# NEAR EAST UNIVERSITY

# **Faculty of Engineering**

# **Department of Electrical and Electronic Engineering**

# INTERNAL ELECTRICAL INSTALLATION PROJECT

# Graduation Project EE-400

Student :

# Naci BAYAR (20002030)

Supervisor:

Assist.Professor Doğan HAKTANIR

Lefkoşa - 2003

# **ACKNOWLEDGEMENTS;**

Studing in the Near East University Electrical and Engineering Department ras one of the most difficult part of my study-life. Not only the difficulty of courses, but also my family life that 1 concern and military occupation that 1 am involved influenced my regular and constant study.

I appreciate firstly Mr.Major General A.Cahit SARSILMAZ, secondly our General Staff Officer President, Infantry General Staff Officer Colonel Tacettin COŞKUN, thirdly General Staff Officer Lieutenent Colonel Oğuz OSKAY and lastly General Staff Officer Major İsmail GÜNEŞER whom supported me all the time throughout my study life.

I also appreciate Mr.Assistance Professor Doğan HAKTANIR for preparing this project and sharing his experiences and knowledge with me.

I'm also grateful to all my lecturers especially Prof.Dr. Şenol BEKTAŞ and Prof.Dr.Fahrettin MAMEDOV than Dr.Kadri BÜRÜNCÜK and Özgür ÖZERDEM for their help and education they gave me.

I also thank to my dear friend Abdülkadir EKİCİ for his assistance.

Lastly, I owe a lot to my beloved wife for supporting me morally and my lovely daughter who 1 couldn't spend enough time.

# ABSTRACT

Starting the electrical project drawings, architectural project and measurements were examined. The places for main electrical household appliances owen, refrigerator, washine machine, dish washer machine, air condition ) were designated. The illumination calculations for rooms have been done and suitable morlures have been selected. The lights and sockets power necessary have been determined. The cross – section of conductors have been chosen as well. The ability of cross – section of chosen conductor has been controlled with voltage decrease calculation. The equal power distribution to phases has been provided by bading tables. The value of the service has been determined by cost analysis.

# TABLE OF CONTENTS

| CKNOWLEDGEMENTS                                                                                       |        |
|-------------------------------------------------------------------------------------------------------|--------|
| SSTRACT                                                                                               | 2      |
| CONTENTS                                                                                              | 3      |
| TRODUCTION                                                                                            | 4      |
| AIN TEXT                                                                                              | 5      |
| CHAPTER 1                                                                                             | 6      |
| 1.1. Area ExploIing, Network Research, DetermInIng The Place Of Inlet Cable                           | 6      |
| Demands Of Property Owner                                                                             | 6      |
| CHAPTER 2                                                                                             | 6      |
| 2.1. Converting Architectural Project To Electrical Project, Drawing Preliminary                      |        |
| CHAPTER 3                                                                                             | 6      |
| 3.1. Illumination Calculation                                                                         | 8      |
| 3.2 The Calculation Of Internet III                                                                   | 8      |
| CHAPTER A                                                                                             | 9      |
| 4.1 Starting The Final Project Drawing                                                                | 15     |
| CHAPTER 5                                                                                             | 15     |
| 5.1 Forming Main Loading Tables                                                                       | 17     |
| CHAPTER 6                                                                                             | 17     |
| 6.1 Calculation Of Wire Cross Section                                                                 | 23     |
| 6.2 Calculation Of Wire Section Regarding Victors D                                                   | 23     |
| 6.3 The Wire Cross Section Calculation Regarding Voltage Decrease In One Phase Circu<br>Phase Circuit | iit 24 |
| A The calculation of the                                                                              | 25     |
| 6.5 Calculation of wire cross section regarding power loss in one phase circuit                       | . 25   |
| 6.6 Calculation Of Cross Section Regarding Power Loss In Three Phase Circuits                         | 26     |
| 6.7 Calculation Of Urrent In Three Phase Cricuits                                                     | 26     |
| CHAPTER 7                                                                                             | 28     |
| 71 Drawing Wook Comment A. 1 DET D.                                                                   | 30     |
| 7.2 Cost Analysis                                                                                     | 30     |
| CHAPTER 8                                                                                             | 30     |
| 8.1 Adding Symbol List Needs Depart A. 1.C.                                                           | 31     |
| The cost Analysis                                                                                     | 5      |
| CONCLUSION                                                                                            | 31     |
| REFERENCES                                                                                            | 36     |
| APPENDIX A                                                                                            | 37     |
| APPENDIX B                                                                                            | 38     |
|                                                                                                       | 42     |

### NTRODUCTION

I have exercised final thesis on electricity installations. My aim is to draw sectricity projects of the subject. Before starting to draw the electricity project we to consider the following steps in order.

Chapter 1 is devoted to area exploring, network research, determining the **same of** inlet cable and devoted to demands of the property owner.

Chapter 2 is devoted to convert the architectural project to electrical project, many project.

Chapter 3 is devoted to illumination calculations.

Chapter 4 is devoted to start the final project drawing.

Chapter 5 is devoted to form main loading tables.

Chapter 6 is devoted to calculate current-voltage, voltage decrease, **Examination** and draw column diagram.

Chapter 7 is devoted to draw the weak current and PTT Project, devoted to analysis.

Chapter 8 is devoted to add symbol list, needs report and cover page, copy **roject** and file with cost analysis.

All the necessary knowledge has been found in order to get detailed project. The chapters above have been considered and followed carefully.

# **MAIN TEXT**

### L CHAPTER 1

# 1.1 AREA EXPLORING, NETWORK RESEARCH, DETERMINING THE PLACE OF INLET CABLE AND DEMANDS OF PROPERTY OWNER;

We reached to the area where the building is located with the property oner. Our building is located in Gönyeli, 100 m north of Lefkoşa – Güzelyurt ghway. There is a three phase network voltage very near to building. Feeding be done from this line, 10 m underground cable will be used to get in the olding.

Demands of property owner about illumination force were listened. He mands flourescent armature for living room, kitchen and bedrooms, J type for hall, C type armature for badroom and Wc. He also demanded to base 12000 Btu split air-condition has got a power of 3,8 kW (1 kW = 3,148

He also demanded an oven for every flats and at least two sockets for each He demanded heating system, solar energy, boiler, and pressure tank for and flat as well. He demanded 3 people capacity lift for the building too.

### **CHAPTER 2**

# **CONVERTING ARCHITECTURAL PROJECT TO ELECTRICAL ROJECT, DRAWING PRELIMINARY PROJECT;**

Architectural project was checked up through necessary arrangements. The comes of doors and windows were determined. Opening direction of the doors crawn. Kitchen counter place and its measures were designated.

After these steps, the places of receivers in the flats were selected. Air-

scre shown in the kitchen and washine machine in the hall. The places for armatures, sockets and keys were designated.

Architectural Plans are important to energy entrance into the building and inbution and remoting regulations. The plans which are designed by intectures and civil engineers include all the construction drawings, (1 / 50 or 1 / ). These plans are used for construction of the building and also in electrical allation. It is clear that the buildings situation must be considered according to incipality regulations. The columns and joits are important during electrical stallation in the floor plans. These parts are chosen carefully. Because reinforced increte roof will carry all the weight of the building; so it is not liked to get any mage on the system while electrical installment has been doing. Thus electrical stallment and reinforced concrete roof construction must be held together floor ans must showed separately.

Stairs going down to the basement must be considered carefully. Because of columns and the walls situation the emty places must be used for electrical constallation.

If the energy entrance through underground the first floor gets importance with the main gate or small corridor. An assembly space must be looked for in the entrance. The walls are thiner than basement's. Normal floor plans are shown with only one drawing because all the flats are the same so the electrical installments and architectural construction are followed the same construction.

If the energy enrance with air corridor, an isolator consoul equipment must eassembled on the wall side where the first floor's air corridor enters. The energy will be connected to the stair holes with the shortest way. Column line fuse also put in this place.

For studing floor plans, heat and ventilate holes must be considered carefully. During the installment these places must be stayed away. Opening side of the doors is important due to electrical remote switch settlement. The switch must not be behind the door. The room spaces and the other measurement must be

in floor plans. These measurements will be used for calculation of the mination.

The architectural plans are the first studies of the electrical installation. Cause the application project of electrical installment has been drawn on intectural plans first. After certification of Electrical Engineers Bureau the ication is ready to start. Therefore project makers have to have a knowledge ut architectural plans. For instance they have to know how to indicate the appear and measurements of doors, windows, stairs (wooden parts) main walls umns.

Measurement in architectural plans has been done including internal and ernal parts of the building according to drafting rules. The number above the line of the door shows the widht, hte other number below the axis line shows height. It must be avoided of height places like chimneys, in order to not give damage to the installment during preparation of projects. Because of this it has be known the drawings of chimney in the plan.

While the preparation of electrical installment projects the using poses have to be known in order to designate illumination features. Additionaly, manent house appliance and furnitures places must also be known. While the paration of the electrical installment projects, the settlement plan of the building be asked. It is going to help for the arrangement of installment.<sup>1</sup>

### **E CHAPTER 3**

### ILLUMINATION CALCULATION

Illumanition calculation is performed in order to find the number of matures necessory for rooms.

The dimensions of living room kitchen and bedroom have measured certally. [Lenght(a) with(b) height (h)]

Illumination calculation is done one by one for each part.

Sectrettin TİRBEN, Elektrik Projeleri ve Detayları, sayfa 87-89, ANKARA, 1973

# **THE CALCULATION OF INTERNAL ILLUMINATION**

The formulates symbols: = the flow of the direct light = the flow coming to working table. = the light flow coming by reflexion = the avarage level of light of working table = m<sup>2</sup> of working table

= the sum of light flow (lumen)

The calculation of illumination by the light flow method. The calculation of emal illumination by efficiency method. This method is mostly used in internal mination installations. As it is known the  $\Phi$  light that cames to plane has the monents  $\Phi$ dir and  $\Phi$ end ( $\Phi_{dir}$  shows the flow of the direct light,  $\Phi_s$  shows the even coming to working table,  $\Phi_{end}$  shows the light flow coming by reflexion)

 $\Phi_s = \Phi_{dir} + \Phi_{end}$ 

$$E_o = \underline{\Phi}_{\underline{o}}$$

Shows the avarage level of light of working table,  $\Phi$ o represents the total light from lambs in lumen and S represents the area of the plane in m<sup>2</sup>. In reality one of the light flow is absorbed by walls, ceiling, and illumination devices. So that the average illumination degree of the plane is:

$$E_{o} = \underline{\Phi}_{\underline{o}} \underline{\eta} = \underline{\Phi}_{\underline{o}}$$

factor is called the efficiency of illumination and it is a number less then 1.

 $\Phi_a$  represents flow of light to plane and

 $\Phi_{\rm s}$  represents total flow of light that is given by light sources.

Efficiency of device illumination  $(\eta)$  is multiplication of the efficiency of devices and efficiency of the room.

 $\eta$  ayg represents the efficiency of device

 $\Phi_0$ 

 $= \Phi_{avg}$ 

Φ,

 $\Phi_s$   $\eta$  oda represents the efficiency of room

Φayg

# $\eta = \eta \operatorname{ayg} - \eta \operatorname{oda}$

efficiency of device is related with the illumination device. Efficiency of the room related with geometric dimensions of room, reflection factors and colours of ells and ceiling, light distribution curves of illumination devices, height of them plane and their places. Table 10.1 shows belowed in same situations that are ed mostly;

| miniation system | d<br>illimi<br>(nayo | irect<br>niation<br>g=%70) | sem<br>illimi<br>(nayg | i-direct<br>niation<br>g=%80) | M<br>illimi<br>(nayg | ixed<br>niation<br>g=%80) | semi<br>illimi<br>(nayg | indirect<br>niation<br>I=%80) | İnc<br>illimi<br>(nayç | lirect<br>niation<br>j=%70) |
|------------------|----------------------|----------------------------|------------------------|-------------------------------|----------------------|---------------------------|-------------------------|-------------------------------|------------------------|-----------------------------|
|                  | n                    | (%)                        | n                      | (%)                           | n                    | (%)                       | n                       | (%)                           | n                      | (%)                         |
| Room index (a/h) | A                    | В                          | A                      | В                             | A                    | В                         | A                       | В                             | A                      | В                           |
| 0,5              | 13                   | 9                          | 9                      | 5                             | 12                   | 7                         | 11                      | 6                             | 9                      | 5                           |
| 0,7              | 19                   | 13                         | 13                     | 7                             | 16                   | 10                        | 15                      | 8                             | 12                     | 6                           |
| 1,0              | 25                   | 19                         | 17                     | 10                            | 21                   | 13                        | 19                      | 12                            | 15                     | 8                           |
| 1,5              | 35                   | 30                         | 24                     | 15                            | 27                   | 17                        | 25                      | 16                            | 20                     | 11                          |
| 2,0              | 40                   | 36                         | 29                     | 19                            | 32                   | 21                        | 29                      | 19                            | 23                     | 14                          |
| 2,5              | 44                   | 40                         | 33                     | 23                            | 35                   | 24                        | 32                      | 22                            | 26                     | 16                          |
| 3,0              | 47                   | 43                         | 36                     | 26                            | 38                   | 26                        | 35                      | 24                            | 28                     | 18                          |
| 4,0              | 51                   | 47                         | 41                     | 30                            | 43                   | 30                        | 39                      | 28                            | 32                     | 20                          |
| 5,0              | 54                   | 50                         | 45                     | 34                            | 46                   | 33                        | 42                      | 30                            | 34                     | 22                          |
| 7,0              | 57                   | 53                         | 51                     | 39                            | 51                   | 37                        | 46                      | 34                            | 36                     | 24                          |
| 10,0             | 59                   | 55                         | 57                     | 40                            | 55                   | 40                        | 51                      | 37                            | 38                     | 26                          |

this Table;

e lenght of one side of a square room

height of light sources to the plane in direct and semi-direct illumination system. Height of ceiling to the plane in direct; mixed and semi-direct illumination system.

Situation where is ceiling is white ( $\rho_T = \%75$ ) and walls are quite white ( $\rho_D = \%50$ )

Situation where is ceiling is quite white ( $\rho_T = \%50$ ) and wall are dark  $\rho = \%30$ )

If the room is a rectangle (a,b), efficiency is;

$$= \eta a + 1/3 (\eta a - \eta b)$$

The preparing the table 10.1, only two efficiency about illumination devices  $\eta ayg = \%70$  and  $\eta ayg = \%80$ ) is taken. **Example** 1 and the efficiency  $\eta^{1}$  and  $\eta^{1}$  is an august of the efficiency  $\eta^{1}$  and  $\eta^{1}$  is an august of the efficiency that is found from table is the efficiency with a factor of  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{1}$  and  $\eta^{$ 

After finding the efficiency  $\eta$ , light flow that goes to plane ( $\Phi_0$ ) is found the help of flow of light by illumination sources ( $\Phi_s$ ). Then the average mination level is:

$$E_{O} = \frac{\Phi_{s}}{S} = \eta \frac{\Phi_{o}}{S}$$

The average illumination level of plane is given and total light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that light flow that li

$$\Phi_{0} = \underline{\underline{E}_{0}} \underline{\underline{S}}$$

In below the dimensions of living room are given and number of armatures found by performing necessory calculation.

# ILLIMINIATION UNITS

| NAME                | SYMBOL        | UNIT       | EXPLANATION                                                                                                                                                                                        |  |  |  |  |  |  |  |
|---------------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Light flow          |               | Lümen (Im) | It is the amount of the total light source gives in all<br>directions. In other words it is the port of the electrical<br>energy converted into the light energy. That isgiven to<br>light source. |  |  |  |  |  |  |  |
| Light intensity     | ght intensity |            | It is the amount of light flow in any direction. (the light<br>flow may be constant but the light indensity may be<br>different in various directions)                                             |  |  |  |  |  |  |  |
| miniation intensity | E             | lux (lux)  | It is the total light flow that comes to 1 m <sup>2</sup> area                                                                                                                                     |  |  |  |  |  |  |  |
| flashing            | L             | cd/cm2     | It is th elight indensity that comes from light sources or unit surfaces that the light sources lighten.                                                                                           |  |  |  |  |  |  |  |

This table was taken from report 1 page 18, showed in references page.

# **IILUMINATION EQUATION**

| EQVATION     | SYMBOL              | EXPLANATION                                                                                                                                              |
|--------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| =            | n                   | Number of light bulbs                                                                                                                                    |
| $\Phi_{L}$   | $\Phi_{\mathrm{T}}$ | Total light flow necessary (Im)                                                                                                                          |
|              | $\Phi_{\rm L}$      | Light flow given by a light bulb.                                                                                                                        |
|              | k                   | Room index (according to dimensions)                                                                                                                     |
|              | а                   | Length (m)                                                                                                                                               |
| = a b/       | b                   | width (m)                                                                                                                                                |
| a+b)         | h                   | Height of the light source to the working sueface (m)                                                                                                    |
|              | Н                   | Height of the light source to the floor(m)                                                                                                               |
| and a        | h1                  | Height of the working surfaces to the flor (m)                                                                                                           |
|              | E                   | Necessary illiminiations level (lux) chosen from the table                                                                                               |
|              | Α                   | Surface area that will be lighted (m2)                                                                                                                   |
| $\Phi_T =$   | d                   | Pallution installmentfactors 1.25 - 1.75                                                                                                                 |
| E.A.d /<br>η | η                   | Efficensy factors of the installment it is chosen from the table according to wall, ceiling, flor reflexion factors, tipe of armature chosen, room index |

| 2.5 m | H=2,8 m    | $P_t$ (Ceiling) =%80 (white) | d= 1,25 |
|-------|------------|------------------------------|---------|
| 4.9 m | E=50 lux   | $P_d$ (Wall) = %50 (white)   | ,       |
| E-h1  | h= 2,8 – 1 | h= 1,8 m                     |         |

symbols have been explained in tables above.

The table in Appendix F is correct if a=b

tequal b the indexes of a and b have been calculated separately, It is below.

$$\eta = \eta + \frac{1}{3}(\eta b - \eta a)$$

$$\eta = \eta + \frac{1}{3}(\eta b - \eta a)$$

$$\eta = 0.35$$

$$\eta = 0.35$$

$$\eta = 0.35$$

random tipe = fluorescant lamb tipe = 65/80 W have been choosen.

The light flow for this tipe of lamb has been showed as 5600 lumen in table below.

| LAMP               | POWER OF LAMP (W) | AVERAGE ELOWS (m) |
|--------------------|-------------------|-------------------|
| STEPAL USING WIDER | 60                | 610               |
|                    | 100               | 1230              |
|                    | 18/20             | 1100              |
|                    | 36/40             | 2850              |
| -DCANT             | 65/80             | 2830              |
|                    | 9                 | 5600              |
|                    | 11                | 400               |
|                    | 15                | 600               |
|                    | 20                | 900               |
| mic)               | 20                | 1200              |
|                    |                   | 1500              |
|                    | 18                | 1050              |
| PACT FLOURESAN     | 28                | 2050              |
|                    | 38                | 3050              |
|                    | 50                | 1800              |
|                    | 125               | 6300              |
| (MBF)              | 400               | 12250             |
|                    | 1000              | 38000             |
| RV (MRIE)          | 250               | 17000             |
|                    | 1000              | 81000             |
|                    | 100               | 10000             |
| SODIUM (SON PLUS)  | 400               | 51000             |
|                    | 150               | 54000             |
| SON DELUXE)        | 400               | 12250             |
|                    | 300               | 38000             |
|                    | 500               | 5950              |
|                    | 750               | 11000             |
|                    | /30               | 16500             |
| TEN HALOJEN        | 1000              | 22000             |
| tolala it a        | 1500              | 33000             |

# TYPICAL FLOWS OF SOME LAMPS

table was taken from report 1 page 18, showed in references page.

 $= \frac{\Phi T}{\Phi L} = \frac{5075}{5600} = 0,90$  one piece of 65/80 W lamb is enough for the illuminiation of the room.

Illumination of kitchen and bedrooms have been done in the same way.

Dr. Muzaffer KAYA, Avdınlatma Tekniği, Page No Between 208-214, Birsen Publishing, 2000, İstanbul

### **CHAPTER 4**

z.

4.1

# STARTING THE FINAL PROJECT DRAWING

Situation plan has been drawn considering the location of the area where the **bilding** is standing. The inlet cable to building was designated. Force projects of **first** floor and other floors were drawn. Conductor cross-sections were chosen as; **5** mm<sup>2</sup> for light outlet, 2,5 mm<sup>2</sup> for socket outlets,2,5 mm<sup>2</sup>-4 mm<sup>2</sup> for the linye **bildes**, at least 16 mm<sup>2</sup> for column lines.Fuse currents that will be used in these mes were determined according to receiver currents. A linye has been shown for **ach** air-conditioner. Dishwasher and oven in the kitchen have been fed with the **bild** linye. Light, socket and ground 0.4 mm thick, column lines 0.5 thick, writing **md** walls 0.2 mm thick were selected in the plan. Total 14 light outlets have been **bild** by two linye and 23 socket outlet have been fed by ten linye. The sockets in the **bild** were planned to first floor entrance, distribution tables were planned to a **bild** by two linye in front of the inlet door. All the counters were installed into the **bild** place in front of the inlet door. All the counters were installed into the **bild** place in front of the inlet door. All the counters were installed into the **bild** place in front of the inlet door. All the counters were installed into the **bild** by been done with 0,5 m<sup>2</sup> copper board as stated in laws.

The andication of the linye tables and characterdistic features of the motors first and the ordinary floors have been showed in the tables at the end of tis

This is divided into various types according to materials we use in internal

- Installation made with conveyers with pipes
- Installation with Bergman pipe
- Installation with Peşel pipe
- Installation with Ştalpanzer and sempleks pipe
- Installation with antigron (material for damp places) material

CRGÜPLÜ, <u>Elektrobank, Elektroteknik Bilgi Bankası Page No 350-351-352.</u>, Bizim Büro Publishing, 1997, Ankara

Installation on the isolators

During construction of these installations the work order to be followed is for over-plaster installation and for conveyers with pipes is as follows:

**Drawing the way of the conveyer:** The conveyer, should be placed in a way will not spoil the appearance of the wall or the ceiling. We should place the to places that could easily be reached when the door is opened.

**Opening transit holes**: They should be opened by hole pens and by drills.

**Placing the pipe collars:** We should place the pipe collars with 30-50 cm **cervals throughout the planned conveyer ways.** 

Placing the junction boxes: We should determine the junction boxes on the wall pipe collar nails, steel nails or by wooden screws on the plugs, formerly placed.

Placing conveyers with pipes

Placing sockets and keys

Making the connections

Hanging and connecting the lamps and chandeliers

For sub-plaster installation with Bergmen and Peşel pipes, the order is as

of all, we draw the way for conveyers. Then we mark places of junction boxs, and sockets. Then we open channels on the walls and on the ceiling for pipes. In that, we place the cases of junction boxes, keys and sockets taking the plaster kness into consideration. We attach the pipes with screws to the channels merly opened. We take and connect the conveyers from the pipes by the help of ance only after plaster is made and dried.

Before the underground cables spread the conductor way must be gnated.The cable cannel is opened at least 80 cm depth and 40-50 cm th.Sand must be put at least 10 cm deep of the canal cable is installed. After putting the sand on the cables bricks must be put. After that the system is buried by

# E CHAPTER 5

E7] 4

# **E1 FORMING MAIN LOADING TABLES**

Loading table consists of TZ1, TZ2 tables for first floor, TN1, TN2, TN3, 4. TN5, TN6, TN7,TN8, TN9, TN10, TN11, TN12, TN13, TN14, TN15, TN16, 17, TN18 tables for other floors and TO tables for common used areas (lift, automatic, cable tv, telephone, door automatic). 14 light outlets and 23 socket ets are fed by first floor and other floors tables. Power of light outlet is 700 W, er of socket outlet is 26900 W and sum of power of a table is 27600 W. The anded power has been calculated as 12080 W that can be used from a table ultaneously.

The sum of the power of the tables shown above is 557570 W. If we calculate the demanded power as %40 of sum of the power of the tables, then it careases to 223028 W.

The loading table has been the same like the table showed at the end of this capter.

An application plans are important to give the details to the workers. After callation completed it is necessary to be connected into city network. Shortly the certrical Company has to know the features and measurements of the building. Certrical company has to know the features and measurements of the building. Certrical company has to know the features and measurements of the building. Certrical company has to know the features and measurements of the building. Certrical company has to know the features and measurements of the building. Certrical company has to know the features and measurements of the building.

The summary of energy distribution exsplains the summary of electrical allation; the loading table explains the loading measurements of the phases. company executives will be able to do energy distribution more regular and anced in the area. Voltage degrees measurements also help them in this subject be network voltage protects the system carefully.

Muzaffer KAYA, Aydınlatma Tekniği, Page No 338-339-340, Birsen Publishing, 2000, İstanbul

The summary of energy distribution is written starting from energy inlet and coludes column line, fuse, counter main switch and all of the linyes that are fed distribution table as linye fuse, sort of linye and charge of the linye and separately. Therefore sort of linyes are distinguished.

Electrical values that belong to each part are shown explicitly and separately mmary of energy distribution drawings. The loading tables are prepared for bution tables separately. Linye numbers, sort of linyes, linye fuse current, e lenght, number of outlets, sum of powers are explained separately in bution table. If the feeding is with three phase it must be clarified that which which takes the current from.

The sum of the powers in loading tables shown the building's power. If the ing is with three phase it shows the distribution of the charges of the phases rately. Electrician is responsible for the balanced internal distribution of the ge distribution as much as possible. The network executives should take care is energy distribution.

The main loading table has been attached to the project.<sup>5</sup>

ettin TİRBEN, Elektrik Projeleri ve Detayları, Page no 112-115, ANKARA, 1973

|          |                                                                                 |                                          |        | -                   | T                    | 1                    | 1                   | 1                   | 1                    |                       |                       |                      |                      |                        |                        |                      |                      |                       |                       |                |              |         |           |
|----------|---------------------------------------------------------------------------------|------------------------------------------|--------|---------------------|----------------------|----------------------|---------------------|---------------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|------------------------|------------------------|----------------------|----------------------|-----------------------|-----------------------|----------------|--------------|---------|-----------|
|          | OPAGER FLOW                                                                     | NUP FIRT FLUD                            | EiON   | FIRST FLOOR<br>NO:4 | SECOND FLOOR<br>NO:5 | SECOND FLOOR<br>NO:6 | THIRT FLOOR<br>NO:7 | THIRT FLOOR<br>ND:8 | FOURTH FLOOR<br>NO:9 | FOURTH FLOOR<br>NO:10 | FIVETH FLOOR<br>NO:11 | SIXTH FLOOR<br>NO:12 | SIXTH FLOOR<br>NO:13 | SEVENTH FLOOR<br>NO:14 | SEVENTH FLODR<br>NO:15 | EIGHT FLOOR<br>NO:16 | EIGHT FLOOR<br>ND:17 | NINEHT FLOOR<br>NO:17 | NINEHT FLOOR<br>NO:19 | TENHT FLOOR    | SHARE USING  |         |           |
| ł        |                                                                                 |                                          |        |                     |                      |                      |                     |                     |                      |                       |                       |                      |                      |                        |                        |                      |                      |                       |                       |                | 4000V        | 4000V   |           |
| I        |                                                                                 |                                          | 27600W |                     |                      | 27600W               |                     |                     | 27600W               |                       |                       | 27600W               |                      |                        | 27600W                 |                      |                      | 27600W                |                       |                | 300V         | 1462001 | TOOL OC W |
| I        | A PADON                                                                         | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |        |                     | 27600W               |                      |                     | 27600W              |                      |                       | 27600W                |                      |                      | 27600W                 |                        |                      | 27600W               |                       |                       | 27600W         | 300 //       | 193500  | 1 >>>>>>> |
| ł        |                                                                                 |                                          |        | 27600W              |                      |                      | 27600W              |                     |                      | 27600W                |                       |                      | 27600W               |                        |                        | 27600W               |                      |                       | 27600W                |                | 670          | 194170W |           |
|          |                                                                                 |                                          |        |                     |                      |                      |                     |                     |                      | 1 820822              |                       |                      |                      |                        |                        |                      |                      |                       |                       |                |              |         |           |
| I        | 5<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |                                          |        |                     |                      |                      |                     |                     |                      |                       |                       |                      |                      |                        |                        |                      |                      |                       |                       |                |              |         |           |
|          | 1 100 2 5                                                                       |                                          | 27600W | 27600W              | 27600W               | 27600W               | 27600W              | 27600W              | 27600W               | 27600W                | 27600W                | 27600W               | 27600W               | 27600W                 | 27600W                 | 27600W               | 27600W               | 27600W                | 27600W                | 27600W         | 5570W        |         |           |
|          | N N                                                                             | € J                                      | 63 A   | 63 A                | L<br>63 A            | L<br>63 A            | 63 A                | L<br>63 A           | 63 A                 | L<br>63 A             | L<br>63 A             | L<br>63 A            | L<br>63 A            | 63 A                   | L<br>63 A              | 63 A                 | 63 A                 | 63 A                  | L<br>63 A             | 63 A           | 35 A         |         | -         |
|          | 35 P/6 P                                                                        | 35 P/5 m                                 |        | 35 P/9 m            | 35 P/8 m             | 35 P/12 m            | 35 P/11 m           | 35 P/15m            | 35 P/14 m            | 35 P/18 m             | 35 P/17 m             | 35 P/21 m            | 35 P/20 m            | 35 P/24 m              | 35 P/23 m              | 35 P/27 m            | 35 P/26 m            | 35 P/30 m             | 35 P/29 m             | 35 P/33 m      | л<br>С<br>Л  |         |           |
| STILL IN | 2X16+16                                                                         | 2X16+16                                  | NYA    | NYA<br>NYA          | 2X16+16<br>NYA       | 2X16+16<br>NYA       | 2X16+16<br>NYA      | 2X16+16<br>NYA      | 2X16+16<br>NYA       | 2X16+16 ·<br>NYA      | ZXI6+16<br>NYA        | 2X16+16<br>NYA       | 2X16+16<br>NYA       | 2X16+16<br>NYA         | 2X16+16<br>NYA         | 2X16+16<br>NYA       | 2X16+16<br>NYA       | 2X16+16<br>NYA        | 2X16+16<br>NYA        | 2X16+16<br>NYA | 2X6+6<br>NYA |         |           |
| 1        | 53                                                                              | 26900W                                   | 26900W | 23<br>26900W        | 23<br>26900W         | 23<br>26900W         | 23<br>26900W        | 23<br>26900W        | 26900W               | 23<br>26900W          | 23<br>26900W          | 23<br>26900W         | 23<br>26900W         | 23<br>26900W           | 26900W                 | 23<br>26900W         | 26900W               | 23<br>26900W          | 23<br>26900W          | 23<br>26900W   | 2<br>4600 V  | 14970W  |           |
|          | 14                                                                              | 14                                       | 700M   | 14<br>700W          | 14<br>700W           | 14<br>700W           | 14<br>700W          | 14<br>700W          | 14<br>700W           | 14<br>700W            | 14<br>700W            | 14<br>700W           | 14<br>700W           | 14<br>700W             | 14<br>700W             | 14<br>700W           | 14<br>700W           | 14<br>700W            | 14<br>700W            | 14<br>700W     | 12<br>970W   | 292     |           |
| 7.01     | TZ2                                                                             | TNI                                      |        | TN2                 | TN3                  | TN4                  | INS                 | TN6                 | TN7                  | TN8                   | TN9                   | TN10                 | TN11                 | TN12                   | TN13                   | TN14                 | SINT                 | TN16                  | LN17                  | TN18           | 10           | LIGHT   |           |
|          |                                                                                 |                                          |        |                     |                      |                      | XD8                 | I AJII              | 00<br>C C D N        | AJT2A<br>IX00S        | mm &<br>ER PLI        | сь 4<br>ПИЛЕ         | DK<br>LAGE           | and                    | Н                      |                      |                      |                       |                       |                |              | TDTAL   |           |

DKP 4 MM & SOOXIOO HDUSE TYPE UNDER PLASTER COUNTER BOX AT

TUTAL DEMANDIN POVER=SAME TAME COFFICIENTXIDIAL POWER=(557570-5570)X0.4=223028 W SAME TAME COFFICIENT CHOUSES IS 0.6

5223

5

-

----

-

-

|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1800)X60%=12080W                        |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| THINGS                       | CLIMATE<br>CLIMATE<br>CLIMATE<br>CLIMATE<br>SDCKET LINE<br>SDCKET LINE<br>DISHWASHER<br>DISHWASHER<br>DISHWASHER<br>DISHWASHER<br>DISHWASHER<br>DISHWASHER<br>DISHWASHER<br>DISHWASHER<br>LIUNDRY MACH.<br>SDCKET LINE<br>LIGHT LINE<br>LIGHT LINE<br>LIGHT LINE<br>LIGHT LINE<br>WATHER PAMP<br>WATHER HEAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2500+2500+2000+2200+                    |
| DEMANI<br>Pover              | 12080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00+3800+                                |
| POWER<br>BOX                 | 27600W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3800+38(                               |
| POWER                        | 3800W<br>3800W<br>1500W<br>1500W<br>2500W<br>2500W<br>2500W<br>2500W<br>2500W<br>2500W<br>2500W<br>26900W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 800)X40%+(                              |
| PIPE<br>CRUDS S              | 181<br>181<br>181<br>181<br>181<br>181<br>181<br>181<br>181<br>181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00-2200-1                               |
| FUSE<br>CURRENT              | L 20A<br>L 20A<br>L 20A<br>L 16A<br>L 16A<br>L 16A<br>L 16A<br>L 16A<br>- 10A<br>- 10A<br>- 16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-2500-20<br>DDDV                       |
| LENGHT<br>DF LINE<br>A #     | 11 a 12 a 13.4 a 11.6 a 11.6 a 11.6 a 11.6 a 33.4 a 33.4 a 33.8 a 11.2 a 33.8 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a 11.2 a | C T X T X T X T X X X X X X X X X X X X |
| LINYE<br>CRODS S.<br>3X4 NYA | 3X4 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA<br>3X25 NYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| T L E T<br>SOCKET<br>1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∠<br>」<br>≧                             |
|                              | (101A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| - No                         | 2<br>5<br>5<br>6<br>6<br>8<br>8<br>8<br>9<br>9<br>9<br>10<br>11<br>11<br>12<br>13<br>13<br>13<br>13<br>13<br>10<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| AJT2A.                       | HOUSE TYPE UNDER PL<br>BDX DF FUSE W 60 A<br>TZI=TZS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |

TZ1&TZ2 BOX DETAIL

| [      |          | 1        |             | I           |              | 1                    | 1                        | T                | T               | 1                | 1                  | 1                 | T           | 1           | 1    |       |
|--------|----------|----------|-------------|-------------|--------------|----------------------|--------------------------|------------------|-----------------|------------------|--------------------|-------------------|-------------|-------------|------|-------|
|        |          | CLIMATE  | CI IMATE    | CLIMATE     | SUPKET I INF | SUCKET LINE          | DICHV/ASHER              |                  |                 | SUCKET I INF     |                    | LIGHT LINE        | NATHER RAMP | WATHER HEAT |      |       |
| DEMAND | PUVER    |          | 1           |             |              |                      |                          | 12080V           |                 |                  |                    |                   |             |             |      |       |
| POVER  | BOX      |          |             |             |              |                      |                          | Z/6UUW           |                 |                  |                    |                   |             |             |      |       |
| POWER  | LINE     | 3800W    | 3800W       | 3800W       | 1500W        | 1500V                | 2500W                    | MUUM             | 1500V           | 2500W            | 455V               | 295 V             | 2200V       | 1800W       | 700V | 26900 |
| PIPE   | CRUUS S. | 18 P     | 18 P        | 18 P        | 14 P         | 14 P                 | 14 P                     | 14 P             | 14 P            | 14 P             | 14 P               | 14 P              | 18 P        | 18 P        |      |       |
| FUSE   | LUKKENI  | L 20 A   | L 20A       | L 20A       | L 16A        | L 16A                | L 16A                    | L 16A            | L 16A           | L 16A            | L 10A              | L 10A             | L 16A       | L 16A       |      |       |
| LENGHT |          | 6.4 m    | 11 m        | 12 m        | 11.6 m       | 13.4 m               | 9.5m                     | E<br>N           | 11.2 m          | 9.5m             | 13.5 m             | 8.1 m             | 32 m        | 32 a        |      |       |
| LINYE  |          | 3X4 NYA  | 3X4 NYA     | 3X4 NYA     | 3X2.5 NYA    | 3X2.5 NYA            | 3X2.5 NYA                | 3X2.5 NYA        | 3X2.5 NYA       | 3X2.5 NYA        | 2X2.5 NYA          | ZX2,5 NYA         | 3X6 NYA     | 3X6 NYA     |      |       |
|        |          | -        | 1           | 1           | ſſ           | IJ                   | 1                        | 1                | 2               |                  |                    |                   | 1           |             |      | 23    |
|        |          |          |             |             |              |                      |                          |                  |                 |                  | 8                  | 9                 |             |             | +    |       |
| N L    | -        | -        | പ           | m           | 4            | S                    | 9                        | 2                | ω               | σ                | 10                 | 11                | 15          | 13          | DTAL |       |
| 81'.   | ZI       | 83<br>91 | 11S<br>'SI' | ∀7a<br>₽1'8 | 0 V          | 9 /<br>JUN<br>[']]'] | т <u>з</u><br>IП<br>DI'6 | лг<br>Зал<br>'8' | 1J<br>41<br>2'9 | םנ<br>SE<br>ל'צ' | XI<br>החם<br>צ'צ'ק | BL<br>H<br>דיקינו | V.L         |             |      |       |
|        |          |          |             |             |              |                      |                          |                  |                 |                  |                    |                   |             |             |      |       |

3800-3800-3800-2500-2500-2000-2200-1800)X40%+(3800+3800+3800+2500+2500+2000+2200+1800)X60%=12080W TN1.2..3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18 BDX DETAIL

----

| THINGS                     | LFTMUI    | WATER POMP |
|----------------------------|-----------|------------|
| LINE<br>CUR. SEC           | 4X6 NYA   | 4X6 NYA    |
| FUSE<br>220/380            | L 25/16A  | L 20/16A   |
| 220/380<br>VOLT            | 14.7/8.5A | 8.7/5 A    |
| YIELD                      | % 82      | % 81       |
| COSQ                       | 0.84      | 0.34       |
| Q.<br>T                    | 5,4       | m          |
| ≥<br>×                     | <br>4     | S N        |
| ν<br>N<br>N<br>N<br>N<br>N | 1         | N          |

# MOTOR LABEL VALUES

|                 | ION    | ION     |        | 2 DT.  |       |       |       |      |  |
|-----------------|--------|---------|--------|--------|-------|-------|-------|------|--|
|                 | TANIMU | IMINAT  | ED     | & DOOF |       |       |       |      |  |
| INGS            | S ILLU | S ILLL  | T / NE | BELL   | MOT.  |       |       |      |  |
| Η               | STAIF  | STAIR   | FOR    | DOOR   | LIFT  |       |       |      |  |
| MAND            |        |         | 70V    |        |       |       |       |      |  |
|                 |        |         |        | )      | -     | 1.    |       |      |  |
| POVER<br>BOX    |        |         | 5570W  |        |       | 5.6   |       |      |  |
| POWER<br>LINE   | 360W   | 360W    | 600W   | 350W   | 4000W | M079  | 4600W |      |  |
| S<br>S          |        |         |        |        |       |       |       |      |  |
| PIPE<br>CRDD    | 18 P   | 18<br>1 | 18 P   | 18 P   | 14 P  |       |       |      |  |
| RENT            | A      | A       | P P    | A      | A S   |       |       | ETAJ |  |
| FUS             | L 10   | L 10    | L 16   | L 6,   | L 16  |       |       | X DI |  |
| NGHT<br>LINE    | E      | 2       | ε      | E      | E     |       |       | B    |  |
|                 | 16     | m<br>T  | m      | ň      | ň     |       |       |      |  |
| YE<br>DS S.     | 5 NYA  | 5 NY/   | 5 NYA  | NYA    | NYA   |       |       |      |  |
| CRD             | 3X2.   | 3XP.    | 3X2.   | 0.75   | 4X6   |       |       |      |  |
| L E T<br>Socket |        |         | 2      |        | 1     |       | 6     |      |  |
| LIGHT           | 9      | 9       |        |        |       | 12    |       |      |  |
| N L             |        | N       | m      | 4      | ſ     | TUTAI |       |      |  |
| A               | 09     | M       | ISE    | EI.    | 10    | XC    | BI    |      |  |

mannen

2 2

### CHAPTER 6

83

### **CALCULATION OF WIRE CROSS SECTION**

While the calculation of wire cross section, mechanical strenght, heating age degrees and power loss controls are done in electrical installation. The wire section regarding mechanical strenght except weak current installation must less than 1 mm in electrical internal installation.

The wire cross sections regarding to mechanical strenght must be less than 6 for 20 - 35 meters pole distance and at least 10 mm<sup>2</sup> for larger pole distances external electrical installation.

If the currents exceeds the heat limitation the wire heats up and insulation burns. Therefore table 12.1 shows belowed in the limitation of the currents that through the conductors in the pipes and the fuse currents that will protect these ductors.

The voltage decrease must not be more than %5 for light installation, %3 for the installation, %2.5 for low voltage networks, %5-6 for low voltage feeding %10 for midium and high voltage lines.

| Cross-section of | g       | roup 1          | g        | group 2         | grou     | р 3                |
|------------------|---------|-----------------|----------|-----------------|----------|--------------------|
| wire<br>S (mm2)  | Imax(A) | Fuse flow In(A) | Imax (A) | Fuse Flow In(A) | Imax (A) | Fuse Flow<br>In(A) |
| 1                | 12      | 10              | 16       | 16              | 20       | 20                 |
| 1,5              | 16      | 16              | 20       | 20              | 25       | 25                 |
| 2,5              | 21      | 20              | 27       | 25              | 34       | 35                 |
| 4                | 27      | 25              | 36       | 36              | 45       | 50                 |
| 6                | 35      | 35              | 47       | 50              | 57       | 63                 |
| 10               | 48      | 50              | 65       | 63              | 78       | 80                 |
| 16               | 65      | 63              | 87       | 80              | 104      | 100                |
| 25               | 88      | 80              | 115      | 100             | 137      | 125                |
| 35               | 110     | 100             | 143      | 125             | 168      | 160                |
| 50               | 140     | 125             | 178      | 160             | 210      | 200                |
| 70               |         | -               | 220      | 225             | 260      | 260                |

2 12.1: table of flows of excessive current and anma fuse of three group of isolated conductors

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

new 2: moist floor lines, lines connected to mobile receivers, circular wired mutiway lines laid down in outdoor (CTNH, ATT and TTR type

One way line laid down outdoor(TNH, TT type conductors)

# **CALCULATION OF WIRE SECTION REGARDING VOLTAGE**

It is necessary to consider the effect of inductance and capacity apart from resistance of line in alternating current. Meanwhile only the effect of ctance and resistance will be considered. The inductance of line can be ignored resuse it's smallness in internal electrical installation.

condition;

| $= \underline{100 \text{ PR}}_{\text{U}^2} = \underline{200 \text{ PR}}_{\chi \text{SU}^2}$                 | There 2L/ χS w<br>known, so the             | as put instead of R. P,L, $\chi$ ,W and wire cross section can be calculated | d E is<br>ated |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|----------------|
| $S = \frac{200 \text{ PL}}{\chi \varepsilon \text{ U}^2}  \text{one}$                                       | his formulate. If th<br>e this formulate is | ere are receiving device more th                                             | an             |
| $\varepsilon = \frac{200}{\chi U^2} \sum_{k=1}^{n}$<br>oltage decrease<br>etwork voltage (v)                | $\frac{Pk}{Sk}$                             |                                                                              |                |
| <ul> <li>sum of power (w)</li> <li>cross- section (mm<sup>2</sup>)</li> <li>cz direnç for cupper</li> </ul> | $56^{\rm m}/\Omega{\rm mm}^2$               | Al= $35^{\rm m}/\Omega{\rm mm}^2$                                            |                |

Here represents the power passes through k. lk represents Pk represents the cross section.

# ple 1.

A one phase alternating current engine 220 V, 5 kw, and  $\cos \Phi = 98$  will be 1000 m air line. % 5 voltage decrease is allowed so how many mm<sup>2</sup>. The section must be ?

 $S = 200 \text{ Pl} / \chi \epsilon \text{ U}^2 \qquad P = 5 \ 10^3 \text{ W} \text{ l} = 1000 \text{ m}$ 

 $\varepsilon = 5$  and U = 220 V is put

 $= 200 5 . 10^3 1.10^3 = 74 \text{ mm}^2$ 

56 5 220<sup>2</sup>

70 mm<sup>2</sup> wire can be used with slight mistake because of the standart wire section is 70 mm<sup>2</sup>.

# **THE WIRE CROSS SECTION CALCULATION REGARDING OLTAGE DECREASE IN THREE PHASE CIRCUIT.**

There symmetrical height must be considered of three phase it. Therefore it is considered that three phase circuit composed of three equal Thus every part carry the power 1 / 3 p between one phase wire and neutral

 $\epsilon = 100 \text{ P L/}\chi\text{SU}^2$  If the unit of P is taken as (W), L as (m),  $\chi$  as (m /  $\Omega$  mm<sup>2</sup>) (mm<sup>2</sup>), U as (V)

In the  $\varepsilon$  becames as a percentage value. U represents the voltage of the line.

 $S = \frac{100 \text{ PL}}{\text{X} \varepsilon \text{U}^2}$ 

If the voltage decrease is known as a percentage then this formula is used to the wire cross section. Lastly the conductors' medium and high voltage lines be chosen not exceeding for thermic power station % 6 or % 8, and for water er station % 10 - 12 regarding voltage decrease.

THE CALCULATION OF WIRE CROSS SECTION REGARDING OVER LOSS IN ONE PHASE CIRCUIT.

The power loss in a line where the resistance is R is ; = R  $I^2$ 

percentage ;  $p = 100 \Delta P = 100 R I^2$ P P

instead of I and 2 L /  $\chi$  S

U Cos  $\Phi$ 

25

www.www.www.

$$\overline{X S U^2 Cos^2 \Phi}$$

Estead of R p = 200PL  $\cos \Phi = real power = W$ zahiri power VA

then the wire cross – section becomes ; S = 200 P L

 $\chi p U^2 Cos^2 \Phi$ 

# **CALCULATION OF CROSS SECTION REGARDING POWER LOSS THREE PHASE CIRCUITS**

As three phase system is loaded symmetrically the the power loss in the line coomes ;

 $= 3 R I^2$ 

= a percentage ;  $p = 100 \Delta P = 300 R I^2$ p

instead of ~I and ~L /  $\chi~S$ P P 1.73.U Cos Φ  $rac{1}{2}$  of R then the power loss in percentage becomes ;

 $p = \frac{200 P L}{\chi S U^2 \cos^2 \Phi}$ 

the wire cross - section becomes ;

 $S = 1 \underline{00 P L}$  $\chi p U^2 \cos^2 \Phi$ 

# **CALCULATION OF CURRENT IN THREE PHASE CIRCUITS**

Three phase current calculations is done in order to find the maximum that inter mediate coloumn line carries and also the cross section of the

-----

The current vave found must be smaller than the current capacity of the The current calculation for coloumn line in our bulding is made in example:

 $\frac{p}{1.73 \text{ X U X COSQ}} = \frac{223028}{1,73 \text{ X380 X 0,3}} = 427,28 \text{ A} > 2 \text{ X310 A}$ 

Currying carring capacity of 2x120 mm 2 NYY cable is designated as 2x310 stillizing this way.

The same calculation is performed for coloumn line as well;

 $I = \underline{P} = \frac{12080 \text{ W}}{220 \text{ V}} = 54,9 \text{ A} < 65 \text{ A}$ 

Its approprianteness has been found from table 12.1 Appendix D

The curring carring capacity of 16 mm2 NYA cable is given as 65 Ain the

| TABLE           | 2M |
|-----------------|----|
| F F COLF No. Co |    |

LUCIUR)

The table is when the protection was done with perfect protection. These value must be used for.

|   | as a bunch in installion pipe or in tranking on a cable carrier as a bunch or attachaed to directly the graund |      |                        |                      |                                  |         |                              | Identified conditions                |                                                                          |                      |         |                                      |                                                    |                 |             |                    |      |
|---|----------------------------------------------------------------------------------------------------------------|------|------------------------|----------------------|----------------------------------|---------|------------------------------|--------------------------------------|--------------------------------------------------------------------------|----------------------|---------|--------------------------------------|----------------------------------------------------|-----------------|-------------|--------------------|------|
|   | three phase 3 or 4 cable a.c. veya d.c.                                                                        |      |                        | ase 3 or 4<br>le a.c | one phase two cable o a.c or d.c |         | three phase 3 or 4 cable a.c |                                      | horizontal (one phase a.c.or d.c. Two cable theree<br>phase or two cable |                      |         |                                      | clover leaf shaped<br>theree phases three<br>cable |                 | -           |                    |      |
| F | the voltage for each                                                                                           |      | e for each<br>nd meter | anma                 | the voltage<br>for each          | anma    | the volta<br>ampera          | the voltage for each amper and meter |                                                                          | the voltage for each | anma    | the voltage for each amper and meter |                                                    | aoma            | the voltage | 00.00000           |      |
|   |                                                                                                                | з.с  | d.c                    | current              | amper and<br>meter               | cuffent | a.c                          | d,c                                  | anna curen                                                               | amper and<br>meter   | current | one phase                            | d.c                                                | theree<br>phase | current     | amper and<br>meter |      |
|   |                                                                                                                | π    | ١V                     | A                    | mV                               | A       | 1                            | πV                                   | а                                                                        | mV                   | A       | mV                                   | mV                                                 | mV              | A           | mV                 | 2    |
|   | 14                                                                                                             | 0.97 | 0,91                   | 125                  | 0,84                             | 175     | 0,93                         | 0,91                                 | 160                                                                      | 0,82                 | 195     | 0.95                                 | 0.91                                               | 0.85            | 170         | 0.8                | 50   |
|   | 100                                                                                                            | 0,71 | 0,63                   | 160                  | 0,62                             | 220     | 0,65                         | 0,63                                 | 200                                                                      | 0,59                 | 240     | 0.68                                 | 0.63                                               | 0.62            | 210         | 0.69               | 70   |
|   | 3                                                                                                              | 0,56 | 0,45                   | 1958                 | 0,48                             | 270     | 0,48                         | 0,45                                 | 240                                                                      | 0,45                 | 300     | 0,52                                 | 0,46                                               | 0,49            | 260         | 0,42               | 95   |
|   | 25                                                                                                             | 0,48 | 0,36                   | 220                  | 0,42                             | 310     | 0.4                          | 0.63                                 | 280                                                                      | 0.38                 | 350     | 0 44                                 | 0.28                                               | 0.42            | 200         | 0.24               | 100  |
|   |                                                                                                                |      |                        |                      |                                  | 355     | 0.94                         | 0.29                                 | 320                                                                      | 0.34                 | 410     | 0.30                                 | 0.20                                               | 0.20            | 260         | 0,34               | 120  |
|   |                                                                                                                |      |                        |                      |                                  | 405     | 0.29                         | 0.24                                 | 365                                                                      | 0.3                  | 470     | 0.25                                 | 0.24                                               | 0.38            | 400         | 0.29               | 150  |
|   |                                                                                                                |      |                        |                      |                                  |         |                              |                                      |                                                                          |                      |         | 0.00                                 | 0,24                                               | 0,00            | 400         | 0.20               | 160  |
|   |                                                                                                                |      |                        |                      |                                  | 480     | 0.24                         | 0.18                                 | 430                                                                      | 0.27                 | 5660    | 0.26                                 | 0.10                                               | 0.20            | 400         | 0,22               | 0.10 |
|   |                                                                                                                |      |                        |                      | 1 . 1                            | 560     | 0.22                         | 0.14                                 | 500                                                                      | 0.25                 | RRO     | 0.30                                 | 0.14                                               | 0,30            | 480         | 0.22               | 240  |
|   |                                                                                                                |      | •                      | -                    | •                                | 680     | 0,2                          | 0,12                                 | 610                                                                      | 0.24                 | 800     | 0,33                                 | 0,14                                               | 0,35            | 680         | 0,19               | 300  |
|   |                                                                                                                |      |                        |                      |                                  |         |                              |                                      |                                                                          |                      |         |                                      |                                                    |                 |             |                    |      |
|   |                                                                                                                |      |                        |                      | · ·                              | 800     | Ø,18                         | 0,086                                | 710                                                                      | 0,23                 | 910     | 0,28                                 | 0,086                                              | 0,31            | 770         | 0.16               | 500  |
|   | -                                                                                                              |      |                        |                      |                                  | 910     | 0,17                         | 0.068                                |                                                                          | 0,22                 | 1040    | 0.26                                 | 0.068                                              | 0.3             | 880         | 0.15               | 630  |

able was taken from report 4 showed in references page.

# **CALCULATION OF VOLTAGE DECREASE**

0.7

As everbody kaows there is a loss of voltage and power because of the esistance of the conductor it self the laws permit to voltage decrease as %1,5 of network voltage. As it is shawn below voltage decrease is loss than 1.5 of network voltage. Voltage decrease methad is applied to longest and most aded linye. The most loaded and longest linye is number 3air conditioner linye in example.

 $e = \frac{100 \text{ x P xL}}{\text{K x SxU}^2} \quad \frac{200 \text{ x P xL}}{\text{KxSxU}^2} \quad \frac{200 \text{ x P x L}}{\text{KxSxU}^2}$   $e = \frac{100 \text{ x } 223028 \text{ x10}}{56 \text{ x } 240 \text{ x } 380^2} \quad \frac{200 \text{ x } 12080 \text{ x } 27}{56 \text{ x } 35 \text{ x } 220^2} \quad \frac{200 \text{ x } 3800 \text{ x12}}{56 \text{ x } 6 \text{ x } 220^2}$  e = 1,39 < 1,5

So that; the chosen cable cross-sections is found according to current voltage decrease calculations if the result is not suitable then the upper cross-

De Muzaffer KAYA, Aydınlatma Tekniği, Page No 340-348, Birsen Publishing, 2000, İstanbul



### CHAPTER 7

# **1 DRAWING WEAK-CURRENT AND PTT PROJECT AND**

Next bell switches for each flat have been installed to the main door. Bell sformers for all flats have been fed by the distribution table for each flat. All bells and door automatic have been put next to flat door. 0.75NYA cable has used for bell installation and door automatic installation. Independent phone socket line has been installed to each room for ordinary TV antenna. Any itional cable is avoided because any additional cable can affect the perfect on on TV negatively. 75 ohm coaxical cable has been used for TV socket linye.

Two socket lines have been installed for cable TV. All the lines have been alled separately for each flat. TV sockets have been put to living room and coom. Additional Box Inlet has been installed for ordinary telephone line for flat. Telephone sockets and its lines have been installed to living room and coom.

# **COST ANALYSIS**

The electrical installion minimum unit price list was taken from The suplic Of Nourthen Cyrus Turkish Republic, Munistriy of public works and portation, planing and costruction deparmant. The things that have been done listed. For example avcontation instalion water pump instalitation 1x13 socket ation ptc. The unit price numbers in this list were marked from the minimum list. Total work cost has been plotained by multiplicition of the unit prices number of works. The same procedure has been sustanied for the for the other as well. Lastly total cost has been found and given to property owner.

Cost analysis is the sum all the equipments used, machines and vehicles mizations, laboring and inevitable expences. In these parts the main affect is equipment list.

It is important to obtain the equipment list while calculating the cost of all ation. It is also important for new engineers in their early career.

Equipment list is done by counting and writing the equipments in order and carately. It should not be forgotten the degree of damage possibility. After mpletting these processes, multiplication and addition will give the total cost of cipment list. The cost analysis has been showed in appendix B.<sup>7</sup>

Estimated expences is to calculate the cost of the project. The work is ided into work units that done by executive institutions. The unit list is called eeting of the unit numbers in the work analyzed.

These list have importance in order to identify the units and their ures. The estimated expenses are the assessment regarding unit prices.

It is used the list of electrical installation estimated expences price list by the istary of Public Works.

### **CHAPTER 8**

# **ADDING SYMBOL LIST NEEDS REPORT AND COVER PAGE OPYING PROJECT AND FILING WITH COST ANALYSIS**

The names and symbol of the materials used (weak current, strong current, matures, fuses, cables, sockets, panels etc,) have been shawn in the list. This list stacked as an appendix.

Necessity report is abort the technical rules for internal electrical installation the company or person who makes the installation must obey. This report is eached as an appendix.

The cover page is composed of the place of the building and informations out the company.

After all these processes the project is copied in 1/50 scale. One copy is en to property owner. One copy to the company that did the business, one copy filed with the cost analysis and one copy to the related company. After mpleting the busines if any problem occurs the files are compared with each her.

ecmettin TİRBEN, Elektrik Projeleri ve Detayları, sayfa 74-75, ANKARA, 1973

Regulation is a unit that manages the projects implication it determines the inditions in order to implement the project that it should be fulfilled. The gulations about electrical internal installation leads the electricians work. Every untry has this kind of regulations peculiar to its own.

Contracts are the compulsary written notices that releates the inditions. These conditions are looked for in deliverance of the work. Contracts divided into two. Special and technical. Special contracts include mutual uests of employer and employee. It also includes the financial conditions. An er meaning of this is written agreements.

Technical contracts is a document that shows, the conditions of the building. Decially it has got technical subjects. It has got duty of restriction and leading the cupations technically.

It is a matter that goverment and enterprises keen on it. It is also main effect development of work security, arrangement and industry life.

Symbol list, necessities report wnd cover page have been attached at the and his chapter.

# SİGN TABLE

| Jp nourshing             | 3          | T1.                           |
|--------------------------|------------|-------------------------------|
| From up nourshing        |            | Inree phase normal socket     |
| Jown nourshing           |            | Three phase grounded socket   |
| From down nourshing      | X          | B-C-J type armature           |
| From down up nourshing   |            | N type chandelien             |
| From up down nourshing   | ¥          | Wall light                    |
| up and down nourshing    | -0         | Etan i armature               |
| Eurat / square Buyot     | 0          |                               |
| ain table                |            | Flourescent armature          |
| Secondary table          |            | Etani flourescent armature    |
| Fower table              | 0          | Circular flourescent armature |
| Secondary power table    |            | Stairs automatic switch       |
| Peserve main table       | M          | Stair automatic               |
| Control table            | _K K       | Door automatic line           |
| Ine Phase fuse           | 220/4.8.12 | Bell transformer              |
| One Phase fuse           |            | Door bell                     |
| One Phase automatic fuse |            | Kapi zili dügmesi             |
| 3 Phase automatic fuse   |            | Bell transformer switch       |
| Phase fuse               | -Đ         | Bell line                     |
| Phase knife fuse         | K          | Bell                          |
| Ine Phase active counter |            | Door automatic                |
| 3 Phase active counter   |            | Door automatick switch        |
| 3 Phase reactive counter |            | Amplificator                  |
| permeter                 |            | Tv. Antenna                   |
| oltmeter and commutatur  |            | Tv. socket                    |
| Power transformer        |            | Grounding line                |
| Corrent transformer      |            | Oven                          |
| chine                    |            |                               |
| Cenerator                |            |                               |
| the phase key switch     |            |                               |
| Three phase key switch   |            |                               |
| -gh current key          |            |                               |
| Contactor                |            |                               |
| Ine line                 |            |                               |
| nple key                 |            |                               |
| ommutator key            |            |                               |
| aviey key                |            |                               |
| nternal vaviey key       |            |                               |
| ectrical switch key      |            |                               |
| ne phase normal socket   |            |                               |
| ne phase grounded socket |            |                               |
|                          | 1          | 77                            |

Halddeddddddddddddddddddddddddd

### NECESSITIES REPORT

cody and all the parts that are not affected by the voltage have to be boards.

ght of botton side of the counter must be at most 1.8

equipments used must be certified by TSE.

eys amma currentmust not be small than 10 A that will be used in electrical to 250 V amma voltage.

eys and sockets can not be used as distribution box.

ses must be put at the begining of the line that will be used .

socket circuits must be seporated from iluminiation circuits.

inductors cross sectionss must be Cu =6 mm Al=10 mm

ination outlets must be at least 1.5 mm, socket outlet must be at least

se socket should be calculated as 300 W, three phase socket should be will be connected to a socket circuit.

cession from a bulb to another one if it is not compulsory.

meak current installation is NYA.

erground cables must be buried at least 80 cm depth. This measurement ced If it is necessary by security steps taken.

ctor colours will be chooser as brown for phase conductor, blue for ouctor, black for rotation conductor in ilumination installation circuts, rown or black for phase conductor, blue for neutral conductor, yellow or otective grounding conductor while considering the socket circuits. Phase column line system black represents R, red represents S, brown T, light blue represents neutral and green represents protective

### TELEPHONE INSTALLATIONS

be done the connection between telecom in let central and telecom network. pipes which are 50 mm in diameter will be installed starting from building main box up to out of the building where the number of telephone sockets less pipes will be buried 40 cm deep suitably.

stance between building cable inlet and front side parcel border is less 50\*80 cm additional room will be buiet to the building outlet. Two pieces are 50 mm in diameter will be installed from this additional room to the

e outlets.

of the bilding main inlet central box must be approximately 2 m ter of the pipe that will be used in installation must be twice that cameter of the wires.

connesistance for the cable used in installation must not be less than more conical weakness that measured in central must not be more than 70 dB.

| Tari projesine uygundur.         URU BILGI FORMANU DIAVILATAN KURUM BOLDBRAGATIK         URUM ADI<br>ROJE KAYIT NO<br>ROJE NAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA ODAY T<br>LGILI DÖNEM         ROJE ODA NEU<br>LL QU DA NEU<br>SICIL NO<br>LLEYI YAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SDYADI<br>PAPANIN ADI SD | BELEDIYE ONAY                                                                                                                                                                                                                                                                                                               | MEDAS ONAY TICEPTE                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If I BLGI FORMAU DIMALAYAN KURUM DIL DIBAGAKTR         IRUM ADI         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         ROJE KAYIT NO         RANDI KAYIT NO         RAVAR <td>ari projesine uygundur.</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ari projesine uygundur.                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                  |
| SOJE       ODA       ONAYI       TUS       ODA       ONAYI         SUJE       ODA       ONAYI       TUS       ODA       ONAYI         SUJE       MUELLIFE       FENNI       FENNI       COSE       COSE         SUJE       MUELLIFE       FENNI       MESUL       CTUS         SUSE       MUELLIFE       FENNI       MESUL       CTUS         SUSE       MUELLIFE       FENNI       MESUL       CTUS         SUSE       MUELLIFE       FENNI       MESUL       CTUS         AN PRO RES VE HESAPI YAP       B       PLAN PR RESIM VE HES YAPTIRANIN       CTUS         AN PRO RES VE HESAPI YAP       B       PLAN PR RESIM VE HES YAPTIRANIN       CTUS         ADI       BAYAR       I3 SUYADI       VERGI DAIRESI       II         ADI       BAYAR       I3 SUYADI       II       II         ADI       BAYAR       I3 SUYADI       II       II       III         ADI       BAYAR       I3 SUYADI       III       III       III       IIII       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BILGI FORMUNU ONAYLAYAN KURUM DOLDURACAKTIR.<br>URUM ADI<br>OJE KAYIT NO<br>OJE ONAY T<br>LGILI DÖNEM                                                                                                                                                                                                                       | MEDAŞ AÇIKLAMA                                                                                                                                                                   |
| ODE       OURTILITY         FENNIX       FENNIX         BLÇOLERI KONTROL EDINIZ       FENNIX         YETKILILERE BILDIRINIZ       FENNIX         LAN PRO RES VE HESAPI YAP       B         PLAN PR RESIM VE HES YAPTIRANIN         RGI DAIRESI       11         LI NO       20002030         ADI       BAYAR         LAN PRO RES VE HESAPI YAP       B         PLAN PR RESIM VE HES YAPTIRANIN         RGI DAIRESI       11         VERGI DAIRESI       11         VERGI DAIRESI       11         UM TARIHI 19774       15         CUM TARIHI 19774       15         MADI       18         DLD DDA       NEU         SICIL ND       18         JI ILÇE       SäKE         JI ILQE       SäKE         JI ILQE       BAIRE         JI BAAIRE       13         JI BAIRE       13         JI ILQE       SäKE         JI ILQE       SäKE         JI ILQE       PROJE CIZIMI         JI ILQE       PROJE CIZIMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Roje Oda Onayi                                                                                                                                                                                                                                                                                                              | TUS ODA ONAYI                                                                                                                                                                    |
| ÖLÇÜLERİ KÜNTRÜL EDINIZ         YETKILILERE BILDIRINIZ         AN PRO RES VE HESAPI YAP       B       PLAN PR RESIM VE HES YAPTIRANIN         IRGI DAIRESI       II       VERGI DAIRESI         CIL NO       20002030       I2       SICIL NO         ADI       BAYAR       I3       SUYADI         II       NACI       I4       ADI         ADI       IBRAHIM       I5       MAH.SEMT         CUM TARIHI 1974       I6       CAD.SUK.       I7         ILQE<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROJE MÜELLİFİ                                                                                                                                                                                                                                                                                                               | FENNI MESUL (TUS)                                                                                                                                                                |
| - LEYI YAPANIN ADI SUYADI YAP ISIN ÇE PRUJE ÇIZIMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ÖLÇULERI KONTROL EDINIZ         YETKILILERE BILDIRINIZ         -AN PRO RES VE HESAPI YAP         ERGI DAIRESI         OIL NO       20002030         ADI       BAYAR         II       NACI         JADI       IBRAHIM         CUM TARIHI 1974         CUM IL       AYDIN -         ILÇE       SÖKE         OLD ODA       NEU | B PLAN PR RESIM VE HES YAPTIRANIN<br>11 VERGI DAIRESI<br>12 SICIL N□<br>13 S□YADI<br>14 ADI<br>15 MAH.SEMT<br>16 CAD.SOK.<br>17 KAPI N□<br>18 DAIRE<br>19 KAPI N□<br>20 IL /U CE |
| PAFIA NU PARSEL NO ADA NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACI BAYAR                                                                                                                                                                                                                                                                                                                   | YAP ISIN ÇE     PROJE ÇIZIMI       PAFTA NO     PARSEL NO ADA NO                                                                                                                 |

http://www.communication.com

# CONCLUSION

According to agreement with the property owner the illumination installment s been delivered on time.

During our work time a painstaking and careful labouring has been plemented. All conditions and owner's benefits have been fulfilled.

Inspite some contradictions with the property owner, his demands have been ays considered and tried to implement.

The inlet cable for the building was taken two cross-sections more than it is posed to be, considering the technical rapid developments in our world.

Separate ordinary TV cable was taken through the roof for each socket. This cased the cost of the installation and no enough benefit as expected.

Three 12 BTU airconditioners has been demanded for each flat by the berty owner.this kind of airconditioner will not be completely useful during mer time. A heater will be definately needed when the winter season es.Beside these, the electricity that will be used is going to increase.All these ons are going to cost a lot and put the owner in financal trouble. In order to ent this problem a central heating and cooling system could have been ed.

Despite the contradictions mentioned above I believe that a proper installation project has been implemented.

### *FERENCES*

DIX A

### OKS

E.Dr.Muzaffer KAYA, Aydınlatma Tekniği, Birsen Publishing, 2000, İstanbul

Er ÜRGÜPLÜ, <u>Elektrobank,Elektroteknik Bilgi Bankası</u>, Bizim Büro Shing,1997,Ankara

cemettin TİRBEN, Elektrik Projeleri ve Detayları, ANKARA, 1973

### **B**SITES

- www.dumlupinar.edu.tr
- www.itu.edu.tr
- www.uludag.edu.tr
- www.ankara.edu.tr

### ORTS

MOB Elektrik Mühendisleri Odası, Yayın No:5, <u>Proje Düzenleme</u> ları ve Yardımcı Bilgiler Kitabı, 2002 Lefkoşa rik iç Tesisat Yönetmeliği, EMO Yayınları, 2002 Ankara rik iç Tesisat Yönetmeliği, Kale Porselen Yayınları, 2002, Ankara ların Elektrik Tesisatları İçin Yönetmelik, EMO, 1993, Lefkoşa

### **APPENDIX A**

### ernal Electricity Installation Equipment:

55

Tinal voltage of the keys are 250, 500, 750 V and nominal currents are 6, 10, 50A.

ple Key: Switches on and off one lamp or a group of lamps.

*utator Key*: Switches on and off two groups of lamps one by one or at the time.

*Tap Key*: Switches on and off two groups of lamps one by one.

*iven Key*: Switches on and off one lamp or a group of lamps from two ment points.

*Lator Key*: Switches on and off one lamp or a group of lamps from more than different points.

### ckets:

of mobile receivers, connected to the network such as flashlight, vacuum er, electricity stove etc, is called socket. Sockets, in damp places, must have a ective contact.

es:

are apparatuses that keep the current within allowed borders for conveyers in installation. Fuses prevent that the conveyers, they protect, are heated up in a gerous way. They are divided into two as automatic and manual.

*matic Fuse:* Automatic fuses are small switches with thermic and magnetic ers. In automatic fuses, also, thermic and magnetic circuits operate separately. e event of short circuit, an electro magnet pulls a core, engines are switched on the magnetic circuit is activated. In case of excessive current, on the other thermic opener is activated. These are divided into two types: utomatic fuse with body

a type automatic fuse

ere are switch off buttons in addition to switch on buttons in these type of fuses. stomatic fuses are also divided into types as regards to time-current acteristics. Line type (L), house type (H) and apparatus type (G).

*muel Fuses:* These fuses consist of three parts. Body, Cover and Cover head or Body consists of 2 parts in wall type fuses and of 1 part in table type fuses. dy's task is to supply connection to the line to be protected. Line, through the work, is always connected to the vice-contact of the body and line, to the eiver, is connected to the screwed ring of the body. Vice-contact is the conveyer to which metal-headed edge touches, when cover is duly placed. Vice contact is the non-conductive part, which prevents cover with greater current, to be into the fuse.

ers are like empty cylinders made of porcelain. Covers are of 6, 10, 15, 20, 25, 50, 60, 80, 100 A. There are different indication signs for each current. For ance, 6A green, 10A red, 15A gray etc

### bles:

es are formed by placing the fuses on a proper surface. In one table, apart from fuses, there may be keys, sockets, measuring apparatuses and watches. They are ded into two as main table and secondary table with respect to distribution. regards to place of use, they are divided as tables used in dry places and es used in damp places. Tables, attracting current up to 60A must be without Tables, attracting current more than 60A must be with bar.

# **TERNAL ELECTRICITY INSTALATION EQUIPMENT**

### eveyers:

are divided two as isolated and bare conveyers. Generally, copper conveyers sed in internal electricity installation.

### 25

of the conveyers in internal electricity installation are protected in the pipes. differ with respect to place of use. **EXAMPLE 2** These are made of thin cover with lead. Inner parts of these are isolated with a paper on which a hard-to-burn paint is absorbed. These are generally used in dry places and for over-plaster installations.

*I Pipe (P):* These are splitted pipes made of steel cover. Internal and external of these pipes are painted with black varnish. They are mostly used in dry and for sub-plaster installations.

*Ipanzer Pipe (st):* These are unsplitted steel pipes. Inner parts of these pipes olated with a paper on which a hard-to-burn paint is absorbed. These kinds of are used in damp places for sub-plaster and over-plaster installations.

*pleks Pipe (Steel Pipe)*: These are absent steel pipes, internal parts of which solated. They are used in the same places as Stahlpanzer pipes are used. **Parts:** 

e are various joint parts to the pipes and different parts are used for each kind pe. These are respectfully, Sub-connector (MUF), Angle (Corner), T-joint, ppiece, connection box and fixing material.

**connector** (**Rakort**): It is a flat joint part that connects one pipe to another pipe to the part.

(*Corner*): These are curved joint parts that are used in the places where the change direction.

**<u>nt</u> Part:** This is a joint part that makes the pipes divide into two different ons from one point.

*piece*: This is an edge part, used to prevent bruising of conveyer isolations of pipes.

ction Box (Junction box): Conveyer connections are made in this box. are connectors (klemens) in the junction boxes to joint the conveyers. In boxes are named as bergman, Peşel and stalpanzer etc. according to the pipe, used in the installation. Bergman junction box is made of iron cover and or porcelain; Peşel junction box is made of cover or cast iron and er junction box is made of cast iron. Junction boxs may have 1 to 8

12.A.

and the wist

100

1001010

and an increase are drive

. . .

a sterio obras de tra construit al contra y company en

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

10.0

m Reserved and the second second second second second second second second second second second second second s

and the second second second second second second second second second second second second second second second

ente su construction de la production de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la



ouths.

*ing Material*: These are materials such as hook, cramp iron and hook with one two lugs, to fix the pipes or parts to the places where they will be used.

s an internal installation material, which is used to connect internal electricity allation to the part of an electricity installation, made of a cordon and by the help of mectors.

# tht Sockets:

int sockets are used to connect the lights to the installation. These are divided two as Swan light sockets and Edison light sockets.

# EPERATION OF INTERNAL ELECTRICITY INSTALLATION DJECTS AND CONSTRUCTION OF THE INSTALLATION:

# ne definitions about internal electricity installation:

*column line:* It is the feeding line from the main junction box of the building watch.

mn line: These are feeding lines from the watch to the main table or to sub-

*lines:* These are lines from a fuse in distribution table to the junction boxs outlet lines are separated.

*tine:* These are lines, which are separated from the junction boxs on fuse and stretch to receiver apparatus.

# **APPENDIX B**

| PRICE A                         | NALYSIS |       |      |             |                   |
|---------------------------------|---------|-------|------|-------------|-------------------|
| TYPE OF PRODUCTION              | QUA     | NTITY | UNIT | UNIT PR     | ice total         |
| CED TYPE LAMP INSTALLATION      | -       |       |      |             |                   |
| R TYPE LAMP INSTALLION          | AD      |       | 280  | 34.200.000  | 9.576.000 000 TI  |
| GINSTALLATION                   | AD      |       | 60   | 36.800.000  | 2.208.000.000 TL  |
| G WALL LIGHT                    | AD      |       | 140  | 44.000.000  | 6.160.000.000 TL  |
| INSTALLATION                    | AD      |       | 60   | 85.700.000  | 5.142 000 000 TL  |
| OCKET INSTALLATION              | AD      |       | 120  | 67.700.000  | 8 124 000 000 TL  |
| INSTALLATION                    | AD      | -     | 360  | 45.000.000  | 16 200 000 000 TL |
| PUMP INSTALLATION               | AD      | -     | 20   | 110.000.000 | 2 200 000 000 TL  |
| R CONTROL INSTALLATION          | AD      | 2     | 20   | 135.000.000 | 2.200.000.000 TL  |
| G MACHINE INSTALLATION          | AD      | 2     | 20   | 98.000.000  | 1.060.000.000 TL  |
| ASHER MACHINE INSTALLATION      | AD      | 2     | 0    | 73.500.000  | 1.900.000.000 TL  |
| DITION INSTALLATION (SPLIT      | AD      | 2     | 0    | 73.500.000  | 1.470.000.000 TL  |
| LL WITH TRASEODMED DUG          | AD      | 2     | 0    | 79 300 000  | 1.470.000.000 TL  |
| TOMATIC INSTALLATION            | AD      | 2     | 0    | 93 200 000  | 1.586.000.000 TL  |
| OCKET INSTALLATION              | AD      | 1     |      | 124 000 000 | 1.864.000.000 TL  |
| ONNECTION POV                   | AD      | 60    | )    | 19 100 000  | 124.000.000 TL    |
| ILL 30 PEVAD                    | AD      | 8     |      | 60 700 000  | 2.946.000.000 TL  |
| ILL 50 PEVAD                    | MT      | 48    | 2    | 3 200 000   | 1.357.600.000 TL  |
| SOCKET DIGTAX                   | AD      | 20    |      | 1 000 000   | 638.400.000 TL    |
| SOCKET INSTALLATION             | AD      | 60    |      | 0.300.000   | 438.000.000 TL    |
| AUTOMATIC                       |         | 00    | 0    | 0.300.000   | 3.618.000.000 TL  |
| M2 CV DVC COX -                 | AD      | 20    | 1    | 28.000.000  |                   |
| VIM2 CV PVC COLUMN LINE         | MT      | 14    | 0 0  | 28.000.000  | 2.560.000.000 TL  |
| MM2 CV PVC COLUMN LINE          | MT      | 204   |      | 9.000.000   | 13.860.000.000 TL |
| MM2 CV PVC CABLE BED            | AD      | 290   |      | 2.000.000   | 3.480.000.000 TL  |
| SUILING                         | AD      | 40    | 1    | 20.000.000  | 4.800.000.000 TL  |
| AND AMP BUS-BUR'LI DISTRIBUTION |         | 1     | 1.   | 800.000.000 | 1.800.000.000 TL  |
| DISTRIBUTION                    | AD      | 1     | 50   | 0.000.000   |                   |
| CADI                            | AD      | 2     | 39   | 6.000.000   | 590.000.000 TL    |
| I CADLE DED                     | AD      | 1     | 4/   | 0.000       | 952.000 TL        |
| IL CABLE BED                    | MT      | 20    | 30   | 0.000.000   | 300.000.000 TL    |
|                                 |         | 20    | 12   | 100.000     | 242.000.000 TL    |

ł

33

the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

TIT