
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

USING MULTI-USER PROGRAMMING IN
IMPORT-EXPORT DEPARTMENT IN COMPANY

Graduation Project
COM-400

Student: Amin Ali Khamis (20010701)

Supervisor: Mr.Umit Soyer

Nicosia- 2005

1}-RE~1.2~~
ll .:, .. ~ r </: <"'.\\ ~ ~~.-Jrn1 C'J 'V ,<) •. .)
C$J • 'J- C,~

"First, I would like to and foremost to thank Allah whom its accompffsUifliw!jA ~
would not have been possible ~

ACKNOWLEDGMENT

Second, I would like to deeply thank my supervisor Prof. Dr UMIT SO YER for
his invaluable advice and belief in my work and my self over the course of this

graduation project

Third I am deeply indebted to my parents, brothers, and sisters for their love
and their support. They have always encouraged me to pursue my interests and

ambition throughout life.

Last but in no way least, I would also like to thank all of my friends especially
Eng.lmad Ahmed Dahdoh and Eng.Rami Kamel Aljundi they were always
available for my assistance throughout this project. "

I

ABSTRACT

The purpose of this project is the development of import and export

information system, this program designed to help the user easy and sufficient record

the information about the stocks and companies and more details which we are

importing and exporting.

All the screens which used in this program will be illustrated later, and the stocks,

companies, transportation, payment types, import-export, reports, and help will be

briefly discussed in chapter three.

/
\

II

TABLE OF CONTENTS
ACKNOWLEDGMENT ...•..•........•..............................•... i
ABSTRACT •.•.•..•.•.•.•.•....................•.•••.•.......................•...••.. ii

TABLE OF CONTENTS•.•.•.•..•...•.•.•....................•..••.•.•........................... iii

INTRODUCTION•...•....•..........................•.................................... VI

CHAPTER 1 INTERNATIONAL TRADE•..•..•.•.•.••..................•..•..•.•.•.•..... 1
1.1. Export-Import Procedure •••.•••••.•.•••.••.•.••••••••.•..••••••.••••..••.••.•.•.•.•.•.•••••..•.••.•.•.••.•.• 1
1.2. International Commercial Terms (INCOTERMS): •.•••..•.••.....•.•.•.•.••...•.••••.•.••.•. .3

1.2.1. EXW ••••.••••.•.•.••.••••.•.••••••.•••.••.•••••••.••••••••.••••••.••••.•.••••.•.•.•••••.•••••..••••.••.•••.•.• 5
1.2.2. FCA •.•••••••••.•.•..••••••.••••••.••••••••.•••••••••.•.•.•••.•••••.••••••••.••.•.•.•••••.•.•••.•••••.••.•••.••• 5
1.2.3. FOR .•.••••.••••.•.•.•••••••.••••••••••.••••.•.•••••.•••••.•••••••.•.••••••••.••.•.•••••••.•••••.•••••.••.•.•.••• 6
1.2.4. FAS •.•.•••••.•.•.•.•••••••.•.••••.•••.••••.•.•••••.•.•.•.•••••••.•.•••••••••••.•.•.•••.•.••••..•.••••••••.•.••. 6
1.2.5. FOB •.•.•••••.•.•.•.••.••••.•.••••.•.•.•••..•••.•••••.•.•.••.••.•••.••.•.•.•.••.•.•..•.••.•••••.•.•.••••.•.•.••• 6
1.2.6. CFR •.•.•••••.•.•.••••.•.••.•.••••.•.•.••••.•.•••••••••.•.•.•.•••.•.••.•••.•.••.•.•.••••.•••••..•••••..•.•.•.••• 7
1.2. 7. CIF .•.•••••••.•.•.•..••••••.•.••••.•.••••••.•••••••••.•.•.••..•••••..•••.•.•.••.•.•.••.•••••.•..•••••..•.•.•.••. 8
1.2.8. CPT •.•.•.•••••.•.•.••.•.••.•.••••.•.•••.••.•••••••.•.•.•.•.•.•.•.•.••••.•.•.••.•...••••••••••..•.••••.•.•.•.••. 8
1.2.9. CIP .•••.•••••••.•.•.•••••••.•.••••••.••••••.•••••••••.•.•.••••••••••••.•.•.•.••.•••••••••.••••..••••••••.•.•.••• 8
1.2.10. DAF •.••.••••.•.•.•.•••••.•.•.••••.•..•••.•••••••.•••.•••••.•.•.•.••.•.•.•.••.•.•.••••••••.•..•.•.••.•.•••.••• 9
1.2.11. DES •••••••••.•.•.•••••••.•.••••.•.•.••••.•••••••••••••.•••.•.•.•.••.•••••.••••••••••••••••••.•.•.••••.•.•.••• 9
1.2.12. DEQ •••.••••.•.•.•••••••.•.••••.•••••.••.•••••••••••••••••••••.•.••••.•.•.••.•.•.••••••••••..•.•.••••.•.•.••• 9
1.2.13. DDU •••.••••••••.•.•••••.•.••••.•.••••••..••••••.•.•••.•••••••••.••••••.•.••.•.•.••••••••••..••••••••.•.... 10
1.2.14. DDP ••••.••••.•••.•.•••••.•.•.••.•.••••••.••••••.••••••.•.•••••••.••.•••.•.••.•.•.•••.•••••••.•.•••.••.•.•.• 10

1.3. Export Documentary Requirements •••••••••••••.•.•••••••.•••••••••••.•.•.•.•••••.•••.••••••••.•••.• 12
1.3.1. Issuance Date of Documents ••••••••.•••••••••••.••••••.•..•••.•.•••••••••.••.••.••.•••••.••.•••.• 12
1.3 .2. The Original Documents •••••••.•.••••.••••••••••..•••.•••••.•••.•.••.•.•.•••.•.•••••.•••••.••••••.• 12
1.3.3. The Copy Documents •••.•••••••.•.••••.•.•.•..•.•.•••••••••.•••.••.••.•.•.•.•••.•.•••.•••••.••.•.•.• 12
1.3.4. Multiple Documents ••••.•.•.•••.•.•.••••.•••.•.•.••.••••.••.•••••.•••••••.•.•••.•.•.•••.•••••.••.•••.• 12
1.3.5. Signing of Documents •••••••••.•.•..•.•.•..•••••••..•.•.••.•••.•.••.••...•.•.•.•.•.•••..••••.••.•••.• 12

1.4. Authentication of Documents ••••.•••..•.•••.•.•••.••..•••.••••••••.•••••.•.•.•.•.•.•••••••...•.••••••.• 13
1.5. Unspecified Issuers or Contents of Documents ••.••••••.•.••••......•••••.•.•••..••••.•..••..• 13
1.6. Unspecified Documents .•••.••.•••.•.•.•..•••.•.•.•.•.•...•.•.••.•.•••.•••••.•.•.•••.•.•••••.•..••.••••••.• 13
1. 7. Standard Cargo Insurance •••••.•••.•.•.•.•.•••.•.••••.•.•.•.•..••.•.•.•.•.•.•••••.•.•••.••••••.• 14

1. 7 .1. Institute Cargo Clauses (All Risks) .•.•.••••..•.•.••.•.•.•.•.•••.•.•.•.•.•.•.•••.••.••.••••••.• 14
1. 7 .2. Institute Cargo Clauses (With Average) •..•.•.••.•••.•.•.•••.•.•.•.•.•.•••••.••.••.••.••••• 14
1.7.3. Institute Cargo Clauses (Free of Particular Average) •.•...•.•..................•..•• 15

1.8. Methods and Tools of Payment in Exporting and Importing .•.•.•.•.•••..•••..•.•.•••• 15
1. 9. Letter of Credit (L/C) ••••.•••.•.••••.••••••••••••••.•.•.•.•••••.•.••.•.•.•.•••••••.•.•••••.•••..••••••.•.•••• 15

1. 9 .1. Documentary Collections •••••••••••.••••••••.•.•.•.•.••••.•.•.•.•••••••.•.•••••.•..•.••••.•.•••• 15
1.10. Cheque and Bank Draft .••••••.•••.•.•..•.•.•.••••••••••.•••.•.••••.•.•.•.•••••••.•.••••••••••.••••••.•.•• 16

I 1.11. Trade Arrangements Using the Cheque and Bank Draft ..••••••••••••..•..•.••••.•.•... 16
1.11.1. Open Account •••••••.••••••.•.•.•••..•.•.•.••••••••••.•••.••••••••.•.•.••••.•••••••••••••.•.••••.•.•.•• 16
1.11.2. Consignment •.••••••••••••••••••••.••.•.•.•.•.•.••••••.•••••••••••••••••.•.•.•••••••••••••.••••••••••••• 17
1.11.3. Cash In Advance (CID) •.•.••••.•.•••••.••••••••.•••••.••••.•••.•..•.•.••••••••••••..••••••.•.•.•• 17

1.12. Telegraphic Transfer (T /T) •••.•.••••.•.•.•••.•.•.••••.•••••.•.•.••••••..•.•.••••••••••••..•.•..•.•••••• 17
1.13. Combination of Letter of Credit and Telegraphic Transfer .•••••••••..•......•..•.•.•• 17
1.14. Commercial Invoice •.•••••.•.••••.••••••.•.•••••.•.•.•••••.••••.•.••••••••..•.•.••.••••••••••.•••.••••.•.•• 19

III

1.15. Specific Language Requirements in the Commercial Invoice •••••••.•.••••.•••.•.••• 19
1.16. Declaration on Commercial Invoice 19
1.17. Certification and/or Legalization of Commercial Invoice .•••••.••••••.•.••.•.•.•.•.•.• 20
1.18. Corrections or Changes in the Commercial Invoice •••••••••••.•.•.••••.•.••.•••.•••••.••• 20
1.19. signature and/or stamp 20
1.20. Description of Goods 20

1.20.1. Quantity 21
1.20.2. Unit Price 22
1.20.3. Amount 22

1.21. Customs Brokers 22
1.22. Freight Forwarders or Consolidators 23

CHAPTER 2 25
INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) 25
2.1 INTODUCTION 25
2.2 The Delphi IDE 25
2.3 A Quick Look at the Delphi IDE 26
2.4 The Delphi Workspace 27
2.5 The Delphi Main Menu and Tool bar. 27
2.6 Using the Component Palette 28
2. 7 Placing Multiple Copies of a Component.. 29
2.8 About Delphi Forms 29
2.8.1 Main Window Forms 30
2.8.2 Creating the Main Window Form 30
2.8.3 Dialog Box Forms 32
2.8.4 Creating a Dialog Form 33

2.9 A Multiple-Form Application 33
2.9.lAdding Units 34
2.9.2 Some Key Properties for Forms 34

2.10 The Object Inspector 35
2.10.lThe Component Selector 35
2.10.2The Properties Page 36
2.10.3 The Events Page 37

2.11 Code Templates 37
2.12 Writing Code for the File, Open and File, Save As Menu ltems 38
2.13 Writing Code for the Window Menu 39

CHAPTER 3 40
Import-Export system 40

3.1. Database Structure: 40
3.2. Define Relationships Between Tables: 40
3.3. Delphi database components: 41
3 .4. Layout of the Application: 41

3 .4.1. Main menu screen: 41
3 .4.2. Add new stock card screen: 42
3.4.3. Update stock card screen: 43
3 .4.4. Add new company screen: 44
3 .4.5. Update stock card screen: 44

IV

:3 .4.6. Edit transportation way screen 45
:3 .4. 7. Edit payments type screen 45
:3 .4.8. Import documents screen 46
3.4.9. Export documents screen: 47
3.4.10. Help screen: 48

CHAPTER 4 49
LINUX AND UNIX OPERATING SYSTEM .49

4.1. Unix 49
4.2. Linus and Linux 50
4.3. Current Application of Linux Systems 52
4.4. The User Interface 52
4.4.1. Is Linux Difficult? 52

_4.4.2. Linux for non-experienced Users 53
4.5. Does Linux have a future? 55
4.5.1. Open Source 55

4.5.2. Ten years of experience at your service 55
4.6. Propertiesof Linux 57
4.6.1. Linux Pros 57

4.6.2. Linux Cons 58
4. 7. Linux Flavors 60

4.7.1. Linux and GNU 60
_4.7.2. GNU/Linux 61
_4.7.3. Which distribution should I install? 62
4.8. Introduction to unix 63
4.8.1 The Operating System 63

4.8.2. The Unix File System 63
4.9. Typcal Unix Directory Structure 64
4.10. Directory and File Handling Commands 67
4.11. Making Hard and Soft (symbolic) Links: 73
4.12. Specifying Multiple Filenames: 74
4.12.1. Quotes 74

4.13. Summary 75

CONCLUSION 76
RE FE RAN CE 77
APPENDIX 78

V

INTRODUCTION

The aim of the project is development of import and export information system

using Delphi programming.

The intended audience for this project includes the follow:

1. Codes-any codes that are responsible for creating and maintaining the data

elements and file description specified in this project.

2. Screens-those individuals who wish to view the data collected and processed as part

of the development import and export.

In Delphi programming language there are many things that we can use to create

any kind of project, but in this project I use some standards components and database

to create this project.

In this project the user can easily use the program which makes the information

more clear and allow him to find any data he wants, also allow him to insert, delete

and update the information about the imported and exported stocks and the companies

which related together.

In this program we can use it by a single user or by multi-users by using Linux or

UNIX operating system which explained with more details in chapter four.

VI

CHAPTER!

INTERNATIONAL TRADE

1.1. Export-Import Procedure

Seller and Buyer conclude a sales contract, with method of payment usually by

1 letter of credit (documentary credit).

2 Buyer applies to his issuing bank, usually in Buyer's country, for letter of

credit in favor of Seller (beneficiary).

3 Issuing bank requests another bank, usually a correspondent bank in Seller's

country, to advise, and usually to confirm, the credit.

4 Advising bank, usually in Seller's country, forwards letter of credit to Seller

informing about the terms and conditions of credit.

5 If credit terms and conditions conform to sales contract, Seller prepares goods

and documentation, and arranges delivery of goods to carrier.

6 Seller presents documents evidencing the shipment and draft (bill of exchange)

to paying, accepting or negotiating bank named in the credit (the advising bank

usually), or any bank willing to negotiate under the terms of credit.

7 Bank examines the documents and draft for compliance with credit terms. If

complied with, bank will pay, accept or negotiate.

8 Bank, if other than the issuing bank, sends the documents and draft to the

issuing bank.

9 Bank examines the documents and draft for compliance with credit terms. If

complied with, Seller's draft is honored.

10 Documents release to Buyer after payment, or on other terms agreed between

the bank and Buyer.

1

11 Buyer surrenders bill of lading to carrier (in case of ocean freight) in exchange

for the goods or the delivery order.

Outgoing
Shipment

I

DINER
{ Importer) 11111BIL I

SELLER
{ Exporter)

. JI II
Incoming
Shipment

• ••I•
6

8

3

2

1.2. International Commercial Terms (INCOTERMS):

The INCOTERMS (International Commercial Terms) is a universally recognized

set of definitions of international trade terms, such as FOB, CFR and CIF, developed

by the International Chamber of Commerce (ICC) in Paris, France. It defines the trade

contract responsibilities and liabilities between buyer and seller. It is invaluable and a

cost-saving tool. The exporter and the importer need not undergo a lengthy

negotiation about the conditions of each transaction. Once they have agreed on a

commercial term like FOB, they can sell and buy at FOB without discussing who will

be responsible for the freight, cargo insurance, and other costs and risks.

The INCOTERMS was first published in 1936---INCOTERMS 1936---and it is

revised periodically to keep up with changes in the international trade needs. The

complete definition of each term is available from the current publication=

INCOTERMS 2000. The publication is available at your local Chamber of Commerce

affiliated with the International Chamber of Commerce (ICC).

Many importers and exporters worldwide are accustomed to and may still use the

INCOTERMS 1980, the predecessor of INCOTERMS 1990 and INCOTERMS 2000.

Under the INCOTERMS 2000, the international commercial terms are grouped

into E, F, C and D, designated by the first letter of the term (acronym), as follows:

International Commercial Terms

(INCOTERMS)

GROUP TERM Stands for

E EXW Ex Works

F FCA Free Carrier

FAS Free Alongside Ship

3

FOB Free On Board

CFR Cost and Freight

CIF Cost, Insurance and Freight

CPT Carriage Paid To

CIP Carriage and Insurance Paid To

D DAF Delivered At Frontier

DES Delivered Ex Ship

DEQ Delivered Ex Quay

DDU Delivered Duty Unpaid

DDP Delivered Duty Paid

In practice, trade terms are written with either all upper case letters (e.g. FOB,

CFR, CIF, and FAS) or all lower case letters (e.g. fob, cfr, cif, and fas). They may be

written with periods (e.g. F.O.B. and c.i.f.).

In international trade, it would be best for exporters to refrain, wherever possible,

from dealing in trade terms that would hold the seller responsible for the import

customs clearance and/or payment of import customs duties and taxes and/or other

costs and risks at the buyer's end, for example the trade terms DEQ (Delivered Ex

Quay) and DDP (Delivered Duty Paid). Quite often, the charges and expenses at the

buyer's end may cost more to the seller than anticipated. To overcome losses, hire a

reliable customs broker or freight forwarder in the importing country to handle the

import routines.

Similarly, it would be best for importers not to deal in EXW (Ex Works), which

would hold the buyer responsible for the export customs clearance, payment of export

customs charges and taxes, and other costs and risks at the seller's end.

4

1.2.1. EXW { + the named place}

Ex Works

Ex means from. Works means factory, mill or warehouse, which is the

seller's premises. EXW applies to goods available only at the seller's premises.

Buyer is responsible for loading the goods on truck or container at the seller's

premises, and for the subsequent costs and risks.

In practice, it is not uncommon that the seller loads the goods on truck or

container at the seller's premises without charging loading fee.

In the quotation, indicate the named place (seller's premises) after the

acronym EXW, for example EXW Kobe and EXW San Antonio.

The term EXW is commonly used between the manufacturer (seller) and

export-trader (buyer), and the export-trader resells on other trade terms to the

foreign buyers. Some manufacturers may use the term Ex Factory, which

means the same as Ex Works.

1.2.2. FCA { + the named point of departure}

Free Carrier

The delivery of goods on truck, rail car or container at the specified point

(depot) of departure, which is usually the seller's premises, or a named railroad

station or a named cargo terminal or into the custody of the carrier, at seller's

expense. The point (depot) at origin may or may not be a customs clearance

center. Buyer is responsible for the main carriage/freight, cargo insurance and

other costs and risks.

In the air shipment, technically speaking, goods placed in the custody of an

air carrier is considered as delivery on board the plane. In practice, many

importers and exporters still use the term FOB in the air shipment.

The term FCA is also used in the RO/RO (roll on/roll off) services.

5

In the export quotation, indicate the point of departure (loading) after the

acronym FCA, for example FCA Hong Kong and FCA Seattle.

Some manufacturers may use the former terms FOT (Free On Truck) and

1.2.3. FOR (Free On Rail) in selling to export-traders.

1.2.4. FAS { + the named port of origin}

Free Alongside Ship

Goods are placed in the dock shed or at the side of the ship, on the dock or

lighter, within reach of its loading e'quipment so that they can be loaded

aboard the ship, at seller's expense. Buyer is responsible for the loading fee,

main carriage/freight, cargo insurance, and other costs and risks.

In the export quotation, indicate the port of origin (loading) after the

acronym FAS, for example FAS New York and FAS Bremen.

The FAS term is popular in the break-bulk shipments and with the

importing countries using their own vessels.

1.2.5. FOB {+the named port of origin}

Free On Board

The delivery of goods on board the vessel at the named port of origin

(loading), at seller's expense. Buyer is responsible for the main

carriage/freight, cargo insurance and other costs and risks.

In the export quotation, indicate the port of origin (loading) after the

acronym FOB, for example FOB Vancouver and FOB Shanghai.

Under the rules of the INCOTERMS 1990, the term FOB is used for ocean

freight only. However, in practice, many importers and exporters still use the

term FOB in the air freight.

6

In North America, the term FOB has other applications. Many buyers and

sellers in Canada and the U.S.A. dealing on the open account and consignment

basis are accustomed to using the shipping terms FOB Origin and FOB

Destination.

FOB Origin means the buyer is responsible for the freight and other costs

and risks. FOB Destination means the seller is responsible for the freight and

other costs and risks until the goods are delivered to the buyer's premises,

which may include the import customs clearance and payment of import

customs duties and taxes at the buyer's country, depending on the agreement

between the buyer and seller.

In international trade, avoid using the shipping terms FOB Origin and FOB

Destination, which are not part of the INCOTERMS (International

Commercial Terms).

1.2.6. CFR { + the named port of destination}

Cost and Freight

The delivery of goods to the named port of destination (discharge) at the

seller's expense. Buyer is responsible for the cargo insurance and other costs and

risks. The term CFR was formerly written as C&F. Many importers and exporters

worldwide still use the term C&F.

In the export quotation, indicate the port of destination (discharge) after

the acronym CFR, for example CFR Karachi and CFR Alexandria.

Under the rules of the INCOTERMS 1990, the term Cost and Freight is

used for ocean freight only. However, in practice, the term Cost and Freight

(C&F) is still commonly used in the air freight.

7

1.2. 7. CIF { + the named port of destination}

Cost, Insurance and Freight ,he cargo insurance and delivery of goods to the

named port of destination (discharge) at the seller's expense. Buyer is responsible for

the import customs clearance and other costs and risks.

In the export quotation, indicate the port of destination (discharge) after

the acronym C1:f, for example CIF Pusan and CIF Singapore.

Under the rules of the INCOTERMS 1990, the term CIF is used for ocean

freight only. However, in practice, many importers and exporters still use the

term CIF in the air freight.

1.2.8. CPT { + the named place of destination}

Carriage Paid To

The delivery of goods to the named place of destination (discharge) at

seller's expense. Buyer assumes the cargo insurance, import customs

clearance, payment of customs duties and taxes, and other costs and risks.

In the export quotation, indicate the place of destination (discharge) after

the acronym CPT, for example CPT Los Angeles and CPT Osaka.

1.2.9. CIP {+the named place of destination}

Carriage and Insurance Paid To

The delivery of goods and the cargo insurance to the named place of

destination (discharge) at seller's expense. Buyer assumes the import customs

clearance, payment of customs duties and taxes, and other costs and risks.

In the export quotation, indicate the place of destination (discharge) after

the acronym CIP, for example CIP Paris and CIP Athens.

8

1.2.10. DAF {+the named point at frontier}

Delivered At Frontier

The delivery of goods to the specified point at the frontier at seller's

expense. Buyer is responsible for the import customs clearance, payment of

customs duties and taxes, and other costs and risks.

In the export quotation, indicate the point at frontier (discharge) after the

acronym DAF, for example DAF Buffalo and DAF Welland.

1.2.11. DES {+the named port of destination}

Delivered Ex Ship

The delivery of goods on board the vessel at the named port of destination

(discharge), at seller's expense. Buyer assumes the unloading fee, import

customs clearance, payment of customs duties and taxes, cargo insurance, and

other costs and risks.

In the export quotation, indicate the port of destination (discharge) after

the acronym DES, for example DES Helsinki and DES Stockholm.

1.2.12. DEQ {+the named port of destination}

Delivered Ex Quay

The delivery of goods to the quay (the port) at destination at seller's

expense. Seller is responsible for the import customs clearance and payment of

customs duties and taxes at the buyer's end. Buyer assumes the cargo

insurance and other costs and risks.

In the export quotation, indicate the port of destination (discharge) after

the acronym DEQ, for example DEQ Libreville and DEQ Maputo.

9

1.2.13. DDU {+the named point of destination}

Delivered Duty Unpaid

The delivery of goods and the cargo insurance to the final point at

destination, which is often the project site or buyer's premises, at seller's

expense. Buyer assumes the import customs clearance and payment of

customs duties and taxes. The seller may opt not to insure the goods at his/her

own risks.

In the export quotation, indicate the point of destination (discharge) after

the acronym DDU, for example DDU La Paz and DDU Ndjamena.

1.2.14. DDP {+the named point of destination}

Delivered Duty Paid

The seller is responsible for most of the expenses, which include the cargo

insurance, import customs clearance, and payment of customs duties and taxes

at the buyer's end, and the delivery of goods to the final point at destination,

which is often the project site or buyer's premises. The seller may opt not to

insure the goods at his/her own risks.

In the export quotation, indicate the point of destination (discharge) after

the acronym DDP, for example DDP Bujumbura and DDP Mbabane.

10

Diagram: International Commercial Terms

---EXW

FCA

l

FCA

l
FOB

l

DEQ

l

DDU
DDP

J
IMPORTS

BUYER-
mporter. Consignee

li

1.3. Export Documentary Requirements

1.3.1. Issuance Date of Documents

A document that is dated before the issuing date of letter of credit (L/C) is

acceptable, unless otherwise stipulated in the UC.

1.3.2. The Original Documents

Unless otherwise stipulated in the letter of credit (UC), a document is

considered original if it is produced or appears to have been produced by

reprographic (i.e., document reproduced by electronic techniques, for example

photocopy), computerized systems, or as carbon copies, provided the

document is marked as "Original", and appears to be signed where the

signature is needed.

1.3.3. The Copy Documents

A document is considered copy if it is marked as "Copy" or there is no

"original" marking, unless otherwise stipulated in the letter of credit (UC). A

copy document need not be signed.

1.3.4. Multiple Documents

A letter of credit (UC) that requires multiple documents, such as "five (5)

copies", "quintuplicate", "five fold" and the like, is satisfied by presenting one

original and the rest in copies, except where the document is marked

otherwise. the commercial invoice and the packing list both require five

copies, meaning one original and four copies of each document are necessary

for presentation to the bank.

1.3.S. Signing of Documents

A document may be signed by means of handwriting, stamp, facsimile

signature, perforated signature, or by any other electronic or mechanical

means.

12

A copy document need not be signed. Nevertheless, there is no harm in

signing the copy(ies) of the commercial invoice and the packing list. In

practice, the copies of these two documents are often signed. The letter of

credit it is stipulated "signed commercial invoice ... ". Therefore, the UVW

Exports must sign the original and the copies of the commercial invoice. Since

such UC did not stipulate signing of the packing list, UVW Exports does not

have to sign it, but there is no harm done if it is signed.

1.4. Authentication of Documents

Unless otherwise stipulated in the letter of credit (UC), a document that is

required by the UC to be authenticated, validated, certified, legalized, visaed,

or a similar requirement is called for, such condition is deemed to be complied

with by any stamp, signature, seal or label on the face of such document that

appears to satisfy the requirement.

1.5. Unspecified Issuers or Contents of Documents

When documents other than commercial invoices, transport documents

(the bill of lading and the waybill) and insurance documents (the insurance

policy and certificate) are required, unless the letter of credit (UC) stipulates

the issuing party and the wording or data content of the documents, the bank

will accept them as presented, provided the data content of the documents is

consistent with any other stipulated documents presented to the bank.

1.6. Unspecified Documents

The bank will not examine documents not stipulated in the letter of credit

(UC). If unspecified documents are presented, the bank returns them or passes

them on without responsibility.

If an UC contains conditions but does not state the documents to be

presented, such conditions are considered not stated and they are disregarded

by the bank.

13

1. 7. Standard Cargo Insurance ---

Three Basic Policies (in the Old Cargo Clauses)

1.7.1. Institute Cargo Clauses (All Risks)

The term All Risks is misleading as not all the risks are covered. The All

Risks (A.R.) is the broadest form of coverage commonly encountered in

exporting. It covers all risks of physical loss or damage from any external

causes irrespective of percentage.

If the assured wishes to be covered against the risks of war, strikes, riots,

and civil commotions, the insurer deletes the exclusions in the Institute Cargo

Clauses and endorses the special clauses, that is, the Institute War Clauses and

Institute Strike Clauses, on the insurance policy and the assured pays an

additional premium.

1. 7 .2. Institute Cargo Clauses (With Average)

The With Average (W.A.) is sometimes called the With Particular

Average. In insurance parlance, the word "particular" means partial, and the

word "average" means loss. As such, the words "with average" and "with

particular average" mean including partial loss.

The With Average (W.A.) is a less inclusive form of coverage than the All

Risks. It covers against total loss and partial loss caused by the perils of the

sea (i.e., the vessel has been stranded, sunk, burnt or been in a collision with

other vessels or external substances other than water, such as ice), jettison of

cargo, barratry (i.e., negligence, fraud or wrongful acts of the ship's master

and/or crew resulting in injury or loss to the ship's owner), and other like

perils.

The partial loss, however, is subject to a franchise being written into the

policy. The percentage of franchise can be 3% (or other percentage as

specified) of the value of the shipment as agreed between the insurer and the

assured. If the loss is less than the indicated franchise of 3% (or other

percentage as specified) the assured cannot claim the loss. However, if the loss

14

is equal to or more than the indicated franchise, the assured can claim the loss

in full amount without any deduction from the insurer.

Instead of a franchise the insurer and the assured may agree on an excess

(deductible). The percentage of excess can be 3-10%. If the loss is equal to or

less than the indicated excess, the assured bears the loss, that is, cannot claim

the loss. However, if the loss is more than the indicated excess, the assured

can claim the loss minus the deduction of the percentage of excess specified.

In other words, the assured will always shoulder a percentage of the loss

regardless of the amount of the loss.

1. 7 .3. Institute Cargo Clauses (Free of Particular Average)

In insurance parlance, the words "free of" mean the insurer (the insurance

company) is not liable for whatever follows the words "free of". The words

"particular average" mean partial loss. As such, the words "free of particular

average" mean excluding partial loss.

The Free of Particular Average (F.P.A.) is the narrowest form of coverage.

It covers against total loss. When partial loss is specifically covered in the

policy, it is recoverable from the insurer only if the loss is the result of the

carrying vessel being stranded, sunk or burnt, on fire, or in collision.

1.8. Methods and Tools of Payment in Exporting and Importing

The process of exporting is incomplete without receipt of payment. Export income

is considered earned only when payment has been received.

1.9. Letter of Credit (L/C)

The most popular and a safer method of payment is by a confirmed

irrevocable letter of credit at sight.

15

1.9.1. Documentary Collections

• Documents Against Payment (DIP)

• Documents Against Acceptance (D/A)

1.10. Cheque and Bank Draft

In exporting to the offshore countries, payment by cheque and bank draft

occur more often in a small order, ranging from a few hundred to a couple of

thousand U.S. dollars. Cheques and bank drafts are often used in open account

and consignment trade arrangements.

Both large and small companies may default in their payments, regardless

of the amount involved. In times of economic uncertainty, both large and

small companies may go out of business. It is important to receive the cheque

or bank draft before releasing the shipment. Unless the integrity of the

importer is known, it is very important to wait until the cheque or bank draft

has cleared before the shipment. International clearing of cheques and bank

drafts takes 3 to 4 weeks usually (except in a sight draft with a paying bank in

the seller's country).

Not all cheques and bank drafts are genuine, and not all genuine cheques

carry a cash value

1.11. Trade Arrangements Using the Cheque and Bank Draft

1.11.1. Open Account

In an open account trade arrangement, the goods are shipped to a buyer

without guarantee of payment. Quite often, the buyer does not pay on the

agreed time. Unless the buyer's integrity is unquestionable, this trade

arrangement is risky to the seller.

16

1.11.2. Consignment

In a consignment trade arrangement, the seller ships the goods to the buyer

when there is no purchase made. The buyer is obliged to pay the seller for the

goods when sold. The seller retains title to the goods until the buyer has sold

them.

1.11.3. Cash In Advance (CID)

The cash in advance, which is the safest term of payment, most often is

affected using the cheque or bank draft. In some cases, the CID term is paid

using the telegraphic transfer (TIT).

1.12. Telegraphic Transfer (TIT)

The telegraphic transfer---cable transfer or wire transfer---is the equivalent

of a cash payment that can be credited directly to the seller's account (the

name and address of the seller's bank and the seller's bank account number are

required by the buyer's bank). It is fast and safe. Unlike a payment by cheque

or bank draft, in which the mailing time alone may take several days to few

weeks, plus the clearing time of 3 to 4 weeks for a total of about 4 to 6 weeks

before the seller may receive the cash, by means of TIT the seller may receive

the cash in a few hours or days.

It is important to wait until the TIT has been received before making the

shipment, especially when the integrity of the buyer is unknown.

1.13. Combination of Letter of Credit and Telegraphic Transfer

A combination of letter of credit (IJC) and telegraphic transfer (TIT) is a

popular means of payment in the undervalue arrangement. The under value is an

illegal way of reducing or avoiding the import duties and taxes by under declaring the

17

price of imported goods. It is a sneaky way of bringing the landed cost of imported

goods to a competitive level. The under value is being practiced in certain less

developed countries, usually involving items whose import duties are relatively high.

There is no need to undervalue the goods if the import duty is 10% or less.

Sometimes, an item having a 15% rate of duty may not need to be undervalued too,

depending on the method of import duty and sales tax calculations in the importing

country.

The undervalue arrangement is highly risky. To avoid trouble the exporter

should refrain from using this arrangement. Governments do not encourage

exports by undervalue. If an exporter does not violate the foreign exchange

control and tax laws of the exporting country and international laws such as

copyright and patent, the government of the exporting country usually will not

step into the exporter's way in the undervalue arrangement.

The undervalue arrangement uses two sets of documents. For example, an

importer contracted 1,000 pieces of product X at FOB US$8 each for a total of

US$8,000. The importer may want to declare 25% only (10% to 50% of

contract price is declared usually in the undervalue arrangement) or at US$2

each for a total of US$2,000. One set of documents will show 1,000 pieces of

product X at US$2 each for a total of US$2,000, while the other set shows the

true value.

The importer opens an UC for US$2,000 and remits the US$6,000 balance

by TIT. Following the foreign exchange control procedures on exports, the

exporter must surrender a total of US$8,000 inward remittances to the

government. While at the destination port, the importer pays the duties and

taxes based on US$2,000, plus the ancillary expenses required in the

arrangement. If the importer is caught at the port of destination, shipments

may be seized by the customs.

The importer has to buy the dollar from the black market and remit it by

TIT through a third country. Most often the TIT will not reach the exporter on

the agreed time. Quite often, the shipment date arrives before the TIT reaches

the exporter.

18

The undervalue arrangement hinges on mutual trust between exporter and

importer. The importer has to be very careful because there is a danger that the

exporter may run off after receiving the TIT. In the event of a sour

relationship, the importer may run the risk of being blackmailed by the

exporter through threat of exposing the private arrangement.

With the growing free trade around the world, the undervalue practice is

diminishing.

1.14. Commercial Invoice

The commercial invoice is a record or evidence of transaction between the

exporter and the importer. It is similar to an ordinary sales invoice, except some

entries specific to the export-import trade are added

1.15. Specific Language Requirements in the Commercial Invoice

Certain importing countries may require that the commercial invoice and

the packing list be made out in, or translated to, the language of the importing

country, for example, in French for shipment to France, in Italian to Italy, and

in Spanish to Mexico and Venezuela.

1.16. Declaration on Commercial Invoice

The declaration on the commercial invoice for some countries must be in a

specified wording. The exporter may check the wording with the customs

broker, the government external trade department, or the foreign government

trade office concerned in the exporting country.

The content of a typical declaration includes a sworn statement from the

exporter indicating that the goods in question are manufactured in the

exporting country, and that the amount shown in the invoice is the true and

correct value.

19

1.17. Certification and/or Legalization of Commercial Invoice

The letter of credit (UC) from certain importing countries, in particular

from the Middle East, requires the certification and/or legalization of the

commercial invoice.

The certification, which usually is performed by the local Chamber of

Commerce of the exporting country, is to confirm that the invoice and

declaration (in the invoice) are correct.

The legalization, which is done by The Consulate or The Commercial

Section of the Embassy of the importing country, is to verify that the invoice

is correct.

The certification and legalization are most often satisfied with a stamp or a

seal on the invoice and payment of a fee. The processing time may take one

week.

1.18. Corrections or Changes in the Commercial Invoice

Any visible corrections or changes made in the commercial invoice must

be initialed. In practice, the initial usually is done using a rubber stamp

bearing the word "CORRECTION".

1.19. signature and/or stamp

The commercial invoice and packing list need not be signed, unless

otherwise stipulated in the letter of credit (UC). In practice, the original and

the copy of the commercial invoice and packing list are often signed.

1.20. Description of Goods

The description of the goods in the commercial invoice must correspond

with the description in the letter of credit (UC). In all other documents, the

20

description can be in general terms provided it is not inconsistent with the

description in the UC.

For example, the description of goods in the commercial invoice should be

"'ABC' Brand Pneumatic Tools, 1/2" drive, complete with hose and quick

couplings", the description in all other documents can be in general terms like

"'ABC' Brand Pneumatic Tools". However, if any other documents indicate

'"ABC' Brand Air Tools", it is inconsistent with the description in the UC for

using the word "air", which should be "pneumatic", despite both terms being

technically the same. Consequently, there is a discrepancy and the bank will

reject the documents.

1.20.1. Quantity

If the letter of credit (UC) does not stipulate the quantity in a stated

number of units (i.e., it does not state in units such as piece, set, box, dozen, or

gross), or unless the UC stipulates that the quantity of the goods specified

must not be exceeded or reduced, a tolerance of 5% more or 5% less quantity

is permitted, provided the total amount does not exceed the amount of the UC.

In the UC the stated quantity is 100 Sets, thus the quantity in the invoice

must be 100 Sets. If such sample UC does not state the quantity, the UVW

Exports can ship between 95 sets and 100 sets of pneumatic tools, but not over

100 sets as the total amount will exceed the UC amount of US$25,000. If such

UC does not state the quantity and the UC amount is US$26,250 or more, the

exporter may ship between 95 and 105 sets.

If the UC quantity is indicated using the words "about", "approximately",

"circa" or similar expressions, the quantity in the invoice cannot exceed 10%

more or 10% less than the quantity indicated in the UC. For example, if the

UC quantity is "about 100 sets", the quantity in the invoice can be any

quantity between 90 sets and 110 sets, provided the total amount does not

exceed the amount of the UC.

21

1.20.2. Unit Price

If the letter of credit (UC) unit price is indicated using the words "about",

"approximately", "circa" or similar expressions, the unit price in the invoice

cannot exceed 10% more or 10% less than the unit price indicated in the UC.

For example, if the UC unit price is "about US$250", the unit price in the

invoice can be any unit price between US$225 and US$275, provided the total

amount does not exceed the amount of the UC.

1.20.3. Amount

Unless otherwise stipulated in the letter of credit (UC), the amount must

not exceed the amount permitted by the UC. If the UC amount is indicated

using the words "about", "approximately", "circa" or similar expressions, the

amount of the invoice cannot exceed 10% more or 10% less than the amount

indicated in the UC. For example, if the UC amount is "approximately

US$10,000", the amount of invoice can be any amount between US$9,000 and

US$11,000.

1.21. Customs Brokers

The customs broker---broker or customhouse broker or customs house broker---is

an individual or company licensed to clear export and import goods through customs.

In general, the role of brokers is the same worldwide. Besides clearing of goods

through customs, other export services a broker renders include booking of space for

ocean, air and land freight, canvassing and providing the freight cost, and preparation

of export documents and sending them to the bank for negotiation. In certain

countries, it is a business practice that exporters prepare their own export documents.

The broker also renders the forwarding services as a freight forwarder.

22

Few large exporters have their own in-house licensed customs broker.

The broker basically handles any export goods. At times, it is necessary to retain

the service of a broker experienced in the exporter's line of product and the port of

destination.

It is important to select a reliable customs broker. The exporter normally has to

sign an authorization paper allowing the broker to handle the customs declaration. In

case the broker commits an error, the exporter is held liable.

The brokerage fee varies from country to country. The broker may collect a basic

service fee on top of other charges, such as documentation charges and port fees. In

certain countries, the broker collects a uniform base fee, plus a small percentage of the

value of shipment. In a country where the brokerage fee is not regulated, it may vary

considerably among brokers. The exporter must check with different brokers in order

to get the best offer. It is important to request the broker to show the breakdown of

charges on the billing.

A good and honest broker can help new exporters with certain export routines and

help them save money.

1.22 .. Freight Forwarders or Consolidators

The freight forwarder---forwarder---is an individual or firm who renders cargo

delivery services. In domestic (local) freight forwarding, it is the delivery of goods

usually from the exporter's premises to the local customs in exporting, and vice versa

in importing. The customs broker also renders local freight forwarding for exporters

and importers.

International (foreign) freight forwarding is the delivery of goods from the

exporter's premises (or from the port or point of origin) to the port or point of

destination (or to the importer's premises).

23

The freight consolidator---consolidator or group age operator---is an individual or

firm who accepts less than container load (LCL) shipments from individual shippers,

and then combines them for delivery to the carrier in full container load (FCL)

shipment.

The services of a forwarder are usually available in a consolidator, and the

forwarder often engages in the consolidation of cargo. Hence, the term forwarder is

often used synonymously with the consolidator.

The forwarder provides a wide range of services. Besides all of the export services

available from a customs broker, the forwarder may also arrange for the insurance,

export packing and trucking.

The forwarder usually receives the forwarder's charges from the exporter. In

addition, it may receive a commission from the carrier---Freight Company (ocean, air,

truck and rail).

In the ocean shipment, the forwarder may 'buy' the shipping space, in a special

arrangement with the carrier, and 'resell' the space to individual shippers, instead of

receiving a commission. In such an arrangement, the forwarder functions as an

independent distribution or logistical company known as the NVOCC (no vessel

operating common carrier) or NVO (no vessel owner or no vessel owning carrier), or

commonly referred to as the ocean freight consolidator.

24

CHAPTER2

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

2.1 INTODUCTION

One of the most difficult aspects of learning how to use a new programming

environment is finding your way around: getting to know the basic menu structure, what

all the options do, and how the environment works as a whole.

2.2 The Delphi IDE

Definition: Integrated Development Environment. This is the user interface (GUI)

where you can design, compile and debug your Delphi projects.

So, without further ado, take a look at Figure 1.1 and let's get on with it. if you have used

Delphi before, you might find this chapter elementary.

Figure 2.1 The Delphi IDE

1. The Delphi IDE consists of these main parts:
2. The main menu and toolbars 1
3. The Component palette 1
4. The Form Designer 1
5. The Code Editor 1
6. The Object Inspector 1
7. The Code Explorer 1
8. The Project Manage

25

2.3 A Quick Look at the Delphi IDE

This section contains a quick look at the Delphi integrated development environment

(IDE). Because you are tackling Windows programming, I'll assume you are advanced

enough to have figured out how to start Delphi. When you first start the program, you are

presented with both a blank form and the IDE, as shown in Figure 2.2.

Figure2.2 The Delphi IDE and the initial blank form

The Delphi IDE is divided into three parts. The top window can be considered the

main window. It contains the toolbars and the Component palette. The Delphi tool bars

give you one-click access to tasks such as opening, saving, and compiling projects.

The Component palette contains a wide array of components that you can drop onto

your forms. (Components are text labels, edit controls, list boxes, buttons, and the like.)

For convenience, the components are divided into groups. Go ahead and click on the tabs

to explore the different components available to you. To place a component on your

form, you simply click the component's button in the Component palette and then click

on your form where you want the component to appear. When you are done exploring,

click on the tab labeled Standard, because you'll need it in a moment.

26

2.4 The Delphi Workspace

The main part of the Delphi IDE is the workspace. The workspace initially displays

the Form Designer. It should come as no surprise that the Form Designer enables you to

create forms. In Delphi, a form, represents a window in your program. The form might be

the program's main window, a dialog box, or any other type of window. You use the

Form Designer to place, move, and size components as part of the form creation process.

Hiding behind the Form Designer is the Code Editor. The Code Editor is where you

type code when writing your programs. The Object Inspector, Form Designer, Code

Editor, and Component palette work interactively as you build applications.

2.5 The Delphi Main Menu and Toolbar.
The Delphi main menu has all the choices necessary to make Delphi work. Because

programming in Delphi is a highly visual operation, you might not use the main menu as

much as you might with other programming environments. Still, just about anything you

need is available from the main menu if you prefer to work that way. The Delphi toolbars

provide a convenient way of accomplishing often-repeated tasks. A button is easier to

locate than a menu item, not to mention that it requires less mouse movement. The

Delphi main window toolbars are illustrated in Figure 2.3.

Figure 2.3 The Delphi main window

Delphi enables you to add buttons to the toolbar, remove buttons, and rearrange

buttons however you see fit. To configure a toolbar, right-click on the toolbar to display

the context menu. Choose Customize from the context menu. When you choose this

menu item, the Customize dialog box is displayed.

27

The Customize dialog box contains three tabs:

The first tab, Toolbars, shows you the toolbars available with a check mark next to

toolbars that are currently visible. You can add or remove existing toolbars or reset the

toolbars to their original default settings.

The second tab, labeled Commands, shows all the available toolbar buttons. To add a

button to the toolbar, just locate its description in the Commands list box and drag it to

the place you want it to occupy on any toolbar. To remove a button from a toolbar, grab it

and drag it off the toolbar. It's as simple as that. Figure 1.4 shows the act of adding a

button to a toolbar. If you really make a mess of things, simply go back to the Toolbars

page and click the Reset button. The toolbar will revert to its default settings.

Figure 2.4 customizing the toolbar

The third tab, Options, contains options such as whether the tooltips are displayed and

how they are displayed.

2.6 Using the Component Palette
The Delphi Component palette is used to select a component or other control (such as

an ActiveX control) in order to place that control on a form. The Component palette is a

multipage window. Tabs are provided to enable you to navigate between pages.

28

Placing a component on a form is a two-step process. First, go to the Component

palette and select the button representing the component you want to use.

Then click on the form to place the component on the form. The component appears

with its upper-left comer placed where you clicked with the mouse.

2. 7 Placing Multiple Copies of a Component

So far you have placed only one component at a time on a form. You can easily place

multiple components of the same type without selecting the component from the

Component palette each time. To place multiple components on a form, press and hold

the Shift key as you select the component from the Component palette. After you select

the component, you can release the Shift key.

The component's button on the Component palette will appear pressed and will be

highlighted with a blue border. Click on the form to place the first component. Notice

that the button stays pressed on the Component palette. a new component will be placed

each time you click the form. To stop placing components, click the selector button on

the Component palette (the arrow button). The component button pops up to indicate that

you are done placing components. Seeing is believing, so follow these steps:

1. Create a new project.

2. Press and hold the Shift key on the keyboard and click the Label component button

in the Component palette.

3. Click three times on the form, moving the cursor each time to indicate where you

want the new component placed. A new Label is placed on the form each time you click.

4. Click the arrow button on the Component palette to end the process and return to

form design mode.

2.8 About Delphi Forms

Before I continue with the discussion about the Delphi IDE, I need to spend some

time explaining forms. You have seen several forms in action as you have worked

through this chapter. You need some more background information on forms.

29

2.8.1 Main Window Forms

Forms are the main building block of a Delphi application. Every GUI application has

at least one form that serves as the main window. The main window form might be just a

blank window, it might have controls on it, or it might have a bitmap displayed on it. In a

typical Windows program, your main window would have a menu. It might also have

decorations such as a toolbar or a status bar. Just about anything goes when creating the

main window of your application. Each application is unique, and each has different

requirements.

2.8.2 Creating the Main Window Form

First you'll create the main window form. The main window for an MDI application

must have the FormStyle property set to fsMDIForm. You also need to add a menu to the

application, as well as File Open and File Save dialog boxes. Follow these steps:

1. Start Delphi and choose File I New Application from the main menu.

2. For the main form, change the Name property to MainForm.

3. Change the Caption property to Picture Viewer.

4. Change the Height to 450 and the Width to 575 (or other suitable values)

5. Change the FormStyle to fsMDIForm.

Now you've got the main part of the form done. Next you'll add a menu to the form,

you will take the easy route to creating a menu. To do that, you can take advantage of a

Delphi feature that enables you to import a predefined menu, as follows:

1. Click the Standard tab of the Component palette and click the MainMenu button.

2. Click on the form to place a MainMenu component on the form. It doesn't matter

where you place the component because the icon representing the menu is just a

30

placeholder and won't show on the form at runtime. This is how nonvisual com-ponents

appear on a form.

3. Change the Name property to MainMenu.

4. Double-click the MainMenu component. The Menu Designer is displayed.

5. Place your cursor over the Menu Designer and click your right mouse button. Choose

Insert from Template from the context menu. The Insert Template dialog box appears.

6. Choose MDI Frame Menu and click OK. The menu is displayed in the Menu Designer.

7. Click the system close box on the Menu Designer to close it.

Now you should be back to the main form. You can click on the top-level items to see
the full menu. Don't click on any menu subitems at this point--you'll do that in a minute.

Now you need to prepare the File Open and File Save dialog boxes:

1. Click the Dialogs tab on the Component palette. Choose an Open Picture Dialog

component and place it on the form.

The Open Picture Dialog component's icon can be placed anywhere on the form.

2. Change the Name property of the Open dialog box to Open Picture Dialog.

3. Change the Title property to open a Picture for Viewing.

4. Add a Save Picture Dialog component.

5. Change the Name property of the component to Save Picture Dialog and the Title

property to Save a Picture.

Your form should now look like the one shown in Figure 1.5.

31

Figure 2.5 Form designed

2.8.3 Dialog Box Forms

Forms are also used for dialog boxes. In fact, to the user there is no difference

between a Delphi form acting as a dialog box and a true dialog box.Dialog boxes usually

have several traits that distinguish them from ordinary windows:

• Dialog boxes are not usually sizable. They usually perform a specific function,

and sizing of the dialog box is neither useful nor desirable.

• Dialog boxes almost always have an OK button. Some dialog boxes have a button

labeled Close that performs the same task. A simple dialog box such as an About

dialog box typically has only the OK button. Dialog boxes can also have a Cancel

button and a Help button.

32

• Dialog boxes typically have only the system close button on the title bar. They do

not usually have minimize and maximize buttons.

2.8.4 Creating a Dialog Form

First you'll add a button to the form that displays the about dialog box:

1. Bring the main form into view. Choose the Button component from the Component

palette and drop a button on the form.

2. Arrange the two buttons that are now on the form to balance the look of the form.

3. Change the Name property of the new button to About Button and the Caption

property to about.

4. Double-click the About Button you just created on the form. The Code Editor is

displayed with the cursor placed in the event-handler function. Add this line of code at

the cursor:

about Box. Show Modal, You haven't actually created the About box yet, but when you

do you'll name it About Box, so you know enough to type the code that will display the

About box.

2.9 A Multiple-Form Application

To illustrate how Delphi uses units, you can create an application with multiple forms.

You'll create a simple application that displays a second form when you click a button:

1. Create a new project by choosing File I New Application from the main menu.

2. Change the Name property to MainForm and the Caption property to Multiple Forms

Test Program.

3. Save the project. Save the unit as Main and the project as Multiple.

4. Now place a button on the form. Make the button's Name property ShowForm2 and the

Caption property Show Form 2.

5. Choose File I New Form from the main menu to create a new form. At this point, the

new form has a name of Forml and is placed exactly over the main form. You want the

new form to be smaller than the main form and more or less centered on the main form.

33

6. Size and position the new form so that it is about 50 percent of the size of the main

form and centered on the main form. Use the title bar to move the new form. Size the

form by dragging the lower-right comer.

7. Change the new form's Name property to SecondForm and the form's Caption property

to A Second Form.

8. Choose File I Save from the main menu.

9. Choose a Label component and drop it on the new form.

2.9.lAdding Units

Rather than having Delphi prompts you to add a unit to your uses list, you can add

units yourself. You can manually type the unit name in the uses list for the form, or you

can choose File I Use Unit from the main menu. When you choose the latter method, the

Use Unit dialog box is displayed, as shown in Figure 2.6. The Use Unit dialog box shows

a list of available units. Choose the unit you want to add and click OK. Delphi will add

the unit to the current forms uses list.

Figure 2.6 The Use Unit dialog box

2.9.2 Some Key Properties for Forms

The TForm class has a lot of properties. Some of these properties are obscure and

rarely used others are widely used. I'll touch on the some widely used properties here.

• Font The Font property specifies the font that the form uses. The important issue to

understand here is that the form's font is inherited by any components placed on the

34

form. This also means that you can change the font used by all components at one

time by changing just the form's font.

• FormStyle This property is usually set to fsNormal. If you want a form to always

be on top, use the fsStayOnTop style. MDI forms should use the fsMDIForm style

and MDI child forms should use the fsMDIChild style.

2.10 The Object Inspector
An integral part of the Delphi IDE is the Object Inspector. This window works with

the Form Designer to aid in the creation of components.

The Object Inspector is where you set the design-time properties that affect how the

component acts at runtime. The Object Inspector has three main areas:

• The Component Selector

• The Properties page

• The Events page

2.10.1 The Component Selector

Normally, you select a component by clicking the component on a form. The

Component Selector provides an alternative way of selecting a component to view or

modify. The Component Selector is a drop-down combo box that is located at the top of

the Object Inspector window.

The Component Selector displays the name of the component and the class from

which it is derived. For example, a memo component named Memo would appear in the

Component Selector as

Memo:TMemo

The class name does not show up in the drop-down list of components, it only

appears in the top portion of the Component Selector. To select a component, click the

drop-down button to reveal the list of components and then click the one you want to

select.

35

After you select a component in the Component Selector, the component is selected
~

on the form as well. The Properties and Events tabs change to display the properties and

events for the selected component. Figure 2.7 shows the Object Inspector with the

Component Selector list displayed.

Bevel1
BitBtni
lm11ge1
Lebell
Label2

Figure 2. 7 the component selector list

2.10.2The Properties Page

The Properties page of the Object Inspector displays all the design-time properties for

the currently selected control. The Properties page has two columns: The Property

column is on the left side of the Properties page and shows the property name, the Value

column is on the right side of the Properties page and is where you type or select the

value for the property.

Properties can be integer values, enumerations, sets, other objects, strings, and other

types.

36

The Object Inspector deals with each type of property according to the data type of

the property. Delphi has several built-in property editors to handle data input for the

property. For example, the Top property accepts an Integer value. Because the Integer

type is a basic data type, no special handling is required, so the property editor is fairly

basic. The property editor for this type of property enables you to type a value directly in

the Value column for integer properties such as Top, Left, Width, and Height.

2.10.3 The Events Page

The Events page lists all the events that the component is designed to handle. Using

the Events page is pretty basic. Delphi creates an event-handling function for you with

all the parameters needed to handle that event. The Code Editor is displayed and the

cursor is placed in the event handler. All you have to do is start typing code. The name of

the function is generated based on the Name property of the component and the event

being handled. If, for example, you have a button named OKBtn and are handling the

OnClick event, the function name generated would be OKBtnClick.

You can let Delphi generate the name of the event-handling function for you or you

can provide the function name for Delphi to use. The Code Editor is displayed, and so is

the event-handling function, complete with the name you supplied. After you create an

event-handling function for a component, you can use that event handler for any

component that handles the same event. Sometimes it's convenient to have several

buttons use the same OnClick event.

2.11 Code Templates

This feature lets you insert one of the predefined code templates, such as a complex

statement with an inner begin ... end block. Code templates must be activated manually, by

pressing Ctrl+J to show a list of all of the templates. You can add custom code templates,

so that you can build your own shortcuts for commonly used blocks of code. For

example, if you use the MessageDlg function often, you might want to add a template for

it. To modify templates, go to the Source Options page of the Editor Options dialog box,

37

select Pascal from the Source File Type list, and click the Edit Code Templates button.

Doing so opens the new Delphi Code Templates dialog box. At this point, click the Add

button, type in a new template name (for example, mess), type a description, and then

add the following text to the template body in the Code memo control:

MessageDlg Cl', mtlnformation, [mbOK], 0);

Now, every time you need to create a message dialog box, you simply type mess and

then press Ctrl+J, and you get the full text.

2.12 Writing Code for the File, Open and File, Save As Menu Items.

You haven't created the MDI child form yet, but you know enough about it to write

the code for the menu handlers. Keep in mind that the application won't compile until you

create the MDI child form. Here you go:

1. On the main form, choose File I Open from the menu. An event handler is created

for that menu item and the Code Editor is displayed.

2. Type code so that the event handler looks like this:

Procedure TMainForm.OpenlClick (Sender: TObject);
Var
Child: TChild;
Begin
if OpenPictureDialog.Execute then begin
Child: = TChild.Create (Self);
With Child.Image.Picture do begin
LoadFromFile (OpenPictureDialog.FileN ame);
Child.ClientWidth:= Width;
Child.ClientHeight:= Height;
end;
Child.Caption:= ExtractFileN ame (OpenPictureDialog.FileN ame);
Child.Show;
end;
end;

This code first executes the File Open dialog box and gets a filename. If the Cancel

button on the File Open dialog box is clicked, the function returns without doing anything

38

more. If the OK button on the File Open dialog box is clicked, a new TChild object is

created (TChild will be the name of the MDI child class you'll create later).

2.13 Writing Code for the Window Menu

Now you can add code to the Window menu. This part is simple:

1. Switch back to the form by pressing F12. Choose Window I Tile from the form's

menu.

2. You need to enter only a single line of code for the event handler. The finished

event handler will look like this:

Procedure TMainForm.TilelClick (Sender: TObject);

Begin

Tile;

end;

3. Switch back to the form and repeat the process for Window I Cascade. The finished
function looks like this:

Procedure TMainForm.Cascade 1 Click (Sender: TObject);

Begin

Cascade;

end;

4. Repeat the steps for the Window I Arrange All menu item. The single line of code

to add for the function body is the following:

Arrangelcons; .

39

CHAPTER3

Import-Export system

3.1. Database Structure:

First thing as we know Delphi's support for database applications is one of the

key feathers of the programming environment. Many programmers spend most of

their time writing data-access code, which needs to be the most robust portion of a

database application. You can create very complex database applications, starting

from a blank form or one generated by Delphi's database from wizard. On computer,

permanent data including database data is always stored in files. There are several

techniques you can use to accomplish this storage. Delphi can use both approaches, or

more precisely, you always refer to a database with its name, which is a sort of a

nickname of a database but this reference can be to a database file or to a directory

containing files with tables.

3.2. Define Relationships Between Tables:
When we create a relationship, the related fields don't have the same names.

However, related field must have the same data type unless the primary key filed is an

AutoNumber field. We can match an AutoNmber field with a number field only if the

fieldsize property of both of the matching fields is the same. Here we can see the

relationships between the tables of this project as shown bellow:

Figure 3.1 relationships between tables.

40

3.3. Delphi database components:

As we have seen in chapter one Delphi includes a number of components related

to database. The data access page pf the component palette contains components used

to interact to database. To access s database in Delphi you generally need a data

source, identified by data source component. The data source component, however,

does not indicate the data directly, it refers to a data set component this can be tables

(as in this project) or some other custom data set. As soon as you have placed a table

component on the form, you can use the data sets property of the data source

component to refer to it. for this property, the object inspector lists available data set

of the current form or of other forms connected with the current one(using the file

»used form command).

3.4. Layout of the Application:

3.4.1. Main menu screen:
It consists of six buttons. Each button has a specific mission, and these missions

will be explaining as follow:

1. File Button: we can use this button to exit from the program.

2. Stock cards button: this button has two sub buttons, these are add new card

with its properties, and we can chose one of these sub buttons to do what we

want.

3. Company's button: this button used when we want to add new company with

its properties, also this button has another sub button which is allow us to

update the company's information and research about the company we need.

4. Transportation button: we us this button to insert a new transportation way and

update the information of transportation way.

5. Payment-Type button: also in this button we can add a new payment type and

update the information of payment type.

6. Import-Export button: here we can insert the data about the exported and

imported stocks with more details such as, company name, code,

transportation-way, payment type and to find out the price of stock and to

calculate the total price .

7. Help button: this button use to give information about me.

41

Figure 3.2: Main Menu Screen.

3.4.2. Add new stock card screen:
This screen allows us to enter information about the stock such as: code, name, quata,

selling price, buying price, barcode, note, and there are four buttons and their

functions are shown below:

1. Insert button: This button used to enter a new stock card.

2. Save button: This button used to keep the stock data which entered.

3. Close button: We can exit from this window by this button.

42

Figure3.3: Add stock card Screen.

3.4.3. Update stock card screen:

We use this screen to correct or to update some of stock information, and there are

two search buttons which allow us to find the data we need as shown below.

Figure 3.3: Update stock card screen.

43

3.4.4. Add new company screen:

1. Insert button: This button used to enter a new company name.

2. Save button: This button used to keep the company data which entered.

3. Close button: We can exit from this window by this button.

Figure3.4: Add new company Screen

3.4.5. Update stock card screen:
We use this screen to correct or to update some of company information, and

there are two search buttons which allow us to find the data we need as shown below.

Figure 3.5: Update company screen

44

3.4.6. Edit transportation way screen:

Here we can edit data about new transportation way or update the informations

of transportation which entered before as shown in figure 3.6:

Figure 3.6: Edit transportation way screen.

3.4.7. Edit payments type screen:
Here we can insert new data about payments type or update the informations of

payments which entered before as shown in figure 3.7:

Figure 3.7: Edit payments type screen.

45

3.4.8. Import documents screen :

In this part we can insert and update all the information about the company, and

stocks which imported with more details such as: price, total price, payments type,

and transportation way and save it into file

Searching part: it consists of two ComboBox for document no. and company

code. By choose one of them or more we can get all the information of that searching

which has been choosed. For example if we select company code and we click search

button we will get all the data which are giving by company code and it's name, and

more details because all the fields are related with each other.

Also this screen has three BitBtn and their functions are shown as:

1. INSERT Button: it's used to reset and clear the data which appear

2. SA VE Button: it's used to keep and save the informations to a file.

3. DELETE Button: it's used to erase the information that we don't need it.

4. CLOSE Button: it's used to exit from the screen.

Figure 3.8: Import document screen.

46

3.4.9. Export documents screen:

In this part we can insert and update all the information about the company, and

stocks which exported with more details such as: price, total price, payments type,

and transportation way and save it into file

Searching part: it consists of two ComboBox for document no. and company

code. By choose one of them or more we can get all the information of that searching

which has been choosed. For example if we select company code and we click search

button we will get all the data which are giving by company code and it's name, and

more details because all the fields are related with each other.

Also this screen has three BitBtn and their functions are shown as:

1. INSERT Button: it's used to reset and clear the data which appear

2. SA VE Button: it's used to keep and save the informations to a file.

3. DELETE Button: it's used to erase the information that we don't need it.

4. CLOSE Button: it's used to exit from the screen.

Figure 3.9: Export document screen.

47

3.4.10. Help screen:

1. ABOUT: in this screen there is information about me as shown below.

Figure 3.10: About screen.

48

CHAPTER4

LINUX AND UNIX OPERATING SYSTEM

4.1. Unix

In order to understand the popularity of Linux, we need to travel back in time, about 30

years ago ...

Imagine computers as big as houses, even stadiums. While the sizes of those computers

posed substantial problems, there was one thing that made this even worse: every computer

had a different operating system. Software was always customized to serve a specific purpose,

and software for one given system didn't run on another system. Being able to work with one

system didn't automatically mean that you could work with another. It was difficult, both for

the users and the system administrators.

Computers were extremely expensive then, and sacrifices had to be made even after the

original purchase just to get the users to understand how they worked. The total cost of IT was

enormous.

Technologically the world was not quite that advanced, so they had to live with the size

for another decade. In 1969, a team of developers in the Bell Labs laboratories started

working on a solution for the software problem, to address these compatibility issues. They

developed a new operating system, which was

• simple and elegant

• written in the C programming language instead of in assembly code

• able to recycle code.

The Bell Labs developers named their project "UNIX."

The code recycling features were very important. Until then, all commercially available

computer systems were written in a code specifically developed for one system. UNIX on the

other hand needed only a small piece of that special code, which is now commonly named the

kernel. This kernel is the only piece of code that needs to be adapted for every specific system

and forms the base of the UNIX system.

49

The operating system and all other functions were built around this kernel and written in a

higher programming language, C. This language was especially developed for creating the

UNIX system. Using this new technique, it was much easier to develop an operating system

that could run on many different types of hardware.

The software vendors were quick to adapt, since they could sell ten times more software

almost effortlessly. Weird new situations came in existence: imagine for instance computers

from different vendors communicating in the same network, or users working on different

systems without the need for extra education to use another computer. UNIX did a great deal

to help users become compatible with different systems.

Throughout the next couple of decades the development of UNIX continued. More things

became possible to do and more hardware and software vendors added support for UNIX to

their products.

UNIX was initially found only in very large environments with mainframes and

minicomputers (note that a PC is a "micro" computer). You had to work at a university, for

the government or for large financial corporations in order to get your hands on a UNIX

system.

But smaller computers were being developed, and by the end of the 80's, many people had

home computers. By that time, there were several versions of UNIX available for the PC

architecture, but none of them were truly free.

4.2. Linus and Linux

Linus Torvalds, a young man studying computer science at the university of Helsinki,

thought it would be a good idea to have some sort of freely available academic version of

UNIX, and promptly started to code.

He started to ask questions, looking for answers and solutions that would help him get

UNIX on his PC. Below is one of his first posts in comp.os.minix, dating from 1991:

50

From the start, it was Linus' goal to have a free system that was completely compliant

with the original UNIX. That is why he asked for POSIX standards, POSIX still being the

standard for UNIX.

In those days plug-and-play wasn't invented yet, but so many people were interested in

having a UNIX system of their own, that this was only a small obstacle. New drivers became

available for all kinds of new hardware, at a continuously rising speed. Almost as soon as a

new piece of hardware became available, someone bought it and submitted it to the Linux

test, as the system was gradually being called, releasing more free code for an ever wider

range of hardware. These coders didn't stop at their PC's; every piece of hardware they could

find was useful for Linux.

Back then, those people were called "nerds" or "freaks", but it didn't matter to them, as

long as the supported hardware list grew longer and longer. Thanks to these people, Linux is

now not only ideal to run on new PC's, but is also the system of choice for old and exotic

hardware that would be useless if Linux didn't exist.

Two years after Linus' post, there were 12000 Linux users. The project, popular with

hobbyists, grew steadily, all the while staying within the bounds of the POSIX standard. All

the features of UNIX were added over the next couple of years, resulting in the mature

operating system Linux has become today. Linux is a full UNIX clone, fit for use on

workstations as well as on middle-range and high-end servers. Today, all the important

players on the hard- and software market each have their team of Linux developers; at your

local dealer's you can even buy pre-installed Linux systems with official support.

51

4.3. Current Application of Linux Systems

Today Linux has joined the desktop market. Linux developers concentrated on networking

and services in the beginning, and office applications have been the last barrier to be taken

down. We don't like to admit that Microsoft is ruling this market, so plenty of alternatives

have been started over the last couple of years to make Linux an acceptable choice as a

workstation, providing an easy user interface and MS compatible office applications like word

processors, spreadsheets, presentations and the like.

On the server side, Linux is well-known as a stable and reliable platform, providing

database and trading services for companies like Amazon, the well-known online bookshop,

US Post Office, the German army and such. Especially Internet providers and Internet service

providers have grown fond of Linux as firewall, proxy- and web server, and you will find a

Linux box within reach of every UNIX system administrator who appreciates a comfortable

management station. Clusters of Linux machines are used in the creation of movies such as

"Titanic", "Shrek" and others. In post offices, they are the nerve centers that route mail and in

large search engine, clusters are used to perform internet searches.These are only a few of the

thousands of heavy-duty jobs that Linux is performing day-to-day across the world.

It is also worth to note that modem Linux not only runs on workstations, mid- and high

end servers, but also on "gadgets" like PDA's, mobiles, a shipload of embedded applications

and even on experimental wristwatches. This makes Linux the only operating system in the

world covering such a wide range of hardware.

4.4. The User Interface

4.4.1. Is Linux Difficult?

Whether Linux is difficult to learn depends on the person you're asking. Experienced

UNIX users will say no, because Linux is an ideal operating system for power-users and

programmers, because it has been and is being developed by such people.

Everything a good programmer can wish for is available: compilers, libraries,

development and debugging tools.

52

These packages come with every standard Linux distribution. The C-compiler is included

for free, all the documentation and manuals are there, and examples are often included to help

you get started in no time. It feels like UNIX and switching between UNIX and Linux is a

natural thing.

In the early days of Linux, being an expert was kind of required to start using the system.

Those who mastered Linux felt better than the rest of the "lusers" who hadn't seen the light

yet. It was common practice to tell a beginning user to "RTFM" (read the manuals). While the

manuals were on every system, it was difficult to find the documentation, and even if

someone did, explanations were in such technical terms that the new user became easily

discouraged from learning the system.

The Linux-using community started to realize that if Linux was ever to be an important

player on the operating system market, there had to be some serious changes in the

accessibility of the system.

4.4.2. Linux for non-experienced Users

Companies such as RedHat, SuSE and Mandrake have sprung up, providing packaged

Linux distributions suitable for mass consumption. They integrated a great deal of graphical

user interfaces (GUis), developed by the community, in order to ease management of

programs and services. As a Linux user today you have all the means of getting to know your

system inside out, but it is no longer necessary to have that knowledge in order to make the

system comply to your requests.

Nowadays you can log in graphically and start all required applications without even

having to type a single character, while you still have the ability to access the core of the

system if needed. Because of its structure, Linux allows a user to grow into the system: it

equally fits new and experienced users. New users are not forced to do difficult things, while

experienced users are not forced to work in the same way they did when they first started

learning Linux.

While development in the service area continues, great things are being done for desktop

users, generally considered as the group least likely to know how a system works.

53

Developers of desktop applications are making incredible efforts to make the most

beautiful desktops you've ever seen, or to make your Linux machine look just like your

former MS Windows or MacIntosh workstation. The latest developments also include 3D

acceleration support and support for USB devices, single-click updates of system and

packages, and so on. Linux has these, and tries to present all available services in a logical

form that ordinary people can understand.

The screenshot below shows how each item in the Channel list (RH 7 .2, StarOffice,

Opera, Ximian Gnome, Loki games and CodeWeavers) can be updated with one mouse click.

Adding or removing software packages or keeping the system up to date is simple with tools

like this one, called Red Carpet:

• Red Hat Linux7.2 Ximian GMOME Desktop
A complete desktop environment
based on the GNOME project

StarOffice
The StarOffice office suite •

... Loki Demos
Demos of Games from Loki Games

~ CodeWeavers
·~ CodeWeavers provides free and

commercial distributions of the
Wine project which allows
Windows programs to run in Linux.

Figure 4-1. Ximian Red Carpet: automated package management

54

4.5. Does Linux have a future?

4.5.1. Open Source

The idea behind Open Source software is rather simple: when programmers can read,

distribute and change code, the code will mature. People can adapt it, fix it, debug it, and they

can do it at a speed that dwarfs the performance of software developers at conventional

companies. This software will be more flexible and of a better quality than software that has

been developed using the conventional channels, because more people have tested it in more

different conditions than the closed software developer ever can.

The Open Source initiative started to make this clear to the commercial world, and very

slowly, commercial vendors are starting to see the point. While lots of academics and

technical people have already been convinced for 20 years now that this is the way to go, .,
commercial vendors needed applications like the Internet to make them realize they can profit

from Open Source. Now Linux has grown past the stage where it was almost exclusively an

academic system, useful only to a handful of people with a technical background. Now Linux

provides more than the operating system: there is an entire infrastructure supporting the chain

of effort of creating an operating system, of making and testing programs for it, of bringing

everything to the users, of supplying maintenance, updates and support and customizations,

etcetera. Today, Linux is ready to accept the challenge of a fast-changing world.

4.5.2. Ten years of experience at your service

While Linux is probably the most well-known Open Source initiative, there is another

project that contributed enormously to the popularity of the Linux operating system. This

project is called SAMBA, and its achievement is the reverse engineering of the Server

Message Block (SMB)/Common Internet File System (CIFS) protocol used for file- and print

serving on PC-related machines, natively supported by MS Windows NT and OS/2, and

Linux.

55

Packages are now available for almost every system and provide interconnection solutions

in mixed environments using MS Windows protocols: Windows-compatible (up to and

including Win2K) file- and print-servers.

Maybe even more successful than the SAMBA project is the Apache HTTP server project.

The server runs on UNIX, Windows NT and many other operating systems. Originally known

as "A PAtCHy server", based on existing code and a series of "patch files", the name for the

matured code deserves to be connoted with the native American tribe of the Apache, well

known for their superior skills in warfare strategy and inexhaustible endurance. Apache has

been shown to be substantially faster, more stable and more feature-full than many other web

servers. Apache is run on sites that get millions of visitors per day, and while no official

support is provided by the developers, the Apache user community provides answers to all

your questions. Commercial support is now being provided by a number of third parties.

In the category of office applications, a choice of MS Office suite clones is available,

ranging from partial to full implementations of the applications available on MS Windows

workstations. These initiatives helped a great deal to make Linux acceptable for the desktop

market, because the users don't need extra training to learn how to work with new systems.

With the desktop comes the praise of the common users, and not only their praise, but also

their specific requirements, which are growing more intricate and demanding by the day.

The Open Source community, consisting largely of people who have been contributing for

over half a decade, assures Linux' position as an important player on the desktop market as

well as in general IT application. Paid employees and volunteers alike are working diligently

so that Linux can maintain a position in the market. The more users, the, more questions. The

Open Source community makes sure answers keep coming, and watches the quality of the

answers with a suspicious eye, resulting in ever more stability and accessibility.

Listing all the available Linux software is beyond the scope of this guide, as there are tens

of thousands of packages. Throughout this course we will present you with the most common

packages, which are almost all freely available. In order to take away some of the fear of the

beginning user, here's a screenshot of one of your most-wanted programs.

56

4.6. Properties of Linux

4.6.1. Linux Pros

A lot of the advantages of Linux are a consequence of Linux' origins, deeply rooted in

UNIX, except for the first advantage, of course:

• Linux is free:

As in free beer, they say. If you want to spend absolutely nothing, you don't even

have to pay the price of a CD. Linux can be downloaded in its entirety from the

Internet completely for free. No registration fees, no costs per user, free updates, and

freely available source code in case you want to change the behavior of your system.

Most of all, Linux is free as in free speech:

The license commonly used is the GNU Public License (GPL). The license says

that anybody who may want to do so, has the right to change Linux and eventually to

redistribute a changed version, on the one condition that the code is still available after

redistribution. In practice, you are free to grab a kernel image, for instance to add

support for teletransportation machines or time travel and sell your new code, as long

as your customers can still have a copy of that code.

• Linux is portable to any hardware platform:

A vendor who wants to sell a new type of computer and who doesn't know what

kind of OS his new machine will run (say the CPU in your car or washing machine),

can take a Linux kernel and make it work on his hardware, because documentation

related to this activity is freely available.

• Linux was made to keep on running:

As with UNIX, a Linux system expects to run without rebooting all the time. That

is why a lot of tasks are being executed at night or scheduled automatically for other

calm moments, resulting in higher availability during busier periods and a more

balanced use of the hardware.

57

This property allows for Linux to be applicable also in environments where people

don't have the time or the possibility to control their systems night and day.

• Linux is secure and versatile:

The security model used in Linux is based on the UNIX idea of security, which is

known to be robust and of proven quality. But Linux is not only fit for use as a fort

against enemy attacks from the Internet: it will adapt equally to other situations,

utilizing the same high standards for security. Your development machine or control

station will be as secure as your firewall.

• Linux is scalable:

From a Palmtop with 2 MB of memory to a petabyte storage cluster with hundreds

of nodes: add or remove the appropriate packages and Linux fits all. You don't need a

supercomputer anymore, because you can use Linux to do big things using the

building blocks provided with the system. If you want to do little things, such as

making an operating system for an embedded processor or just recycling your old 486,

Linux will do that as well.

• The Linux OS and Linux applications have very short debug-times:

Because Linux has been developed and tested by thousands of people, both errors

and people to fix them are found very quickly. It often happens that there are only a

couple of hours between discovery and fixing of a bug.

4.6.2. Linux Cons

• There are far too many different distributions:

"Quot capites, tot rationes", as the Romans already said: the more people, the more

opinions. At first glance, the amount of Linux distributions can be frightening,

or ridiculous, depending on your point of view. But it also means that everyone

will find what he or she needs. You don't need to be an expert to find a suitable

release.

58

When asked, generally every Linux user will say that the best distribution is the

specific version he is using. So which one should you choose?

Don't worry too much about that: all releases contain more or less the same set of

basic packages. On top of the basics, special third party software is added making, for

example, TurboLinux more suitable for the small and medium enterprise, RedHat for

servers and SuSE for workstations. However, the differences are likely to be very

superficial. The best strategy is to test a couple of distributions; unfortunately not

everybody has the time for this. Luckily, there is plenty of advice on the subject of

choosing your Linux.

• Linux is not very user friendly and confusing for beginners:

In light of its popularity, considerable effort has been made to make Linux even

easier to use, especially for new users. More information is being released daily, such

as this guide, to help fill the gap for documentation available to users at all levels.

• Is an Open Source product trustworthy?

How can something that is free also be reliable? Linux users have the choice

whether to use Linux or not, which gives them an enormous advantage compared to

users of proprietary software, who don't have that kind of freedom. After long periods

of testing, most Linux users come to the conclusion that Linux is not only as good, but

in many cases better and faster that the traditional solutions. If Linux were not

trustworthy, it would have been long gone, never knowing the popularity it has now,

with millions of users. Now users can influence their systems and share their remarks

with the community, so the system gets better and better every day. It is a project that

is never finished, that is true, but in an ever changing environment, Linux is also a

project that continues to strive for perfection.

59

4.7. Linux Flavors

4.7.1. Linux and GNU

Although there are a large number of Linux implementations, you will find a lot of

similarities in the different distributions, if only because every Linux machine is a box with

building blocks that you may put together following your own needs and views. Installing the

system is only the beginning of a longterm relationship. Just when you think you have a nice

running system, Linux will stimulate your imagination and creativeness, and the more you

realize what power the system can give you, the more you will try to redefine its limits.

Linux may appear different depending on the distribution, your hardware and personal

taste, but the fundamentals on which all graphical and other interfaces are built, remain the

same. The Linux system is based on GNU tools (Gnu's Not UNIX), which provide a set of

standard ways to handle and use the system. All GNU tools are open source, so they can be

installed on any system. Most distributions offer pre-compiled packages · of most common

tools, such as RPM packages on RedHat and dpkg packages on Debian, so you needn't be a

programmer to install a package on your system. However, if you are and like doing things

yourself, you will enjoy Linux all the better, since most distributions come with a complete

set of development tools, allowing installation of new software purely from source code. This

setup also allows you to install software even if it does not exist in a pre-packaged form

suitable for your system.

A list of common GNU software:

• Bash: The GNU shell

• GCC: The GNU C Compiler

• GDB: The GNU Debugger

• Findutils: to search and find files

• Fontutils: to convert fonts from one format to another or make new fonts

• The Gimp: GNU Image Manipulation Program

• Gnome: the GNU desktop environment

• Emacs: a very powerful editor

• Ghostscript and Ghostview: interpreter and graphical frontend for PDF files.

• GNU Photo: software for interaction with digital cameras

60

• Octave: a program to calculate mathematical functions and images.

• GNU SQL: relational database system

• Radius: a remote authentication and accounting server

Many commercial applications are available for Linux, and for more information about

these packages we refer to their specific documentation. Throughout this guide we will only

discuss freely available software, which comes (in most cases) with a GNU license.

To install missing or new packages, you will need some form of software management.

The most common implementations include RPM, dpkg and Ximian Red Carpet. RPM is the

RedHat Package Manager, which is used on a variety of Linux systems, eventhough the name

does not suggest this. Dpkg is the Debian package management system, which uses an

interface called Apt-Get, that can manage RPM packages as well. Ximian Red Carpet is a

third party implementation of RPM with a graphical front-end. Other third party software

vendors may have their own installation procedures, sometimes resembling the InstallShield

and such, as known on MS Windows and other platforms. As you advance into Linux, you

will likely get in touch with one or more of these programs.

4.7.2. GNU/Linux

The Linux kernel (the bones of your system, is not part of the GNU project but uses the

same license as GNU software. A great majority of utilities and development tools (the meat

of your system), which are not Linux-specific, are taken from the GNU project. Because any

usable system must contain both the kernel and at least a minimal set of utilities, some people

argue that such a system should be called a GNU/Linux system.

In order to obtain the highest possible degree of independence between distributions, this

is the sort of Linux that we will discuss throughout this course. If we are not talking about a

GNU/Linux system, the specific distribution, version or program name will be mentioned.

61

4. 7 .3. Which distribution should I install?

Prior to installation, the most important factor is your hardware. Since every Linux

distribution contains the basic packages and can be built to meet almost any requirement

(because they all use the Linux kernel), you only need to consider if the distribution will run

on your hardware. LinuxPPC for example has been made to run on MacIntosh and other

PowerPCs and does not run on an ordinary x86 based PC. LinuxPPC does run on the new

Macs, but you can't use it for some of the older ones with ancient bus technology. Another

tricky case is Sun hardware, which could be an old SP ARC CPU or a newer UltraSparc, both

requiring different versions of Linux.

Some Linux distributions are optimized for certain processors, such as Athlon CPUs,

while they will at the same time run decent enough on the standard 486, 586 and 686 Intel

processors. Sometimes distributions for special CPUs are not as reliable, since they are tested

by fewer people.

Most Linux distributions offer a set of programs for generic PCs with special packages

containing optimized kernels for the x86 Intel based CPUs. These distributions are well-tested

and maintained on a regular basis, focusing on reliant server implementation and easy

installation and update procedures. Examles are RedHat, SuSE and Mandrake, which are by

far the most popular Linux systems and generally considered easy to handle for the beginning

user, while not blocking professionals from getting the most out of their Linux machines.

Linux also runs decently on laptops and middle-range servers. Drivers for new hardware are

included only after extensive testing, which adds to the stability of a RedHat system.

While the standard desktop might be Gnome on one system, another might offer KDE by

default. Generally, both Gnome and KDE are available for all Linux distributions. Other

window and desktop managers are available for more advanced users.

The standard installation process allows to choose between different basic setups, such as

a workstation, where all packages needed for everyday use and development are installed, or a

server installation, where different network services can be selected. Expert users can install

every combination of packages they want during the initial installation process.

62

4.8. Introduction to unix

4.8.1 The Operating System

Unix is a layered operating system. The innermost layer is the hardware that provides the

services for the OS. The operating system, referred to in Unix as the kernel, interacts directly

with the hardware and provides the services to the user programs. These user programs don't

need to know anything about the hardware. They just need to know how to interact with the

kernel and it's up to the kernel to provide the desired service. One of the big appeals of Unix

to programmers has been that most well written user programs are independent of the

underlying hardware, making them readily portable to new systems.

User programs interact with the kernel through a set of standard system calls. These

system calls request services to be provided by the kernel. Such services would include

accessing a file: open close, read, write, link, or execute a file; starting or updating accounting

records; changing ownership of a file or directory; changing to a new directory; creating,

suspending, or killing a process; enabling access to hardware devices; and setting limits on

system resources.

Unix is a multi-user, multi-tasking operating system. You can have many users logged

into a system simultaneously, each running many programs. It's the kernel's job to keep each

process and user separate and to regulate access to system hardware, including cpu, memory,

disk and other 1/0 devices.

4.8.2. The Unix File System

The UNIX operating system is built around the concept of a filesystem which is used to

store all of the information that constitutes the long-term state of the system. This state

includes the operating system kernel itself, the executable files for the commands supported

by the operating system, configuration information, temporary workfiles, user data, and

various special files that are used to give controlled access to system hardware and operating

system functions.

63

Every item stored in a UNIX filesystern belongs to one of four types:

1. Ordinaryflle

Ordinary files can contain text, data, or program information. Files cannot

contain other files or directories. Unlike other operating systems, UNIX

filenames are not broken into a name part and an extension part (although

extensions are still frequently used as a means to classify files). Instead they

can contain any keyboard character except for '/' and be up to 256 characters

long (note however that characters such as*,?,# and & have special meaning in

most shells and should not therefore be used in filenames). Putting spaces in

filenames also makes them difficult to manipulate - rather use the underscore
I I

2. Directories

Directories are containers or folders that hold files, and other directories.

3. Devices

To provide applications with easy access to hardware devices, UNIX allows

them to be used in much the same way as ordinary files. There are two types of

devices in UNIX - block-oriented devices which transfer data in blocks (e.g.

hard disks) and character-oriented devices that transfer data on a byte-by

byte basis (e.g. moderns and dumb terminals).

4. Links

A link is a pointer to another file. There are two types of links - a hard link to a

file is indistinguishable from the file itself. A soft link (or symbolic link)

provides an indirect pointer or shortcut to a file. A soft link is implemented as

a directory file entry containing a pathname.

4.9. Typcal Unix Directory Structure

The UNIX filesystern is laid out as a hierarchical tree structure which is anchored at a

special top-level directory known as the root (designated by a slash'/').

Because of the tree structure, a directory can have many child directories, but only one

parent directory. Fig. 3.2 illustrates this layout.

64

Fig. 4.2: Part of a typical UNIX filesystem tree

To specify a location in the directory hierarchy, we must specify a path through the tree.

The path to a location can be defined by an absolute path from the root /, or as a relative path

from the current working directory. To specify a path, each directory along the route from the

source to the destination must be included in the path, with each directory in the sequence

being separated by a slash. To help with the specification of relative paths, UNIX provides the

shorthand " . " for the current directory and " .. " for the parent directory. For example, the

absolute path to the directory "play" is /home/will/play, while the relative path to this

directory from "zeb" is .. /will /play.

Fig. 4.2 shows some typical directories you will find on UNIX systems and briefly

describes their contents. Note that these although these subdirectories appear as part of a

seamless logical filesystem, they do not need be present on the same hard disk device; some

may even be located on a remote machine and accessed across a network.

Directory Typical Contents

I The "root" directory

/bin Essential low-level system utilities

65

/usr/bin Higher-level system utilities and

application programs

/sbin Superuser system utilities (for

performing system administration tasks)

/lib Program libraries (collections of

system calls that can be included in

programs by a compiler) for low-level

system utilities

/usr/lib Program libraries for higher-level user

programs

/tmp Temporary file storage space (can be

used by any user}

/home or User home directories containing

/homes personal file space for each user. Each

directory is named after the login of the

user.

/etc UNIX system configuration and

information files

/dev Hardware devices

/proc A pseudo-filesystem which is used as an
.

interface to the kernel. Includes a sub-

directory for each active program (or

process) .

When you log into UNIX, your current working directory is your user home directory.

You can refer to your home directory at any time as " - " and the home directory of other users

as "-<login>". So -will /play is another way for user j ane to specify an absolute path

to the directory /homes/will/play. User will may refer to the directory as -/play.

66

4.10. Directory and File Handling Commands

This section describes some of the more important directory and file handling commands.

• pwd (print [current] working directory)

pwd displays the full absolute path to the your current location in the

filesystem.

So

$ pwd f--J

/usr/bin

implies that /usr/bin is the current working directory.

• ls (list directory)

ls lists the contents of a directory. If no target directory is given, then the

contents of the current working directory are displayed. So, if the current

working directory is/,

$ ls f--J

bin dev home rnnt share usr var

boot etc lib proc sbin tmp vol

Actually, ls doesn't show you all the entries in a directory - files and

directories that begin with a dot (.) are hidden (this includes the directories '.'

and ' . .' which are always present). The reason for this is that files that begin

with a . usually contain important configuration information and should not be

changed under normal circumstances. If you want to see all files, ls supports

the -a option:

$ls-a f--J

67

permissions owner group

wxr-xr-x Jy~~in~nce J[4ol96J~ov
type links size

Even this listing is not that helpful - there are no hints to properties such as

the size, type and ownership of files, just their names. To see more detailed

information, use the -1 option (long listing), which can be combined with the -a

option as follows:

$ ls -a -1 f---1
(or, equivalently,) $ls-al f---1

Each line of the output looks like this:

date
I

20 10: 4sJ~i1nJ
name

where:

o type is a single character which is either 'd' (directory), '-'

(ordinary file), '1' (symbolic link), 'b' (block-oriented device) or 'c'

(character-oriented device).

o permissions is a set of characters describing access rights. There

are 9 permission characters, describing 3 access types given to 3 user

categories. The three access types are read ('r'), write ('w') and execute

('x'), and the three users categories are the user who owns the file, users

in the group that the file belongs to and other users (the general public).

An 'r', 'w' or 'x' character means the corresponding permission is

present; a'-' means it is absent.

o links refers to the number of filesystem links pointing to the

file/directory (see the discussion on hard/soft links in the next section).

o owner is usually the user who created the file or directory.

o group denotes a collection of users who are allowed to access

the file according to the group access rights specified in the permissions

field.

68

o size is the length of a file, or the number of bytes used by the

operating system to store the list of files in a directory.

o date is the date when the file or directory was last modified

(written to). The -u option display the time when the file was last

accessed (read).

o name is the name of the file or directory.

ls supports more options. To find out what they are, type:

$ man ls +-,J

man is the online UNIX user manual, and you can use it to get help with

commands and find out about what options are supported. It has quite a terse

style which is often not that helpful, so some users prefer to the use the (non

standard) info utility if it is installed:

$ info ls +-,J

• cd (change [current working] directory)

$ cdpath

changes your current working directory to path (which can be an absolute

or a relative path). One of the most common relative paths to use is ' . .' (i.e. the

parent directory of the current directory).

Used without any target directory

$ cd +-,J

resets your current working directory to your home directory (useful if you

get lost). If you change into a directory and you subsequently want to return to

your original directory,

69

use

$ cd -~

• mkdir (make directory)

$ mkdi r directory

creates a subdirectory called directoryin the current working directory.

You can only create subdirectories in a directory if you have write permission

on that directory.

• rmdir (remove directory)

$ rmdi r directory

removes the subdirectory directory from the current working directory.

You can only remove subdirectories if they are completely empty (i.e. of all

entries besides the'.' and' . .' directories).

• cp (copy)

cp is used to make copies of files or entire directories. To copy files, use:

$ cp source-file(s) destination

where source-file(s) and destination specify the source and destination of

the copy respectively. The behaviour of cp depends on whether the destination

is a file or a directory. If the destination is a file, only one source file is allowed

and cp makes a new file called destination that has the same contents as the

source file. If the destination is a directory, many source files can be specified,

each of which will be copied into the destination directory. Section 2.6 will

discuss efficient specification of source files using wildcard characters.

70

To copy entire directories (including their contents), use a recursive copy:

$ cp - rd source-directories destination-directory

• mv (move/rename)

mv is used to rename files/directories and/or move them from one directory

into another. Exactly one source and one destination must be specified:

$ mv source destination

If destination is an existing directory, the new name for source (whether it

be a file or a directory) will be destination/source. If source and destination

are both files, source is renamed destination. N.B.: if destination is an existing

file it will be destroyed and overwritten by source (you can use the -i option

if you would like to be asked for confirmation before a file is overwritten in

this way.

• rm (remove/delete)

$ rm target-file(s)

removes the specified files. Unlike other operating systems, it is almost

impossible to recover a deleted file unless you have a backup (there is no

recycle bin!) so use this command with care. If you would like to be asked

before files are deleted, use the - i option:

$ rm -i myf ile ~

rm: remove 'myfile'?

rm can also be used to delete directories (along with all of their contents,

including any subdirectories they contain). To do this, use the - r option. To

avoid rm from asking any questions or giving errors (e.g. if the file doesn't

exist) you used the -f (force) option.

71

Extreme care needs to be taken when using this option - consider what

would happen if a system administrator was trying to delete user wi 11 's

home directory and accidentally typed:

$ rm -rf I home/will+-'

(instead of rm -rf /home/will).

• cat (catenate/type)

$ cat target-file(s)

displays the contents of targetjile(s) on the screen, one after the other.

You can also use it to create files from keyboard input as follows (> is the

output redirection operator, which will be discussed in the next chapter):

$ cat > hello. txt +-'

hello world!+-'

[ctrl-d]

$ ls hello. txt +-'

hello.txt

$ cat hello. txt +-'

hello world!

$

• more and less (catenate with pause)

$ more targetjile(s)

displays the contents of target-file(s) on the screen, pausing at the end of

each screenful and asking the user to press a key (useful for long files). It also

incorporates a searching facility (press 'I' and then type a phrase that you want

to look for).

72

You can also use more to break up the output of commands that produce

more than one screenful of output as follows (I is the pipe operator, which

will be discussed in the next chapter):

$ ls -1 I moref--1

less is just like more, except that has a few extra features (such as

allowing users to scroll backwards and forwards through the displayed file).

less not a standard utility, however and may not be present on all UNIX

systems.

4.11. Making Hard and Soft (symbolic) Links:

Direct (hard) and indirect (soft or symbolic) links from one file or directory to another can

be created using the ln command.

$ ln filename linkname

creates another directory entry for filename called linkname (i.e. linkname is a hard link).

Both directory entries appear identical (and both now have a link count of 2). If either

filename or linkname is modified, the change will be reflected in the other file (since they are

in fact just two different directory entries pointing to the same file).

$ ln -s filename linkname

creates a shortcut called linkname (i.e. linkname is a soft link). The shortcut appears as an

entry with a special type ('l '):

$ ln -s hello. txt bye. txt f--1

$ ls -1 bye. txt f--1
lrwxrwxrwx 1 will finance 13 bye.txt -> hello.txt

$

The link count of the source file remains unaffected. Notice that the permission bits on a

symbolic link are not used (always appearing as rwxrwxrwx). Instead the permissions on the

link are determined by the permissions on the target (hello. txt in this case).

73

Note that you can create a symbolic link to a file that doesn't exist, but not a hard link.

Another difference between the two is that you can create symbolic links across different

physical disk devices or partitions, but hard links are restricted to the same disk partition.

Finally, most current UNIX implementations do not allow hard links to point to directories.

4.12. Specifying Multiple Filenames :
Multiple filenames can be specified using special pattern-matching characters. The rules

are:

• '?' matches any single character in that position in the filename.

• '*' matches zero or more characters in the filename. A '*' on its own

will match all files.'*.*' matches all files with containing a'.'.

• Characters enclosed in square brackets ('[' and ']') will match any

filename that has one of those characters in that position.

• A list of comma separated strings enclosed in curly braces (" {" and "} ")

will be expanded as a Cartesian product with the surrounding characters.

For example:

1. ? ? ? matches all three-character filenames.

2. ?ell? matches any five-character filenames with 'ell' in the middle.

3. he* matches any filename beginning with 'he'.

4. [m-z J * [a-1] matches any filename that begins with a letter from 'm'

to 'z' and ends in a letter from 'a' to 'l '.

5. {/usr,}{/bin,/lib}/file expands to /usr/bin/file

/usr/lib/file /bin/file and /lib/file.

Note that the UNIX shell performs these expansions (including any filename matching) on

a command's arguments before the command is executed.

4.12.1. Quotes
As we have seen certain special characters (e.g.'*','-','{' etc.) are interpreted in a special

way by the shell. In order to pass arguments that use these characters to commands directly

(i.e. without filename expansion etc.), we need to use special quoting characters.

74

There are three levels of quoting that you can try:

1. Try insert a'\' in front of the special character.

2. Use double quotes (") around arguments to prevent most expansions.

3. Use single forward quotes (') around arguments to prevent all

expansions.

There is a fourth type of quoting in UNIX. Single backward quotes (') are used to pass

the output of some command as an input argument to another. For example:

$ hostname ~

rose

$ echo this machine is called 'hostname' ~

this machine is called rose

4.13. Summary

In this chapter, we learned that:

• Linux is an implementation of UNIX.

• The Linux operating system is written in the C programming language.

• De gustibus et coloribus non disputandum est: there's a Linux for everyone.

• Linux uses GNU tools, a set of freely available standard tools for handling the

operating system.

75

CONCLUSION

In this project I learned a lot of things that in first time and even though not all of

things I wanted to do in this project but this is mainly because of the lack of time and

knowledge in programming with Delphi programming, but we can say that Delphi

database support is very extensive and complete.

I have very high hopes on expanding the capability of this program in near future

and from there I will take-off in mastering Delphi to design any project, I will try to

take a lot of experience which is very important tool that I will need to take obstacles

being faced in the future .

76

BOOKS:

REFERANCE

IMPORT-EXPORT PROCEDURE AND DOCUMENTS.

MARCOCANTU,"MASTERING DELPHI", SYBEX,

WEBSITES:

WWW.HOWTOIMPORT.COM
WWW.EXPORT911.COM
WWW.PETO.COM
WWW.SYBEX.COM
WWW.KDTOOL.NET

77

APPENDIX

1. Main menu:

unit MainUnit;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, Menus, DB, ADODB;

type

TMainForrn = class(TForrn)
MainMenul: TMainMenu;

Filel: TMenultem;

Exitl: TMenultem;

Cards 1: TMenultem;

StockCards 1: TMenultem;

Companies 1: TMenultem;

IrnportExportDocuments 1: TMenultem;

ImportDocument 1: TMenultem;

Exportdocumentl: TMenultem;

Help 1: TMenultem;

Aboutl: TMenultem;

ADOConnectionl: T ADOConnection;

Companies3: TMenultem;

AddNewCompanyl: TMenultem;

U pdateCompanies 1: TMenultem;

ransportationl: TMenultem;

Add 1: TMenultem;

PaymentTypes 1: TMenultem;

ADODataSetl: TADODataSet;

EditPaymentTypes 1: TMenultem;

78

procedure ExitlClick(Sender: TObject);

procedure StockCardslClick(Sender: TObject);

procedure Companies 1 Click(Sender: TObject);

procedure AddNewCompanylClick(Sender: TObject);

procedure UpdateCompanies 1 Click(Sender: TObject);

procedure ImportDocumentlClick(Sender: TObject);

procedure ExportdocumentlClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure AddlClick(Sender: TObject);

procedure EditPaymentTypes 1 Click(Sender: TObject);

procedure AboutlClick(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

MainForm: TMainForm;

implementation

uses StockUnit, CompanyUnit, ExplmpUnit, TransUnit, PayUnit, AboutUnit;

{$R *.dfm}

procedure TMainForm.ExitlClick(Sender: TObject);

begin

Close;

end;

procedure TMainForm.StockCards 1 Click(Sender: TObject);

begin

Application. CreateForm(TStockForm, StockForm);

79

StockForm.BitBtn5.Visible:=false;

StockForm.BitBtn6.Visible:=false;

StockForm.BitBtn3. Visible:=F ALSE;

StockForm.DBGridl.ReadOnly:=TRUE;

end;

procedure TMainF orm. Companies 1 Click(Sender: TObj ect);

begin

Application. CreateForrn(TS tockForm, StockF orm);

end;

procedure TMainForm.AddNewCornpanyl Click(Sender: TObject);

begin

Application.CreateForrn(TCornpanyForm, CornpanyForm);

CornpanyForm.BitBtn5.Visible:=false;

CornpanyForm.B itBtn6. Visible.efalse;

CornpanyForm.BitBtn3. Visible:=F ALSE;

CornpanyForm.DBGridl.ReadOnly:=TRUE;

end;

procedure TMainForm. UpdateCornpanies 1 Click(Sender: TObject);

begin

Application.CreateForrn(TCornpanyForm, CornpanyForm);

end;

procedure TMainForm.IrnportDocurnent 1 Click(Sender: TObj ect);

begin

Application.CreateForrn(TExplrnpForm, ExplrnpForm);

ExplrnpForm.DocType:=0;

end;

procedure TMainForm.Exportdocurnentl Click(Sender: TObject);

begin

Application.CreateForrn(TExplrnpForm, ExplrnpForm);

80

Explmpf orm.DocType: = 1;

end;

procedure TMainForm.f ormCreate(Sender: TObject);

var

DBPath : String;

Srcfile : Textf ile;

begin

AssignFile(Srcfile,ExtractfilePath(Application.ExeName)+'DatabasePath.txt');

Reset(Srcfile);

Readln(Srcfile,DBPath);

ADOConnectionl .Close;

ADO Connection 1. ConnectionString: ='Provider=Microsoft.J et. 0 LED B .4. O;Data

Source='+DBPath+';Persist Security Info=f alse';

ADOConnectionl .Open;

Closefile(Srcfile);

end;

procedure TMainform.AddlClick(Sender: TObject);

begin

Application.Createform(TTransform, Transform);

Transform.Show;

end;

procedure TMainf orm.EditPaymentTypes 1 Click(Sender: TObject);

begin

Application.Createform(TPayform, Payform);

Payf orm.Show;

end;

procedure TMainForm.AboutlClick(Sender: TObject);

begin

Application.Createform(TAboutform, Aboutf'orm);

Aboutf orm.Show;

81

end;

end.

2. Stock card:
unit StockUnit;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, ExtCtrls, DB, ADODB, StdCtrls, Mask, DBCtrls, Buttons, Grids,

DB Grids;

type

TStockForm = class(TForm)

Panel 1: TPanel;

Panel2: TPanel;

ADODataSetl: TADODataSet;

DataSource 1: TDataSource;

Labell: TLabel;

DBEditl: TDBEdit;

ADODataSetl CODE: TWideStringField;

ADODataSetlNAME: TWideStringField;

ADODataSetlQUATA: TFloatField;

ADODataSetlSELL_PRICE: TBCDField;

ADODataSetlBUY _PRICE: TBCDField;

ADODataSetlNOTES: TWideStringField;

ADODataSetlBARCODE: TWideStringField;

DBEdit2: TDBEdit;

Label2: TLabel;

DBEdit3: TDBEdit;

Label3: TLabel;

82

DBEdit4: TDBEdit;

Label4: TLabel;

DBEdit5: TDBEdit;

Label5: TLabel;

DBEdit6: TDBEdit;

Label6: TLabel;

DBEdit7: TDBEdit;

Label7: TLabel;

BitBtnl: TBitBtn;

BitBtn2: TBitBtn;

BitBtn3: TBitBtn;

BitBtn4: TBitBtn;

BitBtn5: TBitBtn;

BitBtn6: TBitBtn;

DBGridl: TDBGrid;

ADODataSet2: TADODataSet;

DataSource2: TDataSource;

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure BitBtn4Click(Sender: TObject);

procedure BitBtnlClick(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure FormShow(Sender: TObject);

procedure BitBtn5Click(Sender: TObject);

procedure BitBtn6Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

StockForm: TStockForm;

83

implementation

uses MainUnit;

{$R *.dfm}

procedure TStockForm.FormClose(Sender: TObject; var Action: TCloseAction);

begin

Action=cafree;

end;

procedure TStockForm.BitBtn4Click(Sender: TObject);

begin

Close;

end;

procedure TStockForm.BitBtnlClick(Sender: TObject);

begin

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl.CommandText:='SELECT * FROM STOCK_CARDS';

ADODataSetl .Open;

ADODataSetl .Insert;

DBEditl.SetFocus;

ADODataSet2.Close;

ADODataSet2.0pen;

end;

procedure TStockForm.BitBtn2Click(Sender: TObject);

begin

try

MainForm.ADODataSetl .Close;

MainForm.ADODataSetl.CommandText:='SELECT * FROM STOCK_CARDS

WHERE CODE="'+DBEditl. Text+"";

84

MainForm.ADODataSetl .Open;

if MainForm.ADODataSetl .IsEmpty then

begin

ADODataSetl .Edit;

ADODataSetl. post;

BitBtnlClick(SENDER);

end

else

MessageDlg('Code is already exists !',mtError,[mBOk],O);

except on E:Exception do

begin

MessageDlg('An Error Occured During Save Opration

!'+#13+E.Message,mtError,[mb0k],O);

end;

end;

end;

procedure TStockForm.BitBtn3Click(Sender: TObject);

begin

if DBEditl.Text<>" then

begin

if MessageDlg('Are You Sure That You Want To Delete

? ! ',mtConfirmation,[mb Y es,mbNo] ,O)=mrY es then

begin

try

ADODataSetl .Delete;

DBEditl .SetFocus;

except on E:Exception do

begin

MessageDlg('An Error Occured During Delete Opration

! '+#13+E.Message,mtError,[mbOk] ,O);

end;

end;

end;

85

end

else

DBEditl .SetFocus;

end;

procedure TStockForm.FormShow(Sender: TObject);

begin

BitBtnlClick(SENDER);

end;

procedure TStockForm.BitBtn5Click(Sender: TObject);

var

Code: String;

begin

Code:=DBEditl.Text;

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl.CommandText:='SELECT * FROM STOCK_CARDS WHERE

CODE="'+Code+"";

ADODataSetl .Open;

end;

procedure TStockForm.BitBtn6Click(Sender: TObject);

var

Code : String;

begin

Code:=DBEdit2.Text;

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl.CommandText:='SELECT * FROM STOCK_CARDS WHERE

NAME='"+Code+"";

ADODataSetl .Open;

end;

86

end.

3. Companies:
unit CompanyUnit;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, ADODB, StdCtrls, Buttons, Mask, DBCtrls, ExtCtrls, Grids,

DB Grids;

type

TCompanyForm = class(TForm)

Panell: TPanel;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

BitBtn5: TBitBtn;

BitBtn6: TBitBtn;

Panel2: TPanel;

BitBtnl: TBitBtn;

BitBtn2: TBitBtn;

BitBtn3: TBitBtn;

BitBtn4: TBitBtn;

ADODataSetl: T ADODataSet;

DataSourcel: TDataSource;

ADODataSetl CODE: TWideStringField;

87

ADODataSetlNAME: TWideStringField;

ADODataSetlADDRESS: TWideStringField;

ADODataSetl TEL: TWideStringField;

DataSource2: TDataSource;

ADODataSet2: TADODataSet;

DBGridl: TDBGrid;

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure BitBtnlClick(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure BitBtn5Click(Sender: TObject);

procedure BitBtn6Click(Sender: TObject);

procedure FormShow(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

CompanyForm: TCompanyForm;

implementation

uses MainUnit;

{$R *.dfm}

procedure TCompanyForm.FormClose(Sender: TObject;

var Action: TCloseAction);

begin

Action.ecafree;

end;

88

procedure TCompanyForm.BitBtnl Click(Sender: TObject);

begin

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl.CommandText:='SELECT * FROM COMPANIES';

ADODataSetl .Open;

ADODataSetl .Insert;

DBEditl .SetFocus;

ADODataSet2.Close;

ADODataSet2.0pen;

end;

procedure TCompanyForm.BitBtn2Click(Sender: TObject);

begin

try

MainForm.ADODataSetl .Close;

MainForm.ADODataSetl .CommandText:='SELECT * FROM COMPANIES

WHERE CODE="'+DBEditl.Text+"";

MainForm.ADODataSetl .Open;

if MainForm.ADODataSetl.IsEmpty then

begin

ADODataSetl .Edit;

ADODataSetl.post;

BitBtnl Click(SENDER);

end

else

MessageDlg('Code is already exists !',mtError,[mBOk],O);

except on E:Exception do

begin

MessageDlg('An Error Occured During Save Opration

!'+#13+E.Message,mtError,[mb0k],O);

end;

end;

89

end;

procedure TCompanyForm.BitBtn3Click(Sender: TObject);

begin

if DBEditl.Text<>" then

begin

if MessageDlg('Are You Sure That You Want To Delete

? ! ',mtConfirmation,[mb Y es,mbNo] ,O)=mrY es then

begin

try

ADODataSetl .Delete;

DBEditl.SetFocus;

except on E:Exception do

begin

MessageDlg('An Error Occured During Delete Opration

!'+#13+E.Message,mtError,[mbOk],O);

end;

end;

end;

end

else

DBEditl .SetFocus;

end;

procedure TCompanyForm.BitBtn4Click(Sender: TObject);

begin

Close;

end;

procedure TCompanyForm.BitBtn5Click(Sender: TObject);

var

Code : String;

begin

Code:=DBEditl .Text;

90

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl .CommandText:='SELECT * FROM COMPANIES WHERE

CODE='"+Code+"";

ADODataSetl .Open;

end;

procedure TCompan yF orm.B itB tn6Click(Sender: TObj ect);

var

Code : String;

begin

Code:=DBEdit2.Text;

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl.CommandText:='SELECT * FROM COMPANIES WHERE

NAME="'+Code+'"';

ADODataSetl .Open;

end;

procedure TCompanyForm.FormShow(Sender: TObject);

begin

B itBtnl Click(Sender);

end;

end.

4. Transportation:
unit TransUnit;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

91

Dialogs, ExtCtrls, StdCtrls, Buttons, DB, Grids, DBGrids, ADODB;

type

TTransForm = class(TForm)

Panell: TPanel;

Panel2: TPanel;

Panel3: TPanel;

ADODataSetl: TADODataSet;

DBGridl: TDBGrid;

DataSource 1: TDataSource;

BitBtnl: TBitBtn;

BitBtn2: TBitBtn;

Insert: TBitBtn;
procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure BitBtn2Click(Sender: TObject);

procedure InsertClick(Sender: TObject);

procedure BitBtnlClick(Sender: TObject);

procedure FormShow(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

TransForm: TTransForm;

implementation

uses MainUnit;

{$R *.dfm}

procedure TTransForm.FormClose(Sender: TObject; var Action: TCloseAction);

92

begin

Action.ecafree;

end;

procedure TTransForm.BitBtn2Click(Sender: TObject);

begin

Close;

end;

procedure TTransForm.lnsertClick(Sender: TObject);

begin

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl .Open;

ADODataSetl .Insert;

end;

procedure TTransForm.BitBtnlClick(Sender: TObject);

begin

try

ADODataSetl .Edit;

ADODataSetl.post;

ADODataSetl .Close;

ADODataSetl .Open;

except on E:Exception do

begin

MessageDlg('An Error Occured During Save Opration

!'+#13+E.Message,mtError,[mb0k],O);

end;

end;

end;

procedure TTransForm.FormShow(Sender: TObiec

begin

3

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl .Open;

end;

end.

5. Payment types:
unit PayUnit;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, ADODB, StdCtrls, Buttons, Grids, DBGrids, ExtCtrls;

type

TPayForm = class(TForm)

Panell: TPanel;

Panel2: TPanel;

DBGridl: TDBGrid;

Pane13: TPanel;

BitBtnl: TBitBtn;

BitBtn2: TBitBtn;

Insert: TBitBtn;

ADODataSetl: TADODataSet;

DataSource 1: TDataSource;

procedure InsertClick(Sender: TObject);

procedure BitBtnlClick(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

94

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure FormShow(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

PayForm: TPayForm;

implementation

{$R *.dfm}

procedure TPayForm.InsertClick(Sender: TObject);

begin

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl .Open;

ADODataSetl .Insert;

end;

procedure TPayForm.BitBtnl Click(Sender: TObject);

begin

try

ADODataSetl .Edit;

ADODataSetl.post;

ADODataSetl .Close;

ADODataSetl.Open;

except on E:Exception do

begin

MessageDlg('An Error Occured During Save Opration

!'+#13+E.Message,mtError,[mb0k],O);

95

end;

end;

end;

procedure TPayForm.BitBtn2Click(Sender: TObject);

begin

Close;

end;

procedure TPayForm.FormClose(Sender: TObject; var Action: TCloseAction);

begin

action.ecafree;

end;

procedure TPayForm.FormShow(Sender: TObject);

begin

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl .Open;

end;

end.

6. Import-export:
unit ExplmpUnit;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, ExtCtrls, DB, ADODB, DBCtrls, StdCtrls, Mask, Buttons, Grids,

DB Grids;

96

type

TExplmpForm = class(TForm)

Panell: TPanel;

Panel2: TPanel;

Panel3: TPanel;

ADODataSetl: TADODataSet;

DataSourcel: TDataSource;

ADODataSet2: TADODataSet;

DataSource2: TDataSource;

ADODataSetlDOC_NO: TWideStringField;

ADODataSetlCOMPANY _CODE: TWideStringField;

ADODataSetl TRANS_CODE: TWideStringField;

ADODataSetl TOTAL_PRICE: TBCDField;

ADODataSetlPA YMENT _ TYPE: TWideStringField;

ADODataSetlDOCUMENT _ TYPE: TWordField;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

DBEditl: TDBEdit;

DBLookupComboBox 1: TDBLookupComboBox;

DBLookupComboBox2: TDBLookupComboBox;

DBLookupComboBox3: TDBLookupComboBox;

DBLookupComboBox4: TDBLookupComboBox;

COMPANIES: TADODataSet;

DataSource3: TDataSource;

DataSource4: TDataSource;

TRANS: T ADODataSet;

DataSource5: TDataSource;

PAYMENTS: TADODataSet;

BitBtnl: TBitBtn;

BitBtn2: TBitBtn;

BitBtn3: TBitBtn;

97

BitBtn4: TBitBtn;

DBGridl: TDBGrid;

ADODataSet2ID: T AutolncField;

AD0DataSet2D0C_NO: TWideStringField;

ADODataSet2STOCK_CODE: TWideStringField;

ADODataSet2QUANTITY: TFloatField;

ADODataSet2PRICE: TBCDField;

ADODataSet3: TADODataSet;

ADODataSet2STOCKNAME: TStringField;

ADODataSet2STOCKQUATA: TFloatField;

ADODataSet2STOCKCODE: TStringField;

AD0DataSet2STOCKPRICE: TCurrencyField;

AD0DataSet2D0CUMENT _ TYPE: TWordField;

ADOCommandl: T ADOCommand;

BitBtn5: TBitBtn;

BitBtn6: TBitBtn;

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure BitBtnlClick(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure ADODataSet2CalcFields(DataSet: TDataSet);

procedure ADODataSet2QUANTITYChange(Sender: TField);

procedure ADODataSet2BeforePost(DataSet: TDataSet);

procedure DBGridlEnter(Sender: TObject);

procedure FormShow(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure BitBtn5Click(Sender: TObject);

procedure BitBtn6Click(Sender: TObject);

private

{ Private declarations }

public

DocType: Byte;

{ Public declarations }

end;

98

var

ExplmpForm:TExplmpForm;

implementation

uses MainUnit;

{$R *.dfm}

procedure TExplmpForm.FormClose(Sender: TObject; var Action: TCloseAction);

begin

Action.ecafree;

end;

procedure TExplmpForm.BitBtnlClick(Sender: TObject);

begin

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl .CommandText:='SELECT * FROM DOCUMENT _HEADER';

ADODataSetl .Open;

ADODataSetl .Insert;

ADODataSet2.Close;

TRANS.Open;

COMPANIES.Open;

PAYMENTS.Open;

Panell .Enabled:=TRUE;

DBEditl .SetFocus;

end;

procedure TExplmpForm.BitBtn4Click(Sender: TObject);

begin

CLOSE;

end;

99

procedure TExpimpForrn.BitBtn2Click(Sender: TObject);

begin

try

MainForm.ADODataSetl .Close;

MainForm.ADODataSetl .CornrnandText:='SELECT * FROM

DOCUMENT_HEADER WHERE DOC_NO="'+DBEditl.Text+"' AND

DOCUMENT_ TYPE='+IntToStr(DocType);

MainForm.ADODataSetl .Open;

if MainForm.ADODataSetl .IsErnpty then

begin

ADODataSetl .Edit;
ADODataSetl .FieldByN arne('DOCUMENT _ TYPE'). Value:=DocType;

ADODataSet2.Edit;

ADODataSet2.post;

ADODataSet2.First;

ADODataSetl TOTAL_PRICE.Value:=0;

while not ADODataSet2.Eof do

begin

ADODataSetl TOT AL_PRICE. Value:=ADODataSetl TOTAL_PRICE. Value+ADOD

ataSet2PRICE. Value;

ADODataSet2.N ext;

end;

ADODataSetl. post;

ADODataSet2.UpdateBatch(arAll);

BitBtnlClick(SENDER);

END

ELSE
MessageDlg('Docurnent Number is already exists !',rntError,[rnBOk],O);

except on E:Exception do

begin
MessageDlg('An Error Occured During Save Opration

!'+#13+E.Message,rntError,[rnbOk],O);

100

end;

end;

end;

procedure TExplmpForm.ADODataSet2CalcFields(DataSet: TDataSet);

begin

II

ADODataSet2.FieldB yN ame('TOT AL_PRICE'). Value:=AD0DataSet2.FieldB yN ame

('QUANTITY'). Value* AD0DataSet2.FieldByName('STOCKPRICE'). Value;

end;

procedure TExplmpForm.ADODataSet2QUANTITYChange(Sender: TField);

begin
IF (AD0DataSet2.FieldByName('QUANTITY').Value mod

ADODataSet2.FieldByName('STOCKQUATA').Value)<>0 THEN

begin
MessageDlg('Quantity Has Been Exceeded the Quata Limit !',mtError,[mbOk],O);

ADODataSet2.FieldB yN ame('QU ANTITY'). Value:=0;

end

else

AD0DataSet2.FieldByName('PRICE').Value:=AD0DataSet2.FieldByName('QUAN

TITY'). Value* ADODataSet2.FieldB yN ame('STOCKPRICE'). Value;

end;

procedure TExplmpForm.ADODataSet2BeforePost(DataSet: TDataSet);

begin

AD0DataSet2.FieldByName('DOC_NO').Value:=AD0DataSetl.FieldByName('DOC

_NO').Value;

AD0DataSet2.FieldByName('D0CUMENT_TYPE').Value:=DocType;

end;

procedure TExplmpForm.DBGridlEnter(Sender: TObject);

101

begin

ADODataSet2.Cancel;

ADODataSet2.Close;

ADQDataSet2.ComrnandText:='select * from DOCUMENT _DETAIL WHERE

DOC_NO=:DOC_NO AND DOCUMENT_TYPE='+IntToStr(DocType);

ADODataSet2.Parameters[O].Value:=DBEditl.Text;

ADODataSet2.0pen;

ADODataSet2.Insert;

Panell .Enabled:=FALSE;

end;

procedure TExplmpForm.FormShow(Sender: TObject);

begin

BitBtnl Click(Sender);

end;

procedure TExplmpForm.BitBtn3Click(Sender: TObject);

begin

if DBEditl.Text<>" then

begin

if MessageDlg('Are You Sure That You Want To Delete

?!',mtConfirmation,[mbYes,mbNo],O)=mrYes then

begin

try

ADOComrnandl .ComrnandText:='DELETE FROM DOCUMENT _HEADER

WHERE DOC_NO="'+DBEditl.Text+"' AND

DOCUMENT_ TYPE='+ IntToStr(DocType);

ADOComrnandl .Execute;

ADOComrnandl .ComrnandText:='DELETE FROM DOCUMENT _DETAIL

WHERE DOC_NO="'+DBEditl.Text+"' AND

DOCUMENT_ TYPE='+ IntToStr(DocType);

ADOComrnandl .Execute;

BitBtnl Click(SENDER);
'<

except on E:Exception do

102

begin

MessageDlg('An Error Occured During Delete Opration

!'+#13+E.Message,mtError,[mbOk],O);

end;

end;

end;

end

else

DBEditl .SetFocus;

end;

procedure TExplmpForm.BitBtn5Click(Sender: TObject);

var

Code: String;

begin

Code:=DBEditl. Text;

ADODataSetl .Cancel;

ADODataSetl .Close;

ADODataSetl .CommandText:='SELECT * FROM DOCUMENT _HEADER

WHERE DOC_NO='"+Code+"' AND DOCUMENT_TYPE='+IntToStr(DocType);
ADODataSetl .Open;

ADODataSet2.Close;

ADODataSet2.CommandText:='SELECT * FROM DOCUMENT _DETAIL

WHERE DOC_NO="'+Code+"' AND DOCUMENT_TYPE='+IntToStr(DocType);
ADODataSet2.0pen;

end;

procedure TExplmpForm.BitBtn6Click(Sender: TObject);
var

Code: String;

begin

Code:=DBLookupComboBox 1. Text;

ADODataSetl .Cancel;

ADODataSetl .Close;

103

ADODataSetl .CommandText:='SELECT * FROM DOCUMENT _HEADER

WHERE COMPANY_CODE='"+Code+"' AND

DOCUMENT_TYPE='+IntToStr(DocType);

ADODataSetl .Open;

ADODataSet2.Close;

ADODataSet2.CommandText:='SELECT * FROM DOCUMENT _DETAIL

WHERE DOC_NO="'+)\f)~ataSetl .FieldB yNarne('DOC_NO').AsString+"' AND

DOCUMENT_TYPE='+IntToStr(DocType);

ADODataSet2.0pen;

end;

end.

7. Help:
unit AboutUnit;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls;

type

T AboutForm = class(TForm)

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label7: TLabel;

procedure FormClose(Sender: TObject; var Action: TCloseAction);

104

private

{ Private declarations }

public

{ Public declarations }

end;

var

AboutForm: T AboutForm;

implementation

{$R *.dfm}

procedure TAboutForm.FormClose(Sender: TObject; var Action: TCloseAction);

begin

ACTION:=CAFREE;

end;

end.

105

	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 2
	Titles
	ACKNOWLEDGMENT
	1}-RE~1.2~~
	ll .:, .. ~
	r </: <"'.\\
	~ ~~.-Jrn1
	I

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Page 4
	Page 5
	Page 6
	Page 7
	Titles
	INTRODUCTION

	Page 8
	Titles
	CHAPTER!
	INTERNATIONAL TRADE
	1.1. Export-Import Procedure
	1

	Tables
	Table 1

	Page 9
	Titles
	6
	SELLER
	8
	3
	�

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 10
	Titles
	1.2. International Commercial Terms (INCOTERMS):

	Page 11
	Tables
	Table 1

	Page 12
	Titles
	1.2.1. EXW { + the named place}

	Page 13
	Titles
	1.2.4. FAS { + the named port of origin}

	Page 14
	Page 15
	Titles
	1.2.9. CIP {+the named place of destination}

	Page 16
	Titles
	1.2.10. DAF {+the named point at frontier}

	Page 17
	Titles
	1.2.13. DDU {+the named point of destination}

	Page 18
	Titles
	l
	l
	l
	J
	l

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11

	Page 19
	Titles
	1.3. Export Documentary Requirements
	1.3.1. Issuance Date of Documents
	1.3.2. The Original Documents
	1.3.3. The Copy Documents
	1.3.4. Multiple Documents
	1.3.S. Signing of Documents

	Page 20
	Titles
	1.4. Authentication of Documents
	1.5. Unspecified Issuers or Contents of Documents
	1.6. Unspecified Documents

	Page 21
	Titles
	1. 7. Standard Cargo Insurance ---
	1.7.1. Institute Cargo Clauses (All Risks)
	1. 7 .2. Institute Cargo Clauses (With Average)

	Page 22
	Titles
	1. 7 .3. Institute Cargo Clauses (Free of Particular Average)
	1.8. Methods and Tools of Payment in Exporting and Importing
	1.9. Letter of Credit (L/C)

	Page 23
	Titles
	1.9.1. Documentary Collections
	1.10. Cheque and Bank Draft
	1.11. Trade Arrangements Using the Cheque and Bank Draft
	1.11.1. Open Account

	Page 24
	Titles
	1.11.2. Consignment
	1.11.3. Cash In Advance (CID)
	1.12. Telegraphic Transfer (TIT)
	1.13. Combination of Letter of Credit and Telegraphic Transfer

	Page 25
	Page 26
	Titles
	1.14. Commercial Invoice
	1.15. Specific Language Requirements in the Commercial Invoice
	1.16. Declaration on Commercial Invoice

	Page 27
	Titles
	1.17. Certification and/or Legalization of Commercial Invoice
	1.18. Corrections or Changes in the Commercial Invoice
	1.19. signature and/or stamp
	1.20. Description of Goods

	Page 28
	Titles
	1.20.1. Quantity

	Page 29
	Titles
	1.20.2. Unit Price
	1.20.3. Amount
	1.21. Customs Brokers

	Page 30
	Titles
	1.22 .. Freight Forwarders or Consolidators

	Page 31
	Page 32
	Titles
	CHAPTER2
	INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)
	2.1 INTODUCTION
	2.2 The Delphi IDE

	Images
	Image 1

	Page 33
	Titles
	2.3 A Quick Look at the Delphi IDE

	Images
	Image 1
	Image 2

	Page 34
	Titles
	2.4 The Delphi Workspace
	2.5 The Delphi Main Menu and Toolbar.

	Images
	Image 1

	Page 35
	Titles
	2.6 Using the Component Palette

	Images
	Image 1
	Image 2

	Page 36
	Titles
	2. 7 Placing Multiple Copies of a Component
	2.8 About Delphi Forms

	Page 37
	Titles
	2.8.1 Main Window Forms
	2.8.2 Creating the Main Window Form

	Images
	Image 1

	Page 38
	Images
	Image 1

	Page 39
	Titles
	2.8.3 Dialog Box Forms
	�

	Images
	Image 1
	Image 2

	Page 40
	Titles
	2.8.4 Creating a Dialog Form
	2.9 A Multiple-Form Application

	Images
	Image 1

	Page 41
	Titles
	2.9.lAdding Units
	2.9.2 Some Key Properties for Forms

	Images
	Image 1
	Image 2

	Page 42
	Titles
	2.10 The Object Inspector
	2.10.1 The Component Selector

	Page 43
	Titles
	2.10.2The Properties Page

	Images
	Image 1
	Image 2

	Page 44
	Titles
	2.10.3 The Events Page
	2.11 Code Templates

	Images
	Image 1

	Page 45
	Titles
	2.12 Writing Code for the File, Open and File, Save As Menu Items.

	Images
	Image 1

	Page 46
	Titles
	2.13 Writing Code for the Window Menu

	Images
	Image 1

	Page 47
	Titles
	CHAPTER3
	3.1. Database Structure:
	3.2. Define Relationships Between Tables:

	Images
	Image 1
	Image 2

	Page 48
	Titles
	3.3. Delphi database components:
	3.4. Layout of the Application:

	Images
	Image 1

	Page 49
	Titles
	3.4.2. Add new stock card screen:

	Images
	Image 1
	Image 2

	Page 50
	Titles
	3.4.3. Update stock card screen:

	Images
	Image 1
	Image 2
	Image 3

	Page 51
	Titles
	3.4.4. Add new company screen:
	3.4.5. Update stock card screen:

	Images
	Image 1
	Image 2
	Image 3

	Page 52
	Titles
	3.4.6. Edit transportation way screen:
	3.4.7. Edit payments type screen:

	Images
	Image 1
	Image 2
	Image 3

	Page 53
	Titles
	3.4.8. Import documents screen :
	46

	Images
	Image 1
	Image 2

	Page 54
	Titles
	3.4.9. Export documents screen:

	Images
	Image 1
	Image 2

	Page 55
	Titles
	3.4.10. Help screen:

	Images
	Image 1
	Image 2

	Page 56
	Titles
	CHAPTER4
	LINUX AND UNIX OPERATING SYSTEM
	4.1. Unix

	Images
	Image 1

	Page 57
	Titles
	4.2. Linus and Linux

	Images
	Image 1
	Image 2
	Image 3

	Page 58
	Images
	Image 1
	Image 2

	Page 59
	Titles
	4.3. Current Application of Linux Systems
	4.4. The User Interface
	4.4.1. Is Linux Difficult?

	Images
	Image 1

	Page 60
	Titles
	4.4.2. Linux for non-experienced Users

	Images
	Image 1

	Page 61
	Images
	Image 1
	Image 2
	Image 3

	Page 62
	Titles
	4.5. Does Linux have a future?
	4.5.1. Open Source
	4.5.2. Ten years of experience at your service

	Images
	Image 1

	Page 63
	Images
	Image 1

	Page 64
	Titles
	4.6. Properties of Linux
	4.6.1. Linux Pros

	Images
	Image 1

	Page 65
	Titles
	4.6.2. Linux Cons

	Images
	Image 1

	Page 66
	Images
	Image 1

	Page 67
	Titles
	4.7. Linux Flavors
	4.7.1. Linux and GNU

	Images
	Image 1

	Page 68
	Titles
	4.7.2. GNU/Linux

	Images
	Image 1

	Page 69
	Titles
	4. 7 .3. Which distribution should I install?

	Images
	Image 1

	Page 70
	Titles
	4.8. Introduction to unix
	4.8.1 The Operating System
	4.8.2. The Unix File System

	Images
	Image 1

	Page 71
	Titles
	4.9. Typcal Unix Directory Structure

	Images
	Image 1

	Page 72
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 73
	Images
	Image 1

	Tables
	Table 1

	Page 74
	Images
	Image 1

	Page 75
	Titles
	date
	I
	20 10: 4sJ~i1nJ
	name
	permissions owner group
	wxr-xr-x Jy~~in~nce J[4ol96J~ov
	type links size

	Images
	Image 1
	Image 2

	Page 76
	Titles
	$ cd +-,J

	Images
	Image 1

	Page 77
	Images
	Image 1

	Page 78
	Images
	Image 1

	Page 79
	Images
	Image 1

	Page 80
	Titles
	4.11. Making Hard and Soft (symbolic) Links:

	Images
	Image 1

	Page 81
	Titles
	4.12. Specifying Multiple Filenames :
	4.12.1. Quotes

	Images
	Image 1

	Page 82
	Titles
	4.13. Summary
	75

	Images
	Image 1

	Page 83
	Titles
	CONCLUSION

	Images
	Image 1

	Page 84
	Titles
	REFERANCE

	Images
	Image 1

	Page 85
	Titles
	APPENDIX

	Images
	Image 1

	Page 86
	Images
	Image 1

	Page 87
	Images
	Image 1

	Page 88
	Images
	Image 1

	Page 89
	Titles
	2. Stock card:

	Images
	Image 1

	Page 90
	Images
	Image 1

	Page 91
	Images
	Image 1

	Page 92
	Images
	Image 1

	Page 93
	Images
	Image 1

	Page 94
	Images
	Image 1

	Page 95
	Images
	Image 1

	Page 96
	Images
	Image 1

	Page 97
	Page 98
	Titles
	4. Transportation:

	Images
	Image 1

	Page 99
	Images
	Image 1

	Page 100
	Images
	Image 1

	Page 101
	Titles
	5. Payment types:

	Images
	Image 1

	Page 102
	Images
	Image 1

	Page 103
	Titles
	6. Import-export:

	Page 104
	Images
	Image 1

	Page 105
	Images
	Image 1

	Page 106
	Page 107
	Page 108
	Titles
	II

	Page 109
	Page 110
	Page 111
	Titles
	7. Help:

	Images
	Image 1

	Page 112
	Images
	Image 1

