
. ----
•

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

DISTRIBUTED DATABASE SYSTEMS

Graduation Project
COM-400

Student Fato§ Yuvarlak (970720)

Supervlser: Assoc.Prof.Dr.Rahib ABIYEV

Nicosia-2002

•

ACKNOWLEDGEMENT

First of all I would like to my Graduation Project Supervisor Assist.Prof Dr.Rahib

Abiyev who is a patient & very appreciating personality.He has guided me with a keen

interest and helped me by all means.Dr.Rahib,thanks for your continual support.
I would like thank all my teachers in the Near East University, including Faculty of

Engineering Dean ProfDr.Fahreddin Mamedov, Deparment of Computer Engineering

Chairmen Assist.ProfDr.Adnan Khasman, Student Advisors Miss. Besime Erin and Mr.

Tayseer Alshanableh and all the Staff of the Faculty of Engineering, and special thanks

to the Vice-President of Near East University Assoc.Prof.Dr. Senol Bektas for given me
the opportunity to experience this remerkable Institute that have showed me preliminary

steps towards my professional carrier.
And, I want to say thanks to my father Ihsan YUV ARLAK for providing both

moral and financial support that made the completion of the project.

•

ABSTRACT

Distributed database system (DDBS) technology is the union of what appear to

be two diametrically opposed approaches to data processing: database system and

computer network technologies. Database systems have taken us from a paradigm of

data processing, in which each application defined and maintained its own data to one in

which the data is and administered centrally. This new orientation results in data

independence, whereby the application programs are immune to changes in the logical

or physical organization of the, and vice versa.

In the following chapters I will explain in detailed information about all of them

DISTRIBUTED DAT ABASE SYSTEMS.

ll

•

TABLE OF CONTENTS

ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
CHAPTER ONE
DISTRIBUTED DATA PROCESSING

1.1 Distributed Database System
1.2 Advantages and Disadvantages OfDDBS

1.2.1 Advantages
1.2.2 Disadvantages

CHAPTER TWO
DISTRIBUTED SYSTEMS AND DISTRIBUTED SOFTWARE

2.1 Characteristic of Distributed
2.2 Parallel or Concurrent Programs
2.3 Networked Computing

2.3.1 Network Structure and the Remote Call Concept
2.3.2 Distributed Computing Enviroment (DCE)
2.3.3 Cooperative Computing

2.4 Communication Software Systems
2.4.1 Technical Process Control Software Systems
2.4.2 Electronic Data Interchange (EDI)
2.4.3 Groupware

2.5 Combination of Network Computing and
Cooperative Computing

CHAPTER THREE
ARCHITECTURE OF DBMS

3.1 Transparencies in a Distributed DBMS
3 .1.1 Data Independence
3.1.2 Network Tranparency
3 .1.3 Replication Tranparency
3.1.4 Fragmentation Tranparency
3.1.5 Provide Tranparency

3.2 DBMS Standardization
3.3 Ansi I Spare Architecture
3.4 Architectural Models for Distributed DBMSs

3.4.1 Distributed DBMS Architecture
3.4.2 MDBS Architecture

3. 5 Global Directory Issues

.
I

ll

iii
1
2
2
4
8
8
10
12
12
12
13
15
15
17
18
19
22
24
26

27
28
28
28
28
29
31
31
32
34
35
41
44
48
52

111

•

CHAPTER FOUR
DISTRIBUTED DATABASE DESIGN

4 .1 Alternative Design Strategies
4.1.1 Top Down Design Process
4.1.2 Bottom-Up Design

4.2 Distribution Design Issues
4.2.1 Reasons for Fragmentation
4.2.2 Fragmentation Alternatives
4.2.3 Degree of Fragmentation
4.2.4 Correctness Rules of Fragmentation
4.2.5 Allocation Alternatives
4.2.6 Information Requirements

4.3 Fragmentation
4.3.1 Horizontal Fragmentation
4.3.2 Vertical Fragmentation
4.3.3 Hybrid Fragmentation

4 .4 Allocation
CHAPTER FIVE
QUERY PROCESSING

5 .1 Query Processing Problem
5 .2 Objectives of Query Processing
5 .3 Characterization of Query Processors

5. 3 .1 Languages
5. 3. 2 Types of Optimization
5.3.3 Optimization Timing
5.3.4 Statistics
5.3.5 Decision Sites
5.3.6 Exploitation of the Network Topology
5.3.7 Exploitation ofReplicated Fragments
5.3.8 Use ofSemijoins

CONCLUSION
REFERENCES

55
55
57
57
60
60
60
62
63
64
65
66
66
66
71
73
75
76
76
77
78
80
80
80
81
82
82
82
83
83
84
85

IV

INTRODUCTION

Distributed database system (DDBS) technology is one of the major

recent developments in the database systems area. There are claims that in the next ten

years centralized database managers will be an "antique curiosity" and most

organizations will move toward distributed database managers. The intense interest in

this subject in both the research community and the commercial marketplace certainly

supports this claim. The extensive research activity in the last decade has generated

results that now enable the introduction of commercial products into the market place.

Distributed database system (DDBS) technology is the union of what appear to

be two diametrically opposed approaches to data processing: database system and

computer network technologies. Database systems have taken us from a paradigm of

data processing, in which each application denned and maintained its own data, to one

in which the data is denned and administered centrally. This new orientation results in

data independence, whereby the application programs are immune to changes in the

logical or physical organization of the data, and vice versa.

One of the major motivations behind the use of database systems is the desire to

integrate the operational data of an enterprise and to provide centralized, thus controlled

access to that data. The technology of computer networks, on the other hand, promotes a

mode of work that goes against all centralization efforts. At first glance it might be

difficult to understand how these two contrasting approaches can possibly be

synthesized to produce a technology that is more powerful and more promising than

either one alone. The key to this understanding is the realization that the most important

objective of the database technology is integration, not centralization. It is important to

realize that either one of these terms does not necessarily imply the other. It is possible

to achieve integration without centralization, and that is exactly what the distributed

database technology attempts to achieve.

1

CHAPTER ONE

DISTRIBUTED DATA PROCESSING

The term distributed processing (or distributed computing) has been used to refer

to such diverse systems as multiprocessor systems, distributed data processing, and

computer networks. Here are some of the other terms that have been used

synonymously with distributed processing: distributed function, distributed computers

or computing, networks, multiprocessors I multi computers, satellite processing/satellite

computers, backend processing, dedicated/special-purpose computers, time-shared

systems, and functionally modular systems.

Some degree of distributed processing goes on in any computer system, even on

single-processor computers. Starting with the second-generation computers, the central

processing unit (CPU) and input/output (I/0) functions have been separated and

overlapped. This separation and overlap can be considered as one form of distributed

processing. However, it should be quite clear that what we would like to refer to as

distributed processing, or distributed computing, has nothing to do with this form of

distribution of functions in a single-processor computer system.

Distributed computing system states is a number of autonomous processing

elements (not necessarily homogeneous) that are interconnected by a computer network

and that cooperate in performing their assigned tasks. The "processing element" referred

to in this definition is a computing device that can execute a program on its own.

One fundamental question that needs to be asked is: What is being distributed?

One of the things that might be distributed is the processing logic. In fact, the definition

of a distributed computing system given above implicitly assumes that the processing

ogic or processing elements are distributed. Another possible distribution is according

o function. Various functions of a computer system could be delegated to various

pieces of hardware or software. A third possible mode of distribution is according to

data. Data used by a number of applications may be distributed to a number of

recessing sites. Finally, control can be distributed. The control of the execution of

·arious tasks might be distributed instead of being performed by one computer system.

2

•

From the viewpoint of distributed database systems, these modes of distribution are all

necessary and important. In the following sections we talk about these in more detail.

Distributed computing systems can be classified with respect to a number of

criteria. Bochmann lists some of these criteria as follows: degree of coupling,

interconnection structure, interdependence of components, and synchronization between

components [Bochmann, 1983]. Degree of coupling refers to a measure that determines

how closely the processing elements are connected together. This can be measured as

the ratio of the amount of data exchanged to the amount of local processing performed

in executing a task. If the communication is done over a computer network, there exists

weak coupling among the processing elements. However, if components are shared, we

talk about strong coupling. Shared components can be either primary memory or

secondary storage devices. As for the interconnection structure, one can talk about those

cases that have a point-to-point interconnection between processing elements, as

opposed to those, which use a common interconnection channel. We discuss various

interconnection structures. The processing elements might depend on each other quite

strongly in the execution of a task, or this interdependence might be as minimal as

passing messages at the beginning of execution and reporting results at the end.

Synchronization between processing elements might be maintained by synchronous or

by asynchronous means. Note that some of these criteria are not entirely independent.

For example , if the synchronization between processing elements is synchronous, one

would expect the processing elements to be strongly interdependent, and possibly to

work in a strongly coupled fashion.

The distributed processing better corresponds to the organizational structure of

today's widely distributed enterprises, and that such a system is more reliable and more

responsive. Data can be entered and stored where it is generated, without any need for

physical (manual) movement. Furthermore, building a distributed system might make

economic sense since the costs of memory and processing elements are decreasing

continuously.

The fundamental reason behind distributed processing is to be better able to

solve the big and complicated problems, by using a variation of the well-known divide

and-conquer rule. If the necessary software support for distributed processing can be

eveloped, it might be possible to solve these complicated problems simply by dividing

3

•

them into smaller pieces and assigning them to different software groups, which work

on different computers and produce a system that runs on multiple processing elements

but can work efficiently toward the execution of a common task.

This approach has two fundamental advantages from an economics standpoint.

First, we are fast approaching the limits of computation speed for a single processing

element. The only available route to more computing power, therefore, is to employ

multiple processing elements optimally. This requires research in distributed processing

as denned earlier, as well as in parallel processing, which is outside the scope. The

second economic reason is that by attacking these problems in smaller groups working

more or less autonomously, it might be possible to discipline the cost of software

development. Indeed, it is well known that the cost of software has been increasing in

opposition to the cost trends of hardware.

Distributed database systems should also be viewed within this framework and

treated as tools that could make distributed processing easier and more efficient. It is

reasonable to draw an analogy between what distributed databases might offer to the

data processing world and what the database technology has already provided. There is

no doubt that the development of general-purpose, adaptable, efficient distributed

database systems will aid greatly in the task of developing distributed software.

1.1 DISTRIBUTED DATABASE SYSTEM

We can define a distributed database as a collection of multiple, logically

interrelated databases distributed over a computer network. A distributed database

management system (distributed DBMS) is then defined as the software system that

permits the management of the DDBS and makes the distribution transparent to the

sers. The two important terms in these definitions are "logically interrelated" and

distributed over a computer network." They help eliminate certain cases that have

sometimes been accepted to represent a DDBS.

First, a DDBS is not a "collection of files" that can be individually stored at each

ode of a computer network. To form a DDBS, files should not only be logically

elated, but there should be structure among the files, and access should be via a

common interface. It has sometimes been assumed that the physical distribution of data

4

•

is not the most significant issue. The proponents of this view would therefore feel

comfortable in labeling as a distributed database two (related) databases that reside in

the same computer system. However, the physical distribution of data is very important.

It creates problems that are not encountered when the databases reside in the same

computer. Note that physical distribution does not necessarily imply that the computer

systems be geographically far apart; they could actually be in the same room. It simply

implies that the communication between them is done over a network instead of through

shared memory, with the network as the only shared resource.

The definition above also rules out multiprocessor systems as DDBSs. A

multiprocessor system is generally considered to be a system where two or more

processors share some form of memory, either primary memory, in which case the

multiprocessor is called tightly coupled, or secondary memory, when it is called loosely

coupled. Sharing memory enables the processors to communicate without exchanging

messages. With the improvements in microprocessor and VLSI technologies, other

forms of multiprocessors have emerged with a number of microprocessors connected by

a switch.

Processor
Uoit

•Pr«$Z>t0r
Unit

l'1'.CJ0&6atll'
Unit

-

Figure 1.1: Tightly-Coupled Multiprocessor

Another distinction that is commonly made in this context is between shared

everything and shared-nothing architectures. The former architectural model permits.

5

•

Ct;~mputor $.y~tmn i,

!

Computsir Syitf:rn

re~1~;1

Figure 1.2: Loosely-Coupled Multiprocessor

t·· .. :~. ~-:-:-:-:-::-:-:-:-!":«-:-:-:-:-:·:-:-:-:-:.::-::-:-:-:-:..:·r... t

Figure 1.3: Switch-Based Multiprocessor System

each processor to access everything (primary and secondary memories, and peripherals)

in the system and covers the three models that we described above. The shared nothing

architecture is one where each processor has its own primary and secondary memories

as well as peripherals, and communicates with other processors over a very high speed

us. In this sense the shared-nothing multiprocessors are quite similar to the distributed

environment that we consider in this book. However, there are differences between the

· eractions in multiprocessor architectures and the rather loose interaction that is

common m distributed computing environments. The fundamental difference is the

6

•

mode of operation. A multiprocessor system design is rather symmetrical consisting of a

number of identical processor and memory components, controlled by one or more

copies of the same operating system, which is responsible for a strict control of the task

assignment to each processor. This is not true in distributed computing systems, where

heterogeneity of the operating system as well as the hardware is quite common.

In addition, a DDBS is not a system where, despite the existence of a network, the

database resides at only one node of the network. In this case, the problems of database

management are no different from the problems encountered in a centralized database

environment. The database is centrally managed by one computer system and all the

requests are routed to that site. The only additional consideration has to do with

transmission delays. It is obvious that the existence of a computer network or a

collection of "files" is not sufficient to form a distributed database system.

Communitauo.n
Notworl(

Figure l.4: Central Database on a Network

At this point it might be helpful to look at an example of distributed database

lication that we can also use to clarify our subsequent discussions.

7

•

1.2 ADV ANT AGES AND DISADVANTAGES OF DDBS

The distribution of data and applications has promising potential advantages.

Note that these are potential advantages which the individual DDBSs aim to achieve. As

such, they may also be considered as the objectives ofDDBSs.

1.2.1 Advantages

Local Autonomy: Since data is distributed, a group of users that commonly

share such data can have it placed at the site where they work, and thus have local

control. This permits setting and enforcing local policies regarding the use of the data.

There are studies [D'Oliviera, 1977] indicating that the ability to partition the author ity

and responsibility of information management is the major reason many business

organizations consider distributed information systems. This is probably the most

important sociological development that we have witnessed in recent years with respect

to the use of computers.

Of course, the local autonomy issue is more important in those organizations

that are inherently decentralized. For such organizations, implementing the information

system in a decentralized manner might also be more suitable. On the other hand, for

those organizations with quite a centralized structure and management style,

decentralization might not be an overwhelming social or managerial issue.

In distributed system, the validity of local autonomy is obvious. It would be

quite absurd to have an environment where all the record keeping is done locally, as it

·ould be if information were shared among different sites in a manual fashion (either

ry exchanging hard copies of reports, or by exchanging magnetic tapes, disks, floppies,

erc.).

Improved Performance: Again, because the regularly used data is proximate

the users, and given the parallelism inherent in distributed systems, it may be possible

prove the performance of database accesses. On the one hand, since each site

es only a portion of the database, contention for CPU and I/0 services is not as

e as for centralized databases. On the other hand, data retrieved by a transaction

8

.
•

may be stored at a number of sites, making it possible to execute the transaction in

parallel.

Let us assume that in our example the record keeping is done centrally at the

world headquarters, with remote access provided to the other sites. This would require

the transmission to New York of each request generated in Phoenix inquiring about the

inventory level of an item. It would probably be impossible to withstand the low

performance of such an operation.

Improved Reliability/Availability: If data is replicated so that it exists at

more than one site, a crash of one of the sites, or the failure of a communication link

making some of these sites inaccessible, does not necessarily make the data impossible

to reach. Furthermore, system crashes or link failures do not cause total system

inoperability. Even though some of the data may be inaccessible, the DDBS can still

provide limited service.

Obviously, if the inventory information at both warehouses is replicated at both

sites, the failure at one of the sites would not make the information inaccessible to the

rest of the organization. If proper facilities are set up, it might even be possible to give

users at the failed site access to the remote information.

Economics: It is possible to view this from two perspectives. The first is in

terms of communication costs. If databases are geographically dispersed and the

applications running against them exhibit strong interaction of dispersed data, it may be

much more economical to partition the application and do the processing locally at each

site. Here the trade-off is between telecommunication costs and data communication

costs. The second viewpoint is that it normally costs much less to put together a system

of smaller computers with the equivalent power of a single big machine. In the 1960s

and early 1970s, it was commonly believed that it would be possible to purchase a

fourfold powerful computer if one spent twice as much. This was known as Grosh's law.

With the advent of minicomputers, and especially microcomputers, this law is

considered invalid.

The case about lower communication costs can easily be demonstrated in the

example we have been considering. It is no doubt much cheaper in the long run to

9

•

maintain a computer system at a site and keep data locally stored instead of having to

incur heavy telecommunication costs for each request. The level of use when this

becomes true can obviously change depending on the traffic patterns among sites, but it

is quite reasonable to expect this to occur.

Expandability: In a distributed environment, it is much easier to

accommodate increasing database sizes. Major system overhauls are seldom necessary;

expansion can usually be handled by adding processing and storage power to the

network. Obviously, it may not be possible to obtain a linear increase in "power," since

this also depends on the overhead of distribution. However, significant improvements

are still possible.

Share ability: Organizations that have geographically distributed operations

normally store data in a distributed fashion as welL However, if the information system

is not distributed, it is usually impossible to share these data and resources. A

distributed database system therefore makes this sharing feasible.

1.2.2 Disadvantages

However, these advantages are offset by several problems ansmg from the

distribution of the database.

Lack of Experience: General-purpose distributed database systems are not yet

commonly used. What we have are either prototype systems or systems that are tailored

o one application (e.g., airline reservations). This has serious consequences because the

solutions that have been proposed for various problems have not been tested in actual

operating environments.

Complexity: DDBS problems are inherently more complex than centralized

database management ones, as they include not only the problems found in a centralized

eavironment, but also a new set of unresolved problems. We discuss these new issues

- ~n1J.

Cost: Distributed systems require additional hardware (communication

chanisms, etc.), thus have increased hardware costs. However, the trend toward

10

•

decreasing hardware costs does not make this a significant factor. A more important

fraction of the cost lies in the fact that additional and more complex software and

communication may be necessary to solve some of the technical problems. The

development of software engineering techniques (distributed debuggers and the like)

should help in this respect.

Distribution of Control: This point was stated previously as an advantage
of DDBSs. Unfortunately, distribution creates problems of synchronization and

coordination (the reasons for this added complexity are studied in the next section).

Distributed control can therefore easily become a liability if care is not taken to adopt

adequate policies to deal with these issues.

Security: One of the major benefits of centralized databases has been the

control it provides over the access to data. Security can easily be controlled in one

central location, with the DBMS enforcing the rules. However, in a distributed database

system, a network is involved which is a medium that has its own security requirements.

It is well known that there are serious problems in maintaining adequate security over

computer networks. Thus the security problems in distributed database systems are by

nature more complicated than in centralized ones.

Difficulty of Change: Most businesses have already invested heavily in their

database systems, which are not distributed. Currently, no tools or methodologies exist

o help these users convert their centralized databases into a DDBS. Research in

terogeneous databases and database integration is expected to overcome these

difficulties.

11

•

CHAPTER TWO

DISTRIBUTED SYSTEMS AND DISTRIBUTED SOFTWARE

2.1 CHARACTERISTIC OF DISTRIBUTED SYSTEMS

Distributed computer environments are based on distributed computer systems

which consist of a set of processing components connected by a communication

network. The software systems running on the various processing components exchange

data through the communication network. This type of system is also called loosely

coupled distributed system.

Processing nodes can be composed of several processors which share memory.

This shared memory is used to exchange information by the software executed on such

a node. This type of system is called a tightly coupled distributed system. Some

advantages of distributed systems are below shown:

• Increased Performance

Performance is generally defined in terms of average response time and through put. If

processing capability can be located where it is required the response time can be highly

reduced. Data can be processed locally before it is sent to other nodes for further

recessing. This increases throughput.

• Increased reliability

_ ;ormally nodes in a distributed system can take over the tasks of other nodes which are

currently out of order. This means that a distributed system continues its work with

educed performance but with little or no reduction of functionality

• Increased flexibility
ditional functionality can be added to a distributed system or the number of users can

permanently increased. A distributed system allows this system growth by simply

· g more processing nodes.

12

•

2.2 PARALLEL OR CONCURRENT PROGRAMS

Parallel or concurrent programs are characterized by a set of statements

interrelated by multiple control threads. Each sequence of statements executed by one or

more control threads is called a process object (The term 'process' shall be used instead

of'process object' when it is clear from the context that we mean a process object).

The relationship between processes or threads and process objects is shown in

the following figure.

pnmt:'!lt~~~ or thtt:atb t.t~·tHiug the
· ·.~. f .: · .· ·. · ·~· t~ . rcr s ~~k'e-d • tm .emi;nu QI .nt p: .•.. ~ , ,,,.i:,J ..

~--

·· ;itsqm:~{:ti. iif
progrnnt . .
f,!JaJ~m~.nts
~ht~tibi.rij .1.
Pr'9ctiJ ..
i~ l. .. i.<•.is ., .•
<1-;t~~:t ~;~-~~ ~-

·-···

Figure 2.1: Process/Threads and Process Objects

The statements (operations) of the individual processes are executed overlapped

r interleaved or both. If a single processor is multiplexed among several concurrent

ocesses, the machine instructions of these processes can only be interleaved in time.

For a certain time slice, the processor is assigned to a process in order to execute the

ements of a process object. Assigning a processor to another process is called

ntext switching. This type of concurrency is also called multitasking. The following

- gure shows an example of how a processor is shared between several processes.

13

•

pre::u::~$iieit.·ttt thread, e~~udn:g. tbe
. summ:re»tlt. -of.· the· ..• pn:re~s~ o\ject

Figure 2.2: Multitasking

Machine instructions of processes running on different processors can be

overlapped at each node at which a processor is available. These are distributed

programs.

Concurrent or parallel programs are either interleaved, distributed, or both. For a

rogrammer it is not necessary to know whether multitasking or a distributed system is

used to run his program.

Normally the processes of a concurrent program share the resources such as

ocessor, memory, disk, and databases, and if they cooperate in order to reach a

mmon goal they exchange information and synchronize their activities.

Their are two reasons to structure a program ~in parallel executable process

s:

fine grain parallelism is mainly used to accelerate large numerical computations.

is type of parallels is often achieved by using vector processors and the pipelining of

,x,esarions. It is mainly implemented by hardware.

crural parallelism is used if the structure of the task to be performed is

i niamentally parallel. The process objects are a very important concept for structuring

14

programs in certain application areas, e.g. operating systems, real time systems, and

communication systems. Especially in real time systems which must react to external

events, processes (objects) are used to achieve separation of the tasks /FAPA88/. Each

process handles a related set of events and cooperates with other processes to achieve a

common purpose. In order to cooperate, processes exchange information either via

shared data or via messages.

2.3 NETWORKED COMPUTING

2.3 .1 Network Structure and the Remote Procedure Call Concept

Network computing is characterized by several sequences of jobs, which arrive

independently at various nodes. The jobs are designed and implemented more or less

independently of each other and are only loosely coupled. The distributed system serves

primarily as a resource-sharing network.

A very common example of resource sharing is the file server. All files are

located on a dedicated node in a distributed system. Software components running on

other nodes send their file access requests to the file server software. The file server

executes these requests and returns the results (to the clients).

In addition to file servers many other kinds of servers such as print servers,

mpute servers, data base servers, and mail servers have been implemented As with

file server, clients send their requests to the appropriate server and receive the

ts for further processing. Servers process the requests from the various clients more

less independently of each other. The programs running on the clients can be viewed

being designed and developed independently of each other.

The following figure shows the concept of client/server system

Figure 2.3: The Concept of Client/Server System

15

-· ·- -~- -

•

In client server systems, the clients represent the users of a distributed system and

servers represent different operating system functions or a commonly used application.

The following figure shows a simple example of a client server system.

Wei~.:.··.
I .• • att\tl¢f/

£0" ···1· I:::::==::: ---

\.\'<,;~~
I · ... • ~t~,t~n

:,,..,.,
-~.

Figure 2.4: A Small Client/Server System

This system has a print server, a file server, and the clients (users) which run on

.orkstations (WS) and personal computers (PC). The server software and the client

software can run on the same type of computer. The different nodes are connected by a

ocal area network.

From a user's point of view a client/server system can hardly be distinguished

om a central system, e.g. a user cannot see whether a file is located on his local system

on a remote file server node. For the user the client/server system appears to be a

ery convenient and flexible central computing system. Mostly the user does not know

ether a file is stored on his PC or on a file server. To the user, the storage capacity of

server appears to be a part of the PC storage capacity. Client/server systems are also

_,. flexible. For a new application a specialized new server can be added e.g. data base

_ ems run on specialized data base servers, which have short access times. Database

· cations are primarily controlled by the local client; all the data is stored at the data

~~ server and special computations are executed by a compute server. The application

ogram running on the client, calls the required functions provided by the servers. This

ne mainly by way of remote procedure calls (RPC). An RPC resembles a procedure

except that it is used in distributed systems. The following is a description of how

RPC works. The program running on the client looks like a normal sequential

16

•

program. The services of a particular server are invoked via a remote procedure call.

The caller of a remote procedure is stopped until the invoked remote procedure is

finished and the server has provided the results to the calling client in the same way that

parameters are returned by a procedure. The servers are used in the same way that

library procedures are used. This means that remote procedure calls hide the distribution

of the functions of the system even at the program level. The programmer does not need

to concern himself with the system distribution.

The figure below shows the basic structure of a client/server system.

W· W •. W· ..•

Figure 2.5: Remote Procedure Call Concept

2.3.2 Distributed Computing Environment (DCE)

The Distributed Computing Environment is a comprehensive integrated set of

ools which supports network computing in a heterogeneous computing environment.

This set of technologies has been selected by the Open Systems Foundation (OSF) to

pport the development of distributed applications for heterogeneous computer

etworks. The following figure shows the OSF DCB architecture.

Figure 2.6: Architecture of OSFDCE

17

•

In the DCB client and server programs are executed by threads i.e. processes.

Threads use an RPC in order to communicate with each other and binary semaphores

and conditional variables for synchronization. In the DCB remote procedure calls are

supported by directory services (DCB Call Directory Service) and security services

(DCE Security Service). Directory services map logical names to physical addresses. If

a client calls a particular service provided by a server, the directory service is used to

find the appropriate server. The DCB security service provides features for secure

communication and controlled access to resources. Distribute Time Service provides

precise clock synchronization in a distributed system. This is required for event logging,

error recovery, etc. The distributed file service allows the sharing of files across the

whole system. Finally the diskless support service allows workstations to use

ackground disk files on file servers as if they were local disks /SCHILL93/, /OSF92/.

__ 3.3 Cooperative Computing

In cooperative computing a set of processes runs on several processing nodes.

These processes cooperate to reach a common goal and together they form a distributed

rogram. This is different from the client/server systems described above. In

cooperative systems the processes, which comprise the distributed program are coupled

ery closely. This means that the closely coupled processes are executed on a loosely

coupled system.

In cooperative systems, the distribution of computing capability is not hidden

d programming concepts. The different program sections running on different

uters comprise a single program; but it can be seen at the programming level that

program sections are executed concurrently. These different program sections are

~~ processes. Processes form a very important concept for central systems, client

er systems and cooperative systems. If processes have to work together to perform

ask, they must exchange data and synchronize their execution. Programming

~ems for concurrent systems contain communication and synchronization concepts.

l:ooperative programming resembles a human organization which works together to

---.-e a common goal. Its members must communicate with each other and must

~onize their activities. The following figure shows the basic structure of

a,. t.,0 anve systems.

18

•

. .

NttWQtt···

Figure 2. 7: Structure of Cooperative Systems

Cooperative systems are mainly used for the automation of technical processes

and the implementation of communication software, etc. Technical processes in the

mostly part consist of several parallel activities, for example checking the level of a tank

has to be done in parallel with controlling the rate of flow of a pump. Therefore the

structure of technical process control software is very similar to the structure of the

technical process to be controlled. For the automation of technical processes such as

manufacturing control systems, the environment of the program, the technical process,

is considered as a set of processes which interact with software processes. This means

that several processes which can be implemented in different ways work together to

perform their task.

2.4 COMMUNICATION SOFTWARE SYSTEMS

A communication system consists of a communication network and the

ommunication software, which runs on the various processing nodes (referred to as

st systems). The communication software provides a more or less convenient

communication service for the application software. The application software on each

e uses the communication service to exchange messages with the application

software running on other nodes. The communication service is based on the underlying

·ork (A network is usually made up of lines and several switching nodes although

st local area networks do not contain switching nodes).

In order to provide a convenient communication service the communication

-~ ·are systems also exchange messages. This message exchange is based on the

19

•

simpler communication mechanism provided directly by the network. For example the

network provides a communication service, which only allows the transfer of a single

byte. The communication service provided by the communication software allows byte

strings of a fixed or even an unlimited length to be sent or received. This can be

implemented in the following way:

. A.pp(~¢titl¢fi l
S{itt~·~m

ff'l:)tl · Sytlem
f.1.1.IJJJ.TJJ:i :· .• . ·•.

Apr,flt:i:'dh:tn
$JJltWUta

Mo:&t J.'ht.m
:· .. : . .r ... L.T .. ··1:

Apptt~alioti
••• • I SoJlw:l:!IJ~

~~T?~::'Jfai?J?Jfo:;.:_

~

·~

Figure 2.8: Structure of Communication Systems

The application software of a host system A wants to send a sequence of bytes to

application software of a host system B. The sequence of bytes is given to the

nmication system by the application system. The communication system on host

em A sends a byte with the length of the byte string (the number of bytes) to the

unication system on host system B. The communication system on host system B

back an acknowledgement. This is a byte with a certain value. After the

cnmmnnication software on host system A has received the acknowledgement it starts

er the bytes of the byte string. When system B has received the number of bytes

in the first byte it again sends an acknowledgement. After sending the

da:,•dedgement, the communication software on host system B gives the received

· g ro the application software.

· - communication sequence which implements the transfer of a byte string is

istic illustration of what communication software can do.

20

•

As the example above shows, the communication between the communication

software systems follows well-defined rules. These rules are called protocols. The need

to provide convenient communication services for the application software leads to

software communication protocols, which can be extremely complex and must be

organized in layers. Each layer offers an improved communication service to the layer

above. The widely used reference model for Open Systems Interconnection (OSI)

efined by the International Standard Organization (ISO) proposes seven protocol

vers /IS07498/. Each layer provides a certain service to the layer above. The service

ovided by a layer is implemented by the protocol specific to its layer and by the

services of the layer below. In a host system the services specific to the layer are

ealized by protocol entities. The layer protocol is defined between protocol entities of

same layer. These exchange information by using the service of the layer below. In

h host system there must be at least one entity per layer. The set of entities of

erent layers in a host system is called a protocol stack. The implementation of these

ocol stacks is called communication software. Communication software has the

wing execution properties /DROB86/:

erleaved execution of several entities on the same system

ibuted execution of entities of the same layer on different systems.

Interleaved and distributed computations are usually modeled as systems of

processes. Processes , executing in parallel normally have to exchange

illlixmarion if they are to cooperate in solving a common task. One or more processes

entities. Using or providing a service means exchanging information with

~ representing entities of the layer below or above. The figure above shows the

w1-tme of communication software systems based on the ISO/OSI reference model.

~'"Oil stacks in the different host systems are implemented independently of each

are embedded in the communication systems. This means that the

; 5 1 rmanon of a communication system to support communication in a distributed

-ex:: is nself a distributed program.

21

•

Figure 2.9: Structure of Communication Software

1 I echnical Process Control Software Systems

Another important example of cooperative computing is a distributed technical

ontrol system.

The basic structure of technical systems controlled by computer systems is

the following figure /NEHM84/.

22

•

•••••

Figure 2.10: Structure of Process Control Systems

The communication between computer systems and technical systems must meet

d real time requirements, whereas the communication with the user is more or less

ague-oriented with less emphasis on time conditions (except in the case emergency

~ such as fire alarms). For the sake of simplicity, we will focus on the relationship

reen technical systems and real-time computer systems.

A technical system consists of several mutually independent functional units

communicate via appropri~ate interfaces with the computer system. Therefore the

e program must react to several simultaneous inputs. This implies the structuring

ess control software system that takes into account a number of processes.

ess handles a certain group of signals.

basic requirement for a process control software system is the capability to

changes of the technical system as fast as possible. The information in the

ol software must be as close as possible to the state of the technical

easiest way to achieve this is to design a process for each interface element.

e software system structure shown in the following figure /NEHM84/.

23

>.

•

Figure 2.11: Structure of Process Control Software

Software system processes can run on a single centralized system or can be

~wuted over several computer systems. In the latter case it is possible to locate the

CIJll]()Uters close to the device or the plant being controlled. The main advantages of

61tnl>uted solutions are:

esponse

evelopment and maintenance

egree of fault tolerance

onic Data Interchange (EDI) is the computer-to-computer exchange of

company technical and business data, based on the use of standards

see figure below of the EDI business model).

24

•

•Oihe.
Divtsi0<f!{:r<.,·

T,c.q..d\o.~
~~·at;tn·e~·s

Figure 2.12: EDI Business Model

These data can be structured or unstructured. Exchanging unstructured data

follows specific communication standards although the data content is not in a

structured format. More important is the exchange of structured data. Examples of

structured data exchange are:

- Trade Data Interchange

This type of EDI document exchange is mainly used to automate business

processes. Examples of trade data interchanges include a request for quotation (RfQ),

purchase orders, purchase order acknowledgements, etc. Each company and industry

has its own requirements for the structure and contents of these documents. A number

of specific industry and national bodies have been formed with the intention of

standardizing the format and content of messages. For the chemical industry CEFIC is

the EDI standard and for the auto industry the related EDI standard is called ODETTE.

The standard defined by CCITT is called EDIF ACT. In order to exchange EDIF ACT

documents very often the CCITT E-Mail standard X.400 is recommended /HILL90/.

- Electronic Funds Transfer

Payment against invoices, electronic point of sale (EPOS) and clearing systems

are examples of electronic funds transfer.

- Technical Data Interchange

Improvement in technical communication can play a key role in determining the

success of a project. There is a growing demand from traders for communication

between their CAD (computer aided design) workstation and the workstations of

important vendors.

25

.. -,--:-::,-'====

•

Order
JitOt(';!l~1ll'l~1

M~l, ufacnrdng
·sche1lule .

Mattdactudn:g
Rrquite:tttttH,1

Afttrnntt
Pay,~hle

A;t:t(ftmtS
Rfcth,'lNe

~

foi:omhtg
fo:scj)t~t:fott

• , ... ,. , - • QhaHly

Figure 2.13: EDI in a Business Process

_.4.3 Groupware

In organizations people work together to reach a common goal. The formal

eraction between members of an organization is described by structures and

edures. Additionally there exist informal interactions which are very important.

types of interactions can and should be supported by computers. Computer

.3Ul,'P.}Vrted Cooperative Work (CSCW) deals with the study and development of

uter systems called groupware, which purpose it is to facilitate these formal and

..&wni~1 interactions. CSCW projects can be classified into four types namely:

ps which are not geographically distributed and require common access in real

Examples: presentation software, group decision systems.

which are geographically distributed and require common access in

Examples: video conferencing, screen sharing.
hronous collaboration among people who are geographically distributed.

F 4,les· notes conferences, joint editing.

26

--

•

4. Asynchronous collaboration among people who are not geographically distributed

Examples: project management, personal time schedule management

Groupware requires computers connected by a network. Thus groupware

systems are distributed systems. Members of a group share data and exchange

messages. Therefore groupware software systems are combinations of network and

cooperative computing.

2.5 COMBINATION OF NETWORK COMPUTING AND
COOPERATIVE COMPUTING

Cooperative computing can be combined with client server systems. Processes in

a distributed system can have access to servers. From the standpoint of a client server

system the processes of a cooperative system can be considered as client processes. In a

technical process control software system a process can collect data from the technical

process. This data is stored in a file located on a file server node. The following figure

shows an example of a combination of a cooperative and a client/server system. Process

_..\., Process B and Process C form a cooperative software system. Process B and Process

C use the file server. This means that process B and process C are clients of the file

server.

·{~~~~~:;~:~W-:{;f~:(~~{:l~<'.t:~<.,!f~; :~::::*:?.:·
~::::{>:f~t~?;~:~f~=~·· J~>"w.~%~:f~:?'f~I:

Figure 2.14: Combination of Cooperative and Client Server System

27

•

CHAPTER THREE

ARCHITECTURE OF DBMS

3.1 TRANSPARENCIES IN A DISTRIBUTED DBMS

Transparency in a distributed DBMS refers to separation of the higher-level

semantics of a system from lower-level implementation issues. In other words, a

transparent system "hides" the implementation details from users. The advantage of a

fully transparent DBMS is the high level of support that it provides for the development

of complex applications. It is obvious that we would like to make all DBMSs

(centralized or distributed) fully transparent. In fact, we have alluded to this under the

topic of data independence, which is one form of transparency. In the remainder of this

section we consider the various forms of transparency that a designer aims to provide

within centralized or distributed DBMS.

3 .1.1 Data Independence

Data independence is a fundamental form of transparency that we look for

within a DBMS. It is also the only type that is important within the context of a

centralized DBMS. To reiterate the definition given data independence refers to the

immunity of user applications to changes in the definition and organization of data, and

vice versa.

As we will see in Section 4.2, data definition can occur at two levels. At one

level the logical structure of the data is specified, and at the other level the physical

structure of the data is defined. The former is commonly known as the schema

definition, whereas the latter is referred to as the physical data description. We can

therefore talk about two types of data independence: logical data independence and

physical data independence. Logical data independence refers to the immunity of user

applications to changes in the logical structure of the database. In general, if a user

application operates on a subset of the attributes of a relation, it should not be affected

ter when new attributes are added to the same relation. For example, let us consider

e engineer relation discussed. If a user application deals with only the address fields of

is relation (it might be a simple mailing program), the later additions to the relation of

1y, skill, would not and should not affect the mailing application.

28

..

Physical data independence deals with hiding the details of the storage structure

from user applications. When a user application is written, it should not be concerned

with the details of physical data organization. The data might be organized on different

disk types, parts of it might be organized differently (e.g., random versus indexed

sequential access) or might even be distributed across different storage hierarchies (e.g.,

disk storage and tape storage). The application should not be involved with these issues

since, conceptually; there is no difference in the operations carried out against the data.

Therefore, the user application should not need to be modified when data I

organizational changes occur with respect to these issues. Nevertheless, it is common

knowledge that these changes may be necessary for performance considerations.

Of course, data independence is more of a goal than a standard feature commonly

provided by most of today's DBMSs. Some commercial products provide better data

independence than others. Specifically, most of the microcomputer DBMSs do not

provide high levels of data independence. Adding a new attribute to a relation (i.e.,

logical data independence) very often requires unloading the database, changing the

relation definition, and then reloading the database.

3.1.2 Network Transparency

In centralized database systems, the only available resource that needs to be

shielded from the user is the data (i.e., the storage system). In a distributed database

management environment, however, there is a second resource that needs to be

managed in much the same · manner: the network. Preferably, the user should be

protected from the operational details of the network. Furthermore, it is desirable to hide

even the existence of the network, if possible. Then there would be no difference

between database applications that would run on a centralized database and those that

would run on a distributed database. This type of transparency is referred to as network

transparency or distribution transparency. One can consider network transparency from

the viewpoint of either the services provided or the data. From the former perspective, it

is desirable to have uniform means by which services are accessed. Tb give an example,

let us talk for the moment not at the database level but at the operating system level in a

network environment. If we want to copy a file, the command needed should be the

same whether the file is being copied within one machine or across two machines

connected by the network. Unfortunately, however, most commercially available

29

-- - ----·---

•

operating systems that run on networks do not provide this transparency. For example,

the UNIXI command for copying in one machine is

cp <source file> <target file>

Whereas the same command, if the source and the target files are on different machines,

takes the form

rep <machine _ name: source file> <machine _ name :target file>

Note how it is now necessary to name the machine on which the file resides and

to use a different operating system command to perform the copy function. If the same

discussion is carried over to the database level, we would see that different user

interfaces (i.e., query languages and data manipulation languages) need to be designed

for both centralized and distributed database environments. Clearly, this is not very

desirable.
The example above demonstrates two things: location transparency and naming

transparency (or the lack of these). Location transparency refers to the fact that the

command used is independent of both the location of the data and the system on which

an operation is carried out. Naming transparency means that a unique name is provided

for each object in the database. It is obvious that in a system such as the one described

above, the task of providing unique names for different objects falls on the user rather

than the system. The way the system handles naming transparency is by requiring the

user to embed the location name (or an identifier) as part of the object name.

It is unfortunate that some distributed database systems do indeed embed the

location names within the name of each database object. Furthermore, they require the

user to specify the full name for access to the object. Obviously, it is possible to set up

aliases for these long names if the operating system provides such a facility. However,

user-defined aliases are not real solutions to the problem in as much as they are attempts

to avoid addressing them within the distributed DBMS. The system, not the user, should

be responsible for assigning unique names to objects and for translating user-known

names to these unique internal object names.

Besides these semantic considerations, there is also a very pragmatic problem

associated with embedding location names within object names. Such an approach

makes it very difficult to move objects across machines for performance optimization or

other purposes. Every such move will require users to change their access names for the

affected objects, which is clearly undesirable.

30

•

3 .1.3 Replication Transparency

The issue of replicating data within a distributed database is discussed in quite

some detail in. At this point, let us just mention that for performance, reliability, and

availability reasons, it is usually desirable to be able to distribute data in a replicated

fashion across the machines on a network. Such replication helps performance since

diverse and conflicting user requirements can be more easily accommodated. For

example, data that is commonly accessed by one user can be placed on that user's local

machine as well as on the machine of another user with the same access requirements.

This increases the locality of reference. Furthermore, if one of the machines fail, a copy

of the data is still available on another machine on the network. Of course, this is a very

simpleminded description of the situation. In fact, the decision as to whether to replicate

or not, and how many copies of any database object to have, depends to a considerable

degree on user applications. Note that replication causes problems in updating

databases. Therefore, if the user applications are predominantly update oriented, it may

not be a good idea to have too many copies of the data. As this discussion is the subject

matter, we will not dwell further here on the pros and cons of replication.

Assuming that data is replicated, the issue related to transparency that needs to be

addressed is whether the users should be aware of the existence of copies or whether the

system should handle the management of copies and the user should act as if there is a

single copy of the data (note that we are not referring to the placement of copies, only

their existence). From a user's perspective the answer is obvious. It is preferable not to

be involved with handling copies and having to specify the fact that a certain action can

and/or should be taken on multiple copies. From a systems point of view, however, the

answer is not that simple.

3 .1.4 Fragmentation Transparency

The final form of transparency that needs to be addressed within the context of a

distributed database system is that of fragmentation transparency. We discuss and

Justify the fact that it is commonly desirable to divide each database relation into

smaller fragments and treat each fragment as a separate database object (i.e., another

relation). This is commonly done for reasons of performance, availability, and

reliability. Furthermore, fragmentation can reduce the negative effects of replication.

31

•

Each replica is not the full relation but only a subset of it; thus less space is required and

fewer data items need be managed.

When database objects are fragmented, we have to deal with the problem of

handling user queries that were specified on entire relations but now have to be per

formed on sub relations. In other words, the issue is one of finding a query processing

strategy based on the fragments rather than the relations, even though the queries are

specified on the latter. Typically, this requires a translation from what is called a global

query to severe fragment queries. Since the fundamental issue of dealing with

fragmentation transparency is one of query processing, we defer the discussion of

techniques by which this translation can be performed.

3 .1. 5 Provide Transparency

It is possible to identify three distinct layers at which the services of

transparency can be provided. It is quite common to treat these as mutually exclusive

means of providing the service, although it is more appropriate to view them as

complementary.

We could leave the responsibility of providing transparent access to data

resources to the access layer. The transparency features can be built into the user

language, which then translates the requested services into required operations. In other

words, the compiler or the interpreter takes over the task and no transparent service is

provided to the implementer of the compiler or the interpreter.

The second layer at which transparency can be provided is the operating system

level. State-of-the-art operating systems provide some level of transparency to system

users. For example, the device drivers within the operating system handle the minute

details of getting each piece of peripheral equipment to do what is requested. The

typical computer user, or even an application programmer, does not normally write

device drivers to interact with individual peripheral equipment; that operation is

transparent to the user.

Providing transparent access to resources at the operating system level can

bviously be extended to the distributed environment, where the management of the

32

..

network resource is taken over by the distributed operating system. This is a good level

at which to provide network transparency if it can be accomplished. The unfortunate

aspect is that not all commercially available distributed operating systems provide a

reasonable level of transparency in network management.

The third layer at which transparency can be supported is within the DBMS. In

such a case one might talk about different modes of operation. In database machines, for

example, the DBMS generally does not expect any transparent service from the

operating system; in fact, there is no identifiable operating system other than a monitor

and some device drivers. The DBMS acts as the integrated operating and database

management system. A more typical environment is the development of a DBMS on a

general-purpose computer running some operating systems. In this type of environment,

the transparency and support for database functions provided to the DBMS designers is

minimal and typically limited to very fundamental operations for performing certain

tasks. It is the responsibility of the DBMS to make all the necessary translations from

the operating system to the higher-level user interface. This mode of operation is the

most common method today. There are, however, various problems associated with

leaving the task of providing full transparency to the DBMS. These have to do with the

interaction of the operating system with the distributed DBMS.

It is therefore quite important to realize that reasonable levels of transparency

depend on different components within the data management environment. Network

transparency can easily be handled by the distributed operating system as part of its

responsibilities for providing replication and fragmentation transparencies. The DBMS

should! be responsible for providing a high level of data independence together with

replication and fragmentation transparencies. Finally, the user interface can support a

higher level of transparency not only in terms of a uniform access method to the data

resources from within a language, but also in terms of structure constructs that permit

the user to deal with objects in his or her environment rather than focusing on the details

of database description. Specifically, it should be noted that the interface to a distributed

DBMS does not need to be a programming language but can be a graphical user

interface, a natural language interface, and even a voice system.

A hierarchy of these transparencies is shown in Figure 3 .1. It is not always easy

delineate clearly the levels of transparency, but such a figure serves an important

33

..

instructional purpose even if it is not fully correct. To complete the picture we have

added a "language transparency" layer, although it is not discussed in this chapter. With

this generic layer, users have high-level access to the data (e.g., fourth-generation

languages, graphical user interfaces, natural language access, etc.).

Figure 3.1: Layers of Transparency

3.2 DBMS STANDARDIZATION

In this section we discuss the standardization efforts related to DBMSs because

of the close relationship between the architecture of a system and the reference model of

that system, which is developed as a precursor to any standardization activity. For all

practical purposes, the reference model can be thought of as an idealized architectural

model of the system. It is defined as "a conceptual framework whose purpose is to

divide standardization work into manageable pieces, and to show at a general level how

these pieces are related with each other". Even though there is some controversy as to

the desirability of standardization of DBMSs, it is a useful activity to the extent that it

can establish uniform interfaces to the users and to other higher-level software

developers. A reference model (and therefore system architecture) can be described

according to three different approaches:

1. Based on components. The components of the system are defined together

with the interrelationships between components. Thus a DBMS consists of a number of

components, each of which provides some functionality. Their orderly and well-defined

interaction provides total system functionality. This is a desirable approach if the

ultimate objective is to design and implement the system under consideration. On the

other hand, it is difficult to determine the functionality of a system by examining its

34

•

components. The DBMS standard proposals prepared by the Computer Corporation of

America for the National Bureau of Standards ([CCA, 1980] and [CCA, 1982]) fall

within this category.

2. Based on functions. The different classes of users are identified and the

functions that the system will perform for each class are defined. The system

specifications within this category typically specify a hierarchical structure for user

classes. This results in hierarchical system architecture with well-defined interfaces

between the functionalities of different layers. The advantage of the functional approach

is the clarity with which the objectives of the system are specified. However, it gives

very little insight into how these objectives will be attained or the level of complexity of

the system.

3. Based on data. The different types of data are identified, and an architectural

framework is specified which defines the functional units that will realize or use data

according to these different views. Since data is the central resource that a DBMS

manages, this approach is claimed to be the preferable choice for standardization

activities [DAFTG, 1986]. The advantage of the data approach is the central importance

it associates with the data resource. This is significant from the DBMS viewpoint since

the fundamental resource that a DBMS manages is data. On the other hand, it is

impossible to specify an architectural model fully unless the functional modules are also

described. The ANSI/SP ARC discussed in the next section belongs in this category.

Even though three distinct approaches are identified, one should never lose sight

of the interplay among them. As indicated in a report of the Database Architecture

Framework "Task Group of ANSI [DAFTG, 1986], all three approaches need to be used

together to define an architectural model, with each point of view serving to focus our

attention on different aspects of an architectural model.

3.3 ANSI I SP ARC ARCHITECTURE

Two important events in the late 1960s and early 1970s influenced the

standardization activities in database management. The Database Task Group (DBTG)

of the C of DASYL Systems Committee issued two reports, one providing a survey of

DBMSIB, and the second describing the features of a network DBMS. The second

35

..

event is the publication of Cod's initial papers on the relational data model. The

existence of two alternative data models competing for dominance created considerable

discussion not only of the merits of each, but also of the features of the next generation

DBMSs.

In late 1972, the Computer and Information Processing Committee (X3) of the

American National Standards Institute (ANSI) established a Study Group on Database

Management Systems under the auspices of its Standards Planning and Requirements

Committee (SPARC). The mission of the study group was to study the feasibility of

setting up standards in this area, as well as determining which aspects should be

standardized if it was feasible. The study group issued its interim report in 1975 and its

final report in 1977. The architectural framework proposed in these reports came to be

known as the 'ANSI/SP ARC architecture, 11 its full title being 'ANSI/X3/SP ARC DBMS

Framework. 11 The study group proposed that the interfaces be standardized, and defined

an architectural framework that contained 43 interfaces, 14 of which would deal with

the physical storage subsystem of the computer and therefore not be considered

essential parts of the DBMS architecture.

One of alternative approaches to standardization, the ANSI/SP ARC architecture

is claimed, to be based on the data organization. It recognizes three views of data: the

external view, which is that of the user, who might be a programmer; the internal view,

that of the system or machine; and the conceptual view, that of the enterprise. For each

of these views, an appropriate schema definition is required. Figure 3 .2 depicts the

ANSI/SP ARC architecture from the data organization perspective.

At the lowest level of the architecture is the internal view, which deals with the

physical definition and organization of data. The location of data on different storage

devices and the access mechanisms used to reach and manipulate data are the issues

dealt with at this level. At the other extreme is the external view, which is concerned

with how users view the database. An individual user's view represents the portion of

the database that will be accessed by that user as well as the relationships that the user

would like to see among the data. A view can be shared among a number of users, with

the collection of user views making up the external schema. In between these two

extremes is the conceptual schema, which is an abstract definition of the database. It

36

•

the "real world" view of the enterprise being modeled in the database. As such, it is

supposed to represent the data and the relationships among data without considering the

requirements of individual applications or the restrictions of the physical storage media.

In reality, however, it is not possible to ignore these requirements completely, due to

performance reasons.

E~t~tai
$-chem~

' . . . iMC!:. . , "sill'",:

C¢noopwid
Sehcm.tt

krtetotd
.S¢h~ma

lntsm:~t
~.

Figure 3.2: The ANSI/SP ARC Architecture

These three levels is accomplished by mappings that specify how a definition at
one can be obtained from a definition at another level.

Example:

Let us consider the engineering database example we have been using and

indicate how it can be described using a fictitious DBMS that conforms to the

ANSI/SP ARC architecture. Remember that we have four relations: E, S, J, and G. The

conceptual schema should describe each relation with respect to its attributes and its

key. The description might look like the following: 2

RELATION EMPLOYEE [

KEY= {EMPLOYEE_NUMBER}

ATTRIBUTES = {

EMPLOYEE_ NUMBER: CHARACTER (9)

EMPLOYEE NAME : CHARACTER(l5)

TITLE : CHARACTER (10)

}

]

RELATION TITLE.SALARY [

37

•

KEY= {TITLE}
ATTRIBUTES = {
TITLE
SALARY
}
]
RELATION PROJECT [
KEY= {PROJECT.NUMBER}
ATTRIBUTES = {
PROJECT.NUMBER
PROJECT NAME
BUDGET
}

: CHARACTER (10)
: NUMERIC (6)

: CHARACTER (7)
: CHARACTER (20)

: NUMERIC (7)

RELATION ASSIGN1\1ENT [
KEY= {EMPLOYEE_ NUMBER, PROJECT _NUMBER}
ATTRIBUTES = {
EMPLOYEE_ NUMBER: CHARACTER (9)
PROJECT.NUMBER : CHARACTER (7)
RESPONSIBILITY : CHARACTER (IO)
DURATION : NUMERIC (3)
}
]

We used more descriptive names for the relations and the attributes. This is not

the essential issue; a more important aspect is that these names can be different at all

three levels, as we demonstrate below.

At the internal level, the storage details of these relations are described. Let us

assume that the EMPLOYEE relation is stored in an indexed file, where the index is

defined on the key attribute (i.e., the EMPLOYEE-NUMBER) called EMINX.3 Let us

also assume that we associate a HEADER field, which might contain flags (delete,

update, etc.) and other control information. Then the internal schema definition of the

relation may be as follows:

INTERNAL_ REL EMP [

INDEX

FIELD= {

E#

E:NAME

TIT

}

]

ONE# CALL EMINX

: BYTE(9)

: BYTE(15)

: BYTE (10)

38

•

We have used similar syntaxes for both the conceptual and the internal

descriptions. This is done for convenience only and does not imply the true nature of

languages for these functions.

Finally, let us consider the external views, which we will describe using SQL

notation. We consider two applications: one that calculates the payroll payments for

engineers, and a second that produces a report on the budget of each project.4 Notice

that for the first application, we need attributes from both the EMPLOYEE and the

TITLE-SALARY relations. In other words, the view consists of a join, which can be

defined as
CREATE VIEW PAYROLL (ENO, ENAME, SAL)

AS SELECT EMPLOYEE.EMPLOYEE_ NUMBER,

EMPLOYEE. EMPLOYEE_NAME,

TITLE SALARY.SALARY

FROM EMPLOYEE, TITLE_ SALARY

WHERE EMPLOYEE.TITLE=TITLE SALARY.TITLE

The second application is simply a projection of the PROJECT relation, which

can be specified as,
CREATE VIEW BUDGET (PNAME, BUD)

AS SELECT PROJECT.NAME, BUDGET

FROM PROJECT

The investigation of the ANSI/SP ARC architecture with respect to its functions

results in a considerably more complicated view, the square boxes represent processing

functions, whereas the hexagons are administrative roles. The arrows indicate data,

command, program, and description flow, whereas the "I" shaped bars on them

represent interfaces.

The major component that permits mapping between different data

organizational views is the data dictionary/directory (depicted as a triangle), which is a

meta database. It should at least contain schema and mapping definitions. It may also

contain usage statistics, access control information, and the like. It is clearly seen that

the data dictionary/directory serves as the central component in both processing

different schemas and in providing mappings among them.

39

•

In addition to these three classes of administrative user defined by the roles,

there are two more, the application programmer and the system programmer. Two more

user classes can be defined, namely casual users and novice end users. Casual users

occasionally access the database to retrieve and possibly to update information. Such

users are aided by the definition of external schemas and by an easy-to-use query

language. Novice users typically have no knowledge of databases and access

information by means of predefined menus and transactions (e.g., banking machines).

Figure 3.3: Partial Schematic of the ANSI/SPARC Architectural Model

40

•

3.4 ARCHITECTURAL MODELS FOR DISTRIBUTED DBMSS

The intuitive and logical nature of the ANSI/SP ARC architecture has prompted

many researchers to investigate ways of extending it to the distributed environment. The

proposals range from simple extensions, such as that described by [Mohan and Yeh,

1978], to very complicated ones, such as Schreiber's model [Schreiber, 1977], and

anything in between. In this book we use a simple extension of the ANSI/SP ARC

architecture.
Before discussing the specific architecture, however, we need to discuss the

possible ways in which multiple databases may be put together for sharing by multiple

DBMSs. We use a classification that organizes the systems as characterized with respect

to (1) the autonomy oflocal systems, (2) their distribution, and (3) their heterogeneity.

Ohtht;!tft>ild;
~}f:it(l,~tt>"~,)/)i«,$
r011ms:fai:'ft1Mw
Zi.~t.ij~=e,

~i,)l{ifQQCll)~(lii s
mtJlti{t~'.i11b.ase
'.;.{~~if-~~ (.~1:.

Figure 3.4 : DBMS Implementation Alternatives

Autonomy refers to the distribution of control, not of data. It indicates the degree

to which individual DBMSs can operate independently. Autonomy is a function of a

number of factors such as whether the component systems exchange information,

whether they can independently execute transactions, and whether one is allowed to

modify them. Requirements of an autonomous system have been specified in a variety

of ways. For example, lists these requirements as follows:

41

•

1. The local operations of the individual DBMSs are not affected by their

participation in the multi database system.
2. The manner in which the individual DBMSs process queries and optimize

them should not be affected by the execution of global queries that access multiple

databases.
3. System consistency or operation should not be compromised when individual

DBMSs join or leave the multi-database confederation.
On the other hand, [Du and Elmagarmid, 1989] specifies the dimensions of

autonomy as:
1. Design autonomy: Individual DBMSs are free to use the data models and

transaction management techniques that they prefer.
2. Communication autonomy: Each of the individual DBMSs is free to make its

own decision as to what type of information it wants to provide to the other DBMSs or

to the software that controls their global execution.
3. Execution autonomy: Each DBMS can execute the transactions that are

submitted to it in any way that it wants to.
In the taxonomy that we consider in the book, we will use a classification that

covers the important aspects of these features. One alternative is tight integration where

a single-image of the entire database is available to any user who wants to share the

information, which may reside in multiple databases. From the users' perspective, the

data is logically centralized in one database. In these tightly integrated systems, the data

managers are implemented so that one of them is in control of the processing of each

user request even if that request is serviced by more than one data manager. The data

managers do not typically operate as independent DBMSs even though they usually

have the functionality to do so.
Next we identify semiautonomous systems that consist of DBMSs that can (and

usually do) operate independently, but have decided to participate in a federation to

make their local data sharable. Each of these DBMSs determines what parts of their

own database they will make accessible to users of other DBMSs. They are not fully

autonomous systems because they need to be modified to enable them to exchange

information with one another.
The last alternative that we consider is total isolation where the individual

systems are stand-alone DBMSs, which know neither of the existence of other DBMSs

nor how to communicate with them. In such systems, the processing of user transactions

42

•

that access multiple databases is especially difficult since there is no global control over

the execution of individual DBMSs.
Whereas autonomy refers to the distribution of control, the distribution

dimension of the taxonomy deals with data. We consider two cases, namely, either the

data is physically distributed over multiple sites that communicate with each other over

some form of communication medium or it is stored at only one site.
Heterogeneity may occur in various forms in distributed systems, ranging from

hardware heterogeneity and differences in networking protocols to variations in data

managers. The important ones from the perspective of this book relate to data models,

query languages, and transaction management protocols. Representing data with

different modeling tools creates heterogeneity because of the inherent expressive

powers and limitations of individual data models. Heterogeneity in query languages not

only involves the use of completely different data access paradigms in different data

models (set-at-a-time access in relational systems versus record-at-a-time access in

network and hierarchical systems), but also covers differences in languages even when

the individual systems use the same data model. Different query languages that use the

same data model often select very different methods for expressing identical requests

(e.g., DB2 uses SQL, while INGRES uses QUEL).6
Let us consider the architectural alternatives starting at the origin in Figure 3. 4

and moving along the autonomy dimension. The first classes of systems are those which

are logically integrated. Such systems can be given the generic name composite

systems. If there is no distribution or heterogeneity, the system is a set of multiple

DBMSs that are logically integrated. There are not many examples of such systems, but

they may be suitable for shared-everything multiprocessor systems. If heterogeneity is

introduced, one has multiple data managers that are heterogeneous but provide an

integrated view to the user. In the past, some work was done in this class where systems

were designed to provide integrated access to network, hierarchical, and relational

databases residing on a single machine. The more interesting case is where the database

is distributed even though an integrated view of the data is provided to users.

Next in the autonomy dimension are semiautonomous systems, which are

commonly, termed federated DBMS. As specified before, the component systems in a

federated environment have significant autonomy in their execution, but their

participation in a federation indicate that they are willing to cooperate with others in

executing user requests that access multiple databases. Similar to logically integrated

43

systems discussed above, federated systems can be distributed or single-site,

homogeneous or heterogeneous.

If we move to full autonomy, we get what we call the class of multi database

system (MDBS) architectures. Without heterogeneity or distribution, an MDBS is an

interconnected collection of autonomous databases. A multi database management

system (multi-DBMS) is the software that provides for the management of this

collection of autonomous databases and transparent access to it. If the individual

databases that make up the MDBS are distributed over a number of sites, we have a

distributed MDBS. The organization of a distributed MDBS as well as its management

is quite different from that of a distributed DBMS. We discuss this issue in more detail

in the upcoming sections. At this point it suffices to point out that the fundamental

difference is one of the levels of autonomy of the local data managers. Centralized or

distributed multi database systems can be homogeneous or heterogeneous.

The fundamental point of the foregoing discussion is that the distribution of

databases, their possible heterogeneity, and their autonomy are orthogonal issues. Since

our concern in this book is on distributed systems, it is more important to note the

orthogonal between autonomy and heterogeneity. Thus it is possible to have

autonomous distributed databases that are not heterogeneous. In that sense, the more

important issue is the autonomy of the databases rather than their heterogeneity. In other

words, if the issues related to the design of a distributed multi database are resolved,

introducing heterogeneity may not involve significant additional difficulty. This, of

course, is true only from the perspective of database management; there may still be

significant heterogeneity problems from the perspective of the operating system and the

underlying hardware.

It is fair to claim that the fundamental issues related to multi database systems

can be investigated without reference to their distribution. The additional considerations

that distribution brings, in this case, are no different from those of logically integrated

distributed database systems. Therefore, in this chapter we consider architectural

models of logically integrated distributed DBMSs and multi database systems.

3 .4.1 Distributed DBMS Architecture

Let us start the description of the architecture by looking at the data

organizational view. We first note that the physical data organization on each machine

may be, and probably is, different. This means that there needs to be an individual

44

•

internal schema definition at each site, which we call the local internal schema (LIS).

The enterprise view of the data is described by the global conceptual schema (GCS),

which is global because it describes the logical structure of the data at all the sites.

This architecture model, depicted in Figure 3.5, provides the levels of

transparency discussed. Data independence is supported since the model is an extension

of ANSI/SP ARC, which provides such independence naturally. Location and replication

transparencies are supported by the definition of the local and global conceptual

schemas and the mapping in between. Network transparency, on the other hand, is

supported by the definition of the global conceptual schema. The user queries data

irrespective of its location or of which local component of the distributed database

system will service it. As mentioned before, the distributed DBMS translates global

queries into a group of local queries, which are executed by distributed DBMS

components at different sites that communicate with one another.

LJS1 us:
2

Figure 3.5: Distributed Database Reference Architecture

One component handles the interaction with users, and another deals with the

storage. The first major component, which we call the user processor, consists of four

elements:
1. The user interface handler is responsible for interpreting user commands as

they come in, and formatting the result data as it is sent to the user.

2. The semantic data controller uses the integrity constraints and authorizations

that are defined as part of the global conceptual schema to check if the user query can

be processed.

45

•

. -:,.~'.'~\ Eifh:l,,,tt1~:,, } ~:*.~:~~~~··

Figure 3.6: Functional Schematic of an Integrated Distributed DBMS

46

USER

ytem
fe$~

User
·r~uo.sm

USEcR
PROCESSOR

Extemal
&heina

Gi<tbel
Con:~ptual

C:tri/ .

1g~~5S$ORJ"
\J)(~f

Cooooptual
8c:hti:lf' ..

. f• -~System
log

RunS:!!:FrtH l.<K:~::1at

Figure 3. 7: Components of a Distributed DBMS

3. The global query optimizer and decomposer determine an execution strategy to

minimize a cost function, and translate the global queries into local ones using the

global and local conceptual schemas as well as the global directory/dictionary. The

global query optimizer is responsible, among other things, for generating the best

strategy to execute distributed join operations.

47

4. The distributed execution monitor coordinates the distributed execution of the

user request. The execution monitor is also called the distributed transaction manager.

In executing queries in a distributed fashion, the execution monitors at various sites

may, and usually do, communicate with one another.

The second major component of a distributed DBMS is the data processor and

consists of three elements:

1. The local query optimizer, which actually acts as the access path selector, is

responsible for choosing the best access path7 to access any data item.

2. The local recovery manager is responsible for making sure that the local

database remains consistent even when failures occur.

3. The run-time support processor physically accesses the database according to

the physical commands in the schedule generated by the query optimizer. The run-time

support processor is the interface to the operating system and contains the database

buffer (or cache) manager, which is responsible for maintaining the main memory

buffers and managing the data accesses.

3.4.2 MDBS Architecture

The differences in the level of autonomy between the distributed multi DBMSs

and distributed DBMSs are also reflected in their architectural models. The fundamental

difference relates to the definition of the global conceptual schema. In the case of

logically integrated distributed DBMSs, the global conceptual schema defines the

conceptual view of the entire database, while in the case of distributed multi-DBMSs, it

represents only the collection of some of the local databases that each local DBMS

wants to share. Thus the definition of a global database is different in MDBSs than in

distributed DBMSs. In the latter, the global database is equal to the union of local

databases, whereas in the former it is only a subset of the same union. There are even

arguments as to whether the global conceptual schema should even exist in multi

database systems. This question forms the basis of our architectural discussions in this

section.

Models using a global conceptual schema: In a MDBS, the GCS is defined by

integrating either the external schemas of local autonomous databases or parts of their

local conceptual schemas. Furthermore, users of a local DBMS define their own views

on the local database and do not need to change their applications if they do not want to

access data from another database. This is again an issue of autonomy.

48

•

Designing the global conceptual schema in multi database systems involves the

integration of either the local global conceptual schemas or the local external schemas.

A major difference between the design of the GCS in multi-DBMSs and in logically

integrated distributed DBMSs is that in the former the mapping is from local conceptual

schemas to a global schema. In the latter, however, mapping is in the reverse

GES GES

tES l ILES LES.i LES LES; LES

LCS l LCSn

US1 us n

Figure 3.8: MDBS Architecture with a GCS

Direction: This is because the design in the former is usually a bottom-up process,

whereas in the latter it is usually a top-down procedure. Further more, if heterogeneity

exists in the multi database system, a canonical data model has to be found to define the

GCS.

Once the GCS has been designed, views over the global schema can be defined

for users who require global access. It is not necessary for the GES and GCS to be

defined using the same data model and language; whether they do or not determines

whether the system is homogeneous or heterogeneous.

If heterogeneity exists in the system, then two implementation alternatives exist:

anilingual and multilingual. An anilingual multi-DBMS requires the users to utilize

possibly different data models and languages when both a local database and the global

database are accessed. The identifying characteristic of anilingual systems is that any

application that accesses data from multiple databases must do so by means of an

external view that is defined on the global conceptual schema. This means that the user

of the global database is effectively a different user than those who access only a local

49

---·-

•

database, utilizing a different data model and a different data language. Thus, one

application may have a local external schema (LES) defined on the local conceptual

schema as well as a global external schema (GES) defined on the global conceptual

schema. The different external view definitions may require the use of different access

languages. Figure 3. 8 actually depicts the data logical model of a anilingual database

system that integrates the local conceptual schemas (or parts of them) into a global

conceptual schema. Examples of such an architecture are the MUL TIBASE system

([Landers and Rosenberg, 1982] and [Smith et al., 1981]) Mermaid [Templeton et al.,

1987] and DDTS.

An alternative is multilingual architecture, where the basic philosophy is to

permit each user to access the global database (i.e., data from other databases) by means

of an external schema, defined using the language of the user's local DBMS. The GCS

definition is quite similar in the multilingual architecture and the anilingual approach,

the major difference being the definition of the external schemas, which are described in

the language of the external schemas of the local database. Assuming that the definition

is purely local, a query issued according to a particular schema is handled exactly as any

query in the centralized DBMSs. Queries against the global database are made using the

language of the local DBMS, but they generally require some processing to be mapped

to the global conceptual schema.

The multilingual approach obviously makes querying the databases easier from

the user's perspective. However, it is more complicated because we must deal

translation of queries at run time. The multilingual approach is used in Sirius-Delta and

in the HD-DBMS project.

Models without a global conceptual schema: The existence of a global

conceptual schema in a multi database system is a controversial issue. There are re-B

searchers who even define a multi database management system as one that manages

several databases without a global schema. It is argued that the absence of a GCS is a

significant advantage of multi database systems over distributed database systems. One

prototype system that has used this architectural model is the MRDSM project.

Identifies two layers: The local system layer and the multi database layer on top of it.

The local system layer consists of a number of DBMSs, which present to the multi

database layer the part of their local database they are willing to share with users of

other databases. This shared data is presented either as the actual local conceptual

50

schema or as a local external schema definition. If heterogeneity is involved, each of

these schemas, LCSi, may use a different data model.

·Mut~bat(;
«ayer
~·:~

looat ~yer ·fr-··"'-'"'""''~-·::·-···. -1
LCS1

Figure 3.9: :MOBS Architecture without a GCS

Above this layer, external views are constructed where each view may be

defined on one local conceptual schema or on multiple conceptual schemas. Thus the

responsibility of providing access to multiple (and maybe heterogeneous) databases is

delegated to the mapping between the external schemas and the local conceptual

schemas. This is fundamentally different from architectural models that use a global

conceptual schema, where this responsibility is taken over by the mapping between the

global conceptual schema and the local ones. This shift in responsibility has a practical

consequence. Access to multiple databases is provided by means of a powerful language

in which user applications are written.

Federated database architectures, which we discussed briefly, do not use a global

conceptual schema either. In the specific system described in, each local DBMS defines

an export schema, which describes the data it is willing to share with others. In the

terminology that we have been using, the global database is the union of all the export

schemas.

The component-based architectural model of a multi-DBMS is significantly

different from a distributed DBMS. The fundamental difference is the existence of full

fledged DBMSs, each of which manages a different database. The :MOBS provides a

layer of software that runs on top of these individual DBMSs and provides users with

the facilities of accessing various databases. Depending on the existence (or lack) of the

global conceptual schema or the existence of heterogeneity (or lack of it), the contents

51

•
., • :.,;, ~ ••.• .I, •• ~·// ~-~ - ·,,

of this layer of software would change significantly. Note that Figure 3.19;i~;i:esents a.,'\~

non distributed multi-DBMS. If the system is distributed, we would need ~~jepli£f!.!~}R~({ ~ ·

is simply another application that submits requests and receives answers.

3.5 GLOBAL DIRECTORY ISSUES

The discussion of the global directory issues is relevant only if one talks about a

distributed DBMS or a multi-DBMS that uses a global conceptual schema. Otherwise,

there is no concept of a global directory. If it exists, the global directory is an extension

of the dictionary as described in the ANSI/SP ARC report. It includes information about

the location of the fragments as well as the makeup of the fragments.

As stated earlier, the directory is itself a database that contains meta-data about

the actual data stored in the database. Therefore, the techniques with respect to

distributed database design also apply to directory management. Briefly, a directory

may be either global to the entire database or local to each site. In other words, there

might be a single directory containing information about all the data in the database, or

a number of directories, each containing the information stored at one site. In the latter

case, we might either build hierarchies of directories to facilitate searches, or implement

a distributed search strategy that involves considerable communication among the sites

holding the directories.

The second issue has to do with location. The directory may be maintained

centrally at one site or in a distributed fashion by distributing it over a number of sites.

Keeping the directory at one site might increase the load at that site, thereby

causing a bottleneck as well as increasing message traffic around that. site. Distributing

it over a number of sites, on the other hand, increases the complexity of managing

directories. In the case of multi-DBMSs, the choice is dependent on whether or not the

system is distributed. If it is, the directory is always distributed; otherwise of course, it

is maintained centrally.

The final issue is replication. There may be a single copy of the directory or

multiple copies. Multiple copies would provide more reliability, since the probability of

reaching one copy of the directory would be higher. Furthermore, the delays in

accessing the directory would be lower, due to less contention and the relative

52

•

proximity I of the directory copies. On the other hand, keeping the directory up to date

would be considerably more difficult, since multiple copies would need to be updated.

·y'3el'tl
r&:$(l0f'l$$$1

User
reqausts

Mutti .• DBMS
Layer

·DBMS:

Transatl®
Manager·

At)Covery
Manager

Reoovery
Mw:1age,r

Figure 3.10:Components of an :MDBS

53

Therefore, the choice should depend on the environment in which the system operates

and should be made by balancing such factors as the response-time requirements, the

size of the directory, the machine capacities at the sites, the reliability requirements, and

the volatility of the directory (i.e., the amount of change experienced by the database,

which would cause a change to the directory). Of course, these choices are valid only in

the case of a distributed DBMS. A non distributed multi-DBMS always maintains a

single copy of the directory, while a distributed one typically maintains multiple copies,

one at each site.

These three dimensions are orthogonal to one another. Even though some

combinations may not be realistic, a large number of them are. In Figure 3 .11 we have

designated the unrealistic combinations by a question mark. Note that the choice of an

appropriate directory management scheme should also depend on the query processing

and the transaction management techniques that will be used in subsequent chapters.

We will come back to this issue again.

Type

Loe.ala~ cen1rt11t L~ and dis~
ind no,"JMpj1Ql!!8Q $1d noompliC431ed

/ (?)~ /

· · Giob•landdisiributer;f
a,Jd notrtepltlllted

(?)

Replication
Global am:ldistribukid

antj' repl1eamd

Figure 3.11: Alternative Directory Management Strategies

54

•

CHAPTER FOUR

DISTRIBUTED DATABASE DESIGN

The design of a distributed computer system involves making decisions on the

placement of data and programs across the sites of a computer network, as well as

possibly designing the network itself. In the case of distributed DBMSs, the distribution

of applications involves two things: the distribution of the distributed DBMS software

and the distribution of the application programs that run on it. The former is not a

significant problem, since we assume that a copy of the distributed DBMS software

exists at each site where data is stored. In this chapter we do not concern ourselves with

application program placement either. Furthermore, we assume that the network has

already been designed, or will be designed at a later stage, according to the decisions

related to the distributed database design. We concentrate on distribution of data. It has

been suggested that the organization of distributed systems can be investigated along

three orthogonal dimensions [Levin and Morgan, 1975]:

1. Level of sharing

2. Behavior of access patterns

3. Level of knowledge on access pattern behavior

Acef)'ss
patter:n

··Partial
in(orm,1tion

0' Level of
know~

Complete
informatton ··

Figure 4.1: Framework of Distribution

55

•

Figure 4.1 depicts the alternatives along these dimensions. In terms of the level

of sharing, there are possibilities. First, there is no sharing: each application and its data

execute at one site, and there is no communication with any other program or access to

any data file at other sites. This characterizes the very early days of networking and is

probably not very common today. We then find the level of data sharing; all the

programs are replicated at all the sites, but data files are not. Accordingly, user requests

are handled at the site where they originate and the necessary data files are moved

around the network. Finally, in data-plus-program sharing, both data and programs may

be shared, meaning that a program at a given site can request a service from another

program at a second site, which, in turn, may have to access a data file located at a third

site.

Levin and Morgan draw a distinction between data sharing and data-plus

program sharing to illustrate the differences between homogeneous and heterogeneous

distributed computer systems. They indicate, correctly, that in a heterogeneous

environment it is usually very difficult, if not impossible, to execute a given program on

different hardware under a different operating system. It might, however, be possible to

move data around relatively easily.

Along the second dimension of access pattern behavior, it is possible to identify

two alternatives. The access patterns of user requests may be static, so that they do not

change over time, or dynamic. It is obviously considerably easier to plan for and

manage the static environments than would be the case for dynamic distributed systems.

Unfortunately, it is difficult to find many real-life distributed applications that would be

classified as static. The significant question, then, is not whether a system is static or

dynamic, but how dynamic it is. Incidentally, it is along this dimension that the

relationship between the distributed database design and query processing is

established.

The third dimension of classification is the level of knowledge about the access

pattern behavior. One possibility, of course, is that the designers do not have any

information about how users will access the database. This is a theoretical possibility,

but it is very difficult, if not impossible, to design a distributed DBMS that can

effectively cope with this situation. The more practical alternatives are that the

56

•

designers have complete information, where the access patterns can reasonably be

predicted and do not deviate significantly from these predictions, and partial

information, where there are deviations from the predictions.

The distributed database design problem should be considered within this

general framework. In all the cases discussed, except in the no-sharing alternative, new

problems are introduced in the distributed environments which are not relevant in a

centralized setting. In this chapter it is our objective to focus on these unique problems.

The outline of this chapter is as follows. In Section 4.1 we discuss briefly two

approaches to distributed database design: the top-down and the bottom-up design

strategies. The details of the top-down approach are given in Sections 4.3 and 4.4, while

the details of the bottom-up approach are postponed to another chapter. Prior to the

discussion of these alternatives, in Section 4.2 we present the issues in distribution

design.

4.1 ALTERNATIVE DESIGN STRATEGIES

Two major strategies that have been identified [Ceri et al., 1987] for designing

distributed databases are the top-down approach and the bottom-up approach. As the

names indicate, they constitute very different approaches to the design process. But as

any software designer knows, real applications are rarely simple enough to fit nicely in

either of these alternatives. It is therefore important to keep in mind that in most

database designs, the two approaches may need to be applied to complement one

another.

4.1.1 Top-Down Design Process

A framework for this process is shown in Figure 4.2. The activity begins with a

requirements analysis that defines the environment of the system and "elicits both the

data and processing needs of all potential database users" [Yao et al., 1982a]. The

requirements study also specifies where the final system is expected to stand with

respect to the objectives of a distributed DBMS as identified in Section 1.3. Tb

reiterates, these objectives are defined with respect to performance, reliability and

availability, economics, and expandability (flexibility).

57

•

The requirements document is input to two parallel activities: view design and

conceptual design. The view design activity deals with defining the interfaces for end

users. The conceptual design, on the other hand, is the process by which the enterprise

is examined to determine entity types and relationships among these entities. One can

possibly divide this process into two related activity groups [Davenport, 1981]: entity

analysis and functional analysis. Entity analysis is concerned with determining the

entities, their attributes, and the relationships among them. Functional analysis, on the

other hand, is concerned with determining the fundamental functions with which the

modeled enterprise is involved. The results of these two steps need to be cross

referenced to get a better understanding of which functions deal with which entities.

There is a relationship between the conceptual design and the view design. In

one sense, the conceptual design can be interpreted as being an integration of user

views. Even though this view integration activity is very important, the conceptual

model should support not only the existing applications, but also future applications.

View integration should be used to ensure that entity and relationship requirements for

all the views are covered in the conceptual schema.

In conceptual design and view design activities the user needs to specify the data

entities and must determine the applications that will run on the database as well as

statistical information about these applications. Statistical information includes the

specification of the frequency of user applications, the volume of various information ,

and the like. Note that from the conceptual design step come the definition of global

conceptual schema discussed in Section 4.3. We have not yet considered the

implications of the distributed environment; in fact, up to this point, the process is

identical to that in a centralized database design.

The global conceptual schema (GCS) and access pattern information

collected as a result of view .design are inputs to the distribution design step. The

objective at this stage, which is the focus of this chapter, is to design the local

conceptual schemas (LCSs) by distributing the entities over the sites of the distributed

system. It is possible, of course, to treat each entity as a unit of distribution. Given that

we use the relational model as the basis of discussion in this book, the entities

correspond to relations.

58

•

Requ,remonte
Analyi

S~tam Requiretrie11ts
CObl<!-ctivesJ · ·

User
Jnput

Concept ••.• al
Ola!osigrt

U~er

input

L.oc·li1· C(>nc:eprual
Sci,ran,~i

Physical
Oesi9n

I Feedoacit !Observation and I Feedback I
Monlloring

Figure 4.2: Top-Down Design process

Rather than distributing relations, it is quite common to divide them into

sub relations, called fragments, which are then distributed. Thus the distribution design

activity consists of two steps: fragmentation and allocation. These are the major issues

that are treated in this chapter, so we delay discussing them until later sections.

The last step in the design process is the physical design, which maps the local

conceptual schemas to the physical storage devices available at the corresponding sites.

The inputs to this process are the local conceptual schema and access pattern

information about the fragments in these.

59

•

It is well known that the design and development activity of any kind is an

ongoing process requiring constant monitoring and periodic adjustment and tuning. We

have therefore included observation and monitoring as a major activity in this process.

Note that one does not monitor only the behavior of the database implementation but

also the suitability of user views. The result is some form of feedback, which may result

in backing up to one of the earlier steps in the design.

4.1.2 Bottom-Up Design Process

Top-down design is a suitable approach when a database system is being

designed from scratch. Commonly, however, a number of databases already exist, and

the design task involves integrating them into one database. The bottom-up approach is

suitable for this type of environment. The starting point of bottom-up design is the

individual local conceptual schemas. The process consists of integrating local schemas

into the global conceptual schema.

4.2 DISTRIBUTION DESIGN ISSUES

In the preceding section we indicated that the relations in a database schema are

usually decomposed into smaller fragments, but we did not offer any justification or

details for this process. The objective ofthis section is to fill in these details.

The following set of interrelated questions covers the entire issue. We will there

fore seek to answer them in the remainder of this section.

• Why fragment at all?

• How should we fragment?

• How much should we fragment?

• Is there any way to test the correctness of decomposition?

• How should we allocate?

• What is the necessary information for fragmentation and allocation?

4.2.1 Reasons for Fragmentation

From a data distribution viewpoint, there is really no reason to fragment data.

After all, in distributed file systems, the distribution is performed on the basis of

60

•

enfolds. In fact, the earlier work dealt specifically with the allocation of files to nodes

on a computer network.

With respect to fragmentation, the important issue is the appropriate unit of

distribution. A relation is not a suitable unit, for a number of reasons. First, application

views are usually subsets of relations. Therefore, the locality of accesses of applications

is defined not on entire relations but on their subsets. Hence it is only natural to consider

subsets of relations as distribution units.

Second, if the applications that have views defined on a given relation reside at

different sites, two alternatives can be followed, with the entire relation being the unit of

distribution. Either the relation is not replicated and is stored at only one site, or it is

replicated at all or some of the sites where the applications reside. The former results in

an unnecessarily high volume of remote data accesses . The latter, on the other hand,

has unnecessary replication, which causes problems in executing updates (to be

discussed later) and may not be desirable if storage is limited.

Finally, the decomposition of a relation into fragments, each being treated as a

unit, permits a number of transactions to execute concurrently. In addition, the

fragmentation of relations typically results in the parallel execution of a single query by

dividing it into a set of sub queries that operate on fragments. Thus fragmentation

typically increases the level of concurrency and therefore the system throughput.

For the sake of completeness, we should also indicate the disadvantages of

fragmentation. If the applications have conflicting requirements which prevent

decomposition of the relation into mutually exclusive fragments, those applications

whose views are defined on more than. one fragment may suffer performance

degradation. It might, for example, be necessary to retrieve data from two fragments

and then take either their union or their join, which is costly. Avoiding this is a

fundamental fragmentation issue.

The second problem is related to semantic data control, specifically to integrity

checking. As a result of fragmentation, attributes participating in a dependency ma

decomposed into different fragments which might be allocated to different sites. In- ... -

•

case, even the simpler task of checking for dependencies would result in chasing after

data in a number of sites

4.2.2 Fragmentation Alternatives

Relation instances are essentially tables, so the issue is one of finding alternative

ways of dividing a table into smaller ones. There are clearly two alternatives for this:

dividing it horizontally or dividing it vertically.

Example 4.1
Figure 4.5 shows the J relation of Figure 4.3 partitioned vertically into two sub

relations, J 1 and h J 1 contains only the information about project budgets, whereas J2

contains project names and locations. It is important to notice that the key to the relation

(JNO) is included in both fragments.

The fragmentation may, of course, be nested. If the nestlings are of different

types, one gets hybrid fragmentation. Even though we do not treat hybrid fragmentation

as a primitive type of fragmentation strategies, it is quite obvious that many real-life

partitioning may be hybrid.

1
TITLE

e,
•E?•·
E3

E:4 .·~.·
E6

.. E7 .~.
.J~O...
¥.~ilb
A, •. 1-.os

J.Mi11o«:
·a, .. ca~
L.¢h..,
R, l'.).Q,Yis
.J. Jort4Hii

I· E~.E(:,g
• syc.i, .Aruit
Mech.; ie:i')Q,
Pl'OQrafflffl&r
$),151,Anal,
ei.ct, En9.
~.Er,w;
$'.!191. AnaL

(3

E"I .:u
E:2 J:i
Ez Ja
Ea J3
Ea: J4
E4 Je
a J2:
E6 J4
E7 J3
E8 .J3

Manager
il'nal)<st

An•b•st
evri~m;an t
Enw~neer
P~e:r
Manager

Man~
Enginee1:
Manager

12 ~· 6
10

1$
2.4
48
N
40

JN.O ·.

L
J1. 1 ·lii$lnlm~n~ttan.· .~:. .. . =:~~Oe~p;
J4

1 .. 5POQO .•. ,.. ~ts:e--

1 :=:. ::_i:
'.TtTLe

El.ililict ... Eng,
4;:J.yll-1;. Ariaf:
·~tt .. J=;!'"ig.;
:· pr:pg;arnm,e,r.

4Qo.00
;,40()o I
~7:00()
2~00~

Figure 4.3: Modified Example Database

62

•

J1

.JNQ

J1
J2

1,.1nal'ri•"lii'~
n.tiitaba.aa .oavelo •~.·
~· .. ··.··.·· ... ·.····.···.·.·.··.·.··p ~= ,::=~

i

BUDGET ··~
.Ja
J4.

CA,DlP~·
~lriteria~

aSSOQO
3100®

.New Yori<
.·t>aras

Figure 4.4: Example of Horizontal Partitioning

SUOGE.T JNO

Jl
J.2
J3
j4

150000
.1 "11::'t\t'I ••• ·:~

~50000
310000

.Jl
J2
JG
J4

Instrumentation .~11'$11

DatabaAe De\JeJCip. • New York
: CADICAM New Vork
MaintanMoe · Paris

Figure 4.5: Example of Vertical Partitioning

4.2.3 Degree of Fragmentation

The extent to which the database should be fragmented is an important decision

that affects the performance of query execution. In fact, the issues in Section 4.2.1

concerning the reasons for fragmentation constitute a subset of the answers to the

question we are addressing here. The degree of fragmentation goes from one extreme,

that is, not to fragment at all, to the other extreme, to fragment to the level of individual

topples (in the case of horizontal fragmentation) or to the level of individual attributes

(in the case of vertical fragmentation).

We have already addressed the adverse effects of very large and very small units

of fragmentation. What we need, then, is to find a suitable level of fragmentation which

is a compromise between the two extremes. Such a level can only be defined with

respect to the applications that will run on the database. The issue is, how? In general,

63

•

the applications need to be characterized with respect to a number of parameters.

According to the values of these parameters, individual fragments can be identified.

4.2.4 Correctness Rules of Fragmentation

It is important to note the similarity between the fragmentation of data for

distribution (specifically, vertical fragmentation) and the normalization of relations.

Thus fragmentation rules similar to the normalization principles can be defined.

We will enforce the following three rules during fragmentation, which, together.

ensure that the database does not undergo semantic change during fragmentation.

1. Completeness: If a relation instance R is decomposed into fragments RI, R2, ... , Rn.

each data item that can be found in R can also be found in one or more of R's. This

property, which is identical to the lossless decomposition property of normalization. is

also important in fragmentation since it ensures that the data in a global relation =
mapped into fragments without any loss [Grant, 1984]. Note that in the case o

horizontal fragmentation, the "item" typically refers to a topple, while in the case o

vertical fragmentation, it refers to an attribute.

2. Reconstruction: If a relation R is decomposed into fragments R1, R2, ... , Rn, it shoul

be possible to define a relational operator y such that

R = V R; VRi e FR

The operator V will be different for the different forms of fragmentation; it is important.

however, that it can be identified. The reconstruct ability of the relation from it

fragments ensures that constraints defined on the data in the form of dependencies are

preserved.

3. Disjoint ness: If a relation R is horizontally decomposed into fragments R1, R2, ... , Rn

and data item di is in Rj, it is not in any other fragment Rr (k -:t:- j). This criterion ensures

that the horizontal fragments are disjoint. If relation R is vertically decomposed, its

primary key attributes are typically repeated in all its fragments. Therefore, in case of

vertical partitioning, disjoint ness is defined only on the no primary key attributes of a

relation.

•

4.2.5 Allocation Alternatives

Assuming that the database is fragmented properly, one has to decide on the

allocation of the fragments to various sites on the network. When data is allocated, it

may either be replicated or maintained as a single copy. The reasons for replication are

reliability and efficiency of read-only queries. If there are multiple copies of a data item,

there is a good chance that some copy of the data will be accessible somewhere even

when system failures occur. Furthermore, read-only queries that access the same data

items can be executed in parallel since copies exist on multiple sites. On the other hand,

the execution of update queries cause trouble since the system has to ensure that all the

copies of the data are updated properly. Hence the decision regarding replication is a

trade-off which depends on the ratio of the read-only queries to the update queries. This

decision affects almost all of the distributed DBMS algorithms and control functions.

A no replicated database (commonly called a partitioned database) contains

fragments that are allocated to sites, and there is only one copy of any fragment on the

network. In case of replication, either the database exists in its entirety at each site (fully

replicated database), or fragments are distributed to the sites in such a way that copies

of a fragment may reside in multiple sites (partially replicated database). In the latter the

number of copies of a fragment may be an input to the allocation algorithm or a

decision variable whose value is determined by the algorithm. Figure 4.6 compares

these three replication alternatives with respect to various distributed DBMS functions.

Puu r~p1ica.tron Partial repfi~.ati(>n Parti~toning

QUERY
PR<)CESSlNG

Same <:t\ttieulty
• 1 •

OIREOTORV
MANAGE.ME:NT

Easy or
non,a)(.istent

.. 7 . ..
Same diflitillltY

·coNC.URRENCV
OONTFLOL .. easy

RELIABIUTV Very high High Low

Possible appflcatfon P'tealistic Poslilble applicatlQn

Figure 4.6: Comparison of Replication Alternatives

65

•

4. 2. 6 Information Requirements

One aspect of distribution design is that too many factors contribute to an

optimal design. The logical organization of the database, the location of the

applications, the access characteristics of the applications to the database, and the

properties of the computer systems at each site all have an influence on distribution

decisions. This makes it very complicated to formulate a distribution problem.

The information needed for distribution design can be divided into four

categories: database information, application information, communication network

information, and computer system information. The latter two categories are completely

quantitative in nature and are used in allocation models rather than in fragmentation

algorithms. We do not consider them in detail here. Instead, the detailed information

requirements of the fragmentation and allocation algorithms are discussed in their

respective sections.

4.3 FRAGMENTATION

In this section we present the various fragmentation strategies and algorithms.

As mentioned previously, there are two fundamental fragmentation strategies:

horizontal and vertical. Furthermore, there is a possibility of nesting fragments in a

hybrid fashion.

4.3.1 Horizontal Fragmentation

As we explained earlier, horizontal fragmentation partitions a relation along its

topples. Thus each fragment has a subset of the topples of the relation. There are two

versions of horizontal partitioning: primary and derived. Primary horizontal

fragmentation of a relation is performed using predicates that are defined on that

relation. Derived horizontal fragmentation, on the other hand, is the partitioning of a

relation that result from predicates being defined on another relation.

Later in this section we consider an algorithm for performing both of these

fragmentations. However, first we investigate the information needed to carry out

horizontal fragmentation activity.
Information requirements of horizontal fragmentation

66

•

Database Information: The database information concerns the global

conceptual schema. In this context it is important to note how the database relations are

connected to one another, especially with joins. In the relational model, these

relationships are also depicted as relations. However, in other data models, such as the

entity-relationship (E-R) model [Chen, 1976], these relationships between database

objects are depicted explicitly. In [Cheri et al., 1983] the relationship is also modeled

explicitly, within the relational framework, for purposes of the distribution design. In

the latter notation, directed links are drawn between relations that are related to each

other by an equip-join operation.

Example 4.2
The links between database objects (i.e., relations in our case) should be quite

familiar to those who have dealt with network models of data. In the relational model

they are introduced as join graphs, which we discuss in detail in subsequent chapters on

query processing. We introduce them here because they help to simplify the

presentation of the distribution models we discuss later.

The relation at the tail of a link is called the owner of the link and the relation at

the head is called the member [Cheri et al., 1983]. More commonly used terms, within

the relational framework, are source relation for owner and target relation for member.

Let us define two functions: owner and member, both of which provide mappings from

the set of links to the set of relations. Therefore, given a link, they return the member or

owner relations of the link, respectively.

JNO, J.NAME. BUDGET, l...OC

Figure 4.7: Expression of Relationships among Relations Using Links

67

..
Example 4.3
Given link L1 of Figure 4.7, the owner and member functions have the following

values:
Owner (L1) = S

Member (L1) = E

The quantitative information required about the database is the cardinality of

each relation R, denoted card (R).

Application Information: As indicated previously in relation to Figure 4.2, both

qualitative and quantitative information is required about applications. The qualitative

information guides the fragmentation activity, whereas the quantitative information is

incorporated primarily into the allocation models.

The fundamental qualitative information consists of the predicates used in user

queries. If it is not possible to analyze all of the user applications to determine these

predicates, one should at least investigate the most "important" ones. It has been

suggested that as a rule of thumb, the most active 20% of user queries account for 80%

of the total data accesses [Wielder-hold, 1982]. This "80/20 rule" may be used as a

guideline in carrying out this analysis.

At this point we are interested in determining simple predicates. Given a relation

R(A1,A2, ... , An), where A{ is an attribute defined over domain Di, a simple predicate pj

defined on R has the form

Pj: A 8 Value
Where 9 e {=, <, -::t-, :::::, >,~} and Value is chosen from the domain of Ai (Value e

Di). We use Pr, , to denote the set of all simple predicates defined on a relation R, The

members of Pr, are denoted by pij.

Primary horizontal fragmentation: Before we present a formal algorithm for

horizontal fragmentation, we should intuitively discuss the process for both primary and

derived horizontal fragmentation. A primary horizontal fragmentation is defined by a

selection operation on the owner relations of a database schema. Therefore, given

relation R, its horizontal fragments are given by

Ri =crFi,(Ri), 1 ::;; J ::;; w

68

Where Fj is the selection formula used to obtain fragment R;. Note that if Fj is

in conjunctive normal form, it is a midterm predicate (mij). The algorithm we discuss

will, in fact, insist that F, be a midterm predicate.

Derived horizontal fragmentation: A derived horizontal fragmentation is defined

on a member relation of a link according to a selection operation specified on its owner.

It is important to remember two points. First, the link between the owner and the

member relations is defined as an equip-join. Second, an equip-join can be implemented

by means of semi joins. This second point is especially important for our purposes,

since we want to partition a member relation according to the fragmentation of its

owner, but we also want the resulting fragment to be defined only on the attributes of

the member relation.

Accordingly, given a link L where owner (L) = S and member (L) = R, the

derived horizontal fragments ofR are defined as

Where w is the maximum number of fragments that will be defined on R, and Si

= CJFi (S), where Fi is the formula according to which the primary horizontal

Fragment Si is defined.

Example 4.4

Consider link Li in Figure 4.7, where owner (Li)= Sand member (Li)= E. Then

we can group engineers into two groups according to their salary: those making less

than or equal to $30,000, and those making more than $30,000. The two fragments Ei

and E2 are defined as follows:

E1 = E 1>< S1

Bi = E 1>< S2

Where

S1 = CJ SAL~ 3oooo(S)

S2 = CJ SAL > 3oooo(S)

69

•

The result of this fragmentation is depicted in Figure 4.8

ENOI ENAME TITLE ENO

ElectEtig.
Syst1'nB1.
Syst. An11L
Elect Eng.
Quit.Anal .• ~,: ,. ··' -~·

Ea I A .. Lee
E4 · J. Miler
i:1 •. FtOaVii

Me(:h.Eng.
Programmer
Mech.Eng.

E1
62
E5
E6
ea••

J.Doe
M. $.mit
B;Casey
t, et,1J
J. J.onea

Figure 4.8: Derived Horizontal Fragmentation of Relation E

To carry out a derived horizontal fragmentation, three inputs are needed: the set

of partitions of the owner relation, the member relation, and the set of semi join

predicates between the owner and the member. The fragmentation algorithm, then, is

quite trivial, so we will not present it in any detail.

There is one potential complication that deserves some attention. In a database

schema, it is common that there are more than two links into a relation R. In this case

there is more than one possible derived horizontal fragmentation of R. The decision as

to which candidate fragmentation to choose is based on two criteria:

1. The fragmentation with better join characteristics

2. The fragmentation used in more applications

Let us discuss the second criterion first. This is quite straightforward if we take

into consideration the frequency with which applications access some data. If possible,

one should try to facilitate the accesses of the "heavy" users so that their total impact on

system performance is minimized.

Applying the first criterion, however, is not that straightforward. Consider, for

example, the fragmentation we discussed. The effect of this fragmentation is that the

join of the E and S relations to answer the
Query is assisted (1) by performing it on smaller relations (i.e., fragments), and

(2) by potentially performing joins in a distributed fashion.

70

•

The first point is obvious. The fragments of E are smaller than E itself

Therefore, it will be faster to join any fragment of S with any fragment of E than to

work with the relations themselves. The second point, however, is more important and

is at the heart of distributed databases. If, besides executing a number of queries at

different sites, we can execute one query in parallel, the response time or throughput of

the system can be expected to improve. In the case of joins, this is possible under

certain circumstances. There is only one link coming in or going out of a fragment.

Such a join graph is called a simple graph. The advantage of a design where the join

relationship between fragments is simple is that the member and owner of a link can be

allocated to one site and the joins between different pairs of fragments can proceed

independently and in parallel.

Figure 4.9: Join Graph between Fragments

Unfortunately, obtaining simple join graphs may not always be possible. In that

case, the next desirable alternative is to have a design that results in a partitioned join

graph. A partitioned graph consists of two or more sub graphs with no links between

them. Fragments so obtained may not be distributed for parallel execution as easily as

those obtained via simple join graphs, but the allocation is still possible.

4.3.2 Vertical Fragmentation

Remember that a vertical fragmentation of a relation R produces fragments R1

,R2 ... , Rn , each of which contains a subset of R's attributes as well as the primary key

of R. The objective of vertical fragmentation is to partition a relation into a set of

smaller relations so that many of the user applications will run on only one fragment. In

this context, an "optimal" fragmentation is one that produces a fragmentation scheme

which minimizes the execution time of user applications that run on these fragments.

Vertical fragmentation has been investigated within the context of centralized

database systems as well as distributed ones. Its motivation within the centralized

context is as a design tool, which allows the user queries to deal with smaller relations,

71

•

thus causing a smaller number of pages. It has also been suggested that the most active

sub relations can be identified and placed in a faster memory subsystem in those cases

where memory hierarchies are supported.

Vertical partitioning is inherently more complicated than horizontal partitioning.

This is due to the total number of alternatives that are available. For example, in

horizontal partitioning, if the total number of simple predicates in Pr is n, there are 2n

possible midterm predicates that can be defined on it. In addition, we know that some of

these will contradict the existing implications, further reducing the candidate fragments

that need to be considered. In the case of vertical partitioning, however, if a relation has

m non primary key attributes, the number of possible fragments is equal to B(m), which

is the mth Bell number. For large values of m, B(m) ~mm; for example, for m=lO, B(m)

~ 115,000, for m=lS, B(m) ~ 109, for m=30, B(m) = 1023.

These values indicate that it is futile to attempt to obtain optimal solutions to the

vertical partitioning problem; one has to resort to heuristics. Two types of heuristic

approaches exist for the vertical fragmentation of global relations:

1. Grouping: starts by assigning each attribute to one fragment, and at each

step, joins some of the fragments until some criteria is satisfied. Grouping was first

suggested in [Hammer and Niamey, 1979] for centralized databases, and was used later

in [Sacra and Wielder-hold, 1985] for distributed databases.

2. Splitting: starts with a relation and decides on beneficial partitioning based

on the access behavior of applications to the attributes. The technique was first

discussed for centralized database design in [Hoofer and Severance, 1975]. It was then

extended to the distributed environment in [Nava the et al., 1984].

In what follows we discuss only the splitting technique, since it fits more

naturally within the top-down design methodology, and as stated in [Nava the et al.,

1984], since the "optimal" solution is probably closer to the full relation than to a set of

fragments each of which consists of a single attribute. Furthermore, splitting generates

non overlapping fragments whereas grouping typically results in overlapping fragments.

Within the context of distributed database systems, we are concerned with non

72

•

overlapping fragments, for obvious reasons. Of course, none overlapping refers only to

non primary key attributes.

There is a strong advantage to replicating the key attributes despite the obvious

problems it causes. If we now design the database so that the key attributes are part of

one fragment that is allocated to one site, and the implied attributes are part of another

fragment that is allocated to a second site, every update request that causes an integrity

check will necessitate communication among sites. Replication of the key attributes at

each fragment reduces the chances of this occurring but does not eliminate it

completely, since such communication may be necessary due to integrity constraints

that do not involve the primary key, as well as due to concurrency control.

One alternative to the replication of the key attributes is the use of topple

identifiers (Tills), which are system-assigned unique values to the topples of a relation.

Since Tills are maintained by the system, the fragments are disjoint as far as the user is

concerned.

Information requirements of vertical fragmentation: The major information

required for vertical fragmentation is related to applications. The following discussion,

therefore, is exclusively on what needs to be determined about applications that will run

against the distributed database. Since vertical partitioning places in one fragment those

attributes usually accessed together, there is a need for some measure that would define

more precisely the notion of "togetherness." This measure is the affinity of attributes,

which indicates how closely, related the attributes are. Unfortunately, it is not realistic

to expect the designer or the users to be able to easily specify these values. We now

present one way by which they can be obtained from more primitive data.

4.3.3 Hybrid Fragmentation

In most cases a simple horizontal or vertical fragmentation of a database schema

will not be sufficient to satisfy the requirements of user applications. In this case a

vertical fragmentation may be followed by a horizontal one, or vice versa, producing a

tree structured partitioning. Since the two types of partitioning strategies are applied one

after the other, this alternative is called hybrid fragmentation. It has also been named

mixed fragmentation or nested fragmentation.

73

R21 Rt1

Figure 4.10: Hybrid Fragmentation

A good example for the necessity of hybrid fragmentation is relation J, which we

have been working with. What we have, therefore, is a set of horizontal fragments, each

of which is further partitioned into two vertical fragments.

The number of levels of nesting can be large, but it is certainly finite. In the case

of horizontal fragmentation, one has to stop when each fragment consists of only one

tuple, whereas the termination point for vertical fragmentation is one attribute per

fragment. These limits are quite academic, however, since the levels of nesting in most

practical applications do not exceed 2. This is due to the fact that normalized global

relations already have small degrees and one cannot perform too many vertical

fragmentations before the cost of joins becomes very high.

We will not discuss in detail the correctness rules and conditions for hybrid

fragmentation, since they follow naturally from those for vertical and horizontal

fragmentations. For example, to reconstruct the original global relation in case of hybrid

fragmentation, one starts at the leaves of the partitioning tree and moves upward by

performing joins and unions. The fragmentation is complete if the intermediate and leaf

fragments are complete. Similarly, disjoint ness is guaranteed if intermediate and leaf

fragments are disjoint.

•

4.4 ALLOCATION

The allocation of resources across the nodes of a computer network is a problem

that has been studied extensively. Most of this work, however, does not address the

problem of distributed database design, but rather that of placing individual files on a

computer network. We will examine the differences between the two shortly. We first

need to define the allocation problem more precisely.

821 R1l

Figure 4.11: Reconstruction of Hybrid Fragmentation

75

•

CHAPTER FIVE

QUERY PROCESSING

The increasing success of relational database technology in data processing is

due, in part, to the availability of nonprocedural languages, which can significantly

improve application development and end-user productivity. By hiding the low-level

details about the physical organization of the data, relational database languages allow

the expression of complex queries in a concise and simple fashion. In particular, to

construct the answer to the query, the user does not precisely specify the procedure to

follow. This procedure is actually devised by a DBMS module, usually called a query

processor. This also relieves the user from query optimization, a time consuming task

that is best handled by the query processor, since it can exploit a large amount of useful

information about the data.

Because it is a critical performance issue, query processing has received

considerable attention in the context of both centralized and distributed DBMSs.

However, the query processing problem is much more difficult in distributed

environments than in centralized ones, because a larger number of parameters affect the

performance of distributed queries. In particular, the relations involved in a distributed

query may be fragmented and/or replicated, thereby inducing communication overhead

costs.

The context chosen is that of relational calculus and relational algebra, because

of their generality and wide use in distributed DBMSs, distributed relations are

implemented by fragments. Distributed database design is of major importance for

query processing since the definition of fragments is based on the objective of

increasing reference locality, and sometimes parallel execution for the most important

queries. The role of a distributed query processor is to map a high-level query (assumed

to be expressed in relational calculus) on a distributed database (i.e., a set of global

relations) into a sequence of database operations (of relational algebra) on relation

fragments. Several important functions characterize this mapping. First, the calculus

query must be decomposed into a sequence of relational operations called an algebraic

query. Second, the data accessed by the query must be localized so that the operations

on relations are translated to bear on local data (fragments). Finally, the algebraic query

76

•

on fragments must be extended with communication operations and optimized with

respect to a cost function to be minimized. This cost function typically refers to

computing resources such as disk I/Os, CPUs, and communication networks.

5.1 QUERY PROCESSING PROBLEM

The main function of a relational query processor is to transform a high-level

query (typically, in relational calculus) into an equivalent lower-level query (typically,

in some variation of relational algebra). The low-level query actually implements the

execution strategy for the query. The transformation must achieve both correctness and

efficiency. It is correct if the low-level query has the same semantics as the original

query, that is, if both queries produce the same result. The well-defined mapping from

relational calculus to relational algebra makes the correctness issue easy. But producing

an efficient execution strategy is more involved. A relational calculus query may have

many equivalent and correct transformations into relational algebra. Since each

equivalent execution strategy can lead to very different consumptions of computer

resources, the main difficulty is to select the execution strategy that minimizes resource

consumption.

Example 7.1

E(ENO, ENAME, TITLE)

G (ENO, JNO, RESP, DUR)

And the following simple user query:

"Find the names of employees who are managing a project"

The expression of the query in relational calculus using the SQL syntax is

SELECT ENAME

FROM E,G

WHERE E.ENO = G.ENO

AND RESP = "Manager''
Two equivalent relational algebra queries that are correct transformations of the

query above are

II ENAME (crRESP="Manager" AE.ENO=G.ENO (EX G))

and

II ENAME(E !><J ENO (crRESP = "Manager" (G)))

77

•

It is intuitively obvious that the second query, which avoids the Cartesian

product of E and G, consumes much less computing resource than the first and thus

should be retained.

In a centralized context, query execution strategies can be well expressed in an

extension of relational algebra. The main role of a centralized query processor is to

choose, for a given query, the best relational algebra query among all equivalent ones.

Since the problem is computationally intractable with a large number of relations

[Ibaraki and Kameda, 1984], it is generally reduced to choosing a solution close to the

optimum.

In a distributed system, relational algebra is not enough to express execution

strategies. It must be supplemented with operations for exchanging data between sites.

Besides the choice of ordering relational algebra operations, the distributed query

processor must also select the best sites to process data, and possibly the way data

should be transformed. This increases the solution space from which to choose the

distributed execution strategy, making distributed query processing significantly more

difficult.

5.2 OBJECTIVES OF QUERY PROCESSING

As stated before, the objective of query processing in a distributed context is to

trans form a high-level query on a distributed database, which is seen as a single

database by the users, into an efficient execution strategy expressed in a low-level

language on local databases. We assume that the high-level language is relational

calculus, while the low-level language is an extension of relational algebra with

communication operations. The different layers involved in the query transformation are

detailed in Section 7. 5. An important aspect of query processing is query optimization.

Because many execution strategies are correct transformations of the same high-level

query, the one that optimizes (minimizes) resource consumption should be retained.

A good measure of resource consumption is the total cost that will be incurred in

processing the query. Total cost is the sum of all times incurred in processing the

operations of the query at various sites and in inter site communication. Another good

measure is the response time of the query, which is the time elapsed for executing the

78

•

query. Since operations can be executed in parallel at different sites, the response time

of a query may be significantly less than its total cost.

In a distributed database system, the total cost to be minimized includes CPU,

1/0, and communication costs. The CPU cost is incurred when performing operations

on data in main memory. The I/0 cost is the time necessary for disk input/output

operations. This cost can be minimized by reducing the number of I/0 operations

through fast access methods to the data and efficient use of main memory (buffer

management). The communication cost is the time needed for exchanging data between

sites participating in the execution· of the query. This cost is incurred in processing the

messages (formatting/ de formatting), and in transmitting the data on the

communication network.

The first two cost components (1/0 and CPU cost) are the only factors

considered by centralized DBMSs. The communication cost component is probably the

most important factor considered in distributed databases. Most of the early proposals

for distributed query optimization assume that the communication cost largely

dominates local processing cost (1/0 and CPU cost), and thus ignore the latter. This

assumption is based on very slow communication networks (e.g., wide area networks

with a bandwidth of a few kilobytes per second) rather than on networks with disk

bandwidths. Therefore, the aim of distributed query optimization is simplified to the

problem of minimizing communication costs generally at the expense of local

processing. The advantage is that local optimization can be done independently using

the known methods for centralized systems. However, distributed processing

environments now exist where the communication network is much faster (e.g., local

area networks) and that can have a bandwidth comparable to that of disks. Therefore,

more recent research efforts consider a weighted combination of these three cost

components since they all contribute significantly to the total cost of evaluating a query.

Nevertheless, in distributed environments with high bandwidths, the overhead cost

incurred for communication between sites (e.g., software protocols) makes

communication cost still an important factor as important as 1/0 cost. For completeness,

let us consider the methods that minimize all cost components.

79

5.3 CHARACTERIZATION OF QUERY PROCESSORS

It is quite difficult to evaluate and compare query processors in the context of

both centralized systems and distributed systems because they may differ in many

aspects. In what follows, we list important characteristics of query processors that can

be used as a basis for comparison. The first four characteristics hold for both centralized

and distributed query processors, while the next four characteristics are particular to

distributed query processors.

5. 3 .1 Languages

Initially, most work on query processing was done in the context of relational

databases because their high-level languages give the system many opportunities for

optimization. The input language to the query processor can be based on relational

calculus or relational algebra. The former requires an additional phase to decompose a

query expressed in relational calculus into relational algebra. In a distributed context,

the output language is generally some internal form of relational algebra augmented

with communication primitives.
The operations of the output language are implemented directly in the system.

Query processing must perform efficient mapping from the input language to the output

language.

5 .3 .2 Types of Optimization

Conceptually, query optimization aims at choosing the best point in the solution

space of all possible execution strategies. An immediate method for query optimization

is to search the solution space, exhaustively predict the cost of each strategy, and select

the strategy with minimum cost. Although this method is effective in selecting the best

strategy, it may incur a significant processing cost for the optimization itself The

problem is that the solution space
Can be large; that is, there may be many equivalent strategies, even with a small

number of relations. The problem becomes worse as the number of relations increases.

Having high optimization cost is not necessarily bad, particularly if query optimization

is done once for many subsequent executions of the query. Therefore, the exhaustive

search approach is often used [Salinger et al., 1979].

80

•

One popular way of reducing the cost of exhaustive search is the use of

heuristics, whose effect is to restrict the solution space so that only a few strategies are

considered. In both centralized and distributed systems, a common heuristic is to

minimize the size of intermediate relations. This can be done by performing unary

operations first, and ordering the binary operations by the increasing sizes of their

intermediate relations. An important heuristic in distributed systems is to replace join

operations by combinations of semi joins to minimize data communication.

5.3.3 Optimization Timing

A query may be optimized at different times relative to the actual time of query

execution. Optimization can be done statically before executing the query or

dynamically as the query is executed. Static query optimization is done at query

compilation time. Thus the cost of optimization may be amortized over multiple query

executions.

Therefore, this timing is appropriate for use with the exhaustive search method.

Since the sizes of the intermediate relations of a strategy are not known until run time,

they must be estimated using database statistics. Errors in these estimates can lead to the

choice of sub optimal strategies.

Dynamic query optimization proceeds at query execution time. At any point of

execution, the choice of the best next operation can be based on accurate knowledge of

the results of the operations executed previously. Therefore, database statistics are not

needed to estimate the size of intermediate results. However, they may still be useful in

choosing the first operations. The main advantage over static query optimization is that

the actual sizes of intermediate relations are available to the query processor, thereby

minimizing the probability of a bad choice. The main shortcoming is that query

optimization, an expensive task, must be repeated for each execution of the query.

Hybrid query optimization attempts to provide the advantages of static query

optimization while avoiding the issues generated by inaccurate estimates. The approach

is basically static, but dynamic query optimization may take place at run time when high

difference between predicted sizes and actual size of intermediate relations is detected.

81

..

5 .3 .4 Statistics

The effectiveness of query optimization relies on statistics on the database.

Dynamic query optimization requires statistics in order to choose which operations

should be done first. Static query optimization is even more demanding since the size of

intermediate relations must also be estimated based on statistical information. In a

distributed database, statistics for query optimization typically bear on fragments, and

include fragment cardinality and size as well as the size and number of distinct values of

each attribute. To minimize the probability of error, more detailed statistics such as

histograms of attribute values are sometimes used at the expense of higher management

cost. The accuracy of statistics is achieved by periodic updating. With static

optimization, significant changes in statistics used to optimize a query might result in

query re optimization.

5.3.5 Decision Sites

When static optimization is used, either a single site or several sites may

participate in the selection of the strategy to be applied for answering the query. Most

systems use the centralized decision approach, in which a single site generates the

strategy. However, the decision process could be distributed among various sites

participating in the elaboration of the best strategy. The centralized approach is simpler

but requires knowledge of the entire distributed database, while the distributed approach

requires only local information. Hybrid approaches where one site makes the major

decisions and other sites can make local decisions are also frequent. For example, R *
[Williams et al., 1982] uses a hybrid approach.

5.3.6 Exploitation of the Network Topology

The network topology is generally exploited by the distributed query processor.

With wide area networks, the cost function to be minimized can be restricted to the data

communication cost, which is considered to be the dominant factor. This assumption

greatly simplifies distributed query optimization, which can be divided into two

separate problems: selection of the global execution strategy, based on inter site

communication, and selection of each local execution strategy, based on a centralized

query processing algorithm.

82

•

With local area networks, communication costs are comparable to 1/0 costs.

Therefore, it is reasonable for the distributed query processor to increase parallel

execution at the expense of communication cost. The broadcasting capability of some

local area networks can be exploited successfully to optimize the processing of join

operations ([Ozsoyoglu and Zhou, 1987] and [Wahl and Lien, 1985]). Other algorithms

specialized to take advantage of the network topology are presented in [Kerschberg et

al., 1982] for star networks and in [LaChimia, 1984] for satellite networks.

5.3.7 Exploitation of Replicated Fragments

Distributed queries expressed on global relations are mapped into quenes on

physical fragments of relations by translating relations into fragments. We call this

process localization because its main function is to localize the data involved in the

query. For reliability purposes it is useful to have fragments replicated at different sites.

Most optimization algorithms consider the localization process independently of

optimization. However, some algorithms exploit the existence of replicated fragments at

run time in order to minimize communication times. The optimization algorithm is then

more complex because there are a larger number of possible strategies.

5.3.8 Use of Semi joins

The semi join operation has the important property of reducing the size of the

operand relation. When the main cost component considered by the query processor is

communication, a semi join is particularly useful for improving the processing of

distributed join operations as it reduces the size of data exchanged between sites.

However, using semi joins may result in an increase in the number of messages and in

the local processing time. The early distributed DBMSs, such as SDD-1 [Bernstein et

al., 1981], which were designed for slow wide area networks, make extensive use of

semi joins. Some recent systems, such as R* [Williams et al., 1982], assume faster

networks and do not employ semi joins. Rather, they perform joins directly since using

joins leads to lower local processing costs. Nevertheless, semi joins are still beneficial

in the context of fast networks when they induce a strong reduction of the join operand,

therefore, some recent query processing algorithms aim at selecting an optimal

combination of joins and semi joins.

•

CONCLUSION

Distributed database system (DDBS) technology is the union of what appear to be

two diametrically opposed approaches to data processing: database system and computer

network technologies. Database systems have taken us from a paradigm of data

processing, in which each application defined and maintained its own data to one in

which the data is and administered centrally. This new orientation results in data

independence, whereby the application programs are immune to changes in the logical or

physical organization of the, and vice versa.

I presented the techniques that can be used for Distributed Database Design with

special emphasis on the fragmentation and allocation issues. There are a number of lines

of research that have been followed in distributed daatabase design.For example, Chang

has independently developed a theory of fragmentation [Chang and Cheng, 1980], and

allocation [Chang and Liu, 1982]. However, for its maturity of development, we have

chosen to develop this chapter along the track developed by Ceri, Pelagatti Navathe, and

Wiederhold. Our references to the literature by these authors reflect this quite clearly.

I hope that this project will be usefully for both future life and other people who

are interested in DISTRJBUTED DAT ABASE SYSTE •. ~.

84

•

REFERENCE

1. A. E. Abbadi, D. Skeen, and F. Cristian. An Efficent, Faculty-Tolerant Protocol for

Replicated Data Management.In Proc.4th ACM SIGACT-SIGMOD Symp. on Principles

of Database Systems, Portland, Oreg.,March 1985, pp. 215-229.

2. American National Standart for Information System. Database Language SQL. ANSI

X3.135-1986, October 1986.

3. K. Barker and M.T.Ozsu. Survey of Issues in Distributed Heterogeneous Database

Systems. Technical Report TR88-9, Edmonton, Alberta, Canada: Department of

Computing Science. University of Alberta 1988.

4. G. von Bochmann. Concepts for Distributed Systems Design. Berlin: Springer-Verlag,

1983.

5. P. Valduriez. Join Indices. ACM Trans. Database System (June 1987).

6. B. W. Wah and Y. N. Lien. Design of Distributed Databases on Local Computer

Systems. IEEE Trans. Software Eng. (July 1985),

7. B. Yormark. The ANSI/SPARC/DBMS Architecture. In ANSI/SPARC/DBMS

Model, D. A. Jardine (ed.), Amsterdam: North-Holland, 1977.

8. http://www.fbe.itu.edu.tr/docs/info/cources/kontbil.html

85

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	.
	iii
	1
	2

	Images
	Image 1

	Page 5
	Titles
	4.3 Fragmentation
	5 .1 Query Processing Problem
	5 .2 Objectives of Query Processing
	5 .3 Characterization of Query Processors

	Images
	Image 1

	Page 6
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 7
	Titles
	CHAPTER ONE
	DISTRIBUTED DATA PROCESSING

	Images
	Image 1

	Page 8
	Titles
	�

	Images
	Image 1

	Page 9
	Titles
	1.1 DISTRIBUTED DATABASE SYSTEM

	Images
	Image 1

	Page 10
	Titles
	Processor
	�Pr«$Z>t0r
	5

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Titles
	�
	re~1~;1

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Titles
	Communitauo.n

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 13
	Titles
	�
	1.2 ADV ANT AGES AND DISADVANTAGES OF DDBS
	1.2.1 Advantages

	Images
	Image 1

	Page 14
	Titles
	.

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Titles
	CHAPTER TWO
	DISTRIBUTED SYSTEMS AND DISTRIBUTED SOFTWARE
	� Increased Performance
	� Increased reliability
	� Increased flexibility

	Images
	Image 1

	Page 18
	Titles
	�
	2.2 PARALLEL OR CONCURRENT PROGRAMS
	~--
	Pr'9ctiJ ..

	Images
	Image 1
	Image 2
	Image 3

	Page 19
	Titles
	�
	pre::u::~$iieit.·ttt thread, e~~udn:g. tbe
	s:
	14

	Images
	Image 1
	Image 2

	Page 20
	Titles
	2.3 NETWORKED COMPUTING
	2.3 .1 Network Structure and the Remote Procedure Call Concept

	Images
	Image 1
	Image 2

	Page 21
	Titles
	�
	£0" ···1·
	I:::::==::: ---
	:,,..,.,

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 22
	Titles
	2.3.2 Distributed Computing Environment (DCE)

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 23
	Titles
	__ 3.3 Cooperative Computing

	Images
	Image 1

	Page 24
	Titles
	�
	NttWQtt···
	2.4 COMMUNICATION SOFTWARE SYSTEMS

	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1
	Image 2
	Image 3

	Page 28
	Titles
	�����

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 29
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12

	Page 30
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 31
	Titles
	M~l, ufacnrdng
	_.4.3 Groupware

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12

	Page 32
	Titles
	2.5 COMBINATION OF NETWORK COMPUTING AND

	Images
	Image 1
	Image 2

	Page 33
	Titles
	CHAPTER THREE
	ARCHITECTURE OF DBMS
	3.1 TRANSPARENCIES IN A DISTRIBUTED DBMS
	3 .1.1 Data Independence

	Images
	Image 1
	Image 2

	Page 34
	Titles
	..
	3.1.2 Network Transparency

	Images
	Image 1
	Image 2

	Page 35
	Titles
	�

	Images
	Image 1

	Page 36
	Titles
	3 .1.3 Replication Transparency
	3 .1.4 Fragmentation Transparency

	Images
	Image 1
	Image 2

	Page 37
	Titles
	�
	3 .1. 5 Provide Transparency

	Images
	Image 1
	Image 2

	Page 38
	Titles
	..

	Images
	Image 1
	Image 2

	Page 39
	Titles
	..
	3.2 DBMS STANDARDIZATION

	Images
	Image 1
	Image 2
	Image 3

	Page 40
	Titles
	3.3 ANSI I SP ARC ARCHITECTURE

	Images
	Image 1
	Image 2

	Page 41
	Titles
	..

	Images
	Image 1
	Image 2

	Page 42
	Titles
	�
]

	Images
	Image 1
	Image 2
	Image 3

	Page 43
	Titles
]
	}
]
	}
]

	Images
	Image 1
	Image 2

	Page 44
	Images
	Image 1
	Image 2
	Image 3

	Page 45
	Images
	Image 1
	Image 2
	Image 3

	Page 46
	Images
	Image 1
	Image 2
	Image 3

	Page 47
	Images
	Image 1
	Image 2
	Image 3

	Page 48
	Titles
	�

	Images
	Image 1
	Image 2

	Page 49
	Titles
	3 .4.1 Distributed DBMS Architecture

	Images
	Image 1
	Image 2

	Page 50
	Titles
	us:

	Images
	Image 1
	Image 2
	Image 3

	Page 51
	Titles
	~:*.~:~~~~··

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 52
	Titles
	1g~~5S$ORJ"
	RunS:!!:FrtH l.<K:~::1at

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 53
	Titles
	3.4.2 MDBS Architecture

	Images
	Image 1
	Image 2

	Page 54
	Titles
	tES l ILES
	LCS
	US1
	GES
	GES
	LES
	LES.i
	LCSn
	us
	LES

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 55
	Titles
	�

	Images
	Image 1

	Page 56
	Titles
	·Mut~bat(;
	looat
	LCS1

	Images
	Image 1
	Image 2
	Image 3

	Page 57
	Titles
	3.5 GLOBAL DIRECTORY ISSUES

	Images
	Image 1
	Image 2
	Image 3

	Page 58
	Titles
	Mutti .� DBMS
	Layer
	Transatl®
	·DBMS:
	Reoovery
	At)Covery

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 59
	Titles
	Type

	Images
	Image 1
	Image 2
	Image 3

	Page 60
	Titles
	CHAPTER FOUR
	DISTRIBUTED DATABASE DESIGN
	Acef)'ss
	Level of
	Complete
	··Partial
	0'

	Images
	Image 1
	Image 2
	Image 3

	Page 61
	Titles
	�

	Images
	Image 1
	Image 2

	Page 62
	Titles
	4.1 ALTERNATIVE DESIGN STRATEGIES
	4.1.1 Top-Down Design Process

	Images
	Image 1
	Image 2

	Page 63
	Images
	Image 1
	Image 2

	Page 64
	Titles
	59

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 65
	Titles
	4.1.2 Bottom-Up Design Process
	4.2 DISTRIBUTION DESIGN ISSUES
	4.2.1 Reasons for Fragmentation

	Images
	Image 1
	Image 2

	Page 66
	Images
	Image 1
	Image 2

	Page 67
	Titles
	�
	4.2.2 Fragmentation Alternatives
	1 :=:. ::_i:
	.~:. .. . =:~~Oe~p;

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Tables
	Table 1

	Page 68
	Titles
	~= ,::=~
	··~
	: CADICAM New Vork
	MaintanMoe · Paris

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 69
	Titles
	4.2.4 Correctness Rules of Fragmentation

	Images
	Image 1
	Image 2

	Page 70
	Titles
	�
	4.2.5 Allocation Alternatives
	easy
	OIREOTORV

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 71
	Titles
	4. 2. 6 Information Requirements
	4.3 FRAGMENTATION
	4.3.1 Horizontal Fragmentation

	Images
	Image 1
	Image 2

	Page 72
	Images
	Image 1
	Image 2
	Image 3

	Page 73
	Titles
	..

	Images
	Image 1
	Image 2

	Page 74
	Images
	Image 1
	Image 2

	Page 75
	Titles
	E4 · J. Miler
	i:1 �. FtOaVii
	ENO
	ea��
	J. J.onea

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 76
	Images
	Image 1
	Image 2

	Page 77
	Images
	Image 1
	Image 2

	Page 78
	Titles
	4.3.3 Hybrid Fragmentation

	Images
	Image 1

	Page 79
	Titles
	Rt1
	R21

	Images
	Image 1
	Image 2

	Page 80
	Images
	Image 1
	Image 2
	Image 3

	Page 81
	Titles
	CHAPTER FIVE
	QUERY PROCESSING

	Images
	Image 1

	Page 82
	Images
	Image 1
	Image 2

	Page 83
	Images
	Image 1
	Image 2
	Image 3

	Page 84
	Images
	Image 1
	Image 2

	Page 85
	Titles
	5.3 CHARACTERIZATION OF QUERY PROCESSORS
	5. 3 .1 Languages
	5 .3 .2 Types of Optimization

	Images
	Image 1
	Image 2

	Page 86
	Images
	Image 1
	Image 2

	Page 87
	Titles
	..
	5 .3 .4 Statistics
	5.3.5 Decision Sites
	5.3.6 Exploitation of the Network Topology

	Images
	Image 1

	Page 88
	Images
	Image 1

	Page 89
	Titles
	�
	CONCLUSION

	Images
	Image 1
	Image 2

	Page 90
	Titles
	�
	REFERENCE

	Images
	Image 1

