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ABSTRACT 

Distributed database system (DDBS) technology is the union of what appear to 

be two diametrically opposed approaches to data processing: database system and 

computer network technologies. Database systems have taken us from a paradigm of 

data processing, in which each application defined and maintained its own data to one in 

which the data is and administered centrally. This new orientation results in data 

independence, whereby the application programs are immune to changes in the logical 

or physical organization of the, and vice versa. 

In the following chapters I will explain in detailed information about all of them 

DISTRIBUTED DAT ABASE SYSTEMS. 
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INTRODUCTION 

Distributed database system (DDBS) technology is one of the major 

recent developments in the database systems area. There are claims that in the next ten 

years centralized database managers will be an "antique curiosity" and most 

organizations will move toward distributed database managers. The intense interest in 

this subject in both the research community and the commercial marketplace certainly 

supports this claim. The extensive research activity in the last decade has generated 

results that now enable the introduction of commercial products into the market place. 

Distributed database system (DDBS) technology is the union of what appear to 

be two diametrically opposed approaches to data processing: database system and 

computer network technologies. Database systems have taken us from a paradigm of 

data processing, in which each application denned and maintained its own data, to one 

in which the data is denned and administered centrally. This new orientation results in 

data independence, whereby the application programs are immune to changes in the 

logical or physical organization of the data, and vice versa. 

One of the major motivations behind the use of database systems is the desire to 

integrate the operational data of an enterprise and to provide centralized, thus controlled 

access to that data. The technology of computer networks, on the other hand, promotes a 

mode of work that goes against all centralization efforts. At first glance it might be 

difficult to understand how these two contrasting approaches can possibly be 

synthesized to produce a technology that is more powerful and more promising than 

either one alone. The key to this understanding is the realization that the most important 

objective of the database technology is integration, not centralization. It is important to 

realize that either one of these terms does not necessarily imply the other. It is possible 

to achieve integration without centralization, and that is exactly what the distributed 

database technology attempts to achieve. 
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CHAPTER ONE 

DISTRIBUTED DATA PROCESSING 

The term distributed processing ( or distributed computing) has been used to refer 

to such diverse systems as multiprocessor systems, distributed data processing, and 

computer networks. Here are some of the other terms that have been used 

synonymously with distributed processing: distributed function, distributed computers 

or computing, networks, multiprocessors I multi computers, satellite processing/satellite 

computers, backend processing, dedicated/special-purpose computers, time-shared 

systems, and functionally modular systems. 

Some degree of distributed processing goes on in any computer system, even on 

single-processor computers. Starting with the second-generation computers, the central 

processing unit (CPU) and input/output (I/0) functions have been separated and 

overlapped. This separation and overlap can be considered as one form of distributed 

processing. However, it should be quite clear that what we would like to refer to as 

distributed processing, or distributed computing, has nothing to do with this form of 

distribution of functions in a single-processor computer system. 

Distributed computing system states is a number of autonomous processing 

elements (not necessarily homogeneous) that are interconnected by a computer network 

and that cooperate in performing their assigned tasks. The "processing element" referred 

to in this definition is a computing device that can execute a program on its own. 

One fundamental question that needs to be asked is: What is being distributed? 

One of the things that might be distributed is the processing logic. In fact, the definition 

of a distributed computing system given above implicitly assumes that the processing 

ogic or processing elements are distributed. Another possible distribution is according 

o function. Various functions of a computer system could be delegated to various 

pieces of hardware or software. A third possible mode of distribution is according to 

data. Data used by a number of applications may be distributed to a number of 

recessing sites. Finally, control can be distributed. The control of the execution of 

·arious tasks might be distributed instead of being performed by one computer system. 
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From the viewpoint of distributed database systems, these modes of distribution are all 

necessary and important. In the following sections we talk about these in more detail. 

Distributed computing systems can be classified with respect to a number of 

criteria. Bochmann lists some of these criteria as follows: degree of coupling, 

interconnection structure, interdependence of components, and synchronization between 

components [Bochmann, 1983]. Degree of coupling refers to a measure that determines 

how closely the processing elements are connected together. This can be measured as 

the ratio of the amount of data exchanged to the amount of local processing performed 

in executing a task. If the communication is done over a computer network, there exists 

weak coupling among the processing elements. However, if components are shared, we 

talk about strong coupling. Shared components can be either primary memory or 

secondary storage devices. As for the interconnection structure, one can talk about those 

cases that have a point-to-point interconnection between processing elements, as 

opposed to those, which use a common interconnection channel. We discuss various 

interconnection structures. The processing elements might depend on each other quite 

strongly in the execution of a task, or this interdependence might be as minimal as 

passing messages at the beginning of execution and reporting results at the end. 

Synchronization between processing elements might be maintained by synchronous or 

by asynchronous means. Note that some of these criteria are not entirely independent. 

For example , if the synchronization between processing elements is synchronous, one 

would expect the processing elements to be strongly interdependent, and possibly to 

work in a strongly coupled fashion. 

The distributed processing better corresponds to the organizational structure of 

today's widely distributed enterprises, and that such a system is more reliable and more 

responsive. Data can be entered and stored where it is generated, without any need for 

physical (manual) movement. Furthermore, building a distributed system might make 

economic sense since the costs of memory and processing elements are decreasing 

continuously. 

The fundamental reason behind distributed processing is to be better able to 

solve the big and complicated problems, by using a variation of the well-known divide 

and-conquer rule. If the necessary software support for distributed processing can be 

eveloped, it might be possible to solve these complicated problems simply by dividing 
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them into smaller pieces and assigning them to different software groups, which work 

on different computers and produce a system that runs on multiple processing elements 

but can work efficiently toward the execution of a common task. 

This approach has two fundamental advantages from an economics standpoint. 

First, we are fast approaching the limits of computation speed for a single processing 

element. The only available route to more computing power, therefore, is to employ 

multiple processing elements optimally. This requires research in distributed processing 

as denned earlier, as well as in parallel processing, which is outside the scope. The 

second economic reason is that by attacking these problems in smaller groups working 

more or less autonomously, it might be possible to discipline the cost of software 

development. Indeed, it is well known that the cost of software has been increasing in 

opposition to the cost trends of hardware. 

Distributed database systems should also be viewed within this framework and 

treated as tools that could make distributed processing easier and more efficient. It is 

reasonable to draw an analogy between what distributed databases might offer to the 

data processing world and what the database technology has already provided. There is 

no doubt that the development of general-purpose, adaptable, efficient distributed 

database systems will aid greatly in the task of developing distributed software. 

1.1 DISTRIBUTED DATABASE SYSTEM 

We can define a distributed database as a collection of multiple, logically 

interrelated databases distributed over a computer network. A distributed database 

management system ( distributed DBMS) is then defined as the software system that 

permits the management of the DDBS and makes the distribution transparent to the 

sers. The two important terms in these definitions are "logically interrelated" and 

distributed over a computer network." They help eliminate certain cases that have 

sometimes been accepted to represent a DDBS. 

First, a DDBS is not a "collection of files" that can be individually stored at each 

ode of a computer network. To form a DDBS, files should not only be logically 

elated, but there should be structure among the files, and access should be via a 

common interface. It has sometimes been assumed that the physical distribution of data 
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is not the most significant issue. The proponents of this view would therefore feel 

comfortable in labeling as a distributed database two (related) databases that reside in 

the same computer system. However, the physical distribution of data is very important. 

It creates problems that are not encountered when the databases reside in the same 

computer. Note that physical distribution does not necessarily imply that the computer 

systems be geographically far apart; they could actually be in the same room. It simply 

implies that the communication between them is done over a network instead of through 

shared memory, with the network as the only shared resource. 

The definition above also rules out multiprocessor systems as DDBSs. A 

multiprocessor system is generally considered to be a system where two or more 

processors share some form of memory, either primary memory, in which case the 

multiprocessor is called tightly coupled, or secondary memory, when it is called loosely 

coupled. Sharing memory enables the processors to communicate without exchanging 

messages. With the improvements in microprocessor and VLSI technologies, other 

forms of multiprocessors have emerged with a number of microprocessors connected by 

a switch. 

Processor 
Uoit 

•Pr«$Z>t0r 
Unit 

l'1'.CJ0&6atll' 
Unit 

- 

Figure 1.1: Tightly-Coupled Multiprocessor 

Another distinction that is commonly made in this context is between shared 

everything and shared-nothing architectures. The former architectural model permits. 
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Figure 1.2: Loosely-Coupled Multiprocessor 
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Figure 1.3: Switch-Based Multiprocessor System 

each processor to access everything (primary and secondary memories, and peripherals) 

in the system and covers the three models that we described above. The shared nothing 

architecture is one where each processor has its own primary and secondary memories 

as well as peripherals, and communicates with other processors over a very high speed 

us. In this sense the shared-nothing multiprocessors are quite similar to the distributed 

environment that we consider in this book. However, there are differences between the 

· eractions in multiprocessor architectures and the rather loose interaction that is 

common m distributed computing environments. The fundamental difference is the 
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mode of operation. A multiprocessor system design is rather symmetrical consisting of a 

number of identical processor and memory components, controlled by one or more 

copies of the same operating system, which is responsible for a strict control of the task 

assignment to each processor. This is not true in distributed computing systems, where 

heterogeneity of the operating system as well as the hardware is quite common. 

In addition, a DDBS is not a system where, despite the existence of a network, the 

database resides at only one node of the network. In this case, the problems of database 

management are no different from the problems encountered in a centralized database 

environment. The database is centrally managed by one computer system and all the 

requests are routed to that site. The only additional consideration has to do with 

transmission delays. It is obvious that the existence of a computer network or a 

collection of "files" is not sufficient to form a distributed database system. 

Communitauo.n 
Notworl( 

Figure l.4: Central Database on a Network 

At this point it might be helpful to look at an example of distributed database 

lication that we can also use to clarify our subsequent discussions. 
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1.2 ADV ANT AGES AND DISADVANTAGES OF DDBS 

The distribution of data and applications has promising potential advantages. 

Note that these are potential advantages which the individual DDBSs aim to achieve. As 

such, they may also be considered as the objectives ofDDBSs. 

1.2.1 Advantages 

Local Autonomy: Since data is distributed, a group of users that commonly 

share such data can have it placed at the site where they work, and thus have local 

control. This permits setting and enforcing local policies regarding the use of the data. 

There are studies [D'Oliviera, 1977] indicating that the ability to partition the author ity 

and responsibility of information management is the major reason many business 

organizations consider distributed information systems. This is probably the most 

important sociological development that we have witnessed in recent years with respect 

to the use of computers. 

Of course, the local autonomy issue is more important in those organizations 

that are inherently decentralized. For such organizations, implementing the information 

system in a decentralized manner might also be more suitable. On the other hand, for 

those organizations with quite a centralized structure and management style, 

decentralization might not be an overwhelming social or managerial issue. 

In distributed system, the validity of local autonomy is obvious. It would be 

quite absurd to have an environment where all the record keeping is done locally, as it 

·ould be if information were shared among different sites in a manual fashion ( either 

ry exchanging hard copies of reports, or by exchanging magnetic tapes, disks, floppies, 

erc.). 

Improved Performance: Again, because the regularly used data is proximate 

the users, and given the parallelism inherent in distributed systems, it may be possible 

prove the performance of database accesses. On the one hand, since each site 

es only a portion of the database, contention for CPU and I/0 services is not as 

e as for centralized databases. On the other hand, data retrieved by a transaction 
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may be stored at a number of sites, making it possible to execute the transaction in 

parallel. 

Let us assume that in our example the record keeping is done centrally at the 

world headquarters, with remote access provided to the other sites. This would require 

the transmission to New York of each request generated in Phoenix inquiring about the 

inventory level of an item. It would probably be impossible to withstand the low 

performance of such an operation. 

Improved Reliability/Availability: If data is replicated so that it exists at 

more than one site, a crash of one of the sites, or the failure of a communication link 

making some of these sites inaccessible, does not necessarily make the data impossible 

to reach. Furthermore, system crashes or link failures do not cause total system 

inoperability. Even though some of the data may be inaccessible, the DDBS can still 

provide limited service. 

Obviously, if the inventory information at both warehouses is replicated at both 

sites, the failure at one of the sites would not make the information inaccessible to the 

rest of the organization. If proper facilities are set up, it might even be possible to give 

users at the failed site access to the remote information. 

Economics: It is possible to view this from two perspectives. The first is in 

terms of communication costs. If databases are geographically dispersed and the 

applications running against them exhibit strong interaction of dispersed data, it may be 

much more economical to partition the application and do the processing locally at each 

site. Here the trade-off is between telecommunication costs and data communication 

costs. The second viewpoint is that it normally costs much less to put together a system 

of smaller computers with the equivalent power of a single big machine. In the 1960s 

and early 1970s, it was commonly believed that it would be possible to purchase a 

fourfold powerful computer if one spent twice as much. This was known as Grosh's law. 

With the advent of minicomputers, and especially microcomputers, this law is 

considered invalid. 

The case about lower communication costs can easily be demonstrated in the 

example we have been considering. It is no doubt much cheaper in the long run to 

9 



• 

maintain a computer system at a site and keep data locally stored instead of having to 

incur heavy telecommunication costs for each request. The level of use when this 

becomes true can obviously change depending on the traffic patterns among sites, but it 

is quite reasonable to expect this to occur. 

Expandability: In a distributed environment, it is much easier to 

accommodate increasing database sizes. Major system overhauls are seldom necessary; 

expansion can usually be handled by adding processing and storage power to the 

network. Obviously, it may not be possible to obtain a linear increase in "power," since 

this also depends on the overhead of distribution. However, significant improvements 

are still possible. 

Share ability: Organizations that have geographically distributed operations 

normally store data in a distributed fashion as welL However, if the information system 

is not distributed, it is usually impossible to share these data and resources. A 

distributed database system therefore makes this sharing feasible. 

1.2.2 Disadvantages 

However, these advantages are offset by several problems ansmg from the 

distribution of the database. 

Lack of Experience: General-purpose distributed database systems are not yet 

commonly used. What we have are either prototype systems or systems that are tailored 

o one application (e.g., airline reservations). This has serious consequences because the 

solutions that have been proposed for various problems have not been tested in actual 

operating environments. 

Complexity: DDBS problems are inherently more complex than centralized 

database management ones, as they include not only the problems found in a centralized 

eavironment, but also a new set of unresolved problems. We discuss these new issues 

- .... ~n1J. 

Cost: Distributed systems require additional hardware ( communication 

chanisms, etc.), thus have increased hardware costs. However, the trend toward 
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decreasing hardware costs does not make this a significant factor. A more important 

fraction of the cost lies in the fact that additional and more complex software and 

communication may be necessary to solve some of the technical problems. The 

development of software engineering techniques ( distributed debuggers and the like) 

should help in this respect. 

Distribution of Control: This point was stated previously as an advantage 
of DDBSs. Unfortunately, distribution creates problems of synchronization and 

coordination (the reasons for this added complexity are studied in the next section). 

Distributed control can therefore easily become a liability if care is not taken to adopt 

adequate policies to deal with these issues. 

Security: One of the major benefits of centralized databases has been the 

control it provides over the access to data. Security can easily be controlled in one 

central location, with the DBMS enforcing the rules. However, in a distributed database 

system, a network is involved which is a medium that has its own security requirements. 

It is well known that there are serious problems in maintaining adequate security over 

computer networks. Thus the security problems in distributed database systems are by 

nature more complicated than in centralized ones. 

Difficulty of Change: Most businesses have already invested heavily in their 

database systems, which are not distributed. Currently, no tools or methodologies exist 

o help these users convert their centralized databases into a DDBS. Research in 

terogeneous databases and database integration is expected to overcome these 

difficulties. 
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CHAPTER TWO 

DISTRIBUTED SYSTEMS AND DISTRIBUTED SOFTWARE 

2.1 CHARACTERISTIC OF DISTRIBUTED SYSTEMS 

Distributed computer environments are based on distributed computer systems 

which consist of a set of processing components connected by a communication 

network. The software systems running on the various processing components exchange 

data through the communication network. This type of system is also called loosely 

coupled distributed system. 

Processing nodes can be composed of several processors which share memory. 

This shared memory is used to exchange information by the software executed on such 

a node. This type of system is called a tightly coupled distributed system. Some 

advantages of distributed systems are below shown: 

• Increased Performance 

Performance is generally defined in terms of average response time and through put. If 

processing capability can be located where it is required the response time can be highly 

reduced. Data can be processed locally before it is sent to other nodes for further 

recessing. This increases throughput. 

• Increased reliability 

_ ;ormally nodes in a distributed system can take over the tasks of other nodes which are 

currently out of order. This means that a distributed system continues its work with 

educed performance but with little or no reduction of functionality 

• Increased flexibility 
ditional functionality can be added to a distributed system or the number of users can 

permanently increased. A distributed system allows this system growth by simply 

· g more processing nodes. 
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2.2 PARALLEL OR CONCURRENT PROGRAMS 

Parallel or concurrent programs are characterized by a set of statements 

interrelated by multiple control threads. Each sequence of statements executed by one or 

more control threads is called a process object (The term 'process' shall be used instead 

of'process object' when it is clear from the context that we mean a process object). 

The relationship between processes or threads and process objects is shown in 

the following figure. 

pnmt:'!lt~~~ or thtt:atb t.t~·tHiug the 
· ·.~. f .: · .· ·. · ·~· t~ . rcr s ~~k'e-d • tm .emi;nu QI .nt p: .•.. ~ , ,,,.i:,J .. 

~-- 

·· ;itsqm:~{:ti. iif 
progrnnt . . 
f,!JaJ~m~.nts 
~ht~tibi.rij .1. 
Pr'9ctiJ .. 
i~ l. .. i.<•.is ., .• 
<1-;t~~:t ~;~-~~ ~- 

·-··· 

Figure 2.1: Process/Threads and Process Objects 

The statements (operations) of the individual processes are executed overlapped 

r interleaved or both. If a single processor is multiplexed among several concurrent 

ocesses, the machine instructions of these processes can only be interleaved in time. 

For a certain time slice, the processor is assigned to a process in order to execute the 

ements of a process object. Assigning a processor to another process is called 

ntext switching. This type of concurrency is also called multitasking. The following 

- gure shows an example of how a processor is shared between several processes. 
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Figure 2.2: Multitasking 

Machine instructions of processes running on different processors can be 

overlapped at each node at which a processor is available. These are distributed 

programs. 

Concurrent or parallel programs are either interleaved, distributed, or both. For a 

rogrammer it is not necessary to know whether multitasking or a distributed system is 

used to run his program. 

Normally the processes of a concurrent program share the resources such as 

ocessor, memory, disk, and databases, and if they cooperate in order to reach a 

mmon goal they exchange information and synchronize their activities. 

Their are two reasons to structure a program ~in parallel executable process 

s: 

fine grain parallelism is mainly used to accelerate large numerical computations. 

is type of parallels is often achieved by using vector processors and the pipelining of 

,x,esarions. It is mainly implemented by hardware. 

crural parallelism is used if the structure of the task to be performed is 

i niamentally parallel. The process objects are a very important concept for structuring 

14 



programs in certain application areas, e.g. operating systems, real time systems, and 

communication systems. Especially in real time systems which must react to external 

events, processes (objects) are used to achieve separation of the tasks /FAPA88/. Each 

process handles a related set of events and cooperates with other processes to achieve a 

common purpose. In order to cooperate, processes exchange information either via 

shared data or via messages. 

2.3 NETWORKED COMPUTING 

2.3 .1 Network Structure and the Remote Procedure Call Concept 

Network computing is characterized by several sequences of jobs, which arrive 

independently at various nodes. The jobs are designed and implemented more or less 

independently of each other and are only loosely coupled. The distributed system serves 

primarily as a resource-sharing network. 

A very common example of resource sharing is the file server. All files are 

located on a dedicated node in a distributed system. Software components running on 

other nodes send their file access requests to the file server software. The file server 

executes these requests and returns the results (to the clients). 

In addition to file servers many other kinds of servers such as print servers, 

mpute servers, data base servers, and mail servers have been implemented As with 

file server, clients send their requests to the appropriate server and receive the 

ts for further processing. Servers process the requests from the various clients more 

less independently of each other. The programs running on the clients can be viewed 

being designed and developed independently of each other. 

The following figure shows the concept of client/server system 

Figure 2.3: The Concept of Client/Server System 

15 
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In client server systems, the clients represent the users of a distributed system and 

servers represent different operating system functions or a commonly used application. 

The following figure shows a simple example of a client server system. 

Wei~.:.··. 
I .• • att\tl¢f/ 

£0" ···1· I:::::==::: --- 

\.\'<,;~~ 
I · ... • ~t~,t~n 

:,,..,., 
-~. 

Figure 2.4: A Small Client/Server System 

This system has a print server, a file server, and the clients (users) which run on 

.orkstations (WS) and personal computers (PC). The server software and the client 

software can run on the same type of computer. The different nodes are connected by a 

ocal area network. 

From a user's point of view a client/server system can hardly be distinguished 

om a central system, e.g. a user cannot see whether a file is located on his local system 

on a remote file server node. For the user the client/server system appears to be a 

ery convenient and flexible central computing system. Mostly the user does not know 

ether a file is stored on his PC or on a file server. To the user, the storage capacity of 

server appears to be a part of the PC storage capacity. Client/server systems are also 

_,. flexible. For a new application a specialized new server can be added e.g. data base 

_ ems run on specialized data base servers, which have short access times. Database 

· cations are primarily controlled by the local client; all the data is stored at the data 

~~ server and special computations are executed by a compute server. The application 

ogram running on the client, calls the required functions provided by the servers. This 

ne mainly by way of remote procedure calls (RPC). An RPC resembles a procedure 

except that it is used in distributed systems. The following is a description of how 

RPC works. The program running on the client looks like a normal sequential 
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program. The services of a particular server are invoked via a remote procedure call. 

The caller of a remote procedure is stopped until the invoked remote procedure is 

finished and the server has provided the results to the calling client in the same way that 

parameters are returned by a procedure. The servers are used in the same way that 

library procedures are used. This means that remote procedure calls hide the distribution 

of the functions of the system even at the program level. The programmer does not need 

to concern himself with the system distribution. 

The figure below shows the basic structure of a client/server system. 

W· W •. W· ..• 

Figure 2.5: Remote Procedure Call Concept 

2.3.2 Distributed Computing Environment (DCE) 

The Distributed Computing Environment is a comprehensive integrated set of 

ools which supports network computing in a heterogeneous computing environment. 

This set of technologies has been selected by the Open Systems Foundation (OSF) to 

pport the development of distributed applications for heterogeneous computer 

etworks. The following figure shows the OSF DCB architecture. 

Figure 2.6: Architecture of OSFDCE 
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In the DCB client and server programs are executed by threads i.e. processes. 

Threads use an RPC in order to communicate with each other and binary semaphores 

and conditional variables for synchronization. In the DCB remote procedure calls are 

supported by directory services (DCB Call Directory Service) and security services 

(DCE Security Service). Directory services map logical names to physical addresses. If 

a client calls a particular service provided by a server, the directory service is used to 

find the appropriate server. The DCB security service provides features for secure 

communication and controlled access to resources. Distribute Time Service provides 

precise clock synchronization in a distributed system. This is required for event logging, 

error recovery, etc. The distributed file service allows the sharing of files across the 

whole system. Finally the diskless support service allows workstations to use 

ackground disk files on file servers as if they were local disks /SCHILL93/, /OSF92/. 

__ 3.3 Cooperative Computing 

In cooperative computing a set of processes runs on several processing nodes. 

These processes cooperate to reach a common goal and together they form a distributed 

rogram. This is different from the client/server systems described above. In 

cooperative systems the processes, which comprise the distributed program are coupled 

ery closely. This means that the closely coupled processes are executed on a loosely 

coupled system. 

In cooperative systems, the distribution of computing capability is not hidden 

d programming concepts. The different program sections running on different 

uters comprise a single program; but it can be seen at the programming level that 

program sections are executed concurrently. These different program sections are 

~~ processes. Processes form a very important concept for central systems, client 

er systems and cooperative systems. If processes have to work together to perform 

ask, they must exchange data and synchronize their execution. Programming 

~ems for concurrent systems contain communication and synchronization concepts. 

l:ooperative programming resembles a human organization which works together to 

---.-e a common goal. Its members must communicate with each other and must 

~onize their activities. The following figure shows the basic structure of 

a,. t.,0 anve systems. 
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Figure 2. 7: Structure of Cooperative Systems 

Cooperative systems are mainly used for the automation of technical processes 

and the implementation of communication software, etc. Technical processes in the 

mostly part consist of several parallel activities, for example checking the level of a tank 

has to be done in parallel with controlling the rate of flow of a pump. Therefore the 

structure of technical process control software is very similar to the structure of the 

technical process to be controlled. For the automation of technical processes such as 

manufacturing control systems, the environment of the program, the technical process, 

is considered as a set of processes which interact with software processes. This means 

that several processes which can be implemented in different ways work together to 

perform their task. 

2.4 COMMUNICATION SOFTWARE SYSTEMS 

A communication system consists of a communication network and the 

ommunication software, which runs on the various processing nodes (referred to as 

st systems). The communication software provides a more or less convenient 

communication service for the application software. The application software on each 

e uses the communication service to exchange messages with the application 

software running on other nodes. The communication service is based on the underlying 

·ork (A network is usually made up of lines and several switching nodes although 

st local area networks do not contain switching nodes). 

In order to provide a convenient communication service the communication 

-~ ·are systems also exchange messages. This message exchange is based on the 
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simpler communication mechanism provided directly by the network. For example the 

network provides a communication service, which only allows the transfer of a single 

byte. The communication service provided by the communication software allows byte 

strings of a fixed or even an unlimited length to be sent or received. This can be 

implemented in the following way: 

. A.pp(~¢titl¢fi l 
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Figure 2.8: Structure of Communication Systems 

The application software of a host system A wants to send a sequence of bytes to 

application software of a host system B. The sequence of bytes is given to the 

nmication system by the application system. The communication system on host 

em A sends a byte with the length of the byte string ( the number of bytes) to the 

unication system on host system B. The communication system on host system B 

back an acknowledgement. This is a byte with a certain value. After the 

cnmmnnication software on host system A has received the acknowledgement it starts 

er the bytes of the byte string. When system B has received the number of bytes 

in the first byte it again sends an acknowledgement. After sending the 

da:,•dedgement, the communication software on host system B gives the received 

· g ro the application software. 

· - communication sequence which implements the transfer of a byte string is 

istic illustration of what communication software can do. 
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As the example above shows, the communication between the communication 

software systems follows well-defined rules. These rules are called protocols. The need 

to provide convenient communication services for the application software leads to 

software communication protocols, which can be extremely complex and must be 

organized in layers. Each layer offers an improved communication service to the layer 

above. The widely used reference model for Open Systems Interconnection (OSI) 

efined by the International Standard Organization (ISO) proposes seven protocol 

vers /IS07498/. Each layer provides a certain service to the layer above. The service 

ovided by a layer is implemented by the protocol specific to its layer and by the 

services of the layer below. In a host system the services specific to the layer are 

ealized by protocol entities. The layer protocol is defined between protocol entities of 

same layer. These exchange information by using the service of the layer below. In 

h host system there must be at least one entity per layer. The set of entities of 

erent layers in a host system is called a protocol stack. The implementation of these 

ocol stacks is called communication software. Communication software has the 

wing execution properties /DROB86/: 

erleaved execution of several entities on the same system 

ibuted execution of entities of the same layer on different systems. 

Interleaved and distributed computations are usually modeled as systems of 

processes. Processes , executing in parallel normally have to exchange 

illlixmarion if they are to cooperate in solving a common task. One or more processes 

entities. Using or providing a service means exchanging information with 

~ representing entities of the layer below or above. The figure above shows the 

w1-tme of communication software systems based on the ISO/OSI reference model. 

~'"Oil stacks in the different host systems are implemented independently of each 

are embedded in the communication systems. This means that the 

; 5 1 rmanon of a communication system to support communication in a distributed 

-ex:: is nself a distributed program. 
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Figure 2.9: Structure of Communication Software 

1 I echnical Process Control Software Systems 

Another important example of cooperative computing is a distributed technical 

ontrol system. 

The basic structure of technical systems controlled by computer systems is 

the following figure /NEHM84/. 
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Figure 2.10: Structure of Process Control Systems 

The communication between computer systems and technical systems must meet 

d real time requirements, whereas the communication with the user is more or less 

ague-oriented with less emphasis on time conditions ( except in the case emergency 

~ such as fire alarms). For the sake of simplicity, we will focus on the relationship 

reen technical systems and real-time computer systems. 

A technical system consists of several mutually independent functional units 

communicate via appropri~ate interfaces with the computer system. Therefore the 

e program must react to several simultaneous inputs. This implies the structuring 

ess control software system that takes into account a number of processes. 

ess handles a certain group of signals. 

basic requirement for a process control software system is the capability to 

changes of the technical system as fast as possible. The information in the 

ol software must be as close as possible to the state of the technical 

easiest way to achieve this is to design a process for each interface element. 

e software system structure shown in the following figure /NEHM84/. 

23 



>. 

• 

Figure 2.11: Structure of Process Control Software 

Software system processes can run on a single centralized system or can be 

~wuted over several computer systems. In the latter case it is possible to locate the 

CIJll]()Uters close to the device or the plant being controlled. The main advantages of 

61tnl>uted solutions are: 

esponse 

evelopment and maintenance 

egree of fault tolerance 

onic Data Interchange (EDI) is the computer-to-computer exchange of 

company technical and business data, based on the use of standards 

see figure below of the EDI business model). 
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Figure 2.12: EDI Business Model 

These data can be structured or unstructured. Exchanging unstructured data 

follows specific communication standards although the data content is not in a 

structured format. More important is the exchange of structured data. Examples of 

structured data exchange are: 

- Trade Data Interchange 

This type of EDI document exchange is mainly used to automate business 

processes. Examples of trade data interchanges include a request for quotation (RfQ), 

purchase orders, purchase order acknowledgements, etc. Each company and industry 

has its own requirements for the structure and contents of these documents. A number 

of specific industry and national bodies have been formed with the intention of 

standardizing the format and content of messages. For the chemical industry CEFIC is 

the EDI standard and for the auto industry the related EDI standard is called ODETTE. 

The standard defined by CCITT is called EDIF ACT. In order to exchange EDIF ACT 

documents very often the CCITT E-Mail standard X.400 is recommended /HILL90/. 

- Electronic Funds Transfer 

Payment against invoices, electronic point of sale (EPOS) and clearing systems 

are examples of electronic funds transfer. 

- Technical Data Interchange 

Improvement in technical communication can play a key role in determining the 

success of a project. There is a growing demand from traders for communication 

between their CAD ( computer aided design) workstation and the workstations of 

important vendors. 
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Figure 2.13: EDI in a Business Process 

_.4.3 Groupware 

In organizations people work together to reach a common goal. The formal 

eraction between members of an organization is described by structures and 

edures. Additionally there exist informal interactions which are very important. 

types of interactions can and should be supported by computers. Computer 

.3Ul,'P.}Vrted Cooperative Work (CSCW) deals with the study and development of 

uter systems called groupware, which purpose it is to facilitate these formal and 

..&wni~1 interactions. CSCW projects can be classified into four types namely: 

ps which are not geographically distributed and require common access in real 

Examples: presentation software, group decision systems. 

which are geographically distributed and require common access in 

Examples: video conferencing, screen sharing. 
hronous collaboration among people who are geographically distributed. 

F 4,les· notes conferences, joint editing. 
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4. Asynchronous collaboration among people who are not geographically distributed 

Examples: project management, personal time schedule management 

Groupware requires computers connected by a network. Thus groupware 

systems are distributed systems. Members of a group share data and exchange 

messages. Therefore groupware software systems are combinations of network and 

cooperative computing. 

2.5 COMBINATION OF NETWORK COMPUTING AND 
COOPERATIVE COMPUTING 

Cooperative computing can be combined with client server systems. Processes in 

a distributed system can have access to servers. From the standpoint of a client server 

system the processes of a cooperative system can be considered as client processes. In a 

technical process control software system a process can collect data from the technical 

process. This data is stored in a file located on a file server node. The following figure 

shows an example of a combination of a cooperative and a client/server system. Process 

_..\., Process B and Process C form a cooperative software system. Process B and Process 

C use the file server. This means that process B and process C are clients of the file 

server. 

·{~~~~~:;~:~W-:{;f~:(~~{:l~<'.t:~<.,!f~; :~::::*:?.:· 
~::::{>:f~t~?;~:~f~=~·· J~>"w.~%~:f~:?'f~I: 

Figure 2.14: Combination of Cooperative and Client Server System 
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CHAPTER THREE 

ARCHITECTURE OF DBMS 

3.1 TRANSPARENCIES IN A DISTRIBUTED DBMS 

Transparency in a distributed DBMS refers to separation of the higher-level 

semantics of a system from lower-level implementation issues. In other words, a 

transparent system "hides" the implementation details from users. The advantage of a 

fully transparent DBMS is the high level of support that it provides for the development 

of complex applications. It is obvious that we would like to make all DBMSs 

( centralized or distributed) fully transparent. In fact, we have alluded to this under the 

topic of data independence, which is one form of transparency. In the remainder of this 

section we consider the various forms of transparency that a designer aims to provide 

within centralized or distributed DBMS. 

3 .1.1 Data Independence 

Data independence is a fundamental form of transparency that we look for 

within a DBMS. It is also the only type that is important within the context of a 

centralized DBMS. To reiterate the definition given data independence refers to the 

immunity of user applications to changes in the definition and organization of data, and 

vice versa. 

As we will see in Section 4.2, data definition can occur at two levels. At one 

level the logical structure of the data is specified, and at the other level the physical 

structure of the data is defined. The former is commonly known as the schema 

definition, whereas the latter is referred to as the physical data description. We can 

therefore talk about two types of data independence: logical data independence and 

physical data independence. Logical data independence refers to the immunity of user 

applications to changes in the logical structure of the database. In general, if a user 

application operates on a subset of the attributes of a relation, it should not be affected 

ter when new attributes are added to the same relation. For example, let us consider 

e engineer relation discussed. If a user application deals with only the address fields of 

is relation (it might be a simple mailing program), the later additions to the relation of 

1y, skill, would not and should not affect the mailing application. 
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Physical data independence deals with hiding the details of the storage structure 

from user applications. When a user application is written, it should not be concerned 

with the details of physical data organization. The data might be organized on different 

disk types, parts of it might be organized differently (e.g., random versus indexed 

sequential access) or might even be distributed across different storage hierarchies (e.g., 

disk storage and tape storage). The application should not be involved with these issues 

since, conceptually; there is no difference in the operations carried out against the data. 

Therefore, the user application should not need to be modified when data I 

organizational changes occur with respect to these issues. Nevertheless, it is common 

knowledge that these changes may be necessary for performance considerations. 

Of course, data independence is more of a goal than a standard feature commonly 

provided by most of today's DBMSs. Some commercial products provide better data 

independence than others. Specifically, most of the microcomputer DBMSs do not 

provide high levels of data independence. Adding a new attribute to a relation (i.e., 

logical data independence) very often requires unloading the database, changing the 

relation definition, and then reloading the database. 

3.1.2 Network Transparency 

In centralized database systems, the only available resource that needs to be 

shielded from the user is the data (i.e., the storage system). In a distributed database 

management environment, however, there is a second resource that needs to be 

managed in much the same · manner: the network. Preferably, the user should be 

protected from the operational details of the network. Furthermore, it is desirable to hide 

even the existence of the network, if possible. Then there would be no difference 

between database applications that would run on a centralized database and those that 

would run on a distributed database. This type of transparency is referred to as network 

transparency or distribution transparency. One can consider network transparency from 

the viewpoint of either the services provided or the data. From the former perspective, it 

is desirable to have uniform means by which services are accessed. Tb give an example, 

let us talk for the moment not at the database level but at the operating system level in a 

network environment. If we want to copy a file, the command needed should be the 

same whether the file is being copied within one machine or across two machines 

connected by the network. Unfortunately, however, most commercially available 
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operating systems that run on networks do not provide this transparency. For example, 

the UNIXI command for copying in one machine is 
# 

cp <source file> <target file> 

Whereas the same command, if the source and the target files are on different machines, 

takes the form 

rep <machine _ name: source file> <machine _ name :target file> 

Note how it is now necessary to name the machine on which the file resides and 

to use a different operating system command to perform the copy function. If the same 

discussion is carried over to the database level, we would see that different user 

interfaces (i.e., query languages and data manipulation languages) need to be designed 

for both centralized and distributed database environments. Clearly, this is not very 

desirable. 
The example above demonstrates two things: location transparency and naming 

transparency ( or the lack of these). Location transparency refers to the fact that the 

command used is independent of both the location of the data and the system on which 

an operation is carried out. Naming transparency means that a unique name is provided 

for each object in the database. It is obvious that in a system such as the one described 

above, the task of providing unique names for different objects falls on the user rather 

than the system. The way the system handles naming transparency is by requiring the 

user to embed the location name (or an identifier) as part of the object name. 

It is unfortunate that some distributed database systems do indeed embed the 

location names within the name of each database object. Furthermore, they require the 

user to specify the full name for access to the object. Obviously, it is possible to set up 

aliases for these long names if the operating system provides such a facility. However, 

user-defined aliases are not real solutions to the problem in as much as they are attempts 

to avoid addressing them within the distributed DBMS. The system, not the user, should 

be responsible for assigning unique names to objects and for translating user-known 

names to these unique internal object names. 

Besides these semantic considerations, there is also a very pragmatic problem 

associated with embedding location names within object names. Such an approach 

makes it very difficult to move objects across machines for performance optimization or 

other purposes. Every such move will require users to change their access names for the 

affected objects, which is clearly undesirable. 
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3 .1.3 Replication Transparency 

The issue of replicating data within a distributed database is discussed in quite 

some detail in. At this point, let us just mention that for performance, reliability, and 

availability reasons, it is usually desirable to be able to distribute data in a replicated 

fashion across the machines on a network. Such replication helps performance since 

diverse and conflicting user requirements can be more easily accommodated. For 

example, data that is commonly accessed by one user can be placed on that user's local 

machine as well as on the machine of another user with the same access requirements. 

This increases the locality of reference. Furthermore, if one of the machines fail, a copy 

of the data is still available on another machine on the network. Of course, this is a very 

simpleminded description of the situation. In fact, the decision as to whether to replicate 

or not, and how many copies of any database object to have, depends to a considerable 

degree on user applications. Note that replication causes problems in updating 

databases. Therefore, if the user applications are predominantly update oriented, it may 

not be a good idea to have too many copies of the data. As this discussion is the subject 

matter, we will not dwell further here on the pros and cons of replication. 

Assuming that data is replicated, the issue related to transparency that needs to be 

addressed is whether the users should be aware of the existence of copies or whether the 

system should handle the management of copies and the user should act as if there is a 

single copy of the data (note that we are not referring to the placement of copies, only 

their existence). From a user's perspective the answer is obvious. It is preferable not to 

be involved with handling copies and having to specify the fact that a certain action can 

and/or should be taken on multiple copies. From a systems point of view, however, the 

answer is not that simple. 

3 .1.4 Fragmentation Transparency 

The final form of transparency that needs to be addressed within the context of a 

distributed database system is that of fragmentation transparency. We discuss and 

Justify the fact that it is commonly desirable to divide each database relation into 

smaller fragments and treat each fragment as a separate database object (i.e., another 

relation). This is commonly done for reasons of performance, availability, and 

reliability. Furthermore, fragmentation can reduce the negative effects of replication. 
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Each replica is not the full relation but only a subset of it; thus less space is required and 

fewer data items need be managed. 

When database objects are fragmented, we have to deal with the problem of 

handling user queries that were specified on entire relations but now have to be per 

formed on sub relations. In other words, the issue is one of finding a query processing 

strategy based on the fragments rather than the relations, even though the queries are 

specified on the latter. Typically, this requires a translation from what is called a global 

query to severe fragment queries. Since the fundamental issue of dealing with 

fragmentation transparency is one of query processing, we defer the discussion of 

techniques by which this translation can be performed. 

3 .1. 5 Provide Transparency 

It is possible to identify three distinct layers at which the services of 

transparency can be provided. It is quite common to treat these as mutually exclusive 

means of providing the service, although it is more appropriate to view them as 

complementary. 

We could leave the responsibility of providing transparent access to data 

resources to the access layer. The transparency features can be built into the user 

language, which then translates the requested services into required operations. In other 

words, the compiler or the interpreter takes over the task and no transparent service is 

provided to the implementer of the compiler or the interpreter. 

The second layer at which transparency can be provided is the operating system 

level. State-of-the-art operating systems provide some level of transparency to system 

users. For example, the device drivers within the operating system handle the minute 

details of getting each piece of peripheral equipment to do what is requested. The 

typical computer user, or even an application programmer, does not normally write 

device drivers to interact with individual peripheral equipment; that operation is 

transparent to the user. 

Providing transparent access to resources at the operating system level can 

bviously be extended to the distributed environment, where the management of the 
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network resource is taken over by the distributed operating system. This is a good level 

at which to provide network transparency if it can be accomplished. The unfortunate 

aspect is that not all commercially available distributed operating systems provide a 

reasonable level of transparency in network management. 

The third layer at which transparency can be supported is within the DBMS. In 

such a case one might talk about different modes of operation. In database machines, for 

example, the DBMS generally does not expect any transparent service from the 

operating system; in fact, there is no identifiable operating system other than a monitor 

and some device drivers. The DBMS acts as the integrated operating and database 

management system. A more typical environment is the development of a DBMS on a 

general-purpose computer running some operating systems. In this type of environment, 

the transparency and support for database functions provided to the DBMS designers is 

minimal and typically limited to very fundamental operations for performing certain 

tasks. It is the responsibility of the DBMS to make all the necessary translations from 

the operating system to the higher-level user interface. This mode of operation is the 

most common method today. There are, however, various problems associated with 

leaving the task of providing full transparency to the DBMS. These have to do with the 

interaction of the operating system with the distributed DBMS. 

It is therefore quite important to realize that reasonable levels of transparency 

depend on different components within the data management environment. Network 

transparency can easily be handled by the distributed operating system as part of its 

responsibilities for providing replication and fragmentation transparencies. The DBMS 

should! be responsible for providing a high level of data independence together with 

replication and fragmentation transparencies. Finally, the user interface can support a 

higher level of transparency not only in terms of a uniform access method to the data 

resources from within a language, but also in terms of structure constructs that permit 

the user to deal with objects in his or her environment rather than focusing on the details 

of database description. Specifically, it should be noted that the interface to a distributed 

DBMS does not need to be a programming language but can be a graphical user 

interface, a natural language interface, and even a voice system. 

A hierarchy of these transparencies is shown in Figure 3 .1. It is not always easy 

delineate clearly the levels of transparency, but such a figure serves an important 
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instructional purpose even if it is not fully correct. To complete the picture we have 

added a "language transparency" layer, although it is not discussed in this chapter. With 

this generic layer, users have high-level access to the data (e.g., fourth-generation 

languages, graphical user interfaces, natural language access, etc.). 

Figure 3.1: Layers of Transparency 

3.2 DBMS STANDARDIZATION 

In this section we discuss the standardization efforts related to DBMSs because 

of the close relationship between the architecture of a system and the reference model of 

that system, which is developed as a precursor to any standardization activity. For all 

practical purposes, the reference model can be thought of as an idealized architectural 

model of the system. It is defined as "a conceptual framework whose purpose is to 

divide standardization work into manageable pieces, and to show at a general level how 

these pieces are related with each other". Even though there is some controversy as to 

the desirability of standardization of DBMSs, it is a useful activity to the extent that it 

can establish uniform interfaces to the users and to other higher-level software 

developers. A reference model (and therefore system architecture) can be described 

according to three different approaches: 

1. Based on components. The components of the system are defined together 

with the interrelationships between components. Thus a DBMS consists of a number of 

components, each of which provides some functionality. Their orderly and well-defined 

interaction provides total system functionality. This is a desirable approach if the 

ultimate objective is to design and implement the system under consideration. On the 

other hand, it is difficult to determine the functionality of a system by examining its 
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components. The DBMS standard proposals prepared by the Computer Corporation of 

America for the National Bureau of Standards ([CCA, 1980] and [CCA, 1982]) fall 

within this category. 

2. Based on functions. The different classes of users are identified and the 

functions that the system will perform for each class are defined. The system 

specifications within this category typically specify a hierarchical structure for user 

classes. This results in hierarchical system architecture with well-defined interfaces 

between the functionalities of different layers. The advantage of the functional approach 

is the clarity with which the objectives of the system are specified. However, it gives 

very little insight into how these objectives will be attained or the level of complexity of 

the system. 

3. Based on data. The different types of data are identified, and an architectural 

framework is specified which defines the functional units that will realize or use data 

according to these different views. Since data is the central resource that a DBMS 

manages, this approach is claimed to be the preferable choice for standardization 

activities [DAFTG, 1986]. The advantage of the data approach is the central importance 

it associates with the data resource. This is significant from the DBMS viewpoint since 

the fundamental resource that a DBMS manages is data. On the other hand, it is 

impossible to specify an architectural model fully unless the functional modules are also 

described. The ANSI/SP ARC discussed in the next section belongs in this category. 

Even though three distinct approaches are identified, one should never lose sight 

of the interplay among them. As indicated in a report of the Database Architecture 

Framework "Task Group of ANSI [DAFTG, 1986], all three approaches need to be used 

together to define an architectural model, with each point of view serving to focus our 

attention on different aspects of an architectural model. 

3.3 ANSI I SP ARC ARCHITECTURE 

Two important events in the late 1960s and early 1970s influenced the 

standardization activities in database management. The Database Task Group (DBTG) 

of the C of DASYL Systems Committee issued two reports, one providing a survey of 

DBMSIB, and the second describing the features of a network DBMS. The second 
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event is the publication of Cod's initial papers on the relational data model. The 

existence of two alternative data models competing for dominance created considerable 

discussion not only of the merits of each, but also of the features of the next generation 

DBMSs. 

In late 1972, the Computer and Information Processing Committee (X3) of the 

American National Standards Institute (ANSI) established a Study Group on Database 

Management Systems under the auspices of its Standards Planning and Requirements 

Committee (SPARC). The mission of the study group was to study the feasibility of 

setting up standards in this area, as well as determining which aspects should be 

standardized if it was feasible. The study group issued its interim report in 1975 and its 

final report in 1977. The architectural framework proposed in these reports came to be 

known as the 'ANSI/SP ARC architecture, 11 its full title being 'ANSI/X3/SP ARC DBMS 

Framework. 11 The study group proposed that the interfaces be standardized, and defined 

an architectural framework that contained 43 interfaces, 14 of which would deal with 

the physical storage subsystem of the computer and therefore not be considered 

essential parts of the DBMS architecture. 

One of alternative approaches to standardization, the ANSI/SP ARC architecture 

is claimed, to be based on the data organization. It recognizes three views of data: the 

external view, which is that of the user, who might be a programmer; the internal view, 

that of the system or machine; and the conceptual view, that of the enterprise. For each 

of these views, an appropriate schema definition is required. Figure 3 .2 depicts the 

ANSI/SP ARC architecture from the data organization perspective. 

At the lowest level of the architecture is the internal view, which deals with the 

physical definition and organization of data. The location of data on different storage 

devices and the access mechanisms used to reach and manipulate data are the issues 

dealt with at this level. At the other extreme is the external view, which is concerned 

with how users view the database. An individual user's view represents the portion of 

the database that will be accessed by that user as well as the relationships that the user 

would like to see among the data. A view can be shared among a number of users, with 

the collection of user views making up the external schema. In between these two 

extremes is the conceptual schema, which is an abstract definition of the database. It 
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the "real world" view of the enterprise being modeled in the database. As such, it is 

supposed to represent the data and the relationships among data without considering the 

requirements of individual applications or the restrictions of the physical storage media. 

In reality, however, it is not possible to ignore these requirements completely, due to 

performance reasons. 
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Figure 3.2: The ANSI/SP ARC Architecture 

These three levels is accomplished by mappings that specify how a definition at 
one can be obtained from a definition at another level. 

Example: 

Let us consider the engineering database example we have been using and 

indicate how it can be described using a fictitious DBMS that conforms to the 

ANSI/SP ARC architecture. Remember that we have four relations: E, S, J, and G. The 

conceptual schema should describe each relation with respect to its attributes and its 

key. The description might look like the following: 2 

RELATION EMPLOYEE [ 

KEY= {EMPLOYEE_NUMBER} 

ATTRIBUTES = { 

EMPLOYEE_ NUMBER: CHARACTER (9) 

EMPLOYEE NAME : CHARACTER(l5) 

TITLE : CHARACTER (10) 

} 

] 

RELATION TITLE.SALARY [ 
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KEY= {TITLE} 
ATTRIBUTES = { 
TITLE 
SALARY 
} 
] 
RELATION PROJECT [ 
KEY= {PROJECT.NUMBER} 
ATTRIBUTES = { 
PROJECT.NUMBER 
PROJECT NAME 
BUDGET 
} 

: CHARACTER (10) 
: NUMERIC (6) 

: CHARACTER (7) 
: CHARACTER (20) 

: NUMERIC (7) 

RELATION ASSIGN1\1ENT [ 
KEY= {EMPLOYEE_ NUMBER, PROJECT _NUMBER} 
ATTRIBUTES = { 
EMPLOYEE_ NUMBER: CHARACTER (9) 
PROJECT.NUMBER : CHARACTER (7) 
RESPONSIBILITY : CHARACTER (IO) 
DURATION : NUMERIC (3) 
} 
] 

We used more descriptive names for the relations and the attributes. This is not 

the essential issue; a more important aspect is that these names can be different at all 

three levels, as we demonstrate below. 

At the internal level, the storage details of these relations are described. Let us 

assume that the EMPLOYEE relation is stored in an indexed file, where the index is 

defined on the key attribute (i.e., the EMPLOYEE-NUMBER) called EMINX.3 Let us 

also assume that we associate a HEADER field, which might contain flags ( delete, 

update, etc.) and other control information. Then the internal schema definition of the 

relation may be as follows: 

INTERNAL_ REL EMP [ 

INDEX 

FIELD= { 

E# 

E:NAME 

TIT 

} 

] 

ONE# CALL EMINX 

: BYTE(9) 

: BYTE(15) 

: BYTE (10) 
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We have used similar syntaxes for both the conceptual and the internal 

descriptions. This is done for convenience only and does not imply the true nature of 

languages for these functions. 

Finally, let us consider the external views, which we will describe using SQL 

notation. We consider two applications: one that calculates the payroll payments for 

engineers, and a second that produces a report on the budget of each project.4 Notice 

that for the first application, we need attributes from both the EMPLOYEE and the 

TITLE-SALARY relations. In other words, the view consists of a join, which can be 

defined as 
CREATE VIEW PAYROLL (ENO, ENAME, SAL) 

AS SELECT EMPLOYEE.EMPLOYEE_ NUMBER, 

EMPLOYEE. EMPLOYEE_NAME, 

TITLE SALARY.SALARY 

FROM EMPLOYEE, TITLE_ SALARY 

WHERE EMPLOYEE.TITLE=TITLE SALARY.TITLE 

The second application is simply a projection of the PROJECT relation, which 

can be specified as, 
CREATE VIEW BUDGET (PNAME, BUD) 

AS SELECT PROJECT.NAME, BUDGET 

FROM PROJECT 

The investigation of the ANSI/SP ARC architecture with respect to its functions 

results in a considerably more complicated view, the square boxes represent processing 

functions, whereas the hexagons are administrative roles. The arrows indicate data, 

command, program, and description flow, whereas the "I" shaped bars on them 

represent interfaces. 

The major component that permits mapping between different data 

organizational views is the data dictionary/directory (depicted as a triangle), which is a 

meta database. It should at least contain schema and mapping definitions. It may also 

contain usage statistics, access control information, and the like. It is clearly seen that 

the data dictionary/directory serves as the central component in both processing 

different schemas and in providing mappings among them. 
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In addition to these three classes of administrative user defined by the roles, 

there are two more, the application programmer and the system programmer. Two more 

user classes can be defined, namely casual users and novice end users. Casual users 

occasionally access the database to retrieve and possibly to update information. Such 

users are aided by the definition of external schemas and by an easy-to-use query 

language. Novice users typically have no knowledge of databases and access 

information by means of predefined menus and transactions (e.g., banking machines). 

Figure 3.3: Partial Schematic of the ANSI/SPARC Architectural Model 
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3.4 ARCHITECTURAL MODELS FOR DISTRIBUTED DBMSS 

The intuitive and logical nature of the ANSI/SP ARC architecture has prompted 

many researchers to investigate ways of extending it to the distributed environment. The 

proposals range from simple extensions, such as that described by [Mohan and Yeh, 

1978], to very complicated ones, such as Schreiber's model [Schreiber, 1977], and 

anything in between. In this book we use a simple extension of the ANSI/SP ARC 

architecture. 
Before discussing the specific architecture, however, we need to discuss the 

possible ways in which multiple databases may be put together for sharing by multiple 

DBMSs. We use a classification that organizes the systems as characterized with respect 

to (1) the autonomy oflocal systems, (2) their distribution, and (3) their heterogeneity. 
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Figure 3.4 : DBMS Implementation Alternatives 

Autonomy refers to the distribution of control, not of data. It indicates the degree 

to which individual DBMSs can operate independently. Autonomy is a function of a 

number of factors such as whether the component systems exchange information, 

whether they can independently execute transactions, and whether one is allowed to 

modify them. Requirements of an autonomous system have been specified in a variety 

of ways. For example, lists these requirements as follows: 
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1. The local operations of the individual DBMSs are not affected by their 

participation in the multi database system. 
2. The manner in which the individual DBMSs process queries and optimize 

them should not be affected by the execution of global queries that access multiple 

databases. 
3. System consistency or operation should not be compromised when individual 

DBMSs join or leave the multi-database confederation. 
On the other hand, [Du and Elmagarmid, 1989] specifies the dimensions of 

autonomy as: 
1. Design autonomy: Individual DBMSs are free to use the data models and 

transaction management techniques that they prefer. 
2. Communication autonomy: Each of the individual DBMSs is free to make its 

own decision as to what type of information it wants to provide to the other DBMSs or 

to the software that controls their global execution. 
3. Execution autonomy: Each DBMS can execute the transactions that are 

submitted to it in any way that it wants to. 
In the taxonomy that we consider in the book, we will use a classification that 

covers the important aspects of these features. One alternative is tight integration where 

a single-image of the entire database is available to any user who wants to share the 

information, which may reside in multiple databases. From the users' perspective, the 

data is logically centralized in one database. In these tightly integrated systems, the data 

managers are implemented so that one of them is in control of the processing of each 

user request even if that request is serviced by more than one data manager. The data 

managers do not typically operate as independent DBMSs even though they usually 

have the functionality to do so. 
Next we identify semiautonomous systems that consist of DBMSs that can ( and 

usually do) operate independently, but have decided to participate in a federation to 

make their local data sharable. Each of these DBMSs determines what parts of their 

own database they will make accessible to users of other DBMSs. They are not fully 

autonomous systems because they need to be modified to enable them to exchange 

information with one another. 
The last alternative that we consider is total isolation where the individual 

systems are stand-alone DBMSs, which know neither of the existence of other DBMSs 

nor how to communicate with them. In such systems, the processing of user transactions 
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that access multiple databases is especially difficult since there is no global control over 

the execution of individual DBMSs. 
Whereas autonomy refers to the distribution of control, the distribution 

dimension of the taxonomy deals with data. We consider two cases, namely, either the 

data is physically distributed over multiple sites that communicate with each other over 

some form of communication medium or it is stored at only one site. 
Heterogeneity may occur in various forms in distributed systems, ranging from 

hardware heterogeneity and differences in networking protocols to variations in data 

managers. The important ones from the perspective of this book relate to data models, 

query languages, and transaction management protocols. Representing data with 

different modeling tools creates heterogeneity because of the inherent expressive 

powers and limitations of individual data models. Heterogeneity in query languages not 

only involves the use of completely different data access paradigms in different data 

models (set-at-a-time access in relational systems versus record-at-a-time access in 

network and hierarchical systems), but also covers differences in languages even when 

the individual systems use the same data model. Different query languages that use the 

same data model often select very different methods for expressing identical requests 

(e.g., DB2 uses SQL, while INGRES uses QUEL).6 
Let us consider the architectural alternatives starting at the origin in Figure 3. 4 

and moving along the autonomy dimension. The first classes of systems are those which 

are logically integrated. Such systems can be given the generic name composite 

systems. If there is no distribution or heterogeneity, the system is a set of multiple 

DBMSs that are logically integrated. There are not many examples of such systems, but 

they may be suitable for shared-everything multiprocessor systems. If heterogeneity is 

introduced, one has multiple data managers that are heterogeneous but provide an 

integrated view to the user. In the past, some work was done in this class where systems 

were designed to provide integrated access to network, hierarchical, and relational 

databases residing on a single machine. The more interesting case is where the database 

is distributed even though an integrated view of the data is provided to users. 

Next in the autonomy dimension are semiautonomous systems, which are 

commonly, termed federated DBMS. As specified before, the component systems in a 

federated environment have significant autonomy in their execution, but their 

participation in a federation indicate that they are willing to cooperate with others in 

executing user requests that access multiple databases. Similar to logically integrated 
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systems discussed above, federated systems can be distributed or single-site, 

homogeneous or heterogeneous. 

If we move to full autonomy, we get what we call the class of multi database 

system (MDBS) architectures. Without heterogeneity or distribution, an MDBS is an 

interconnected collection of autonomous databases. A multi database management 

system (multi-DBMS) is the software that provides for the management of this 

collection of autonomous databases and transparent access to it. If the individual 

databases that make up the MDBS are distributed over a number of sites, we have a 

distributed MDBS. The organization of a distributed MDBS as well as its management 

is quite different from that of a distributed DBMS. We discuss this issue in more detail 

in the upcoming sections. At this point it suffices to point out that the fundamental 

difference is one of the levels of autonomy of the local data managers. Centralized or 

distributed multi database systems can be homogeneous or heterogeneous. 

The fundamental point of the foregoing discussion is that the distribution of 

databases, their possible heterogeneity, and their autonomy are orthogonal issues. Since 

our concern in this book is on distributed systems, it is more important to note the 

orthogonal between autonomy and heterogeneity. Thus it is possible to have 

autonomous distributed databases that are not heterogeneous. In that sense, the more 

important issue is the autonomy of the databases rather than their heterogeneity. In other 

words, if the issues related to the design of a distributed multi database are resolved, 

introducing heterogeneity may not involve significant additional difficulty. This, of 

course, is true only from the perspective of database management; there may still be 

significant heterogeneity problems from the perspective of the operating system and the 

underlying hardware. 

It is fair to claim that the fundamental issues related to multi database systems 

can be investigated without reference to their distribution. The additional considerations 

that distribution brings, in this case, are no different from those of logically integrated 

distributed database systems. Therefore, in this chapter we consider architectural 

models of logically integrated distributed DBMSs and multi database systems. 

3 .4.1 Distributed DBMS Architecture 

Let us start the description of the architecture by looking at the data 

organizational view. We first note that the physical data organization on each machine 

may be, and probably is, different. This means that there needs to be an individual 
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internal schema definition at each site, which we call the local internal schema (LIS). 

The enterprise view of the data is described by the global conceptual schema (GCS), 

which is global because it describes the logical structure of the data at all the sites. 

This architecture model, depicted in Figure 3.5, provides the levels of 

transparency discussed. Data independence is supported since the model is an extension 

of ANSI/SP ARC, which provides such independence naturally. Location and replication 

transparencies are supported by the definition of the local and global conceptual 

schemas and the mapping in between. Network transparency, on the other hand, is 

supported by the definition of the global conceptual schema. The user queries data 

irrespective of its location or of which local component of the distributed database 

system will service it. As mentioned before, the distributed DBMS translates global 

queries into a group of local queries, which are executed by distributed DBMS 

components at different sites that communicate with one another. 

LJS1 us: 
2 

Figure 3.5: Distributed Database Reference Architecture 

One component handles the interaction with users, and another deals with the 

storage. The first major component, which we call the user processor, consists of four 

elements: 
1. The user interface handler is responsible for interpreting user commands as 

they come in, and formatting the result data as it is sent to the user. 

2. The semantic data controller uses the integrity constraints and authorizations 

that are defined as part of the global conceptual schema to check if the user query can 

be processed. 
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Figure 3.6: Functional Schematic of an Integrated Distributed DBMS 
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Figure 3. 7: Components of a Distributed DBMS 

3. The global query optimizer and decomposer determine an execution strategy to 

minimize a cost function, and translate the global queries into local ones using the 

global and local conceptual schemas as well as the global directory/dictionary. The 

global query optimizer is responsible, among other things, for generating the best 

strategy to execute distributed join operations. 
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4. The distributed execution monitor coordinates the distributed execution of the 

user request. The execution monitor is also called the distributed transaction manager. 

In executing queries in a distributed fashion, the execution monitors at various sites 

may, and usually do, communicate with one another. 

The second major component of a distributed DBMS is the data processor and 

consists of three elements: 

1. The local query optimizer, which actually acts as the access path selector, is 

responsible for choosing the best access path7 to access any data item. 

2. The local recovery manager is responsible for making sure that the local 

database remains consistent even when failures occur. 

3. The run-time support processor physically accesses the database according to 

the physical commands in the schedule generated by the query optimizer. The run-time 

support processor is the interface to the operating system and contains the database 

buffer ( or cache) manager, which is responsible for maintaining the main memory 

buffers and managing the data accesses. 

3.4.2 MDBS Architecture 

The differences in the level of autonomy between the distributed multi DBMSs 

and distributed DBMSs are also reflected in their architectural models. The fundamental 

difference relates to the definition of the global conceptual schema. In the case of 

logically integrated distributed DBMSs, the global conceptual schema defines the 

conceptual view of the entire database, while in the case of distributed multi-DBMSs, it 

represents only the collection of some of the local databases that each local DBMS 

wants to share. Thus the definition of a global database is different in MDBSs than in 

distributed DBMSs. In the latter, the global database is equal to the union of local 

databases, whereas in the former it is only a subset of the same union. There are even 

arguments as to whether the global conceptual schema should even exist in multi 

database systems. This question forms the basis of our architectural discussions in this 

section. 

Models using a global conceptual schema: In a MDBS, the GCS is defined by 

integrating either the external schemas of local autonomous databases or parts of their 

local conceptual schemas. Furthermore, users of a local DBMS define their own views 

on the local database and do not need to change their applications if they do not want to 

access data from another database. This is again an issue of autonomy. 
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Designing the global conceptual schema in multi database systems involves the 

integration of either the local global conceptual schemas or the local external schemas. 

A major difference between the design of the GCS in multi-DBMSs and in logically 

integrated distributed DBMSs is that in the former the mapping is from local conceptual 

schemas to a global schema. In the latter, however, mapping is in the reverse 
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Figure 3.8: MDBS Architecture with a GCS 

Direction: This is because the design in the former is usually a bottom-up process, 

whereas in the latter it is usually a top-down procedure. Further more, if heterogeneity 

exists in the multi database system, a canonical data model has to be found to define the 

GCS. 

Once the GCS has been designed, views over the global schema can be defined 

for users who require global access. It is not necessary for the GES and GCS to be 

defined using the same data model and language; whether they do or not determines 

whether the system is homogeneous or heterogeneous. 

If heterogeneity exists in the system, then two implementation alternatives exist: 

anilingual and multilingual. An anilingual multi-DBMS requires the users to utilize 

possibly different data models and languages when both a local database and the global 

database are accessed. The identifying characteristic of anilingual systems is that any 

application that accesses data from multiple databases must do so by means of an 

external view that is defined on the global conceptual schema. This means that the user 

of the global database is effectively a different user than those who access only a local 
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database, utilizing a different data model and a different data language. Thus, one 

application may have a local external schema (LES) defined on the local conceptual 

schema as well as a global external schema (GES) defined on the global conceptual 

schema. The different external view definitions may require the use of different access 

languages. Figure 3. 8 actually depicts the data logical model of a anilingual database 

system that integrates the local conceptual schemas ( or parts of them) into a global 

conceptual schema. Examples of such an architecture are the MUL TIBASE system 

([Landers and Rosenberg, 1982] and [Smith et al., 1981]) Mermaid [Templeton et al., 

1987] and DDTS. 

An alternative is multilingual architecture, where the basic philosophy is to 

permit each user to access the global database (i.e., data from other databases) by means 

of an external schema, defined using the language of the user's local DBMS. The GCS 

definition is quite similar in the multilingual architecture and the anilingual approach, 

the major difference being the definition of the external schemas, which are described in 

the language of the external schemas of the local database. Assuming that the definition 

is purely local, a query issued according to a particular schema is handled exactly as any 

query in the centralized DBMSs. Queries against the global database are made using the 

language of the local DBMS, but they generally require some processing to be mapped 

to the global conceptual schema. 

The multilingual approach obviously makes querying the databases easier from 

the user's perspective. However, it is more complicated because we must deal 

translation of queries at run time. The multilingual approach is used in Sirius-Delta and 

in the HD-DBMS project. 

Models without a global conceptual schema: The existence of a global 

conceptual schema in a multi database system is a controversial issue. There are re-B 

searchers who even define a multi database management system as one that manages 

several databases without a global schema. It is argued that the absence of a GCS is a 

significant advantage of multi database systems over distributed database systems. One 

prototype system that has used this architectural model is the MRDSM project. 

Identifies two layers: The local system layer and the multi database layer on top of it. 

The local system layer consists of a number of DBMSs, which present to the multi 

database layer the part of their local database they are willing to share with users of 

other databases. This shared data is presented either as the actual local conceptual 
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schema or as a local external schema definition. If heterogeneity is involved, each of 

these schemas, LCSi, may use a different data model. 
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Figure 3.9: :MOBS Architecture without a GCS 

Above this layer, external views are constructed where each view may be 

defined on one local conceptual schema or on multiple conceptual schemas. Thus the 

responsibility of providing access to multiple ( and maybe heterogeneous) databases is 

delegated to the mapping between the external schemas and the local conceptual 

schemas. This is fundamentally different from architectural models that use a global 

conceptual schema, where this responsibility is taken over by the mapping between the 

global conceptual schema and the local ones. This shift in responsibility has a practical 

consequence. Access to multiple databases is provided by means of a powerful language 

in which user applications are written. 

Federated database architectures, which we discussed briefly, do not use a global 

conceptual schema either. In the specific system described in, each local DBMS defines 

an export schema, which describes the data it is willing to share with others. In the 

terminology that we have been using, the global database is the union of all the export 

schemas. 

The component-based architectural model of a multi-DBMS is significantly 

different from a distributed DBMS. The fundamental difference is the existence of full 

fledged DBMSs, each of which manages a different database. The :MOBS provides a 

layer of software that runs on top of these individual DBMSs and provides users with 

the facilities of accessing various databases. Depending on the existence ( or lack) of the 

global conceptual schema or the existence of heterogeneity (or lack of it), the contents 
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non distributed multi-DBMS. If the system is distributed, we would need ~~jepli£f!.!~}R~({ ~ · 

is simply another application that submits requests and receives answers. 

3.5 GLOBAL DIRECTORY ISSUES 

The discussion of the global directory issues is relevant only if one talks about a 

distributed DBMS or a multi-DBMS that uses a global conceptual schema. Otherwise, 

there is no concept of a global directory. If it exists, the global directory is an extension 

of the dictionary as described in the ANSI/SP ARC report. It includes information about 

the location of the fragments as well as the makeup of the fragments. 

As stated earlier, the directory is itself a database that contains meta-data about 

the actual data stored in the database. Therefore, the techniques with respect to 

distributed database design also apply to directory management. Briefly, a directory 

may be either global to the entire database or local to each site. In other words, there 

might be a single directory containing information about all the data in the database, or 

a number of directories, each containing the information stored at one site. In the latter 

case, we might either build hierarchies of directories to facilitate searches, or implement 

a distributed search strategy that involves considerable communication among the sites 

holding the directories. 

The second issue has to do with location. The directory may be maintained 

centrally at one site or in a distributed fashion by distributing it over a number of sites. 

Keeping the directory at one site might increase the load at that site, thereby 

causing a bottleneck as well as increasing message traffic around that. site. Distributing 

it over a number of sites, on the other hand, increases the complexity of managing 

directories. In the case of multi-DBMSs, the choice is dependent on whether or not the 

system is distributed. If it is, the directory is always distributed; otherwise of course, it 

is maintained centrally. 

The final issue is replication. There may be a single copy of the directory or 

multiple copies. Multiple copies would provide more reliability, since the probability of 

reaching one copy of the directory would be higher. Furthermore, the delays in 

accessing the directory would be lower, due to less contention and the relative 
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proximity I of the directory copies. On the other hand, keeping the directory up to date 

would be considerably more difficult, since multiple copies would need to be updated. 
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Figure 3.10:Components of an :MDBS 
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Therefore, the choice should depend on the environment in which the system operates 

and should be made by balancing such factors as the response-time requirements, the 

size of the directory, the machine capacities at the sites, the reliability requirements, and 

the volatility of the directory (i.e., the amount of change experienced by the database, 

which would cause a change to the directory). Of course, these choices are valid only in 

the case of a distributed DBMS. A non distributed multi-DBMS always maintains a 

single copy of the directory, while a distributed one typically maintains multiple copies, 

one at each site. 

These three dimensions are orthogonal to one another. Even though some 

combinations may not be realistic, a large number of them are. In Figure 3 .11 we have 

designated the unrealistic combinations by a question mark. Note that the choice of an 

appropriate directory management scheme should also depend on the query processing 

and the transaction management techniques that will be used in subsequent chapters. 

We will come back to this issue again. 
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Figure 3.11: Alternative Directory Management Strategies 

54 



• 

CHAPTER FOUR 

DISTRIBUTED DATABASE DESIGN 

The design of a distributed computer system involves making decisions on the 

placement of data and programs across the sites of a computer network, as well as 

possibly designing the network itself. In the case of distributed DBMSs, the distribution 

of applications involves two things: the distribution of the distributed DBMS software 

and the distribution of the application programs that run on it. The former is not a 

significant problem, since we assume that a copy of the distributed DBMS software 

exists at each site where data is stored. In this chapter we do not concern ourselves with 

application program placement either. Furthermore, we assume that the network has 

already been designed, or will be designed at a later stage, according to the decisions 

related to the distributed database design. We concentrate on distribution of data. It has 

been suggested that the organization of distributed systems can be investigated along 

three orthogonal dimensions [Levin and Morgan, 1975]: 

1. Level of sharing 

2. Behavior of access patterns 

3. Level of knowledge on access pattern behavior 
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Figure 4.1: Framework of Distribution 
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Figure 4.1 depicts the alternatives along these dimensions. In terms of the level 

of sharing, there are possibilities. First, there is no sharing: each application and its data 

execute at one site, and there is no communication with any other program or access to 

any data file at other sites. This characterizes the very early days of networking and is 

probably not very common today. We then find the level of data sharing; all the 

programs are replicated at all the sites, but data files are not. Accordingly, user requests 

are handled at the site where they originate and the necessary data files are moved 

around the network. Finally, in data-plus-program sharing, both data and programs may 

be shared, meaning that a program at a given site can request a service from another 

program at a second site, which, in turn, may have to access a data file located at a third 

site. 

Levin and Morgan draw a distinction between data sharing and data-plus 

program sharing to illustrate the differences between homogeneous and heterogeneous 

distributed computer systems. They indicate, correctly, that in a heterogeneous 

environment it is usually very difficult, if not impossible, to execute a given program on 

different hardware under a different operating system. It might, however, be possible to 

move data around relatively easily. 

Along the second dimension of access pattern behavior, it is possible to identify 

two alternatives. The access patterns of user requests may be static, so that they do not 

change over time, or dynamic. It is obviously considerably easier to plan for and 

manage the static environments than would be the case for dynamic distributed systems. 

Unfortunately, it is difficult to find many real-life distributed applications that would be 

classified as static. The significant question, then, is not whether a system is static or 

dynamic, but how dynamic it is. Incidentally, it is along this dimension that the 

relationship between the distributed database design and query processing is 

established. 

The third dimension of classification is the level of knowledge about the access 

pattern behavior. One possibility, of course, is that the designers do not have any 

information about how users will access the database. This is a theoretical possibility, 

but it is very difficult, if not impossible, to design a distributed DBMS that can 

effectively cope with this situation. The more practical alternatives are that the 
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designers have complete information, where the access patterns can reasonably be 

predicted and do not deviate significantly from these predictions, and partial 

information, where there are deviations from the predictions. 

The distributed database design problem should be considered within this 

general framework. In all the cases discussed, except in the no-sharing alternative, new 

problems are introduced in the distributed environments which are not relevant in a 

centralized setting. In this chapter it is our objective to focus on these unique problems. 

The outline of this chapter is as follows. In Section 4.1 we discuss briefly two 

approaches to distributed database design: the top-down and the bottom-up design 

strategies. The details of the top-down approach are given in Sections 4.3 and 4.4, while 

the details of the bottom-up approach are postponed to another chapter. Prior to the 

discussion of these alternatives, in Section 4.2 we present the issues in distribution 

design. 

4.1 ALTERNATIVE DESIGN STRATEGIES 

Two major strategies that have been identified [Ceri et al., 1987] for designing 

distributed databases are the top-down approach and the bottom-up approach. As the 

names indicate, they constitute very different approaches to the design process. But as 

any software designer knows, real applications are rarely simple enough to fit nicely in 

either of these alternatives. It is therefore important to keep in mind that in most 

database designs, the two approaches may need to be applied to complement one 

another. 

4.1.1 Top-Down Design Process 

A framework for this process is shown in Figure 4.2. The activity begins with a 

requirements analysis that defines the environment of the system and "elicits both the 

data and processing needs of all potential database users" [Yao et al., 1982a]. The 

requirements study also specifies where the final system is expected to stand with 

respect to the objectives of a distributed DBMS as identified in Section 1.3. Tb 

reiterates, these objectives are defined with respect to performance, reliability and 

availability, economics, and expandability (flexibility). 
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The requirements document is input to two parallel activities: view design and 

conceptual design. The view design activity deals with defining the interfaces for end 

users. The conceptual design, on the other hand, is the process by which the enterprise 

is examined to determine entity types and relationships among these entities. One can 

possibly divide this process into two related activity groups [Davenport, 1981]: entity 

analysis and functional analysis. Entity analysis is concerned with determining the 

entities, their attributes, and the relationships among them. Functional analysis, on the 

other hand, is concerned with determining the fundamental functions with which the 

modeled enterprise is involved. The results of these two steps need to be cross 

referenced to get a better understanding of which functions deal with which entities. 

There is a relationship between the conceptual design and the view design. In 

one sense, the conceptual design can be interpreted as being an integration of user 

views. Even though this view integration activity is very important, the conceptual 

model should support not only the existing applications, but also future applications. 

View integration should be used to ensure that entity and relationship requirements for 

all the views are covered in the conceptual schema. 

In conceptual design and view design activities the user needs to specify the data 

entities and must determine the applications that will run on the database as well as 

statistical information about these applications. Statistical information includes the 

specification of the frequency of user applications, the volume of various information , 

and the like. Note that from the conceptual design step come the definition of global 

conceptual schema discussed in Section 4.3. We have not yet considered the 

implications of the distributed environment; in fact, up to this point, the process is 

identical to that in a centralized database design. 

The global conceptual schema (GCS) and access pattern information 

collected as a result of view .design are inputs to the distribution design step. The 

objective at this stage, which is the focus of this chapter, is to design the local 

conceptual schemas (LCSs) by distributing the entities over the sites of the distributed 

system. It is possible, of course, to treat each entity as a unit of distribution. Given that 

we use the relational model as the basis of discussion in this book, the entities 

correspond to relations. 
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Figure 4.2: Top-Down Design process 

Rather than distributing relations, it is quite common to divide them into 

sub relations, called fragments, which are then distributed. Thus the distribution design 

activity consists of two steps: fragmentation and allocation. These are the major issues 

that are treated in this chapter, so we delay discussing them until later sections. 

The last step in the design process is the physical design, which maps the local 

conceptual schemas to the physical storage devices available at the corresponding sites. 

The inputs to this process are the local conceptual schema and access pattern 

information about the fragments in these. 
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It is well known that the design and development activity of any kind is an 

ongoing process requiring constant monitoring and periodic adjustment and tuning. We 

have therefore included observation and monitoring as a major activity in this process. 

Note that one does not monitor only the behavior of the database implementation but 

also the suitability of user views. The result is some form of feedback, which may result 

in backing up to one of the earlier steps in the design. 

4.1.2 Bottom-Up Design Process 

Top-down design is a suitable approach when a database system is being 

designed from scratch. Commonly, however, a number of databases already exist, and 

the design task involves integrating them into one database. The bottom-up approach is 

suitable for this type of environment. The starting point of bottom-up design is the 

individual local conceptual schemas. The process consists of integrating local schemas 

into the global conceptual schema. 

4.2 DISTRIBUTION DESIGN ISSUES 

In the preceding section we indicated that the relations in a database schema are 

usually decomposed into smaller fragments, but we did not offer any justification or 

details for this process. The objective ofthis section is to fill in these details. 

The following set of interrelated questions covers the entire issue. We will there 

fore seek to answer them in the remainder of this section. 

• Why fragment at all? 

• How should we fragment? 

• How much should we fragment? 

• Is there any way to test the correctness of decomposition? 

• How should we allocate? 

• What is the necessary information for fragmentation and allocation? 

4.2.1 Reasons for Fragmentation 

From a data distribution viewpoint, there is really no reason to fragment data. 

After all, in distributed file systems, the distribution is performed on the basis of 
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enfolds. In fact, the earlier work dealt specifically with the allocation of files to nodes 

on a computer network. 

With respect to fragmentation, the important issue is the appropriate unit of 

distribution. A relation is not a suitable unit, for a number of reasons. First, application 

views are usually subsets of relations. Therefore, the locality of accesses of applications 

is defined not on entire relations but on their subsets. Hence it is only natural to consider 

subsets of relations as distribution units. 

Second, if the applications that have views defined on a given relation reside at 

different sites, two alternatives can be followed, with the entire relation being the unit of 

distribution. Either the relation is not replicated and is stored at only one site, or it is 

replicated at all or some of the sites where the applications reside. The former results in 

an unnecessarily high volume of remote data accesses . The latter, on the other hand, 

has unnecessary replication, which causes problems in executing updates ( to be 

discussed later) and may not be desirable if storage is limited. 

Finally, the decomposition of a relation into fragments, each being treated as a 

unit, permits a number of transactions to execute concurrently. In addition, the 

fragmentation of relations typically results in the parallel execution of a single query by 

dividing it into a set of sub queries that operate on fragments. Thus fragmentation 

typically increases the level of concurrency and therefore the system throughput. 

For the sake of completeness, we should also indicate the disadvantages of 

fragmentation. If the applications have conflicting requirements which prevent 

decomposition of the relation into mutually exclusive fragments, those applications 

whose views are defined on more than. one fragment may suffer performance 

degradation. It might, for example, be necessary to retrieve data from two fragments 

and then take either their union or their join, which is costly. Avoiding this is a 

fundamental fragmentation issue. 

The second problem is related to semantic data control, specifically to integrity 

checking. As a result of fragmentation, attributes participating in a dependency ma 

decomposed into different fragments which might be allocated to different sites. In- ... - 
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case, even the simpler task of checking for dependencies would result in chasing after 

data in a number of sites 

4.2.2 Fragmentation Alternatives 

Relation instances are essentially tables, so the issue is one of finding alternative 

ways of dividing a table into smaller ones. There are clearly two alternatives for this: 

dividing it horizontally or dividing it vertically. 

Example 4.1 
Figure 4.5 shows the J relation of Figure 4.3 partitioned vertically into two sub 

relations, J 1 and h J 1 contains only the information about project budgets, whereas J2 

contains project names and locations. It is important to notice that the key to the relation 

(JNO) is included in both fragments. 

The fragmentation may, of course, be nested. If the nestlings are of different 

types, one gets hybrid fragmentation. Even though we do not treat hybrid fragmentation 

as a primitive type of fragmentation strategies, it is quite obvious that many real-life 

partitioning may be hybrid. 
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Figure 4.5: Example of Vertical Partitioning 

4.2.3 Degree of Fragmentation 

The extent to which the database should be fragmented is an important decision 

that affects the performance of query execution. In fact, the issues in Section 4.2.1 

concerning the reasons for fragmentation constitute a subset of the answers to the 

question we are addressing here. The degree of fragmentation goes from one extreme, 

that is, not to fragment at all, to the other extreme, to fragment to the level of individual 

topples (in the case of horizontal fragmentation) or to the level of individual attributes 

(in the case of vertical fragmentation). 

We have already addressed the adverse effects of very large and very small units 

of fragmentation. What we need, then, is to find a suitable level of fragmentation which 

is a compromise between the two extremes. Such a level can only be defined with 

respect to the applications that will run on the database. The issue is, how? In general, 
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the applications need to be characterized with respect to a number of parameters. 

According to the values of these parameters, individual fragments can be identified. 

4.2.4 Correctness Rules of Fragmentation 

It is important to note the similarity between the fragmentation of data for 

distribution (specifically, vertical fragmentation) and the normalization of relations. 

Thus fragmentation rules similar to the normalization principles can be defined. 

We will enforce the following three rules during fragmentation, which, together. 

ensure that the database does not undergo semantic change during fragmentation. 

1. Completeness: If a relation instance R is decomposed into fragments RI, R2, ... , Rn. 

each data item that can be found in R can also be found in one or more of R's. This 

property, which is identical to the lossless decomposition property of normalization. is 

also important in fragmentation since it ensures that the data in a global relation = 
mapped into fragments without any loss [Grant, 1984]. Note that in the case o 

horizontal fragmentation, the "item" typically refers to a topple, while in the case o 

vertical fragmentation, it refers to an attribute. 

2. Reconstruction: If a relation R is decomposed into fragments R1, R2, ... , Rn, it shoul 

be possible to define a relational operator y such that 

R = V R; VRi e FR 

The operator V will be different for the different forms of fragmentation; it is important. 

however, that it can be identified. The reconstruct ability of the relation from it 

fragments ensures that constraints defined on the data in the form of dependencies are 

preserved. 

3. Disjoint ness: If a relation R is horizontally decomposed into fragments R1, R2, ... , Rn 

and data item di is in Rj, it is not in any other fragment Rr (k -:t:- j). This criterion ensures 

that the horizontal fragments are disjoint. If relation R is vertically decomposed, its 

primary key attributes are typically repeated in all its fragments. Therefore, in case of 

vertical partitioning, disjoint ness is defined only on the no primary key attributes of a 

relation. 
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4.2.5 Allocation Alternatives 

Assuming that the database is fragmented properly, one has to decide on the 

allocation of the fragments to various sites on the network. When data is allocated, it 

may either be replicated or maintained as a single copy. The reasons for replication are 

reliability and efficiency of read-only queries. If there are multiple copies of a data item, 

there is a good chance that some copy of the data will be accessible somewhere even 

when system failures occur. Furthermore, read-only queries that access the same data 

items can be executed in parallel since copies exist on multiple sites. On the other hand, 

the execution of update queries cause trouble since the system has to ensure that all the 

copies of the data are updated properly. Hence the decision regarding replication is a 

trade-off which depends on the ratio of the read-only queries to the update queries. This 

decision affects almost all of the distributed DBMS algorithms and control functions. 

A no replicated database ( commonly called a partitioned database) contains 

fragments that are allocated to sites, and there is only one copy of any fragment on the 

network. In case of replication, either the database exists in its entirety at each site (fully 

replicated database), or fragments are distributed to the sites in such a way that copies 

of a fragment may reside in multiple sites (partially replicated database). In the latter the 

number of copies of a fragment may be an input to the allocation algorithm or a 

decision variable whose value is determined by the algorithm. Figure 4.6 compares 

these three replication alternatives with respect to various distributed DBMS functions. 
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Figure 4.6: Comparison of Replication Alternatives 
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4. 2. 6 Information Requirements 

One aspect of distribution design is that too many factors contribute to an 

optimal design. The logical organization of the database, the location of the 

applications, the access characteristics of the applications to the database, and the 

properties of the computer systems at each site all have an influence on distribution 

decisions. This makes it very complicated to formulate a distribution problem. 

The information needed for distribution design can be divided into four 

categories: database information, application information, communication network 

information, and computer system information. The latter two categories are completely 

quantitative in nature and are used in allocation models rather than in fragmentation 

algorithms. We do not consider them in detail here. Instead, the detailed information 

requirements of the fragmentation and allocation algorithms are discussed in their 

respective sections. 

4.3 FRAGMENTATION 

In this section we present the various fragmentation strategies and algorithms. 

As mentioned previously, there are two fundamental fragmentation strategies: 

horizontal and vertical. Furthermore, there is a possibility of nesting fragments in a 

hybrid fashion. 

4.3.1 Horizontal Fragmentation 

As we explained earlier, horizontal fragmentation partitions a relation along its 

topples. Thus each fragment has a subset of the topples of the relation. There are two 

versions of horizontal partitioning: primary and derived. Primary horizontal 

fragmentation of a relation is performed using predicates that are defined on that 

relation. Derived horizontal fragmentation, on the other hand, is the partitioning of a 

relation that result from predicates being defined on another relation. 

Later in this section we consider an algorithm for performing both of these 

fragmentations. However, first we investigate the information needed to carry out 

horizontal fragmentation activity. 
Information requirements of horizontal fragmentation 
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Database Information: The database information concerns the global 

conceptual schema. In this context it is important to note how the database relations are 

connected to one another, especially with joins. In the relational model, these 

relationships are also depicted as relations. However, in other data models, such as the 

entity-relationship (E-R) model [Chen, 1976], these relationships between database 

objects are depicted explicitly. In [Cheri et al., 1983] the relationship is also modeled 

explicitly, within the relational framework, for purposes of the distribution design. In 

the latter notation, directed links are drawn between relations that are related to each 

other by an equip-join operation. 

Example 4.2 
The links between database objects (i.e., relations in our case) should be quite 

familiar to those who have dealt with network models of data. In the relational model 

they are introduced as join graphs, which we discuss in detail in subsequent chapters on 

query processing. We introduce them here because they help to simplify the 

presentation of the distribution models we discuss later. 

The relation at the tail of a link is called the owner of the link and the relation at 

the head is called the member [Cheri et al., 1983]. More commonly used terms, within 

the relational framework, are source relation for owner and target relation for member. 

Let us define two functions: owner and member, both of which provide mappings from 

the set of links to the set of relations. Therefore, given a link, they return the member or 

owner relations of the link, respectively. 

JNO, J.NAME. BUDGET, l...OC 

Figure 4.7: Expression of Relationships among Relations Using Links 
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Example 4.3 
Given link L1 of Figure 4.7, the owner and member functions have the following 

values: 
Owner (L1) = S 

Member (L1) = E 

The quantitative information required about the database is the cardinality of 

each relation R, denoted card (R). 

Application Information: As indicated previously in relation to Figure 4.2, both 

qualitative and quantitative information is required about applications. The qualitative 

information guides the fragmentation activity, whereas the quantitative information is 

incorporated primarily into the allocation models. 

The fundamental qualitative information consists of the predicates used in user 

queries. If it is not possible to analyze all of the user applications to determine these 

predicates, one should at least investigate the most "important" ones. It has been 

suggested that as a rule of thumb, the most active 20% of user queries account for 80% 

of the total data accesses [Wielder-hold, 1982]. This "80/20 rule" may be used as a 

guideline in carrying out this analysis. 

At this point we are interested in determining simple predicates. Given a relation 

R(A1,A2, ... , An), where A{ is an attribute defined over domain Di, a simple predicate pj 

defined on R has the form 

Pj: A 8 Value 
Where 9 e {=, <, -::t-, :::::, >,~} and Value is chosen from the domain of Ai (Value e 

Di). We use Pr, , to denote the set of all simple predicates defined on a relation R, The 

members of Pr, are denoted by pij. 

Primary horizontal fragmentation: Before we present a formal algorithm for 

horizontal fragmentation, we should intuitively discuss the process for both primary and 

derived horizontal fragmentation. A primary horizontal fragmentation is defined by a 

selection operation on the owner relations of a database schema. Therefore, given 

relation R, its horizontal fragments are given by 

Ri =crFi,(Ri), 1 ::;; J ::;; w 
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Where Fj is the selection formula used to obtain fragment R;. Note that if Fj is 

in conjunctive normal form, it is a midterm predicate (mij). The algorithm we discuss 

will, in fact, insist that F, be a midterm predicate. 

Derived horizontal fragmentation: A derived horizontal fragmentation is defined 

on a member relation of a link according to a selection operation specified on its owner. 

It is important to remember two points. First, the link between the owner and the 

member relations is defined as an equip-join. Second, an equip-join can be implemented 

by means of semi joins. This second point is especially important for our purposes, 

since we want to partition a member relation according to the fragmentation of its 

owner, but we also want the resulting fragment to be defined only on the attributes of 

the member relation. 

Accordingly, given a link L where owner (L) = S and member (L) = R, the 

derived horizontal fragments ofR are defined as 

Where w is the maximum number of fragments that will be defined on R, and Si 

= CJFi (S), where Fi is the formula according to which the primary horizontal 

Fragment Si is defined. 

Example 4.4 

Consider link Li in Figure 4.7, where owner (Li)= Sand member (Li)= E. Then 

we can group engineers into two groups according to their salary: those making less 

than or equal to $30,000, and those making more than $30,000. The two fragments Ei 

and E2 are defined as follows: 

E1 = E 1>< S1 

Bi = E 1>< S2 

Where 

S1 = CJ SAL~ 3oooo(S) 

S2 = CJ SAL > 3oooo(S) 
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The result of this fragmentation is depicted in Figure 4.8 

ENOI ENAME TITLE ENO 

ElectEtig. 
Syst1'nB1. 
Syst. An11L 
Elect Eng. 
Quit.Anal .• ~,: ..... ,. ··' -~· 

Ea I A .. Lee 
E4 · J. Miler 
i:1 •. FtOaVii 

Me(:h.Eng. 
Programmer 
Mech.Eng. 

E1 
62 
E5 
E6 
ea•• 

J.Doe 
M. $.mit 
B;Casey 
t, et,1J 
J. J.onea 

Figure 4.8: Derived Horizontal Fragmentation of Relation E 

To carry out a derived horizontal fragmentation, three inputs are needed: the set 

of partitions of the owner relation, the member relation, and the set of semi join 

predicates between the owner and the member. The fragmentation algorithm, then, is 

quite trivial, so we will not present it in any detail. 

There is one potential complication that deserves some attention. In a database 

schema, it is common that there are more than two links into a relation R. In this case 

there is more than one possible derived horizontal fragmentation of R. The decision as 

to which candidate fragmentation to choose is based on two criteria: 

1. The fragmentation with better join characteristics 

2. The fragmentation used in more applications 

Let us discuss the second criterion first. This is quite straightforward if we take 

into consideration the frequency with which applications access some data. If possible, 

one should try to facilitate the accesses of the "heavy" users so that their total impact on 

system performance is minimized. 

Applying the first criterion, however, is not that straightforward. Consider, for 

example, the fragmentation we discussed. The effect of this fragmentation is that the 

join of the E and S relations to answer the 
Query is assisted (1) by performing it on smaller relations (i.e., fragments), and 

(2) by potentially performing joins in a distributed fashion. 
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The first point is obvious. The fragments of E are smaller than E itself 

Therefore, it will be faster to join any fragment of S with any fragment of E than to 

work with the relations themselves. The second point, however, is more important and 

is at the heart of distributed databases. If, besides executing a number of queries at 

different sites, we can execute one query in parallel, the response time or throughput of 

the system can be expected to improve. In the case of joins, this is possible under 

certain circumstances. There is only one link coming in or going out of a fragment. 

Such a join graph is called a simple graph. The advantage of a design where the join 

relationship between fragments is simple is that the member and owner of a link can be 

allocated to one site and the joins between different pairs of fragments can proceed 

independently and in parallel. 

Figure 4.9: Join Graph between Fragments 

Unfortunately, obtaining simple join graphs may not always be possible. In that 

case, the next desirable alternative is to have a design that results in a partitioned join 

graph. A partitioned graph consists of two or more sub graphs with no links between 

them. Fragments so obtained may not be distributed for parallel execution as easily as 

those obtained via simple join graphs, but the allocation is still possible. 

4.3.2 Vertical Fragmentation 

Remember that a vertical fragmentation of a relation R produces fragments R1 

,R2 ... , Rn , each of which contains a subset of R's attributes as well as the primary key 

of R. The objective of vertical fragmentation is to partition a relation into a set of 

smaller relations so that many of the user applications will run on only one fragment. In 

this context, an "optimal" fragmentation is one that produces a fragmentation scheme 

which minimizes the execution time of user applications that run on these fragments. 

Vertical fragmentation has been investigated within the context of centralized 

database systems as well as distributed ones. Its motivation within the centralized 

context is as a design tool, which allows the user queries to deal with smaller relations, 
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thus causing a smaller number of pages. It has also been suggested that the most active 

sub relations can be identified and placed in a faster memory subsystem in those cases 

where memory hierarchies are supported. 

Vertical partitioning is inherently more complicated than horizontal partitioning. 

This is due to the total number of alternatives that are available. For example, in 

horizontal partitioning, if the total number of simple predicates in Pr is n, there are 2n 

possible midterm predicates that can be defined on it. In addition, we know that some of 

these will contradict the existing implications, further reducing the candidate fragments 

that need to be considered. In the case of vertical partitioning, however, if a relation has 

m non primary key attributes, the number of possible fragments is equal to B(m), which 

is the mth Bell number. For large values of m, B(m) ~mm; for example, for m=lO, B(m) 

~ 115,000, for m=lS, B(m) ~ 109, for m=30, B(m) = 1023. 

These values indicate that it is futile to attempt to obtain optimal solutions to the 

vertical partitioning problem; one has to resort to heuristics. Two types of heuristic 

approaches exist for the vertical fragmentation of global relations: 

1. Grouping: starts by assigning each attribute to one fragment, and at each 

step, joins some of the fragments until some criteria is satisfied. Grouping was first 

suggested in [Hammer and Niamey, 1979] for centralized databases, and was used later 

in [Sacra and Wielder-hold, 1985] for distributed databases. 

2. Splitting: starts with a relation and decides on beneficial partitioning based 

on the access behavior of applications to the attributes. The technique was first 

discussed for centralized database design in [Hoofer and Severance, 1975]. It was then 

extended to the distributed environment in [Nava the et al., 1984]. 

In what follows we discuss only the splitting technique, since it fits more 

naturally within the top-down design methodology, and as stated in [Nava the et al., 

1984], since the "optimal" solution is probably closer to the full relation than to a set of 

fragments each of which consists of a single attribute. Furthermore, splitting generates 

non overlapping fragments whereas grouping typically results in overlapping fragments. 

Within the context of distributed database systems, we are concerned with non 
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overlapping fragments, for obvious reasons. Of course, none overlapping refers only to 

non primary key attributes. 

There is a strong advantage to replicating the key attributes despite the obvious 

problems it causes. If we now design the database so that the key attributes are part of 

one fragment that is allocated to one site, and the implied attributes are part of another 

fragment that is allocated to a second site, every update request that causes an integrity 

check will necessitate communication among sites. Replication of the key attributes at 

each fragment reduces the chances of this occurring but does not eliminate it 

completely, since such communication may be necessary due to integrity constraints 

that do not involve the primary key, as well as due to concurrency control. 

One alternative to the replication of the key attributes is the use of topple 

identifiers (Tills), which are system-assigned unique values to the topples of a relation. 

Since Tills are maintained by the system, the fragments are disjoint as far as the user is 

concerned. 

Information requirements of vertical fragmentation: The major information 

required for vertical fragmentation is related to applications. The following discussion, 

therefore, is exclusively on what needs to be determined about applications that will run 

against the distributed database. Since vertical partitioning places in one fragment those 

attributes usually accessed together, there is a need for some measure that would define 

more precisely the notion of "togetherness." This measure is the affinity of attributes, 

which indicates how closely, related the attributes are. Unfortunately, it is not realistic 

to expect the designer or the users to be able to easily specify these values. We now 

present one way by which they can be obtained from more primitive data. 

4.3.3 Hybrid Fragmentation 

In most cases a simple horizontal or vertical fragmentation of a database schema 

will not be sufficient to satisfy the requirements of user applications. In this case a 

vertical fragmentation may be followed by a horizontal one, or vice versa, producing a 

tree structured partitioning. Since the two types of partitioning strategies are applied one 

after the other, this alternative is called hybrid fragmentation. It has also been named 

mixed fragmentation or nested fragmentation. 

73 



R21 Rt1 

Figure 4.10: Hybrid Fragmentation 

A good example for the necessity of hybrid fragmentation is relation J, which we 

have been working with. What we have, therefore, is a set of horizontal fragments, each 

of which is further partitioned into two vertical fragments. 

The number of levels of nesting can be large, but it is certainly finite. In the case 

of horizontal fragmentation, one has to stop when each fragment consists of only one 

tuple, whereas the termination point for vertical fragmentation is one attribute per 

fragment. These limits are quite academic, however, since the levels of nesting in most 

practical applications do not exceed 2. This is due to the fact that normalized global 

relations already have small degrees and one cannot perform too many vertical 

fragmentations before the cost of joins becomes very high. 

We will not discuss in detail the correctness rules and conditions for hybrid 

fragmentation, since they follow naturally from those for vertical and horizontal 

fragmentations. For example, to reconstruct the original global relation in case of hybrid 

fragmentation, one starts at the leaves of the partitioning tree and moves upward by 

performing joins and unions. The fragmentation is complete if the intermediate and leaf 

fragments are complete. Similarly, disjoint ness is guaranteed if intermediate and leaf 

fragments are disjoint. 
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4.4 ALLOCATION 

The allocation of resources across the nodes of a computer network is a problem 

that has been studied extensively. Most of this work, however, does not address the 

problem of distributed database design, but rather that of placing individual files on a 

computer network. We will examine the differences between the two shortly. We first 

need to define the allocation problem more precisely. 

821 R1l 

Figure 4.11: Reconstruction of Hybrid Fragmentation 
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CHAPTER FIVE 

QUERY PROCESSING 

The increasing success of relational database technology in data processing is 

due, in part, to the availability of nonprocedural languages, which can significantly 

improve application development and end-user productivity. By hiding the low-level 

details about the physical organization of the data, relational database languages allow 

the expression of complex queries in a concise and simple fashion. In particular, to 

construct the answer to the query, the user does not precisely specify the procedure to 

follow. This procedure is actually devised by a DBMS module, usually called a query 

processor. This also relieves the user from query optimization, a time consuming task 

that is best handled by the query processor, since it can exploit a large amount of useful 

information about the data. 

Because it is a critical performance issue, query processing has received 

considerable attention in the context of both centralized and distributed DBMSs. 

However, the query processing problem is much more difficult in distributed 

environments than in centralized ones, because a larger number of parameters affect the 

performance of distributed queries. In particular, the relations involved in a distributed 

query may be fragmented and/or replicated, thereby inducing communication overhead 

costs. 

The context chosen is that of relational calculus and relational algebra, because 

of their generality and wide use in distributed DBMSs, distributed relations are 

implemented by fragments. Distributed database design is of major importance for 

query processing since the definition of fragments is based on the objective of 

increasing reference locality, and sometimes parallel execution for the most important 

queries. The role of a distributed query processor is to map a high-level query (assumed 

to be expressed in relational calculus) on a distributed database (i.e., a set of global 

relations) into a sequence of database operations ( of relational algebra) on relation 

fragments. Several important functions characterize this mapping. First, the calculus 

query must be decomposed into a sequence of relational operations called an algebraic 

query. Second, the data accessed by the query must be localized so that the operations 

on relations are translated to bear on local data (fragments). Finally, the algebraic query 
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on fragments must be extended with communication operations and optimized with 

respect to a cost function to be minimized. This cost function typically refers to 

computing resources such as disk I/Os, CPUs, and communication networks. 

5.1 QUERY PROCESSING PROBLEM 

The main function of a relational query processor is to transform a high-level 

query (typically, in relational calculus) into an equivalent lower-level query (typically, 

in some variation of relational algebra). The low-level query actually implements the 

execution strategy for the query. The transformation must achieve both correctness and 

efficiency. It is correct if the low-level query has the same semantics as the original 

query, that is, if both queries produce the same result. The well-defined mapping from 

relational calculus to relational algebra makes the correctness issue easy. But producing 

an efficient execution strategy is more involved. A relational calculus query may have 

many equivalent and correct transformations into relational algebra. Since each 

equivalent execution strategy can lead to very different consumptions of computer 

resources, the main difficulty is to select the execution strategy that minimizes resource 

consumption. 

Example 7.1 

E(ENO, ENAME, TITLE) 

G (ENO, JNO, RESP, DUR) 

And the following simple user query: 

"Find the names of employees who are managing a project" 

The expression of the query in relational calculus using the SQL syntax is 

SELECT ENAME 

FROM E,G 

WHERE E.ENO = G.ENO 

AND RESP = "Manager'' 
Two equivalent relational algebra queries that are correct transformations of the 

query above are 

II ENAME (crRESP="Manager" AE.ENO=G.ENO (EX G)) 

and 

II ENAME(E !><J ENO (crRESP = "Manager" (G))) 
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It is intuitively obvious that the second query, which avoids the Cartesian 

product of E and G, consumes much less computing resource than the first and thus 

should be retained. 

In a centralized context, query execution strategies can be well expressed in an 

extension of relational algebra. The main role of a centralized query processor is to 

choose, for a given query, the best relational algebra query among all equivalent ones. 

Since the problem is computationally intractable with a large number of relations 

[Ibaraki and Kameda, 1984 ], it is generally reduced to choosing a solution close to the 

optimum. 

In a distributed system, relational algebra is not enough to express execution 

strategies. It must be supplemented with operations for exchanging data between sites. 

Besides the choice of ordering relational algebra operations, the distributed query 

processor must also select the best sites to process data, and possibly the way data 

should be transformed. This increases the solution space from which to choose the 

distributed execution strategy, making distributed query processing significantly more 

difficult. 

5.2 OBJECTIVES OF QUERY PROCESSING 

As stated before, the objective of query processing in a distributed context is to 

trans form a high-level query on a distributed database, which is seen as a single 

database by the users, into an efficient execution strategy expressed in a low-level 

language on local databases. We assume that the high-level language is relational 

calculus, while the low-level language is an extension of relational algebra with 

communication operations. The different layers involved in the query transformation are 

detailed in Section 7. 5. An important aspect of query processing is query optimization. 

Because many execution strategies are correct transformations of the same high-level 

query, the one that optimizes (minimizes) resource consumption should be retained. 

A good measure of resource consumption is the total cost that will be incurred in 

processing the query. Total cost is the sum of all times incurred in processing the 

operations of the query at various sites and in inter site communication. Another good 

measure is the response time of the query, which is the time elapsed for executing the 
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query. Since operations can be executed in parallel at different sites, the response time 

of a query may be significantly less than its total cost. 

In a distributed database system, the total cost to be minimized includes CPU, 

1/0, and communication costs. The CPU cost is incurred when performing operations 

on data in main memory. The I/0 cost is the time necessary for disk input/output 

operations. This cost can be minimized by reducing the number of I/0 operations 

through fast access methods to the data and efficient use of main memory (buffer 

management). The communication cost is the time needed for exchanging data between 

sites participating in the execution· of the query. This cost is incurred in processing the 

messages (formatting/ de formatting), and in transmitting the data on the 

communication network. 

The first two cost components (1/0 and CPU cost) are the only factors 

considered by centralized DBMSs. The communication cost component is probably the 

most important factor considered in distributed databases. Most of the early proposals 

for distributed query optimization assume that the communication cost largely 

dominates local processing cost (1/0 and CPU cost), and thus ignore the latter. This 

assumption is based on very slow communication networks (e.g., wide area networks 

with a bandwidth of a few kilobytes per second) rather than on networks with disk 

bandwidths. Therefore, the aim of distributed query optimization is simplified to the 

problem of minimizing communication costs generally at the expense of local 

processing. The advantage is that local optimization can be done independently using 

the known methods for centralized systems. However, distributed processing 

environments now exist where the communication network is much faster (e.g., local 

area networks) and that can have a bandwidth comparable to that of disks. Therefore, 

more recent research efforts consider a weighted combination of these three cost 

components since they all contribute significantly to the total cost of evaluating a query. 

Nevertheless, in distributed environments with high bandwidths, the overhead cost 

incurred for communication between sites (e.g., software protocols) makes 

communication cost still an important factor as important as 1/0 cost. For completeness, 

let us consider the methods that minimize all cost components. 
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5.3 CHARACTERIZATION OF QUERY PROCESSORS 

It is quite difficult to evaluate and compare query processors in the context of 

both centralized systems and distributed systems because they may differ in many 

aspects. In what follows, we list important characteristics of query processors that can 

be used as a basis for comparison. The first four characteristics hold for both centralized 

and distributed query processors, while the next four characteristics are particular to 

distributed query processors. 

5. 3 .1 Languages 

Initially, most work on query processing was done in the context of relational 

databases because their high-level languages give the system many opportunities for 

optimization. The input language to the query processor can be based on relational 

calculus or relational algebra. The former requires an additional phase to decompose a 

query expressed in relational calculus into relational algebra. In a distributed context, 

the output language is generally some internal form of relational algebra augmented 

with communication primitives. 
The operations of the output language are implemented directly in the system. 

Query processing must perform efficient mapping from the input language to the output 

language. 

5 .3 .2 Types of Optimization 

Conceptually, query optimization aims at choosing the best point in the solution 

space of all possible execution strategies. An immediate method for query optimization 

is to search the solution space, exhaustively predict the cost of each strategy, and select 

the strategy with minimum cost. Although this method is effective in selecting the best 

strategy, it may incur a significant processing cost for the optimization itself The 

problem is that the solution space 
Can be large; that is, there may be many equivalent strategies, even with a small 

number of relations. The problem becomes worse as the number of relations increases. 

Having high optimization cost is not necessarily bad, particularly if query optimization 

is done once for many subsequent executions of the query. Therefore, the exhaustive 

search approach is often used [Salinger et al., 1979]. 
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One popular way of reducing the cost of exhaustive search is the use of 

heuristics, whose effect is to restrict the solution space so that only a few strategies are 

considered. In both centralized and distributed systems, a common heuristic is to 

minimize the size of intermediate relations. This can be done by performing unary 

operations first, and ordering the binary operations by the increasing sizes of their 

intermediate relations. An important heuristic in distributed systems is to replace join 

operations by combinations of semi joins to minimize data communication. 

5.3.3 Optimization Timing 

A query may be optimized at different times relative to the actual time of query 

execution. Optimization can be done statically before executing the query or 

dynamically as the query is executed. Static query optimization is done at query 

compilation time. Thus the cost of optimization may be amortized over multiple query 

executions. 

Therefore, this timing is appropriate for use with the exhaustive search method. 

Since the sizes of the intermediate relations of a strategy are not known until run time, 

they must be estimated using database statistics. Errors in these estimates can lead to the 

choice of sub optimal strategies. 

Dynamic query optimization proceeds at query execution time. At any point of 

execution, the choice of the best next operation can be based on accurate knowledge of 

the results of the operations executed previously. Therefore, database statistics are not 

needed to estimate the size of intermediate results. However, they may still be useful in 

choosing the first operations. The main advantage over static query optimization is that 

the actual sizes of intermediate relations are available to the query processor, thereby 

minimizing the probability of a bad choice. The main shortcoming is that query 

optimization, an expensive task, must be repeated for each execution of the query. 

Hybrid query optimization attempts to provide the advantages of static query 

optimization while avoiding the issues generated by inaccurate estimates. The approach 

is basically static, but dynamic query optimization may take place at run time when high 

difference between predicted sizes and actual size of intermediate relations is detected. 
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5 .3 .4 Statistics 

The effectiveness of query optimization relies on statistics on the database. 

Dynamic query optimization requires statistics in order to choose which operations 

should be done first. Static query optimization is even more demanding since the size of 

intermediate relations must also be estimated based on statistical information. In a 

distributed database, statistics for query optimization typically bear on fragments, and 

include fragment cardinality and size as well as the size and number of distinct values of 

each attribute. To minimize the probability of error, more detailed statistics such as 

histograms of attribute values are sometimes used at the expense of higher management 

cost. The accuracy of statistics is achieved by periodic updating. With static 

optimization, significant changes in statistics used to optimize a query might result in 

query re optimization. 

5.3.5 Decision Sites 

When static optimization is used, either a single site or several sites may 

participate in the selection of the strategy to be applied for answering the query. Most 

systems use the centralized decision approach, in which a single site generates the 

strategy. However, the decision process could be distributed among various sites 

participating in the elaboration of the best strategy. The centralized approach is simpler 

but requires knowledge of the entire distributed database, while the distributed approach 

requires only local information. Hybrid approaches where one site makes the major 

decisions and other sites can make local decisions are also frequent. For example, R * 
[Williams et al., 1982] uses a hybrid approach. 

5.3.6 Exploitation of the Network Topology 

The network topology is generally exploited by the distributed query processor. 

With wide area networks, the cost function to be minimized can be restricted to the data 

communication cost, which is considered to be the dominant factor. This assumption 

greatly simplifies distributed query optimization, which can be divided into two 

separate problems: selection of the global execution strategy, based on inter site 

communication, and selection of each local execution strategy, based on a centralized 

query processing algorithm. 
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With local area networks, communication costs are comparable to 1/0 costs. 

Therefore, it is reasonable for the distributed query processor to increase parallel 

execution at the expense of communication cost. The broadcasting capability of some 

local area networks can be exploited successfully to optimize the processing of join 

operations ([Ozsoyoglu and Zhou, 1987] and [Wahl and Lien, 1985]). Other algorithms 

specialized to take advantage of the network topology are presented in [Kerschberg et 

al., 1982] for star networks and in [LaChimia, 1984] for satellite networks. 

5.3.7 Exploitation of Replicated Fragments 

Distributed queries expressed on global relations are mapped into quenes on 

physical fragments of relations by translating relations into fragments. We call this 

process localization because its main function is to localize the data involved in the 

query. For reliability purposes it is useful to have fragments replicated at different sites. 

Most optimization algorithms consider the localization process independently of 

optimization. However, some algorithms exploit the existence of replicated fragments at 

run time in order to minimize communication times. The optimization algorithm is then 

more complex because there are a larger number of possible strategies. 

5.3.8 Use of Semi joins 

The semi join operation has the important property of reducing the size of the 

operand relation. When the main cost component considered by the query processor is 

communication, a semi join is particularly useful for improving the processing of 

distributed join operations as it reduces the size of data exchanged between sites. 

However, using semi joins may result in an increase in the number of messages and in 

the local processing time. The early distributed DBMSs, such as SDD-1 [Bernstein et 

al., 1981 ], which were designed for slow wide area networks, make extensive use of 

semi joins. Some recent systems, such as R* [Williams et al., 1982], assume faster 

networks and do not employ semi joins. Rather, they perform joins directly since using 

joins leads to lower local processing costs. Nevertheless, semi joins are still beneficial 

in the context of fast networks when they induce a strong reduction of the join operand, 

therefore, some recent query processing algorithms aim at selecting an optimal 

combination of joins and semi joins. 
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CONCLUSION 

Distributed database system (DDBS) technology is the union of what appear to be 

two diametrically opposed approaches to data processing: database system and computer 

network technologies. Database systems have taken us from a paradigm of data 

processing, in which each application defined and maintained its own data to one in 

which the data is and administered centrally. This new orientation results in data 

independence, whereby the application programs are immune to changes in the logical or 

physical organization of the, and vice versa. 

I presented the techniques that can be used for Distributed Database Design with 

special emphasis on the fragmentation and allocation issues. There are a number of lines 

of research that have been followed in distributed daatabase design.For example, Chang 

has independently developed a theory of fragmentation [Chang and Cheng, 1980], and 

allocation [Chang and Liu, 1982]. However, for its maturity of development, we have 

chosen to develop this chapter along the track developed by Ceri, Pelagatti Navathe, and 

Wiederhold. Our references to the literature by these authors reflect this quite clearly. 

I hope that this project will be usefully for both future life and other people who 

are interested in DISTRJBUTED DAT ABASE SYSTE •. ~. 
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