NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Electrical and Electronic Engineering

INTERNAL ELECTRICAL INSTALLATION PROJECT

Graduation Project EE-400

Student :
 Naci BAYAR (20002030)

$\begin{array}{ll}\text { Supervisor: } & \text { Assist.Professor } \\ & \text { Doğan HAKTANIR }\end{array}$

Lefkoşa - 2003

ACKNOWLEDGEMENTS;

Studing in the Near East University Electrical and Engineering Department was one of the most difficult part of my study-life. Not only the difficulty of courses, but also my family life that 1 concern and military occupation that 1 am involved influenced my regular and constant study.

I appreciate firstly Mr.Major General A.Cahit SARSILMAZ, secondly our General Staff Officer President, Infantry General Staff Officer Colonel Tacettin COŞKUN, thirdly General Staff Officer Lieutenent Colonel Oğuz OSKAY and lastly General Staff Officer Major İsmail GÜNEŞER whom supported me all the time throughout my study life.

I also appreciate Mr.Assistance Professor Doğan HAKTANIR for preparing this project and sharing his experiences and knowledge with me.

I'm also grateful to all my lecturers especially Prof.Dr. Şenol BEKTAŞ and Prof.Dr.Fahrettin MAMEDOV than Dr.Kadri BÜRÜNCÜK and Özgür OZZERDEM for their help and education they gave me.

I also thank to my dear friend Abdülkadir EKİCI for his assistance.
Lastly, I owe a lot to my beloved wife for supporting me morally and my lovely daughter who 1 couldn't spend enough time.

ABSTRACT

Starting the electrical project drawings, architectural project and measurements were examined. The places for main electrical household appliances owen, refrigerator, washine machine, dish washer machine, air condition) were designated. The illumination calculations for rooms have been done and suitable aimorlures have been selected. The lights and sockets power necessary have been determined. The cross - section of conductors have been chosen as well. The suitability of cross - section of chosen conductor has been controlled with voltage decrease calculation. The equal power distribution to phases has been provided by loading tables. The value of the service has been determined by cost analysis.

TABLE OF CONTENTS

4CKNOWLEDGEMENTS 2
:BSTRACT
3
CONTENTS
4
4
ATRODUCTİON
5
5
LAIN TEXT 6
CHAPTER 1
6
6
1.1. Area Exploing, Network Research, Determİnİng The Place Of Inlet Cable Demands Of Property Owner 6

- CHAPTER 2 6
Project 2.1. Converting Architectural Project To Electrical Project, Drawing Preliminary

3. CHAPTER 3 6
3.1. Illumination Calculation 8
3.2. The Calculation Of Internal Illumination 8
4. CHAPTER 4 9
4.1 Starting The Final Project Drawing 15
5. CHAPTER 5 15
5.1 Forming Main Loading Tables 17
CHAPTER 6 17
6.1 Calculation Of Wire Cross Section 23
236.2 Calculation Of Wire Section Regarding Voltage Decrease In One Phase Circuit 2
6.3 The Wire Cross Section Calculation Regarding Voltage Decrease In Three Phase Circuit.
25
25
6.4 The calculation of wire cross section regarding power loss in one phase circuit. 25
6.5 Calculation Of Cross Section Regarding Power Loss In Three Phase Circuits 266.6 Calculation Of Current In Three Phase Ciicuits
26
6.7 Calculation Of Voltage Decrease
28
28

- CHAPTER 7
- CHAPTER 7
30
30
7.1 Drawing Weak-Current And PTT Project 30
7.2 Cost Analysis
7.2 Cost Analysis
30
30

8. CHAPTER 8
31
31
8.1 Adding Symbol List Needs Report And Cover Page Copying Project And Filing With Cost Analysis CONCLUSION 31
REFERENCES 36
APPENDIX A 37
APPENDIX B 38

NTRODUCTION

I have exercised final thesis on electricity installations. My aim is to draw =estricity projects of the subject. Before starting to draw the electricity project we -d to consider the following steps in order.

Chapter 1 is devoted to area exploring,network research,determining the -ace of inlet cable and devoted to demands of the property owner.

Chapter 2 is devoted to convert the architectural project to electrical project, -asing preliminary project.

Chapter 3 is devoted to illumination calculations.
Chapter 4 is devoted to start the final project drawing.
Chapter 5 is devoted to form main loading tables.
Chapter 6 is devoted to calculate current-voltage, voltage decrease, Iumination and draw column diagram.

Chapter 7 is devoted to draw the weak current and PTT Project, devoted to
ust analysis.
Chapter 8 is devoted to add symbol list,needs report and cover page, copy project and file with cost analysis.

All the necessary knowledge hås been found in order to get detailed project.
The chapters above have been considered and followed carefully.

MAIN TEXT

1. CHAPTER 1

1.1 AREA EXPLORING, NETWORK RESEARCH, DETERMINING THE PLACE OF INLET CABLE AND DEMANDS OF PROPERTY OWNER;

We reached to the area where the building is located with the property wner. Our building is located in Gönyeli, 100 m north of Lefkoşa - Güzelyurt ghway. There is a three phase network voltage very near to building. Feeding vill be done from this line, 10 m underground cable will be used to get in the t-lding.

Demands of property owner about illumination force were listened. He -hands flourescent armature for living room, kitchen and bedrooms, J type -trature for hall, C type armature for badroom and Wc. He also demanded to Trchase 12000 Btu split air-condition has got a power of $3,8 \mathrm{~kW}(1 \mathrm{~kW}=3,148$

He also demanded an oven for every flats and at least two sockets for each
He demanded heating system, solar energy, boiler, and pressure tank for athat as well. He demanded 3 people capacity lift for the building too.

- CHAPTER 2

21 CONVERTING ARCHITECTURAL PROJECT TO ELECTRICAL FOJECT, DRAWING PRELIMINARY PROJECT;

Architectural project was checked up through necessary arrangements. The etions of doors and windows were determined. Opening direction of the doors is drawn. Kitchen counter place and its measures were designated.

After these steps, the places of receivers in the flats were selected. Airmitions have been installed to living room and bedrooms. Dishwasher and oven
ere shown in the kitchen and washine machine in the hall. The places for ded armatures,sockets and keys were designated.
Architectural Plans are important to energy entrance into the building and arribution and remoting regulations. The plans which are designed by uchitectures and civil engineers include all the construction drawings, ($1 / 50$ or $1 /$ 0).These plans are used for construction of the building and also in electrical stallation.It is clear that the buildings situation must be considered according to -uncipality regulations.The columns and joits are important during electrical stallation in the floor plans.These parts are chosen carefully.Because reinforced -ncrete roof will carry all the weight of the building;so it is not liked to get any amage on the system while electrical installment has been doing. Thus electrical istallment and reinforced concrete roof construction must be held together floor glans must showed separately.

Stairs going down to the basement must be considered carefully. Because of the columns and the walls situation the emty places must be used for electrical installation.

If the energy entrance through underground the first floor gets importance with the main gate or small corridor. An assembly space must be looked for in the etrance. The walls are thiner than basement's. Normal floor plans are shown with oly one drawing because all the flats are the same so the electrical installments and architectural construction are followed the same construction.

If the energy enrance with air corridor, an isolator consoul equipment must te assembled on the wall side where the first floor's air corridor enters. The energy Ine will be connected to the stair holes with the shortest way. Column line fuse sill also put in this place.

For studing floor plans, heat and ventilate holes must be considered carefully. During the installment these places must be stayed away. Opening side of the doors is important due to electrical remote switch settlement. The switch must not be behind the door. The room spaces and the other measurement must be
in floor plans. These measurements will be used for calculation of the mination.

The architectural plans are the first studies of the electrical installation. Because the application project of electrical installment has been drawn on achitectural plans first.After certification of Electrical Engineers Bureau the tplication is ready to start.Therefore project makers have to have a knowledge bout architectural plans. For instance they have to know how to indicate the sapes and measurements of doors, windows, stairs (wooden parts) main walls -lumns.

Measurement in architectural plans has been done including internal and =nernal parts of the building according to drafting rules. The number above the -tis line of the door shows the widht, hte other number below the axis line shows te height. It must be avoided of height places like chimneys, in order to not give my damage to the installment during preparation of projects. Because of this it has be known the drawings of chimney in the plan.

While the preparation of electrical installment projects the using --poses have to be known in order to designate illumination features. Additionaly, Permanent house appliance and furnitures places must also be known. While the Teparation of the electrical installment projects, the settlement plan of the building Is to be asked. İt is going to help for the arrangement of installment.'

BCHAPTER 3

31 ILLUMINATION CALCULATION

Illumanition calculation is performed in order to find the number of -rnatures necessory for rooms.

The dimensions of living room kitchen and bedroom have measured ertally. [Lenght(a) with(b) height (h)]

Illumination calculation is done one by one for each part.

32 THE CALCULATION OF INTERNAL ILLUMINATION

The formulates symbols:
$0_{4 r}=$ the flow of the direct light
$\theta_{1}=$ the flow coming to working table.
$0_{-d}=$ the light flow coming by reflexion
$E_{5}=$ the avarage level of light of working table $\mathrm{s}=\mathrm{m}^{2}$ of working table
$0_{5}=$ the sum of light flow (lumen)
The calculation of illumination by the light flow method. The calculation of mernal illumination by efficiency method. This method is mostly used in internal mination installations. As it is known the Φ light that cames to plane has the components $\Phi \mathrm{dir}$ and Φ end $\left(\Phi_{\text {dir }}\right.$ shows the flow of the direct light, Φ_{s} shows the Iow coming to working table, $\Phi_{\text {end }}$ shows the light flow coming by reflexion)

$$
\Phi_{\mathrm{s}}=\Phi_{\mathrm{dir}}+\boldsymbol{\Phi}_{\mathrm{end}}
$$

- dr can be calculated easily but $\boldsymbol{\Phi}_{\text {end }}$ is difficult to calculate. So that efficiency method is used in internal illumination installations. Now in order to understand Is method let's think about an ideal room that it's walls and ceiling reflects the ght totally, $(\delta=\% 100)$ and absorbs the light completely. $(\alpha=\% 100)$ and no object Absorbing the light in it. The $\boldsymbol{\Phi}_{0}$ comes out of the light sources falls on the plane S and it is absorbed their whatever the dimensions of the room, number of the lambs, ettlement of the lambs, illumination system. The average illumination degree of the plane for an ideal room is

$$
\mathbf{E}_{0}=\frac{\boldsymbol{\Phi}_{0}}{\mathbf{S}}
$$

Eo shows the avarage level of light of working table, Φ_{0} represents the total light Iow from lambs in lumen and S represents the area of the plane in m^{2}. In reality some of the light flow is absorbed by walls, ceiling, and illumination devices. So that the average illumination degree of the plane is:

$$
\mathbf{E}_{\mathbf{0}}=\frac{\underline{\Phi}_{0} \underline{\eta}}{\mathbf{S}}=\frac{\mathbf{\Phi}_{0}}{\mathbf{S}}
$$

7 factor is called the efficiency of illumination and it is a number less then 1.
$7=\underline{\Phi}_{a}$
Φ_{a} represents flow of light to plane and
Φ_{s}
$\Phi_{\text {s }}$ represents total flow of light that is given by light sources.

Efficiency of device illumination $(\boldsymbol{\eta})$ is multiplication of the efficiency of devices and efficiency of the room.
$7=\Phi_{\text {ayg }}$
Φ_{0}
$7=\underline{\Phi_{s}}$
$\Phi_{\text {ayg }}$

$$
\boldsymbol{\eta} \text { oda represents the efficiency of room }
$$

-

$$
\boldsymbol{\eta}=\boldsymbol{\eta} \text { ayg }-\boldsymbol{\eta}_{\text {oda }}
$$

Efficiency of device is related with the illumination device. Efficiency of the room s related with geometric dimensions of room, reflection factors and colours of *alls and ceiling, light distribution curves of illumination devices, height of them plane and their places. Table 10.1 shows belowed in same situations that are sed mostly;

miniation system	direct illiminiation (nayg=\%70)		semi-direct illiminiation (nayg=\%80)		Mixed illiminiation (nayg=\%80)		semi indirect illiminiation (nayg=\%80)		İdirect illiminiation (nayg=\%70)	
	$\mathrm{n}(\%)$		n (\%)		n (\%)		n (\%)		$\mathrm{n}(\%)$	
Foom index (a / h)	A	B	A	B	A	B	A	B	A	B
0,5	13	9	9	5	12	7	11	6	9	5
0,7	19	13	13	7	16	10	15	8	12	6
1,0	25	19	17	10	21	13	19	12	15	8
1,5	35	30	24	15	27	17	25	16	20	11
2,0	40	36	29	19	32	21	29	19	23	14
2,5	44	40	33	23	35	24	32	22	26	16
3,0	47	43	36	26	38	26	35	24	28	18
4,0	51	47	41	30	43	30	39	28	32	20
5,0	54	50	45	34	46	33	42	30	34	22
7,0	57	53	51	39	51	37	46	34	36	24
10,0	59	55	57	40	55	40	51	37	38	26

In this Table;

I lenght of one side of a square room
= height of light sources to the plane in direct and semi-direct illumination system. leight of ceiling to the plane in direct; mixed and semi-direct illumination system.
4. Situation where is ceiling is white $\left(\rho_{\mathrm{T}}=\% \mathbf{7 5}\right)$ and walls are quite white

$$
\left(\rho_{\mathrm{D}}=\% 50\right)
$$

3; Situation where is ceiling is quite white $\left(\rho_{\mathrm{T}}=\% \mathbf{5 0}\right)$ and wall are dark $P_{D}=\% 30$)
the room is a rectangle (a, b), efficiency is ;
$\eta=\boldsymbol{\eta} \mathbf{a}+\mathbf{1} / \mathbf{3}(\boldsymbol{\eta} \mathbf{a}-\boldsymbol{\eta} \mathbf{b})$
Wile preparing the table 10.1 , only two efficiency about illumination devices
η ayg $=\% 70$ and $\boldsymbol{\eta} \mathbf{a y g}=\mathbf{\%} \mathbf{8 0}$) is taken.
fanother illumination device that has the efficiency $\boldsymbol{\eta}^{\mathbf{1}}$ ayg is used $\left(\boldsymbol{\eta}^{\mathbf{1}}\right.$ is an aygit tfiferent from $\% 70, \% 80$ efficensy level), the efficiency that is found from table is -altiplied with a factor of $\boldsymbol{\eta}^{\mathbf{1}}$ ayg / $\boldsymbol{\eta}$ ayg

After finding the efficiency $\boldsymbol{\eta}$, light flow that goes to plane $\left(\boldsymbol{\Phi}_{0}\right)$ is found wh the help of flow of light by illumination sources $\left(\boldsymbol{\Phi}_{\mathbf{s}}\right)$. Then the average I-mination level is:

$$
E_{0}=\frac{\underline{\Phi}_{s}}{S}=\eta \frac{\Phi_{o}}{S}
$$

the average illumination level of plane is given and total light flow that light ources give ($\boldsymbol{\Phi}_{\mathbf{0}}$) is looked for ;

$$
\Phi_{o}=\frac{\mathbf{E}_{0} \underline{\mathbf{S}}}{\boldsymbol{\eta}}
$$

In below the dimensions of living room are given and number of armatures found by performing necessory calculation.

ILLIMINIATION UNITS

NAME	SYMBOL	UNIT	EXPLANATION
Light flow		Lümen (lm)	it is the amount of the total light source gives in all directions. In other words it is the port of the electrical energy converted into the light energy. That isgiven to light source.
Uight intensity	1	kandela (cd)	it is the amount of light flow in any direction. (the light flow may be constant but the light indensity may be different in various directions)
-iniation intensity	E	lux (lux)	, it is the total light flow that comes to $1 \mathrm{~m}^{2}$ area
flashing	L	cd/cm2	it is th elight indensity that comes from light sources or unit surfaces that the light sources lighter.

is table was taken from report 1 page 18, showed in references page.

IILUMINATION EQUATION

EQVATION	SYMBOL	EXPLANATION
	n	Number of light bulbs
	$\Phi_{\text {T }}$	Total light flow necessary (Im)
	Φ_{L}	Light flow given by a light bulb.
$\begin{aligned} & k=a \cdot b / \\ & b(a+b) \end{aligned}$	k	Room index (according to dimensions)
	a	Length (m)
	b	width (m)
	h	Height of the light source to the working sueface (m)
	H	Height of the light source to the floor(m)
	h1	Height of the working surfaces to the flor (m)
$\begin{gathered} \Phi_{\mathrm{T}}= \\ \text { EA.d/ } \\ \eta \end{gathered}$	E	Necessary illiminiations level (lux) chosen from the table
	A	Surface area that will be lighted (m2)
	d	Pallution installmentfactors 1,25-1,75
	η	Efficensy factors of the installment it is chosen from the table according to wall, ceiling, flor reflexion factors, tipe of armature chosen, room index

table was taken from report 1 page 19 , showed in references page.
$=8 \mathrm{~m}$

$$
\begin{array}{ll}
\mathrm{H}=2,8 \mathrm{~m} & \left.\mathrm{P}_{\mathrm{t}}(\text { Ceiling })=\% 80 \text { (white }\right) \\
\mathrm{E}=50 \text { lux } & \mathrm{P}_{\mathrm{d}}(\text { Wall })=1,25 \\
\mathrm{~h}=2,8-1 & \mathrm{~h}=1,8 \mathrm{~m}
\end{array}
$$

se symbols have been explained in tables above.
cable in Appendix F is correct if $a=b$
Ioesn't equal b the indexes of a and b have been calculated separately, It is ned below.
$=581,8=3,2$

$$
\eta a=0,36
$$

$$
\eta=\eta a+1 / 3(\eta b-\eta a)
$$

$=49 / 1,8=2,7$
$\eta b=0,33$
$\eta=0,35$
$=\underline{S} \cdot \underline{S} \cdot \mathrm{~d}=\underline{50.5}, 8 \cdot 4,9 \cdot 1,25=5075$ lumen
η
0,35
lenature tipe $=$ fluorescant lamb tipe $=65 / 80 \mathrm{~W}$ have been choosen.
light flow for this tipe of lamb has been showed as 5600 lumen in table below.
TYPICAL FLOWS OF SOME LAMPS

table was taken from report 1 page 18, showed in references page.
$\Phi \mathrm{T}=5075=0,90$
ФL 5600
one piece of $65 / 80 \mathrm{~W}$ lamb is enough for the illuminiation of the room.

Illumination of kitchen and bedrooms have been done in the same way. Finally the number place and power of the armatures have been calculated for each t. ${ }^{2}$

[^0]
4. CHAPTER 4

4 STARTING THE FINAL PROJECT DRAWING

Situation plan has been drawn considering the location of the area where the tilding is standing. The inlet cable to building was designated. Force projects of isst floor and other floors were drawn. Conductor cross-sections were chosen as; $5 \mathrm{~mm}^{2}$ for light outlet, $2,5 \mathrm{~mm}^{2}$ for socket outlets, $2,5 \mathrm{~mm}^{2}-4 \mathrm{~mm}^{2}$ for the linye utlets, at least $16 \mathrm{~mm}^{2}$ for column lines. Fuse currents that will be used in these
ines were determined according to receiver currents. A linye has been shown for ach air-conditioner. Dishwasher and oven in the kitchen have been fed with the the linye. Light, socket and ground 0.4 mm thick, column lines 0.5 thick, writing and walls 0.2 mm thick were selected in the plan. Total 14 light outlets have been bld by two linye and 23 socket outlet have been fed by ten linye. The sockets in the Eichen were planned to put at least two meters away from sink and tap. The main able were planned to first floor entrance, distribution tables were planned to a stitable place in front of the inlet door. All the counters were installed into the zin table. The grounding line has been done with $16 \mathrm{~mm}^{2}$ copper conductor and Erunding has been done with $0,5 \mathrm{~m}^{2}$ copper board as stated in laws.

The andication of the linye tables and characterdistic features of the motors first and the ordinary floors have been showed in the tables at the end of tis pter. ${ }^{3}$

This is divided into various types according to materials we use in internal eectricity installation:
Installation made with conveyers with pipes
Installation with Bergman pipe
Installation with Peşel pipe
Installation with Ştalpanzer and sempleks pipe
Installation with antigron (material for damp places) material

During construction of these installations the work order to be followed is
$=$ for over-plaster installation and for conveyers with pipes is as follows:
Drawing the way of the conveyer: The conveyer, should be placed in a way
tat will not spoil the appearance of the wall or the ceiling. We should place the
ejs to places that could easily be reached when the door is opened.
Opening transit holes: They should be opened by hole pens and by drills.
Placing the pipe collars: We should place the pipe collars with $30-50 \mathrm{~cm}$ -ervals throughout the planned conveyer ways.
-Placing the junction boxes: We should determine the junction boxes on the wall pipe collar nails, steel nails or by wooden screws on the plugs, formerly placed.

Placing convevers with pipes

Placing sockets and kevs

Making the connections

Hanging and connecting the lamps and chandeliers

For sub-plaster installation with Bergmen and Peşel pipes, the order is as ows:
ist of all, we draw the way for conveyers. Then we mark places of junction boxs, eys and sockets. Then we open channels on the walls and on the ceiling for pipes. Her that, we place the cases of junction boxes, keys and sockets taking the plaster ickness into consideration. We attach the pipes with screws to the channels merly opened. We take and connect the conveyers from the pipes by the help of zidance only after plaster is made and dried.

Before the underground cables spread the conductor way must be signated.The cable cannel is opened at least 80 cm depth and $40-50 \mathrm{~cm}$ itth. Sand must be put at least 10 cm deep of the canal cable is installed. After
ing the sand on the cables bricks must be put. After that the system is buried by 1. ${ }^{4}$

CHAPTER 5

E1 FORMING MAIN LOADING TABLES
Loading table consists of TZ1, TZ2 tables for first floor, TN1, TN2, TN3, 4, TN5, TN6, TN7,TN8, TN9, TN10, TN11, TN12, TN13, TN14, TN15, TN16, 17, TN18 tables for other floors and TO tables for common used areas (lift, automatic, cable tv, telephone, door automatic). 14 light outlets and 23 socket ets are fed by first floor and other floors tables. Power of light outlet is 700 W , er of socket outlet is 26900 W and sum of power of a table is 27600 W . The eranded power has been calculated as 12080 W that can be used from a table -ultaneously.

The sum of the power of the tables shown above is 557570 W . If we =iculate the demanded power as $\% 40$ of sum of the power of the tables, then it erreases to 223028 W.

The loading table has been the same like the table showed at the end of this -apter.

An application plans are important to give the details to the workers. After ssallation completed it is necessary to be connected into city network. Shortly the lectrical Company has to know the features and measurements of the building. secause of this during preparation energy distribution features and installation ing tables must be prepared.

The summary of energy distribution exsplains the summary of electrical allation; the loading table explains the loading measurements of the phases. company executives will be able to do energy distribution more regular and nced in the area. Voltage degrees measurements also help them in this subject ble network voltage protects the system carefully.

The summary of energy distribution is written starting from energy inlet and acludes column line, fuse, counter main switch and all of the linyes that are fed distribution table as linye fuse, sort of linye and charge of the linye and separately. Therefore sort of linyes are distinguished.

Electrical values that belong to each part are shown explicitly and separately smmary of energy distribution drawings. The loading tables are prepared for Escribution tables separately. Linye numbers, sort of linyes, linye fuse current, lenght, number of outlets, sum of powers are explained separately in Escribution table. If the feeding is with three phase it must be clarified that which lse it takes the current from.

The sum of the powers in loading tables shown the building's power. If the ng is with three phase it shows the distribution of the charges of the phases earately. Electrician is responsible for the balanced internal distribution of the -rge distribution as much as possible. The network executives should take care this energy distribution.

The main loading table has been attached to the project. ${ }^{5}$

[^1]

TN1.巴.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18 BDX DETAIL

Num. No	KW	HP	CDSQ	YIELD	$220 / 380$ $V \square L T$	FUSE $220 / 380$	LINE CUR. SEC	THINGS
1	4	5.4	0.84	$\% 82$	$14.7 / 8.5 \mathrm{~A}$	L $25 / 16 \mathrm{~A}$	4×6 NYA	LIFT MDT
2	2.2	3	0.34	$\% 81$	$8.7 / 5 \mathrm{~A}$	L $20 / 16 \mathrm{~A}$	4×6 NYA	WATER PDMP

matar label values

CHAPTER 6

CALCULATION OF WIRE CROSS SECTION

While the calculation of wire cross section, mechanical strenght, heating tage degrees and power loss controls are done in electrical installation. The wire Foss section regarding mechanical strenght except weak current installation must z less than 1 mm in electrical internal installation.

The wire cross sections regarding to mechanical strenght must be less than 6 $=^{2}$ for $20-35$ meters pole distance and at least $10 \mathrm{~mm}^{2}$ for larger pole distances texternal electrical installation.

If the currents exceeds the heat limitation the wire heats up and insulation at burns. Therefore table 12.1 shows belowed in the limitation of the currents that ass through the conductors in the pipes and the fuse currents that will protect these anductors .

The voltage decrease must not be more than $\% 5$ for light installation, $\% 3$ for rachine installation, $\% 2.5$ for low voltage networks, $\% 5-6$ for low voltage feeding lnes, $\% 10$ for midium and high voltage lines.

Lte 12.1: table of flows of excessive current and anma fuse of three group of isolated conductors

$\begin{aligned} & \text { Tross-section of } \\ & \text { wire } \\ & S(\mathrm{~mm} 2) \end{aligned}$	group 1		group 2		group 3	
	$\operatorname{Imax}(\mathbf{A})$	Fuse flow $\operatorname{In}(\mathrm{A})$	Imax (A)	Fuse Flow In(A)	$\boldsymbol{I m a x}(\mathrm{A})$	Fuse Flow $\operatorname{In}(\mathrm{A})$
1	12	10	16	16	20	20
1,5	16	16	20	20	25	25
2,5	21	20	27	25	34	35
4	27	25	36	36	45	50
6	35	35	47	50	57	63
10	48	50	65	63	78	80
16	65	63	87	80	104	100
25	88	80	- 115	100	137	125
35	110	100	143	125	168	160
50	140	125	178	160	210 =	200
70	-	-	220	225	260	260

4 1: Till three line in the pipe ($T, A T$, and CT type conductors)
\Rightarrow 2: moist floor lines, lines connected to mobile receivers, circular wired mutiway lines laid down in outdoor (CTNH, ATT and TTR type melactiors)

CALCULATION OF WIRE SECTION REGARDING VOLTAGE REASE IN ONE PHASE CIRCUIT

It is necessary to consider the effect of inductance and capacity apart from $=$ resistance of line in alternating current. Meanwhile only the effect of sctance and resistance will be considered. The inductance of line can be ignored zause it's smallness in internal electrical installation.
h this condition ;
$=\frac{100 \mathrm{PR}}{\mathrm{U}^{2}}=\frac{200 \mathrm{PR}}{\chi \mathrm{SU}^{2}}$ There $2 \mathrm{~L} / \chi \mathrm{S}$ was put instead of R. P,L, χ, W and E is known, so the wire cross section can be calculated
$S=\frac{200 \mathrm{PL}}{\chi \varepsilon \mathrm{U}^{2}} \quad$ this formulate. If there are receiving device more than one this formulate is

$$
\varepsilon=\frac{200}{\chi \mathrm{U}^{2}} \quad \sum_{\mathrm{k}=1}^{\mathrm{n}} \quad \frac{\mathrm{Pk} .1 \mathrm{k}}{\mathrm{~S}_{\mathrm{k}}}
$$

oltage decrease
= network voltage (v)
sum of power (w)
cross- section (mm^{2})
iz direnç for cupper

$$
56^{\mathrm{m}} / \Omega \mathrm{mm}^{2} \quad \mathrm{Al}=35^{\mathrm{m}} / \Omega \mathrm{mm}^{2}
$$

Here represents the power passes through $\mathrm{k} . \mathrm{lk}$ represents Pk represents the $=$ the of line and Sk represents the cross section.
-rple 1.
A one phase alternating current engine $220 \mathrm{~V}, 5 \mathrm{kw}$, and $\cos \Phi=98$ will be 1000 m air line. $\% 5$ voltage decrease is allowed so how many mm^{2}. The section must be ?
on
formula $\mathrm{S}=200 \mathrm{Pl} / \chi \varepsilon \mathrm{U}^{2}$

$$
\mathrm{P}=5 \quad 10^{3} \mathrm{~W} \mathrm{I}=1000 \mathrm{~m}
$$

$\mathrm{m} / \Omega \mathrm{mm}^{2}$
$\varepsilon=5$ and $\mathrm{U}=220 \mathrm{~V}$ is put
$=\underline{2005.10^{3} 1.10^{3}}=74 \mathrm{~mm}^{2}$
565220^{2}
$70 \mathrm{~mm}^{2}$ wire can be used with slight mistake because of the standart wire trss section is $70 \mathrm{~mm}^{2}$.

13 THE WIRE CROSS SECTION CALCULATION REGARDING OLTAGE DECREASE IN THREE PHASE CIRCUIT.

There symmetrical height must be considered of three phase सrcuit.Therefore it is considered that three phase circuit composed of three equal [-s. Thus every part carry the power $1 / 3 \mathrm{p}$ between one phase wire and neutral wire
$\varepsilon=100 \mathrm{PL} / \chi \mathrm{SU}^{2}$ If the unit of P is taken as (W), L as (m), χ as $\left(\mathrm{m} / \Omega \mathrm{mm}^{2}\right)$ as $\left(\mathrm{mm}^{2}\right), \mathrm{U}$ as (V)
len the ε becames as a percentage value. U represents the voltage of the line.

$$
S=\frac{100 \mathrm{PL}}{X \varepsilon U^{2}}
$$

If the voltage decrease is known as a percentage then this formula is used to rrain the wire cross section. Lastly the conductors' medium and high voltage lines -st be chosen not exceeding for thermic power station $\% 6$ or $\% 8$, and for water wwer station \% $10-12$ regarding voltage decrease.

i4 THE CALCULATION OF WIRE CROSS SECTION REGARDING POWER LOSS IN ONE PHASE CIRCUIT.

The power loss in a line where the resistance is R is ;
$\mathrm{P}=\mathrm{R} \mathrm{I}^{2}$
sa percentage; $\mathrm{p}=\underline{100 \Delta \mathrm{P}}=\underline{100 \mathrm{R} \mathrm{I}^{2}}$ $\mathrm{P} \quad \mathrm{P}$
It is put \qquad instead of I and 2L/ $/ \chi$ S

[^2]sstead of $\mathrm{R} \quad \mathrm{p}=\frac{200 \mathrm{PL}}{\mathrm{X} \mathrm{S} \mathrm{U}^{2} \operatorname{Cos}^{2} \Phi}$ $\operatorname{Cos} \Phi=\underline{\text { zahiri power }}=\frac{\mathrm{W}}{\mathrm{VA}}$

Then the wire cross - section becomes ;

$$
\mathrm{S}=\frac{200 \mathrm{PL}}{\chi \mathrm{p} \mathrm{U}} \mathrm{U}^{2} \operatorname{Cos}^{2} \Phi
$$

15 CALCULATION OF CROSS SECTION REGARDING POWER LOSS N THREE PHASE CIRCUITS

As three phase system is loaded symmetrically the the power loss in the line zoomes ;
$\mathrm{P}=3 \mathrm{R} \mathrm{I}^{2}$
sa percentage ; $\mathrm{p}=\frac{100 \Delta \mathrm{P}}{\mathrm{p}}=\frac{300 \mathrm{R} \mathrm{I}^{2}}{\mathrm{P}}$
is put
 instead of I and L/ $\chi \mathrm{S}$ 1,73.U $\operatorname{Cos} \Phi$
mead of R then the power loss in percentage becomes;

$$
\mathrm{p}=\frac{200 \mathrm{PL}}{\chi \mathrm{~S} \mathrm{U}^{2} \operatorname{Cos}^{2} \Phi}
$$

the wire cross - section becomes ;

$$
\begin{aligned}
& \mathrm{S}=\frac{100 \mathrm{PL}}{} \quad \underset{\mathrm{U}^{2} \operatorname{Cos}^{2}}{ } \Phi
\end{aligned}
$$

CALCULATION OF CURRENT IN THREE PHASE CIRCUITS

Three phase current calculations is done in order to find the maximum that inter mediate coloumn line carries and also the cross section of the
=tle. The current vave found must be smaller than the current capacity of the Ele. The current calculation for coloumn line in our bulding is made in example:
$\frac{p}{1,73 \times \mathrm{UX} \mathrm{COSQ}}=\frac{223028}{1,73 \times 380 \times 0,3}=427,28 \mathrm{~A}>2 \mathrm{X} 310 \mathrm{~A}$

Currying carring capacity of $2 \times 120 \mathrm{~mm} 2$ NYY cable is designated as 2×310 otilizing this way.

The same calculation is performed for coloumn line as well;

$$
\mathrm{I}=\frac{\mathrm{P}}{\mathrm{U}}=\frac{12080 \mathrm{~W}}{220 \mathrm{~V}}=54,9 \mathrm{~A}<65 \mathrm{~A}
$$

Its approprianteness has been found from table 12.1 Appendix D
The curring carring capacity of 16 mm 2 NYA cable is given as 65 Ain the

	$\begin{aligned} & \text { R) } \\ & \text { n2 } \\ & \text { is when t } \\ & \text { si icin ass } \end{aligned}$	procection venimis		pertect prote an uygulanac	tion These kutr.		used for.	BLE 2M								
as a bunch in instalion pipe or in tranking on a cable carner as a bunch or attachaed to dinectly the graund										idemitied conditions						conductor
- mase two cable a.c veya d.c			three phase 3 or 4 cable ac		one phase two cable o a.cord.c			three phase 3 or 4 cable a,c		honzomal (one phase a c.or dc. Two cable theree phase or two cable				clover leaf shaped thenee phases three cable		
mint	the voltage for each amper and meter		anma curnent	the voltage for each amper and meter	anma currem	the volkage for each amper and meter		anma curremt	the wollage for each amper and meter	anma current	the voltage for each amper and meter			anma current	the wolage for each amper and meter	
	3.6	d.c				${ }^{1.8}$	do				one phase	d.c	theree phase			
	mV		A		A	mv		a	mV	A	mV	mV	mV	A	mV	mm?
-	0.97	0.91	125	0.84	175	0.93	0.91	160	0.82	195	0.95	0.91	0.85	170	0.8	50
*	0.71	0.83	180	0.62	220	0.65	0.83	200	0,50	240	0.68	0.63	0.62	210	0.59	70
3	0.56	0.46	1958	0.48	270	0.48	0.45	240	0.46	300	0.52	0.46	0.48	260	0.42	85
3	0.48	0.38	220	0,42	310	0.4	0.83	280	0,38	350	0.44	0.38	0.43	300	0.34	120
*		-	-	\%	355	$0,94$	0.28	320	0.34	410	0.38	0.28	0.39	350	0.29	150
-	-	-	-	.	405	0.28	$0,24$	385	$0,3$	470	0.35	0.24	0,38	400	0.25	185
			-												0.22	
-	-	-	-	.	480 580	0.24	0.18	430	0.27	5600	0.36	0.18	0,38	430	0.22	240
\pm		-	-	-	560	0.22	0.14	500	0.25	880	0.33	0.14	0.36	576	0.18	300
	-	-	-	-	880	0.2	0.12	610	0.24	800	0,3	0.12	0.33	${ }^{680}$	0.17	400
	-	-	-	-	800	0. 18	0.086	710	0.23	910	0.28	0.086	0.31	770		
	\cdot	-	.	.	910	0.17	0.088		0.22	1040	0.26	0,088	0.31 0.3	880	0.16	${ }^{500}$

able was taken from report 4 showed in references page.

CALCULATION OF VOLTAGE DECREASE

As everbody kaows there is a loss of voltage and power because of the sistance of the conductor it self the laws permit to voltage decrease as $\% 1,5$ of -aximum network voltage. As it is shawn below voltage decrease is loss than 31.5 of network voltage. Voltage decrease methad is applied to longest and most aded linye. The most loaded and longest linye is number 3arr conditioner hinye in te example.
$\mathrm{e}=\frac{100 \times \mathrm{P} \times \mathrm{L}}{\mathrm{KxSxU}^{2}} \quad \frac{200 \times \mathrm{PxL}}{\mathrm{KxSxU}^{2}} \quad \frac{200 \times \mathrm{P} \times \mathrm{L}}{\mathrm{KxSxU}^{2}}$
$e=\frac{100 \times 223028 \times 10}{56 \times 240 \times 380^{2}} \quad \frac{200 \times 12080 \times 27}{56 \times 35 \times 220^{2}} \quad \frac{200 \times 3800 \times 12}{56 \times 6 \times 220^{2}}$
$e=1,39<1,5$

So that; the chosen cable cross-sections is found according to current voltage decrease calculations if the result is not suitable then the upper crossetions valve is chosen. ${ }^{6}$
$T=\frac{223028}{1.73 \times 380 \times 0.9}=427.28<2 \times 310 A \quad I=\frac{P}{U}=\frac{12080}{220}=54.9<65 \mathrm{~A}$

CURRENT CUNGLUSIDN ch-7

$\left[2+\frac{200 X P X L}{K X S X U^{2}}+\frac{200 X P X L}{K X S X U^{2}}=\frac{100 \times 223028 \times 10}{56 \times 240 \times 380^{2}}+\frac{200 \times 12080 \times 27}{56 \times 23 \times 220^{2}}+\frac{200 \times 2500 \times 5}{56 \times 2.5 \times 220^{2}}=1.37<1.5\right.$

IM DECREAS GF VOLTAGE CINGLISIUN

CHAPTER 7

-1 DRAWING WEAK-CURRENT AND PTT PROJECT AND

Next bell switches for each flat have been installed to the main door. Bell Insformers for all flats have been fed by the distribution table for each flat. All bells and door automatic have been put next to flat door. 0.75 NYA cable has used for bell installation and door automatic installation. Independent ephone socket line has been installed to each room for ordinary TV antenna. Any ditional cable is avoided because any additional cable can affect the perfect ion on TV negatively. 75 ohm coaxical cable has been used for TV socket linye.

Two socket lines have been installed for cable TV. All the lines have been alled separately for each flat. TV sockets have been put to living room and room. Additional Box Inlet has been installed for ordinary telephone line for flat. Telephone sockets and its lines have been installed to living room and troom.

COST ANALYSIS
The electrical installion minimum unit price list was taken from The uplic Of Nourthen Cyrus Turkish Republic, Munistriy of public works and portation, planing and costruction deparmant. The things that have been done isted. For example avcontation instalion water pump instalitation 1×13 socket tion ptc. The unit price numbersin this list were marked from the mimımum list. Total work cost has been plotained by multiplicition of the unit prices number of works. The same procedure has been sustanied for the for the other as well. Lastly total cost has been found and given to property owner.

Cost analysis is the sum all the equipments used, machines and vehicles rtizations, laboring and inevitable expences. In these parts the main affect is equipment list.

It is important to obtain the equipment list while calculating the cost of lation. It is also important for new engineers in their early career.

Equipment list is done by counting and writing the equipments in order and parately.İt should not be forgotten the degree of damage possibility.After npletting these processes, multiplication and addition will give the total cost of =uipment list. The cost analysis has been showed in appendix B. ${ }^{7}$

Estimated expences is to calculate the cost of the project. The work is ided into work units that done by executive institutions. The unit list is called leeting of the unit numbers in the work analyzed.

These list have importance in order to identify the units and their Erures.The estimated expenses are the assesment regarding unit prices.

It is used the list of electrical installation estimated expences price list by the Einistary of Public Works.

CHAPTER 8

ADDING SYMBOL LIST NEEDS REPORT AND COVER PAGE OPYING PROJECT AND FILING WITH COST ANALYSIS

The names and symbol of the materials used (weak current, strong current, matures, fuses, cables, sockets, panels etc,) have been shawn in the list. This list attacked as an appendix.

Necessity report is abort the technical rules for internal electrical installation at the company or person who makes the installation must obey. This report is ached as an appendix.

The cover page is composed of the place of the buiding and informations sout the company.

After all these processes the project is copied in $1 / 50$ scale. One copy is en to property owner. One copy to the company that did the business, one copy filed with the cost analysis and one copy to the related company. After npleting the busines if any problem occurs the files are compared with each er.

Regulation is a unit that manages the projects implication it determines the -nditions in order to implement the project that it should be fulfilled. The Egulations about electrical internal installation leads the electricians work. Every -untry has this kind of regulations peculiar to its own.

Contracts are the compulsary written notices that releates the -nditions.These conditions are looked for in deliverance of the work. Contracts Ire divided into two.Special and technical.Special contracts include mutual Equests of employer and employee.İt also includes the financial conditions. An ther meaning of this is written agreements.

Technical contracts is a document that shows, the conditions of the building. Lpecialy it has got technical subjects. It has got duty of restriction and leading the cupations technically.

It is a matter that goverment and enterprises keen on it. It is also main effect In development of work security, arrangement and industry life.

Symbol list, necessities report wnd cover page have been attached at the and his chapter.

SIGN TABLE

Jp nourshing	$-C^{3}$	Three phase normal socket
From up nourshing	$-{ }^{3}$	Three phose orounded socket
Down nourshing	\cdots	There phase etanj socket
Erom down nourshing	\rightarrow	$B-C-J$ type armature
Erom down up nourshing	- \otimes	N type chandelier
From up down nourshing	+	Wall light
Up and down nourshing	\bigcirc	Etanj armature
Euvat / square Buvat	\bigcirc	Etanj wall light
Main table	\models	Flourescent armature
Secondary table	\square	Etanj flourescent armature
Fower table	\bigcirc	Circular flourescent armature
Secondary power table	(Stairs automatic switch
Peserve main table	(4)	Stair automatic
Control takle	-K K K	Door automatic line
The Phase fuse	$-\infty 0^{2014.8 .12}$	Bell transformer
Sne Phase fuse	-1	Door bell
The Phase automatic fuse	\square	Kapi zili dügmesi
3 Phase automatic fuse	- - -	Bell transformer switch
3 Phase fuse	\rightarrow	Bell line
P Phase knife fuse	KT	Bell
Sne Phase active counter	\square	Door automatic
3 Phase active counter	- \square	Door automatick switch
3 Phase reactive counter	\#114.1]	Amplificator
-npermeter	-E	Tv. Antenna
Voltmeter and commutatur	- - -	Tv. socket
Power transformer	- 11	Grounding line
Current transformer	- 0	Dven
*achine		
Senerator		
-ne phase key switch		
Inree phase key switch		
-igh current key		
Sontactor		
She line		
Imple key		
Commutator key		
laviey key		
nternal vaviey key		
ectrical switch key		
The phase normal socket		
he phase grounded socket		

NECESSİtiES REPORT

sheet iron boards, 1 mm DKP sheet iron up to 0.5 m 2 and a.t least 2 mm up to 0.5 m 2 and at least 2 mm DKP sheet iron above 0.5 m 2 will be used. loards that take 60A are in barali tape.
body and all the parts that are not affected by the voltage have to be - boards.

Ight of botton side of the counter must be at most 1.8
equipments used must be certified by TSE.
Eys amma currentmust not be small than 10 A that will be used in electrical

- to $250 \vee$ amma voltage
beys and sockets can not be used as distribution box.
fuses must be put at the begining of the line that will be used
socket circuits must be seporated from iluminiation circuits.
nnductors cross sectionss must be $\mathrm{Cu}=6 \mathrm{~mm} \mathrm{Al}=10 \mathrm{~mm}$
ination outlets must be at least 1.5 mm , socket outlet must be at least
hase socket should be calculated as 300 W . three phase socket should be
$=$ will be connected to a socket circuit.
cession from a bulb to another one if it is not compulsory
leak current installation is NYA.
nserground cables must be buried at least 80 cm depth. This measurement
buced If it is necessary by security steps taken.
shuctor colours will be chooser as brown for phase conductor, blue for
Inductor, black for rotation conductor in ilumination installation circuts,
rown or black for phase conductor, blue for neutral conductor, yellow or
rotective grounding conductor while considering the socket circuits.
phase column line system black represents R, red represents S, brown
light blue represents neutral and green represents protective

TELEPHONE INSTALLATIONS

=0 be done the connection between telecom in let central and telecom network. pipes which are 50 mm in diameter will be installed starting from building main box up to out of the building where the number of telephone sockets less pipes will be buried 40 cm deep suitably.
Istance between building cable inlet and front side parcel border is less $50 * 80 \mathrm{~cm}$ additional room will be buiet to the building outlet. Two pieces are 50 mm in diameter will be installed from this additional room to the
two telephon outlets must be used in residence but for the workshops ree outlets.
t of the bilding main inlet central box must be approximately 2 m
tor of the pipe that will be used in installation must be twice that diameter of the wires.
tonresistance for the cable used in installation must not be less than kohonical weakness that measured in central must not be more than 70 dB .
mari projesine wygundur

BIW BILGI FQRMUNU ONAYLAYAN KURUM DDLDURACAKTIR

URUM ADI
ZROJE KAYIT NO
ROJE ONAY T
-LGILI DONEM

$\mathrm{N} \in \mathrm{U}$FACULITI OF ENGINEERING ELECTRIC\&ELECTRONIC DEPARTMEND

TEL:
CEP:0.533.866 1253

LEFKOŞA

CONCLUSION

According to agreement with the property owner the illumination installment ss been delivered on time.

During our work time a painstaking and careful labouring has been Gplemented.All conditions and owner's benefits have been fulfilled.

Inspite some contradictions with the property owner, his demands have been Ways considered and tried to implement.

The inlet cable for the building was taken two cross-sections more than it is loposed to be,considering the technical rapid developments in our world.

Separate ordinary TV cable was taken through the roof for each socket. This reased the cost of the installation and no enough benefit as expected.

Three 12 BTU airconditioners has been demanded for each flat by the perty owner.this kind of airconditioner will not be completely useful during Fmer time. A heater will be definately needed when the winter season tes. Beside these, the electricity that will be used is going to increase.All these bons are going to cost a lot and put the owner in financal trouble. In order to tent this problem a central heating and cooling system could have been lled.

Despite the contradictions mentioned above I believe that a proper installation project has been implemented.

IFERENCES

OKS
-f.Dr.Muzaffer KAYA, Aydınlatma Tekniği, Birsen Publishing, 2000,İstanbul Ler ÜRGÜPLÜ, Elektrobank,Elektroteknik Bilgi Bankası, Bizim Büro Eshing,1997,Ankara
ecmettin TiRBEN, Elektrik Projeleri ve Detayları, ANKARA, 1973

13 SITES
www.dumlupinar.edu.tr

- www.itu.edu.tr
www.uludag.edu.tr
www.ankara.edu.tr

PoRTS

TMMOB Elektrik Mühendisleri Odası, Yayın No:5, Proje Düzenleme Sları ve Yardımcı Bilgiler Kitabı, 2002 Lefkoşa
Atrik ic Tesisat Yönetmeliği, EMO Yayınları, 2002 Ankara
Atrik ic Tesisat Yönetmeliği, Kale Porselen Yayınları,2002,Ankara ların Elektrik Tesisatları İcin Yönetmelik, EMO,1993,Lefkoşa

APPENDIX A

ernal Electricity Installation Equipment:
35:
inal voltage of the keys are $250,500,750 \mathrm{~V}$ and nominal currents are 6,10 , 50A.
ole Kev: Switches on and off one lamp or a group of lamps.
Hutator Kev: Switches on and off two groups of lamps one by one or at the re time.

Kev: Switches on and off two groups of lamps one by one.
siven Kev: Switches on and off one lamp or a group of lamps from two Erent points.

Fiator Kev: Switches on and off one lamp or a group of lamps from more than different points.

sets:

F of mobile receivers, connected to the network such as flashlight, vacuum Fner, electricity stove etc, is called socket. Sockets, in damp places, must have a lective contact.
los are apparatuses that keep the current within allowed borders for conveyers in installation. Fuses prevent that the conveyers, they protect, are heated up in a Ferous way. They are divided into two as automatic and manual.
matic Fuse: Automatic fuses are small switches with thermic and magnetic Fers. In automatic fuses, also, thermic and magnetic circuits operate separately. the event of short circuit, an electro magnet pulls a core, engines are switched on the magnetic circuit is activated. In case of excessive current, on the other thermic opener is activated. These are divided into two types:
utomatic fuse with body
fa type automatic fuse

Tere are switch off buttons in addition to switch on buttons in these type of fuses. tomatic fuses are also divided into types as regards to time-current aracteristics. Line type (L), house type (H) and apparatus type (G).
Inuel Fuses: These fuses consist of three parts. Body, Cover and Cover head or 1. Body consists of 2 parts in wall type fuses and of 1 part in table type fuses. dy's task is to supply connection to the line to be protected. Line, through the Ework, is always connected to the vice-contact of the body and line, to the Reiver, is connected to the screwed ring of the body. Vice-contact is the conveyer FI. to which metal-headed edge touches, when cover is duly placed. Vice contact is the non-conductive part, which prevents cover with greater current, to be into the fuse.
lers are like empty cylinders made of porcelain. Covers are of $6,10,15,20,25$, $50,60,80,100 \mathrm{~A}$. There are different indication signs for each current. For rance, 6 A green, 10 A red, 15 A gray etc bles:
tles are formed by placing the fuses on a proper surface. In one table, apart from Ifuses, there may be keys, sockets, measuring apparatuses and watches. They are ded into two as main table and secondary table with respect to distribution. 15 regards to place of use, they are divided as tables used in dry places and es used in damp places. Tables, attracting current up to 60 A must be without Tables, attracting current more than 60A must be with bar.
TERNAL ELECTRICITY INSTALATIQN EQUIPMENT

veyers:

are divided two as isolated and bare conveyers. Generally, copper conveyers sed in internal electricity installation.
st of the conveyers in internal electricty installation are protected in the pipes. differ with respect to place of use.
zman Pipe (B): These are made of thin cover with lead. Inner parts of these are isolated with a paper on which a hard-to-burn paint is absorbed. These los are generally used in dry places and for over-plaster installations.
Pipe (P): These are splitted pipes made of steel cover. Internal and external of these pipes are painted with black varnish. They are mostly used in dry Ees and for sub-plaster installations.

Lpanzer Pipe (st): These are unsplitted steel pipes. Inner parts of these pipes solated with a paper on which a hard-to-burn paint is absorbed. These kinds of 5 are used in damp places for sub-plaster and over-plaster installations.
pleks Pipe (Steel Pipe): These are absent steel pipes, internal parts of which solated. They are used in the same places as Stahlpanzer pipes are used.

Parts:

are various joint parts to the pipes and different parts are used for each kind pe. These are respectfully, Sub-connector (MUF), Angle (Corner), T-joint, hpiece, connection box and fixing material.
onnector (Rakort): It is a flat joint part that connects one pipe to another pipe e to the part.
(Corner): These are curved joint parts that are used in the places where the change direction.

It Part: This is a joint part that makes the pipes divide into two different ons from one point.
piece: This is an edge part, used to prevent bruising of conveyer isolations of pipes.
tion Box (Junction box): Conveyer connections are made in this box. are connectors (klemens) in the junction boxes to joint the conveyers. boxes are named as bergman, Peşel and stalpanzer etc. according to the pipe, used in the installation. Bergman junction box is made of iron cover ad or porcelain; Peșel junction box is made of cover or cast iron and er junction box is made of cast iron. Junction boxs may have 1 to 8

Fuths.

Ging Material: These are materials such as hook, cramp iron and hook with one two lugs, to fix the pipes or parts to the places where they will be used.

Ive:

s an internal installation material, which is used to connect internal electricity rallation to the part of an electricity installation, made of a cordon and by the help of Fnectors.

hht Sockets:

cht sockets are used to connect the lights to the installation. These are divided two as Swan light sockets and Edison light sockets.

IEPERATION OF INTERNAL ELECTRICITY INSTALLATION OJECTS AND CONSTRUCTION OF THE INSTALLATION:

ne definitions about internal electricity installation:

in column line: It is the feeding line from the main junction box of the building Te watch.
mn line: These are feeding lines from the watch to the main table or to sub-
lines: These are lines from a fuse in distribution table to the junction boxs Ee outlet lines are separated.
tet line: These are lines, which are separated from the junction boxs on fuse and stretch to receiver apparatus.

APPENDIX B

[^0]: f.Dr. Muzaffer KAYA, Aydınlatma Tekniği, Page No Between 208-2 14, Birsen Publishing, 2000, istanbul

[^1]: TOTAL DEMANDIN PQVER=SAME TAME COFFICIENTXTOTAL POWER=(557570-5570) $\times 0.4=223028 \mathrm{~W}$
 SAME TAME CDFFICIENT CHDUSES IS 0.6

[^2]: $U \operatorname{Cos} \Phi$

