
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

HOSPITAL AUTOMATION SYSTEM WITH V.B.NET

Graduation Project
COM400

Student: Kamil Selek(20011335)

Supervisor: Mr. Ümit İlhan

Nicosia-2006

ACKNOWLEDGMENTS

It is my pleasure to take this opportunity to express my greatest gratitude to man individuals

who have given me a lot of supports during my four-year Undergraduation program in the

Near East University. Without them, my Graduation Project would not have been

successfully completed on time.
First of all, I would like to express my thanks to my supervisor Mr. Ümit İlhan for

supervising my project. Under the guidance of him I successfully overcome many difficulties

and I learned a lot about web designing. In each discussion, he used to explain the problems

and answer my questions. He always helped me a lot and I felt remarkable progress during his

supervisior. Also I thankes for giving his time during the my study and my advisering.

I also want to thank all my friends and specially Adem Atçeken, Alper Karakuş, Yahya

Göksay and Sinan Çıklaçevik who supported and helped me all the time.

Finally, special thanks for my family, especially my parents for being patientfull during my

undergraduate degree study. I could never have completed my study without their

encouragement and endless support.

I

TABLE OF CONTENTS

ACKNOWLEDGEMENT
TABLE OF CONTENTS
ABSTRACT
INTRODUCTION
I.VISUAL BASIC.NET

1.2.The New Look of Visual Basic
1.3.Getting Started with VB.NET

1.3.1.Statements and Lines
1.3.2. Comments
1 . 3 .3.Operators
1 . 3.4.Using Procedures
1.3.4.1.Subroutines
1 .3 .4.2.Functions
1.3.5.Using Variables and Parameters
1.3.6.Understanding Visual Basic.NET Syntax and Structure

1.3.6.1. Constants
1 .3 .6.2.Implicit and Explicit Variable Declarations

1.3.6.3.0ption Explicit Versus Option Strict
1 .3 .6.4.Arrays

1 .3 .6.50ptional Parameters
1.3.7.Using Branching and Looping Structures

1.3.7.lBranching in VB.NET

1.3.7.1. 1 The If...Then ...Else Statement
1.3.7.1.2.The Select...Case Statement
l.3.7.2Looping in VB.NET
1.3.7.2.1 The Do ...Loop Statement
1.3.7.2.2.The While ...End While Statement

1.3.7.2.3.The For. ..Next Statement

1.3.7.2.4The For. ..Each Statement.
1.3.8.Creating Objects

1.3.9.00P Primer
1.3.9. l Objects and Classes
1.3.9.2Inheritance and Polymorphism

1.3. IO.Windows Forms
1.3.10.1. Creating a Form

1.3.10.1.1 Creating a Form Using Visual Studio .NET
1.3.10.2.Controls, Common Dialog Boxes, and Menus
1.3.10.2.1 Common Controls and Components
1.3.10.2.2.The Button Class
1.3.10.2.3. The CheckBox Class
1.3.10.2.4The ComboBox Class

1.3.10.2.5.The DateTimePicker Class

1.3.10.2.6.The GroupBox Class

I
II
IV

1
2
2
2
3
3
3
4
4
4
4
5
5
6

6
8

8
9
9

9
10
10
11
12

12

12
13

13
13
13

14
14

14
16
16
17
17
17

18

18

II

1.3.10.2.7.The ImageList Class 18
1.3.10.2.8.The Label Class 18

1.3.10.2.9.The LinkLabel Class 19

1.3.10.2.10.The ListBox Class 19

1.3.10.2.11 The ListBox.ObjectCollection Class 21

1.3.10.2.12.The ListView Class 23

1.3.10.2.13.The MonthCalendar Class 23

1.3.10.2.14.The Panel Class 23

1.3.10.2.15.The PictureBox Class 23

1.3.10.2.16.The RadioButton Class 24

1 .4.Developing Database Applications 24

1 .4. 1. A Brief History of Universal Data Access 25
1 .4.2. Managed Providers 25
1 .4.3 Connecting to a SQL Server Database 26
1 .4.5. Reading Data into a DataSet 27

2.SQL Server 2000 30
2. 1 .Introduction 30
2.2.How Will SQL Server 2000 Benefit My Organization? 30
2.3What language SQL Server uses to implement and maintain the 31

relational model
2.4.What software is used to access SQL Server 31
2.5.SQL Server 2000 Architecture 31

2.5.1.Relational Databases 33
2.5.1.1.Database 33
2.5.1.2Table 33
2.5.1.3Column 33
2.5.1.4.View 34
2.5.1.5.Trigger 34
2.5.1.6. Index 34
2.5.1.7.Key 34
2.5.1.8.Default 34
2.5.1.9.Constraint 34
2.5.1.10. Stored procedure 34
2.5.1.11 User-defined data type 34
2.5.1.12. User-defined function 34

3.DATABASE DESIGN OF THE PROGRAM & INTERFACE 35

3.lDatabase Design of The Program 35
3 .2.Interface 3 7

CONCLUSION 41
REFERENCES 42
APPENDIX: Program Codes 43

III

ABSTRACT

Automation programs with the development of the technology became compulsory software

to make easy the works of the human in large platforms. Because the computers take place in

every part of our lives.

At the beginning Data holded on paper, it is moved to the computer with the aim of decrease

the data loosing and after a time it spreat to data base usege as a result of being data security,

accessibility, data management and ordering facilities.

The program which I prepared for dental department of medicine is a software that can record

the patient personel informations safely, record the applied treatments easily with the help of

visual interface and control the treatment cost and payments with the help of data base

queryıng.

While preparing this project I used Visual Basic.Net as programing language and SQL Server

for database.

IV

INTRODUCTION

The technology is entered to every platform of our life, the usage of computer is spread

day by day. Without software the machines are nothing therefore there are software

need in many sectors human needed both software and hardware together. The main

point is making the user's job easy.

My project is a practise of software which is prepared to facilitate the studies in dental

department of medicine. software that can record the patient personel informations

safely, record the applied treatments easily with the help of visual interface and control

the treatment cost and payments with the help of data base querying .

Chapter 1 I explained the main structure, syntax, usage of Visual Basic.Net which I

used in preparing my project.

Chapter2 I explained structure and usage of SQL Server which I used for database.

Cahpter3 I showed the codes which I wrote, methods that I applied and the function of

project which I wrote.

1

1.VISUAL BASIC.NET

1.1. Why Should You Move toVisual Basic.NET?

One of the most common questions today is, "Why should I move to .NET?" .NET is

new, and there are many questions about what it can do for you. From a Visual Basic

standpoint, it's important to understand some of the dramatic benefits that can be

achieved by moving to VB.NET.

1.2.The New Look of Visual Basic
In moving to VB.NET, Microsoft has ditched a number of older, arcane features like

GoSub and default properties, and totally reworked features such as arrays and data

types. Other native features like the MsgBox function and the Cxxx convert functions

have been demoted. These demoted features are still in VB.NET but Microsoft is

recommending that you move to using the .NET System classes instead. Of course,

depending on your experience and base of existing legacy VB applications, some of the

changes may cause considerable pain. More than likely, however, you will soon grow to

appreciate the redesigned VB language.
What does the new Visual Basic.NET language mean to the average ASP developer

who has written thousands of lines of VBScript code but who has had little exposure to

VB proper? If you find yourself in this category of developer, you may experience a

short period of bewilderment, as you get accustomed to the wealth of new features

offered by VB.NET, features that VBScript never offered. But soon enough, you will

start to forget the limited VBScript language and grow to appreciate and even love the

much more nimble and full-featured VB.NET.

1.3.Getting Started with VB.NET
Compared to many programming languages, Visual Basic.NET is a fairly easy language

to learn. Unlike the C family of languages, VB.NET prefers to use the English language

rather than cryptic symbols like &&, II, and %. Unlike prior versions of the VB

language, however, VB.NET is a full-featured object-oriented language that can hold its

own when compared to C++, C#, or Java. The remainder of this chapter consists of a

walkthrough of the essential elements of the VB.NET language.

2

1.3.1.Statements and Lines
VB.NET statements can be placed on one or more lines. Unlike C++, C#, and Java,

there is no statement terminator character in VB. When continuing a statement across

more than one line, you must end continuation lines with a space followed by an

underscore character LJ.
For example, the following VB.NET statement spans two lines:

Function CreateFullName(LastName As String,_ FirstName As String)

1.3.2. Comments
You can add comments to your code using the apostrophe (') character. Everything to

the right of an apostrophe is ignored by the VB.NET compiler:

x = y + 5 'Add 5 to the value of y

1.3.3.0perators
Like any programming language, VB.NET has its assortment of operators. The most

common of these operators are summarized in Table 1.3.3.

Table 1.3.3

Continued Type Operator Purpose

Comparison
<
<=

>
>=

<>
Like

Is

Logical And

Or

Not

Xor

Exponentiates the value of a
variable by an expression and assigns
the result to the

variable*
Is equal to
Is less than
Is less than or equal to
Is greater than
Is greater than or equal to
Is not equal to
Matches a pattern*
Do object variables refer to same
object

True if both expressions are

true
True if one or both expressions
are true
True if the expression is False

True if one expression is true, but not
both*

Example
X /\= y

If (x = y)
If (x < y)
If (x <= y)
If (x > y)
If (x >= y)
If (x <> y)
If (x Like "p??r")
If (x Is y)

If (x = 3 And y =
4)

If (x = 3 Or y = 4)

If Not (x = 5)

If (x = 3 Xor y =
4)

3

* This operator was introduced in VB.NET.
You will find a number of examples that use the VB.NET operators scattered about the

chapter.

1.3.4.Using Procedures
The basic unit of executable code in VB.NET, as in most programming languages, is the

procedure. VB supports two basic types of procedures: the subroutine (or sub) and the

function.

1.3.4.1.Subroutines
You declare a subroutine with the Sub statement. For example

Sub HelloWorld() Response.Write("Hello World") End Sub

You call a sub using either of the following statements:

HelloWorld() Call HelloWorld()

1.3.4.2.Functions
Functions in VB.NET are similar in functionality to subroutines with one difference:

Functions can return a value to the calling program. You create a function with the

Function statement. For example, the following function returns "Hello World" to the

calling code:
Function SayHello() Return "Hello World" End Function

1.3.5.Using Variables and Parameters
You use the Dim, Private, Protected, Friend, or Public statements in VB.NET to declare

a variable and its data type. Which statement you use depends on where you wish to

declare the variable.
To declare a variable from within a subroutine or function, you use the Dim statement.

For example

Function DoSomething()

Dim Counter As Integer End Function
A variable declared using Dim is local to the procedure in which it is declared.

To declare a variable that's global to the entire page, you declare the variable outside of

any subroutine or function using the Private statement. For backward compatibility,

4

Dim also works in this context, but it's best to use Private instead. New for VB.NET,

you can both declare a variable and set its initial value in one statement.

For example
Dim Age As Integer= 23 Private Company As String = "Microsoft"

VB.NET supports the data types shown in Table 1.3.5.

Table 1.3.5

Visual Basic.NET Data .NET Runtime Storage Range of Values

Types Visual Basic
Data Type Data Type Size

Boolean System.Boolean 4 bytes True or False

Byte System.Byte 1 byte O to 255 (unsigned)

Char System.Char 2 bytes
1 Unicode""
character

Date System.DateTime 8 bytes January 1, 0001
to December 31 ,9999
12:00:00 AM

1.3.6.Understanding Visual Basic.NET Syntax and Structure
You may have noticed that there is no entry for Variant in Table 1.3.5. That's because

VB.NET no longer supports the Variant data type. However, you can use the generic

Object type any place you would have used Variant in prior versions of VB. (In

VB.NET, Variant is a synonym for Object.) Unlike prior versions of VB, if you use a

declare statement as shown in the following example, all three variables will be declared

as integers:

Dim x, y, z As Integer
In prior versions of VB, x and y would be declared as variant variables and only z

would be declared as an Integer.

1.3.6.1. Constants
You can use the Const statement to declare a constant. Like a variable, a constant holds

a value; however, a constant's value is set at design time and may not change. You can

include the Private or Public keyword within the Const statement to alter the scooping

of the constant declaration. Here are a few examples:

5

Const Pi As Double= 3.14159

Private Const CmPerinch As Double = 2.54

Public Const BookTitle As String= "ASP for Developers"

In addition to user-defined constants, VB.NET and the .NET Framework define a

number of intrinsic constants. For example, you can use the intrinsic constant CrLf

anytime you wish to add a carriage return and line feed to a string:

MsgString = "An error has occurred in the program." & _ CrLf & "Click on OK to

continue or CANCEL to abort."

1.3.6.2.Implicit and Explicit Variable Declarations
VB has always supported implicit variable declarations, which means that you are not

required to declare your variables or parameters before using them. However, most

professional developers agree that you should not take advantage of this VB feature

unless you like bugs in your code. The issue is best demonstrated with an example:

Function Multiply(numberl, number2)

Return numberl * numbr2 End Function

The Multiply function will always return O because we misspelled one of the

parameters. This happens because VB.NET implicitly declares numbr2 and initializes it

to O because it is used in a numeric context. You can avoid this type of hard-to-find bug

by using Option Explicit or Option Strict. In this example, if you had used either of

these options, VB.NET would generate a compile-time error when the page was

compiled.

1.3.6.3.0ption Explicit Versus Option Strict
VB has always had the Option Explicit declaration, which forces you to declare all your

variables, but VB.NET also introduces Option Strict, which goes one step further. In

addition to forcing you to declare all your variables, Option Strict restricts the types of

implicit conversions that the language allows. When you use Option Strict, VB won't

allow conversions where data loss would occur. Option Strict also disallows implicit

conversions between numeric and string data types.

6

To specify Option Explicit, you can use the following page directive at the top of the

ASP page:

<%@ Page Explicit="True" %>

To specify Option Strict, you can use the following page directive at the top of the ASP

page:
<%@ Page Strict="True" %>

7

1.3.6.4.Arrays
You create arrays in VB.NET using the Dim, Public, or Private statements. You use paren­

theses to specify that you wish to declare an array rather than a scalar variable. For example,

the following statement creates an array of strings:

Dim Names() As String

Before using an array, you must specify the total number of elements in the array with the

ReDim statement:

Dim Names() As String ReDim Names(2) Names(O)= "Mike" Names(l) = "Paul"

All arrays have a lower bound of zero. The number you place between the parentheses of the

ReDim statement designates the total number of elements the array will hold. Thus, a value of

2 as shown in this example tells VB that the array will hold two string elements, numbered O

and 1.

1.3.6.50ptional Parameters
VB.NET supports optional parameters. To create an optional parameter you insert the

Optional keyword before the parameter name and you supply the parameter's default value

after the data type, like this:

Optional parameter_name As data_type = default_value

The following function takes a string and makes it into an HTML heading of a level specified

by the Level parameter. If Level is not specified, it is assumed to be 1:

The HelloWorld.aspx page calls CreateHead twice from the Page Load subroutine:

<script language="VB" runat="server">

Sub Page_Load(Src as Object, E as EventArgs)

If Not Page.IsPostBack Then

DisplayMsg.Text = CreateHead("Hello World!", 3)

DisplayMsg.Text &= CreateHead("Hello Universe!")

8

End If

End Sub ' ... </script>

<asp:label id="DisplayMsg" runat="server" />

The first time the code calls CreateHead with the phrase "Hello World" and Level is equal to

3. The second time the code calls CreateHead with the phrase "Hello Universe" and Levelis

not specified, which is interpreted to mean a heading level of 1. This produces a page like the

one shown in Figure 1.3.6.5.

Sample ASPx4Devs Page

Hello World!

Hello Universe!

Figure 1.3.6.5

This sample page illustrates the use of optional parameters.

Every parameter to the right of an optional parameter must also be optional.

1.3.7.Using Branching and Looping Structures
More than likely, you'll want to be able to conditionally branch in your code based on the

value of a variable or an expression. Or perhaps you'll want to repeatedly loop through a

section of code. VB.NET supports several branching and looping structures.

1.3.7.lBranching in VB.NET
You can branch in your code using the If. .. Then ... Else statement or the Select Case statement.

1.3.7.1.1The If...Then ...Else Statement
You use the If... Then ...Else statement (or simply the If statement) to conditionally execute a

piece of code based on the value of some expression. The simplest form of the If statement

contains an If clause without any Else clause. Such a statement was used in an earlier example

(from HelloWorld.aspx):

If Not Page.IsPostBack Then

DisplayMsg.Text = CreateHead("Hello World!", 3)

DisplayMsg.Text &= CreateHead("Hello Universe!") End If

9

In this example, the two assignment statements are executed only when Page.IsPostBack is

False. Otherwise, no statements are executed.

1.3.7.1.2. The Select ...Case Statement
You can also use the Select...Case statement for branching in VB.NET. The Select...Case

statement is useful when you wish to check the value of an expression against a list of

possible values and execute a different set of code for each value.
This example checks the value of the integer variable PayMethod against a list of possible

values. The Select...Case statement sets the value of two string variables to various values

depending on the value of PayMethod.

Select Case PayMethod

Case 1

PayMethText = "Visa"
SubmitText = "Complete Order and Bill My Credit Card" Case 2

PayMethText = "Mastercard"
SubmitText = "Complete Order and Bill My Credit Card" Case 3

PayMethText = "American Express"
SubmitText = "Complete Order and Bill My Credit Card" Case 4

PayMethText = "Company PO"

SubmitText = "Complete Order" Case 5

PayMethText = "Check"

SubmitText = "Complete Order" Case Else

PayMethText = "Error"
SubmitText = "Illegal Payment Method: please correct." End Select

Notice the Case Else clause, which is executed if none of the other cases is true.

1.3.7.2Looping in VB.NET
You can loop using the Do...Loop statement, the While...End While statement, the For...Next

statement, or the For...Each statement.

10

1.3.7.2.lThe Do ... Loop Statement
You can use the Do ... Loop statement (or simply Do loop) to execute a set of statements

repeatedly, either while some condition is true or until some condition becomes true.

For example, the following code from titles.aspx fills a dropdownlist control with records

from the titles table of the pubs sample SQL Server database. We have used a Do loop to

move through each of the records returned by the query and added them to the dropdownlist' s

Listltem collection. (See Chapter 10, "Designing Advanced User Interfaces with Web For

List Controls and Custom Web Controls," for more on Web Form list controls and Chapter

15, "Accessing SQL Server Data with the SQL Managed Provider," for more on using

ADO.NET with the SQL Managed Provider.)

Sub FillList() Dim ConnectString As String=_ "server=localhost;uid=sa;

pwd=;database=pubs"

Dim SQL As String

Dim PubsCnx As SQLConnection

Dim TitlesQry As SQLCommand

Dim TitlesRdr As SQLDataReader

Dim Titleltem As Listltem

PubsCnx = New SQLConnection(ConnectString)

PubsCnx.Open()
SQL = "SELECT title, title _id FROM titles ORDER BY title"

TitlesQry = New SQLCommand(SQL, PubsCnx)

TitlesQry.Execute(TitlesRdr)
Do While TitlesRdr.Read() Titleltem = New Listltem(TitlesRdr("title"), TitlesRdr("title _id"))

T itleList.Items .Add(Titleltem)

Loop End Sub
The Do ... Loop statement from the FillList subroutine uses the SQLDataReader's Read

method to retrieve the next record returned by the query. Read advances the current record

pointer and returns True if it was able to successfully retrieve a record or False if there are no

more records to retrieve.

11

1.3. 7 .2.2. The Wbile ... End While Statement
The While ... End While statement (or simply the While loop) is very similar to the Do ... Loop

statement. You can use it to execute a set of statements repeatedly, while some condition is

true. For example

While i<=Length IfMid(Phrase, i, 1) ="."Then

Exit While

End if

i += 1

End While

1.3.7.2.3.The For Next Statement
You can use the For Next statement (or simply the For loop) to repeatedly execute a block of

statements a specified number of times. While similar in concept to the Do and While loops,

the For loop differs in that it automatically increments a counter variable for you.

The For loop is especially useful for iterating through the items in an array. For example, the

following code iterates through all of the elements in the Colors array and displays them on

the page:

For i = O To UBound(Colors)

Response.Write("
" & i & "=" & Colors(i)) Next

1.3.7.2.4The For ... Each Statement
The For. .. Each statement is a special kind of For. .. Next loop that is useful for iterating

through members of a collection. A collection is an ordered set of items, usually objects, that

you can refer to and manipulate as a unit. For example, when working with ADO.NET, you

can work with the Errors collection of Error objects.

For example, the following function (from titles2.aspx) returns an HTML table containing a

row for each record in the titles table of the SQL Server Pubs database. The DataSet's Table

object contains a collection of rows and each row contains a collection of columns. The

DisplayTitles function employs two nested For...Each loops to iterate through the TitlesSet

dataset. (Datasets and ADO .NET are explained in more detail in Chapter 15 and Chapter 16,

"Accessing Non-SQL Server Data with the OLE DB Managed Provider.")

12

1.3.8.Creating Objects
Prior versions of VB lacked many object-oriented programming (OOP) features that other

languages such as C++, Java, and FoxPro have had for years. Fortunately, VB.NET includes

strong support for OOP.

1.3.9.00P Primer
Class, subclass, inheritance, constructor, polymorphism: Object-oriented programming uses

lots of fancy new terms that undoubtedly confuse the non-OOP programmer. In this section,

you'll find a 10-minute primer of OOP terminology.

1.3.9.lObjects and Classes
Objects are things that you want to represent in your code. Another way to think of an object

is as a grouping of properties, methods, and events that are logically tied together. You work

with an object by manipulating its properties and methods and reacting to its events.

A class is a template or schema for creating an object. At design time you create the class that

serves as the template for creating objects at runtime. An object is thus an instance of a class.

And that's one of the neat things about using classes: You can have as many instances of a

class as you want, and VB automatically keeps each object's data independent of each other

object's data. Another neat thing about classes is that they encapsulate the implementation of

the object into a neat package. Encapsulation allows you to separate the implementation of the

class (the code inside of the class that makes it work) from its interface (the public properties,

methods, and events of the class).

1.3.9.2Inheritance and Polymorphism
One of the big additions to VB.NET is its support for inheritance. Inheritance allows you to

create classes that are descendants of another class. When a class inherits from another class,

the original class is termed the base class(also sometimes referred to as the superclass or

parent class) and the class that inherits from the base class is called the derived class (also

sometimes referred to as the subclass or child class).

VB.NET supports the overriding of a base class's methods with alternate implementations.

Polymorphism is the ability of different classes to support the properties and methods with the

13

