
.•

NEAR EAST UNIVERS

FACULTY OF ENGINEERING

DEPARTMENT OF
COMPUTER ENGINEERING

DATABASE SYSTEM FOR A HOSPITAL

GRADUATION PROJECT
COM-400

Student : Selçuk GIKIOGLU

•

Supervisor : Assist. Prof. Dr. Flrudln Muradov

Nicosla-2003

ACKNOWLEDGEMENTS

I would like to thank Assist. Prof Dr. Firudin Muradov for accepting to be my
sapervisor and his support for this project.

I am so grateful to deceased my father. Also my mother, brother and sister thanks who

had always shown patience and understanding to me.

Also, I would like to thank all the lectures for helping me see this graduation term and

finally, I would like to thank all my friends for their support in school and in social life.

••

1

ABSTRACT

gathered around us as a collection of facts, is of no use unless it is organized and

ı esentoo in SOm@ meaningful form. Data represented in some meaningful form like, tables,

or graphs become information, which can be easily processed. The collection of data,

-ıJy refereed to as the database, contains information about one particu1ar enterprise.

days database are used by a variety of users and organizations, which are important

·~ in data processing DBMS, are designed to manage large bodies of database information.

11m project has as its goal to develop software, processing information about patient of a Life

Hospital . software developed in this project contains both of hospital department information.

I wish to develop this software for processing informationof the Hospital.

••

Ü

TABLE OF CONTENTS

ACKNOWLED~N·r

ABSTRACT

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

INTRODUCTION

CHAPTER ONE: INTRODUCTION TO DBMS

1 . 1 Database

1.2 What Makes Up a DBMS

1.3 Database Management System

1.4 Data Model

1.4.1 Relational Model

1.4.2 Network Model

1.4.3 Hierarchal Model

1.5 Advantages of DBMS

1.6 The 3 Level-Architecture

1.6.1 External Level
•1.6.2 Conceptual Level

1.6.3 Internal Level

1.7 Properties of DBMS vata

l.8 Who uses a DBMS

1.9 Hardware for a DBMS

1.10 Database Security

1.11 How Data is Stored

1. 12 Definition of Entity

ııı

.ı
ii

iii

viii

1

2

2

3

3

4

5

5

5

5

6

6

7

7

7

8

8

8

9

9

1.13 Database Application Life Cycle

1. I 3 .1 Database planning

1.13.2 System Definition

1. 13 .3 Requirements Collection and Analysis
1.13.4 Database Design

CHAPTER T'\ıVO:RELATIONAL DATABASE

l\ılANAGEl\ıfENT SYSTEI\'I

2.1 What is an RDBMS?

2 .2 The relational Database Model

2.2. 1 Hierarchical Model; Network Model

2.2.2 Relational l'vfodel

2.3 RDBMS Components

2. 4 Relational Database 1\ıfanagementIssues
2.4. l Security

2.5 Counteımeasures (Computer Based)
2.5. 1 Authorization

2. 6 Counterıneasures (Cont)

2.7 Read, Write e,'v:, Modify Access Controls

2.8 Countermeasures (cont)

2. 9 Cou:ntenneasures (cont)

10

11

12

12

13

15

15

16
16

16

17

17

17

18

18

18

18

18

19
2. l O Associated Procedures 19

2.11 Non-Computer Counter Measures .• 19

2.12 Privacy in Oracle 20

2.13 Integrity 20

CIIAPTER THREE: A PATTERN LANGUAGE FOR

OBJECT- RDBMS INTEGRATION 22
3 .1 The Static Patterns

3 .2 TablesDesign Time
22

22

IV

3.3 Representing Objects as Tables 23
3.4 Representing Object Relationships as Tables 24

3.5 Representing Inheritance in a Relation Database 25
3.6 Representing Collections in a Relational Database 27
3.7 Object Identifier 28
3.8 Foreign-Key reference 29
3.9 Static Patterns (Object Side) 30
3.10 Foreign Key Versus Direct Reference 30
3.11 A Design Patterns Experience Report 32

3. 1 1.1 The patterns 33
3.11.2 State 33
3 .1 1 .3 Memento 36
3.11.4 Composite 37
3.1 I .5 Mediator and Adapter 39

3.12 Other Patterns 40
3.12.1 Error as Objects 40
3. I 2.2 Broker 41

3.13 The Type Object Pattern 41
3.14 Structure 45

••
3.15 The Disadvantages of the Type Object Pattern 48
3.16 Other Issues •• 49\,,.rl. ı.ı,;;,.:ıu ..,

3.17 Video Store-Nested Type Objects 52
3.18 Video c~~..,..Dynamic Tvne C1r ,..,e 53 . ıJ ı.uı. "- • ı. ı. ı., .L JP . .ı_ a.ı.ıl:,

3.19 Video Store-Independent Sub classing 53

3.20 Know Uses 58
3.21 Sample Type and Samples 59
3.22 Related Patterns 60

3.22.1 Type Object vs. Strategy and state 60

V

3.22.2 Type Objectand Reflective Architecture

3.22.3 Type Object v.s Bridge

3.22.4 Type Object v.s Decorator

3.22.5 Type Object v.s Flyweight

3 .23 Pattern Language for Relational Database and Smalltalk

3.24 What motivated us to write a Pattern Language?

3.25 How did we find our Pattern?

3.26 The Patterns of Crossing Chasms Architectural Patterns

3.27 Pattern: Four-Layer Architecture

3.28 Pattern: Table Design Time

3.29 Pattern: Representing Object as Table

3.30 Pattern: Object Identifier

3.31 Pattern: Foreign Key Reference

3.32 Pattern: Representing Collections

3 .3 3 Dynamic Patterns

3 .34 Pattern : Broker

3.35 Pattern: Object Metadata

3.36 Pattern: Query Object

3 .3 7 Pattern : Client Synchronization

3 .3 8 Pattern : Cache Management

3.39 Pattern: Crossing Chasmas

3 .40 Pattern : Three-Tier Architecture

3.41 Pattern: Phase-In Tiers

3.42 Pattern: Trim and Fit Client

CHAPTER FOUR: DATABASE OPTION OF THE LIFE HOSPITAL

4.1 Databases- Microsoft Access

4.2 Basic Information about Tables, Forms, Reports & Queries

4.2.1 Tables

4.2.2 Forms

4.2.3 Reports

4.2.4 Queries

4.3 Description of the Software

4.4 Main Form Page

vi

61

61

61

61

62

62

63

65

65

66

67

67

68

68

69

69

70

70

72

73

74

76

79

80

83
• 83

84

84

86

87

88

89

90

4.4.1 Patient ID and Name Information

4.4.2 Add Details

4.4.3 Delete Details

4.4.4 Department Details

4.4.5 Search Details

4.4.6 Appointment Details

4.4. 7 Report Details

4.4.8 Update Details

4.4.9 Address Details

4.4. 10 Reports

4.4.1 l Macro

CONCLUSION

REFERENCES

..

vii

••

90

90

92

93

94

95
96

91

99

100

105

107

108

DBMS

RDBMS

GUI

SQL

DDL

DCL

DML

1/0

IT

ISO

ANSI

SEQUEL

CPU

OLAP

CGI

ER

VB

OOP

LIST OF ABBREVIATIONS

Data Base Management System

Relational Data Base Management System

Graphic User Interface

Structure Query Language

Data Definition Language

Data Control Language

Data Manipulation Language

Input/Output

Information Technology

International Standard Organization

American National Standards Organization

Structured English Query Language

Central Processing Unit

On Line Analytical Processing

Common Gateway Interface

Entity-Relation

Visual Basic.
Object Oriented Programming

viii

••

INTRODUCTION

A Database management system (DBMS) is a collection of programs that enable users

to create and maintain a database.

A DBMS is a computerized record-keeping system that stores, maintains and provides

access to information. A database system involves four major components DATA,

HARDWARE, SOFTWARE, USERS. DBMS are used by any reasonably self

contained commercial, scientific, technical or other organization from a single

individual to a large company and a DBMS may be used for many reasons. The

objective of this project was to design software for a company, which deals with the

computer sales and purchase, so fully qualified software has been made, and at the

making of the software two companies, was visited to understand the requirements. And

the problem these types of company may have. The Software is fully capable to store

any computer parts with the manufacture name. For the simplicity purpose a

manufacture ID and Product ID has been generated, the first digit consists of

manufacture name and the rest of it contains the product name. How ever both (ID and

NAME) has been entered in the form. As for the mentioned problem from one of the

company, employee information is also entered in the software, so that the complete

information about the Company employee can also be maintained. Voucher is also

design to minimize the handwork. The project consists of introduction, 4 chapter and

conclusion.

Chapter One: Introduction to DBMS contains brief information about the database, data

model, advantages of database the architecture of the DBMS, properties of DBMS data

and further different information related to DBMS.

Chapter TWO: Relational Database Management System describes that what ıs

RDBMS , components of RbBMS and the Issues.

Chapter Three: Describes pattern language for Object - RDBMS

Chapter Four: Help Option, contain the help information about the software which also

describe the tables, form, quires, reports in general, and how to use the software option

which contain the pictures of the software for the helpdesk,

Finally, the conclusion section presents the knowledge gain during the making of the

project.

CHAPTER ONE

INTRODUCTION TO DBMS

Database

In a typical file-processing environment, each user area such as payroll, personnel, and

speakers' bureau, has it own collection of files and programs that access files. Since there

ally overlap of data between user areas, there is redundancy in the system. The address

faculty member can occur in many places, i.e. while this is certainly wasteful, trying to

uce reports or respond to queries that span user areas can be extremely difficult. These

blems lead to the idea of a pool of data, or database, rather than separate collections of

ividual files.

~ PAYROLL
FILES

~PAYROLL
PROGRAM

~ :;:) PERSONNEL
FILESPERSONNEL

PROGRAM

~
SPEAKERS
BUREAU
FILES

~SPEAKERS
BUREAU

Figure 1.1 Database

2

_ - DBMS is a computerized record-keeping system that stores, maintains and provides

to information. A database system involves four major components, which are as

.DATA

-.HARDWARE

. SOFTWARE

-SERS

_.fS are based by any reasonably self-contained commercial, scientific, technical or other

ganization from a single individual to a large company and a DBMS may be used for many

ns. Data itself consist of individual entities, in addition to which there will be

tionships between entity types linking them together. Given an enterprise with a

ulously defined collection of data, the mapping of this collection onto the real DBMS is

ne based on a data model. Various architectures exist for databases and various models

ve been purposed including the relational, network and hierarchic model.

Simplified picture af a database system

lc=JI
lc==)I
lc==)I

END-USERS

Figure 1.2 [web_pages111 notesDBMS.htm]

••

1 .3 Database Management System

Fortunately, software package called database management system can do the job of

manipulating actual database for us. A database management system, at its simplest, is a

software product through which users interact with a database. The actual manipulating of the

underlying database structures is handled by the DBMS.

3

1
Payroll
Program

Personnel
Program DBMS DATABASE

iSpeakers
Bureau

Figure: 1.3 Database Management

1.4 DATAMODEL
The model of data that they follow characterizes database management systems. A Data

model has two components-structure and operations. The structure refers to the way the

system structures data or, at least, the way the users of the DBMS feel that the data is

structured. The operations re the facilities given to the users of the DBMS to manipulate

data within the database. What is crucial is the way things feel to the user, it does not

matter how the designers of the DBMS choose o implement these 'facilities behind the

scenes.

There are three models, or categories, for the vast majority of DB:MS's :

• Relational model

• Network model

• Hierarchical model.

4

1.4.1 Relational Model

The user as begin just a collection of tables perceives a relational model database.

Formally, these tables are called re!ations. and this is where the relational model gets its

name. Relationships are implanted through common columns in two or more tables.

1.4.2 Network Model

The user as a collection of record types an relationships between these record types

perceive a network model database such a structure is a network, and it is form this that

the model takes its name. In contrast to the relational model, in which relationships were

implicit (being derived from matching columns in the tables), in the networks model the

relationships are explicit (presented as part of the structure itself).

1.4.3 Hierarchal Model

A user as a collection of hierarchies (or trees) perceives a hierarchies model database. A

hierarchy is really a network with am added restriction; no box can have more than one

arrow entering the box. (it doesn't matter how many arrows leave a box). A hierarchy is

thus a more restrictive structure than a network.

1 .5 ADVANTAGES OF DBMS

The main advantages of using a DBMS is that the formalism of the model of data

underlying the DBMS is imposed upon the data set to yield a logical and structured

organization of the data. Given a fuzzy, real-world data set, when a model's formalism

is imposed in that data set the result is easier to manage, define an manipulate. Different

models of data lead to different organizations. In general the relational model is the

most popular because that model is the most abstract and easiest to apply to data while
••still begin powerful.

Therefore, using a DBrvIS we have the following advantages.

• Clear picture of logical organization of data set.

• Centralization for multi-users.

• Data independence.

5

1 6 TI:..:rc' "> LPVE· T A-,, r,r rrr-rr:s r-1'T'T TR p. :ıc :J .L-; DL KL.rıJ. l ..C\... 1U.ı...._,_,

The three level architecture is an architecture for a DB!v1S to provide a framework for

describing database concepts and structures. Not all DBMS fit neatly into this

architecture, but most do. The model has been proposed by ANSI/SP ARC and has three

levels. Mappings exist between the three levels and it is the responsibility of the DBA to

ensure these mappings are correct.

• External level (individual users view)

• Conceptual ı •...•vel (community US"''" view)""' 1.ı.u.LL .l.'w .I. "-" .U.J.ıu.LL.I.LJ W.L \.,ı' ~y

• Internal level (storage)

' l
l-

Figure: 1.4. Three Level Architecture [www.compapp.dcu.ie]

1 .6.1 External Level

The external level of the three level architecture is the individual user level. At this level

each user has a language at tlfeir disposal of which they will use a "data sub language"

i.e. a subset of the total language that is concerned specifically with database operations

language e.g. COBOL with embedded SQL, or a specific one e.g, dBASE. For the end

user, it will normally be a query language like SQL or a special purpose language. In

principle, any given data sub language consists of a DDL (to declare data objects) and a

DML (data manipulation language) to manipulate these objects

Anindividual user's view is an external view, which is thus the content of the database

as seen by that particular user. There will thus be multiple occurrences of multiple types

of external records. The external view is defined by an external schema, which in turn is

defined by the DDL part of the user's data sub language

6

1.6.2 Conceptual level

The conceptual level of the three level architecture is essentially a representation of the

entire information content of the database in a form abstracted from physical storage. It

may also be quit different or similar to external views held by a particular user. It is data

as it really is. Rather than as users are forced to see it- it is multiple occurrences of

The conceptual schema is defined by the conceptual data definition language (DDL).

There is no reference in the conceptual DDL to stored record concepts, sequences,

indexing, hash addressing, pointers etc. the references are solely to the definition of

information content, in order to preserve data independence.

Conceptual schemas will also include security and integrity constraints as well as data

definitions. Normally the conventional schema is little more than a tınion of all

individual external schemas, plus some security/integrity checks.

1.6.3 Internal level

The internal level of the three level architecture is a low level representation of the

entire database; it consists of multiple types of internal record. It does not deal with

block/pages or device-dependant concepts like cylinders and tracks. The internal system

defines types of stored records and indexes, how fields are represented, various storage

structures used, whether they use pointer chains or hashing, what sequence they are in,

and so on. The internal schema is written using yet another data definition language, the

internal DDL.

Programs accessing this level directly (i.e. utility programs) are dangerous since they

have by-passed the security and integrity checks which the DBMS program normally

takes responsibility for.

1. 7 PROPERTIES OF DBMS DATA
DBMS are available on any machine, from small micros to large mainframes, and can

be single or multi-user obviously, there will be special problem in multi-user

7

environments in order to make other users invisible, but these problems are internal to

DBM".
Data may be shared over many databases, giving a distributed DBMS, though quite

often it is centralized and stored in just one database on one machine. In general, the

data in the database, at least in a large system, will be both integrated and shared.

1.8 WHOUSESADBMS
There are three broad classes of users who use a DBNIS

• Application programmers

• End users

• Database administrator

1.9 HARDWAREFOR A DBMS

Conventional DBMS hardware consists of secondary storage devices, usually hard

disks, on which the database physically resides, together with the associated I/O

devices, device controllers, I/O channels and so forth. Databases run on a range of

machines, from microcomputers to large mainframes.

Other hardware issues for a DBMS includes database machines, which is hardware

designed specifically to support a database system.

1.1 O DATABASE SEClJRITY
The DBA can set up the DBMS such that only certain users or certain application

programs are allowed perform certain operations to the dataset e.g. only admissions are

allowed create records for students, only library are allowed to creafe records for books

etc. Different checks can be established for each type of access to each type of

information in the database. Different users should have different access rights to

different objects.

SQL provides tiır.n methods for implementing security restrictions These <>-rP''-IJ ••• .,ij'l,J ..L.LJ,. \J,..,L'I.J'"'5.TJ" L'-,/ .LLL.L L LL -L ı...£.ı. E, ı., •.... l,4..L.1.... .L"""'ı...J""'-.L.•.•_.'l,J,/i.J,.J.Jo, .L ,.I...L.-1,J ~-•

• Views - can be provided to hide sensitive data

• GRANT/REVOKE - grant or remove access privileges to specific users for

specific tables.

8

There is, however, a major drawback to SQL security

1.11 HOW DATA IS STORFD
A data I?odel is defined as a set of guidelines for representing the logical organization

of data in the database; a pattern according to which data and relationships can be

organized; an underlying mathematical formulation for building logical data

organizations.

A data model consists of

• A named logical unit (record type, data item)

• Relationships among logical units

A data item is the smallest logical unit of data, an instance of which is known as a data

item value.

of a record type.

Note: A data model does not specify the data, data implementations or physical

organization only the way it can be logically organized.

1.12 DEFINITION OF ENTITY
An entity is any distinguishable real world object that is to be represented in the

database; each entity will have attributes or properties e.g.

The entity lecture has the properties place and time. A set of similar entities is known as

an entity type.

•

9

DATABASE APPLICATION LIFE CYCLE

Database planning

Systems definition

..._ Requirements collection-

Conceptual design III DBMS selection I I
I I Logical design I H Application design I

II Physical design I
ı ·

I I4 Prototyping I I Implementation I
Data loading and conversion

I

~ "'

Operational maintenance

Figure: 1.5 [www.compapp.dcu.ie]

• Database system is a fundamental component of the larger organization

information system. Therefore associated with the information system

IifecycleDatabase Planning -involves planning how the stages of the lifecycle

can be realized most efficiently and effectively

10

• System definition - scope and boundaries of application, users, areas

II Requirements - from users and previous applications

• Database Design - of the database itself

DBAıfS Selection - optional and involves getting a suitable product for

application

•

Application Design - programs which use database

II Prototyping- optional, working model of application for designers and users

• Implementation - creating conceptual, external and internal database definitions

and application programs

Data Conversion and loading - old system replacement, directly or with new

format. Application programs may also have to be adjusted

Testing- against the user requirements

Operational maintenance - constantly monitored and maintained. New

requirements go through cycle again.

•

•
•

1.13.lDATABASE PLAN:NıNG
• 3 main components:

-Work to be don

-Resources

•
-Money

Must be integrated with organizations' overall planning strategy .

Therefore influenced by the broader IS/IT strategies

3 main issues concerning IS strategies:
•-Identification of business plans and goal with subsequent determination of

information systems needs
••

-Evaluation of current information systems to determine existing strengths and

•
•

weaknesses

• A corporate data model can be developed showing main entities and

relationships of the organization and fi.ınctional areas of the organization.

11

Figure: 1.6 Data base Planning Architecture [www.compapp.dcu.ie]

• The functional areas may be assigned priority in line with the corporate strategy

to define scope of the database for system development.

• Database Administrator can develop plans to achieve this.
11 Standards may be developed

-How data is collected

-Necessary documentation

-Design and implementation procedures

• Good for training staff and quality control

11 Legal or company requirements concerning data should b3 documented e.g

confidentiality.

l.13.2SYSTEM DEFINITION
••

• Identify boundary of the system

• Identify how it interfaces with other parts of the information systems

• Include current users and application areas

• Future users and application areas

l.13.3Requirements Collection and Analysis

• Gathered:

-Interviewing

12

-Observation

•

-Questionnaires to users

-Experience form the design of similar systems.

Results in users' requirements specification of the enterprise .
II Perhaps from many viewpoints

• Too much study too soon - Paralysis by analysis

Too little - unnecessary waste of time and money

Convert to formal requirements specification (DFD's and CASE tools etc.)

•

l.13.4DATABASE DESIGN
• Major aims;

-Represent data and relationships required by all application areas and user

groups

-Provide data model that supports transactions required on the data

-Specify a design, which will achieve stated performance requirements for the

system e.g. response time.

• Bottom-up approach - good for simple databases

-Starts with data fields

-Normalization

• Top-down approach - good for complex database systems

-Development of data models

-Refine to identify lower-level entities, fields and relationships

-ER modeling

• DBMS Selection

-Selection could be done at any tie prior to logical design

-Based on system requirements

• Performance

• Ease of restructuring

11 Security

•

• Integrity
• Application Design

-May not be able to complete application design until db design finished

-Must match requirements

13

-User interfaces

• Prototyping

-Does not normally have complete functionality

-Allows users to identify, which parts work well or not

-Suggest changes/improvements

-Inexpensive but time consuming (ask user, get feedback, fix, ask user.. ..)

-U seful if clarification of user' requirements is required before implementation

of a high cost, high risk or new technology.

• Implementation

-Achieved using;

• DDL

-Complied and used to create database schemas and empty database files and

define user views

• Application programs implemented using 4GL or DML of target DBMS or both

• Security and integrity controls implemented

• Conversion and Loading-If new database system is replacing old system

(legacy)

-Common to have conversion utilities

-Plan transition

•

14

CHAPTER TWO

INTRODUCTION TO RDBMS

2. l What is an RDBMS?

In recent years, database management systems (DBMS) have established themselves as the

primary means of data storage for information system ranging from large commercial
transaction processing applications to PC-based desktop applications. At the heart of most of

today's information systems is a relational database management system (RDBMS).

RDBMS's have been the workhorse fro data management operations fro over a decade and

continue to evolve and mature, providing sophisticated storage, retrieved, and distribution

functions to enterprise-wide data processing and information management system provides

organization data into meaningful information systems. The evolution of high-powered

database engines has fostered the development of advanced "enabling" technologies including

client/server, data warehousing, and online analytical processing all of which comprise the

core of today's state-of-the-art information management systems.

Examine the components '{f the term relational database management system. First, a
database is an integrated collection of related data. Given a specific data item, the structure of

a database facilitates the access to data related to it, such as a student and all of his registered

courses or an employee and his dependents. Next, a relational database is a type of database

based in the relational model; non-relational database commonly use a hierarchical, network,

or object-oriented model as their basis. Finally, a relational database management system is

the software that manages a relational database. These systems come in several varieties,

ranging from single-user desktop systems to full featured, global, enterprise-wide systems .

••

15

2.2 THE RELATIONAL DAT A.BASE 1\ıIODEL

Most of the database management systems used by commercial applications today are

based on one of three basic models:

1. Hierarchical Model; Network Model OR

2. Relational Model

2.2.1 Hierarchical Model

The

CODEASYL type, and many of them are still in use with mainframe-based, COBOL
applications. Both network and hierarchical database are quite complex in that they rely

on the use of permanent internal pointers to relate records to each other. i.e. in an

accounts payable application, a vendor record might contain a physical pointer in its

record structure that points to purchase order records. Each purchase order record in

turn contains pointers to purchase order line item records.

Toe process of inserting, updating and deleting records using these types of database

required synchronization of the pointers, a task that must be performed by the

application. As you might imagine, this, pointer maintenance required a significant

amount of application code (usually written in COBOL) that at times could be quite
cumbersome.

2.2.2 Relationai Model

Relational database rely on the actual attribute values as opposed to internal pointers to
••

link records. Instead of using a..'1 internal pointer from the vendor record to purchase

order records, you would link the purchase order record to the vendor record using a
•

common attributer form each record, such as the v~ndor identification number.

Although the concepts of academic theory underlying the relational mode] are

somewhat complex, you should be familiar with are some basic concepts and
terminology.

Essentially; there are three basic components of the relational model:

1. Relation Data Structure

2. Constraints that Güvem the Organization of the Structure

3. Operationsthat are Perform on the Data Structure.

16

2.3 RDBlvIS COlvIPONFNTS

the data dictionary, which consists of the system-level data structures used by the kernel

to manage the database.

2.4 RelationalData Base Management Issues
• Integrity

• Security

• Recovery

• Concurrency

2.4.1 Security

The advantage of having shared access to data is in fact a disadvantage also

J

Secure off'-de sorage J [smnı:lbyhant,ıııeıe~

;ıqııipmeııt room

\~non-cc mputer..f:ıased

comrols

\ l..fflel'

Figure: 2.1 Security [Apteclı]

• Consequences: loss of competitiveness, legal action from individual

• Restrictions

-Unauthorized users seeing data

-Corruption due to deliberate incorrect updated

17

-Corruption due to accidental incorrect updated

a Reading ability allocated to those who have a right to know

!!

data due to lack of understanding

•' Authorization is restricted to the chosen few to avoid deliberate corruption

2.5 Countermeasures (computer based)

2.5 .1 Authorization

-Determine user is who they claim to be

-Privileges
Passwords

-Low storage overhead

-Many passwords and users forget them - write them downl!

-User time high :)type in many passwords

-Held in file and encrypted.

2.6 Countermeasures (cont.)
-Initial password entry to system
-User name checked against control list

-The access control list has very limited access, superuser

-If many users and applications and data then list can be large

2.7 READ,WRITE,and MODIFY access controls •
-Restrictions at many levels

-Database Level: 'Adds a new DB'

-Record Level: 'delete a new record'

-Data Level: 'delete an attribute'

• Remember there are overheads with security mechanisms

2.8 Countermeasures (cont.)
• Views

18

2.9

ıı Subschema

•
to produce another relations

Virtual relation - doesn't exist but is produce at runtime

Back-up•
II

• Stored in secure location

•
of failure

• Check pointing

-Synchronization point where all buffers İn the DBMS is force-written to

secondary storage

• Integrity (see later)

-Encryption
J

-Data encoding by special algorithm that render data unreadable without

Decryption key

-Degradation in performance

-Good for communication

2.10 Countermeasures(cont.)Associated procedures

2.11

• Specify procedures for authorization and backup/recover/

• Audit: auditor observe manual and computer procedures

• Installation/upgrade procedures

• Contingency plan •
• Escrow agreement.

• Establishment of security policy and contingency plan

• Personnel controls ,

Secure positing of equipment, data and software

Escrow agreements (3rd party holds source code)

•
•
• Maintenance agı eements

19

• Physical access controls

• Building controls

• Emergency arrangements.

2.12 Privacy in Oracle

• User gets a password and user name

• Privileges:

Connect: users can read and update tables (can't create)

Resource: create tables, grant privileges and control auditing
DBA: any table in complete DB

• User owns tables they create

They grant other users privileges:

Select: retrieval

Insert: new rows

Update: existing rows

Delete: rows

Alter: column def.

Index: on tables

• Owner can offer GRANT to other users as well

This can be revoked

• Users can get audits of:

J

-List of successfiıl/unsuccessfiıl attempts to access tables

-Selective audit e.g, update only

-Control level of detail reported"

• DBA has this and logon, logoff oracle, grants/revolts privilege

• Audit is stored in the Data Dictionary.

2.13 Integrity

• Introduction

• Basic concepts

• Integrity constraints

• Relation constraints

• Domain constraints

20

•

. 1. · .•...ıs Referential ıntegrıty

• Explicit constraints

• Static and Dynamic Constraint

21

•

CHAPTER THREE

A PATTERN LANGUAGE FOR OBJECT-RDBMS INTEGRATION

3. I The Static Patterns

The Static Patterns for the relational side deal with when and how to best define a database

!Chemato support an object model. The identity of the objects, their relationships (inheritance

aggregation, semantic associations) and their state must be preserved in the tables of a

relational database. Table Design Time deals with when is the best time during development

actually design the relational schema. Representing Objects as Tables, Representing Object

Rnltionships as Tables, Representing Inheritance in a Relational Database, Representing

Collections in a Relational Database and Foreign-Key Reference deal with defining the

mlationships between objects and defining each object's state. Object Identifier (OID) defines

w to establish object identity in a relational database.

3.2 Table Design Time

Problem.
When is the best.time to design your relational database during object-oriented development?

Forces.

Assume no legacy database exists prior to development or if one does exist, it is extremely

flexible. When the database design is kept foremost in mind during development, the object,.
model will tend to be data driven while the behavior and responsibilitiesof the objects will be

deprived of the thought and energy they deserve. Consequently, the object model will tend to•
.ve separate data objects and stupid da.ta objects rather than a better, more distributed, less-

centralized design. If the database design is completely ignored until the application is

completed the project may suffer. Since 25 % to 50 % of the code in such applications often

deals with object-database integration, the design of the database is crucial and should be

considered early iı} development. Consequently:

22

Solution.

Design the tables based on your object model after you have implemented it in an

Discussion.

Definition of domain object behavior and properties is in reality a first pass at the

database design. A . stopgap persistency approach (perhaps using flat ASCII files) is

often "good enough" for an architectural prototype. A benefit of this approach is that

legacy data can be quickly exported from existing databases to an ASCJt file. The

prototype can then be easily demonstrated on stand-alone workstations th~t may not

have a relational database and still show "real" data familiar to customers.

3.3 RepresentingObjectsas Tables
Problem

How do you map an object structure into a relational database schema?

Forces

Objects do not map neatly into tables. For instance, object classes do not have keys.r:
Tables do not have the same identity property that objects do. The data types of tables in

a relational database do not match the classes in the object model. Complex objects can

reference other complex objects and collections of objects.

Solution

Begin by creating a table for each persistent object in your object model. Determine

what type of object each instance variable is likely to contain. For each object that is

represent able İn a database as a base data t'jpe (i.e., String, Character, Integer, Float,

Date, Time) create a column in the table corresponding to that instance variable, naming

it the same as the instance variable. If an instance variable contains a Collection

subclass, use 1 Representing- Collections in a Relational Database. If an instance

variable contains any other value, use 1 Foreign-Key

Discussion

23

The design of the database may need modification (for instance, denormalization)

depending upon the access patterns required for particular scenarios. Remember that

this design is an iterative process. There are several variations of mappings between

classes and tables. These are:

• 1 Object Class maps to 1 table

• 1 Object Class maps to multiple tables

• Multiple object classes' map to 1 table.

• Collections of the same class map to al table

• Multiple object classes map to multiple tables

The Database Access Architecture must handle each of these variations.

3 .4 Representing Object Relationships as Tables
Problem

How do you represent object relationships in a relational database schema?

Forces

A variety of relationships exist between classes in an object model. These relationships

maybe:
(_

• 1 to 1 (husband - wife)

• l to many (mother-child)

• Many to many (ancestor - child)

• Ternary (or n-ary) associations (student - class - professor)
~

• Qualified associations (company - office - person)

•A Qualified association is an association between two objects where the association is

constrained or identified in some way. For example a Company carı be associated with a

Person through a position held by that Person. The position qualifies the association

between the Company and the Person.

The association between objects may represent containment, associated properties or

ha ·1 • · • ı.· ·ı.ı • · ·ıve come specıaı semantic meanıng ın their own rıgnı ı.e.g., a marrıage ıs a specıaı

relationship between a man and a woman).

The choices for 1 to 1, and 1 to many relationships are either to merge the association

into a class or to create a class based on the association.

24

It is important to remember that the semantics of relationship between objects can be

significant. It is often is useful to create classes to represent the associations, especially

if the relationship has values of its own. These classes will be represented as tables in

the relational database. For many to many, 1 to many and 1 to 1 associations, when an

association has a meaningful existence in the problem domain, create a class for the

association. A meaningful existence is when the relationship itself can have value such

as the relationship itself possessing properties such as duration, quality or type. A

mamage ıs a relationship between a man and a woman that can have all these

properties.

Solution

Merge 1 to 1 associations with no special meaning into one of the tables. If it has special

meaning create a table based on the class derived from the association.

For 1 to many associations, create a relationship table (see Representing Collections in a

Database).

A many to many relationship always maps to a table that contains columns referenced

by the foreign keys of the two objects.

Ternary and n-ary associations should have their own table that references the

participating classes by foreign key.

A qualified association should have its own table.

Discussion

Consideration of the forces of this pattern will often result in changes to a first-pass

object model. This is desirable, since it will often generate a more general and flexible

solution.
•

Related Patterns

1. Representing Inheritance in a Relational Database

2. Representing Collections in a Relational Database

3.5 Representing Inheritance in a Relational Database

Problem

25

How do you represent a set of classes in an inheritance hierarchy in a relational

database?

Forces

Relational databases do not provide support for İnheritance of attributes. It İs impossible

to do a true 1-1 mapping between a relational table and a class when that class inherits

attributes from another class, or if other classes inherit from it.

There are two possible contexts that are used in this pattern, depending upon what is

more important to your particular application, speed of queries, or maintainability and

flexibility of your relational schema.

Solution

(When ease of schema modification is paramount)

Create one table for each class in your hierarchy that has attributes. This will include

both concrete and abstract classes. The tables will contain colınnns for each of the

attributes defined in that class, plus an additional column that represents the common

key shared between all subclass tables. An instance of a concrete subclass is retrieved

by doing a relational JOIN of all of the tables in a path to the root with the common key

as the join parameter.
\..J'

..
,I

Discussion

This is a direct mapping, which makes it easy to change if a class anywhere in the

hierarchy changes. If a class changes, you must change at most one table .
••Unfortunately, the overhead of doing multi-table joins can become a problem if you

have even a moderately deep hierarchy.

Solution

(When speed of queries is more important)

Create one table for each concrete subclass of your hierarchy that contains ALL of the

attributes defined in that subclass or inherited from its super classes. An instance is

retrieved by querying that table.

Discussion

26

This avoids the joins of the previous solution, making queries more efficient. This is

also a simple mapping, but has the drawback that if a super class is changed, then many

tables must be modified. It is also difficult to infer the object design from the relational
schema.

There is a third solution that may be more appropriate in a multiple-inheritance

environment,but that does not have much to recommend itself beyond that. It is

possible to create a single table that represents ALL of the super class's and subclasses

attributes, with SELECT statements picking out only those that are appropriate for each

class. Unfortunately, this can lead to a large mınıber ofNull's in your database, wasting

space.

3.6
Problem

How do you represent Collection subclasses in a relational database?

Forces

The first normal form rule of Relational Databases prevents a relation from containing a

"Multivalued" attribute, or what we would normally think of in Object terms as a

Collection. The kind of 1-N relationships represented in 00 languages by collection
_j'

classes are represented in a very different form in a relational database.

Collection classes in Smalltalk often convey additional information besides the

relationship between the objects contained in the collection, and the object that contains

the collection. Order, sorting methods, and type of the contained objects are all

',ı

•'I

problems that must be addressed.

Solution

Represent each collection in your object model (where one object class is related to

another object class by a 1-N has-a relationship) by a relationship table. The table may

also contain additional attributes that address the other issues.

The basic solution involves creating a table that consists of at least two columns, one,

which represents the primary key (usually the OID) of the containing object (the object

that holds the collection) and another which represents the primary key of the contained

objects (the objects held in the collection). Each entry in the table shows a relationship

27

bet-ween the contained object and the containing object. The primary key of the

relationship table ıs comprised of both columns. A third column may be needed which

indicates either the class of the object or the table that the object is located in.

Collections may contain objects of various classes.

Discussion

There are other possible representations of the 1-N relationships, including back-

pointers. Back pointers have the drawback that it is difficult to have an object be

contained in more than one collection at the same time when the two collections are

contained in different instances of the same class. The simplest, and most common

additional information to include in a relationship table is a column that indicates the

type of the contained object. This is necessary when a Collection may be heterogeneous.
If an Orde•.p,.j Collection ,., utilized and the order ;., 0·1· an,-Fi r»<>nt the position of' theV.&'-'""" '-"V.&..& '-"'ı..&,r.&.ı ..&wl ı..ı..&.ı;~ıı.,ı ' 1.M.A V V V.i. .i...J ıJ f:t.i..1..1.i..l.Vı..u.&l,.' ..C ,J.J,1,..&'-"A...&-', L.A.i.

object in the collection may be stored in an additional column. It must be noted that

unless a distinguishing column indicating a position or OID is added to a relation table

and made part of its primary key then the basic solution represents a Set, rather than a

more general collection, since the key constraint of relational databases prevent a tuple

from occurring more than once in the same table.

3.7 -ObjectIdentifier (OID) 1,••
Problem

How do you represent an object's individuality in a relational database?

Forces

In object-oriented languages, objects are uniquely identifiable. In Smalltalk, an

equivalence comparison (=) determines İf two objects are exactly identical. This is

accomplished through the comparison of their Object Pointers (OOPs) which are

uniquely assigned to each object when it is instantiated.

In an envirornnent where objects may become persistent, some way of identifying what

particular persistent structure (be it a row in a relational database, or a structure in an

OODBMS) corresponds to füı:1t object has to be added to the mix. OOPs are reassigned

and reclaimed by the system, precluding their use as an object identifier.

28

Solution

Assign an identifier (an Object IDentifor or OID) to each object that is guaranteed to be

unique across image invocations. This identifier will be part of the object, and will be

used to identify it during query operations, and update operations.

Discussion

OID's can be generated either internally to your application, or externally. Some

relational databases include a sequence number generator that can be used to generate

OID's, and it is preferable to use that option when available. OID's only need be unique

within a class, as long as some other way of identifying the class of an object is

provided by the persistence scheme. OID's are customarily long integers.

If an OID is generated within the application, it is often common to have a table that

represents the latest available OID for each class. The table will be locked, queried,

updated and unlocked whenever a new OID is required. To improve performance,

sometimes an entire block of OID numbers can be acquired at once.

OID'" " : 1 ••d typ ; +: atio d ,.! ; .-~ the identifier T- .-ı. 'n n .,. ;,ı. • be.:, can lTICıu e pe ın.ı.OI'IIla. vn enco eu ıilLv \,,, l \.UU 1\..1.. ill ull.:, Ca.Sı..,, ıL may U

more appropriate to use a char or varchar column rather than an integer.

3.8 Foreign-KeyReference
Problem

How do you represent the fact that in an object model an object can contain not only

"base datatypes" like Strings, Characters, Integers and Dates, but other objects as well?

Forces

Given that the first normal form (!NF) rule of relational databases specifically excludes
•a tuple from containing another tuple you must use another representation of an object

that can be represented by a legal value that a column can contain.

Solution

Assign each object in your object model a unique OID (See pattern OID). Add a column

for each instance variable that contains an object that is not either:

a collection object a "base datatype" In this column, store the OID of object contained in

the previous object. If your database supports the feature, declare the column to be a

29

foreign key to the table that represents the class of object whose OID is stored in that

column.

Discussion

This restriction (the lNF rule) is both strength, and the Achilles' heel of the relational

model. When this pattern is used in self-similar objects (i.e., a Person has children, who

are also Persons) it is exceedingly difficult to retrieve a tree of connected objects rooted

on a single object in a single SQL querı.

If you find that the vast majority of columns in your database schema arise from this

pattern, you may wish to reconsider the decision to use a relational database as a
persistent object store.

3.9 StaticPatterns (Object Side)

The previous section discussed the relationships aııd the definition of class properties as

defined in the relational database schema. However, we must also consider the

definition of the object model on the client. Foreign Key versus Direct Reference

addresses how to best define the relationships of complex objects to be instantiated in
the object image.

3 .1 O Foreign Key versus Direct Reference
J

Problem

In the domain. object model when should you reference objects with a "foreign key" and

when should you have direct reference with pointers?

Forces

In general, the object model should closely reflect the problem domain and its behavior.

However, the network of objects that support this model can be complex and large.

Modeling a large corporation with its numerous organizations and branches, may

require hundreds of thousands of objects and multiple levels of objects of different
classes.

In object models, objects usually directly reference one another. Th.is make navigation

among the object network direct and easier than via foreign-key reference.

30

Objects can reference other objects by using their foreign keys. When this is the case,

the objects must also have methods to dereference the foreign key to get the referenced

object. This makes maintaining the object relationships in the object model more

complex. If foreign keys are used to reference the objects then more searches and more

caches are required to support the accessing methods. However, using the foreign key

makes it easier to map the domain objects to the database tables during their

instantiation and passivity. Relying on foreign keys alone with the object model can

result in recursive relations and may also result in extremely poor performance

problems as large collections of objects are needed to represent a complex object.

In many cases, the application simply requires a list of names to peruse in order to

locate the object of interest. The number of potential objects in such a list may be in the

millions. This puts a heavy strain on the memory requirements of such a system. A great

majority of the time the application just requires a foreign key for display and selection

purposes. Tiıis means keeping the supporting application domain models "light," where

they contain only those attributes necessary for display purposes.

Solution

An object model should use direct reference as much as possible. This permits fast

navigation over the object structures. Build the object network piece by piece as

required using Proxy objects to minimize storage. Make the associations only as

complex as necessary. When dealing with large collections or a set of complex objects

use foreign keys and names to represent the objects for user interface display and

selection. After selection is made, instantiate the complex object depending upon
memory constraints and performance.

Discussion

If each domain object maps to a single table then there is probably a table model in the

domain object layer. You may be adding complexity to the whole system. If the domain

objects have no behavior other then being information holders, you may consider

getting them out of the way. Instead, have the application model refer directly to broker

objects. This way you do not have an object cache to keep in sync with the relational

tables. If domain behavior is required (which it probably will be) then you can add
domain obiects 00 reouired 11,,r.,.ı,..0 the domain obiects ıı.,.,.,.,...,,,,.rı +h••mselves In reference.ı.u .ı v J'ıı.ı'-'ı...7 u~ .1'-''1 ıı u .• lVi'-Uıı.'"' . J.ıı.., •,•.n..1.ı..1.1 .. u. v '.J '-"I..:> yıvvı..,. u..ı. •••..u .. ıu .tv u • ..u ..1'-'..l"-' '-'

to using foreign keys within the object model instead of direct references, one developer

31

learning Smalltalk said: "What the hell good is objects if you do not hold real objects?
You might as well use Power Builder."

The Problem

team was tasked with building an order management system to be used by employees of

the company in placing orders for consumable resources. The system is intended to

allow employees to order resources by selecting the type, subtype, and vendor of the

resource as well as the delivery date, and various other delivery details. The user is

allowed to change orders after they are placed, to view the unconsumed resources that

are still allocated to him, and to transfer unconsumed resources to other users.

The Constraints

• Our design faced several constraints:

• We had to deliver a workable application within 3 1 /2 months from the inception
of the project.

• There was a limited amount of 00 and Smalltalk knowledge in our group. Our

team consisted of me, one team member that had 6 months of 00 experience

(having been through a KSC Smalltalk Apprentice Program (STAP)) and three

team members with. only minimal Smalltalk training and no formal OOA&D
training.

• We were required to use an existing Oracle database as our repository. We were

free to use any appropriate object design, but it had to work with the existing
database tables and Oracle Forms applications.

Solution

As the chief architect of this project, I had two things working for me as I began. The

first was that we had earlier prototyped a subset of this application in a.11 apprentice

program, so we had a good feel for what objects were involved in the system. The

second was that I had just finished developing a tutorial for Smalltalk Solutions '95 that

32

converged to let me begin the design process by picking out some appropriate patterns

that I felt would be useful in this domain, and then letting the developers discover how

these patterns could be applied to our specific design.

3 .11.1 TI1e Patterns

From my previous experience in this domain, I knew immediately that two patterns

from would l....,. ,,.,.,.-ı;,ı. Q+'3tıaa and 1\1e"""""tO At the start ,...f'+h .•• desizn n.-OC"""'S T described. y,ı l..ı.J..U. V'-" t,.&.,ı,Jı""'ı.µ1., uu..ı.ı.w 1.. .J..Y UJ.\.ı"UL • .L""i.. LLL ı,;ı ı. V..L u.ı.ı...,u.w .ı..5.ı.1.. p.ı. '"-'ı.3 , ..L '-"~'"""LLLJ ·u.

the patterns to the group and then went on to develop a solution utilizing them. Later in

the design process, problems came up that were well described by Composite, Mediator,

and Adapter as will be shown in sections 4.4 and 4.5. Finally, two rules-of-thumb that

were used in this project were phrased (after the fact) as patterns.

3.11.2 State

One of the more common problems found in many MIS systems is the idea of a

work.flow.In a work.flow objects move from person to person within a workgroup, with

each person changing, annotating, or modifying the object before it is passed along to

the next person. This project was no exception. The analysis of the project done before
the design phase of fr- --~; ..~;. begn described th= workflow of the ,m...;OU'"' t,ı.,.....,.., ofı ı v ıı.., pı.vJ'-'"L ı.., • ı..,.::,ı..,ııuı..,ıı.., u:u.ıvn ı. vaıı .::, •; .I:''-'" .1

Orders in some detail. After reviewing this, I determined that the workflow could be

described as a state machine, with different submissions and modifications of the order

describing the transitions between states. The states Orders can occupy are shown in the

below Figure

ı"
l

•

33

$Ut'ml1

Figure 3.11.2: Order States [http://www.dbmsmag.com]

Once we h<1cl determined to represent workflow of an order as a finite state machine, the

design of a significant part of our Order object "fell out" of the State pattern. We

determined that an Order could be in several different states, depending upon where

within the workflow it resided. We also determined that the Order should behave

differently to the common messages save, delete, and notify depending upon its state.

For example, when an order was in Submitted state, it was known (so far) only to the

person placing the order; the buyer (the next person in the workflow) had not yet

reviewed it. A delete message sent to the Order should physically remove it from the•..
database when it is in this state. On the other hand, if an Order is in Ordered state, then a

delete message should only log the fact that that particular order has,been removed. A
•

deletion in this state will necessitate the buyer resubmitting a corrected VendorOrder to

the vendor.

Likewise, when an Order is in New state, the buyer should be notified (by E-Mail) when

the Order receives the submit message and moves to Submitted state. A different

notification should be sent out when a change is made to an Ordered order. Once an

order is in ChangedOrdered state, no more notifications are necessary.

We were able to use the following design to represent the state machine portion of our

domain model (see Figure 2: State design). Just as described in , we used an abstract

34

class State that implemented the messages notifyV./ith:, saveWith: and de!ete'Witlı:,

the argument to each of these messages being the ConsumablesOrder. Each of the

messages in Consumablesürder that differed by state were implemented by cal.ling the

corresponding message in the Order's current state. For example, let's look at the
following İmplementation:

(ConsumablesOrder> >delete)

delete

"do whatever is appropriate for your current state"

self currentState delete With: self

(SubmittedState> >deleteWith.)

deletewithı aComm.mablesO:rder

"tellyour consumables order to remove himself'

aConsumablesOrder remove.

(OrderedState>>deleteWith.)

deleteWith: aConsumablesOrder

"tell this consumablesörder to become deleted (i.e. record the fact in the database)"
aConsumablesürder becomeDeleted.

(DeletedState> >delete With:)

delete With: aConsumablesOrder

"anürder is already deleted. Do nothing"

"self

Figure 3.11.2 State design [http://wvvvı.dbmsmag.com/]

35

The only substantial difference from our design to the design from was the addition of a

StateMachine object between the Consumablesôrder (the Context) and the State. In

retrospect, we could probably have done without this object. It was only used to aid in

constmction of the State connections, and for error handling in the case where a

transition wasn't defined in the current state. This responsibility could easily have been

absorbed into the abstract State class.

The State pattern was the big success story in. this application. Its use cut through a lot

of complexity in the domain that would otherwise have been handled by several

conditional branches spread throughout the code. The pattern was easy to explain to the

developers, and the implementation was quick and painless. It proved to be easily

extensible (when we began implementing we only knew about delete\.'litlı: and

notify With: -- saveWith: was added later) and flexible.

3.11.3 Memento

Going into the design of this application, we were aware that we would need to support

one-level undo for a Consumablesürder. For instance, if a buyer rejects a change to an

Order, then the order should revert back to the state it was previously in (Ordered) and

all of the changes should be erased. We felt intuitively that the correct solution would be

a variant of the Memento pattern, and we discussed possible implementations during the

early design sessions, starting with the design example presented in . However, in

contrast to how easily we adopted the State pattern, adopting Memento proved to be
more challenging.

We were a bit confused by the Caretaker object in the pattern being external to the

Originator object, although reviewing it further did clarify it a bit. In our case, there

were no external clients of the Originator that needed to know about the existence of a

memento, and only one copy of the memento needed to exist at any time. We finally

assumed that this was a degenerate case of Memento not covered in . Our resulting

design is shown in Figure 3: Memento class structure.

36

Figure 3.11.3: Memento class structure [http://www.dbmsmag.com]

We rolled the Originator and Caretaker objects into a single object, the

Consumablesürder. The basic flow of messages, and the structure of the classes, is the

same as in once this change is made. When an outside object sends a message to a

Consumablesürder that would change its state, it issues itself a makeMemento message.

deepCopy message). Whenever an outside object sends a message to a

ConsumablesOrder that would necessitate reverting back to its .original state (such as

cancelChanges) it sends itself the revert message, which resets the state to the stored

previous state by copying all of the values of the instance variables in the memento back

into the original order.

This case was unique in that the Memento pattern did no provide us the solution

directly, but led us to an acceptable solution that fit our requirements. Even though the

particular solution provided by the pattern's example code didn't work for us, the
\,

thought process we went

Through in trying to use the pattern did lead us to an acceptable solution.

3.11.4 Composite

After getting more deeply into our design and implementation, we realized that an

unforeseen client requirement was easily solved by application of another pattern,

Composite. In our initial design we identified three subclasses of the class Resource:

• Orderkesource -- this represents a resource that has been ordered, but not

received. It is sort of a "virtual" resource, and doesn't share many of the

attributes (disposition, receivedfıate, etc.) of an "actual" resource.

37

• Individualkesource -- this represents a specific, received resource of a certain

type. Some resources are tracked individually, with specific ID numbers. A

Chair, or a Forklift, or something of this sort is an IndividualResource.

• GroupedResource -- a grouped resource is a set of resources that are not

uniquely identifiable. For İnstance, a bag of bolts might be considered a

GroupedResource in that it contains several bolts, but each bolt is not important

enough to represent individually. However, the entire bag is interesting enough

to track.

In our original design, the user was shown a list of IndividualResources and

Grouped.Resources that were allocated to them. In subsequent user interviews, it came

to our attention that the users would prefer to see all of the IndividualResources that

were ordered from the same order as a single line item in this list, then drill-down to see

the Individual resources. After some consideration, we decided the easiest way to

achieve this was to use the Composite pattern, and refactor the hierarchy to create some

new classes. First, we divided Resource into two classes, AbstractResource, which

defined a resource's protocol, but not its implementation, and ActualResource, which

defined the implementation used by the preexisting Resource subclasses. We then
defined one more class:

• Compositekesource -- a CompositeResource is a subclass of Abstractlcesource

that responds to the same protocol as an ActualResource, but which is

implemented quite differently. It contains a collection of IndividualResources,

and implements its protocol by passing through many of its messages to a
••

representative element of that collection. A Compositekesource can answer its

type, subtype, etc. just as can an instance of a subclass ofActualResource.

The full Resource hierarchy is shown in Figure 4: Resource Hierarchy.

The great thing about using Composite was that our user interface code did not change

at all when we refactored the hierarchy. Since a CompositeResource responded to the

same protocol as an IndividualResource or a GroupedResource, the display logic was

identical. We were able to easily add new drill-down capabilities through additional U1

code that was specific to Compositekesources.

38

Figure 3.11.4: Resource Hierarchy [http=//www.dbmsmag.com/]

An important lesson learned through the application of this pattern was that the

interface of an object is different than its implementation. One of the programmers

really struggled with why we were refactoring the hierarchy and separating the interface

(in AbstractResource) from its implementation (in CompositeResource and

ActualResource). The "light came on" in this programmer's mind after we had roughed

out the first iteration of code for the new hierarchy and then started up the user interface

the first tiıne the programmer realized what it meant for a class to be abstract, and why

abstract superclasses were useful.

3.11.5 Mediator and Adapter
~.

Our use of these two patterns was more simplistic than the other patterns. In our target

language, Smalltalk/V, the ViewManager class provides a Mediation interface between

its component SubPanes. It also serves as an Adapter between the SubPanes and the

objects of the domain model . The two patterns were used more in spirit than in fact.

Whenever any code was written in a Viewlvlanager subclass it was carefully re-viewed

to see if it fulfilled either the role of Mediator or Adapter. Any code that attempted to do

something other than coordinate SubPane display, or adapt SubPane events to domain

model methods was rejected in the code review as violating our rules. As an example, at

39

J

one point a programmer was planning to place some Unit of Measure conversion code

in a specific ViewManager. After a code review, she agreed that this was neither

mediating between SubPanes, nor adapting to the domain model. She then developed a

more general Unit0fl\1easure class for handling the conversions, and wrote only enough

code in the Viewlvlanager to adapt this class to the input and output methods of the

Subl'anes. This allowed her to extend the UnitOfJVIeasure class to handle similar, but

unforeseen cases later in the project without changing the ViewManager code.

3 .12 Other Patterns

In developing tlıis system, there were two more "rules of thumb" that we followed

during the design, that, while not in pattern form at the time of the development, were

patternizable after the fact. Each solution had all the earmarks of a pattern:

• It was a solution to a general problem within a set of constraints

• It had been used several times in other projects

• It was easily explainable in a few sentences

All that remained was for the solution to be written in pattern form. The description of

the heuristics we used follows. I have since rewritten them in pattern form, and used

them as part of "Crossing Chasms" a pattern language for object to relational database
interface design.

3.12.1 Errors as Objects

In a previous project I had seen an interesting way of separating concerns in the
..

ViewManager classes from domain-layer considerations with respect to errors. In this

approach, domain validations (range checks, type checks, etc.) were done in the domain,
••

and the results were passed back to the ViewManager as an ErrorSet. In this way you

could distribute the responsibility for validation among several objects, with the error

set being passed around and added to whenever a validation failed. This design

preserved model and view separation, and allowed the user to intervene in the handling

of recoverable errors.

When the top-level message returned, the ErrorSet was displayed by the UI, and each

Warning (which represents a potentially recoverable error) was flagged as to whether or

40

_)

not it was proceedable. The entire Errorôet was then passed back to the domain, which

used it to determine if it should allow the next action.

3 .12.2 Broker

A second design heuristic that we used was the concept of a Database broker. A Broker

acts as an Adapter between a persistent domain object and the classes that represent the

h O

1 d 1 d 1 II J " " h"p ysıcaı atabase an the query language. It translates comaınıs requests into

"databasish" queries and helps in mapping SQLrows and columns to objects and

instance variables. It provides a needed separation of concerns that isolate the domain

classes from the purely database-oriented classes. This architecture allowed us to meet

our requirement that we use the existing Oracle tables, while at the same time freeing us

to use a fully 00 design in our domain classes.

While these solutions were not written down as patterns when ,,.ıe were designing our

system, I nevertheless presented them to the developers just as I had presented the

patterns from . This process of explaining them in this way helped immensely when I

sat down to write them in pattern form later.

3.13 The Type Object Pattern

Intent

Decouple instances from their classes so that those classes can be implemented as

instances of a class. Type Object allows new "classes" to be created dynamically at

runtime, lets a system provide jts own type-checking rules, and can lead to simpler,

smaller systems.

Motivation

number of subclasses as well. Although an object system can create new instances on

demand, it usually cannot create new classes without recompilation. A design in which

a class has an unlaıown number of subclasses can be converted to one in which the class

has an unknown number of instances.

41

)

Consider a system for tracking the videotapes in a video rental store's inventory. The

represent one of the videotapes in the store's inventory. However, since many of the

videotapes are very similar, the Videotape instances will contain a lot of redundant

information. For example, all copies of Star Wars have the same title, rental price,

MPAA rating, and so forth. This information is different for The Terminator, but •
multiple copies of The Terminator also have identical data. Repeating this information
for all copies ofStar Wars or all copies of The Terminator is redundant,

One way to solve this problem is to create a subclass of Videotape for each movie. Thus

two of the subclasses would be StarWarsTape and TenninatorTape. The class itselfwould

keep the information for that movie. So the information common to all copies of Star

Wars would be stored only once. It might be hardcoded on the İnstance side of

StarWarsTape or stored in variables on the class side or in an object assigned to the class

for this purpose. Now Videotape would be an abstract class; the system would not create

instances of it. Instead, when the store bought a new copy of The Terminator videotape

and started renting it, the system would create an instance of the class for that movie, an
instance of TennimıtorTape.

This solution works, but not very well. One problem is that if the store stocks lots of

different movies, Videotape could require a huge number of subclasses. Another

problem is what would happen when, with the system deployed, the store starts stocking

a new movie-perhaps Independence Day. There is no lndependenceDayTape class in the

system. If the developer did not predict this situation, he would have to modify the code
"'to add a new IndependenceDayTape class, recompile the system, and redeploy it. If the

developer did predict this situation, he could provide a special subclass of Videotape-

such as UnknownTape--and the system would create an instance of it for all videotapes of

the new movie. The problem with UnknownTape is that it has the same lack of flexibility

that Videotape had. Just as Videotape required subclasses, so will UnknownTape,

so UnknownTape is not a very good solution.

needs to be an instance of a class. However, each videotape needs to be an instance of a

type of videotape. Class-based object languages give support for instances of classes,

but they do not give support for instances of instances of classes. So to implement this

42

)

solution in a typical class-based language, you need to implement two classes: one to

represent a type of videotape (Movie) and one to represent a videotape (Videotape). Each

instance of Videotape would have a pointer to its corresponding instance of Movie.

aıloı•ie
Star 'uüars

a\lidaoiapa ~
John's Star \P.tars _1

ı-,l---ı-\,._-•• mmıie j

aı.ıo~ia)
The Teıminator .

aVideotape
Sue':ı: Star 'ıJlı'aıs

1 1\•mcıııie _,,,,

Figure 3.13 {a}

This class diagram illustrates how each instance of Videotape has a corresponding

instance of Movie. It shows how properties defined by the type of videotape are

separated from those which differ for each particular videotape. In this case, the movie's

who is currently renting it.

P.IOYİEI J mcıııi• Videotape

tilleO hıRenmdO
renta!Priceı) renmrı)

Figure: 3 .13 {b}

This instance diagram shows how there is an instance of Movie to represent each type of
"'videotape and an İnstance of Videotape to represent each video the store stocks. Star

Wars and The Terminator are movies; videotapes are the copy of Star Wars that John is
•

renting versus the one that Sue is renting. It also shows how each Videotape knows what

type it is because of its relationship to a particular instance of Movie.

If a new movie, such as Independence Day, were to be rented to Jack, the system would

create a new Movie and a new Videotape that points to the Movie. The movie

is Independence Day and the tape is the copy of Independence Day that Jack ends up

renting.

43

Videotape, Movie, and the is-instance-of relationship between them (a Videotape is an

instance of a Movie) is an example of the Type Object pattern. It is used to create

instances of a set of classes when the number of classes is unknown. It allows an

application to create new "classes" at runtime because the classes are really instances of

a class. The application must then maintain the relationship between the real instances

and their class-like instances.

The key to the Type Object pattern is two concrete classes, one whose instances

represent the application's instances and another whose instances represent types of

application instances. Each application instance has a pointer to its corresponding type.

Keys

A framework that incorporates the Type Object pattern has the following features:

• Two classes, a type class and an instance class.

• The instance class has an instance variable whose type is the type class.

• The instance class delegates its type behavior to the type class via the instance

variable.

The framework may also include these variations on the pattern:

• The system may maintain a list of its type class instances.

• The type class instances may maintain a list of their instances.

Applicability

• Use the Type Object pattern when:

• Instances of a class need to be grouped together according to their common

attributes and/or behavior.

• The class needs a subclass for each group to implement that group's common

attributes and behavior.

• The class requires a large number of subclasses and/or the total variety of

subclasses that may be required is unknown.

• You want to be able to create new groupings at runtime that were not predicted

during design.

44

• You want to be able to change an object's subclass after its been instantiated

,,,.;thrınt lunrincr tr. rnnt~+,,. it +ln ,ı neur pJ,ıı;;:~"ı.~~ -· .._. ···o -~ ···-·-·- .. ~ .. u • • -· •• ~~-

• You want to be able to nest groupings recursively so that a group is itself an item

in another group.

3 .14 Structure

I Tw,eOaaa r tııpe aau

tı,,pe.Attıib u~ attribU'le

Figure: 3.14 {a}

The Type Object pattern has two concrete classes, one that represents objects and

aTyp$0an
Type0biect1 saan \jI t Obiect1A

' • tı,ıpe -

aTypeQan
Tı,ıpeObiecrl

aQan
ObiectlB

Figure: 3.14 {b}

For example, the system uses a Typeübject to represent each type in the system and an

Object to represent each of the instances of those TypeObjects.Each Object has a

pointer to its Typeübject. •

Participants

• TypeClass (Movie)

• is the class of TypeObject.

• has a separate instance for each type of Object.

• TypeObject (Star Wars, The Terminator, Independence Day)

• is an instance ofTypeClass.

45

11 represents a type of Object.

• Establishes all properties of an Object that are the same for all Objects of

the same type.

• Class (Videotape)

• is the class of Object.

11 represents instances ofTypeClass.

• Object (John's Star Wars, Sue's Star Wars)

• is an instance of Class.

11 represents a unique item that has a unique context.

• Establishes all properties of that item that can differ between items of the

same type.

• has an associated TypeObject that describes its type.

• Delegates properties defined by its type to its TypeObject.

TypeClass and Class are classes. TypeObject and Object are instances of their

respective classes. As with any instance, a TypeObject or Object knows what its class

is. In addition, an Object has a pointer to its TypeObject so that it knows what its

TypeObject is. The Object uses its TypeObject to define its type behavior. When the

Object receives requests that are type specific but not instance specific, it delegates

those requests to its TypeObject. A TypeObject can also have pointers to all of its
Objects.

Thus Movie is a T1yeClass and Videotape is a Class. Instances of Movie like Star Wars,

The Terminator, a..11d Independence Day are TypeObjects. Instances of Videotape like

John's Star Wars and Sue's Star Wars are Objects. Since an Object has a pointer to its

jTypeObject, John's videotape and Sue's videotape have pointers to their corresponding

Movie, which in this case is Star Wars for both videotapes. That is how the videotapes

know that they contain Star Wars and not some other movie.

(

Collaborations

• An Obiect <YP.t<a hxrr. catezories o-F reouests: thrnaP riPtinP.rt by İf<a in<ats,nC'P s,nrt,;;ı- -',.L J -L o-ı....ı ı,, t''f''-" -'4L-e,'-" .L""U L .l.-~~ U •.• ı...ra t..&,..L_ıJ_ ---LL&..&._..._ "-'" A.t.ı.J .LL.LL.J'L._...,.._ __ t..c.&. .••~

those defined by its type. It handles the instance requests itself and delegates the

type requests to its TypeObject.

46

S I" " . h +l.. '"'"' Obi di I 1:' l• ome cı1errts may want to interact wıt uıe ıypev jects ırectıy . .ı.·or exmnpıe,

rather thrın iterate throuzh ı:ıH of the Videotapes the store hı:ıq in stock ı:ı ranter..•...•..••....•.. ~ ..•..•. -... .•...•. _ .•.. _ •.. _. .•..•__ 0-- .•..•..•..•..•. - .•..•.•. • --~ - •..•. .__,._..., .•.•.._ •..•.•..•..•....•....,..;.,J ••••~ ••••••..•• - ..••.••••• _ .••

might want to browse all of the Movies that the store offers.

• If necessary, the TypeObject can have a set of pointers to its Objects. This way

the system can easily retrieve an Object that fits a Typeübject's description. This

would be similar to the allfnstanees message that Smalltalk classes implement.

For example, once a renter finds an appealing Movie, he would then want to

know which videotapes the store has that fit the description.

Consequences

The advantages oftlıe Type Object pattern are:

• Runtime class creation. The pattern allows new "classes" to be created at

runtime. These new classes are not actually classes, they are instances called

Typeübjects that are created by the TypeClass just like any instance is created
by its class.

• Avoids subclass explosion. The system no longer needs numerous subclasses to

represent different types of Objects. Instead of numerous subclasses, the system

can use one TypeClass and numerous TypeObjects.

• Hides separation of instance and type. An Object's clients does not need to be

aware of the separation between Object and TypeObject. The client makes

requests of the Object, and the Object in turn decide!'; which requests to forward

to the TypeObject. Clients that are aware of the TypeObjects may collaborate

with them directly without going through the Objects.

• Dynamic type change. The pattern allows the Object to dynamically change its

TypeOJ?ject,which has the effect of changing its class. This is simpler than-mutating an object to a new class. [DeKezel96]

• Independent subclassing,TypeClass and Class can be subclassed

independently.

• Multiple Type Objects. The pattern allows an Object to have multiple

TypeObjects where each defines some part of the Object'stype. The Object must

then decide which type behavior to delegate to which TypeObject.

47

3.15 The disadvantages of the Type Object pattern are:

• Design complexity. The pattern factors one logical object into two classes. Their

relationship, a thing and its type, is difficult to understand. This is confusing for

modelers and programmers alike. It is difficult to recognize or explain the

relationship between a TypeObject and an Object. This confusion hurts

simplicity and maintainability. In a nutshell: "Use inheritance; it's easier."

• Implementation complexity. The pattern moves implementation differences out

of the subclasses and into the state of the TypeObject instances. Whereas each

subclass could implement a method differently, now the TypeClass can only

implement the method one way and each TypeObject's state must make the

instance behave differently.

• Reference management. Each Object must keep a reference to its Typeübject.

Just as an object knows what its class is, an Object knows what its TypeObject

is. But whereas the object system or language automatically establishes and

maintains t.tıe class-instance relationship, the application must itself establish and

maintain the TypeObject-Object relationship.

Implementation

Tb.ere are several issues that you must always address when implementing the Type

Object pattern:

• Object references Typeôbject. Each Object has a reference to its TypeObject,

and delegates some of its responsibility to the Typeôbject- An Object's

Tyf,eObject must be specified when the Object is created.

• Object behavior vs. TypeObject behavior. An Object's behavior can either be

implemented in its class or can be delegated to its TypeObject. The TypeObject

implements behavior common to the type, while the Object implements behavior

that differs for each instance of a type. When the Object delegates behavior to its

TypeObject, it can pass a reference to itself so that the TypeObject can access its

data or behavior. The Object may decide to perform additional operations before

48

requests it forwards to its Component [GlUV95, page 175].

~ Typeübject is not multiple inheritance. The Class-not the TypeObject-is the

template for the new Object. The messages that Object understands are defined

by its Class, not by its Typeübject. The Class' İmplementation decides which

messages to forward to the Typefrbject; the Object does not inherit the

Typeöbject's messages. Whenever you add behavior to TypeClass, you must

also add a delegating method to Class before the behavior is available to the
Objects.

3.16 There are other issues you may need to consider when implementing

the Type Object pattern:

• Object creation. using a TypeObject. Often, a new Object is created by sending a

request to the appropriate TypeObject. This is notable because the TypeObject is

an instance and instance creation requests are usually sent to a class, not an

instance. But the TypeObject is like a class to the Object, so it often has the

responsibility of creating new Objects.

• Multiple TypeObjects. An Object can have more than one TypeObject, but this

is unusual. In this case, the Class would have to decide which Typeübject to

delegate each request to.

• Changing TypeObject. The Type Object pattern lets an object dynamically

change its "class/ the type object. It is simpler for an object to change its pointer

to a different type object (a different instance of the same class) than to mutate

to a new class. For example, suppose that a shipment to the video store is

supposed to contain three copies of The Terminator and two copies of Star

Wars, so those objects are entered into the system. When the shipment arrives, it

really contains two copies of The Terminator and three copies of Star Wars. So

one of the three new copies of The Terminator in the system needs to be

changed to a copy of Star Wars. This can easily be done by changing the

videotape's Movie pointer from The Terminator to Star Wars.

• Subclassing Class and TypeClass. It is possible to subclass either Class or

TypeClass. The video store could support videodisks by making another Class

49

just like a Videotape would. If the store carried three tapes and two disks of the

same movie, three Videotapes and two Videodisks would all share the same

Movie.

The hard part of Type Object occurs after it has been used. There is an almost

irresistible urge to make the TypeObjects more composable, and to build tools that let

non-programmers specify new TypeObjects. These tools can get quite complex, and the

structure of the TypeObjects can get quite complex. Avoid any complexity unless it

brings a big payoff.

Sample Code
Video Store

Start with two classes, Movie and Videotape.

Object()

Movie (title rentall'rice rating)

Videotape (movie isRented renter)

Notice how the attributes are factored between the two classes. If there are several

videotapes of the same movie, some can be rented while others are not. Various copies

can certainly be rented to different people. Thus the attributes isRented and renter are

assigned at the Videotape level. On the other hand, if all of the videotapes in the group

contain the same movie, they will all have the same name, will rent for the same price,

and will have the same rating. Thus the attributes title, rentalt'rtce, and rating are assigned

at the Movie level. This İs the general technique for factoring the Typeübject out of the

Object: Divide the attributes that vary for each instance from those that are the same for
a given type.

You create a new Movie by specifying its title. In turn, a Movie knows how to create a
new Videotape.

Movie class>>title: aString

/\selfnew init'Title: astring

Movie>>initTitle: aString

title := aString

Movie>>newVideotape

"Videotape movie: self

Videotape Class>>movie: aMovie

50

;\self new initMovie: a.Tviovie

Videotape>>initMovie: aMovie

movie :=aMovie

Since Movie is Videotape's TypeClass, Videotape has a movie attribute that contains a

pointer to its corresponding Movie instance. This is how a Videotape knows what its

Movie is. The movie attribute is set when the Videotape instance is created by
Videotape class>>movie:.

A Videotape knows how to be rented. It knows whether it is already being rented.

Although it does not know its price directly, it knows how to determine its price.
Videotape>>rentTo: aCustomer

self checkNotRented.

aCustomer addRental: self.

self makeRentedTo: aCustorner

Videotape>>checkNotRented

isRented if'Irue: [Aself error]

Customer>>addRental: aVideotape

rentals add: aVideotape.

selfchargeForRental: aVideotape rentalPrice

Videotape>>renta!Price

"selfmovie rentalPrice

Videotape>>movie

Amovie

Movie>>rentalPrice

"rentall-rice

Videotape>>makeRentedTo: aCustom;r

isRented := true.

renter :=aCustomer
••

Thus it chooses to implement its is Rented behavior itself but delegates
its rentalf'rtee behavior to its Type Object.

When Independence Day is released on home video, the system creates a Movie for it. It

gathers the appropriate information about the new movie (title, rental price, rating, etc.)

via a G1JI and executes the necessary code. The system then creates the
new Videotapes using the new Movie.

51

,.., 1 '7
.) •. f Video Store-Nested Type Objects

The T:-?pG Q.bjoct pattern can be- nested recursively. For example, many video stores

have categories of movies-such as New Releases (hieb price), General Releases

(standard price), Classics (low price). and Children's (very low price). If the store

wanted to raise the price on all New Release rentals from $3.00 to $3.50, it would have

to iterate through all ofthe New Reiease movies and raise their rental price. It would be

easier to. store the rental price for a New Release in one place and have all of the New

Release movies reference that one place.

Thus the system needs a MovieCategory class that has four instances. The

MovieCategory would store its rental price and each Movie would delegate to its

corresponding l\İfovie€aiegory to determine its price. Thus a MovieCategory is the Type

Object for a Movie, and a Movie is the Type Object for a Vidcotap-0.

A MovieÇ~t~gı,.ryclassrequires refactoring Movie.'s behavior.
Object()

MovieCategorJ (name rentall'riee)

Movie (category title rating)

Vidcotapcünovio isRcntcd renter)

Before, re:UtalPrfoe was aattribute of Movie because all videotapes of the same movie

had the same price. Now ::lll movies in the same category will have the same price, sn

rentalPrice becomes an attribute of MovieCategory. Since Movie now has a type object, it

has an attribute-category-to point to its type object.

Now behavior like rentalPrice gets delegated in two stages and implemented by the third.
Videotape>>renta1Prfoe

"self movie rentaLPrice

Movie??rentalPrice

"self category rentalPriceMovie

Categorysc-rentall'rice

"rental Price

This example nests the Type Object pattern recursively where each MovieCatego.ry has

Movie instances and each Movie has Videotape instances. The system still works primarily

with Videotapes, but they delegate their type behavior to Movies, which in turn delegate

their type behavior to l\1o.vieCategorys. Videotape hides from the rest of the system where

52

vancus The system can easily add

3.18 Video Store-Dynamic Type Change

to a General Release because its category is a Type Object and not its class.
Movle-c-changeôategoryl'o: aMovieCategory

self cı3,t?.gory re,I)'.lo.veMovie: self
self category: aMovieCategory.

self ça.te.gory ad~fl\ıfovie: self

With the Type Object pattern, an Object can easily change its Type Object when

3.19 Video Store-Independent Subclassing

The system could also support videodisks. The commonalities of videotapes and

videodisks are captured iri. the abstract superclass Rentabteftem, where Videotape and

V. ldeodisk n.,.,, suı.."'13.SS•"'"'. Both ·c·r,.n· C.••etc .,.... lasses delezate tlkc,; r type bchavio •. to ı"Ao•il<ilUC · £.U..g U\.JL ""'~' ıJ ·~ · V. J:~·ı,;;- 'LIL_ - \Q' ·1,7 "70U.L\v ·ı"'°~ 11..ı··ytw;· .;..,-ll'f. ı...,.ı.. t.: ·'f'· ,.,.-ı~,

so M;ovie. does not need to be sııbclassed,
Object O

MovieCategpry {namerentalPrice)

Movie (category title rating)

Rentableltem (movie iskented renter)

Videotape (isRewound)

Videodisk (numberOIDisks}

Most of Videotape's behavior and implementation is moved to. Renfableltem. Now

Videodisk inherits this. code for free.

Movie may tum out to be a specific example of a more general Title class. Title might

have subclasses like Movie, Documentary, and HowTo. Movies have ratings whereas

documentary and how-to videos often do not. How-to videos often come in a series or

collection that is rented all at once whereas movies and documentaries do not. Tims

Titl.e might also. need a Composite [GHJV95, page 163] subclass such as HowToSeries.

Movie itself might also have subclasses like RatedMovie for those movies that have

MPAA ratings and UnratedMovie for movies that don't.

53

Object()

MovieCategory (name renrall'rice)

Titk (c.a.Jegory title)

Documentary O
HqwTo()

Movie O
R<!,t,~dMovie, (rating)
Unrated.Movie O

Tit.l~Composite(tjtl,~~)

HowToSerfes O
Rental?l~[te.m (ttüe, i_§Re.ı:ıte.d renter)

Videotape (isRewound)

Vi_4i:!qqj,fık C-numl:ıe;~fDtsJ.<__g)

LIBRARY

The code above and the diagram below show the final set nf classes in tbs framework.

liıte

1i~l.ıı e ! Rıtttsl:lrtt.Em I

Rstııdllo'lie VideoiııpeHouToSeriea

Figure 3.19 {'a} [http://www.dbmsmag.com]

1/ideodiek

•
Movie and Title Cfu'1 be subclassed without affecting the way Reütalıle.H-em and
Videntane ,;:ırıa, subclassed Thi« ,;:ıhi1itv tn inrtPn?nrtıa>ntlv ,mhf'h'<f". T,tı •. and

£ __••••.• ·''r-....· ...•..•..•.. I.J;""'"""'-"''-1' ~-.-... .• •. .•..~'--" ••~...-:A,-£._.••."J, •._ _. ••..•.. "" ..'""'.',-r.-· ..•...•.....•. ~ .•..• '."!"-J·· ...,_ .•.. .,":-"'~ .•••..•.•..•. :........... .•.. ••.••_ ••..•.•. _ •..•...•....•..••.

Rentableltem would be impossible to achieve if the videotape object had not first been

divided into Movie and Videotape components. Obviously, all of this nesting and

subclassing can get complex, but it shows the flexibility the Type Object pattern can

give you-flexibility that would be impossible without the pattern .

.:; ıl

...ı"'T·

Manufacturing

Consider a factory with many different machines manufacturing rrıanv different

products. Every order has to specify the kinds of products it requires. Each kind of

product has a list of parts and a list of the kinds of machines needed to make it. One

approach is to make a class hierarchy for the kinds of machines and the kinds of

products, But this means that adding a new kind of machine or product requires

programmıng, since Y0\1 have to define a; new class, Moreover, the main difference

between different products is how they are made. You can probably specify a new kind
·- . 'a •

of product just by specifying its parts and the sequence of machine tools that is needed

to make it.

It is better to make objects that represent "kind nf product" :-!n!1 "kind of !!ın~b:hıe.. " ThP)'

are both examples of type objects. Thus, there will be classes such as Machine, Product,

Maehine'Iype, and Product'I'ype. A Produet'I'ype has a "manufacturin~ J,Jlan" which knows

the MachineTypes that make it. But a particular instance of Product was made on a
. ıl . .ı:-··· 'T'L.' 1. ·;ı ·ı:. hich 1' •. • .Ç,· 1 ı..partier ar set O.ı Machines. .ı.u1S ets you ıuenti.ıj W1H.Cı. nıacrı111e ıs at fault wuen a

product is defective.

Suppose we want to schedule orders for the factory. When m1 order comes in, the

system will figure out the earliest that it can nn the order. Each order knows what kind

of product it is going to produce. For simplicity, we'll assume each order consists of one

kind. of product. We'll also assume that each kind of product is made on one kind of

machine. "Aut that product is probably made up of other products, which will probably

require many other machines. Thus, Product is an example of the Composite pattern

roHJV95, page 1631 (not shown below). For example, a hammer consists of a handle

and a head, which are combined at an assembly station. The wooden handle is carved at
•one, machine, and the head is cast at anoth.ei"a ProüuctType aııd ü.riier- are also co.ı1iposites,

but are not shown,

ti1
[,. e I R©ıııi:./({ttırı Il.loYieQıtııgory

iıRenM
rentl!r

nane
renıaPrirıı

/

1/idıodiikRatııdMoıit Video1ııfı4
HoırToSeıiaa

i,Reıııımd

Figure 3. 19 { b} [http://www.dbrnsrnag.com/]

There are six main classes:

Object

• MachineType (name machines)

• Machine (type location age schedule)

• ProductType (nıanufacturinglvlachine duration parts)

• Product (type creationDate manufacturedün parts)

• Order (productType dueDate requester parts item)

• Factory (machines orders)

We will omit all the accessing methods, since they are similar to those in the video store

example. Instead, we will focus on how a factory schedules an order.

A factory acts as a Facade [GHJV95, page 185], creating the order and then scheduling

it.
Factory>>orderProduct: aType by: aDate for: aCustomer

I order I
order := Order product: aType by: aDate for: aCustorner.

order schedulef'or: self.

•

/\order

Order> »schedulef er: aFactory

I partDate earliestDate I
partDate := dueDate minusDays: product'Iype duration.

parts:= productType parts collect: [reach'I'ype I

aFactory

orderProduct: eachType

56

by: partDate

for: order].

prodııct'Iype

schedule: self

between: self datePartsAreReady

and: dueDate

ProductType>>schedule: anOrder between: starfDate and: dueDate

(startDate plusDays: duration)> dueDate

ifTrue: [anOrder flxxchedule].

manufacturingMachine

schedule: anOrder

between: startDate

and: dueDate

There are at least two different subclasses of ProductType, one for machines that can

only be used to make one product at a time, and one for assembly lines and other

machine type is scheduled by finding a machine with a schedule with enough free time

open between the startDate and the dueDate.

Nonpipe1inedMachineType.">>schedule:anOrder between: startDate and: dueDate

machines do: [:each 11 theDate I

theDate := each schedule

slotOfSize: anOrder duration

freeBetween: startDate

and: dueDate.

theDate notNil iffrue:

[/\each schedule: anürder at: theDate]J...
anOrder fixSchedule

••
A pipelined machine type is scheduled by finding a machine with an open slot between

the startDate and the dueDate.
PipelinedMachineType>>schedule: anOrder between: startDate and: dueDate

machines do: [reach 11 theDate I

theDate := each schedule

slotOtSize: 1

freeBetween: startDate

and: dueDate.

theDate notNil iITrue:

["each schedule: anOrder at: theDate]].

57

anOrder fi.xSchedule

This design lets you define new Product'I'ypes without programming. This lets product

managers, who usually aren't programmers, specify a new product type. It will be

possible to design a tool that product managers can use to define a new product type by

specifying the manufacturing plan, defining the labor and raw materials needed,

determining the price of the final product, and so on. As long as a new kind of product

can be defined without subclassing Product, it will be possible for product managers to

do their work without depending on programmers.

There are constraints between types. For example, the sequence of actual

MachineTools that manufactured a Product must match the MachineToolTypes in the

manufacturing plan of its Produet'I'ype. This is a form of type checking, but it can be

done only at runtime. It might not be necessary to check that the types match when the

sequence of Machlne'Tools is assigned to a Product, because this sequence will be built by

iterating over a manufacturing plan to find the available MachineTooıs. However,

scheduling can be complex and errors are likely, so it is probably a good idea to double

check that a Product's sequence of MachineTooJs matches what its ProductType says it

should be.

3.20 Known Uses
Coad

Coad's Item Description pattern is the Type Object pattern except that he only

emphasized the fact that a Type holds values that all its Instances have in common. He

used an "aircraft description" object as an example. [Coad92]

HaY-,

Hay uses Type Object in many of his data modeling patterns, and discusses it as a

modeling principle, but doesn't call it a separate pattern. He uses it to define types for

activities, products, assets (a supertype of product), incidents, accounts, tests,

documents, and sections of a Material Safety Data Sheet. [Ifay96J

Fowler

Fowler talks about the separate Object Type and Object worlds, and calls these the

"knowledge level" and the "operational level." He us.es Type Object to define types for

58

organizational units, accountability relationships, parties involved in relationships,

contracts, the terms for contracts, and measurements, as well as many of the things that

Hay discussed. [Fowler97]

Odell

Odell's Power Type pattern is the Type Object pattern plus the ability for subtypes

(implemented as subclasses) to have different behavior. He illustrates it with the

example of tree species and tree. A tree species describes a type of tree such as

American elm, sugar maple, apricot, or saguaro. A tree represents a particular tree in my

front yard or the one in your back yard. Each tree has a corresponding tree species that
describes what kind of tree it is. [M095j

3.21 Sample Types and Samples

The Type Object pattern has been used in the medical field to model medical samples.
A sample has four independent properties:

• The system it is taken from (e.g., John Doe)

• The subsystem (e.g., blood, urine, sputum)

• The collection procedure (aspiration, drainage, scraping)

• The preservation additive (heparin, EDTA)

This is easily modeled as a Sample object with four attributes: system,

subsystem, collection procedure, and additive. Although the system (the person

who gave the sample) İs different for almost all samples, the triplet (subsystem,
"

collection procedure, and additive) is shared by a lot of samples. For example,

medical technicians refer to a "blood" sample, meanıng a

blood/aspiration/EDTA sample. Thus the triplet attributes can be gathered into a

single Sample'I'ype object.

A SampleType is responsible for creating new Sample objects. There are about 5,000

system just provides the most common Sample'I'ypes. If another Sample'I'ypa is needed,

the users can create a new one by specifying its subsystem, collection procedure, and

additive. While the system tracks tens of thousands of Samples, it only needs to track

59

about one-hundred SanıpleTypes. So the Sample'I'ypes are Typeöbjects and the Samples

are their Objects. [DeKezel96]

Signals and Exceptions

The Type Object pattern is more common in domain frameworks than vendor

frameworks, but one vendor example İs the Signal/Exception framework ın

VisualWorks Smalltalk, When Smalltalk code encounters an error, it can raise an

Exception. The Exception records the context of where the error occurred for debugging

purposes. Yet the Exception itself doesn't know what went wrong, just where. It

delegates the what information to a Signal. Each Signal describes a potential type of

problem such as user-interrupt, message-not-understood, and subscript-out-of-bounds.

Thus two message-not-understood errors create two separate Exception instances that

point to the same Signal instance. Signal is the TypeC1ass and Exception is the Class.
(VW95]

Reflection

Type Object is present in most reflective systems, where a type object is often called a

metaobject. The class/instance separation in Smalltalk is an example of the Type Object

pattern. Programmers can manipulate classes directly, adding methods, changing the

class hierarchy, and creating new classes. By far the most common use of a class is to

make instances, but the other uses are part of the culture and often discussed; even if not
often used. [KRB91]

Reflection has a well-deserved reputation for being hard to understand. Type Object

pattern shows that it does not have to be difficult, and can be an easy entrance into the

more complex world of reflective programming.

3 .22 Related Patterns

3 .22.1 Type Object vs. Strategy and State

The Type Object pattern is similar to the Strategy and State patterns [GHN95, page

315 and page 305]. All three patterns break an object into pieces and the creal objecti

delegates to the new object-either the Type Object, the Strategy, or the State. Strategy

60

and State are usually pure behavior, while a Type Object often holds a lot of shared

state. States change frequently, while Type Objects rarely change. State solves the

problem of an object needing to change class, whereas Type Object solves the problem

of needing an unlimited number of classes. A Strategy usually has one main

responsibility, while a Type Object usually has many responsibilities. So, the patterns

are not exactly the same, even though their object diagrams are similar.

3.22.2 Type Object and Reflective Architecture

Any system with a Type Object is well on its way to having a Reflective Architecture

[BMRSS96]. Often a Type Object holds Strategies for its instances. This is a good way

to define behavior in a type.

3 .22.3 Type Object vs. Bridge

A Type Object implementation can become complex enough that there are Class and

Type Class hierarchies. These hierarchies look a lot like the Abstraction and

Implementor hierarchies in the Bridge pattern [GHN95, page 151], where Class is the

abstraction and Type Class is the implementation. However, clients can collaborate

directly with the Type Objects, an interaction that usually doesn't occur with Concrete

Implementors.

3.22.4 Type Object vs. Decorator

An Object can seem to be a Decorator [GHJV95, page 175] for its Type Object. An

Object and its Type Object have similar interfaces and the Object chooses which

messages to forward to its Type Object and which ones to enhance. However, a

Decorator does not behave like an instance of its Component.
•

3.22.5 Type Object vs. Flyweight

The Type Objects can seem like Flyweights [GHJV'95, page 195] to their Objects.

However, Type Object does not involve a Flyweight Factory that provides access to a

Flyweight Pool. Nevertheless, two Objects using the same Type Object might think that

they each have their own copy, but instead are sharing the same one. Thus it is

important that neither Object change the intrinsic state of the Type Object.

61

(

3.22.6 Type Object and Prototype

il nether wav to make one obiect act 11·1,-., the +.,.,....,. of anoth.•,. ;" ,..,.;+111 +h.,. Prototype', ..u · .._, •• J ı. . < 4,., ,. · J • ,. , ,._._, l ".71-'" «u ,,.,.,.,,..ı.v ••u •....,._. ı. .ı.v "'' _p

pattern [GHN95, page 117], when each object keeps track of its prototype and
delegates requests to it that it does not know how to handle.

3.23 Pattern Language for Relational Databaşes and Smailtafk

Early in 1995 we (two experienced Smalltalk programmers) began a project in analysis

and design that would tax our abstraction abilities to their limits. The result of this

ongoing exercise is a pattern language we caII Crossing Chasms. This article describes

Crossing Chasms as well as exploring the thought processes that led us to write it, what

we discovered in its writing, and how we have used the document since İts creation.

3.24 What motivated us to write a pattern language?

The business of companies like Knowledge Systems Corporation (KSC) and The Object

People is to transfer information about the process of building object systems from

consultants to clients. One of the most common themes running through many of the

object systems our two companies have built over the past five years is the need to

integrate Smalltalk with relational database technology. We have found that the clients

of our training and consulting businesses are extremely interested İn this area, and often

need guidance to understand how these two technologies combine.

In early 1995 we were both involved in creating new material for client-centered

mentoring and classroom education. We felt the need to include some informaıion about

relational databases, but were uncertain as to how to organize that information. Each of

the Smalltalk vendors (Dig:italk, Parcplace, and IBM) had their own, unique class

libraries for handling relational database queries. On the surface, there did not appear to
be much commonality among the three.

Over the past several years we had built many systems using Smalltalk and relational

databases with major corporate clients. KSC's first such effort had been with a

governıTı.ent organization in early 1992, foilowed by projects for a national bank, a

62

major telecommunications company, a telecommunications equipment manufacturer,

and a pharmaceutical company. We had. learned many lessons about building this kind

of system, and had found out what worked and what didn't. Although each system was

unique, we felt that there were some commonalties among all of them. In fact, the

design for each usually incorporated the best ideas from all the previous ones, even

though none of the systems shared any code.

It was this desire to record our lessons learned, to be better equipped for future projects,

and to find unity among the disparate vendor implementations, that led us to explore

patteın languages as an avenue for recording this design and implementation

information. A pattern language is a set of related patterns that guides a reader through a

set of closely linked problems and their solutions.

The pattern is a literary form invented by the architect Christopher Alexander to

describe' the decisions involved in designing and building communities and buildings.

Tlıe shortest way to describe the essence of a pattern is "A solution to a problem in a

context". It records how the interplay of different "forces" on a particular problem can

lead to their resolution in a template solution. The pattern form was introduced into the

software community by Ward Cunningham and Kent Beck in the early 1980rs. It has

become popular in recent years due in large part to the work of Gamma, Coad, and

others.

We chose to begin writing a pattern language because the pattern form seemed to best

capture the spirit of the notions that we had. Y.Ve felt that a pattern language that could

lead readers in a non-linear fashion from one topic to the next could bring together the

interconnected threads of .thought that we had. It also provides a structure in which to

study the issues and their solutions by naming and isolating the essence of each

problem. We were also interested in exploring the issues involved in writing patterns -

in this sense Crossing Chasms was an experiment L.'1 writing a large pattern language.

3.25 How did we find our patterns?

We first wanted to identify all the issues and pro blems that arise in designing and

building a framework marrying relational databases and Smalltalk.

In reviewing the process of building such a system it became apparent that we could

split the set of problems roughly in two. The problems of defining the tables and object

63

models we categorized as "static" patterns. Those involved in resolving the runtime

problems of object-table mapping we put ma category called "dynamic" patterns. We

then realized that a number of the problems we were identifying were not so much

directly related to the object-table mismatch but were really client-server issues. These

problem-solution pairs were generic enough to be applicable to any client-server

architecture, object-oriented or not, so we developed a third category ("client-server"

patterns) for them.

Lastly we saw that the decision to go with a client-server model was just one

fundamental architectural decision out of many. Many other architectural issues must

also be resolved, including the modularization of functionality into application layers

and the choice of the number of tiers that the system would include. These patterns we

termed "architectural" patterns.

Crossing Chasms grew in size and complexity as new problems were identified. To

discover the patterns we first immersed ourselves in the literature and subject area. We

found our patterns in numerous places. Our own experience in building systems led us

to identifying most of the major ones. Studying the documentation of existing

frameworks, both commercial and proprietary, added to the list as well. Reading the 00

literature that addressed the subject, (Rumbaugh, Jacobson, Gamma, and others) also

contributed some patterns to the list, particularly in the static category,

Eventually after defining the basic patterns and formulating them as a pattern language

we caıne up with some new ones based on feedback from our colleagues. This whole

process followed the 3 I Paradigm o"f mastering a subject area. First you Immerse

yourself in a field. This leads you to Imitate the solutions of others, until finally you can

Innovate and come up with your own .solutions. •

As mentioned above, Crossing Chasm's patterns are categorized into four groups:

architectural, static, dynamic and client-server. In the following sections we will

introduce a few of the most important patterns in the language in their respective

categories. Unfortunately, we can only present a taste of our language as a whole. Our

current version of the language is over 90 pages long and verı dense in text and

diagrams. We have discovered almost forty patterns, of which we introduce eleven here.

The presentations of the individual patterns here are by necessity very brief; the pattern

language goes into much more depth in each pattern.

64

3.26 The Patterns of Crossing Chasms Architectural Patterns

When a project needs to use both Smalltalk. and relational technology there are a group

of issues at a ver; high architectural level that need to be addressed. Surprisingly, we

did not recognize many of these issues until well after we had written the rest of the

patterns in Crossinz Chasms ThP,«P 1<:CllPC <:Q np-n.1::;rl ••• rl our thinkinz thnt it tonk ~~-.&. L> ~ _.-,a. uı.ı ..ı.e, _.. .•..•. _ .•..•..•. -.. ..•. .•. _...,._ .•. ..., •.• ""._...,. ...• r-.ıı. "---- -- -AJUI, .c..&.ı:, _ .•._ •...•.•..•.. _. .•..•. -

second look at the problem to even recognize their existence.

One of the most important decisions to make about the design of a system is its overall

software architecture. This decision determines the direction,that development will take.

3.27- Pattern; Pour-Laver Architecture

Problem:

What is the appropriate structure and grouping of classes in a Smalltalk client-server

system? What architecture is most appropriate?

Figure 3.27 Four Layer Architecture

•Solution:

Employ a four-layer architecture consisting of a view layer, an application model layer,

a domain layer, and a supporting infrastructure layer (see Figure 1: Four Layer

Architecture). Determine the İnterfaces between the layers well ahead of time and keep

the communications paths well defined. Enforce the layering through design and code

revıews.

Layered architectures are a well-known idea in Computer Science, but it is rare that

new Smalltalk programmers see their designs in terms of well-defined layers.

65

Nevertheless, proper layering ıs important for reusability and maintainability. Brown

[96] deals with this issue at length.

Another key decision that has to be made is the order in which development events must

occur. It is especially difficult for first-time users of Object Technology to develop an

ordered development process. After seeing several bad decisions made in projects we

had observed, we recognized this pattern in retrospect.

3.28 Pattern: ı able Design Time

Problem

When is the best time to develop your relational database schema? In what order do

object design and schema design occur?

Solution:

Design the relational database schema based upon a first-pass object model done using

a behavioral modeling technique. It may be more prudent to wait until after an

architecturalprototype has been built before designing the schema (see Figure 2:

Development Lifecycle). Remember that an 00 design is in reality a first-pass database

design. Doing things in the reverse order (schema first) often lead to a poorly factored

00 design with separate "function" and "data" objects.

'>!:'

f i:f :;\!(~fr~1
" -

•

Fiqure 1 28 nı::ıuı::ılrınmı::ınt I fecvdeI '- >J • ,._'- II' '-•Vf'JI I • .._, 1'- ı.....ı •.••.. .__, ..._.,.._

66

Static Patterns

One of the fundamental problems in developing a total enterprise solution using Object

were lucky in finding that this is a well-represented area of research that had been

covered well over the past several years. Our job in developing the static patterns was to

pick the "best of breed" of the available approaches and integrate them into a complete,

self-consistent method.

3.29 Pattern; Rep;esenting objects as tables

Problem:

How do you map a set of objects into a relational database schema? Considering that

complex objects do not map neatly into tables, objects do not have keys, tables do not

have identity, and the datatypes do not match between worlds, how do you perform a

mapping?

Solution:

Start with a table for each persistent object. Determine the "type" of each instance

variable and create a column for each that have "base" datatypes, Use the Representing

Collections pattern to handle collections. Use the Foreign Key reference pattern to

handle other non-base datatype objects. Finally, use the Object Identifier pattern.

3.30 Pattern: Object Identifier
J

Problem:

How do you preserve an object's identity in a relational database? Each individual

••

object's identity must be preserved in the database and there should be no spurious
dupli catesJ..J..\,,,Cd,I,"" •

Solution:

Assign an independent identifier (called an Object Identifier, or OID) to each persistent

object. An easy way to do this is to use a sequence number generator if one is available

67

in your particular database. If not, aıı OID table can be used. OIDs are usually simply

long İntegers that are guaranteed to be unique for a particular class of objects.

Problem:

How do you represent objects that reference other objects that are not "base datatypes''?

The First Normal Form Rule (INF) excludes tuples from containing other tuples;

therefore Object relationships must be represented using only legal column values.

Solution:

Assign each object a unique OID. You then add a column for each instance variable that

is not a base datatype or a collection. In that column store the OID of the referenced
object, then declare the column as a foreign key.

3 32 Pattern: Representınç Collections9 ıı.. ••..•••••• ııı Ii• '-~t'I '---" I & Ii •.•.•.•. ı: • ...,

Problem:

How do you represent Smalltalk collections in a relational database? The first normal

form rule of relational databases forbids tuples from containing sets of other elements.

Other properties of Smalltalk collections also prove bothersome. For instance, objects

may be contained in many collections (M-N relationships). Also, collections have

special properties (sort order, duplicates). Finally, Smalltalk collections can be either

heterogeneous or homogenous

••j
Solution:

Create a relationship table for each collection. A relationship table maps the primary

keys of the containing objects to the primary keys of the contained objects. The

relationship table may store other information as well, for instance the class of

contained object, or the position of object (OrderedCollection, SortedCollection). If a

collection is heterogeneous, then the class of each element is also stored in that

table.Other static patterns in Crossing Chasms dealt with the issues of representing

68

h B 1 • H I • • • 1.. • • .S: 1..w y rokers are important, owever, they are central to maıntaınıng the ıntegrıty oı tue

layers in a l Four-Layer Architecture.

As we looked back on the broker implementations we had built, we found that two more

patterns occurred in the best implementations; Query Object and Object Metadata.

3.35 Pattern: Object Metadata

Problem:

How do you define the mapping between the elements of an object class and the

corresponding parts of a relational schema?

Solution;

Reiff the mapping into a set of Map classes that map object relationships into relational

equivalents. Map objects also m~p column names to instance variable selectors in

domain objects.

3.36 Pattern: Query Object

Problem:

How do you handle the generation and execution of common SQL statements and

minimize the amount of duplicated code between broker classes?

Solution:
Write a set of generic classes that generate SQL statements from common data. A

hierarchy of classes representing SQL statements can generate the appropriate SQL
)

given a domain object and its Map object metadata representation.

70

Figure 3.36: Broker Interactions [Ms Access]

The three previous patterns, when combined, milk~ up a powerful mini-architecture.
Each domain object will have a set of Map objects that represent its object relationships

as metadata. The Broker classes that are responsible for saving and restoring those
objects can ··1;·- Query "1-ıi-~-+«. to ·"~n.•.rate +1~=- ·-·-pr· opriate cu,LT ;,1: •.• tements from the --1··t·~-. t.ı.:), L..13\,.,....c:uıı...ı.1., ._,Uj\.A,.ı~ L · ı:,~... .lt,;,,J. · Ü.L\..· .a.p: .LU .! t. ,.•.;n,..::: · ~LU t,..ı.i.ii\.,ı.i L.., .ı.u ı " ·" ua.~

held in the Maps. L11 this way., proper layering can be preserved since the objects in the

Domain layer are not directly knowledgeable about the internals of the SQL generation,

while the Brokers themselves obtain information about their domain classes only

indirectly through the Map objects. A diagram of the interactions of these classes ıs

shown in Figure 3: Broker Interactions.

While the Broker architecture worked well to allow us to move objects in and out of the

database, the performance of some of our early attempts was less thanjıdequate. Inj . .
particular, early versions often spent too much time reading in data from the database
that was never subsequently used. In trying to resolve this, we found that the 1

Proxv natternfrom r:;..., .•mma orovided US with "TI effective solution "\'lle could oftrte n use a.!.. .1. c:ı.; _p1..1; ·ı.:'CJ.ı:..&.&. .L&.V .I.· '-'*-U,1. 'LS: t'.I. Y l. ,ı:ı, Yif L · ~ .&...L\a''lı.:fi.:J.: W .L'-t.1.L'-' M V\ \;;r't.J\.£..1. -..: .,._ liıJ Ls.

Proxv as a nlaceholder for information that had not vet been read in from the database.~ ı v

When that information was needed, the Proxy would collaborate with the Broker to read

it in, andthen replace itseırwiththe newobject.

71

Other topics addressed by the dynamic patterns included handling database transactions

and the order in which connected objects must be written to or restored [.•. om the

database.

Client-Server Patterns

As ...e mentioned nreviouslv there ...__e -~- .. !~m•~~ ••• ~ discovered •.ı.~.•.. ,--~ -~-ı.YV !H .HU ııı:;u pı l ::.ıy, uroı wı:;ı lHUUJ ı::,;:;uı:;;::ı wı:; U.l::>l..UV ,ı:; U..ltlL wc.ıc; HVL

specific to Sma llta lk, or even 00 in general, but "vere rather applicable to any client-

server systems. Two of these patterns were 1 Client Synchronization and 1 Cache

Management.

3.37 Pattern: ıli.::.nt Svnchronization·1._._,._ıı.ır• .._..•• ""-.1111 •••• ...,,I ..._ .. ,.....,,ı -ırı,,c'lıoa""' .

Problem:

How do you handle resynchronizing the client image and database when there are

errors? What do you do if you change the value of data held in the client's memory and

the corresponding request to the database fails?

O 1 . , . t . . . ·ı. . .•. .•.• d .•...• ı. ' • , .~ . . rne so utıon ıs o JUSt note tne error LO u1e user an rıusn any cacnen ınrormanon. ın
thi . .l .,.,J. 1 1 • .1 • 'T"'1 • •s ease any error ıs ueen1~u.to oe catast.ropınc ana you must starta 11cw scssıon .. ı ıns ıs

not a very robl!St solution, but it is a quickly implement able one.

A second solution is a playback mechanism that has a logging facility. Each change is

logged in a local log. If there is a failure the cache is flushed and you replay of all the

events as needed. This solution is more robust, but it is not trivial to implement.

••':;'\ .
Solution:

Mark the objects appropriately as deleted, added or updated during the session. If the

update to database J.{7 •+ .ç.,.;;.,
ı.L u. ı.aıı.:=ı

.1. • .. •ı,. .men retry tnesucceeds ~ 1. . ..men the,..;n.,;..l,
ı.u.a.ı.fi.remove

transaction. If it continually fails (e.g., times out) note the error and flush the cache.

With the changed objects marked it is possible to recover to tl1e original state by filing

out the changed objects to local storage and performing recovery at a more propitious

time.

72

3 .38 Pattern: Cache Management

Problem:

How do you best manage the lifetime of persistent objects stored in an RDB? Caches

can increase client performance, but they also increase client memory size. Caches can

application complexity.

Solution:

Use a Session object that has a bounded lifetime and is responsible for identity cache

management of a limited set of objects. Balance speed vs. space by flushing the cache

as appropriate. Use a query before write (timestamp) technique to keep caches accurate.

How have we used Crossing Chasms?

Since writing Crossing Chasms we have successfully applied its patterns in a number of

different instances. It has proven to be a very useful teaching aid - we subsequently have

developed several lectures for classroom use from the pattern language. The structure of

the pattern language proved to be a useful framework for discussing the different

concepts in object to relational connectivity. The topics of the lectures we developed

from the pattern language paralleled the organization of the language. In addition, some

of the patterns have been used as a basis for other lecture topics in. our classroom

education. We have also found that students like having the pattern language as an after

the-fact reference after seeing presentations based on it. In this way, we can present a

high-level overview and then allow the students to investigate the deeper issues at their
own pace.

•

Several companies have used the patterns in Crossing Chasms as part of their object

relational architectures as a result of our presenting them as part of our training. We

have found that addressing the issues covered in Crossing Chasms early in the

development process can preclude many of the missteps that first 00 projects often
take.

We have also developed a conference tutorial based upon the pattern language and

presented it at Smalltalk Solutions '96 in New York. Again, we have had feedback that

73

students appreciate using the pattern language to gain deeper understanding of the issues

after the presentation.

The static portion of Crossing Chasms was presented at the Plop (Pattern Languages of

Programs) '95 conference in September 1995. Those patterns have been published in

Brown [96].

3.39 Crossing Chasms: The Architectural PatternsPATTERN

NAME: FOUR LAYER ARCHITECTURE

Problem:.

When designing an object system for a client-server environment what is the most

appropriate way to structure the overall application architecture?

Forces:
When designing the software architecture in a client-server system, you must come up

with a way to divide the labor among team members. Your architecture must also be

simple enough to be easily explainable to new team members, so they can understand

where their work fits.

In looking for application architecture, many developers have looked to the pioneering

MVC architecture. However, MVC is not the be-all and end-all of object design. While

a prope- architecture Sh.0"1d address the ~~n~~....,c, addressed ı,•.1\K'I.Tf"'\ ~-,.:ı -~ •. trace ; .•SL L ••• LUL,., uı UJ.ı.:; ~· vU r.,ı.:;LL>..:> auuıı.:;.::,.:, u uy l.\1.1. \I~·, au.u LUQ.J u vv u

descent from MVC, modem software systems must also address issues not covered by

classic MVC.

MVC promoted reuse by factoring out the UI widget away from the domain objects.

Modern class libraries deri .. =,.:ı from 1\K'I.Tf"'I ha..e ~ln~ discovered yet another n~+ Ofvu .1 \.ı ;:, ıı .ı.a..ı. \Jı:> \.ı.LıV\..ıU. ı vıı ıvı v '- ..ı.av a..ı.vv u.ı vu "-' u \..ıL cu ı\...l U\..ıL

potentially useful and reusable abstractions in separating out the aspect of mediating

between views and adapting views to domain models into another set of classes.

74

However, this still does not address the connection of the domain to the outside world

(i.e., object persisterıcy mechanisms, network protocols, etc.) .. A complete architecture

for client-server systems must address these issues as well. Therefore:

Solution:

Factor your -p-1;-a...:~- C1"-~""~ into four Iavers in the followinz wnv (see Fizure 1• FourU l U pıı~ uuıı .H:l..::t;:J\..ı;:, Lv .l u..ı .lU..ı 1, .u.ı .lU ı 11ll~ ~ Wt.!.) \ J. .le,- .! •. U

Layer Architecture):

• The View layer. This is the layer where the physical window and widget objects

live. It may also contain Controller classes as in classical MVC. Any new user

interface widgets developed for this application are put in this layer. In most

cases today this layer is completely generated by a window-builder tool.

• The Application Model layer. This layer mediates between the various user

interface components on a GUI screen and translates the messages that they

understand into messages understood by the objects in the domain model. It is

responsible for the flow of the application and controls navigation from window

to window. This layer is often partially generated by a window-builder and

partially coded by the developer.

• The Domain :Model layer. This is the layer where most objects found in an 00

analysis and design will reside. To a great extent, the objects in this layer can be

application-independent. Examples of' the types of objects found in this layer

may be Orders, Employees, Sensors, or whatever is appropriate to the problem

domain.

• The Infrastructure layer. This is where the objects that represent connections

to entities outside the application (specifically those outside the object world)

reside.

Discussion:

Tol. C, choice of laye •.,, ,,.,.,.,.. 1,0"0 m0 .•••y beneficia 1 effects on)7",,. •• .,. .••••plication ;-ı-- it iso .ı ı""'w ı u. .i.ı.J oı...,u.ı..1 ııu..,- \.ı ı.u: ..µ.ı ıı'"'.L.L"-'J.u.ı vıııı...ı t.ı.:ı ı v~ u.ppı.1 ·u.u. .ı J...L ı .A

applied in the proper way. First, since the architecture is so simple; it is easy to explain

to team members and so demonstrate where each object's role fits into the "big picture".

75

If a designer is very strict about clearly defining where objects fit within the layers, and

the interfaces between the layers, then the potential for reuse of many objects in the

system can be greatly increased. A common problem with many object designs is that

they are too tightly constrained to the limits of the particular application being built.

Many novice designers tend to put too much of the logic of an application in the

Application Model layer. In this case, there are few, if any, domain objects that are

potentially available for reuse in other applications.

Another benefit of this layering is that it makes it easy to divide work along layer

boundaries. Woolf demonstrates how a "layered and sectioned architecture" can be

made the-basis of a source-code control system. It is easy to assign different teams or

individuals to the work of coding the layers in four-layer architectures, since the

interfaces are identified and understood well in advance of coding.

Finally, a four-layer architecture makes it possible to code the bulk of your system (in

the domain model and application model layers) to be independent of the choice of

persistence mechanism and windowing system.

Sources:

Layering is not a new idea in computer science -- Tannenbaum mentions it in

conjunction with the OSI seven-layers communications model. Shaw discusses layering

as an architectural choice.

Hendley discusses the benefits in portability gained by additional layering in the View

and Application Model layers in Smalltalk. Brown further investigates the reasons for

applying four-layer architectures for Smalltalk.

Related Patterns:

Trim and Fit Client shows how a four-layer architecture can be used in conjunction with

a 3-tier machine architecture in a distributed object environment.

••

3.40 PATTERN NAME: THREE-TIER ARCHITECTURE
Problem:

How do you distribute responsibility among the different machines in an enterprise to

best take advantage of each platform's unique capabilities?

Forces:

76

Many organizations plan large-scale client-server projects by planning for a large

capital purchase of desktop machines and network servers, to be purchased along with

the development of new software. However, the technology used to develop the

software will often change faster than the plan anticipates. Several releases of the target

operating system may occur between the time a large project is started and its final

delivery.

Because of the above, the client machines purchased are often not up to the final size of

the software that is produced. It is not uncommon to see client-server applications in

production today where the total amount of client code resident in memory at any time

is 12 megabytes or higher.

It must also be kept in mind that the number of clients in a system will be from one to

three orders of magnitude greater than the number of servers in a system. This

multiplier will heavily weight the cost of a system towards that of the client. If the

choice is to buy additional memory and a faster processor for 100 clients, or for one

server, the choice is fairly obvious. Therefore:

Solution:

Utilize a machine architecture that splits responsibility into three "tiers" of computation.

These tiers are:

• The Client. The client should be primarily responsible for the display and

interpretation of inforrnation. It is the focal point for user interaction with the

system as a whole. As such, the client can be optimized for display and fast

network access, but may p.ot need to have the memory and computational power

available in other tiers.

•
11 The Departmental server. The departmental server is usually a dedicated high-

end PC-style machine or a specialized Ll}-IDC workstation. The server is capable

of handling many more computations per second than the clients, and often has a

much, much greater amount of physical memory and disk space. This makes it

valuable as a localized cache of information shared among many clients. This

relieves the burden of storage and computation on the client, and can reduce the
network traffic +n .•.tho P .•.• terprise server.1.1'1.. U -' ...r LV ~ .L.....l.l.L .l. .1.J.ı,J.ı..,Ut...ı.J. \' .l. •

77

The Enterprise server. This is traditionally a mainframe. While mainframes

have gone out of fashion in the past few years, the fact still remains that for

high-volume, high-speed transaction processing, there is no better technology.

Organiz.ations have invested a great deal of time and money in these machines

and their software -- it is in their interest to preserve as much of that investment

as is possible, while still keeping all options open for the future.

Discussion:

A three-tier approach (see Figure 2: Three-tier architecture) gives the best solution for

new development, while still supporting existing systems. If it is implemented correctly,

the clients are completely de-coupled from the mainframe. Intermediate server code can
be developed in such a way as to minimize dependence on the mainframe so that it can

be phased out over tiıne if that is desired.

Related Patterns:

one.
Phase-In Tiers shows how to move from a two-tier client-server approach to a three-tier

Enterprise Server
Departmental Server

Relationai Store

Relational or Object Store

Figure 3.40: Three-tier architecture

78

Client

3.41 PATIERl'J NAME: PHASE-IN TIERS

Problem:

You must come up with a solution that supports batlı your current and planned network

architecture, and yet leverages your investment in object technology to produce results

quickly.

Forces:

You need to best utilize existing and new computing and network resources. You would

like to move to a client-server set of solutions as quickly as possible, but there is no way

that everything can be replaced at once. The cost of a total redevelopment effort is

prohibitive, and your staff could not complete the effort in a reasonable length of time.

Therefore:

Solution:

A good approach is to begin all development on the client (sometimes resulting in a

prototype "fat client") and then push the code from the bottom two layers of a four layer

architecture onto a server as development progresses. In this way you can add tiers over

time, starting with a two-tiered system (i.e., a "fat client") and moving to a three-tiered

system later.

Discussion:

Modern distributed object technologies like COREA, Gemstone, IBM VisualAge

Distributed Option, and PP-D Distributed Smalltalk make it possible (in fact, relatively. .
easy) to IDO'-'"" '"''""""""'"';.,.,rT .ı;..".,.... "11. ent machin es on to servers TT sing these technologies,/ J. V'ı.ı _p.A.Vı..t\JVV.111!5 J..lVl.U. \.I \.ı J.I. .l.11 ı ı U L V ~ ..S. V\.ııJ._. •. U~ll .I. .:Jllı.i L ı...,ı .:ı,

early releases can be made with fewer tiers than later releases without necessitating big

changes in the code of a system.

Using distributed object technology does not preclude using either relational or

OODBMS technology as appropriate for object persistence on the serveris) in any of the

upper tiers. In fact, one common solution is to utilize an ODBMS for object persistence

between tiers one and two, and an RDBMS for persistence between tiers two and three.

79

Related Patterns:

Layer Architecture discusses how to distribute behavior among the layers of software
architecture.

PATTERN A l\ I ~ r+r-r
M f \l U rı I CUE NT DI!::ıTRIBUTE

LAYERS TINO BY TWO)
Problem:

Having seen that both "fat" and "thin" clients are not appropriate, what İs the proper,

S ll"'h th t the cıt,:,-rn ; l"ı:>Cn ,,',,,.,,,. ,:, 1"'1° nt1c nachi P rl "" t 'ntn' ble crı duc•• tnat !;' ';I sy,,,.._.,,..., ıe responsive on U cııent c> macr ıne, an._. yet maımaına '.LV anı

architecturally sound?

Forces:

were first introduced to major companies, they were most often used as terminal

emulator front-ends to existing mainframe programs. These so-called "thin" clients did

not take advantage of the capabilities or processing power of the new PC clients, and

could not allow for complex user interaction to occur on the client side.

L71 a resp9nse to this, the first generation of client-server systems often overloaded the

client by placing all of the domain and display logic on the client. These so-called "fat"

clients were often characterized by being big, slow, and inefficient at utilizing machine~ .

resources (network traffic, CPU horsepower, etc.). In a response to this, the "thin" client

model is back in vogue. This time the client consists of a Web browser that accesses

has the same problems as the original terminal-emulator approach in that the entire

processing takes place on the server end, and complex user interaction is not allowed.

The price of memory, hard-drive space and processor speed come down almost daily.

However, it is apparent that the requirements placed on these resources by modern

software are exoandinz at an even faster rate. It is not uncommon to see larze-scale< ._, ._,

client-server programs that take up 15 or more megabytes of memory by themselves. At

80

the same time, these same advances that make client machines more powerful are also

making multiprocessor servers more cost-effective. However, most current client-server

systems do not take foll advantage of this processing power, as füe server is most often

used only as a data or file server. Therefore:

Solution:

Break the system for distribution between the Application Model and Domain Model

layers, or at some appropriate point inside the Domain Model layer (see Figure 3:

Distributed layers). The upper two layers will reside on the client. The lower two layers

willreside on the server. This will allow the code that receives the most user interaction

(the upper two layers) to handle these close to the user. On the other hand, the code that

handles the business logic will reside on the server. This makes it easier to design the

interaction between the objects in your system if you know ahead of time where in the

network these objects will reside.

Discussion:

This solution minimizes the amount of processing that must be done on a Client, and

can reduce its need for memory and computational power. Note that once a system is

broken up this way it does not require that the top two layers be implemented in the

same language as the bottom two layers. A heterogeneous system will work if some

type of object-to-object communication is provided. It would be perfectly acceptable to

write the top two layers in Java, and the bottom two in C++ or Smalltalk, or have the

entire system written from top to bottom in one language. So long as an object

communication technology like CORBA or SOM can be used to provide intra-machine

message passing, there should not be any restrictions put on the choice of language or

platform.

Sources:

Texas Instrument's Control WORKS project was the first large-scale project I have seen

that successfully implemented this method. Since then many companies have broken

their applications up in this way -- it is in fact recommended by Gemstone as the best

use of their product.

Related Patterns:

81

Four-layer architecture demonstrates why systems should have clear layer boundaries

and how that helps make systems more manageable.

82

CHAPTER FOUR

DATA BASE OPTION OF THE LIFE HOSPITAL

database, generally speaking, is a collection of information specially organized into a

up, The information should be organized in a way that allows for easy retrieval. As an

aaıımle, a telephone book is a non-computerized database of information. It is organized in

mphabeticalorder and includes information such as names, addresses, and telephone numbers.

Computerized databases allow you to manipulate large amounts of data quickly and easily.

y simplifyhave tasks such as searching for specific data, organizing and sorting data, and

ınaking corrections or changes to data.

In Microsoft Access, the data is stored in tables. Every table has a structure that provides for

the collection, organization, storage, and retrieval of data within the tables.

table consists of fields and records. Fields are categories of information. For example, in an

address table, you may maintainnames, addresses, cities, states, and zip codes. A set of fields

which contains data for a single entry is called a record.

MS Access is a relational database application (DBMS - Data Base Management System).A

relational database contains a large amount of data that is split into numerous interrelated

tables. Each table is then smaller, more manageable, and, in tum, more efficient. In a

relational database, each .table should represent one subject, for example, Namş, Address, or

Zip Code. These tables can then be joined together to make them related. When tables are

related, you can access information from any of the fields in the related tables. This way your

reports, forms, and queries, can be based on information from any of the related data tables.

83

Basic Information about Tables, Forms, Reports and Queries

table is a collection of data about a bout a specific topic, such as products or suppliers.

a separate table for each topic means that you store that data only once, which makes

database more efficient, and reduces data-entry errors.

Sihirbazı kullanarak tablo oluitur
Veriler girerek tablo oluştur

!~~!:.:!
Table2

Tablo3

Figure:3.1 Microsoft Access

84

Figure:3.2 Tablel[Ms Access]

use ptn_id, ptn_name, ptn_lastname, ptnjob, ptn_department, ptn_fcame, ptn_lcame,

_time in table 1.

Figure:3.3 Table2 [MS Access]•.
I use ptnjd, ptn_name, ptn_lastname, ptn_tel, ptn_@posta, ptn_insureno, ptn_addres,

ptn_department in table2. •

85

)

Figure: 3.4 Table3 [MS Access]

use ptn_id, ptn_name, ptn_internalaffairs,ptn_surcial, ptn_ear,nose, throat, ptn eye,

_neurol()gy,ptn_psychology, ptrıphysiotherapy, ptn_dentist in table3.

.2.2 Forms

You can use forms for a variety of purposes. Most of the information in a form comes from

underlyingrecord source. Other information in the form is stored in the foım's design.

"'

Figure3.5: Form Example[Ms Access SPLASH SCREEN]

86

)

report is an effective way to present your data in a printed format. Because you have

ol over the size and appearance of everything on a report, you can display the

Figure 3.6: Reports Example [MS Access APPOINTMENT Report]

Most of the information in a report comes from an underlying table, query, or SQL statement,

which is the source of the report's data. Other information in the report is stored in the

report's design.

•

87

Figure 3.7: Example of Report Design [Ms Access]

.2.4 Queries

You use queries to view, changes and analyze data in different ways. You can also use them

as the source of records for froms, reports and data access pages.

Figure 3.8: Queries Example [Ms Access appointment queries]

The most commonly type of query is a select query. A select query retrieves data from one or

more tables by using criteria you specify and then displays it in the order you want.

88

Figure 3.9: Design of Queries Example [Ms Access]

Description of the software
software is design for those companies who deals with patient and patient information

~· In addition the information about the hospital department can also be maintained in this

gram.
MainMenu consist of two (2) option and they are as follows:

• Main Form Page where you can add, delete, appointment, department, search, update,

address data

• Main Form Page where you can View different Report

Figure 3.10: l\WN MENU [Ms Access]

89

Main Form Page where you can add, delete, search, update,
rtment, appointment, address data

· is a main form page where you can add, delete, update or search the data. The main form

consist of the followingoption.

1. Patient ID, Name, Lastname, Job, Department, Lastcame, Nextcome, Time(ADD)

Patient ID, Name, Lastname, Job, Department, Lastcame, Nextcome, Time.(DELETE)

3. Patient ID (SEARCH)
4. Patient ID, Name, Lastname, Note, Department, Lastcame, Nextcome (UPDATE)

5. FormofDEPARTMENT Patient ID, Name and Department (anyone)

6. Form of APPOINTMENT Patient ID, Name, Lastname, Insureno, Department,

Lastcame, Nextcome, Time, Address, Phone
7. Form ofADDRESS Patient Name, Lastname, Phone, e-Mail, Address

.1 Patient ID and Name Information
the Hospital information you can just view the Patient ID and the Name of the Hospital,

can ADD, DELETE, UPDATE, SEARCH the information from there, as these

ormation are Locked.

.4.2 ADD DETAILS
this window all information about the Patient is listed which gives the information what

ve been Patient. Toe information from this window can be add.

••

90

Figure 3.11: ADDING FORM

• ID

• Name

: The ID of the Patient order (Auto define)

: The Name of the Patient.

• Lastname : The Last Name of the Patient

• Job : The job of the Patient

• Department: The Department of the Patient

• Lastcame : When did he/she come

• Nextcome : When will he/she come.

• Time : What is the time of patient appointment

• Click (ADD): Adding record

• Click (MAIN): Go to main menu

CODES:
Private Sub Command7_Click()

Dim db As DAO.Database

Dim rs As DAO.Recordset

Dim s As String

s ="select* from Table!"

Set db = CurrentDb()

Set rs= db.OpenR.ecordset(s)

91

rs.AddNew

rs.Fields(O).Value = ptn_id

rs.Fields(l).Value = ptn_name

rs.Fields(2).Value = ptn_lname

rs.Fields(3).Value = ptn_note

rs.Fields(4).Value = ptn_pursuitsubject

rs.Fields(5).Value = ptn_lcame

rs.Fields(6).Value = ptn_fcame

rs.Update

End Sub

/~
4.4.3 DELETE DET AILS

In this window all information about the Patient is listed which gives the information what

have been Patient. The information from this window can be deleted.

••

Figure 3.12: DELETE FORM

92

• ID

• Name

: The ID of the Patient order (Auto define)

: The Name of the Patient.

• Lastname : The Last Name of the Patient

• Job : The job of the Patient

• Department: The Department of the Patient

• Lastcame : When did he/she come

• Nextcome : When will he/she come.

• Click (PREVIOUS) : Go to the previous record

• Click (NEXT) : Go to the next record

• Click (DELETE) : Delete select record

• Click (MAIN) : Go to main menu

:ODES:

>rivate Sub Comınand7_Click()

)im db As DAO.Database

)im rs As DAO.Recordset

;et db = CurrentDb()

;et rs= db.OpenRecordsetC'tablel")

'S.MoveLast

·s.Delete

'S.MoveFirst

;nd Sub

•
ı.4.4 DEPARTMENT DETAILS

[n this window all information about the Patient ID and NAME is listed which gives the

DepartmentInformation.

93

Figure 3.13: DEPARTMENT FORM

• ID : Patient_id (Auto define)

• Name :Patient Name
• -'1 : If you want to any department you can tick.

4.4.5. SEARCH DETAILS
In this window you can any patient_Id and than you see patient information.

"'

94

Figure 3.14 :SEARCHING FORM

• ID : Patient ID (Auto Define)

• Name : Patient Name

• Lastname: Patient Last Name

• Department: Patient came which department

• Insure No: Patient Insure No

• Address : Patient Address

• E-Mail : Patient E-Mail

• Phone : Patient Phone

• Click (SEARCH) : Search with ptn_id

• Click (MAIN) : Go to main menu

CODES:

Private Sub Komut9 _Click()

Me.Child2.Fonn.Requery

End Sub

•

4.4.6 APOINTMENT DETAILS

This window is a patient appointment and information.

95

Figure 3.15: APPOINTMENT FORM

• Name : Patient Name

• Lastname: Patient Last Name

• Department: Patient came which department

• Insure No: Patient Insure No

• Department: Patient came which department

• Address : Patient Address

• Phone : Patient Phone

• Lastcame: The patient is when did he/she came

• Futurecome: The patient is when will he/she come

• Time: The appointment time
••

• Click (PREVIOUS) : Go to previous record

• Click (NEXT) : Go to next record •

4.4.7 REPORT DETAILS
A this stage we can view all the information about the data, which has been entered in the

table with the help of the form, all the form has there own reports which can be view or can be

print if necessary. All the report shows date for the further information.An example how to

view the reports are shown in the below figure.

96

I ~
l
I

Tablet
lable2
Tabh::3
Address
Appointment
Delete
Department

I
1 Fil'stcome

Appointment Day Search
Search
Sickness

I ı.ı I I ı ı

Figure 3.17: REPORTS FORM

• Clickl: Tablet (See or Print)

• Click2: Table2 (See or Print)

• Click3: Table3 (See or Print)

• Click4: Address (See or Print)

• Click5: Appointment (See or Print)

• Click6: Delete (See or Print)

• Click7: Fcame (See or Print)

• Clicks: Department (See or Print)

• Click9: Appointment Day with search (See or Print)

• ClickIO: Search (See or Print)

• Clickl 1: Sickness (See or Print)

• Click (MAIN) .Go to main menu

4.4.8 Update Details

In this window all information is update.

97

•

Figure 3.18: UPDATE FORM

• ptnid :Patient Id (Auto Define)

• ptn_name :Patient Name

• ptn lname: Patient Last Name

• ptn_note : Patient's notes

• ptn_department : Patient Department

• ptnIcame: Patient Last Came

• ptnfcome: Patient Future Come

• Click (UPDATE) :Update select record

• Click (MAIN) : Go to main menu

CODES:
Private Sub Command7_Click()

Dim db As DAO.Database

Dim rs As DAO.Recordset

Dim s As String

Set db = CurrentDb()

s = "Tablel"

Set rs= db.OpenRecordset(s)

rs.Edit

rs.Fields(O).Value= ptn_id

rs.Fields(l).Value = ptn_name

••

98

rs.Fields(2).Value = ptn_lname

rs.Fields(3).Value= ptn_note

rs.Fields(4).Value = ptn_pursuitsubject

rs.Fields(5).Value= ptn_lcame

rs.Fields(6).Value= ptnfcame

rs.Update

End Sub

Click(UPDATE): These record are update

Click (MAIN) : Close this form and Open Main Menu

4.4.9 ADDRESS DETAILS

In this stage we can see Patient Address records

Figure 3.19: ADDRESS FORM

• Name : Patient Name

• Lastname: Patient Last Name

• Address : Patient Address

• E-Mail: Patient E-Mail

• Phone : Patient Phone

99

• Click (MAIN MENU): Close ADDRESS and open MAINMENU

4.4. 10 REPORTS

Figure 3.20: ADDRESS REPORT

Figure 3.21: APPOINTMENT REPORT

100

Figure 3.22: DELETE REPORT

Figure 3.23 :DEPARTMENT REPORTS

101

Figure 3.24: FCAME REPORT

Figure 3.25: APPOINTMENT REPORT

•

102

Figure 3.26: SEARCH REPORT

Figure 3.27: SICKNESS REPORT

103

Figure 3.28:Table 2 Report

Figure 3.29: Table 3 Report

104

4A.\\ MACRO

1111 De~erBelirle

İleti
Bip
Tür
a~

EylemDeği1kenleri

WELCOMETO THE PROGRAM
Evet
Bilgi

Figure3.30: MACRO DESIGN

...J
~ WELCOMETOTHEPROGRAM

Figure 3. 31: MACRO (WELCOME TO THE PROGRAM)

•

105

ileti
Bip
Tür
e~ık

·-r

Eyl@rn De~kenler!
WRONG!

Evet
Vok

~-ınJıs==ı~
'__ı

Figure 3.32: MACRO DESIGN

1/t/RONG!

t Tamam

_JI
I
1ı
'i-·----~--------·---~·---

Figure 3.33: MACRO (WRONG!)

106

•

CONCLUSION

Practically implementation of software for business though it is related to any field needs a

devoted and complete life cycle. In this project I personally visit two companies, which deal

with patient information, so that I can understand their requirements and the problems, which

may occur in the implementation. The most important think that I would like to mention, is

the attitude, which has to be face during the life cycle of the company or organization. And

according to my point of view the reason of most unsuccessful project is misunderstanding

between the two parties.

The software was created after the deep analyst, so that all-important requirement of the

company those who dealing with computer sales and purchase can be accomplished. Patient,

name and Id have been added in the program to over come the mistakes, which may occurs.

Plus a lock table and form has been generated which contain the entire ID with name, so by
mistake it cannot be merged with each other. Reports are also generated with the help of the

Queries for the update purpose. Which contain all information with dates. Help file is also

written so that there will be no problem while handlingthe software.

The chapters of the software are also organized in such a manner so that all the information

related to DBMS can be understood easily, i.e. chapter one and two are the introductory

chapter, which give detail infonnation about DBMS, chapter three contain a advance

informationand chapter four contain informationabout the software with the help file.

•

107

REFERENCES

[1} Aptech Limited, oracle 8.0
[21 Ms Access, Help
[3] DBMS and Internet Systems (http://www.dbmsmag.com/)

Miller Freeman, inc.
[4] http://www.csusm.edw'hylinlcsll 1/'notes/dbms.htm
[5] C. Dr Julie A. Mccann, 1999, secton2 "Database Application Lifecycle.
[6] C. Dr Julie A. McCann, 1999, secton2 "RelationalData Base Management Issues."

•

108

