
NEAR EAST UNIVERSITY

Faculty of Engineering

Department Of Computer Engineering

DEVELOPMENT AND INTEGRATION OF DBMS
WITH ORACLE INTEGRATED INTO JAVA

Graduation Project
COM-400

Student: Tariq Javed

Supervisor: Mr. Halil Adahan

Nicosia - 2003



"'-· '
ABSTRACT Ilı-- .) tr\

'. IJJ~c.n, {!J ...ı-- ::J , 1
Database management has evolved from a specialized computer applicatioıi~~~

component of a modem computing envıronment. As such, database systems hav~ec0ıne

an essential part of computer science education. Oracle provides a secure platform for

database management. The Oracle server is a full-featured RDBMS that is ideally suited

to support sophisticated client/server environments. Many features of the Oracle internal

architecture are designed to provide high availability, maximum throughput, security, and

efficient use of its host's resources. Oracle's Net8 feature provide the Oracle's

functionality on the network. The Oracle server can be implemented on the network and

fully supports enterprise applications.
The Java technology is an object-oriented, platform-independent, multithreaded,

programming environment. It allows us to securely extend our enterprise through

platform independence. All kinds of systems can talk to each other regardless of the

underlying hardware or system software. We can access Oracle database using JDBC and

SQLJ which are rich features of Java to support development of database applications

using Java platform. We can give remote access to the applications by using Java's

Remote Method Invocation package.



LIST OF FIGURES

Figurel.1 Oracle8i Kernal 2

Figurel.2 Structure of Oracle 3

Figure2.1 Network Listener In a Typical Net8 Connection 39

Figure 2-2 Bequeathed Connection To a Dedicated Server Process 39

Figure2.3 Redirected Connection To a Prespawned Dedicated Server Process 40

Figure2.4 Redirected Connection To a Dispatcher Server Process 41

Figure 2-5 OSI Communications Stack 46

Figure2.6 Typical Communications Stack in an Oracle environment 48

Figure2.7 The Distributed and Nondistributed Models Contrasted 53

Figure2.8 RMI Interfaces and Classes 55

TT



TABLE OF CONTENTS

CHAPTERl

1.1 RELATIONAL DATABASE MANAGEMENT SYSTEM

1.2 RDBMS COMPONENTS

1.2.1 The RDBMS Kernel

1.2.2 The Data Dictionary

1.3 ORACLE DATABASE

1.4 ORACLE FILES

1.4.1 Database Files

1.4.2 Control Files

1.4.3 Redo Logs

1.4.3.1 Online Redo Logs

1.4.3.2 Offiine/ Archived Redo Logs

1.4.4 Other Supporting Files

1.5 SYSTEM AND USER PROCESSES
1.5.1 Mandatory System Processes

1.5.1.1 DBWR (Database Writer)

1.5.1.2 LGWR (Log Writer)

1.5.1.3 SMON (System Monitor)

1.5.1.4 PMON (Process Monitor)

1.5.2 Optional System Processes

1.5.2.1 ARCH (Archiver)

1.5.2.2 CKPT (Checkpoint Process)

1.5.2.3 RECO (Recoverer)

TTT 

1

1

1

2

4

4

4

5

5

6

6

6

6

7

7

7

7

8

8

8

9

9



1.5.2.4 LCK (Lock)

1.5.3 User Processes

1.5.3.1 Single Task

1.5.3.2 Dedicated Server Processes

1.5.3.3 The Multi-Threaded Server

1.6 ORACLE MEMORY

1.6.1 System Global Area (SGA)

1.6.1.1 Database Buffer Cache

1.6.1.2 Redo Cache

1.6.1.3 Shared Pool Area

1.6.1.4 SQL Area

1.6.1.5 Dictionary Cache

1.6.2 Process Global Area

HT

10

10

10

11

11

12

12

12

13

13

13

14

14



CHAPTER2

2.1 ORACLE ACCESS WITH JDBC 16

2.1.1 Driver Types 17

2.1.1.1 Thin driver 17

2.1.1.2 OCI8 driver 17

2.1.2 The DriverManager Class 17

2.1.3 The Driver Class 18

2.1.4 The Connection Class 18

2.1.5 The Statement Class 19

2.1.6 The ResultSet Class 19

2.2 SQLJ 20

2.2.1 SQLJ Components 21

2.2.1.1 Oracle SQLJ translator 21

2.2.1.2 Oracle SQLJ runtime 21

2.2.1.3 SQLJ Profiles 22

2.2.2 Oracle Extensions to the SQLJ Standard 22

2.2.3 Basic Translation Steps and Runtime Processing 23

2.2.3.1 Translation Steps 23

2.2.3.2 Runtime Processing 24

2.2.4 SQLJ Declarations 25

2.2.5 Java Host Expressions, Context Expressions, and Result Expressions 25

2.2.5.1 Host Expressions 26

2.2.5.2 Context Expressions 26

2.2.5.3 Result Expressions 27

2.2.6 Stored Procedure and Function Calls 27

u



2.2.7 Multithreading in SQLJ

2.2.8 SQLJ and JDBC Interoperability

27

28

2.2.8.1Converting from Connection Contexts to JDBC Connections 29

2.2.8.2Converting from JDBC Connections to Connection Contexts 29

2.2.8.3Shared Connections 29

2.2.9SQLJ In the Server 30

2.2.9.1Creating SQLJ Code for Usewithin the Server 31

2.2.9.2Database Connections within the Server 31

2.2.9.3Coding Issues within the Server 31

2.2.9.4Name Resolution in the Server 31

2.2.9.5SQL Namesversus Java Names 32

2.2.9.6Translating SQLJ Source on a Client and Loading 33

Components

2.2.9.7 Error Output from the Server Embedded Translator 33

2.3 NETS

2.3.1Introduction to Net8

2.3.2Advantages of Net8

2.3.2.1Network Transparency

2.3.2.2Protocol Independence

2.3.2.3Media/TopologyIndependence

34

34

34

34

35

"\TT 



2.3.2.4 Heterogeneous Networking 35

2.3.2.5 Large Scale Scalability 35

2.3.3 Nets Features 35

2.3.3.1 Scalability Features 35

2.3.3.2 Manageability Features 36

2.3.3.2.1 Host Naming 36

2.3.3.2.2 Oracle Net8 Assistant 36

2.3.3.3 Multiprotocol Support Using Oracle Connection Manager 37

2.3.3.4 Oracle Trace Assistant 37

2.3.3.5 Native Naming Adapters 37

2.3.4 Net8 Operations 37

2.3.5 Connect Operations 38

2.3.5.1 Connecting to Servers 38

2.3.5.2 Establishing Connections with the Network Listener 38

2.3.5.2.1 Bequeathed Sessions to Dedicated Server Processes 39

2.3.5.2.2 Redirected Sessions to Existing Server Processes 40

2.3.5.2.3 Refused Sessions 42

2.3.6 Disconnecting from Servers 42

2.3.6.1 User-Initiated Disconnect 42

2.3.6.2 Additional Connection Request 42

2.3.6.3 Abnormal Connection Termination 42

2.3.6.4 Timer Initiated Disconnect or Dead Connection Detection 42

"\TTT 



2.3. 7 Data Operations 43

2.3.8 Exception Operations 43

2.3.9 Net8 and the Transparent Network Substrate (TNS) 44

2.3.10 Net8 Architecture 44

2.3.10.1 Distributed Processing 44

2.3.10.2 Stack Communications 45

2.3.10.3 Stack Communications in an Oracle networking environment 47
2.3.10.3.1 Client-Server Interaction 47

2.3.10.4 Server-to-Server Interaction 51

2.4 DISTRIBUTED COMPUTING USING JAVA 52

2.4.1 Distributed Object Applications 52

2.4.2 The Distributed and Nondistributed Models Contrasted 53

2.4.3 RMI Interfaces and Classes 54

2.4.3.1 The java.rmi.Remote Interface 55

2.4.4 Parameter Passing in Remote Method Invocation 55

2.4.4.1 Passing Non-remote Objects 55

2.4.4.2 Passing Remote Objects 56

2.4.4.3 Referential Integrity 56

2.4.4.4 Class Annotation 56

2.4.4.5 Parameter Transmission 56

2.4.5 Locating Remote Objects

2.4.6 Stubs and Skeletons

57

58

vrrrr



2.4.7 Thread Usage in Remote Method Invocations 58

2.4.8 Garbage Collection of Remote Objects 59

2.4.9 Dynamic Class Loading 60

2.4.10 RMI Through Firewalls Via Proxies 61

2.4.10.1 How an RMI Call is Packaged within the HTTP Protocol 61

2.4.10.2 The Default Socket Factory 62

2.4.10.3 Configuring the Client 62

2.4.10.4 Configuring the Server 63

2.4.10.5 Performance Issues and Limitations 63

CHAPTER3

3.1 INTRODUCTION

3.2 PROGRAM IMPLEMENTATION

3.2.1 Database

3.2.2 Application

64

64

64

65

SUMMARY

CONCLUSION

APPENDICES

APPENDIX A

A.1 Main.java

A.2 StudentNew.java

A.3 StudentChange.java

A.4 StudentDelete.java

A.5 StudentView.java

APPENDIXB

GLOSSARY OF JAVA AND RELATED TERMS

REFERENCES

67

68

69

69

72

76

81

85

90-97

98

TV 



CHAPTER! 

1.1 RELATIONAL DATABASE MANAGEMENT SYSTEM 

A database is an integrated collection of related data. Given a specific data item, the structure

of a database facilitates the access to data related to it. A relational database is a type of

database based in the relational model. A relational database management system is the

software that manages a relational database. These systems come in several varieties, ranging

from single-user desktop systems to full-featured, global, enterprise-wide systems, such as

Oracle8.

1.2 RDBMS COMPONENTS 

Two important pieces of an RDBMS architecture are the kernel, which is the software, and

the data dictionary, which consists of the system-level data structures used by the kernel to

manage the database.

1.2.1 The RDBMS Kernel 

You might think of an RDBMS as an operating system or set of subsystems, designed

specifically for controlling data access, its primary functions are storing, retrieving, and

-secııring data. Like an operating system, Oracle8i manages and controls access to a given set

of resources for concurrent database users. The subsystems of an RDBMS closely resemble

those of a host operating system and tightly integrate with the host's services for machine­

level access to resources such as memory, CPU, devices, and file structures. An RDBMS

such as Oracleôi maintains its own list of authorized users and their associated privileges,

manages memory caches and paging, controls locking for concurrent resource usage,

dispatches and schedules user requests, and manages space usage within its tablespace

structures. Figure 1. 1 illustrates the primary subsystems of the Oracle8i kernel that manage

the database.



RDB1vlS

Figure 1. 1 Oracle8i Kernel

1.2.2 The Data Dictionary 

A fundamental difference between an RDBMS and other database and file systems is in

the way that they access data. A RDBMS enables you to reference physical data in a

more abstract, logical fashion, providing ease and flexibility in developing application

code. Programs using an RDBMS access data through a database engine, creating

independence from the actual data source and insulating applications from the details of

the underlying physical data structures. Rather than accessing a customer number as

bytes 1 through 1 O of the customer record, an application simply refers to the attribute

Customer Number. The RDBMS takes care of where the field is stored in the database.

Consider the amount of programming modifications that you must make if you change a

record structure in a file system-based application. However, using an RDBMS, the



application code would continue to reference the attribute by name rather than by record

position, alleviating the need for any modifications.

This data independence is possible because of the RDBMS's data dictionary. The data

dictionary stores meta-data for all the objects that reside in the database. Oracle's data

dictionary is a set of tables and database objects that is stored in a special area of the

database and maintained exclusively by the Oracle kernel. As shown in Figure 1.2,

requests to read or update the database are processed by the Oracle kernel using the

information in the data dictionary. The information in the data dictionary validates the

existence of the objects, provides access to them, and maps the actual physical storage

location.

Aeeess tô all&ata in ttıe datak~ ıs m~ed by the
b'arel; appl~ttoos ~wr wrl~ d'ı.reetty to 'the data~.

Omele
Kernel.

Figure 1.2 Structure of Oracle

Not only does the RDBMS take care of locating data, it also determines an optimal access

path to store or retrieve the data. Oracle8 uses sophisticated algorithms that enable you to



retrieve information either for the best response for the first set of rows, or for total

throughput of all rows to be retrieved.

1.3 ORACLE DATABASE 

Physically, an Oracle database is nothing more than a set of files somewhere on disk. The

physical location of these files is irrelevant to the function of the database. The files are

binary files that we can only access using the Oracle kernel software. Querying data in

the database files is typically done with one of the Oracle tools using the Structured

Query Language.

Logically, the database is divided into a set of Oracle user accounts, each of which is

identified by a username and password unique to that database. Tables and other objects

are owned by one of these Oracle users, and access to the data is only available by

logging in to the database using an Oracle username and password. Without a valid

username and password for the database, you are denied access to anything on the

database. The Oracle username and password is different from the operating system

username and password.

In addition to physical files, Oracle processes and memory structures must also be present

before we can use the database.

1.4 ORACLE FILES 

In this part, I discuss the different types of files that Oracle uses on the hard disk drive of

any machine.

1.4.1 Database Files 

The database files hold the actual data and are typically the largest in size, from a few

megabytes to many gigabytes. The other files support the rest of the architecture.

Depending on their sizes, the tables and other objects for all the user accounts can

obviously go in one database file, but that's not an ideal situation because it does not

make the database structure very flexible for controlling access to storage for different

ı1



Oracle users, putting the database on different disk drives, or backing up and restoring
just part of the database.

We must have at least one database file, but usually, we have many more than one. In

terms of accessing and using the data in the tables and other objects, the number or

location of the files is immaterial. The database files are fixed in size and never grow

bigger than the size at which they were created.

1.4.2 Control Files 

Any database must have at least one control file, although we typically have more than

one to guard against loss. The control file records the name of the database, the date and

time it was created, the location of the database and redo logs, and the synchronization

information to ensure that all three sets of files are always in step. Every time we add a

İıew database or redo log file to the database, the information is recorded in the control
files.

1.4.3 Redo Logs 

Any database must have at least two redo logs. These are the journals for the database,

the redo logs record all changes to the user objects or system objects. If any type of

failure occurs, such as loss of one or more database files, we can use the changes

recorded in the redo logs to bring the database to a consistent state without losing any

committed transactions. In the case of non-data loss failure, such as a machine crash,

Oracle can apply the information in the redo logs automatically without intervention from

the database administrator. The SMON background process automatically reapplies the
committed changes in the redo logs to the database files.

Like the other files used by Oracle, the redo log files are fixed in size and never grow
dynamically from the size at which they were created.



1.4.3.1 Online Redo Logs 

The online redo logs are the two or more redo log files that are always in use while the

Oracle instance is up and running. Changes we make are recorded to each of the redo

logs in turn. When one is full, the other is written to, when that becomes full, the first is

overwritten, and the cycle continues.

1.4.3.2 Offline/ Archived Redo Logs 

The offline or archived redo logs are exact copies of the online redo logs that have been

filled, it is optional whether we ask Oracle to create these. Oracle only creates them when

the database is running in ARCHIVELOG mode. If the database is running in

ARCHIVELOG mode, the ARCH background process wakes up and copies the online

redo log to the offline destination once it becomes full. While this copying is in progress,

Oracle uses the other online redo log. If we have a complete set of offline redo logs since

the database was last backed up, we have a complete record of changes that have been

made. We could then use this record to reapply the changes to the backup copy of the

database files if one or more online database files are lost.

1.4.4 Other Supporting Files 

When we start an Oracle instance, the instance parameter file determines the sizes and

modes of the database. This parameter file is known as the !NIT.ORA file. This is an

ordinary text file containing parameters for which we can override the default settings.

The DBA is responsible for creating and modifying the contents of this parameter file.

On some Oracle platforms, a SGAPAD file is also created, which contains the starting

memory address of the Oracle SGA.

1.5 SYSTEM AND USER PROCESSES 

In this part, I discuss some of the Oracle system processes that must be running for the

database to be useable, including the optional processes and the processes that are created

for users connecting to the Oracle database.



1.5.1 Mandatory System Processes 

The four Oracle system processes that must always be up and running for the database to

be useable include DBWR (Database Writer), LGWR (Log Writer), SMON (System

Monitor), and PMON (Process Monitor).

1.5.1.1 DBWR (Database Writer) 

The database writer background process writes modified database blocks in the SGA to

the database files. It reads only the blocks that have changed. These blocks are also called

dirty blocks. The database writer writes out the least recently used blocks first. These

blocks are not necessarily written to the database when the transaction commits, the only

thing that always happens on a commit is that the changes are recorded and written to the

online redo log files. The database blocks will be written out later when there are not

enough buffers free in the SGA to read in a new block.

1.5.1.2 LGWR (Log Writer) 

The log writer process writes the entries in the SGA's redo buffer for one or more

transactions to the online redo log files. For example, when a transaction commits, the

log writer must write out the entries in the redo log buffer to the redo log files on disk

before the process receives a message indicating that the commit was successful. Once

committed, the changes are safe on disk even though the modified database blocks are

still in the SGA's database buffer area waiting to be written out by DBWR. The SMON

can always reapply the changes from the redo logs if the memory's most up-to-date copy

of the database blocks is lost.

1.5.1.3 SMON (System Monitor) 

The system monitor process looks after the instance. If two transactions are both waiting

for each other to release locks and neither of them can continue known as a deadlock or

deadly embrace, SMON detects the situation and one of the processes receives an error

message indicating that a deadlock has occurred.



SMON also releases temporary segments that are no longer in use by the user processes

which caused them to be created.

During idle periods, SMON compacts the free-space fragments in the database files,

making it easier and simpler for Oracle to allocate storage for new database objects or for

existing database objects to grow.

In addition, SMON automatically performs recovery when the Oracle instance is first

started up, if none of the files have been lost. We won't see a message indicating that

instance recovery is occurring, but the instance might take longer to come up.

1.5.1.4 PMON (Process Monitor) 

The process monitor monitors the user processes. If any failure occurs with the user

processes, PMON automatically rolls back the work of the user process since the

transaction started. It releases any locks taken out and other system resources taken up by

the failed process.

PMON also monitors the dispatcher and shared server processes, which are part of the

multi-threaded server setup, and restarts them if they have died.

1.5.2 Optional System Processes 

As well as the four mandatory system processes, there are a number of optional system

processes that we can initiate.

1.5.2.1 ARCH (Archiver) 

When the database is running in ARCHIVELOG mode and we've started the Archiver

background process, it makes a copy of one of the online redo log files to the archive

destination. In this way, we can have a complete history of changes made to the database

files recorded in the offline and the online redo logs.

Q



There is no point in keeping the Archiver background process running if the database is

not running in ARCHIVELOG mode.

1.5.2.2 CKPT (Checkpoint Process) 

A checkpoint occurs when one of the online redo log files fı11s, it wi11 be overwritten

when one of the other online redo logs fı11s. If the redo log file is overwritten, the changes

recorded in that file are not available for reapplying in case of system failure. At a

checkpoint, the modified database buffer blocks are written down to the relative safety of

the database files on disk by the database writer background process. This means that we

won't need the record of changes in the event of system failure with lost memory areas.
After a checkpoint occurs, the redo log can be reused.

At a checkpoint, all the database file headers and redo log file headers are updated to

record the fact that a checkpoint has occurred. The LGWR background process performs

the updating task, which could be significant if there are a large number of database and

redo log files. The entire database might have to wait for the checkpoint to complete

before the redo logs can record further database changes. To reduce the time it takes for

LGWR to update the database and redo log file headers, we can initiate the checkpoint
process.

A checkpoint can occur at other times, such as when the entries in the redo log files reach

a limit defined by the database administrator.

1.5.2.3 RECO (Recoverer) 

We use the Recoverer background process when there is a failure in a distributed

transaction, and one or more of the databases involved need to either commit or roll back

their changes. If initiated, the Recoverer attempts to automatically commit or roll back

the transaction on the local database at timed intervals in synchronization with the

Recoverer processes on the other Oracle databases.

o




