBox2. Text & '" , '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 37 & ")"

co.Connection= con
i = co.ExecuteNonQuery()
If i > O Then

MessageBox.Show("Inserted succesfully",
"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "

End Try
End Sub

Private Sub Button28_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button28.Click

Try
ds. Clear ()

Dim con As New SqlClient.SqlConnection
con.ConnectionString = "data source=oem;initial

catalog=kamil;integrated security=true"
Dim co As New SqlClient.SqlCommand
Dimi As Integer= O

con. Open ()
co.CommandText = "insert into

illtr(illid,tr,cost,tno) values('" & TextBox2.Text & "', '" &
ComboBoxl. Text & "', '" & CType (a, Integer) & "'," & 38 & ")"

co.Connection= con
i = co.ExecuteNonQuery()

79

If i > O Then
MessageBox.Show("Inserted succesfully",

"Inserted Succesfully", MessageBoxButtons.OK,
MessageBoxicon.Information)

Exit Sub
Elseif i = O Then

MessageBox.Show("Can't make Insert operation",
"Not Succesfull", MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally

con.Close()

dailltr.Fill(ds.illtr)
DataViewl.RowFilter = "illid=" & TextBox2.Text &

" "
End Try

End Sub

Private Sub Button37_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button37.Click

f4.Hide()
£2. Show ()

End Sub

Private Sub Button36_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button36.Click

f4.Hide()
£7. Show ()

End Sub

Private Sub Button38_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button38.Click

£4. Hide ()
£6. Show ()

End Sub

Private Sub Button34_Click_l(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button34.Click

f4.Hide()

80

f5. Show ()
End Sub

Private Sub Button40_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button40.Click

f4.Hide()
fl. Show ()

End Sub

Private Sub Button39_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button39.Click

Application.Exit()

End Sub

End Class

public Class Form5
Inherits System.Windows.Forms.Form

Private Sub CheckBoxl_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
CheckBoxl.CheckedChanged

If CheckBoxl.Checked Then
TextBoxl.Visible = True
Labell.Visible = True
Buttonl.Visible = True

End If
End Sub

Private Sub ComboBox2_SelectedindexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ComboBox2.SelectedindexChanged

tot= O
ptot = O
Dim com As New SqlClient.SqlCommand
Dim com2 As New SqlClient.SqlCommand
Dim com3 As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
Dim dr2 As SqlClient.SqlDataReader
Dim dr3 As SqlClient.SqlDataReader
Dim a As String
If a= illid Then

DataGrid3.IsSelected(a)

End If

Try
con. Open ()
com.CommandText "select* from id"

81

com2.CommandText
com3.CommandText

"select ill id, cost from illtr"
"select illno,payment from

payment"

com.Connection= con
com2.Connection = con
com3.Connection = con

dr = com.ExecuteReader
Do While ctr.Read

If ComboBoxl.Text = dr("illnarne") And
ComboBox2.Text = dr("illsurname") Then

illid = dr("ilid")
TextBox4.Text = illid
Exit Do

End If
Loop
dr. Close ()
dr2 = com2.ExecuteReader

Do While dr2.Read
If illid = dr2("illid") Then

tot= tot+ dr2("cost")

End If
Loop

TextBox2.Text = tot
dr2.Close ()
dr3 = com3.ExecuteReader
Do While dr3.Read

If illid = dr3("illno") Then
ptot = ptot + dr3("payment")

End If
Loop
TextBox3.Text = ptot
dr3.Close ()

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
DataViewl.RowFilter = "illid="
DataView2.RowFilter
con.Close()

End Try
End Sub

"illno="
& illid & ""
& illid & ""

82

Private Sub Form5_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

illtrds.Clear()
payds.Clear()
illtr.Fill(illtrds.illtr)
pay.Fill(payds.payment)
Dim com As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
Try

con. Open ()
com.CommandText ="select* from id"
com.Connection= con
dr = com.ExecuteReader
ComboBoxl.Items.Clear()
Do While ctr.Read

If ComboBoxl.Items.Contains(dr("illname"))
False Then

ComboBoxl.Items.Add(dr("illname"))
End If

Loop
Catch ex As SqlClient.SqlException

MsgBox(ex.Message)
Finally

con. Close ()
dr. Close ()
darem.Fill(dsrem.remainig)

End Try
End Sub

Private Sub ComboBoxl_SelectedindexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ComboBoxl.SelectedindexChanged

Dim com As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
Try

con. Open ()
com.CommandText ="select* from id"
com.Connection= con
dr = com.ExecuteReader
ComboBox2.Items.Clear()
Do While ctr.Read

If ComboBoxl.Text = dr("illname") Then
If

ComboBox2.Items.Contains(dr("illsurname")) = False Then
ComboBox2.Items.Add(dr("illsurname"))

End If

83

End If
Loop

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con.Close()
dr.Close ()

End Try
End Sub

Private Sub Button7_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button7.Click

Application.Exit()
End Sub

Private Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

f5.Hide()
f2. Show ()

End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

f5.Hide()
f7. Show ()

End Sub

Private Sub Button3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

f5.Hide()
f4. Show ()

End Sub

Private Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click

f5.Hide()
f6. Show ()

End Sub

Private Sub Button8_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

f5.Hide()
fl. Show ()

End Sub

84

Private Sub Buttonl_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

ptot = O
Dim com2 As New SqlClient.SqlCommand
Dim dr3 As SqlClient.SqlDataReader

pd= Now.Month & "." & Now.Day & "." & Now.Year
Dimi As String= O

Dim com3 As New SqlClient.SqlCommand

Try
con. Open ()

com2.CommandText =" insert into
payment(illno,payment,paydate) values(" & illid & ", " &
TextBoxl. Text & ", ' " & pd & " ') "

com2.Connection = con

i = com2.ExecuteNonQuery
If i > O Then

MsgBox("kaydedildi")
Else

MsgBox("olmadı")
End If

com3.CommandText = "select illno,payment from
payment"

com3.Connection = con
dr3 = com3.ExecuteReader
Do While dr3.Read

If illid = dr3("illno") Then
ptot = ptot + dr3("payment")

End If
Loop
TextBox3.Text = ptot
dr3. Close ()

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con.Close()
pay.Fill(payds.payment)

End Try
End Sub

Private Sub ComboBoxl_KeyPress(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles
ComboBoxl.KeyPress

If e.KeyChar = ChrW(13) Then

85

Dim com As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
Try

con.Open()
com.CommandText ="select* from id"
com.Connection= con
dr = com.ExecuteReader
ComboBox2.Items.Clear()
Do While ctr.Read

If ComboBoxl.Text = dr("illname") Then
If

ComboBox2.Items.Contains(dr("illsurname")) = False Then

ComboBox2.Items.Add(dr("illsurname"))
End If

End If
Loop

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con. Close ()
ctr.Close()

End Try
End If

End Sub

Private Sub Button9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

TextBox5.Focus()
Dim com As New SqlClient.SqlCommand
Dim com2 As New SqlClient.SqlCommand
Dim com3 As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
Dim dr2 As SqlClient.SqlDataReader
Dim dr3 As SqlClient.SqlDataReader
Dim a As String
If a= illid Then

DataGrid3.IsSelected(a)
End If

Try
con.Open()
com.CommandText ="select* from id"
com2.CommandText = "select illid, cost from illtr"

86

com3.CommandText = "select illno,payment from
payment"

com.Connection= con
com2.Connection = con
com3.Connection = con
dr = com.ExecuteReader
Do While ctr.Read

If TextBox5.Text = dr("illname") And
TextBox6.Text = dr("illsurname") Then

illid = dr("ilid")
TextBox4.Text = illid
Exit Do

End If
Loop
ctr.Close()
dr2 = com2.ExecuteReader
Do While dr2.Read

If illid = dr2("illid") Then
tot= tot+ dr2("cost")

End If
Loop
TextBox2.Text = tot
dr2.Close()
dr3 = com3.ExecuteReader

Do While dr3.Read
If illid = dr3("illno") Then

ptot = ptot + dr3("payment")
End If

Loop

TextBox3.Text
dr3. Close ()

ptot

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
DataViewl.RowFilter = "illid="
DataView2.RowFilter
con. Close ()

End Try

"illno="
& illid & ""
& illid & ""

End Sub

Private Sub RadioButtonl_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
RadioButtonl.CheckedChanged

Panell.Visible= True
End Sub

87

Private Sub RadioButton2_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
RadioButton2.CheckedChanged

Panell.Visible= False

End Sub
End Class

Public Class Form7
Inherits System.Windows.Forms.Form

Private Sub Form7_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

idda.Fill(ds.id)
cm= CType(Me.BindingContext(DataViewl),

CurrencyManager)

Try
Dim com As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
con. Open ()
com.CommandText ="select* from id"
com.Connection= con
dr = com.ExecuteReader
ComboBoxl.Items.Clear()
Do While ctr.Read

ComboBoxl.Items.Add(dr("illname"))
Loop

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
con.Close()

End Try
End Sub

Private Sub ComboBox2_SelectedindexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ComboBox2.SelectedindexChanged

Try
Dim pie As String
Dim com As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
con. Open ()
com.CommandText ="select* from id where

illname='" & ComboBoxl.Text & "' and illsurname='" &
ComboBox2.Text & "' "

com.Connection= con
dr = com.ExecuteReader
Do While ctr.Read

TextBoxl.Text
TextBox2.Text

dr("notes")
dr ("anemnes")

88

TextBoxS.Text = dr("hphone")
TextBox6.Text = dr("mphone")
TextBox7.Text = dr("wphone")
TextBox8.Text = dr("address")
TextBox9.Text = dr("birtplace")
TextBoxlO.Text = dr("mail")
TextBoxll.Text - dr("age")
TextBox12.Text = dr("regdate")
TextBox13.Text = dr("blood")
TextBox14.Text = dr("sex")
PictureBoxl.Image = Image.FromFile(dr("pic"))

Loop

dr. Close ()

Catch ex As SqlClient.SqlException
MsgBox(ex.Message)

Finally
End Try
con.Close()

End Sub

Private Sub ComboBoxl_SelectedindexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ComboBoxl.SelectedindexChanged

Try
ComboBox2.Items.Clear()

Dim com As New SqlClient.SqlCommand
Dim dr As SqlClient.SqlDataReader
con. Open ()
com.CommandText ="select* from id"
com.Connection= con
dr = com.ExecuteReader
Do While ctr.Read

If ComboBox2.Items.Contains(dr("illsurname"))
False Then

If ComboBoxl.Text = dr("illname") Then
ComboBox2.Items.Add(dr("illsurname"))

End If
End If

89

Loop
Catch ex As SqlClient.SqlException

MsgBox(ex.Message)
Finally

con. Close ()
End Try

End Sub

Friend WithEvents Button6 As System.Windows.Forms.Button

Private Sub Buttonl_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

f7 .Hide()
f2. Show ()

End Sub

Private Sub Button3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

f7. Hide ()
f4. Show ()

End Sub

Private Sub ButtonS_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ButtonS.Click

f7. Hide ()
f6. Show ()

End Sub

Private Sub Button4_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button4.Click

f7. Hide ()
fS. Show ()

End Sub

Private Sub Button8_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

f7. Hide ()
fl. Show ()

End Sub

90

Private Sub Button7_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button7.Click

Try

If cm.Position= O Then
MsgBox("You are on first record",

MsgBoxStyle.Information, "First Record")
Else

cm.Position= cm.Position - 1

End If
Catch ex As Exception

MsgBox(ex.Message)

End Try
End Sub

Private Sub Button9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

If cm.Position= O Then
MsgBox("You are already first record")

Else
cm.Position= O

End If

End Sub

Private Sub ButtonlO_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonlü.Click

If cm.Position= cm.Count - 1 Then
MsgBox("You are already last record")

Else
cm.Position= cm.Count - 1

End If
End Sub

Private Sub Buttonll_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonll.Click

If cm.Position= cm.Count - 1 Then
MsgBox("You are on last record",

MsgBoxStyle.Information, "Last Record")
Else

cm.Position= cm.Position+ 1

End If
End Sub

End Class

91

Public Class Form8
Inherits System.Windows.Forms.Form

Public xx As New kamill

Private Sub TabControll_SelectedindexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
TabControll.SelectedindexChanged

Try

If TabPagel.Focus = True Then
Dim xx As New kamill
CrystalReportViewerl.ReportSource = xx
Dim z As New

CrystalDecisions.Shared.ParameterValues
Dim zl As New

CrystalDecisions.Shared.ParameterDiscreteValue
Dim urun= InputBox("Fill the illid ", "Fill the

ill id")

zl.Value = urun
z .Add (zl)

xx.DataDefinition.ParameterFields("@illid") .ApplyCurrentValues
(z)

CrystalReportViewerl.ReportSource = xx

End If
If TabPage2.Focus = True Then

Dim xx As New kamil2
CrystalReportViewer2.ReportSource = xx
Dim z As New

CrystalDecisions.Shared.ParameterValues
Dim zl As New

CrystalDecisions.Shared.ParameterDiscreteValue
Dim urun= InputBox("Fill the illid" "Fill the

ill id")

zl.Value = urun
z .Add(zl)

xx.DataDefinition.ParameterFields("@illno") .ApplyCurrentValues
(z)

CrystalReportViewer2.ReportSource = xx

End If

Catch ex As Exception

92

End Try

End Sub

Private Sub Form8_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

CrystalReportViewerl.ReportSource = xx
CrystalReportViewer2.ReportSource = xx

End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

f6.Hide()
f2. Show ()

End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

f6.Hide()
f7. Show ()

End Sub

Private Sub Button3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

f6.Hide()
f4. Show ()

End Sub

Private Sub Button4_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button4.Click

f6.Hide()
f5.Show()

End Sub

Private Sub Button8_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

f6.Hide()
fl. Show ()

End Sub

End Sub

End Class

Module Modulel
Public fl As New Forml
Public f2 As New Form2
Public f3 As New Form3

93

Public f4 As New Form4
Public f5 As New Forms
Public f6 As New Form8
Public f7 As New Form7
Public illid As Integer
Public dl, d2, d3 As DateTime

Public sss, pd As String

Public sss2 As String
Public sss3 As String
Public tot As Integer
Public ptot As Integer

End Module

94

	Page 1
	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGMENTS
	I

	Page 3
	Page 4
	Images
	Image 1

	Page 5
	Titles
	ABSTRACT

	Images
	Image 1

	Page 6
	Titles
	INTRODUCTION

	Page 7
	Titles
	1.VISUAL BASIC.NET
	1.1. Why Should You Move to Visual Basic.NET?
	1.2. The New Look of Visual Basic
	1.3.Getting Started with VB.NET

	Page 8
	Titles
	1.3.1.Statements and Lines
	1.3.2. Comments
	1.3.3.0perators

	Tables
	Table 1

	Page 9
	Titles
	1.3.4.Using Procedures
	1.3.4.1.Subroutines
	1.3.4.2.Functions
	1.3.5.Using Variables and Parameters

	Images
	Image 1
	Image 2

	Page 10
	Titles
	1.3.6.Understanding Visual Basic.NET Syntax and Structure
	1.3.6.1. Constants

	Images
	Image 1

	Tables
	Table 1

	Page 11
	Titles
	1.3.6.2.Implicit and Explicit Variable Declarations
	1.3.6.3.0ption Explicit Versus Option Strict

	Images
	Image 1

	Page 12
	Titles
	7

	Images
	Image 1

	Page 13
	Titles
	1.3.6.4.Arrays
	1.3.6.50ptional Parameters

	Page 14
	Titles
	Hello Universe!
	1.3.7.Using Branching and Looping Structures
	1.3.7.lBranching in VB.NET
	1.3. 7 .1.1 The If ... Then ... Else Statement

	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles
	1.3. 7 .1.2. The Select ... Case Statement
	1.3.7.2Looping in VB.NET

	Images
	Image 1

	Page 1
	Titles
	1.3.7.2.lThe Do ... Loop Statement

	Page 2
	Titles
	1.3. 7 .2.2. The Wbile ... End While Statement
	1.3.7.2.3.The For Next Statement
	1.3.7.2.4The For ... Each Statement

	Page 3
	Titles
	1.3.8.Creating Objects
	1.3.9.00P Primer
	1.3.9.lObjects and Classes
	1.3.9.2Inheritance and Polymorphism

	Images
	Image 1
	Image 2

	Page 1
	Titles
	1.3.10.Windows Forms
	1.3.10.1. Creating a Form
	1.3.10.1.1 Creating a Form Using Visual Studio .NET

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 3
	Titles
	1.3.10.2.Controls, Common Dialog Boxes, and Menus
	1.3.10.2.1 Common Controls and Components

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	1.3.10.2.2.The Button Class
	1.3.10.2.3. The CheckBox Class
	1.3.10.2.4The ComboBox Class

	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	1.3.10.2.5.The DateTimePicker Class
	1.3.10.2.6.The GroupBox Class
	1.3.10.2.7.The lmageList Class
	1.3.10.2.8.The Label Class

	Page 6
	Titles
	1.3.10.2.9.The LinkLabel Class
	1.3.10.2.10.The ListBox Class

	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Titles
	1.3.10.2.11 The ListBox.ObjectCollection Class

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Images
	Image 1

	Page 10
	Titles
	1.3.10.2.12.The ListView Class
	1.3.10.2.13.The MonthCalendar Class
	1.3.10.2.14.The Panel Class
	1.3.10.2.15.The PictureBox Class

	Images
	Image 1

	Page 11
	Titles
	1.3.10.2.16.The RadioButton Class
	1.4.Developing Database Applications

	Images
	Image 1
	Image 2

	Page 12
	Titles
	1.4.1. A Brief History of Universal Data Access
	1.4.2. Managed Providers

	Images
	Image 1
	Image 2

	Page 13
	Titles
	1.4.3 Connecting to a SQL Server Database

	Images
	Image 1
	Image 2

	Page 14
	Titles
	1.4.5. Reading Data into a Dataset

	Images
	Image 1
	Image 2

	Page 15
	Titles
	1.5. The Dataset Class

	Images
	Image 1

	Page 16
	Titles
	29
	Figure 1.5

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 17
	Titles
	2.SQL Server 2000
	2.2.How Will SQL Server 2000 Benefit My Organization?

	Images
	Image 1

	Page 18
	Titles
	2.3What language SQL Server uses to implement and maintain the
	2.4.What software is used to access SQL Server
	2.5.SQL Server 2000 Architecture

	Images
	Image 1
	Image 2

	Page 19
	Titles
	32
	1,048,516TB,
	SQ L Server 2 000
	ObjectJProperty
	Log file size
	2.5.1.Relational Databases

	Images
	Image 1

	Page 20
	Titles
	\
	2.5.1.1.Database
	2.5.1.2Table
	2.5.1.3Column

	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Titles
	2.5.1.4.View
	2.5.1.5. Trigger
	2.5.1.6. Index
	2.5.1.7.Key
	2.5.1..8.Default
	2.5.1.9.Constraint
	2.5.1.10. Stored procedure
	2.5.1.11 User-defined data type
	2.5.1.12. User-defined function
	34

	Images
	Image 1

	Page 22
	Titles
	3. DATABASE DESIGN OF THE PROGRAM & INTERFACE
	3.lDatabase Design of The Program

	Images
	Image 1
	Image 2

	Page 23
	Titles
	3.2.Interface

	Images
	Image 1
	Image 2

	Page 1
	Titles
	.. ·.~.'
	a

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 4
	Titles
	CONCLUSION

	Images
	Image 1

	Page 5
	Titles
	REFERENCES

	Images
	Image 1

	Page 6
	Titles
	APPENDIX : PROGRAM CODES

	Images
	Image 1

	Tables
	Table 1

	Page 7
	Titles
	" ,,
	" "

	Images
	Image 1

	Page 8
	Titles
	44

	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	47
	" "
	" "

	Images
	Image 1

	Page 12
	Titles
	48

	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Titles
	50

	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Page 18
	Titles
	" "

	Images
	Image 1

	Page 19
	Titles
	55

	Images
	Image 1
	Image 2

	Page 20
	Titles
	" "

	Page 21
	Titles
	""

	Images
	Image 1

	Page 22
	Titles
	""

	Images
	Image 1

	Page 1
	Titles
	" "
	" "
	59

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	" "
	60

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	" "

	Images
	Image 1

	Page 4
	Titles
	" "
	62

	Images
	Image 1
	Image 2

	Page 5
	Titles
	" "

	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	" "
	64

	Images
	Image 1

	Page 7
	Titles
	" "

	Page 8
	Titles
	" "
	""
	66

	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Titles
	67

	Images
	Image 1

	Page 10
	Titles
	68

	Images
	Image 1

	Page 11
	Titles
	69

	Images
	Image 1

	Page 12
	Titles
	" "
	" "

	Images
	Image 1

	Page 13
	Titles
	""

	Images
	Image 1

	Page 14
	Titles
	" "

	Images
	Image 1

	Page 15
	Titles
	" "
	" "

	Images
	Image 1

	Page 16
	Titles
	""

	Images
	Image 1

	Page 17
	Titles
	" "
	75

	Page 18
	Titles
	" "
	76
	Ł

	Page 19
	Titles
	" "
	77

	Page 20
	Titles
	" "

	Page 21
	Titles
	79

	Page 22
	Titles
	" "
	80

	Page 23
	Page 1
	Images
	Image 1

	Page 2
	Page 3
	Page 4
	Images
	Image 1

	Page 5
	Titles
	86

	Images
	Image 1

	Page 6
	Titles
	87

	Page 7
	Titles
	88

	Page 8
	Titles
	89

	Page 9
	Page 10
	Page 11
	Titles
	92

	Page 12
	Page 13
	Titles
	94

	Tables
	Table 1

