
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Genetic Algorithm Based Optimization

Graduation Project
COM-400

Student: Yahya Safarinı

I

~Supervisor: Assoc. Prof. Dr. Rahib Abiyev

Nicosia - 2003

ACKNOWLEDGEMENTS

"First I would like to thank my supervisor Assoc. Prof Dr. Rahib Abiyevfor his great

advice andrecommendations tofinish this workproperly.

Although Ifaced manyproblem collections data but has guiding me the appropriate

references.(DR Rahib) thanks a lotfor your invaluable and continual support.

Second, I would like to thank myfamilyfor their constant encouragement and support

during thepreparation of this work specially my brothers (Mohammed and Ahmed) .

Third, I thank all the staff of thef acuity of engineeringfor giving me thefacilities to

practice and solving any problem I was.facing during working in thisproject.

Forth I do not want toforget my bestfriends (Mana.I),(Saleh),(Abu habib) and all

friendsfor helping me tofinish this work in short time by their invaluable

encouragement.

Finally thanksfor all of myfriends for their advices and support specially Terak

Ahmed,Mohammed Darabie ,Anas Badran,Adham Sheweiki ,Bilal Qarqour and

Mohammad Qunj.

ABSTRACT

By increasing complexity of processes, it has become very difficult to control them on the base of

traditional methods. In such condition it is necessary to use modem methods for solving these

problems. One of such method is global optimization algorithm based on mechanics of natural

selection and natural genetics, which is called Genetic Algorithms. In this project the application

problems of genetic algorithms for optimization problems, its specific characters and structures

are given. The basic genetic operation: Selections, reproduction, crossover and mutation

operations are widely described the affectivity of genetic algorithms for optimization problem

solving is shown. After the representation of optimizations problem, structural optimization and

the finding of optimal solution of quadratic equation are given.

The practical application for selection, reproduction, crossover, and mutation operation are

shown. The fiınctional implementation of GA based optimization in MATLAB programming

language is considered. Also the multi-modal optimization problem, some methods for global

optimization and the application of Niching method for multi-modal optimization are discussed.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
CHAPTER ONE: WHAT ARE GENETIC ALGORITHMS (GAs)?

l. 1 What are Genetic Algorithms (GAs)?
1.2 Defining Genetic Algorithms
1.3 Genetic Algorithms: A Natural Perspective
1. 4 TheIteration Loop of a Basic Genetic Algorithm
1.5 Biology
1.6 An Initial Population of Random Bit Strings is Generated
1. 7 Genetic Algorithm Overview

1. 7.1 A Number of Parameters Control The Precise Operation of The Genetic
Algorithm, viz.

1. 8 Genetic Operations
1.8.1 Reproduction
1.8.2 Crossover
1.8.3 Mutation

1.9' Four Differences Separate Genetic Algorithms from More Conventional
Optimization Techniques:

CHAPTER TWO: OPTIMIZATION PROBLEM
2.1 Definition for Optimization
2.2 The Optimization Problem
2.3 Genetic Algorithm Optimization
2.4 Continuous Optimization

2.4.1 Constrained Optimization
2.4.2 Unconstrained Optimization

2.5 Global Optimization (GO)
2.5.1 Complexity of the Global Optimization Problem
2.5.2 Solving GO Problems

2.6 Nonsmooth Optimization (NSP)
2.6. 1 Solving NSP. Problems

2.7 Multi-Objective Optimization for Highway Management Programming
CHAPTER THREE: A GENETIC ALGORITHM-BASED

OPTIMIZATION
3 .1 Main Features for Optimization

3. 1. 1 Representation
3.2 Applications

3 .2.1 Difficulties
3.2.2 Deception

3 .3 The Neighborhood Constraint Method:A Genetic Algorithm-Based
Multiobjeetive Optimization Technique
3.3. l. Overview
3.3.2 Literature Review: GAs in Mo Analysis

iii

.
I..

il...
Ill

1
3
3
3
4
5
5
5
6

7
9

10
10
11

12
14
14
14
16
18
18
24
29
29
30
30
31
32

36
36
40
43
44
45

46
46
48

INTRODUCTION

This is an introduction to genetic algorithm methods for optimization. Genetic

Algorithms were formally introduced in the United States in the 1970s by John Holland

at University of Michigan. The continuing price/performance improvements of

computational systems has made them attractive for some types of optimization. In

Particular, genetic algorithms work very well on mixed (continuous and discrete),

Combinatorial problems. They are less susceptible to getting 'stuck' at local optima than

gradient search methods. But they tend to be computationally expensive.

To use a genetic algorithm, you must represent a solution to your problem as a

genome (or chromosome). The genetic algorithm then creates a population of solutions

and applies genetic operators such as mutation and crossover to evolve the solutions in

order to find the best one(s).
This presentation outlines some of the basics of genetic algorithms. The three most

important aspects of using genetic algorithms are: (1) definition of the objective

function, (2) definition and implementation of the genetic representation, and (3)

definition and implementation of the genetic operators. Once these three have been

defined, the generic genetic algorithm should work fairly well. Beyond that you can try

many different variations to improve performance, find multiple optima (species - if

they exist), or parallelizethe algorithms.
The genetic algorithm uses stochastic processes, but the result is distinctly non

random (better than random).
GENETIC Algorithms are used for a number of different application areas. An

example of this would be multidimensional OPTIMIZATION problems in which the

character string of the CHROMOSOME can be used to encode the values for the

different parameters being optimized.
In practice, therefore, we can implement this genetic model of computation by

having arrays of bits or characters to represent the Chromosomes. Simple bit

manipulation operations allow the implementation of CROSSOVER, MUTATION and

other operations. Although a substantial amount of research has been performed on

variable- length strings and other structures, the majority of work with GENETIC

Algorithms is focused on fixed-length character strings. We should focus on both this

aspect of fixed-length ness and the need to encode the representation of the solution

1

being sought as a character string, since these are crucial aspects that distinguish

GENETIC PROGRAMMING, which does not have a fixed length representation and

there is typically no encoding of the problem.

When the GENETIC ALGORITHM is implemented it is usually done in a manner

that involves the following cycle: Evaluate the FITNESS of all of the Individuals in the

POPULATION. Create a new population by performing operations such as

CROSSOVER, fitness-proportionate REPRODUCTION and MUTATION on the

individuals whose fitness has just been measured. Discard the old population and iterate

using the new population.

One iteration of this loop is referred to as a GENERATION. There is no

theoretical reason for this as an implementation model. Indeed, we do not see this

punctuated behavior in Populations in nature as a whole, but it is a convenient

implementation model.

The first GENERATION (generation O) of this process operates on a

POPULATION of randomly generated Individuals. From there on, the genetic

operations, in concert with the FITNESS measure, operate to improve the population.

2

CHAPTER ONE

WHAT ARE GENETIC ALGORITHMS (GAs)?

1.1 What Are Genetic Algorithms (GAs)?

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on

the evolutionary ideas of natural selection and genetics. As such they represent an

intelligent exploitation of a random search used to solve optimization problems.

Although randomised, GAs are by no means random, instead they exploit historical

information to direct the search into the region of better performance within the search

space. The basic techniques of the GAs are designed to simulate processes in natural

systems necessary for evolution, specially those follow the principles first laid down by

Charles Darwin of "survival of the fittest.". Since in nature, competition among

individuals for scanty resources results in the fittest individuals dominating over the

weaker ones.

1.2 Defining Genetic Algorithms

What exactly do we mean by the term Genetic Algorithms Goldberg (1989) defines

it as:

Genetic algorithms are search algorithms based on the mechanics of natural

selection and natural genetics.

Bauer (1993) gives a similar definition in his book:

Genetic algorithms are software, procedures modeled after genetics and evolution.

GAs exploits the idea of the survival of the fittest and an interbreeding population

to create a novel and innovative search strategy. A population of strings, representing

solutions to a specified problem, is maintained by the GA. The GA then iteratively

creates new populations from the old by ranking the strings and interbreeding the fittest

to create new strings, which are (hopefully) closer to the optimum solution to the

problem at hand. So in each generation, the GA creates a set of strings from the bits and

pieces of the previous strings, occasionally adding random new data to keep the

population from stagnating. The end result is a search strategy that is tailored for vast,

complex, multimodal search spaces. GAs are a form of randomized search, in that the

way in which strings are choisen and combined is a stochastic process. This is a

radically different approach to the problem solving methods used by more traditional

3

;a:1g-0ridm:ıs, whlclh tend to /be mor-e rdeterministirc in nature, :sur.ch as tlre :gm<lfient methods

used to find ııınifilinm iırn gra,pıh. theory.
"l"'iı., :·,;ıı., of .·· ·'·'ı,-.x-.;riL, il!:ı,.,,....'.·, ,_,j' .. ··,11-:· ... ··•.····· ·•·•. ,-, .. 1,.... ,,·,ı.._. G·.. ;A,-!L,uı.e ıaea o, sııfVi!Va or me :u1ı.te.,,L ts oı g,ı:rea:1. ım:portance to .geootrc aıgor,ıtmus. , -~

use wıhat is ter.med as a fitness fü;fl.'ction in order to :s-e'rett tlre fütest string that wiU he
"'"'""';;ı .•....,, '"'f-~"'4'C '"'""'"""" '"..,,,;.ı "''"'""·O· ..;;,,c.,ıı,.·~·u better '1'1""''fi"1'"'h""'""' n.'f. ,.,..,...,.,,..l('TI;!_ T·!ı...,. 4!.t· ness -~···.....-,...t· '"""'·u.:,.v.Uıı.-v~, ·\ı..laıl.1- ·)liıv:v,v., ~ıdi ·vv:ı'.r·,\;11.··v'a!IJJ:~j , ·."'' :L',;.,'1~)l-"V,t'-u.i,a.:t(ı,\..!M.:ıııı ·,Jv ;~:vıtılUJJ!iı.:r... ' il.1""1 il· :111~3 ..,t!U,;1,1\.:i· lıuaıı

takes 'a ,,.,+,.;;..,,,o """",ıı '"''S'.S''"'"""·S .,. 11',,;t,.,,:+;;~,,,,. fitness "~-~'""' to ...;t,..e· 'S;ı...:;...,,_o-'. '7':'l,.e·· ,.,.,.;1,.,,.,.,;ı bv n,,t.:;,C. 'IL ;,.ilf.cv.t\j\,;,. ,. ,.:Ml.tL'.lı~t:, :wu,U ı.u ·~J;,;,ıı,\ı,. s:a .iJ.1\ı;:,\l·af\:.ıN1.\a:, 111:UJ. , .. , 'v0W·uv 1ı: liff,, 't.1.;1/1.i.J,::,·· lllll. · llıI\ı:ı't..:llvU U_-.:7 ·.vv!llf,:ı... aa -1ıiL-

does this and tllre tı.:ature of the füness vahıe does n:ot matter.. The o-ftly tm~gthat the
fitness function m.:ust do is to rank the strl@gs in some w~y by -pırodurdng the fitness
v:allue.. These values are thm used to select the fitte-st :strings. The connept of a fi'.me,ss
.il::--,,-+:· ' ,... :' ~ . t . . .,,.;.'.· .. 1.~' '.•.... t' - ' • ··r' - ' " •' . " --,1 ..ıı.;r - ,· " ' ·' :t..,. ' l.,>, ' ; .• .;ı;mı\,;\,,ı:on ıs, m rao ., a pa<,d'CU.'ıar ımsc ance o- ;a more :gerreıw. ,h;ı "'o:ncept, tı,e ouJectıve

fu.m.tion.

1.3 Genetic Algorithms: A Natural Perspective
The popula:tron can be 'siın;p:iy viewed as a ooUreotion ,of il1I-terarct'i~g creatures. As

each ,geı:rerationcf creatures eomes :antl goes, tke weaker ones ttre:rı'd to dire away without

pr-0:durci~g ,dlnl-d:ren~ wmle the stronger mate, 'C'omlrimng :attributıes of both pasrrems, to
produce ft'ew, :a;nd p:erha;ps unique children to ron'.tinue t1tre cycle. Oooa:srorrally~ a
'"''"U"''"' .•. ~""""" IA'f'°'JelO(rı,·s ;,.,..,,,. 'O'"'"" ,,..,r· the creanrres d' :ı·.•,..,..•.•..;,;~,,_,,.,o ·11-'il-,z. fi·o· ··p· .,.,.....,-;.,,.... ""'"'"""' "'"''O' ,,,,,.-:u:ı: · .!ı..ıwu,v.1.<.1. vı,, '-'F .ı.ıiı.<J.il,O r :.u.v 'V1 ıvıı · \ ..:ı:ı:\,,;,O. · , -: ; ·v..""'ı~a.j'\ı:ı~.e,:vu-".\., t'· .·; ;:..wıcu.ıu.;1a.ı. '\,,:ı'\""1:;:J.iı. qıı.,1. ·:i.l.".'.\.:.ı-.

Rreme:mber thaıt in nature, a diverse population within a species ite.tıd:s to al'low the

species to :ad:a;pt to i:t':s en.vironm.ınt with more ease. The same holds true for genetic
:aJJ.gori'thms,.

4

1.4 The Iteration Loop of a Basic Genetic Algorithm

Rarıdomlycreated
lnltial Population

Selection
(v.ıtıoıe population)

Pc 1-Pc

Recom bination

No

End

Figure 1.1.

1.5 Biology
Genetic algorithms are used in search and optimization, such as finding the

maximumof a function over some domain space.

1. In contrast to deterministic methods like hill climbing or brute force complete

enumeration, genetic algorithmsuse randomization.

2. Points in the domain space of the search, usually real numbers over some range, are

encoded as bit strings, called chromosomes.

3. Each bit position in the string is called a gene.

4. Chromosomes may also be composed over some other alphabet than {0,1}, such as

integers or real numbers, particularly if the search domain is multidimensional.

5. GAs are called "blind" because they have no knowledge of the problem.

1.6 An Initial Population of Random Bit Strings is Generated
1. The members of this initial population are each evaluated for their fitness or

goodness in solving the problem.

5

2. If the problem is to maximize a function f(x) over some range [a,b] of real numbers

and if f(x) is nonnegative over the range, then f(x) can be used as the fitness of the bit

string encoding the value x.

From the initial population of chromosomes, a new population is generated using

three genetic operators: reproduction, crossover, and mutation.

1. These are modeled on their biological counterparts.

2. With probabilities proportional to their fitness, members of the population are

selected for the new population.
3. Pairs of chromosomes in the new population are chosen at random to exchange

genetic material, their bits, in a mating operation called crossover. This produces two

new chromosomes that replace the parents.

4. Randomly chosen bits in the offspringare flipped, called mutation.

The new population generated with these operators replaces the old population.

1. The algorithm has performed one generation and then repeats for some specified

number of additional generations.
2. The population evolves, containingmore and more highlyfit chromosomes.

3. When the convergence criterion is reached, such as no significant further increase in

the average fitness of the population, the best chromosome produced is decoded into

the search space point it represents.
Genetic algorithms work in many situations because of some hand waving called

The Schema Theorem.
'' Short, low-order, above-average fitness schemata receive exponentially

increasing trials in subsequent generations."

1.7 Genetic Algorithm Overview
GOLD optimises the fitness score by using a genetic algorithm.

1. A population of potential solutions (i.e. possible docked orientations of the

ligand) is set up at random. Each member of the population is encoded as a

chromosome, which contains information about the mapping of ligand H­

bond atoms on (complementary) protein H-bond atoms, mapping of

hydrophobic points on the ligand onto protein hydrophobic points, and the

conformation around flexibleligand bonds and protein OH groups.

6

2. Each chromosome is assigned a fitness score based on its predicted binding

affinity and the chromosomes within the population are ranked according to

fitness.

3. The population of chromosomes is iteratively optimised. At each step, a

point mutation may occur in a chromosome, or two chromosomes may mate

to give a child. The selection of parent chromosomes is biased towards fitter

members of the population, i.e. chromosomes corresponding to ligand

<lockings with good fitness scores.

1.7.1 A Number of Parameters Control The Precise Operation of The
Genetic Algorithm, viz.

1. Population size.

2. Selection pressure.

3. Number of operations.

4. Number of islands.

5. Niche size.

6. Operator weights: migrate, mutate, crossover.

7. Annealingparameters: van der Waals, hydrogen bonding.

1.7.1.1 Population Size

1. The genetic algorithm maintains a set of possible solutions to the problem. Each

possible 'solution is known as a chromosome and the set of solutions is termed a
population.

2. The variable Population Size (or popsize) is the number of chromosomes in

the population. If n_islands is greater than one (i.e. the genetic algorithm is

split over two or more islands), pop size is the population on each island.

1.7.1.2 Selection Pressure

1. Each of the genetic operations (crossover, migration, mutation) takes

information from parent chromosomes and assembles this information in

child chromosomes. The child chromosomes then replace the worst

members of the population.

2. The selection of parent chromosomes is biased towards those of high fitness,

i.e. a fit chromosome is more likelyto be a parent than an unfit one.

. 3. The selection pressure is defined as the ratio between the probability that the

most fit member of the population is selected as a parent to the probability

7

that an average member is selected as a parent. Too high a selection pressure

will result in the population converging too early.

4. For the GOLD docking algorithm, a selection pressure of 1. 1 seems

appropriate, although 1. 125 may be better for library screening since the aim

is for faster oonvergeeoe

1.7.1.3 Number of Operations

1. The genetic algorithm starts off with a random population (each value in

every chromosome is set to a random number). Genetic operations

(crossover, migration, mutation are then applied iteratively to the population.

The parameter Number of Operations (or maxops) is the number of

operators that are applied over the course of a GA run.

2. It is the key parameter in determininghow long a GOLD run will take.

1.7.1.4 Number of Islands

1 . Rather than maintaining a single population, the genetic algorithm can

maintain a number of populations that are arranged as a ring of islands.

Specifically, the algorithm maintains n_islands populations, each of size

popsıze.

2. Individuals can migrate between adjacent islands using the migration

operator.

3. The effect of n_islands on the efficiencyof the genetic algorithm is uncertain.

1.7.1.5 Niche Size

1 . Niching is a common technique used in genetic algorithms to preserve diversity

within the population.

2. In GOLD, two individuals share the same niche if the rmsd between the coordinates

of their donor and acceptor atoms is less than 1. O A.
3. When adding a new individual to the population, a count is made of the number of

individuals in the population that inhabit the same niche as the new chromosome. If

there are more than NicheSize individuals in the niche, then the new individual

replaces the worst member of the niche rather than the worst member of the total

population.

8

1.7.1.6 Operator Weights: Migrate, Mutate, Crossover

1. The operator weights are the parameters Mutate, Migrate and Crossover (or

Pt_cross).
2. They govern the relative frequencies of the three types of operations that can

occur during a genetic optimization: point mutation of the chromosome,

migration of a population member from one island to another, and crossover

(sexual mating) of two chromosomes.
3. Each time the genetic algorithm selects an operator, it does so at random. Any

bias in this choice is determined by the operator weights. For example, if

Mutate is 40 and Crossover is 1 O then, on average, four mutations will be

applied for every crossover.
4. The migrate weight should be zero if there is only one island, otherwise

migration should occur about 5% of the time.

1.7.1.7 Annealing Parameters: van der Waals, hydrogen bonding

1. The annealing parameters, van der Waals and Hydrogen Bonding, allow poor

hydrogen bonds to occur at the beginning of a genetic algorithm run, in the

expectation that they will evolve to better solutions.
2. At the start of a GOLD run, external van der Waals (vdw) energies are cut off

when Eij > van der Waals * kij, where kij is the depth of the vdw well

between atoms i and j. At the end of the run, the cut-off value is FINISH

VDW LINEAR CUTOFF.
3. This allows a few bad bumps to be tolerated at the beginning of the run.

4. Similatlythe parameters Hydrogen Bonding and
FINAL_VIRTUAL_PT~MATCH_MAX are used to set starting and finishing

values ofmax distance (the distance between donor hydrogen and fitting

point must be less than max_distance for the bond to count towards the

fitness score). This allows poor hydrogen bonds to occur at the beginning of a

GA run.
5. Both the vdw and H-bond annealing must be gradual and the population

allowed plenty oftime to adapt to changes in the fitness function.

1.8 Genetic Operations
In order to improve the current population, genetic algorithms commonly use three

different genetic operations. These are reproduction, crossover, and mutation. Both

9

reproduction and crossover can be viewed as operations that force the population to

converge. They do this by promoting genetic qualities that are already present in the

population. Conversely, mutation promotes diversity within the population. In general,

reproduction is a fitness preserving operation, crossover attempts to use current positive

attributes to enhance fitness, and mutation introduces new qualities in an attempt to

increase fitness.

1.8.1 Reproduction

The reproduction genetic operation is an asexual operation. Reproduction involves

making an exact copy of an individual from the current population into the next

generation. The selection of which individuals will be copied into the next generation is

done probabilistically based upon relative fitness. Suppose that a gene g exists such

that \Ih F (g) ~ F (h) . Then the reproduction operation will be performed on gene h

with a probability;~;~ . This selection method ensures all valid genes (i.e. genes that

actually solve the problem) have a probability of being chosen for the reproduction

operation since F(h) > O for all genes h that represent a valid solution to the problem

that is being solved.

1.8.2 Crossover

The crossover operation is the most important genetic op,eration. This operation is

used to create new individuals by combining the qualities of 2 or more genes (See Fig.

1.2).

Parents

01011011

T
10110001

0101 0001--- 10111011~~

Children

Figure 1.2. The crossover operation

10

A decision must be made as to which individuals are to be involved in the

crossover operation. The method that was used to make this decision in the genetic

algorithms under consideration is a form of Boltzmann tournament selection. A

Boltzmann tournament proceeds as follows: two genes g and h are selected at random

from the current population and are entered into a tournament. If F(g) > F(h) then g

wins the tournament, otherwise h wins the tournament. The winner will advance to

compete in another tournament with a randomly chosen individual. For the

implementation, there were 3 tournaments performed in order to choose each parent.

The most general statement of a Boltzmann tournament requires the selection of h to

satisfyIF (g) - F(h)! 2 <f; , for some ¢> [Mafoud9l]. For the implementations, a value of

</> = O was used.

1.8.3 Mutation

Selection and crossover alone can obviously generate a staggering amount of

differing strings. However, depending on the initial population chosen, there may not be

enough variety of strings to ensure the GA sees the entire problem space. Or the GA

may find itself converging on strings that are not quite close to the optimum it seeks due

to a bad initialpopulation.

Some of these problems are overcome by introducing a mutation operator into the

GA. The GA has a mutation probability, m, which dictates the frequency at which

mutation occurs. Mutation can be performed either during selection or crossover

(though crossover is more usual). For each string element in each string in the mating

pool, the GA checks to see if it should perform a mutation. If it should, it randomly

changes the element value to a new one. In our binary strings, 1 s are changed to Os and

Os to 1 s. For example, the GA decides to mutate bit position 4 in the string 10000:

10000 Mutate :ıııı 10010

Figl.3 .The mutation operator

The resulting string is 1001 O as the fourth bit in the string is flipped. The mutation

probability should be kept very low (usually about 0.001%) as a high mutation rate will

destroy fit strings and degenerate the GA algorithm into a random walk, with all the

associated problems.

But mutation will help prevent the population from stagnating, adding "fresh

blood", as it were, to a population. Remember that much of the power of a GA comes

11

from the fact that it contains a rich set of strings of great diversity. Mutation helps to

maintain that diversity throughout the GA's iterations.

1.9 Four Differences Separate Genetic Algorithms from More

Conventional Optimization Techniques:

1. Direct manipulationof a coding:
Genetic algorithms manipulate decision or control variable representations at a

string level to exploit similarities among high-performance strings. Other methods

usually deal with functions and their control variables directly.
GA' s deal with parameters of finite length, which are coded using a finite alphabet,

rather than directly manipulating the parameters themselves. This means that the search

is unconstrained neither by the continuity of the function under investigation, nor the

existence of a derivative function. Moreover, by exploring similarities in coding, GAs

can deal effectively with a broader class of functions than can many other procedures

(see BuildingBlock Hypothesis).
Evaluation of the performance of candidate solutions is found using objective,

payoff information. While this makes the search domain transparent to the algorithm

and frees it from the constraint of having to use auxiliary or derivative information, it

also means that there is an upper bound to its performance potential.

2. Search from a population, not a singlepoint:
In this way, GAs finds safety in numbers. By maintaining a population of well­

adapted sample points, the probability of reaching a false peak is reduced. The search

starts from a population of many points, rather than starting from just one point. This

parallelism means that the search will not become trapped on a local maxima -

especially if a measure of diversity-maintenance is incorporated into the algorithm, for

then, one candidate may become trapped on a local maxima, but the need to maintain

diverity in the search population means that other candidates will therefore avoid that

particular area of'dıe search space.

3. Search via sampling,a blind search:
GAs achieves much of their breadth by ignoring information except that

concerning payoff Other methods rely heavily on such information, and in problems

where the necessary information is not available or difficult to obtain, these other

techniques break down. GAs remain general by exploiting information available in any

search problem. GAs process similarities in the underlying coding together with

12

information ranking the structures according to their survival capability in the current

environment. By exploiting·such widely-available information, GAs may be applied to

virtually any problem.
4. Search using stochastic operators, not deterministicrules:

The transition rules used by genetic algorithms are probabilistic,not deterministic.

A distinction, however, exists between the randomised operators of GAs and other

methods that are simple random walks. GAs use random choice to guide a highly

exploitative search.

13

CHAPTER TWO

OPTIMIZATION PROBLEM

2.1 Definition for Optimization
A series of operations that can be performed periodically to keep a computer in

optimum shape. Optimization is done by running a maintenance check, .scanning for

viruses, and defragmenting the hard disk. Norton Utilities is one program used for

optimizing.

2.2 The OptimizationProblem
The gradient-based optimization algorithms most often used with structural

equation models (Levenberg-Marquardt, Newton-Raphson, quasi-Newton) are

inadequate because they too often fail to find the global maximum of the likelihood

function. The discrepancy function is not globally convex. Multiple, local minima and

saddle points often exist, so that there is no guarantee that gradient-based methods will

converge to the global maximum. Indeed, saddle points and other complexities in the

curvature of the likelihood function can make it difficult for gradient-based optimization

methods to find any maximum at all. Such difficulties are intrinsic to linear structure

models for two reasons. First, the LISREL likelihood is not globally concave. Second,

linear structure models' identification conditions do not require and do not guarantee

that the model (as a function of the data) will determine a unique set of parameter

values outside a neighborhood of the true values. The derivatives of the likelihood

function with respect to the parameters are not well defined outside of the neighborhood

of the solution. Therefore, outside of the neighborhood of the solution, derivative based

methods often have little or no information upon which to advance to the global

maxımum.

Bootstrap methodology accentuates optimization difficulties, because the bootstrap

resampling distribution draws from the entire distribution of the parameter estimates.

Even if optimization in the original sample is not problematic, one can expect to

encounter difficulties in a significant number of bootstrap resamples. Even if the model

being estimated is correctly specified, problematic resamples contain crucial

information about the tails of the distribution of the parameter estimates. Indeed, what

14

bootstrap methods primarily do is make corrections for skewness-for asymmetry

between the tails of the distribution of each parameter estimate=that is ignored by

normal-theory confidence limit estimates. Tossing out the tail information basically

defeats the purpose of using the bootstrap to improve estimated confidence intervals. In

general? any procedure of replacing problematic resamples with new resampling draws

until optimization is easy must fail, as making such replacements would induce

incomplete coverage of the parameter estimates' sampling distribution and therefore

incorrect inferences. Ichikawa and Konishi (1995) make this mistake.
'

Because the nonexistence of good MLEs in bootstrap resamples is evidence of

misspecification and because the occurrence of failures affects the coverage of the

bootstrap confidence intervals, it is crucial to use an optimization method that finds the

global minimum of the discrepancy function if one exists. In order to overcome the

problems of local minima and nonconvergence from poor starting values, GENBLIS

combines a gradient-based method with an evolutionary programming (EP) algorithm.

Our EP algorithm uses a collection of random and homotopy search operators that

combine members of a population of candidate solutions to produce a population that on

average better fits the current data. Nix and Vose (1992; Vose 1993) prove that genetic

algorithms are asymptotically correct, in the sense that the probability of converging to

the best possible population of candidate solutions goes to one as the population size

increases to infinity.Because they have a similarMarkov chain structure, EP algorithms

of the kind we use are asymptotically correct in the same sense. For a linear structure

model and a data set for which a good MLE (global minimum)exists, the best possible

population is the one in which all but a small fraction of the candidate solutions have

that value. A fraction of the population will have different values because the algorithm

must include certain random variations in order to have effective global search

properties. The probability of not finding a good MLE when one exists can be made

arbitrarily smallby increasing the population size used in the algorithm.

The EP is very good at finding a neighborhood of the global minimumin which the

discrepancy function is convex. But the search operators, which do not use derivatives,

are quite slow at getting from an arbitrary point in that neighborhood to the global

minimum value. We add the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton

optimizer as an operator to do the final hill-climbing.We developed and implemented a

general form of this EP-B,FGS algorithm in a C program called Genetic Optimization

15

Using Derivatives (GENOUD). GENBLIS is a version of GENOUD specifically tuned

to estimate linear structure models.

In our experience the program finds the global minimum solution for the LISREL

estimation problem in all cases where the most widely used software fails, except where

extensive examination suggests that a solution does not exist.

2.3 Genetic Algorithm Optimization
Genetic algorithm optimization is a theoretical improvement over the traditional

hill-climb optimization technique that has been employed by TRANSYT-7F for many

years, The genetic algorithm has the ability to avoid becoming trapped in a "local

optimum" solution, and is mathematicallybest qualified to locate the "global optimum"

solution.

Releases 9 features genetic algorithm optimization of offsets and yields points,
using either TRANSYT-7F or CORSIM as the simulation engine. Phasing sequence

optimization was introduced in release 9.4 (January 2002), and requires TRANSYT-7F

as the simulation engine. Genetic algorithm optimization of cycle length and splits was

introduced in release 9.6 (September 2002), and also requires TRANSYT~7F as the

simulation engine,

,Ji!
[

ıı.:oı
.... - " ~t!~-!-~ <~~~:!="~.t;4'ı?~~ -3:0

®~.t!" ~ ~'1'"~1,~fit;:;S.•(ffi~'n!'i!~fiÇ4.fif6'iı:f-"
ze
"'1'/Sı
'trht4!:
:ıı~~·ııeu.ns 111,ı;,..

t~ ·~i'a ·~ l;S; !f:t':?ı'!l'i'tl~ ~g 'fJha.>?J"i!Iı,9
.ım-e :r:i.-ııtt; ~-'.t, '!f'~~:~ ın:4-~. -r~~~ ~;~- :r-~~J

1 ttOO '1'.0ti t, ·,ı:3
.z aco j:t)l!J -o ~
3 tt,00 '1'.öO O ---. ---
• ıt1iö ™ i) ~ --- --- --- ---

S;:.:ı.ft st:ı '1),U't 'Nı '$pJ'1:t i/13 ¥•'- #!
lı\1.'< :fa,lla°J 1'<ıf< ıti'no.l l'ııl'< t;ı,ııııı 1'M:t iti,..,,-,
t~~,:;;.:,.:;;.!~'i:.o:~~~""'~1&w~·,·-··-f~~;s:,;;Jl1.;.;~,:,,~;;l'~;;,~:..-o.,._'i~~:;.;;..~~;:~~~~,;;:~.;,m;~~~i~~ı;:;..~

Figure 2.1.

For years, signal timing designers have known that they could often come up with a

better control plan by making minor modifications to the so-called "optimal result"

16

· recommencfed by a computer program. This is a byproduct of the hill-climb

optimization process, where most timing plan candidates are not examined, in an effort

to save time. Unfortunately, the global optimum solution is often skipped over during

the hill-climb optimization process.

Fortunately, with genetic algorithm optimization, the user may have a much more

difficult time in coming up with a better solution than the computer program. The

genetic algorithm does not examine every single timing plan candidate either, but is a

random guided search, capable of intelligently tracking down the global optimum

solution. As with the human race, the weakest candidates are eliminated from the gene

pool, and each successive generation of individuals contains stronger and stronger

characteristics. It's survival of the fittest, and the unique processes of crossover and

mutation conspire to keep the species as strong as possible.

Genetic
Optimization

Out ~ the aene pool Crossover

New aerıeratıen of stronaer candidates

Figure 2.2.

Although it produces the best timing plans, a potential drawback of the genetic

algorithm is increased program running times on the computer when optimizing large

networks. Fortunately the drawback of increased program running times continues to

be minimized by the ever-increasing processing speeds of today's computers. In

addition, the TRANSYT-7F electronic Help system offers practical suggestions for

reducing the genetic algorithm running times associated with large traffic networks.

17

2.4 CONTINUOUS OPTIMIZATION

2.4.1 Constrained Optimization
CO is an applications module written in the GAUSS programming language. It

solves the Nonlinear Programming problem, subject to general constraints on the

parameters - linear or nonlinear, equality or inequality, using the Sequential Quadratic

Programming method in combination with several descent methods selectable by the

user - Newton-Raphson, quasi-Newton (BFGS and DFP), and scaled quasi-Newton.

There are also several selectable line search methods. A Trust Region method is also

available which prevents saddle point solutions. Gradients can be user-provided or

numericallycalculated.
CO is fast and can handle large, time-consuming problems because it takes

advantage of the speed and number-crunching capabilities of GAUSS. It is thus ideal

for large scaleMonte Carlo or bootstrap simulations.

Example

A Markowitz mean/variance portfolio allocation analysis on a thousand or more

securities would be an example of a large-scale problem CO could handle (about 20

minutes on a 133 Mhz Pentium-based PC).
CO also contains a special technique for semi-definite problems, and thus it will

solve the Markowitz portfolio allocation problem for a thousand stocks even when the

covariance matrix is computed on fewer observations than there are securities.

Because CO handles general nonlinear functions and constraints; it can solve a

more general problem than the Markowitz problem. The efficient frontier is essentially

a quadratic programming problem where the Markowitz Mean/Variance portfolio

allocation model is solved for a range of expected portfolio returns, which are then

plotted against the portfolio risk measured as the standard deviation:

mlin 'IJJl!l,,"°I: ~"'
s..t. ~: !Jl = ır;.
•<kı=1
o~~k~1

Where 1 is a ooıııformalb[e vector of ones, and where I.a:s the observed covariance

matrix of the returns of a portfolio of securities, and µ are their observed means.

18

This model is solved for

ır'k ~ k= 1,, •.• ~
And the efficientfrontier is the plot of ıı:,oR the veıtical axis against

On the horizontal axis the portfolio weights in Vl4desoribe the optimum distribution of

portfolio resources across the securities given the amount of risk to return one considers

reasonable.
Because of CO's ability to handle nonlinear constraints, more elaborate models

may be considered. For example, this model frequently concentrates the allocation into

a minority of the securities. To spread out the allocation one could solve the problem

subject to a maximum variance for the weights, i.e., subject to

w:~<cp
Where~ '\I' is a constant setting a ceilingon the sums of squares of the weights.

Table 2.1.

s-, •• sı.lDıı

Hlı 11.67 ·" ,.
lııılı 11.54 11.2' .. Ml., 1.,

m 1u, 1'.21 ...Jn. ..nı. ı,
su 1161 1161 ..IS\ ..DJ• ..il\ 1.,

Ult un un ..JI\ Jll., .Jtl, ..ff\ l.,

S,ı1ıılk 1161 12.lt ••• ..241., ••• ••• ,,tll. 1

This data was taken from Harry S. Marmer and F.K. Louis Ng, "Mean-Semi

variance Analysis of Option-Based Strategies: A Total Asset Mix Perspective",

Financial AnalystsJournal, May-June 1993.

19

An unconstrained analysis produced the results below:

rlk o:" mı!!,.'I<

Table2.2.

1115 G.M O.ft 0.00 0..00 0.00 O.Ol O.flt
JUI o..n an o.m am o.oo o..oı o..•
ıw uıı 0.,1 o.oo o.• o.• o..e a•
11.fl Ut O.H 0.00 0..tı) O.II O.M O.al
10JI U1 O.H O.il UJ 0.00 O.Gt 0.411
11.M 11' I.ts lN 0.11 0.00 O.OS OJI
UJO l.31 lM o.• o.• UO 0.06 o.ıl
1u, UI 0.'3 o.ıı o..• o.oo om e.m
U.21 u, o.n tUI I.fl UO O.Ol O.il
111.1 111 1.,1 O.Ill o.• 0.00 tUI 0.00

It can be observed that the optimal portfolio weights are highly concentrated in T-bills.

Now let us constrain w'w to be less than, say, .8. We then get:

lrıı,;"' o.: ,a(

Table2.3.

1015 t31 o..n OJI O.Ol o.• o.oo am
1011 lll 0..19 1.11 «un O.GI 8.00 0.04
10J1 1..3.l O.fl o.m 0.01 0.02 O.Ol O.ot ..,ı
10.H Ui O.fl om 0.00 l02 O.Ol O.Ol
1lttl '1.41 0..19 8.01 0..00 0..02 O.O! (UB
JUM l.fi 0.19 1.01 o..oo 0.02 tot om
ıuo 1.sı o.n am 0.00 lU il.OS O.Ol
1Ui u, 0.19 am o.oo 0.02 o..• o.•
un UJ o.n a.m o.m 0..02 0..01 o.m
IU7 Ui 0.19 IL01 0..00 0.02 O.Ol D..m

20

The constraint does indeed spread out the weights across the categories; ın

particular stocks seem to receive more emphasis.

.,.,,.,,,,,,,,,
/,

I
I

~~ a--- ,e,o,nstır.(1);:'t'e'.Ö
::r ı- - :l.(tle~strtii'f'fgt!J

""~6

l/-4-

VQ'l'fOr.'C'e

Figure 2.3. Efficient portfolio for these analyses

We see there that the constrained portfolio is riskier everywhere than the

unconstrained portfolio given a particular portfolio return.
In summary, CO is well-suited for a variety of financial applications from the

ordinary to the highly sophisticated, and the speed of GAUSS makes large and time­

consumingproblems feasible.
CO comes as source code and requires the GAUSS programming language

software. It is availablefor Windows 95, OS/2, DOS, and major UNIX platforms.

Available for both PC and UNIX system versions of GAUSS and GAUSS Light,

CO is an advanced GAUSS Application.
GAUSS Applications are modules written in GAUSS for performing specific

modeling and analysis tasks. They are designed to minimize or eliminate the need for

user programming while maintainingflexibilityfor non-standard problems.

CO requires GAUSS version 3.2.19 or higher (3.2.15+ for DOS version).

GAUSS program source code is included.
CO is available for DOS, OS/2, Windows NT, Windows 95, and UNIX versions of

GAUSS.

2.4.1.1 Constraint Programming (CP) Problems
The term constraint programming comes from artificial intelligence research,

where there are many problems that require assignment of symbolic values (such as

positions on a chessboard) to variables that satisfy certain constraints. The symbolic

21

values come from a finite set of possibilities, and these possibilities can be numbered

with integers.

Constraint programming defines "higher-level" constraints that apply to integer

variables. The most common and useful higher-level constraint is the all-different

constraint, which applies to a set of variables, say xl, x2, x3, x4 and x5. This

constraint assumes that the variables can have only a finite number of possible values

(say I through 5), and specifies that the variables must be all different at the optimal
solution.

Values such as 1, 2, 3, 4, 5 or 5, 4, 3, 2, I for the variables would satisfy this

constraint, but any assignment of the same value to two or more different variables (e.g.

I, 2, 3, I, 4) would violate the all different constraint. Thus, the assignment must be an

ordering or permutation of the integers I through 5.

A classic example of a constraint-programming problem is the traveling salesman

problem: A salesman plans to visit N cities and must drive varying distances between

them. In what order should he/she visit the cities to minimize the total distance

traveled, while visiting each city exactly once?

Constraint programming problems have all the advantages and disadvantages of

mixed-integer programming problems, and the extra requirements such as "all different"

generally make such problems even harder to solve. All of Frontline's solvers support

the all-different constraint, but you must bear in mind the implications for solution time

ifyou use such constraints.

2.4.1.2 Solving MIP and CP Problems

The "classic" method for solving MIP and CP problems is called Branch and

Bound. This method begins by finding the optimal solution to the "relaxation" of the

problem without the integer constraints (via standard linear or nonlinear optimization

methods). If in this solution, the decision variables with integer constraints have integer

values, then no further work is required. If one or more integer variables have non­

integral solutions, the Branch and Bound method chooses one such variable and

"branches," creating two new sub problems where the value of that variable is more

tightly constrained. These sub problems are solved and the process is repeated, until a

solution that satisfiesall of the integer constraints is found.

Alternative methods, such as genetic and evolutionary algorithms, randomly

generate candidate solutions that satisfy the integer constraints. Such initial solutions

22

are usually far from optimal, but these methods then transform existing solutions into

new candidate solutions, through methods such as integer- or permutation-preserving

mutation and crossover, that continue to satisfy the integer constraints, but may have

better objective values. This process is repeated until a sufficiently "good solution" is

found. Generally, these methods are not able to "prove optimality"of the solution.

2.4.1.3 Smooth Nonlinear Optimization (NLP) Problems

A smooth nonlinear programming (NLP) or nonlinear optimization problem is one

in which the objective or at least one of the constraints is a smooth nonlinear function

of the decisionvariables. An exampleof a smooth nonlinear function is:

2 xı2 + x/ + log X3

Where xı, x2 and X3 are decision variables. A quadratic programming (QP)

problem is a special case of a smooth nonlinear optimization problem, but it is usually

solved by specialized,more efficientmethods.

Nonlinear functions, unlike linear functions, may involve variables that are raised

to a power or multiplied or divided by other variables. They may also use

transcendental functions such as exp, log, sine and cosine.

NLP problems and their solution methods require nonlinear functions that are

continuous, and (usually) further require functions that are smooth -- which means that

derivatives of these functions with respect to each decision variable, i.e. the function

gradients, are continuous.

A continuous function has no "breaks" in its graph. The Excel function =IF

(Cı>l0,D1, 2*Dı) is discontinuous if C1 is a decision variable, because its value "jumps"

from D, to 2*D1. The Excel function =ABS (Ci) is continuous, but nonsmooth -- its

graph is an unbroken "V" shape, but its derivative is discontinuous, since it jumps from

- 1 to + 1 at C ı =O.

NLP problems are intrinsicallymore difficult to solve than LP and QP problems.

Because they may have multiple feasible regions and multiple locally optimal points

within such regions, there is no known way to determine with certainty that an NLP

problem is infeasible, that the objective function is unbounded, or that an optimal

solution is the "global optimum" across all feasible r

23

.4.2 Unconstrained Optimization

The unconstrained optimization problem is central to the development of

optimization software. Constrained optimization algorithms are often extensions of

unconstrained algorithms, while nonlinear least squares and nonlinear equation

algorithms tend to be specializations. In the unconstrained optimization problem, we

seek a local minimizes of a real-valued function, ftx), where x is a vector of n real

variables. In other words, we seek a vector, x*, such that f('.x*) <= f('.x) for all x close to

x*

Global optimization algorithms try to find an x* that minimizes f over all possible

vectors x. This is a much harder problem to solve. We do not discuss it here because, at

present, no efficient algorithm is known for performing this task. For ı;nany applications,

local minima are good enough, particularly when the user can draw on his/her own

experience and provide a good starting point for the algorithm.

Newton's method gives rise to a wide and important class of algorithms that require

(
aıf(x)J

computation of the gradient vector Vf(x) == : . ·,
anf(x)

And the Hessian matrix, V 2 f (X) = (a j a i (X)).

Although the computation or approximation of the . Hessian can be a time­

consuming operation, there are many problems for which this computation is justified.

We describe algorithms in which the user supplies the Hessian explicitly before moving

on to a discussion of algorithms that don't require the Hessian.

Newton's method forms a quadratic model of the objective function around the

current İterates xk , the model function is defined:

In the basic Newton method, the next iterate is obtained from the minimizes ofqı;.

When the Hessian matrix, V 2f (x k), is positive definite, the quadratic model has a

unique minimizes that can be obtained by solving the symmetric n x n linear system;

· V2 f(xk)i\ = -VJ (x,). The next iterate is then xk + 1 = xk + ak
Convergence is guaranteed if the starting point is sufficiently close to a local

minimizes x* at which the Hessian is positive definite. Moreover, the rate of

24

I',ı

convergence ıs quadratic, that is, llxk + 1- x*II ~ Pllxk - x*ll2, for some positive

constant f3 .

In most circumstances, however, the basic Newton method has to be modified to

achieve convergence.

Versions of Newton's method are implementedin the following software packages:

BTN, GAUSS, IMSL, LANCELOT, NAG, OPTIMA, PORT 3, PROC NLP,

TENMIN, TN, TNPACK, UNCMIN, and VE08.

The NEOS Server also has an unconstrained minimization facility to solve these

problems remotely over the Internet.

These codes obtain convergence when the starting point is not close to a minimizes

by using either a line-search or a trust-region approach.

The line-search variant modifies the search direction to obtain another a downhill,

or descent direction for f. It then tries different step lengths along this direction until it

finds a step that not only decreases f, but also achieves at least a small fraction of this

direction's potential.

The trust-region variant uses the original quadratic model function, but they

constrain the new iterate to stay in a local neighborhood of the current iterate. To find

the step, then, we have to minimize the quadratic subject to staying in this

neighborhood, which is generallyellipsoidalin shape.

Line-search and trust-region techniques are suitable if the number of variables n is

not too large, because the cost per iteration is of ordern3 . Codes for problems with a

large number of variables tend to use truncated Newton methods, which usually settle

for an approximate minimizesof the quadratic model.

So far, we have assumed that the Hessian matrix is available,but the algorithms are

unchanged if the Hessian matrix is replaced by a reasonable approximation. Two kinds

of methods use approximate Hessians in place of the real thing:

The first possibility is to use difference approximations to the exact Hessian. We

exploit the fact that each column of the Hessian can be approximated by taking the

difference between two instances of the gradient vector evaluated at two nearby points.

For sparse Hessians, we can often approximate many columns of the Hessian with a

singlegradient evaluation by choosing the evaluation points judiciously.

Quasi-Newton Methods build up an approximation to the Hessian by keeping track

of the gradient differences along each step taken by the algorithm. Various conditions

25

are imposed on the approximate Hessian. For example, its behavior along the step just

taken is forced to mimic the behavior of the exact Hessian, and it is usually kept

positive definite.

Finally, we mention two other approaches for unconstrained problems that are not

so closely related to Newton's method:

Nonlinear conjugate gradient methods are motivated by the success of the linear

conjugate gradient method in minimizing quadratic functions with positive definite

Hessians. They use search directions that combine the negative gradient direction with

another direction, chosen so that the search will take place along a direction not

previously explored by the algorithm. At least, this property holds for the quadratic

case, for which the minimizes is found exactly within just n iterations. For nonlinear

problems, performance is problematic, but these methods do have the advantage that

they require only gradient evaluations and do not use much storage.

The nonlinear Simplex method (not to be confused with the simplex method for

linear programming) requires neither gradient nor Hessian evaluations. Instead, it

performs a pattern search based only on function values. Because it makes little use of

information about f, it typically requires a great many iterations to find a solution that is

even in the ballpark. It can be useful when f is no smooth or when derivatives are

impossible to find, but it is unfortunately often used when one of the algorithms above

would be more appropriate.

2.4.2.1 Systems of Nonlinear Equations

Systems of nonlinear equations arise as constraints in optimization problems, but

also arise, for example, when differential and integral equations are discredited. In

solving a system of nonlinear equations, we seek a vector such that f(x)=O where x is an

n-dimensional of n variables. Most algorithms in this section are closely related to

algorithms for unconstrained optimization and nonlinear least squares. Indeed,

algorithms for systems of nonlinear equations usually proceed by seeking a local

minimizesto the problem

min~l/(x)II: x E Rn} For some normll.11, usually the 2-norm. This strategy is

reasonable, since any solution of the nonlinear equations is a global solution of the

minimizationproblem.

Oflinear equations f' (xk)8 k = - f (x k), (1.1)

26

Newton's method, modified and enhanced, forms the basis for most of the software

used to solve systems of nonlinear equations. Given an iterate, Newton's method

computes fix) and its Jacobian matrix, finds a step by solving the system and then

setsx, +1 = xk +i\.

Most of the computational cost of Newton's method is associated with two

operations: evaluation of the function and the Jacobian matrix, and the solution of the

linear system (1.1). Since the Jacobian is f'(x) = (aJ(x), , a nf(x)),

The computation of the ith column requires the partial derivative of f with respect

to the ith variable, while the solution of the linear system (1.1) requires order

n3 operations when the Jacobian is dense.

Convergence of Newton's method is guaranteed if the starting is sufficientlyclose

to the solution and the Jacobian at the solution is nonsingular. Under these conditions

the rate of convergence is quadratic; that is, llxk + 1 - x • ıı ~ Pllxk - x • r, for some

positive constantp . This rapid local convergence is the main advantage of Newton's

method. The disadvantages include the need to calculate the Jacobian matrix and the

lack of guaranteed global convergence; that is, convergence from remote starting points.

The following software attempts to overcome these two disadvantages of Newton's

method by allowing approximations to be used in place of the exact Jacobian matrix and

by using two basic strategies-trust region and line search-to improve global convergence

behavior:

GAUSS , IMSL , LANCELOT , MATLAB , MINPACK-1 , NAG(FORTRAN) ,

NAG(C) , NITSOL , and OPTIMA .

• Trust Region and Line-search Methods.

• Truncated Newton Method.

• Broyden's Method.

• Tensor Methods.

• Homotopy Methods.

2.4.2.2 Nonlinear Least Squares

The nonlinear least squares problem has the general form

min{r(x): x E Ik" ı Where r is the function defined by r(x) = _.!._\\J(x)\\~ for some
2

vector-valued function fthat maps R"toRm.

27

Least squares problems often arise in data-fitting applications. Suppose that some

physical or economic process is modeled by a nonlinear function ıp that depends on a

parameter vector x and time t. If bi is the actual output of the system at time r, , then the

residual </>(x, tJ - b, measures the discrepancy between the predicted and observed

outputs of the. system at time t; . A reasonable estimate for the parameter x may be

obtained by defining the ith component off by I, (x) :::; t/)(x, t;) - b, ,

And solving the least squares problem with this definition off.
From an algorithmic point of view, the feature that distinguishes least squares

problems from the general unconstrained optimization problem is the structure of the

Hessian matrix of r. The Jacobian matrix off, f'(x) = (aJ(x),ô nf (x)) ,a be used to

express the gradient of r since Vr(x) = f '(x/ f (x). similarly, j'(x) is part of the

Hessian matrix V2r(x) since
m

V2r(x) = f'(x/ j'(x) + Lf;(x)V2J;(x).
i=I

To calculate the gradient of r, we need to calculate the Jacobian matrixf'(x).

Having done so, we know the first term in the Hessian matrix V2r(x) without doing any

further evaluations. Nonlinear least squares algorithms exploit this structure.

In many practical circumstances, the first term f'(xl f'(x) in V2r(x) is more

important
than the second term, most notably when the residuals t. (x) are small at the

solution. Specifically, we say that a problem has small residuals if, for all x near a

solution, the quantities\JJx)\\\v2 j;(x)\\, i = 1,2, ... ,n are small relative to the smallest

eigenvalue ofj'(xl f'(x).

• , Gauss-Newton Method

• Levenberg-Marquardt Method

• Hybrid Methods

• Large Scale Methods
• Techniques for solving L.S. problems with constraints

• Notes and References

28

2.5 Global Optimization (GO)

A globally optimal solution is one where there are no other feasible solutions with

better objective function values. A locally optimal solution is one where there are no

other feasible solutions "in the vicinity" with better objective function values. You can

picture this as a point at the top of a "peak" or at the bottom of a "valley" ·which may be

formed by the objective function and/or the constraints -- but there may be a higher

peak or a deeper valley far away from the current point.

In certain types of problems, a locally optimal solution is also globally optimal.

These include LP problems; QP problems where the objective is positive definite (if

minimizing; negative definite if maximizing); and NLP problems where the objective is

a convex function (if minimizing; concave if maximizing) and the constraints form a

convex set. But most nonlinear problems are likely to have multiple locally optimal

solutions.

Global optimization seeks to find the globally optimal solution. GO problems are

intrinsically very difficult to solve; based on both theoretical analysis and practical

experience, you should expect the time required to solve a GO problem to increase

rapidly -- perhaps exponentially -- with the number of variables and constraints.

2.5.1 Complexity of the Global Optimization Problem
The global optimization problem is indeed hard. Rinnooy Kan and Timmer [16]

claim that the global optimization problem is unsolvable in a finite number of steps.

Their argument is as follows:

For any continuously differentiable function f, any point S.and any neighborhood

B of .ı:,., there exists a functıio11tJ such that f + J is continuously differentiable, f + J
equals f for all points outside B and the global minimum off+ J is s •. ((j + /) is an of

f) Thus, for any point s,., one cannot guarantee that it is not the global minimum

without evaluating the function in at least one point in every neighborhood B of s •. As

B can be chosen arbitrarily small, it follows that any method designed to solve the

global optimization problem would require an unbounded number of steps.

The indentation argument is certainly valid if one wishes to guarantee that an exact

poıimıt:., s., is a global mimmi~er. indeed, should the exact global minimieer be an

irrational number, it is obviously impossible, in a finite number of steps, to numerically.>

29

represent this solution. However, one can, in a finite amount of time, guarantee that

/(s.) =I~. . .
IS Wilfüm

2.5.2 Solving GO Problems

Multistart methods are a popular way to seek globally optimal solutions with the

aid of a "classical" smooth nonlinear solver (that by itself finds only locally optimal

solutions). The basic idea behind these methods is to automatically start the nonlinear

Solver from randomly selected starting points, reaching different locally optimal

solutions, then select the best of these as the proposed globally optimal solution.

Multistart methods have a limited guarantee that (given certain assumptions about the

problem) they will "converge in probability" to a globally optimal solution. This

means that as the number of runs of the nonlinear Solver increases, the probability that

the globallyoptimal solution has been found also increases towards 100%.

Where Multistart methods rely on random samplingof starting points, Continuous

Branch and Bound methods are designed to systematically subdivide the feasible

region into successively smaller subregions, and find locally optimal solutions in each

subregion. The best of the locally optimally solutions is proposed as the globally

optimal solution. Continuous Branch and Bound methods have a theoretical guarantee

of convergence to the globally optimal solution, but this guarantee usually cannot be

realized in a reasonable amount of computing time, for problems of more than a small

number of variables. Hence many Continuous Branch and Bound methods also use

some kind of random or statistical samplingto improve performance.

Genetic Algorithms, Tabu Search and Scatter Search are designed to find

"good" solutions to nonsmooth optimization problems, but they can also be applied to

smooth nonlinear problems to seek a globally optimal solution. They are often effective

at finding better solutions than a "classic" smooth nonlinear solver alone, but they

usually take much more computing time, and they offer no guarantees of convergence,

or tests for having reached the globallyoptimal solution.

2.6 Nonsmooth Optimization(NSP)
The most difficult type of optimization problem to solve is a nonsmooth problem

(NSP). Such a problem may not only have multiple feasible regions and multiple locally

optimal points within each region -- because some of the functions are non-smooth or
~r

even discontinuous, derivative or gradient information generally cannot be used to

30

determine the direction in which the function is increasing (or decreasing). In other

words, the situation at one possible solution gives very little information about where to

look for a better solution.

In all but the simplest problems, it is impractical to exhaustively enumerate all of

the possible solutions and pick the best one, even on a fast computer. Hence, most

methods rely on some sort of random sampling of possible solutions. Such methods are

nondeterministic or stochastic -- they may yield different solutions on different runs,

even when started from the same point on the same model, depending on which points
are randomly sampled.

2.6.1 Solving NSP Problems

Genetic or Evolutionary Algorithms offer one way to find "good" solutions to

nonsmooth optimization problems. (In a genetic algorithm the problem is encoded in a

series of bit strings that are manipulated by the algorithm; in an "evolutionary

algorithm," the decision variables and problem functions are used directly. Most

commercial Solver products are based on evolutionary algorithms.)

These algorithmsmaintain a population of candidate solutions, rather than a single

best solution so far. From existing candidate solutions, they generate new solutions

through either random mutation of single points or crossover or recombination of two

or more existing points. The population is then subject to selection that tends to

eliminate the worst candidate solutions and keep the best ones. This process is repeated,

generating better and better solutions; however, there is no way for these methods to

determine that a given solution,is truly optimal.
I

Tabu Search and Scatter Search offers another approach to find "good" solutions

to nonsmooth optimization problems. These algorithms also maintain a population of

candidate solutions, rather than a single best solution so far, and they generate new

solutions from old ones. However, they rely less on random selection and more on

deterministic methods. Tabu search uses memory of past search results to guide the

direction and intensity of future searches. These methods generate successively better

solutions, but as with genetic and evolutionary algorithms, there is no way for these

methods to determine that a given solution is truly optimal.

31

.7 Multi-Objective Optimization for Highway Management

Programming

Highway infi-astructwre is a major naıtioım:a[investment, and a well-managed

highway network forms an integral element of a sustainable economy. An ideal

management program for a highway network is one that would maintain all highway

sections at a sufficientlyhigh level of service and structural condition, but requires only

a reasonably low budget and use of resources, without creating any significant adverse

impact on the environment, safe traffic operations, and social and community activities.

Unfortunately, many of these are conflicting requirements. For instance, more resources

and higher budgets may be needed if the highways are to be maintained at a high state

of operability. But this could lead to pavement activities causing longer traffic delays,

increased pollution, more disruption of social activities, and inconvenience to the

community. Therefore, the decision processes involved in highway management

activities requires a multi-objective consideration that addresses the competing

requirements of different objectives.

Practically all the pavement management-programming tools in use currently are

based on single-objective optimization. In single-objective analysis, the requirements

which are not incorporated into the objective function are imposed as constraints in the

formulation. This can be viewed as an interference of the optimization process, which

artificiallysets limits to selected problem parameters. As a result, the solutions obtained

from single-objectiveanalysis are sub-optimal with respect to one's derived from multi­
objective formulations.

A genetic-algorithm (GA) based formulation for multi-objective programming of

highway management activities has been developed at the Centre for Transportation

Research. Genetic algorithms, which are a robust search technique formulated on the

principles of natural selection and natural genetics, are employed to generate and

identify-better solutions until convergence is reached. The selection of good solutions is

based on the so-called Pareto based fitness evaluation procedure by comparing the

relative strength of the generated solutions with respect to each of the adopted
objectives.

An important aspect of multi-objective GA analysis is the definition of "fitness" of a

solution. The "fitness" of a solution directly influences the probability of the solution

being selected for reproduction to generate new offspring solutions. To overcome the

32

ore-mentioned problem, a rank-based fitness assignment scheme is used where all

non-dominated solutions in a given pool of solutions are assigned a rank of 1. Solutions

that are dominated by one solution will have a rank of 2, those dominated by two

solutions are given a rank of 3, and so on.

In the evaluation of a pool of solutions, one can identify a curve (for the case of

two-objective problems) or a surface (for the case three- or higher multi-objective

problems), which are composed of all non-dominated solutions. This curve or is known

as the Pareto frontier. The GA optimization process seeks to generate new solutions that

would give an improved frontier that dominates the existing frontier. This process

continues until, ideally, a set of globally non-dominated solutions is found. These

globally non-dominated solutions, called the Pareto optimal set, define the Pareto

optimal frontier.

The general procedure of GA operations and offspring generation in multi­

objective programming is similar to that for single-objective programming. The main

difference lies with the evaluation of "fitness" of each solution, which is the driving

criterion of the search mechanism of genetic algorithms. An important consideration of

the optimization process is to produce representative solutions that are spread more or

less evenly along the Pareto frontier. This can be achieved by using an appropriate

reproduction scheme to generate offspring solutions and to form a new pool of parent

solutions.

The proposed procedure is illustrated by means of a highway maintenance

optimization problem at network level subject to five forms of resources and operation

constraints. The five constraints were production requirements, budget, manpower

availability, equipment availability, and rehabilitation schedule. The problem

considered four highway classes, four pavement defects and three levels of

maintenance-need urgency. Its objective was to select an optimal set of maintenance

activities for an analysis period of 45 working days.

The decision variables were the respective amounts of maintenance work,

measured in workdays, assigned to each maintenance treatment type. There were 48

treatment types referring to maintenance repairs arising from 4 distress forms of 3

maintenance-need urgency levels on 4 highway classes. The coded string structure of

GA representation thus consisted of 48 cells. Each cell could assume an integer value of
<"

workdays from O to 45.

33

In this example, the following four objective functions were considered: (a)

minimization of the total maintenance cost; (b) maximization of overall network

pavement condition; (c) minimization of total manpower requirement, and (d)

maximizationof work production in total workday units. For the purpose of illustrating

the flexibilityof GAs in handling multi-objective problems, two different analyses were

performed. They consisted of a two-objective and a three-objective problem. The

objectives of the former were minimizationof total maintenance cost and maximization

of maintenance work production, while those of the latter were minimization of total

maintenance cost, maximization of maintenance work production, and maximization of

overall network condition.
Figure 2.4 shows the convergence pattern of the Pareto frontier for the case with

two- objective problem. The convergence trend was apparent with the Pareto front

moving in the direction towards lower maintenance costs and higher maintenance work

production. Figure2.5 presents the Pareto optimal frontiers of both the two-objective

and three-objective optimization solutions in the same two-dimensional plot of

(maintenance cost) vs. (work production) for comparison. It can be seen that although

the two Pareto frontiers are very close to each other, the Pareto frontier of the two­

objective solutions appear to dominate the frontier of the three-objective solutions in

terms of maintenance cost and work production. This was clearly the effect of

introducing a third objective, i.e. maximizingpavement condition, in the three-objective

problem, in compromisingthe two initial objectives.

s
İ 4[()1!IIOO
u

I
1500)Q,1f!ij

w.t:Pıımırtiııll~

Figure 2.4. Convergence ofPareto frontier in GA Solutions

34

s
--~--ıı·• .u

iJ lIDOO•=ı!!

-r~.u·.1...ııııbjtdi-ftsd~
~ f.~ Mf>l)f' '.3-o°bjtm'IPJf: sd~

uoo 300llll
Wult"PMwtiıı•(W.wa~

Figure 2.5. Comparison of Pareto frontiers for two- and three-objective solutions.

The robust search characteristics and multiple-solution handling ability of GAs are

well suited for multi-objective optimization analysis of multi-objective highway

infrastructure management and planning. The concepts of Pareto frontier and rank­

based fitness evaluation, and a method of selecting optimal solution from the Pareto

frontier were found to be effective in solving the problems. The proposed algorithm was

able to produce a set of optimal solutions, which were well spread on the Pareto

frontier.

35

CHAPTER THREE

A GENETIC ALGORITHM-BASED OPTIMIZATION

3.1 Main Features for Optimization
• Probabilistic algorithms for searching and optimization

• Mimic natural evolution process

• Capable of handling nonlinear, non-convex problem

• Optimization procedure does not require differentiation operation

• Capable oflocating global and local optima within search domain

• Optimizations is based on population instead of a single point.

Let's consider a simple problem of maximization of the function F(x)=x:2 , where

xE[0,31] (see Fig).

F(x)
961

625
400
225
100

5 10 15 20 25 31 X

Figure 3.1.

In order to use GA we should first code variables in to bit strings as any integer

number between O to 3 1 may be represented in binary number 5 symbols between

(00000)=0 and (11111)=31 the length of chromosomes will be five.

Lets take 4 chromosomes with random set of genes as an initial population as:

01101

11000

01000

10011

36

Then define their fitness inserting appropriate real values into the function as:

f(O 1000)2 = f(8=64

Thus the fitness of all individuals in calculated then accordance with the

ııla
i I iP 5 =£II j=ıF 5, i = 1..4

Survival probability for each individual is calculated where as cumulatives
i I iP cum=L j=I P 5 i= 1..4

Let's enter all the calculated values in table

Table3.1

Initial Their integer F()=xz P5 Pcum Num

Population values after

Select

ıon

01101 13 169 0.14 0.14 1

11000 24 576 0.49 0.63 2

01000 8 64 0.06 0.69 o
10011 19 361 0.31 1 1

Average

Maximum

Sum

293

576

1170

0.25 1

0.49 2

1 4

For the selection process we generate 4 random numbers from the range [0,1].

Suppose that we generated 0.1; 0.25; 0.5 and 0.8.

Comparing these values with cumulative probabilities, we obtaining the

following

0.1< picum
I p2P cum< 0.25< cum
1 p2P cum <0.5 < cum
3 p4P cum <0.8 < cum

Looking at the right sides of these inequalities, one can easily see, that the first and

the fourth chromosomes have passed the selection, each four taking a place in the new

generation, the second chromosome-the most highly fitted has got 2 copies, while the

37

third one did not survive at all. These indices are written in the right column of table

3.1.
Then crossover operation is applied. If the probability of crossover Pc= 1 ıs

given, it means that, 4.1=4 chromosomes will participate in crossover process.

Let's choose them at random. Suppose that the first and the second strings mate

from crossover point 4, and the third with the forth-from crossover point 2.

oııo \ 1

ııoo I o
ıı I 000

oo I oıı
Table3.2

Population Crossover New Value of F(x)=X~

after selection Population X

01101 4 01100 12 144

11000 4 11001 25 625

11000 2 ııoıı 27 729

10011 2 10000 16 256

Average

Maximum

Sum

439

729

1754

Having compared both of the tables we see, for ourselves, that the population

fitness is improved and we have come close to the solution. The next recombination

. operator, mutation, is performed on a bit-by-bit basis. If Pm=0.05 is given, it means that

only one of twenty bits in population will be changed: 20· 0.05=1. Suppose, that the

third bit of the fourth string undergoes mutation. I.e. X4=10100. Repeating these

operations in a finite number of generations we will get the chromosome (11111)

corresponding to problem optimal solution. It is necessary to mention, that GA is

especially effective for multi-extreme problems in the global solution search process.

For example, if the junction is of the type shown. It is rather difficult to find its global

maximumby means of traditional methods. Suppose that the junction is defined as [1]

38

f(x)=x· sin(l ÜTC· x) +1.

The problem is to find x from the range [-1,2], which maximizesthe function f, i.e.,

to find x0 such that

f(x0) zf(x), for all xE[-1,2].

It is relatively easy to analyze the junction f. The zeros of the first derivative f

should be determined

F(x)=sin(lün· x)+ l Ox- x · cosı l On- x)=O

The formula is equivalent to

tant l On- x)= (Iün- x)

It is clear that the above equation has an infinitenumber of solutions,

2i-l
Xi=20+<;;, for i=l, 2, ... ,

Xo = O,

for i= 1, -2, ... ,

Where terms ç,1 represent decreasing sequences of real numbers (for i= 1, 2, ... , and

i=-1, -2, ...) approaching zero. Note also that the function f reaches its local maxima

for x, it i is an odd integer, and its local minima for x, if i is an even integer. Since the

domain ofthe problem is xE[-1,2], the function reaches its maximumfor

37
X19 = - + <;19 = 1.85 + <;19,

20

39

Where f(x19) is slightly larger than

F(l.85)=1.85 · sin(l8n+n/2)=1.0=2.85.

Assume that we wish to construct a genetic algorithm to solve the above problem,

I.e., to maximize the·function f Let us discuss the major components of such a genetic
algorithm in tum. [4)

3.1.1 Representation

We use a binary vector as a chromosome to represent real values of the variable x.

The length of the vector depends on the required precision, which, in this example, is

six places after the decimal point. The domain of the variable x has length 3; the

precision requirement implies that the range [-1,2) should be divided into at least 3 ·

I 000000 equal size ranges. This means that 22 bits are required as a binary vector
(chromosome):

2097152=231 < 3000000 ::-; 233 = 4194304

The mapping from a binary (b21 b20 bo) string into a real number x from the range [-

1,2] is straightforward and is completed in two steps:

Convert the binary string (b21 b20 b0) from the base 2 to base I O:

(<b21 b20 bo>)2 = (i>i · 2i) = X
ı=O 10

Find a corresponding real number x:

3
X = -10 + X. 222 -1

Where -r,o is the left boundary of the domain and 3 is the length of the domain.
For example, a chromosome

(1000101110110101000111)

Represents the number 0.637197, since

x'=(l000101l10110101000111)3= 2288967 and

x=l.0+2288967 · 3 = 0.637197.
4194303

Of course, the chromosomes

(OOOOOOOOOOOOOOOOOOOOOO)and(llllllllllllllllllllll)

Represent boundaries of the domain-I . O and 2. O, respectively.

40

Initial population. The initialization process is very simple; we create a population

of chromosomes, where each chromosome is a binary vector of 22 bits. All 22 bits for

each chromosome are initialized randomly.

Evaluation function. Evaluation function eval for binary vectors v is equivalent to

the function f:

Eval (v)=f (x),

Where the chromosome v represents the real value x.

As noted earlier, the evaluation junction plays the role of the environment, rating

potential solutions in terms of their fitness. For example, three chromosomes:

V1=(1000101110110101000111)

V2=(0000001110000000010000)

V3=(1110000000111111000101)

Correspond to values x=0.637197, x=0.958973 and x3=1.627888, respectively.

Consequently, the evaluation function would rate them as follows:

Eval (vı)=f(xı)=l.586345

Eval (v2)=f(x2)=0.078878

Eval (v3)=f(x3)=2.250650

Clearly, the chromosome vs is the best of the three chromosomes, since its

evaluation returns the highest value.
During the reproduction phase of the genetic algorithm we would use two classical

genetic operators; mutation and crossover.
As mentioned earlier, mutation alters one or more genes (positions in a

chromosome) with a probability equal to the mutation rate. Assume that the fifth gene

from the v3 chromosome was selected for a mutation. Since the fifth gene in this
'

chromosome is O, it would be flipped into 1. So the chromosome V3 after this mutation

would be
V3=(1110100000111111000101)

This chromosome representş the value x3=1.721638 and f(x3)=-0.082257. This

means that this particular mutation resulted in a significant decrease of the value of the

chromosome vs . On the other hand, if the 10th gene was selected for mutation in the

chromosome V3 them
V3=(1110000001111111000101)

The corresponding value x3=1.630818 and f(x3)=2.343555, an improve-ment over

the original value of f(x3)=2.250650.

41

Let us illustrate the crossover operator on chromosomes v2 and V3 . Assume that

the crossover point was (randomly) selected after the 5th gene:

V2=(ooooolo1110000000010000)

V3=(111oolooooo111111000101)

The two resulting offspring are

V' 2=(00000I00000111111000101)

V' 3=(11100 I O 1110000000010000)

These offspring evaluate to

F(v'2)=f(-0.998113)=0.940865.

F(v' 3)=f(l .666028)=2.459245

Note that the second offspring has a better evaluation than both of its parents.

Parameters. For this particular problem we have used the following parameters

population size ps=50, probability of crossover Pc =0.25, probability of mutation Pm

=O.Ol. The following section presents some experimental results for such a genetic

system.
Experimental results. We provide the generation number for which we noted an

improvement in the evaluation function together with the value of the function. The best

chromosome after 150 generations was
Vmax=(l111001101000100000101),

Which corresponds to a value Xmax=l.850773

42

AS exprected, Xmax=l.85+1; and f(xmax) is slightly larger than 2.85.

{}--+ {f(x)} xı1 [l] IE<.?: · I; 7t

Table 3.3.

Generation Number Fitness Function
1 1.441942
5 2.250003
8 2.250283
9 2.250284
10 2.250363
12 2.328077
36 2.344251
40 2.345087
51 2.738930
99 2.849246
137 2.850217
145 2.850227

3.2 Applications

Genetic algorithmshave been very successfulat solvingmany types of problems.

1. Maximizingdiscontinuous, multimodal,multidimensionalfunctions.

2. They have also been used on discrete problems, including the traveling salesperson,
bin packing, and job-shop scheduling.

Here are two example problems, one discrete and one continuous, that are more
realistic.

1. For an arbitrary expression in n Boolean variables, find an assignment of true and

false values to the Boolean variables in the expression that make the expression true,

if such an assignment exists.

2. This is called the Boolean satisfiabilityproblem (SAT).

3. Each assignment of true and false values to the variables can be encoded in a bit
string of length n, O for false and 1 for true.

4. The fitness of such a chromosome is how '' close" to being true the assignment

makes the Boolean expression, such as how many clauses in the expression are

individuallymade true by the assignment.

43

5. Some (in Postscript) SATs are very hard for GAs.

2. Maximize the function:

fix1, X2, X3) = 21.5 + X1 sin (4 pi X1) + X2 sin (20 pi X2) + X3

for xı in [-3.0,12.1], X2 in [4.1,5.8], and x3 in [O.O, I.O].

1. This function is highlymultimodal.

2. A chromosome can be encoded in three real numbers, one for each ofxı, x2, and X3,

over their respectiveranges.

3. The fitness of a chromosome is the value offix1,x2,x3) for the xı, x2, and X3 encoded
in the chromosome.

3.2.1 Difficulties
Hitchhiking.

1. This may cause a GA to perform poorly.

2. Once a schema attains high fitness in a population, then the members of the

population containing the schemawill proliferate.

3. Bit values in positions not in the schema will hitchhike along with the schema as it

propagates and will delay the discovery of high-fitness schemas with different

values in those other bit positions.

4. For example, consider these 8 schemas.

11111111.. .

........ 11111111.. .

................ 11111111.. .

........................lllllllL .

................................ 11111111.. .

.. 11111111.. .

.. 11111111.. .

.. 11111111

5. Define a fitness functionf(x) where x is a 64-bit string to be 8 times the number of

these schemas it contains.

6. Sofiall 64 bits 1) = 64,fiall 64 bits O)= O.

7. A GA performs poorly relative to hill-climbingon this because of hitchhiking.

44

3.2.2 Deception

A problem is called deceptive if the average fitness of schemata not in the global

optimum is greater than the average fitness of those that are.

For example, chromosome length = 3, .f(x)

.1(111)=I.O

.f(Ol l)=.1(101)=.!(110)=0.05

.1(001)=.!(O10)=.1(100)=0.95

.1(000)=0.20

.f(*O*)=.f(**O)=.f(0**)=(.2+.95+.95+.05)/4=0.5375

.1(1 **)=.!(*1 *)=.!(**1)=(I +.05+.05+.95)/4=0.5125

.f(OO*)=.f(*O*)=.f(*00)=(.2+.95)/2=.575

.1(11 *) = .1(1 *1) = .f(*l 1) = (1+.05)/2 = 0.525

45

fitness of x

3.3 The Neighborhood Constraint Method:

A Genetic Algorithm-Based Multiobjective Optimization Technique
3.3.1. Overview

Multiobjective genetic algorithms (MOGAs), including VEGA, Pareto optimal

ranking, and niched-Pareto, allow the tradeoffs among design objectives to be estimated

in a single optimization model run. This paper presents a new MOGA technique called

the neighborhood constraint method (NCM) that uses a combination of a neighborhood

selection technique and location-dependent constraints. NCM is demonstrated for a

complex, real-world problem, where it is compared with an integer programming (IP)

procedure, an iterative procedure using a single-objectiveGA, and implementations of a

Pareto and hybrid niched-Pareto MOGA technique. Preliminary results suggest that

NCM is computationally more efficient than the SO approach and may perform better

that the other MOGA techniques at promoting and maintaining population diversity

over the entire tradeoff curve, using relatively small population sizes. These results

show that further evaluation and comparisons ofNCM are warranted.

Engineering problems that are faced in everyday decision-making are often

complex and multiobjective (MO), requiring solutions to be judged on their ability to

satisfy competing design goals. For most multiobjective problems, there exists a set of

nondominated, or Pareto, solutions that represent the optimal tradeoff relationship

among objectives. For any solution in the Pareto set, any one-design objective cannot be
improved without sacrificinganother.

The shape of the Pareto set can provide useful information to a decision maker. For

example, in a pollution abatement problem, the Pareto set could identify the increasing

costs associated with increasing levels of pollutant control. A decision-maker might use

this relationship to determine reasonable control levels.

The purpose of an MO analysis is often to estimate the shape of an interesting

portion of the Pareto set and to identify solutions along that portion. Several

mathematical programming procedures, including the constraint method and the

weighting method (Figure 3 .2), are available for this purpose. These generating

techniques estimate the noninferior set through iterative runs of an optimization model.

46

! ! •.
ti" q (ı

,;.
~·- "q i~ ..:
ıi" h"
)i .. u '
ta. ·Ii- ıi ._ıı. .

. .
••: ta ~- ••.. :
Ii ., ..

••)··n .•• ~. ~ =•
. •.• r,·· . !• ._,_..

Jt· ••...

..

Figure 3.2.ClassicalMO Generating Techniques.

(A) All objectives except one are converted into constraints. The remaining

objective is maximized. The constraints are incremented and the model is run

iteratively. (B) All objectives are weighted and considered in the objective function

simultaneously.A different set of weights is used in each run.
Alternatively, preference-based MO techniques, such as goal programming, may

require only a single optimization model run to identify the solution that best meets

prespecified "ideal" levels of each objective. Both classes of classical MO procedures

are discussed in detail by Cohon (1978).
MO procedures have been used successfully within traditional mathematical

optimization procedures, such as linear programming, integer programming and

nonlinear programming. Many realistic problems, however, involve complex, nonlinear

relationshipsthat do not fit readily into one of these traditional frameworks.
Recently, many such problems have been solved by employingnon-gradient-based,

probabilistic search techniques such as genetic algorithms (GAs) and simulated

annealing (SA). Both GA and SA may be used in the classical MO procedures.

However, the inherent parallel structure of a GA provides some important advantages in

MO analysis: with the appropriate schemes and operators, the population of solutions

carried in a GA can be directed to converge along the Pareto set in a single run. Several

multiobjective GA (MOGA) techniques that take advantage of this behavior are

summarizedin the following section.

47

The objective of this paper is to present a new method for MOGA, called the

neighborhood constraint method (NCM). NCM differs from previous MOGA

approaches by using a unique combination of a neighborhood selection technique and

location-dependent constraints. A description of NCM and its application to an

illustrative air quality management problem are provided. Performance of NCM is

compared with those of several other MOGA techniques, as well as with the

performance of a single-objective GA (SOGA) and an integer programming approach

using the classical MO constraint method.

3.3.2 Literature Review: GAs in Mo Analysis

In a review of multiobjective optimization techniques, Fonseca and Fleming (1995)

classify MOGA techniques into four major categories: plain aggregation methods,

population-based non-Pareto methods, Pareto-based approaches, and niche induction

schemes. Plain aggregation methods use GAs in classical MO procedures like those

depicted in Figure 3 .2. These methodologies do not take advantage of the GA

population-based search to generate the Pareto set in a single run, but instead require

much iteration.

The most well known population-based, non-Pareto method is the Vector

Evaluated Genetic Algorithm, or VEGA (Schaffer, 1991). In the VEGA scheme, the

population is divided into groups in each generation, and each group is evaluated with

only, a single objective. Individuals from different groups are allowed to mate with the

intent that offspring will perform well with respect to the objectives of both their

parents. While this approach and several of its variations have been successful in

locating the elbow and extreme points of the Pareto set, it is recognized that exploration

of the entire Pareto set is difficult..

In an intriguing non-Pareto technique, Hajela and Lin (1992) used a combination of

restrictive mating, objective weighting, and fitness sharing. Their variable weighting

approach treats the weights on objectives as decision variables that are encoded into the

GA chromosome for each individual. Combined with fitness sharing, this approach

allows individuals to evolve to represent a large number of different weightings.

Fleming and Pashkevich (1985) noted that any technique that aggregates objectives

linearly in the objective function, as in VEGA and Hajela and Lin's techniques, is not

capable of exploring concave regions of the Pareto set.

48

Pareto-based approaches were proposed by Goldberg (in 1989) and have become a

major focus of MOGA research. These techniques explicitly make use of the definition

of Pareto optimality. In Pareto schemes, the fitness of an individual is defined in terms

of rank. For each generation of the GA, the non-dominated set of solutions in the

population is given the top rank and then removed from that population. This step is

repeated, where in each iteration the non-dominated set of solutions remaining in the

population is given the next rank, until all solutions in the population are assigned a

rank. Rankings are then typically used in a tournament selection to encourage the

exploration in the direction of nondominated individuals.

Successful applications of this procedure have been reported by Cieniawski et al. (1995)

and Ritzel et al. (1994). Liepins et al. (1988) found the Pareto optimal ranking scheme

to be superior to VEGA An important advantage of Pareto approaches is that they are

able to identify solutions in concave areas of the Pareto set.

Pareto schemes typically suffer from population drift, where the population migrates to

a small portion of the Pareto set (Goldberg and Segrest, 1987). To assure a uniform

sampling of the Pareto set, recent applications of Pareto-based MOGA by Fonseca and

Fleming (1993), Horn et al. (1994), and Srinivas and Deb (1994) have incorporated

niching schemes.

In both the Pareto and niched-Pareto methods, there may be a likelihood of mating

between individuals that are far apart in the nondominated set. These solutions likely

will be very different in decision space, and as a result, their children may not meet

either objective satisfactorily (Goldberg, 1989). The niched-Parteto scheme by Fonseca

and Fleming (1993) and the non-Pareto scheme by Hajela and Lin (1992) deal with this

problem by restricting mating to individuals in similar regions in the objective space.

3.3.3 Neighborhood Constraint Method

Overview

· The Neighborhood Constraint Method (NCM) presented here is a MOGA technique

that:

• Samples effectivelyfrom along the entire Pareto set, includingthe endpoints

• Examines both convex and concave regions of the Pareto set, and

• Provides a computationally-efficientapproach

49

While MOGA techniques by Hom et al. (1994) and Fonesca and Fleming (1993)

also address these issues, NCM was developed concurrently and uses a very different

approach.
NCM falls into the class of non-Pareto MOGA techniques because it does not make

explicit use of Pareto dominance in fitness evaluation. NCM is inspired by the natural

phenomena of adaptation to environmental conditions that are location ally, or

geographically, dependent (e.g. the gradual darkening of skin color seen in human

populations as one travels south from northern Europe to the equator). Adaptation, in

this case, arises either from the preferential selection of traits that perform well with

respect to the local environment, or through migration of traits to environments where

they are better suited.
NCM includes the following major operations: population indexing, location-

dependent constraints, and restrictive mating using a neighborhood selection scheme.

These operations are described below.

3.3.3.1 Population Indexing
Each individual is given an index to define its location in the population. Indices

are assigned in the following manner: for problems with two objectives, individuals are

simply indexed from 1 to n, where n is the population size. For three objectives, the

population is indexed in a matrix form so that each individual is given a set of x-y

ordinal coordinates. The dimension of the matrix is m-by-n, where the product of m-by­

n is the population size.Examples for two and three objectives are shown in Figure3.3.

İıtlııli-ıi~

i~~~~--·~··.~··
l

ı I I RD IiD. o
• I\ I .s I U> I·····.· ·'~ I· I u:.:ı Di I" O
#itft. Bi 6 B . Bi ilO

ıttı~¥.~~itı~: •. [~~j····

-~iöıaJedhreC•

Figure 3.3. Indices used in the two and three objective cases. For a problem with K

objective, there are K-1 index numbers used to describe each individual.

50

For problems of four or more objectives, individuals are indexed in a similar fashion,

with the number of index values set equal to the number of objectives minus I.

3.3.3.2 Location-Dependent Constraints

NCM handles multiple objectives in a very similar manner to the classical

MO constraint method. For a K-objective problem, K-1 objectives are converted into

constraints while the remaining objective is optimized. What makes this method unique

is that the values of the constrained objectives are gradually varied at each index

location in the population.

Consider the two-objective problem with objectives A and B and a

population size of n. The individual with index I would be constrained to satisfy

objective B at a minimumtarget level TBrnin- The individualwith index n would instead

be constrained to a maximum target level TBmax- The constraint for any individual i in

the population is generalizedby:

Conversion of these targets to constraints in the GA is done through the use of

penalties. Although the form of the penalty function may be problem specific, it

generallycan be incorporated in the fitness function as:

;Ji '/${A).--: j,-• *t(Şi~)l

ğ~))f«~::;iı(;·
f,ö.· ır SıfBi<~"1i'.:.., ·· __-.. ·.tt~·-.p:; -~--: .: (3)

(4'1

Where: f is the fitness of an individual, S (A) and S (B) are the levels to which

objectives A and B, respectively, are met, and w is a weighting factor. w is typically set

to a very high value to encourage the constraint g, in Equation 2, to be strictly met.

Equations 3 and 4 make the constraint on objective B to be one-sided, i.e., there is no

penalty for exceeding the constraint.

51

3.3.3.3 Restrictive Mating: Neighborhood Selection

Neighborhood selection is a restrictive mating scheme discussed in the context of

single objective; parallel GAs by DeJong and Sarma (1995). Neighborhood selection

schemes restrict the mating of individuals to those within a specified "neighborhood," or

vicinity, of each other. A number of different selection techniques, including roulette

wheel and tournament selection, can be modified to promote neighborhood selection.

The implementation of neighborhood selection in NCM uses the notions of a

selection radius, r, and a reference index location, L. The parameter r is fixed to be

some fraction of n, the population size. The parameter L is an index that represents the

location of an individual with respect to all other individuals in the population.

The likelihood of an individual being selected for mating is dependent on the

proximity of that individual to the location L. An individual is considered for selection

only if the distance between that individual and location L is within the selection radius,

r. For instance, in a two-objective case, the distance between a reference location at L=4

and an individual at index 8 is 4. If r is greater than 4, the individual is considered for

selection. Likewise, in the three-objective case, the distance between L at [4,2] and an

individual at [3,7] is ((4-3)2 + (2-7)2)°"5, or 5.1. If r<S.l, then the individual will not be

considered for selection.
The neighborhood selection process is described below for a two-objective

problem. Assume that the population size, n, is 100; the selection radius, r, is defined as

O.OS * n, i.e., 5; and a tournament selection scheme is carried out. The selection process

begins by setting the reference location, L, to 1. Individuals at index locations up to r

(=5) locations away from L(=l), i.e., from 1 to 6, will be considered as candidates for

selection. Two of the six individuals in this range are selected using tournament

selection. The winners of the selection undergo crossover, and the resulting individuals

are placed into a new population at locations L and L+ 1, i.e., at locations 1 and 2. Lis

then incremented by two, and the selection and crossover processes are repeated. These

steps are repeated until the new population has the same number of individuals as the

previous population. This implementation of neighborhood selection is depicted in

Figure 3.4.

52

:~lBl;:
~ ..~

..~:....~-·..
··"""..:.

..·.·,,.

l!l--~

Figure 3.4. Neighborhood Selection.

Step A: individuals are identified that fall within r places of L. Step B: two

individuals are selected from this set and undergo crossover. Step C: the resulting

individualsare placed into the next population at locations Land L+1.

3.3.3.4 Other Special Operations

In addition to the NCM-specific operations described above, other special

operations may be used to improve performance for various types of problems. Several

potential modificationsare listed and described below.

• Population sorting - Because the initial population is often generated randomly and is

not necessarily in any order, individuals will likely not be in a location where they

perform best. NCM performance may be improved by sorting the initial population,

placing individualscloser to their ideal locations.

• Dynamic scaling of TBmax and TBmin - It may be difficult to estimate the initial values

of the minimum and maximum objective targets, e.g., TBmax and TBmin, for some

problems. When this occurs, TBmax and TBmin may be dynamically changed in each

generation to reflect the maximumand minimumvalues in the algorithmto that point.

• Locational elitism - To speed convergence, an elitism scheme compares the

individual at each location in the population with the individual in that location in the

53

--~-' -:.:::,~//.,._,, 'u' r,.,.:,?·~ , ~(E, \ I\, V, .•. ,

. ,4:,,,~ \

value than that of the current generation, it replaces the current individual. 7.
0w:;";J

. di ih . U . E . I . di id I ·11 b d n1 $9.18 ~ LEf'f,,.P• Populatıon ıstrı utıon - sıng quatıon , ın ıvı ua s wı e space eve y · ·~

objective B. Alternative distributions of individuals along objective B may be useful

in concentrating the search toward areas in which the decisionmaker is interested.

• Allow multiple individuals at a location - Instead of having one set of constraint

values per individual, more than one individual can share the same set of constraints.

This may provide a more robust search by allocating more GA resources to each of
the objective targets.

• Evaluation of local fitness - In the selection process, the fitness of individualswithin

the selection radius can be re-evaluated to determine how well they would perform at

location L. Because the children of selected individuals will be placed at L and L+ 1,
this promotes gene migration.

• Selection of individuals outside the selection radius - It may be advantageous to

select occasionally individuals from outside of the selection radius, which is expected

to promote faster gene migration across the population. A factor can be introduced to

allow samplingoutside the selection radius at a pre-specified rate.

• Dynamic selection radius - Our trials to date have used a selection radius that is

equal to a fixed percentage of the population size. An alternative would be to allow

the selection radius to change dynamically.For instance, the radius would start large

and reduce as the population converges to the Pareto set.

3.3.4 Application

NCM was applied to a real-world, air quality management application with two

conflicting objectives: minimizing the cost of controlling air pollutant emissions and
maximizingthe amount of emissionsreduction.

This problem included approximately 300 air pollutant sources that varied in

emissions amounts from 1 to nearly 8000 tons per year. Each source had from four to

seven mutually-exclusive control options, including a no-control option. The average

number of control options at a source was approximatelyfive.

The choice of control techniques was discrete, i.e., when a control was chosen, it

was applied to the entire emissions emanating from a source. Therefore, this problem

requires a combinatorial search through approximately 5300 potential control strategies.

54

Associated with each control technique are emıssıons removal efficiency and a

cost-per-ton of emissions removed. The mathematical representation of the problem is

as follows:

miırimize e 21~4l~it~u~-l (91i .. ·.;t.·

ıç,, ...r···· ı. *" .· * ·····>· IÜ iili ,,,,$ ' f:j~. .
ı .. z~ >'t

.· ·ın }.. ~(.·.Ev.· ..•·•'1//0:J;Jtc a . 1,,,t

£,tJ;i "'.'."",f VJ
lf

Where: C is the total cost; Aj is the cost at source i. Cj,t is the binary variable

representing whether control option tis used at source j; Uj is the emissions at source j;

ej,t is the removal efficiencyof control t at source j, and T is the target level of emissions

reduction. The problem is described in more detail by Laughlin (1995).

This problem can be modeled and solved as an integer programming (IP)

formulation, allowing the comparison of the GA results with the actual Pareto otimal

solutions obtained using the IP. Also, this problem is closely related to another

formulation that we have been examining in our research, in which a highly nonlinear

air quality model is used in the eyaluation function to predict air quality impacts. This

alternative GA formulation seeks to minimize costs subject to an ambient air quality

constraint. The complexity of the atmospheric transport and chemistry makes the use of
more classical intractable.optimization methodologies

Also, because of the duration of an atmospheric model run, the efficiency and

quick convergence of a MOGA technique are important, providing the impetus for the
work presented in this paper.

55

3.3.4.1 Methodology

Four MO methods were tested and compared for the case study problem. Each
method is 'describedbriefly.

1. Integer Programming

First, an integer-programming (IP) model was set up and solved to determine the

true Pareto optimal costs for achieving emissions reductions of 5%, 10%, 15%, 20%,

25%, 30%, 35%, 40%, 45%, 50%, and 55%. The IP model contained approximately
1300 binary decision variables.

2. Single-Objective GA

Next, a single-objective GA (SOGA) was run iteratively, one run for each level of

reduction, i.e. 5%, 10%, etc. The SOGA, as well as the MOGA techniques tested in this

paper, used real-coded genes. Coding of the decision variables is discussed by Laughlin
(1995).

Other parameters used in the SOGA runs included: a mutation rate of O. 1 %, a

uniform crossover rate of 35%, tournament selection, and elitism to preserve the best

individual in each generation. 30% of genes that underwent crossover were subjected to

a linear recombination. These parameter values were found to perform well through

trials of various parameterizations. Population sizes of 50 and 150 individuals were

tested, each for 15 different random number seeds. The runs were terminated when no

improvement in fitness was observed in 20 consecutive generations.

3. The Neighborhood Constraint Method

NCM was then used to generate the tradeoff curve in a single run. The NCM­

specificparameters used in this problem are listed in Table 3.4.

i;~~~~:ı

56

For NCM, only 10% of the genes that underwent crossover were linearly

recombined. While this value may appear low, trials suggested that a low value allowed

for better gene migration across the population with less chance of disruption.

Once again, runs were made for population sizes of 50 and 150 individuals for 15

different random number seeds. Termination occurred after 20 generations with no

improvement in the average cost of individuals in the population.

Pareto Ranking and Hybrid Niched-Pareto MOGAs

Pareto ranking and a hybrid niched-Pareto MOGA technique were implemented

and tested for the same population sizes and random seeds. The Pareto ranking scheme

was based on the procedure described by Goldberg (1989).

The hybrid technique was a combination of two techniques described in the literature,
and made use of

• Objective sharing - Combined with tournament selection, this technique

encouraged exploration of the tradeoff curve by promoting selection of individuals

in relatively nonpopulated areas. The objective sharing implementation was based
on the procedure described by Horn et al. (1994).

• Restrictive mating - This technique, adapted from Fonseca and Fleming (1993),

used a parameter, mating, to encourage the mating of individuals that are similar in
objective space.

Tournament selection was used in this hybrid method. A number of individuals

equal to 10% (arbitrarily chosen) of the population size was sampled. If there was a tie

in the ranking of the best individuals in the sample, continuously- updated objective

sharing was used to identify the winner, as described by Horn et al. (1994). Another

samplingof roughly 10% of the population was taken to find a mate. After the sampling

was completed, the new set of individuals was evaluated to determine whether the

individuals fell within an objective-space distance, mating, from the winner of the first

tournament. The fitness of individuals that fell within this distance was increased to

encourage selection. If there was a tie, objective sharing was carried out in the second
sampled set to identifythe mate.

57

4. Results

Table. J.5 summarizes the preliminary results of these trials. Costs obtained from

each of the techniques, in millions of dollars per year, are provided for various target

levels of reduction. Since the controls being considered are discrete, it may not be

possible to meet a target reduction level exactly. Therefore, the cost displayed is for the

strategy that most cost-effectively reduces greater than or equal to the current target, but

less than the next higher target level.

Results are reported for population sizes of 50 and 150. Also compared are the numbers

of fitness evaluations required by each method.

58

Figure 3. 5 shows the nondominated sets and the final populations obtained through

the NCM, the Pareto method, and the hybrid method, and compares them with IP the

solutions.

iiı~
:o

.•. ,,,y-·
r~•~

•J®Y~~~••• 5:,ı

O;~'-~)-)
n ~~~~ ~~• ıtı·•

.<r/

.. tın·· ~~~

Figure 3.5. Final population and nondominated sets identified throughout a typical run, for each

MOGA rechnique. Indeviduals in the final population are represented as light-colored circles. IP-generated Pareto

solutions are Plack diamonds. The noııdominated set is represented as gray squares

5. Discussion
Several observations may be made from the results. These include:

• None of the GA methods identified the true optimal points found by the IP. This

was not unexpected because of the stochastic nature of GA search and the difficulty

of the problem. However, the SOGA and MOGA techniques, with the exception of

the Pareto method, did approximate the Pareto set to a degree that may be

acceptable to a decision-maker.

• All three MOGA techniques required considerably fewer fitness evaluations and

computational time than did the iterative SOGA technique. In about 1/3 of the

duration of a SOGA run, which only identified l O nondominated solutions, the

MOGA techniques were able to identify several hundred to thousands of

nondominated solutions.

59

• The Pareto method found better solutions near the elbow region of the curve,

compared to the hybrid, NCM, and SOGA The results suggest that the Pareto

technique was superior at the elbow because it tended to direct more search effort in

that region than did the NCM and hybrid.

• Of the MOGA runs, the hybrid technique, with a population size of 150, identified

the best-nondominated solutions (Fig.3.5 c.f); providing good coverage of the entire

curve. However, the hybrid technique was more dependent on the random number

seed than NCM, and in several runs failed to identify solutions in the lower portion

of the tradeoff curve. Although the hybrid technique was able to find good

nondominated solutions, it was unable to maintain them throughout the search. The

final population tended to converge toward the elbow. NCM was able to cover the

noninferior set well, and also maintained the nondominated solutions throughout the

search (Fig.3.5 a, d). This behavior may be desirable because it reduces the book­

keeping required to maintain records of solutions along the set. The Pareto

technique did poorly in covering the noninferior set and maintaining the

nondominated solutions.

• NCM exhibited better coverage of the Pareto set than the hybrid technique for runs

where the population was 50.

3.3.5 Summary

This paper presents a new multiobjective genetic algorithm technique, the

neighborhood constraint method (NCM). NCM uses a restrictive mating scheme and

location-dependent constraints to promote and maintain diversity in the GA population.

The application of the NCM technique to a realistic problem was demonstrated and

its performance was compared with those of an integer programming procedure, an

iterative procedure using a single-objectiveGA optimization, and a Pareto and a hybrid

niched-Pareto multiobjectiveGA (MOGA) techniques.

Preliminary results show that NCM performs better than the SOGA and the other

MOGA techniques. NCM appears to provide good coverage of the Pareto set, and is

capable of promoting and maintainingpopulation diversity throughout the GA run with

a relatively small population size. It does appear, however, that the Pareto-based

techniques may be better at identifying regions near the elbow of the Pareto set.

60

These results suggest that NCM is a viable MOGA technique, and point to the need

for a more comprehensive investigation of NCM to better identify the effects of the

restrictive mating and the location-dependent constraints. A determination of the best

selection approach (i.e., roulette wheel, tournament, etc.), selection radius, and

recombination and crossover rates to use with NCM would be beneficial. NCM should

also undergo a more rigorous comparison with the other MOGA techniques for a set of

well-known problems.

Another potential use of NCM that deserves attention is in parallel GAs, since the

methodology adapts well to -the decentralized selection schemes discussed by De Jong
and Sarma (1995).

61

CONCLUSION

A couple of conclusions from building block theory are of importance to note.

Strings with very fit schemata of short length will have a high likelihood of being selected

to create the next population, and thus pass on those schemata to strings in the new

population. It has been shown that schemata of this form increase in number from one

population to the next in an exponential fashion. In other words, n3 useful schemata are

processed per generation, and the majority of these have small orders and lengths

associated with them. These schemata are what give a GA the power to efficiently search

through a-problem space. This n3 feature is so important to GAs that it has been given a

special name, implicit parallelism.
If the conception of a computer algorithms being based on the evolutionary of

organism is surprising, the extensiveness with which this algorithms is applied in so many
areas is no less than astonishing. These applications, be they commercial, educational and

scientific, are increasingly dependent on this algorithms, the Genetic Algorithms. Its

usefulness and gracefulness of solving problems has made it the more favorite choice
among the traditional methods, namely gradient search, random search and others. GAs are

very helpful when the developer does not have precise domain expertise, because GAs

possess the ability to explore and learn from their domain.
In this project, the use of operators of GAs in optimization of engineering and

commerce are considered. We believe that, by these interesting examples, one could grasp

the idea of GAs with greater ease. The different optimization problems are described. The

application of GA to solve optimization problem are given the selection procedure model
parameters by using GA operators are represented. Also different problems solution, by

using GA, is given.
In future, the developments of variants of GAs to tailor for some very specific tasks

will be interesting. This might defy the very principle of GAs that it is ignorant of the

problem domain when used to solve problem.But we would realize that this practice could

make GAs even more powerful

62

REFERENCES

[1] Water Resources Research, Cieniawski, S. E., Eheart, J. W., and Ranjithan, S.

(1995).
[2] Genetic Algorithms in Engineering and Computer Science, edited by G.Winter,

J.Periaux& M.Galan, publishedby JOHN WILEY & SON Ltd. in 1995.

[3] [Louis 1993] Genetic Algorithms as a Computational Tool/or Design, by Sushil J_

Louis, in August 1993

[4] Algorithms and Complexity, by Herbert S.Wilf, in 1986 publishedby Prentice-Hall

Inc.
Obtained: Central Library oflmperial College (3 Computing 5.25 WIL)

[5] Proceedings of the Sixth International Conference on Genetic Algorithms, De

Jong, K. A and Jayshree Sarma (1995).
[6] Recombination Variability and Evolution: algorithms of estimation and

population-genetic models, by AB.Korol, I.A.Preygel & S.I.Preygel, in 1994 published

by Chapman& Hall.
Obtained: Central Library of Imperial College (4 Life Sciences575.116.12 KOR)

[7] Learning Robot Behaviours using Genetic Algoeithms, bv ALAN C.Schultz. Na

Center for AppliedResearch in ArtificialIntelligneee

[8] Genetic Algorithms for Order Dependent Proa:s:ses tlJJPlied to Robot Path-

Planning, by Yuval Davidor, in April 1989 publishedby I:nperial College

[9] Genetic Algorithms in Business and Their SııpptWıi•ıe Role in Decision Makin

by Tom Bodnovich, in 16 November 1995, pı;.,ı-->Esbed by College of Business

AdministrationKent State

[10] Proceedings of the Fifth Inıemasion

Fonseca, C. M., Fleming,P. J. (1993).

[11] http://www.cs.qub.ac.uk/~M.SuiliYanga~>--­

[12] http://www.doc.ic.ac.uk/~nd/surpris _

[13] http://ltswww.epfl.ch/pub _fıles/b~lJııımı

[14] http://www-fp.mcs.anl.gov/otc/Gui,

[15] http://www.genetic-programming..com~ot-M- ıi{

