
NEAR·EAST UNIVERSITY

Faculty of Engineering

Department of Computer

STOCK CONTROL SYSTEM
Using Visual Basic Programming

Graduation Project
Com 400

Studer;ıt: Yasir Makki.

Supervisor: Mr. Umit ilhan.

Nicosia - 2001

••

ACKNOWLEDGMENTS

First I want to thank Mr. Umit Ilhan to be my supervisor. Under his guidance,

I successfully overcome many difficulties and learn a lot about Visual Basic

Programming. In each discussion, he explained my questions patiently, and I felt my

quick progress from his advises. I also want to thank Mr. Tayseer Alshanabla to be

my advisor.He always helps me a lot either in my study or my life.

Special thanks to Mekki and Ahmed. With their kind help, and perform

computational problems. Thanks to Faculty of Engineering for having such a good
computational environment.

I also want to thank my friends in NEU, with them make my 3 years in NEU
full fun.

Finally, I want to thank my family, especially my parents. Without their

endless support and love for me, I would never achieve my current position. I wish

my mother lives happilyalways, and my father in the heaven be proud of me.

•

" .. ,l'
G;,,'f(';,1

7,9 6-?iı'İ
'IJe • LE.f~:;

The purpose of this thesis is to define the Stock Control system Database. ~

As all of the data described in the database are derived from data captured by project'.

ABSTRACT

It is useful to review the Data Element Dictionary. This document contains

definitions and file description for each of the data elements to be collected as part of

the project. In addition, a high level overview of the design of the system, and

structure of the various records and fields to be submitted to hospital system are

provided.

Purpose of this Thesis

This project defines the Stock Control System database files.

Audience for this Thesis

The intended audience for this project includes the follow:

(1) Codes - any codes that are responsible for creating and maintaining the data

elements and file description specifiedin this project.

(2) Screens - those individualswho wish to view the data collected and processed

as part of the Stock Control Project from a "summary"or "subtotaled" point of

vıew. The database files are used by the company staff to verify that the

underlying unitary data reported as part of the project are valid and consistent

from term-to-term and year-to-year.

Scope of this thesis

The central role of this project is to provide information concerning the

Stock Control System Database files. This document provides an overview of the
~

database design as well as detailed specifications for each of the database files and
~

data elements that comprise them. •
Also, This document is both intended, to give a detailed explanation of the

sources of the data used to create the files, and a detailed explanation as to how the

files can be used. The source for all files is the data collected and processed as part of
the Stock Control Systemproject.

11

TABLE OF CONTENT

A·CKNOWLEDGEMENT .

ABSTRACT ii
ffiTRODUCTION iii

1.])J\..~i\. 1\l()])E:~ •••·•·•·•••··•·•••·••··•••··••••••·•·····••••·••·••·•·•···••••·•••·•·•1
1. 1. Conceptual Data Model . 1

1.2. The Logical Data Model 2

1.3. PhysicalData Model... 2

1.4. Normalization... 7

1. 5. Populating Entity Attributes . 8

1. 6. Aggregating Entity Attributes . 9

1.7. Relationship Types 14

2. LOGICAL DATABASE DESIGN •..• .•..•.... 17

2.1. Database Design Methodologies . 17

2.2. Entity-Attributes- Relation Versus Object- Relation Approaches...... 18

2.3. Rules to Guide Logical Database Design.................................... 20

2.4. Relationship Characteristics . 22

3. CREATffiG A DATABASE ffi MICROSOFT ACCESS•..•. 25

4. VISUAL BASIC , 26

4. 1. The major types of errors . 30

4.2. Managing Data within the tables . 31

4.3. The three important challenges that face every Database Programmer
. . 1 . 1· . 33wntıng mu tı-user app ıcatıon .

4.4. ODBC Data Access via the ODBC API 35
"

5. STOCK CONTROL SYSTEM 38 ,,

5. 1. Tables and Relations .•. 38
•

· 5.2. Screens and Layouts... 39

5.3. Code 47

CONCLUSION 72

RE~.F:RE~~l:S 73

INTRODUCTION

The success of a database is completely dependent on the logical database

design. Even if we buy expensive and fast hardware and software, the quality of the

database design will dictate whether a project will succeed. In a way, it is the Achilles

heel of a project.

A good database design does the following:

1. Provides minimumsearch time when locating specificrecord.

2. Stores data in the most efficient manner possible to keep the database from

growing too large.

3. Makes data updates as easy as possible.

4. Is flexibleenough to allow inclusion ofnew functions required of the program.

The database design process can be divided into six steps:

1. Requirement analysis.

2. Conceptual database design.

3. Logical database design.

4. Schema refinements.

5. Physical database design.

6. Security database design.

What is logical database design'?

It is the phase in the system development life cycle concerned with

constructing tables and their columns. During-this phase decisions are made about

which piece of data should be stored and how those pieces should be arranged

logically in tables. This phase precedes physical database design where the emphasis

is on how the data is really stored on disk. Physical database design deals with issues

such as storage and performance.

. This one-day workshop discusses all the aspects of logical database design.

Structured techniques for developing a logical design are discussed. Additionally,

111

many guidelines, tips, and tricks are given. And logical database design is looked at

from a transactional and from a data warehouse environment. Because the use of data

warehouse is different, different rules apply.

Two opposing techniques exist to perform logical database design. The

bottom-up approach, which is based on normalization, is the oldest and most well

known one. One start with placing all columns in one wide table and then these tables

are decomposed into more well structured tables. The decomposition is based on rules

called the normal forms. The second technique, the top-down approach, uses as a

starting point information models where semantic and object-oriented concepts, such

as subtypes and aggregates, are used. These concepts are translated into tables and

columns using an algorithm. Both approaches have their advantages and
,

disadvantages en is, therefore, discussed thoroughly.

Although some of the rules described in thirds workshop do stem from

relational theory, such as the normal forms, the emphasis will be on practical issues.

The workshop is a culmination of many years of experience of designing large

operational databases and data warehouses.

The aim of logical design is to construct a logical schema that correctly and

efficiently represents all of the information described by an entity relationship schema

produced during the conceptual design phase. This is not just a simple translation

from one model to another for two reasons, first, there not a close correspondence

between the models involved because not all the constructs of the entity-relationship

model can be translated naturally into the relational model. For example, while an
@\

entity can easily be represented by a relation. There are various options for the
"

generalizations. Secondly, the aim of conceptual design is to represent the data
•

accurately and naturally from a high-level, computer-independent point of view.

Logical design is instead the basis for the actual implementation of the application,

and must take into account, as far as possible, the performance of the final product.

The schema must there for be destructed in such away as to make the execution of the

projected operations as efficient as possible. In sum, we must plan a task that is not

only a translation (from the conceptual model to the logical) but also reorganization.

Since the organization can for the most part be dealt with independently of the logical

model, it is helpful to dividethe logical design into two steps:

IV

• Restricting of the Entity-Relationship schema, which is independent of the

chosen logical model and is based on criteria for the optimization of the

schema and the simplification of the following step.

• Translation into the logical model, which refers to a specific logical model (In

our case, the relational model) and can include a further optimization, based

on the features of the logical model itself.

The input for the first step is the conceptual schema produced in the preceding

phase and the estimated database load. In terms of the amount of data, and the

operational requirements. The result obtained is a restricted Entity-Relationship

schema.

V

DATA MODELS

Levels of abstraction usually categorize data models:

• Conceptual

• Logical

• Physical

These have no agreed formal definitions. Professional · data modelers understand the

approximate scope of each.

Conceptual Data Model:

A conceptual data model shows data through business eyes.

It suppresses technical details to emphasize:

• All entities, which have business meaning.

• Important relationships ~includingmany-to-many).

• A few significantattributes in the entities.

• A few identifiers or candidate keys.

•

1

The Logical Data Model

- Is a generic relational schema (in at least 1NF) which -

• Replaces many-to-manyrelationshipswith associative entities

• Defines a full population of entity attributes

• May Use non-physical entities for domains and sub

types

• Establishes entity identifiers

• Has no specificsfor anyRDBMS or configuration

Propagation of foreign keys may be explicit or implied in a logical data model. As long as the

resulting physical schema includes the necessary foreign key columns and joins, the

representation of foreign keys in the logical model is a matter of convenience and taste.

Replacing many-to-many relationships with associative entities is necessary to model 1st

normal form, support internal attributes and secondary relationships, and enable alternate
identifiers.

Physical Data Model

A physical data model is a database design for:

• One DBMS product

• One site conflguration

A physical data model may include:

• Referential integrity

• Indexes

• Views

• Alternate keys and other constraints

• Table spaces and physical storage objects

Conceptual Data Model · An Example:

Logical Data
Mo_del Same

Example:

l"''"'"''~-c-ı-er·k··-•••.••••••••

----ı!'""'" ••••• iınspectoreadael• f ı ınspector Badae i
I,,

··s'·,-ff
~--;--r../ •....l

Inspector

3

Physical Data Model - Same Example:

hns-·-~lnsp~~tor
ı ııector Badge·--~~Name !.IZlı!.

What is an Entity?

Person, place, or thing? (Too specific)

Any thing in which the business has an interest? (Too vague)

A synonym for a relational table? (Misses the point)

An information container in 1st normal form which:

• Records a fixed set of attributes

•. Holds O to n occurrences

• Is a relational abstraction of some real-world concept

• May or may not map to a physical table in the database

4

What is a Relationship?

"Customer places Sales Order"

A connection, association, or rule among entities:

"Item occurs on Sales Order"

In a conceptual model, it is sufficientto state or draw the

relationship.

A logical model defines specific means of joining two entities via implied or expressed

foreign keys.

Relationships can be classifiedinto a few relationship types.

Foreign Keys (FK):

A foreign key is a function, not a fact!

A foreign key is the result of relationship and

identity.

If the relationship changes, so does the foreign

key.

The "child"entity gets foreign key attributes to match the identifier of its "parent" entity.
II

5

If the parent identifier changes, so does the child's foreign key.

What is an Entity Identifier?

The identifier of an entity is some set of attributes whose combined value is unique for
all instances of that entity.

Thus an entity's identifier is one of its (possibly

several) candidate keys.

If an entity has more than one candidate key, the choice

of one to be the identifier is an arbitrary convenience for

RDBMS operation.

While an entity identifier is not absolutely mandatory, it

is hard to think of a useful entity without one.

Evolving the Logical Model:

Normalize structures

Populate attributes

Aggregate data items into new entities

Nominate candidate keys

Re-Normalize on the new candidate keys

6

Re-Normalize

L

Normalization:

..a.. Normalize

"Aggregate

I
..a.. Populate

..a.. Nominate

Normal forms are the property that we can use to evaluate the quality of relational

database. We will see that when a relation does not satisfy a normal form, then it presents

redundancies and produces undesirable behaviour during update operations. This principle

can be used to carry out quality analysis on relational databases and so constitutes a useful
••

tool for database design. For the schemas that do not satisfy the normal form, we can provide

a procedure called Normalization. Normalization allows the non-normalized schemas to be
•

transformed in to new schemas for which the satisfaction of a normal form is guaranteed.

Normalization theory constitutes a useful verification tool, which indicates amendments,

it has been developed in the context of the relational model and for this reason, it provides

analysisand design techniques for the out come of logical design.

Normalization can also be used on the Entity-Relationship schemas and during the

qualityanalysisof the conceptual design.

7

Normalizing to a Logical Model:

Every raindrop, every snowflake, every hailstone has a single speck of dust at the core.

Every logical entity has a single idea at its core.

The essence of normalization is one entity = one idea:

• A customer is a person or organization that buys from us.

• A service order holds one customer request for service.

Examine complex data structures for hidden entities in:

• Nouns - tangible or intangible

• Adjectives whose value is one of a known list ...

female imale; green I yellow I red; 6' I 8' I IO'

• Embedded ideas, which can exist on their own

Populating Attributes:

For each entity, ask, "What properties does this thing have - even if nothing else exists around

it?"

• A person has age - even the last person on earth.

• A building has height - even if it is abandoned.

• A song has a key, even if it is unsung"

Ask of each property, "Does this entity have only one of these?"

• A person is of one age.

• A building is of one height.

• A song may be written in one key but sung in another!

8

An attribute is a property of an entity, which depends solely on its entity - nothing else - and

can have only one value at a time

Domains:

6 feet 1/4 inches+ 51.6 years=?

A domain (in relational usage) is a set of values and operations that may be used to populate

and operate on one or more columns.

The values may be specifiedby list or formula.

While is not yet any theoretical or practical way to limit the operations applied to a domain,

this example shows the need.

Aggregating Entity Attributes:

Sometimesyou can reveal entities by looking in the data dictionary for homeless attributes:

• "To whom does atomic weight belong?

And what about the year in which an element

was discovered?"

• Aggregate atomic weight and year into anew entity called Atomic Element.

Crosscheck data elements captured ın the data dictionary from
data flow diagrams, use cases, or other analysis.

All data structures and data elements discovered in analysis,,
must be accounted for in the logical model.

Looking for Hierarchies

Entities often occur in hierarchies - family trees related by
inheritance.

9

This is sub-typing or specialization and generalization - the same as building 00 class

structures.

Each child entity inherits all attributes and relationships from its We define properties at their

highest level in the hierarchy to avoid redundancy.

In a conceptual model, we ignore how inheritance operates.

Later we want to specify how super-and sub-types map from the logical model to physical

structures parent.

• VIN and Registration

Generalization:

Hierarchies let us locate attributes and relationships at the

appropriate level.

All vehicles have:

• Owner

The attributes and relationship are generalized To all vehicles.

Specialization:

• Only cars have primary drivers and seat belts.

• Only trucks have gross vehicle weight.

has preferred
I

is preferred

1
These attributes and relationships are specialized to the· child level.

Specialization of Relationships:

Optional parent relationships usually hide a need for

specialization. Ask your self

• Is the relationship sometimes true for each instance?

10

Then it is correctly modeled as optional.

• Is the relationship always true for some instances?

Then it requires some customers must have a default warehouse.

For others it does not exist (in this model).

By splitting the Customer entity into two sub-types, we can model the relationship to

Warehouse precisely.

is served from
I

is default for

Populating a Conceptual Data Model:

• Diagram entities

• Diagram relationships

• Look for hierarchies:

• Sub-types I super-types

• Specialization/generalization ~

• Class hierarchies

Diagramming Entities:

The entity symbol is a rectangle with the name at
the top.

The entity name must be descriptive and meaningful.An unambiguous text definition

important.

11

The entity graphic symbol may differ slightly by CASE tool or author but the shape is

unimportant.

The entity name is how people will refer to the entity. In the conceptual model an

entity name should not be limited by RDBMS product limits - this is a generic name for the

business. When physical DBMS object names are assigned, be sure to take into account the

naming limits and reserved words of your target.

For example, what is a customer?

• Someone who has purchased?

• Any organization or person who may purchase?

Will this entity definition be clear two years later to a new team?

An Entity represents

• A tangible thing, a real-world event, or any intangible concept: "Product", "Sales visit",

"Customer class discount"

• A class of things, not any one instance. "Person" has instances of "Tom" and "Simone".

Entities are not -

• Independent or Dependent. Those terms apply only to the identificationchoice you make.

• Fundamental, Attributive, or Associative. Classifications have meaning only in a model

context of entities and relationships.

••
Diagramming Relationships:

The relationship symbol is a line between two entities. Define a relationship with:

• Predicate statements in one or both directions

• Unambiguous text description

• (A name is not important)

• cordiality symbolsat each end

12

Will the relationship be clear two years later to a new team?

Relationships are -

• Unambiguous, immutable expressions of business rules.

• Binary or unary in IE, SSADM, IDEFlX and 00 methods.

• Logical objects. Relationships can be reattached, with their properties intact, to different

entities.

Relationships are not -

• Identifyingor Non-Identifying. Those apply only to entity identification.

• Information containers. If you sense a need for information about a "relationship" then it is

an entity!

• DBMS objects. Relationships only definejoins between entities.

There are no standards for relationship style.

Relationship Notations:

There are many notation styles for relationships.

Different styles are read in different directions

But they all express the same information!

Relationship Cardinality:

Cardinality specifies the number of instances

may be involved in each entity of a relationship.

Most methods show the Boolean abstract, not

absolute number, because this determines

relationshiptype...

13

Relationship Types:

Relationships are grouped by their cardinality:

• One-to-Many is the only relational form.

• >99% of logical model

Relationship Types:

One-to-One is a special case of One-to-Many;

<1 % of a logical model

Populating Attributes:

For each entity, ask "What properties does this thing have - even if nothing else exists

around it?"

• A person has age - even the last person on earth.

• A building has height - even if it is abandoned.

• A song has a key, even if it is unsung.

Ask of each property, "Does this entity have only one of these?"

• A person is of one age.

• A building is of one height.

• A song may be written in one key but sung in another!
•

An attribute is a property of an entity which depends solely on its entity - nothing else

- and can have only one value at a time.

What are Candidate Keys? 11iiiiiiliiil
A candidate key is any set of one table's columns[JJf

whose combined value is unique throughout that table.

14

• In the U.S. each state has a unique code - one candidate key.

• Each state name is also unique - another candidate key.

• And so is the order of admission to the union.

Since both code and name are unique, code and name together are also unique.

That's another candidate key - seven with all the combinations.

Why are Candidate Keys?

As a candidate for selection as the one identifier or primary key. A candidate key

usually holds the core idea inside an entity:

This state table is about states, which are known by their names.

A candidate key always expresses a business rule of uniqueness:

• Every state has a unique state code for mailing.

A table or entity with no candidate key is probably not normalized. and almost

certainly not useful in an information system.

Testing Candidate Keys

A candidate key is unique. Is that enough?

Social security number is unique. Were you born with one?

A candidate key's value must exist. It cannot be null.
"'Your driver's license number is unique. Can it change?

·~

The value of a candidate key must be stable. It's value cannot change outside the

control of the system.

The value of a candidate key is unique, extant, and stable.

Re-Normalize on the Candidate Key:

After at least one candidate key has been noted, every attribute and relationship of the

entity must be tested -

15

• Does this property depend solely and completely on the candidate key?

If not, move the property (normalize it) to the entity where

it depends solely and completely on the candidate key.

Repeat these steps -

.. Normalization

• Population

• Candidate keys

• Re-normalization

until every object ın the data dictionary ıs consumed and

every entity is normalized to at lest INF.

1st Normal Form:

For a given table, every row must have the same

columns. To remove embedded lists:

Separate children from parents, or -

Provide series of columns toa
all of any parent's children.

But the latter method has drawbacks:

Multiple columns hold the children

More children require disruptive database redesign

Ugly nulls where any parent has less than the maximum.

16

Not normalized
Mother 1st child 2nd child 3rd chlld
Sarah Sally Mark Ashley
Mother 1st child
Oblieh Raoul

1st normal form
Mother Mother Child
Sarah Sarah Sally
Oblieh Sarah Mark

Sarah Ashley
Oblieh Raoul

Alternate 1st normal form
Mother 1st child' 2nd child 3rd child
Sarah Sally Mark Ashley
Oblieh Raoul (nul) (nul)

hold

LOGICAL DATABASE DESIGN

Logical database design uses several rules or concepts which are reasonably well

understood and accepted. Disagreement arises in formulating a particular methodology-the

place to start and the sequence of steps to follow in applying those rules, After a brief

discussion of database design methodologies, this section presents several concepts,

principles, or rules which are generally recognized and applied regardless of the particular

methodology used.

Database Design Methodologies

A database design, methodology specifies a sequence of steps to follow in developing

a "good" database design-one that meets user needs for information and that satisfies

performance constraints. Each step consists of the application of a set of techniques or rules

that may be formalized to varying degrees and embodied in software tools. A methodology

should he (I) usable in a wide variety of design situations and (2) reproducible in different

designers. The second objective implies that the methodology be teachable, and that those

trained in applying the methodology would arrive at the same end result. This is not evident in

the present state of the art. Logical database design remains very much than art.

Theory and Pry [1982] outline a database design methodology consisting of four steps;

1. User Information Requirements-involving the users in analyzing organizational

needs, setting the scope of interest, investigating what people do (organizational tasks; usage

patterns), and determiningthe data elements needed to perform those tasks,

2. Conceptual Design-developin~ a high-level diagrammatic representation of a logical

data structure; a structure which includes object domains, events, entities, attributes, and•.
relationships:a structure which seeks to model the users' world.

3. · Implementation Design+refining the conceptual design, checking for satisfaction of

user needs and for consistency, and adjusting it to meet processing and performance

constraints in a particular computer and DBMS environment.

4. Physical Design-developing record storage designs, clustering, and establishing

access paths.

17

The techniques and rules in the steps of a methodology are applied iteratively in the

process of unfolding, growing, and refining a database design. For a starting point, some

suggest applying the methodology to individual user application areas or local views.

Different user views may contain related complementary parts or' overlapping pans. Multiple

local views are then consolidated into a global logical structure or conceptual schema. The

process of consolidation seeks to resolve inconsistencies, and to integrate related pieces. Even

within a local view, there may be redundant, overlapping, and inconsistent pads. The rules of

a methodology are intended to assist the designer in asking the right questions and

representing the data structure in a coherent and consistent way regardless of the scope of the

design activity, and regardless of whether it begins with individual local views or a global

perspective. The product of the design activity will grow as it unfolds over the area of

interest; and it will be refined as the rules are applied to focus attention on particular aspects

of an infinitely complex reality and to resolve ambiguities and inconsistencies in the

developing database structure.

Entity-Attribute-Relation versus Object-Relation Approaches

Perhaps the most significant difference among methodologies or approaches to logical

database design is found in the point at which data items are clustered or grouped into.

records. The top division of the taxonomy of data structures presented in Chapter 4 reflects

this division. The number of basic constructs distinguishes the two approaches: Those which

presume an early clustering are often called "Entity Attribute-Relation" or "E-A-R"

approaches; the alternative is called the "Object Relation" or "0-R" approach.

Historically data processing has.always worked with records. Programming languages

such as COBOL and FORTRAN cluster data items into records. The formation of records as a

contiguous set of data items is necessary for efficient data processing. A record is the unit of

access for getting data in and out of programs. Data is moved to and from secondary storage

in blocks of records. Earlier data processing systems forced a ''unit record" view, that is, all

data for an application had to reside in a single sequence of records (this reflected the

technology of the day, which used what was called ''unit record equipment"). Even today,

with DBMSs supporting a multifıle data structure, data exists in the form of records in most

organizations. Users are very familiar and comfortable with a record-oriented view of their

data. Most designers today use an E-A-R approach to logical database design.

18

The major problem with the E-A-R approach to logical database design is that it

allows the relationships among data items within a record to be hidden. It does not force the

designer to explicitly consider and define inter record structures. This accounts for the recent

emphasis in the literature on record decomposition and normalization based on an analysis of

functional and multivalued dependencies. These techniques are all aimed at uncovering and

making explicit the relationships among individual data items within records.

The end result of repeatedly applying record decomposition rules is irreducible

varies-at which point there exists at most one non-identifier data item within each record. By

then the designer will have considered all inter item relationships.

At the implementation or physical level, data items must be clustered into records for

efficient data processing. Even at the logical level, it is still relevant and useful to think of

attributes which cluster around and describe entities, whether the attribute items are

considered as part of entity records or as individual object domains. It is relatively

unimportant whether the design activity starts with records which are decomposed to analyze

inter item relationships, or starts with object domains which are clustered to form records. In

practice a designer will do both. It is important that certain rules and concepts be applied in

the design process. Early formation of records is dangerous only if it inhibits the designer

from properly analyzing intrarecord relationships among data items, and from considering

alternative groupings of items into records -Ideally, the formation of records should be part of

the implementation phase of database design since it is done primarily for system

convenience and processing efficiency. In fact, it is desirable to have software tools to

perform the clustering, leaving the designer to concentrate on defining the individual data

objects, relationships, and performance factors and constraints.

In a strict application of the object-relation approach to logical design, all object
" domains are treated equally. In the E-A-R approach, attention is initially focused on entities,

.,
then on the attributes of those entities, which may tum out to be other entities. In fact, the..
distinction between attributes and entities is often confusing and arbitrary Again, regardless of

the approach taken, it is important for the designer to focus attention on the more important

parts of the users' world being modeled in the data structure. This is automatically done in the

E-A-R approach but can also be done in the 0-R approach. The designer needs a high level of

abstraction when developing a data structure and may start out by representing the main

entities as boxes labeled with a name only .

19


~~~~~~~~~~~~~~~~~~~~~·~.:-~,-~~~~~~~~~~~-,

there is general recognition of many underlying rules and concepts used in logical database

design. They relate to conceptual design and part of implementationdesign.

A good database designer will generally know these rules and apply them, often intui

tively, wherever they are relevant in the process of developing, checking, and refining a

database design.

The following rules are presented here in a reasonably logical order, but there is no

implication that they should be applied in any strict sequence. There is also no implication

that these rules are sufficientor complete for the database design task. While progress is being

made in formalizing the principles and process of database design, it still depends heavily on

human intelligence and experience. Even experienced designers can arrive at different

database designs, which purport to model the same user environment.

ENTITY: Clearly identify the entities to be represented in the database. 

An entity is any object (person, place, thing), event, or abstract concept within the

scope of interest about which data is collected. An entity is the object of decisions and actions

within an organization. Entities are the pivotal elements in a data structure and must be well

defined. Staff out by focusing on the main entities, gradually expanding the logical data

structure view to include related entities. When looking at an existing database, clearly define

the primary entity, which is described in each file (record type).

INCLUSION: Specify the criteria for ihcluding (or excluding) entity instances from a defined 

class of entities. 
• 

The ENTITY rule names a class of entities and the INCLUSION rule specifies the

conditions for membership in that class. For example, does the EMPLOYEE entity class

include managers, job applicants, rejected job applicants, those fired or laid off, those who

quit, or employees on definite or indefinite leave'? Consideration of these other

'EMPLOYEES" may suggest broadening the name of the entity class, or it may give rise to

another entity class. Narrowing (sub setting) or broadening the definition of the entity class

represents movement along the generalization hierarchy.

20



ITRIBUTE: Identify the attributes of each entity. 

Initially focus on the major attributes of each entity. Some will be clear and obvious,

e will seem to be artificial, and some may also relate to other entities. Include all

ibutes, which assist in understanding the nature of the entity being described. Include at

one attribute from each set of similar attributes.

ITRIBUTE CHARACTERISTICS: Define the characteristics of each attribute. 

Clearly define the characteristics of each attribute. Initially focus on name, type,

:), existence, uniqueness, and some indication of the nature of the value set. When

ribing an existing database, specify any encoding of data item values. Description of

r characteristics can be deferred until later in the database design process. Eventually plan

describe one attribute per page in the final database documentation.

ERIVED ATTRIBUTE: identify and define derived attributes.

The values of an attribute may be derived from the values of other attributes in the

tabase. Specify· the derivation rule, which may be an expression for a derived item or a

tistical calculation across instances of an entity type or a repeating group.

IDENTIFIER: Designate the attribute(s), which uniquely identify entity instances in each
entity class.

An entity identifier may be a single attribute (EMPNO) or multiple attributes (UNIT

d JOECODE for POSITION). There may be multiple identifiers for the same entity

NQ and SOCIAL SECURITY NUMBER). Indicate if the identifier is not guaranteed to

unique. The identifier can be a good clue to understanding the nature of the entity

cribed in an existing file.

LATIONSHIP: identify the primary relationships between entities.

21



RELATIONSHIP CHARACTERISTICS: 

Define the characteristics of interentity relationships, particularly exclusivity and
exhaustibility(or dependency).

Exclusivity refers to whether instances of one entity type can be related to at most one

or more than one. instance of another entity type. Since it is defined in both directions there
I 

are four possibilities: 1: 1. l:Many, Many: I, Many: Many. Exhaust stability (also called

dependency or personality) specifies whether or not an instance of one entity type must be

related to an instance of another entity type. Indicate if there is some condition on the

dependency of a relationship. Also indicate if there is some minimumor maximum cardinality

on the "many" side of a relationship. (See section 6.3.3 for more detail on these
characteristics.)

FOREIGN IDENTIFIER: indicate the basis for each relationship by including, as an

attribute in one entity type, the identifier from each related entity type.'

Every relationship is based upon common domain(s) in the related entity records. At

the logical level, it is necessary to include the identifier of a related entity as a foreign

identifier. In the storage structure, if the common domain is not explicitly stored in a related

record, then some form of physical pointer is necessary to represent the relationship.

DERIVED RELATIONSHIPS: Suppress derived relationships.

The logical database design should not include relationships, which can be derived

from other relationships. For example, it is reasonable to think of organizational units as

possessing a pool of skills. Furthermore: such information can be retrieved from the database.

However, such a relationship should not be defined since it is derived from the.. 
ORGANIZATION-EMPLOYEE relationship and the EMPLOYEE-SKILL relationship. An

organizationalunit only possesses skillsbecause it has employeeswho possess skills.

REPEATING GROUP: isolate any multivalued data item or repeating group of data items 
within a record 

This rule ensures that a record only contains atomic (single-valued) data items, thus

wing only flat files. This is also called first normal form. The real importance of this rule

22 



is to force the designer to explicitly recognize a "something-to-many" relationship and

possibly a new entity type. If a repeating group of data items becomes a new entity record

type, the identifier of its parent record must propagate down into the new record. If the

relationship was actually many-to-many, the propagated identifier becomes part of the

identifier of the new record; if the relationship was one-to-many, the propagated identifier

becomes a foreign identifier in the new record (but not part of the identifier). Multi-valued

data items or nested repeating groups of data items may be included in the storage structure of

a record (as they are in a hierarchical data structure).

PARTIAL DEPENDENCY: Each attribute must be dependent upon the whole record 

(entity) identifier. 

An attribute that is dependent upon only part of the identifier should be removed from

the record, and placed in a record where that part of the identifier is the whole identifier.

Suppose we had a record with the following data items: EMPNO, SKILLCODE, SKILL

DESCRIPTION, and PROFICIENCY. The identifier would have to be the first two data items

jointly since PROFICIENCY relates to both of them together. However, DESCRIPTION

relates only to the SKILLCODE and, therefore, should not be in this record. A record with no

partial dependencies is said to be in second normal form.

TRANSITIVE DEPENDENCY: Each attribute within a record must be directly 

dependent upon the entity identifier. 

Any attribute, which is not directly dependent upon the record identifier, should be

removed from the record, and related, directly to the object on which it is functionally

dependent. For example, if the EMPLOYEE record contained UNIT and BOSS, and the

employeewas moved to another organizational unit, it would not be sufficient to update the

employee's UNIT-the BOSS data item would also have to be changed. The update anomaly

results because BOSS is directly dependent upon UNIT and not EMPNO. BOSS does not

long in the EMPLOYEE record even if processing is faster and easier; it belongs in the

ORGANIZATIONAL UNIT record. A record with no partial or transitive dependencies is

said to be in third normal form. Restated: An attribute should be dependent upon the

· lentifier,the whole identifier, and nothing but the identifier.

23



Application of the previous three rules to arrive at third normal form requires an

examination of every attribute in a record. A record not in third normal form produces

undesirable update anomalies. To identify these anomalies, the designer can ask: If a given

attribute is updated, what other attributes must change, or if another attribute is updated, what

effect will it have on the given attribute?

NAMING: Assign names to entities, attributes, and relationships using a consistent, well 

defined naming convention. 

When describing an existing database, watch for naming inconsistencies- different

namesfor the same object, or the same name used to refer to different objects.

STORAGE & ACCESS: Suppress any consideration of physical storage structures 
and access mechanisms in describing the logical structure of the data. 

This includes any stored ordering on the records in a file, and whether or not a data item is

indexed. Do not be concerned with questions of how to find or access a particular record in a

file, perhaps along a relationshipRemember, all relationships are inherentlybi-directional.

24



Creating a database in Microsoft Access 

Microsoft Access provides two methods to create a database. You can create a blank

database and then add the tables, forms, reports, and other objects later - this is the most

flexiblemethod, but it requires you to define each database element separately. Or you can

use a Database Wizard to create in one operation the required tables, forms, and reports for

the type of database you choose - this is the easiest way to start creating your database.

Either way, you can modify and extend your database at any time after it has been created.

Linking data 

In an Access database, linkingdata enables you to read and in most cases, update data

in the external data source without importing. The external data source's format is not altered

so that you can continue to use the filewith the program that originallycreated it, but you can

add, delete, or edit its data by using Microsoft:Access as well. You can link a table only in an

Access database, not an Access project.

Microsoft:Access uses different icons to represent linked tables and tables that are

stored in the current database. If you delete the icon for a linked table, you delete the link to

the table, not the external table itself

25



VISUAL BASIC

First thing to know about Visual Basic in the relational database model, how to use the

Visual Basic database objects to access and update existing databases, and how to use the

Visdata program to create and maintain databases. We also take a look at the design and code

data entry forms (including use of the Visual Basic bound data controls), and how to create

input validation routines at the keystroke, field, and form levels. Lastly, We see how to use

the Visual Basic Crystal Reports Pro report writer to design simple reports, and how to use

the Crystal Reports control to run those reports from within your VisualBasic programs.

Taking in mind that Microsoft Access is the best way to make the relations and build up the
main structure that the VisualBasic depend upon.

There are certain requirements for the use of visualBasic that affects some of the main
questions to be asked :

How to use the Structured Query Language (SQL) to extract data from existing
databases.

What the Microsoft Jet engine is, and how you can use Visual Basic code to create and
maintaindata access objects.

How to create data entry forms with VisualBasic code.

How to use the Microsoft graph control to create graphs and charts ofyour data.

How to use data-bound list boxes, data-bound combo boxes, and data-bound grids to create
advanced data entry forms.

How to make applicationsmore solidwith error trapping.

We are going to start working with the data e~ry:

Use the data control to bind a form to a database and data table by setting the
DatabaseName and RecordSource properties.

Use the Text box bound input control to bind an input box on the form to a data table and data
fieldby setting the DataSource and DataField properties

Combine standard command buttons and the AddNew and Delete methods to provide Add and
Delete record functionalityto a data entry form

A relational database is a collection of related data.

The three key building blocks of relational databases are data fields, data records, and data
tables.

26 



The two types of database relationships are one-to-one (which uses qualifier fields) and one

to-many (which uses pointer fields).

There are two types of key (or index) fields: primary and foreign, there are lbasic data field

types recognized by Visual Basic 5.

Working with SQL.

Create basic SQL statements that select data from existing tables. the most fundamental form

of the SQL statement is the SELECT_FROMclause. This clause is used to select one or more

columns from a table and display the results of in a result set, or view.

Optional clauses that you can add to the SELECT_FROMclause:

The WHERE clause: Used to limit the rows in the result set using logical comparisons (for

example, WHERE Table. Name = "SMITH") and to link two tables in a single, nonupdatable,

view (for example, WHERE Tablel .Name = Table2 .Name).

The ORDER BY clause: Used to control the order in which the result set is displayed (for

example, ORDER BY Name ASC).

The GROUP BY clause: Used to create a subtotal result set based on a break column (for

example, GROUP BY Name).

The HAVING clause: Used only with the GROUP BY clause, the HAVING clause acts as a WHERE

clause for the GROUP BY subtotal clause (for example, GROUP BY Name HAVING

SUM(SalesTotal)>lOOO).

The INNER JOIN clause: Used to join two tables together into a single, updatable result set.

The INNER JOIN returns rows that have a corresponding match in both tables.

The LEFT JOIN and RIGHT JOIN: Used to join two tables into a single, updatable result set.

The LEFT JOIN includes all records from the first (left-hand) table and all rows from the

second table that have a corresponding match. The RIGHT JOIN works in reverse.

The UNION clause: Used to combine two-or more complete SQL queries into a single result set

(for example, SELECT * FROM Tablel UNION SELECT·'* FROM Table2).

The TRANSFORM_PIVOT clause: Used to create a cross-tab-query as a result set (for example,

TRANSFORM SUM(MonthlySales) FROM SalesTable GROUP BY Product PIVOT Month).

Additional SQL keywords that you can use to control the contents of the result set:
BETWEEN AND

DISTINCT and DISTINCTROW

AS TOP n and TOP n PERCENT

AVG, COUNT,MAX,MIN, and SUMMicrosof Jet data-access.

27



The features and functions of Visual Basic Microsoft Jet data-access objects and

ODBCDirect access objects. These objects are used within Visual Basic code to create and

maintain workspaces, databases, tables, fields, indexes, queries, and relations. the properties,

methods, and collections of each object. Use Visual Basic code to inspect the values in the

properties, and how to use the methods to perform basic database operations.

Using Visual Basic Code.

Writing data entry forms using Visual Basic code.: record search routines, the creation

of a procedure library to handle all data entry processes, and creating a working data entry

form for the CompanyMaster project.

Perform single-record searches using the three search methods:

Move for browsing the dataset

seek for indexed table objects

Find for non-table objects (Dynasets and Snapshots)

Creat an OLE Server library to handle adding, editing, deleting, reading, writing, and locating

records in datasets. These routines were written as a generic DLL that can be inserted into all

VisualBasic programs you write in the future.

You used the new library to add a new form to the CompanyMaster database project. This

new form reads a dataset and allows the user to update and browse the table. This new data

entry form was built using fewer than 30 lines ofVisual Basic code.

Also, you build a graph ActiveX DLL object library that you can use to display virtually any

dataset in a variety of graph formats. This library lets you save the graph to disk, send the

graph to the printer, or copy the graph to the Windows Clipboard for placement in other

Windows programs through the Paste Specialoperation.

While building the graph library, you declare and use enumerated constants to improve the
"'readabilityof your Visual Basic code.

••
Finally,you use the new graph library to add graphs to the CompanyMaster project.

Load and use three of the data-bound controls that are shipped with Visual Basic 5:

The data-bound list box

The data-bound combo box

The data-bound grid

You link these new controls to Recordsets using the Visual Basic 5 data controls and how to

use these links to update related tables.

28 



There are several of the important Visual Basic 5 events associated with the data grid.

These events let you create user-friendly data entry routines using just a data control and the

data grid.

Finally, you must draw upon your knowledge of data grids, SQL, and form layout to

design and implement a data entry subform. This form shows a master table at the top, and a

related list table at the bottom of the form in a data-bound grid.

How to create, alter, and delete database table structures using DDL (Data Definition

Language) SQL keywordsare one of the major topics of Visual Basic. using DDL statements

to build tables, create indexes, and establish relationships is an excellent way to automatically

document table layouts. maintaining database structures using the following DDL keywords:

CREATE TABLE enables you to create entirelynew tables in your existing database.

DROP TABLE enables you to completely remove a table, including any data that is already in
the table.

ALTER TABLE enables you to ADD a new column or DROP an existing column from the

table without losing existing data in the other columns.

CREATE INDEX and DROP INDEX enable you to create indexes that can enforce data integrity
or speed data access.

The CONSTRAINT clause can be added to the CREATE TABLE or ALTER TABLE statement

to define relationshipsbetween tables using the FOREIGN KEY clause.

Errors

You can create creating your own error-handling routines for Visual Basic applications. An
error handler has three basic parts:

The On Error Goto statement

The body of the error handler code

The error handler exit

An error handler has four possible exits:

esume: Re-executes the code that caused the error.

29 



Resume Next: Continues processing at the line immediatelyfollowing the line that caused the
error.

Resume label: Continues processing at the location identifiedby the label.

EXIT or END: EXIT ends processing for the current routine and END exits the program
completely.

Use the Err. Raise method to flag errors without resorting to modal dialog boxes

The major types of errors that you are likely to encounter in your program:

General file errors: These include errors such as File not Found and Invalid Path.

Errors of this type can usually be fixed by the user and then the original procedure re
attempted. Use Resume as an exit for these types of errors.

Database errors: These include errors related to data entry mistakes, integrity violations, and
multiuser-related errors, such as locked records. Errors of this type are best handled by
allowing the user to correct the data and attempt the operation again. If you use the Visual
Basic data control, you do not have to write error handlers--the data control handles them for
you. For operations that do not use the data control, you need to write your own error
handling routines.

Physical media errors: These errors relate to device problems, such as unresponsive printers,

downed communicationsports, and so on. Sometimes users can fix the problems and continue

(for example, refillingthe paper tray of the printer). Other times, users cannot fix the problem

without first exiting the program. It is a good idea to give users the option of exiting the
program safelywhen errors of these types are reported.

Program code errors: These errors occur because of problems within the Visual Basic code

itself Examples of program code errors include Object variable not Set and For loop
••

not initialized. Usually the user cannot do anything to fix errors of this type. It is best to-~
encourage the user to report the error to the system administrator and then exit the program

•safely.

You can declare a global error handler or a local error handler. The advantage of the global

error handler is that it allows you to create a single module that handles all expected errors.

The disadvantage is that, because of the way Visual Basic keeps track of running routines,

you are not able to resume processing at the point the error occurs once you arrive at the

global error handler. The advantage of the local error handler is that you are always able to

use Resume, Resume Next, or Resume label to continue processing at the point the error

30



occurs. The disadvantage of the local error handler is that you need to add error-handling code

to every routine in your program.

Finally, you must create an error handler object library that combines local error

trapping with global error messages and responses. The error handler object library also

contains modules to keep track of the procedures currently running at the time of the error, a

process for printing procedure stack dumps to the screen and to a file, and a process that

creates an error log on file for later review.

When you develop database applications for multiple users or multiple sites. You must

advance SQL language for manipulating records within existing databases (DML). There are

five rules of data normalization that is applied to improve the speed, accuracy, and integrity of

your databases.

Visual Basic database locking schemes for the database, table, and page level ,the

advantages and limitations of adding cascading updates and deletes to your database

relationship definitions. Using Visual Basic keywords BeginTrans, CommitTrans, and

Rollback to improve database integrity and processing speed during mass updates.

Remote Data Control and the Remote Data Objects. We use these tools to attach to RDBMSs

and they have properties, methods, and events of these useful tools.

write data entry forms that use the ODBC API calls to link directly with the ODBC interface

to access data in registered ODBC data sources and install the ODBC Administrator, which

are used to create new ODBC data sources for your ODBC-enabled VisualBasic programs.
Updating Databases with SQL.

To add, delete, and edit data within tables using the DML (Data Manipulation
"'Language) SQL keywords by using DML statements you can quickly create test data for

.,
tables and load default values into startup tables. DML statements=such as Append queries,

•
Make • Table queries, and Delete queries-can outperform equivalent Visual Basic code
versions of the same operations.

Managing data within the tables using the following DML keywords:

The INSERT INTO statement can be used to add new rows to the table using the VALUES

clause.

You can create an Append query by using the INSERT INTO_FROM syntax to copy data from

one table to another. You can also copy data from one database to another using the IN clause
on an INSERT INTO FROM statement.

31



You can create new tables by copying the structure and some of the data using the

SELECT _INTO statement. This statement can incorporate WHERE, ORDER BY, GROUP BY, and

HAVING clauses to limit the scope of the data used to populate the new table you create.

You can use the DELETE FROMclause to remove one or more records from an existing

table. You can even create customized views of the database using the JOIN clause, and

remove only records that are the result of a JOIN statement.

Database Normalization to improve database integrity and access speed using the five rules of

data normalization:

Rule 1: Eliminate repeating groups. If you have a set of fields that have the same name

followed by a number (Skilll, Skill2, Skill3, and so forth), remove these repeating groups,

create a new table for the repeating data, and relate it to the key field in the first table.

Rule 2: Eliminate redundant data. Don't store the same data in two different locations. This

can lead to update and delete errors. If equivalent data elements are entered in two fields,

remove the second data element, create a new master table with the element and its partner as

a key field, and then place the key field as a relationship in the locations that formerly held

both data elements.

Rule 3: Eliminate columns not dependent on keys. If you have data elements that are not

directly related to the primary key of the table, these elements should be removed to their own

data table. Only store data elements that are directly related to the primary key of the table.

This particularlyincludes derived data or other calculations.

Rule 4: Isolate independent multiple relationships. Use this rule to improve database design

when you are dealing with more than one one-to-many relationship in the database. Before
"'you add a new field to a table, ask yourself whether this field is really dependent upon the

other fields in the table. If not, create a new table with the independent data.

Rule 5: Isolate related multiple relationships. Use this rule to improve database design when

you are dealing with more than one many-to-many relationship in the database. If you have

database rules that require multiple references to the same field or sets of fields, isolate the

fields into smaller tables and construct one or more link tables that contain the required

constraints that enforce database integrity.

Multiuser Considerations

32



The three important challenges that face every database programmer writing multiuser

applications:

Database locking schemes

Using cascading updates and deletes to maintain database integrity.

Using database transactions to provide commit/rollback options for major updates to your
database.

There are three levels of locking available to Visual Basic programs:

The database level--You can use the Exclusive property of the data control or the

second parameter of the openDatabase method to lock the entire database. Use this option

when you need to perform work that affects multiple database objects (such as tables, queries,
indexes, relations, and so on).

The table level--You can set the Options property of the data control to 3 or the third

parameter of the OpenRecordset method to dbDenyRead+dbDenyWrite in order to lock the

entire table for your use only. Use this option when you need to perform work that affects

multiple records in a single table (for example, increasing the sales price on all items in the
inventory table).

The page level--Microsoft Jet automatically performs page-level locking whenever

you use the data control to edit and save a record, or whenever you use Visual Basic code to

perform the Edit/ActdNew and Update/cancelUpdate methods. You can use the LockEdits

property of the Recordset to set the page locking to pessimistic (to perform locking at edit
time) or optimistic (to perform locking only at update time).

Use Visual Basic to enforce referential integrity and automatically perform cascading
••updates or deletes to related records. You learned that there •are times when it is not advisable

to establish cascading

We can use database transactions to protect your database during extended, multitable

operations by the BeginTrans, CommitTrans, and Rollback methods of the workspace
object.

Using the Remote Data Control and the Remote Data Objects there are two alternate

methods for accessing remote data by using the Remote Data control to create simple data

33



entry forms with data-bound controls use the Remote Data Objects to create Visual Basic 5. O

programs that can access data from a remote RDBMS.

Along with the details of the Remote Data Control and the Remote Data objects Some
of the basics of remote data access in general:

Cursor drivers--These are the tools that manage the location of the Recordset pointer

in a dataset. you can use client-sideor server-side cursor drivers with RDC/R.DOconnections.

Dataset types-- there are a number of dataset types available to you when you connect to

remote data sources including ForwardOnly--ReadOnly sets, Static sets, Keysets, and
Dynamic sets.

Lock types-- there are several different lock types you can use when accessing data from your

remote data source. You can use ConcurrentLock sets that perform locks as soon as you

receive the data rows, or you can use several versions of optimistic locking that only attempt
to lock the rows when you update them.

Details of the following Microsoft Remote Data Objects:

The rdoEngine object--This is the top-level data engine used to access remote data.

The rdoEnvironment object=This is the RDO equivalent of the Microsoft Jet
Workspace object.

The rdoConnection object--This is the RDO equivalent of the Microsoft Jet Database
'·

object.

The rdoResultset object--This is the RDO equivalent of the Microsoft Jet Recordset
object.

The rdoTable object-This is the RDO version of the Microsoft Jet Table object.

The rdoColumn object--This is the RDO version of the Microsoft Jet Field object.

The rdoQuery object--This is the RDO version of the Microsoft Jet QueryDef object.
Ii<

The rdoParameters object--This is a special collection of query parameters for the-~
rdoQuery object. •

34



ODBC Data Access via the ODBC API

Using the Open Database Connectivity (ODBC) API to directly link your Visual Basic

program to target data sources through the ODBC interface. The ODBC interface is generally

faster than Microsoft Jet when it comes to linkingto ODBC-defined data sources.

By installing the ODBC interface on your workstation and how to use the ODBC

Administrator program to install ODBC driver sets and define data sources for ODBC

connections.

The building of a program library that uses a minimum set of ODBC API calls along

with several Visual Basic wrapper routines. This library set provides the basic functions

necessary to read and write data to and from a defined ODBC data source. You can use these

routines to create fully functional data entry forms for ODBC data sources.

Database Replication

In database replication terminology, the main or central database is referred to as the

Design Master. A copy of the Design Master is referred to as the replica. The combination of

the Design Master and all replicas is referred to as the replica set. Database replication is the

process of synchronizingdata so that it is the same across all members of the replica set.

Database replication is a good tool to use in the development of systems deployed

across a WAN or to remote users. Replication can also be used to make copies of databases

that cannot be shut down. Replication is also good for creating reporting databases and data
marts.

Do not use database replication when a centralized data storage facility can be used,
•such as ~ Web-enabled application. Also, don't use replication in heavily transaction-oriented

applications,or in applicationswhere up-to-the minute accuracy is of paramount importance.

Tables, fields, and properties are added to a database when it is made a Design Master. The

addition of these items is necessary to track changes to data and to facilitate the

synchronization between members of the replica set. These additions, however, consume

additional physicalhard drive space.

35 



Creating and changing the Replicable property of a database to T creates a Design

Master. Once the Design Master is created, you can use the Make Replica method to make

copies of it. Finally, you use the synchronize method to replicate data changes to members

of the replica set. Data synchronization is the act of copying data changes from one member

of a replica set to another.

The synchronize method can be used to import data changes, export data changes,

perform "two-way" data changes, and even perform data exchanges over the Internet.

ynchronization errors occur when two members of a replica set try to synchronize records

that both have changed. Errors may also occur during the synchronization process when

esign changes are made to a database that are violated by replicas prior to synchronizationof

the changes. Violation of referential integrity can be encountered by a replica that added

records to its database that uses validation records deleted in another replica. Record locking

in a multiuser environment can also cause synchronizationerrors.

There are four topologies for the synchronizationof replicas. These are the star, linear,

ring, and fully connected topologies. The star is the most common, but like all the other

topologies it has certain strengths and weaknesses.

There may be times when you do not want to replicate objects contained in one

database to other members of the replica set. If such is the case, use the KeepLocal method

before you create the Design Master. This method keeps the object from being copied to other

replica set members.

SecuringYour Database Applications

There are several methods that can improve user and application-leyel security for
•

your Visual Basic database applications. the limitations of using the Microsoft Access SYSTEM

security file and database encryption.

Adding application-level security to your Visual Basic programs by adding user

login/logout routines and creating a user access rights scheme for your applications. In this

lesson, you designed and implemented an OLE Server DLL library that you can use for all

your Visual Basic applications, and you created several screens for maintaining user lists and

managingaccess rights for each user.

36



Adding an audit trail option to your programs. You add routines to a new OLE Server

DLL library that logs all critical user activity to an audit trail file, including user logins,

database modifications, and all critical program operations, such as running reports or

processing mass database updates.

•

37



STOCK CONTROL SYSTEM

This project the Stock Control System is a real time application that has a role in

administeringthe case of stock and the related transactions that take place during an order for
product and making the appropriate balance.

The program uses Microsoft Access as a database relating pot only for the reason of
providing easy tables and queries.

After the construction of the tables in Access we use the record sources of the

database mdb File as the provider of data, which will be used, on various parts of the Visual
Basic project.

The project screens and layouts are provided below along with Microsoft Access
Tables, Queries and relations.

Tables and relations "Access":

Categories (Stocks).

Products.

Customers.

Orders.

Order Details.

38



Screens and Layouts "VB":

- Log in:

This screen to login and open the program.

- Main Menu:

The main screen describes the ı- user interface, which guide the user through in the
different screens in the program.

It includes 6 bottoms: Data, Search, Reports, List, Accounts, and Close quiet the program.

39



1. Data: Here we automate a real life procedure, when we divide the Data into four

sub screens: Categories (Stocks), Products, Customers, and Orders.

1.1: Categories (Stocks): This screen to enter the information & Data of the new stock.

40



1.2: Products:

Here to enter the information's Product of the new stock.

1.3: Customers:

Customer's names, and privet information are located in the designated

CUSTOMER screen.

1.4: Orders:

This screen for the ordered products information.

41



2. Search:

In order to offer a high quality services inside the system, the 2nd sub screen of the

main menu is the SEARCH engine, our searching engine can give the users a very soon result

for any question about the main tow categories inside our system: Stocks, Products, Orders,

and Customers. And locate the users with their availableinformation.

3. Reports:

The 3rd sub screen of the main menu is Reports. And it has also three sub screens:
Customers, Accounting, and Invoices.

"'

42



3.1: Customer Information:

CUSTOMER INFORMATION
eustomer Id c~ Name City Counlry Phone Fıııı
ALFKI Allred$ Fı.ıtterkislo Berlin Gormeny 030-0074321 OJ0-0076545
ANA TR Anıl Trujillo Empııred<ldos y Mexico D.F. Mexk:o (5) 555-4729 (5) 555-3745
ANTON Antonio Moreno Tııquerfa Mexıcoo.F. Mexk:o (5) 555-3932
AROUT Around the Horn London LIi< (171) (171)
BERGS Berglunds snabbköp Lule& Sweden 0921-12 34 65 0921-12 34
BLAUS Bleue(See Delll«ıtesson Mıınnheim Oermeny 0621-06460 0621-08924
BLOM> 8lorıde! pere et fils Strasbourg France 88.60.15.31 88.60.15.32
BOLIO B6iido Comldas preparadas Madrid s,,aın (91) 555 22 (91) 555 91
BON AP Bonııpı:ı' Marseille France 91.24 .45.40 91.24.45.41
BOTTM Boltom-Doil« Markets T$&W8$Se/l Canada (604) (604)
BSBEV B's Beverages London LIi< (171)
CACTU Caclu$ Comidas para Uevar Buorm Airos Arı;ıerm,ı (1) 135-SSSS (1) 135-4692
CENTC Certro comercial Moctezu""" MexicoD.F. Mexico (5) 555-3392 (5) 555-7293
CHOPS Chop-suey Chinese Elem Swltrorlaııd 0452-076545
COMM! Comhclo Mlnelro s&o Paulo Bra%!! (11) 555-7647
CON SH Consolideted Holdings London LIi< (171) (171)
DRACO Drachentııut Dellketessen Aachen Oermeny 0241-039123 0241.{)59428;mıı ~- .......... - ~· ··--- .. . - ... ·- ... -· ------------------

3.2: Accounting:

ACCOUNTING
COde Name Stock No Qııantlly unıı Price

Chai 1 1 O boxes x :ıo bags 1a
Chang 1 24-12oztıottıes 19

3 Aniseed Syrup 2 12 - 550 ml bcııtles 10
Chef Anton's Cajun Seasoning 2 46 - 6 oz jars 22

5 Chef Anton's Gumbo Mix 2 :ıs boxes 21,35
6 Grandma's Boysenberry Spreed 2 12. Boz jars 25

uncıe Bob's Organic Dried li! 12-1 lı pl<gs. 30
e Northwoods Cranlıerry Sauce 2 12- ·12 oz jars 40
9 Mishi Koloe Nikıı . 6 18 • 500 g pl<gs. 97
10 lkura a 12 - 200 mlj&rs 31
11 Queso Cabrales 4 1 kg pl<g. ., 21 •
12 Queso MElnchego La Pastora 4 10. 500 g pl<gs. 36
13 Konbu 8 2 kg box 6
14 Tofu 7 40-100gpl<gs. 23,25
15 Genen Shouyu 2 24 • 250 ml bottles 15,5
16 Pavlova 3 32 - 500 g boxes 17,45
17 Allcel\Ulon 6 :.0-1 kgtil\$ 39
18 CıırnarYOn Tigers e 16kgpkg. 62,5
19 Teatime Chocolete Biscuits 3 10 boxes x 12 pieces 9,2
:ıo sır Rodrıe)l's Marmaı&ı:te 3 30 gift boxes 81
21 Sir Rodney's Scones 3 24 pkgs. x 4 pieces 10

,'\A r,.,r, .... 1 ••••

""~

3.3: Invoices.

43



4. Lists:

The 4th sub screen of the main menu is List. And it has also five sub screens:
Product List, I O Most Expensive List, Alphabetical Order List, Orders List, and Invoices List.

4.1: Product List:

Carnarvon T igeıs
Chai
Chang
Chartreuse verte
Chef Anton's Cajun Se
Chef Anton's-Gumbo M
Choco/ade
Côte de Blııye _

Flıııtem_ıısost
Geitost
Genen Shouyu
Gnocchi di nonnaAice
Gorgonzola Telino
Grandma's Boysenbeır_ıı

44



4.2: 10 Most Expensive List:

I 

263,5
Bt Thüringer Rostbratwurst

Mishi Kobe Niku
123,79
97

Sir Rodne.Y's Marmalade 81
Carnarvon Tigers 62,5
R adette Courdavault 55

ıfrJl M anjimup Dried Apples 53
-a.Tarte au sucre

··n; I poh Coffee
49,3
46

R cssle Sauerkraut
' -~- $fP7al'9st:7d':r;. 

0__ 45,,6

4.3: Alphabetical Order List:

1 O boxes x 20 bags 18 39
24 - 12 oz bottles 19 17 40

Aniseed Syrup 2 12 • 550 ml bottles 10 13 70 
Chef Anton's Cajun Sea 2 48 · 6 oz jars 22 53 o
Chef Anton's Gumbo Mi 2 36 boxes 21,35 o o
Grandma's Boysenberry 2 12 · 8 oz jars 25 120 o
Uncle Bob's Organic Dr 7 12 -1 lb pkgs. 30 15 o
Northwoods Cranberry I 2 12-12ozjars 40 6 o
Mishi Kobe Niku 6 18 · 500 g pkgs. 97 29 o
I kura 8 12 · 200 ml jars 31 31 o
Queso Cabrales 4 1 kg pkg. 21 22 30 
Queso Manchego La P, 4 10 · 500 g pkgs. 38 86 o
Konbu 8 2 kg box 6 24 o
Tofu 7 • 40 · 100 g pkgs. 23.25 35 o
Genen Shouyu 2 24 · 250 ml bottles 15,5 39 o
Pavlova 3 32 · 500 g boxes 17,45 29 o
Alice Mutton 6 20 -1 kg tins 39 •. o o

8 16 kg pkg. 62,5 42 o

45



4.4: Order List:

ALFKI 25.08.1997 29,46 Alfreds Futterkiste Obere Str. 57
ALFKI 16.03.1998 -- 40,42 Alfreds Futterl:.iste Obeıe Str. 57
ALFKI 03.10.1997 61.02 Alfreds Futterkiste --Obere Str. 57 --- Berlin--- ----·-----

Alfreds Futterkiste Obere Str. 57 BerlinALFKI 15.01.1998 69,53
----

Obere Str. 57 . 8erİınALFKI 09.04.1998 121 Alfreds Futterkiste
ALFKI 13.10.1997 23,94 Alfreds Futterkiste Obere Str. 57 Berlin
ANATA 28.11.1997 11.99 Ana Trujillo E mparedadı Avda. de la Constituci6ı Mexico
ANATA 04.03.1998 39,92 Ana Trujillo Emparedadı Avda. de la Constituci6ı Mexico
ANATR 18.09.1996 1,61 Ana Trujillo E mparedadı Avda. de la Constituci6ı Mexico
ANATA 08.08.1997 43,9 Ana Trujillo Emparedadı Avda. de la Constituci6ı Mexico
ANTON 25.09.1997 36,13 Antonio Moreno T aquer Mataderos 2312 Mexico
ANTON·- 13.55.1sw--- 15.M _____ ~-------·-Antonio Moreno T aquer Mataderos 2312 Mexico
ANTON- 27.11.1996 ~- Antonio Moreno T aquer Mataderos 2312 -Mexico
ANTON 19.06.1997 84,84 Antonio Moreno T equer Matadeıos 2312 Mexico
ANTON 28.01.1998 58.43 Antonio Moreno T aquer Mataderos 2312 Mexico
ANTON 15.04.1997 47.45 Antonio Moreno T aquer Mataderos 2312 Mexico
ANTON 22.09.1997 4,03 Antonio Moreno T aquer Mataderos 2312 Mexico
AR OUT 14.11.1997 10,96 Around the Horn 120 Hanover Sq. Londor
ARO UT 16.12.1996 34,24 Around the Horn 120 Hanover Sq. Londo
AR OUT 15.11.1996 41.95 Around the Horn 120 Hanover Sq. LondÖ
ARO UT 2102.1997 25,36 Around the Hom 120 Hanover Sq:
AR OUT I 02 02.1998 3,04 Around the Hom 120 Hanover Sq.

4.5: Invoices List:

ALFKI
Obere Str. 57 Berlin

Alfreds Futterkiste Obere Str. 57 Berlin
Alfreds Futterkiste Obere Str. 57 Berlin
Alfreds Futterkiste Obere Str. 57 Berlin
Alfreds Futterkiste Obere Str. 57 Berlin
Affreds Futterkiste Obere Str. 57 Berlin
Alfreds Futterkiste Obere Str. 57 Berlin
Alfreds Futterkiste Obere Str. 57 Berlin
Alfreds Futterkiste Obere Str. 57 Berlin
Alfreds Futterkiste Obere Str. 57 Berlin
Alfreds Futterkiste Obere Str. 57 ~Berlin

ALFKI
ALFKI
ALFKI
ALFKI
ALFKI
ALFKI
ALFKI
ALFKI
ALFKI
ANATR Ana T rujiHo E mparedadq Avda. de la Constituci6rl Mexico D. F.
ANATR Ana TrujiHo EmparedadqAvda. de la Constituci6rl Mexico D.F.
ANA TR
ANATR Ana Trujillo EmparedadqAvda. de la Constituci6rl Mexico D.F.
ANA TR Ana Trujillo EmparedadqAvda. de la Constituci6rl Mexico D.F.

Ana TrujiUo EmparedadqAvda. de la Constituci6rl Meııico D.F.
Ana TrujiHo EmparedadqAvda. de la Constituci6rlMexico D.F.
Ana Trujillo EmparedadqAvda. de la Constituci6rl Mexico D.F.
Ana Trujillo EmparedadqAvda. de la Constituci6rlMexico D.F.
Ana Trujillo EmparedadqAvda. de la Constituci6rl Mexico D.F.

46



CODE

Log in - Code:

Option Explicit

Public LoginSucceeded As Boolean

Private Sub cmdCancel_ Click()
'set the global var to false
'to denote a failed login
LoginSucceeded = False
Me.Hide

End Sub

Private Sub cmdOK _Click()

'check for correct password
If txtPassword = "yasir" Then

'place code to here to pass the
'success to the calling sub
'setting a global var is the easiest
LoginSucceeded = True
frmmain. Show
Me.Hide

Else
MsgBox "Invalid Password, try again!",, "Login"
txtPassword. SetFocus
SendKeys "{Home }+{End}"

Endlf
End Sub

~fain - Code:

Private Sub cmdlist_ Click(Index As Integer)
Select Case Index
Case O

Forml.Show 1
Case 1

Form2.Show 1
Case 2

Form3.Show 1
Case3

Form4.Show 1
Case4

Form5.Show 1

End Select

47 

•



End Sub

Private Sub cmdrepot , Click(Index As Integer)
Select Case Index
Case O

DataReport 1. Show 1
Case 1

DataReport2. Show 1
Case2

Datareport3. Show 1

End Select

End Sub
ı

Private Sub Command l j Click(Index As Integer)
cmdpanel(Index) .ZOrder
End Sub

Private Sub Command2 _ClickQ
frmAbout.Show 1
End Sub

Private Sub Command4 _Clickı)
Unload Me
End Sub

Private Sub Datacmd _Click(Index As Integer)
Select Case Index
Case O

category. Show 1
Case 1

product. Show 1
Case2

customer. Show 1
Case 3

order. Show 1

End Select •

End Sub

Categories - Code:

Private Sub Form_ LoadQ
Set grdDataGrid.DataSource = datPrimaryRS .Recordset("ChildCMD"). Underlying Value

End Sub

48 



Private Sub Form_Resize()
On Error Resume Next
'This will resize the grid when the form is resized
grdDataGrid.Width = Me.ScaleWidth
grdDataGrid.Height = Me.ScaleHeight - grdDataGrid.Top - datPrimaryRS.Height - 30 -

picButtons.Height
End Sub

Private Sub Form_Unload(Cancel As Integer)
Screen.MousePointer = vbDefault

End Sub

Private Sub datPrimaryRS _Error(ByV al Error Number As Long, Description As String,
ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As String, ByVal
HelpContext As Long, fCancelDisplay As Boolean)

'This is where you would put error handling code
'If you want to ignore errors, comment out the next line
'If you want to trap them, add code here to handle them
MsgBox "Data error event hit err:" & Description

End Sub

Private Sub datPrimaryRS_MoveComplete(ByVal adReason As ADODB.EventReasonEnum,
ByVal pError As ADODB.Error, adStatus As ADODB.EventStatusEnum, ByVal pRecordset
As ADODB .Recordset)

'This will display the current record position for this recordset
datPrimaryRS.Caption = "Record: " & CStr(datPrimaryRS.Recordset.AbsolutePosition)

End Sub

Private Sub datPrimaryRS _WillChangeRecord(ByVal adReason As
ADODB.EventReasonEnum, ByVal cRecords As Long, adStatus As
ADODB.EventStatusEnum, ByVal pRecordset As ADODB.Recordset)
'This is where you put validation code
'This event gets called when the following actions occur
Dim bCancel As Boolean

Select Case adReason
Case adRsnAddNew
Case adRsnClose
Case adRsnDelete
Case adR-snFirstChange
Case adRsnMove
Case adRsnRequery
Case adRsnResynch
Case adRsnUndoAddNew
Case adRsnUndoDelete
Case adRsnUndoUpdate
Case adRsnUpdate
End Select

"'

49



Exit Sub
AddErr:
MsgBox Err.Description

End Sub

IfbCancel Then adStatus = adStatusCancel
End Sub

Private Sub crrıdAdd_Click()
On Error GoTo AddErr
datPrimaryRS.Recordset.AddNew

Private Sub cmdDelete _Click()
On Error GoTo DeleteErr
With datPrimaryRS.Recordset

.Delete

.MoveNext
If .EOF Then .MoveLast

End With
Exit Sub

DeleteErr:
MsgBox Err.Description

End Sub

Private Sub cmdRefresh _Click()
'This is only needed for multi user apps
On Error GoTo RefreshErr
datPrimaryRS .Refresh
Set grdDataGrid.DataSource = datPrimaryRS .Recordset("ChildCMD"). Underlying Value
Exit Sub

RefreshErr:
MsgBox Err.Description

End Sub

Private Sub cmdUpdate _Click()
On Error GoTo UpdateErr

"'

datPrimaryRS .Recordset. UpdateBatch adAffectAll
Exit Sub

UpdateErr: .
MsgBox Err.Description

End Sub

••

Private Sub cmdClose _Click()
Unload Me

End Sub

Customer - Code:

Dim WithEvents adoPrimaryRS As Recordset

50



Dim mbChangedByCode As Boolean
Dim mvBook:Mark As Variant
Dim mbEditFlag As Boolean
Dim mbAddNewFlag As Boolean
Dim mbDataChanged As Boolean

Private Sub Form_ Loadi)
Dim db As Connection
Set db = New Connection
db.CursorLocation = adUseClient
db.Open "PROVIDER=Microsoft.Jet.OLEDB.3.Sl;Data

Source=C:\stock\STOCKY A.mdb;"

Set adoPrimaryRS =New Recordset
adoPrimaryRS. Open "select

Address,City,CompanyName,Country, CustomerID,Fax,Phone,Region from Customers Order
by CustomerID", db, adOpenStatic, adLockOptimistic

Dim oText As TextBox
'Bind the text boxes to the data provider
For Each oText In Me.txtFields

Set oText.DataSource = adoPrimaryRS
Next

mbDataChanged = False
End Sub

Private Sub Form_ Resizeı)
On Error Resume Next
lblStatus. Width = Me. Width - 1500
cmdNext.Left = lblStatus. Width + 700
cmdLast.Left = cmdNext.Left + 340

End Sub

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
If mbEditFlag Or mbAddNewFlag Then Exit Sub

"
Select Case KeyCode
Case vbKeyEscape

cmdClose Click
Case vbKeyEnd
cmdLast Click

Case vbKeyHome
cmdFirst Click

Case vbKeyUp, vbKeyPageUp
If Shift = vbCtrlMask Then

cmdFirst Click
Else

cmdPrevious Click
End If

•

51



Case vbKeyDown, vbKeyPageDown
If Shift = vbCtrlMask Then

cmdLast Click
Else

cmdNext Click
End If

End Select
End Sub

Private Sub Form_ Unload(Cancel As Integer)
Screen.MousePointer = vbDefault

End Sub

Private Sub adoPrimaryRS_MoveComplete(ByVal adReason As
ADODB.EventReasonEnum, ByVal pError As ADODB.Error, adStatus As
ADODB.EventStatusEnum, ByVal pRecordset As ADODB.Recordset)

'This will display the current record position for this recordset
lblStatus.Caption = "Record: " & CStr(adoPrimaryRS.AbsolutePosition)

End Sub

Private Sub adoPrimaryRS_ WillChangeRecord(ByVal adReason As
ADODB.EventReasonEnum, ByVal cRecords As Long, adStatus As
ADODB.EventStatusEnum, ByVal pRecordset As ADODB.Recordset)
'This is where you put validation code
'This event gets called when the following actions occur
Dim bCancel As Boolean

Select Case adReason
Case adRsnAddNew
Case adRsnClose
Case adRsnDelete
Case adRsnFirstChange
Case adRsnMove
Case adRsnRequery
Case adRsnResynch
Case adRsnUndoAddNew
Case adRsnUndoDelete
Case adRsnUndoUpdate
Case adRsnUpdate
End Select

IfbCancel Then adStatus = adStatusCancel
End Sub

Private Sub cmdAdd Clickı)
On Error GoTo AddErr
With adoPrimaryRS
IfNot (.BOF And .EOF) Then
mvBookMark = .Bookmark

End If

52

•



53 

.AddNew
lblStatus.Caption = "Add record"
mbAddNewFlag = True
SetButtons False

End With

Exit Sub
AddErr:
MsgBox Err.Description

End Sub

Private Sub cmdDelete _Click()
On Error GoTo DeleteErr
With adoPrimaryRS

.Delete

.MoveNext
If .EOF Then .MoveLast

End With
Exit Sub

DeleteErr:
MsgBox Err.Description

End Sub

Private Sub cmdRefresh Click()
'This is only needed for multi user apps
On Error GoTo RefreshErr
adoPrimaryRS.Requery
Exit Sub

RefreshErr:
MsgBox Err.Description

End Sub

Private Sub cmdEdit_ Click()
On Error GoTo EditErr

lblStatus.Caption = "Edit record"
mbEditFlag = True
SetButtons False
Exit Sub

EditErr:
MsgBox Err.Description

End Sub
Private Sub cmdCancel_ Click()

On Error Resume Next

SetButtons True
mbEditFlag = False
mbAddNewFlag = False
adoPrimaryRS. CancelUpdate



If mvBookMark > O Then
adoPrimaryRS.Bookmark = mvBookMark

Else
adoPrimaryRS.MoveFirst

End If
mbDataChanged = False

End Sub

Private Sub cmdUpdate _Click()
On Error Go To UpdateErr

adoPrimaryRS.UpdateBatch adAffectAll

If mbAddNewFlag Then
adoPrimaryRS.MoveLast

End If
'move to the new record

mbEditFlag = False
mbAddNewFlag = False
SetButtons True
mbDataChanged = False

Exit Sub
UpdateErr:

MsgBox Err.Description
End Sub

Private Sub cmdClose _Click()
Unload Me

End Sub

Private Sub cmdFirst _Click()
On Error GoTo GoFirstError

adoPrimary RS .MoveFirst
mbDataChanged = False

Exit Sub
••

GoFirstError:
MsgBox Err.Description

End Sub

Private Sub cmdLast_ Click()
On Error GoTo GoLastError

adoPrimaryRS.MoveLast
mbDataChanged = False

54



Exit Sub

GoLastError:
MsgBox Err.Description

End Sub

Private Sub cmdNext_ Clickf)
On Error GoTo GoNextError

IfNot adoPrimaryRS.EOF Then adoPrimaryRS.MoveNext
If adoPrimaryRS.EOF And adoPrimaryRS.RecordCount > O Then
Beep
'moved off the end so go back

adoPrimaryRS.MoveLast
End If
'show the current record
mbDataChanged = False

Exit Sub
GoNextError:
MsgBox Err.Description

End Sub

Private Sub cmdPrevious_ Clickt)
On Error GoTo GoPrevError

If Not adoPrimaryRS.BOF Then adoPrimaryRS.MovePrevious
If adoPrimaryRS.BOF And adoPrimaryRS.RecordCount > O Then
Beep
'moved off the end so go back
adoPrimary RS .MoveFirst

End If
'show the current record
mbDataChanged = False

Exit Sub

GoPrevError:
MsgBox Err.Description

End Sub

Private Sub SetButtons(bVal As Boolean)
cmdAdd. Visible = bVal
cmdEdit. Visible = bVal
cmdUpdate.Visible = Not bVal
cmdCancel.Visible = Not bVal
cmdDelete. Visible = bVal
cmdClose. Visible = bVal
cmdRefresh. Visible = bVal
cmdNext.Enabled = bVal

55 

••



cmdFirst.Enabled = bVal
cmdLast.Enabled = bVal
cmdPrevious.Enabled = bVal

End Sub

Order Details - Code:

Dim WithEvents adoPrimaryRS As Recordset
Dim mbChangedByCode As Boolean
Dim mvBookMark As Variant
Dim mbEditFlag As Boolean
Dim mbAddNewFlag As Boolean
Dim mbDataChanged As Boolean

Private Sub Form_ Loadt)
Dim db As Connection
Set db = New Connection
db.CursorLocation = adUseClient
db.Open "PROVIDER=Microsoft.Jet.OLEDB.3.5l;Data

Source=C:\stock\STOCKY A.mdb;"

Set adoPrimaryRS = New Recordset
adoPrimaryRS.Open "select Discount,OrderlD,ProductlD,Quantity,UnitPrice from [Order

Details] Order by OrderlD", db, adOpenStatic, adLockOptimistic

It

Dim oText As TextBox
'Bind the text boxes to the data provider
For Each oText In Me.txtFields

Set oText.DataSource = adoPrimaryRS
Next

mbDataChanged = False
End Sub

Private Sub Form , Resize()
On Error Resume Next
lblStatus.Width = Me.Width - 1500
cmdNext.Left = lblStatus.Width + 700
cmdLast.Left = cmdNext.Left + 340

End Sub

"

f>rivate Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
If mbEditFlag Or mbAddNewFlag Then Exit Sub

Select Case KeyCode
Case vbKeyEscape
cmdClose _Click

Case vbKeyEnd
cmdLast Click

56



Private Sub cmdAdd _ClickQ
On Error GoTo AddErr
With adoPrimaryRS
IfNot (.BOF And .EOF) Then

mvBookMark = .Bookmark
End If
.AddNew
lblStatus.Caption = "Add record"
mbAddNewFlag= True
SetButtons False

End With

End Sub

Exit Sub
AddErr:
MsgBox Err.Description

End Sub

Private Sub cmdDelete_ClickQ
On Error GoTo DeleteErr
With adoPrimaryRS
.Delete
.MoveNext
If .EOF Then .MoveLast

End With
Exit Sub

DeleteErr:
MsgBox Err.Description

End Sub

Private Sub cmdRefresh_ClickQ
'This is only needed for multi user apps
On Error GoTo RefreshErr
adoPrimaryRS.Requery
Exit Sub

RefreshErr:
MsgBox Err.Description

End Sub
••

Private Sub cmdEdit_ClickQ
On Error GoTo EditErr

lblStatus.Caption = "Edit record"
mbEditFlag= True
SetButtons False
Exit Sub

EditErr:
MsgBox Err.Description

58 



59

End Sub
Private Sub cmdCancel_ Click()

On Error Resume Next

SetButtons True
mbEditFlag = False
mbAddNewFlag = False
adoPrimaryRS. CancelUpdate
If mvBook:Mark > O Then

adoPrimaryRS.Bookmark = mvBook:Mark
Else

adoPrimaryRS.MoveFirst
End If
mbDataChanged = False

End Sub

Private Sub cmdUpdate _Click()
On Error GoTo UpdateErr

adoPrimaryRS. UpdateBatch adAffectAll

If mbAddNewFlag Then
adoPrimaryRS.MoveLast

End If
'move to the new record

mbEditFlag = False
mbAddNewFlag = False
SetButtons True
mbDataChanged = False

Exit Sub
UpdateErr:

MsgBox Err.Description
End Sub

Private Sub cmdClose _Click()
Unload Me

End Sub

Private Sub cmdFirst_ Click()
On Error GoTo GoFirstError

adoPrimaryRS.MoveFirst
mbDataChanged = False

Exit Sub

GoFirstError:
MsgBox Err.Description



IfNot adoPrimaryRS.EOF Then adoPrimaryRS.MoveNext
If adoPrimaryRS.EOF And adoPrimaryRS.RecordCount > O Then
Beep
'moved off the end so go back

adoPrimaryRS.MoveLast
End If
'show the current record
mbDataChanged = False

End Sub

Private Sub cmdLast_ Click()
On Error GoTo GoLastError

adoPrimaryRS.MoveLast
mbDataChanged = False

Exit Sub

GoLastError:
MsgBox Err.Description

End Sub

Private Sub cmdNext_Click()
On Error GoTo GoNextError

Exit Sub
GoNextError:
MsgBox Err.Description

End Sub

Private Sub cmdPrevious _Click()
On Error GoTo GoPrevError

If Not adoPrimaryRS.BOF Then adoPrimaryRS.MovePrevious
If adoPrimaryRS.BOF And adoPrimaryRS.RecordCount > O Then
Beep
'moved off the end so go back
adoPrimaryRS.MoveFirst

End If
'show the current record
mbDataChanged = False

Exit Sub

GoPrevError:
MsgBox Err.Description

End Sub

Private Sub SetButtons(bVal As Boolean)

60 



cmdAdd. Visible = bVal
cmdEdit. Visible = bVal
cmdUpdate. Visible = Not bVal
cmdCancel. Visible = Not bVal
cmdDelete. Visible = bVal
cmdClose. Visible = bVal
cmdRefresh. Visible = bVal
cmdNext.Enabled = bVal
cmdFirst.Enabled = bVal
cmdLast.Enabled = bVal
cmdPrevious.Enabled = bVal

End Sub

Order -Code: 
Dim WithEvents adoPrimaryRS As Recordset
Dim mbChangedByCode As Boolean
Dim mvBookMark As Variant
Dim mbEditFlag As Boolean
Dim mbAddNewFlag As Boolean
Dim mbDataChanged As Boolean

Private Sub Form_ Load()
Dim db As Connection
Set db = New Connection
db.CursorLocation = adUseClient
db.Open "PROVIDER=Microsoft.Jet.OLEDB.3.51;Data

Source=C:\stock\STOCKY A.mdb;"

Set adoPrimaryRS = New Recordset
·adoPrimaryRS.Open "select CustomerID,Freight,OrderDate,OrderID from Orders Order by

OrderID", db, adOpenStatic, adLockOptimistic

Dim oText As TextBox
'Bind the text boxes to the data provider
For Each oText In Me.txtFields

Set oText.DataSource = adoPrimaryRS
Next

mbDataChanged = False
End Sub

Private Sub Form_ Resize()
On Error Resume Next
lblStatus.Width = Me.Width - 1500
cmdNext.Left .::c lblStatus.Width + 700
cmdLast.Left = cmdNext.Left + 340

End Sub

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)

61



If mbEditFlag Or mbAddNewFlag Then Exit Sub

Select Case KeyCode
Case vbKeyEscape

cmdClose Click
Case vbKeyEnd

cmdLast Click
Case vbKeyHome

cmdFirst Click
Case vbKeyUp, vbKeyPageUp
If Shift = vbCtrlMask Then

cmdFirst Click
Else

cmdPrevious Click
End If

Case vbKeyDown, vbKeyPageDown
If Shift = vbCtrIMask Then

cmdLast Click
Else

cmdNext Click
End If

End Select
End Sub

Private Sub Form_Unload(Cancel As Integer)
Screen.MousePointer = vbDefault

End Sub

Private Sub adoPrimaryRS_MoveComplete(ByVal adReason As
ADODB.EventReasonEnum, ByVal pError As ADODB.Error, adStatus As
ADODB.EventStatusEnum, ByVal pRecordset As ADODB.Recordset)

'This will display the current record position for this recordset
lblStatus.Caption = "Record: " & CStr(adoPrimaryRS.AbsolutePosition)

End Sub

Private Sub adoPrimaryRS _WillChangeRecord(B}:Val adReason As
ADODB.EventReasonEnum, ByVal cRecords As Long, adStatus As
ADODB.EventStatusEnum, ByVal pRecordset As ADO DB .Record set)

'This is where you put validation code
'This event gets called when the following actions occur
Dim bCancel As Boolean

Select Case adReason
Case adRsnAddNew
Case adRsnClose
Case adRsnDelete
Case adRsnFirstChange
Case adRsnMove
Case adRsnRequery
Case adRsnResynch

62

• 



Case adRsnUndoAddNew
Case adRsnUndoDelete
Case adRsnUndoUpdate
Case adRsnUpdate
End Select

IfbCancel Then adStatus = adStatusCancel
End Sub

Private Sub cmdAdd_Click()
On Error GoTo AddErr
With adoPrimaryRS
IfNot (.BOF And .EOF) Then
mvBookMark = .Bookmark

End If
.AddNew
IblStatus.Caption= "Add record"
mbAddNewFlag= True
SetButtons False

End With

Exit Sub
AddErr:
MsgBox Err.Description

End Sub

Private Sub cmdDelete_Click()
On Error GoTo DeleteErr
With adoPrimaryRS

.Delete

.MoveNext
If .EOF Then .MoveLast

End With
Exit Sub

DeleteErr:
MsgBox Err.Description

End Sub

Private Sub cmdRefresh_Click()
'This is only needed for multi user apps
On Error GoTo RefreshErr
adoPrimaryRS.Requery
Exit Sub

RefreshErr:
MsgBox Err.Description

End Sub

Private Sub cmdEdit_Click()
On Error GoTo EditErr

• 

63



lblStatus.Caption = "Edit record"
mbEditFlag = True
SetButtons False
Exit Sub

EditErr:
MsgBox Err.Description

End Sub
Private Sub cmdCancel _Clickt)

On Error Resume Next

SetButtons True
mbEditFlag = False
mbAddNewFlag = False
adoPrimaryRS. CancelUpdate
If mvBookMark > O Then

adoPrimaryRS.Bookmark = mvBookMark
Else

adoPrimaryRS.MoveFirst
End If
mbDataChanged = False

End Sub

Private Sub cmdUpdate _Clickt)
On Error GoTo UpdateErr

adoPrimary RS. UpdateBatch adA:ffectAll

If mbAddNewFlag Then
adoPrimaryRS.MoveLast

End If
'move to the new record

mbEditFlag = False
mbAddNewFlag = False
SetButtons True
mbDataChanged = False

Exit Sub
UpdateErr:
MsgBox Err.Description

End Sub

Private Sub cmdClose _Clickt)
Unload Me

End Sub

Private Sub cmdFirst_ Clickf)
On Error GoTo GoFirstError

64

•• 



adoPrimaryRS.MoveFirst
mbDataChanged = False

Exit Sub

GoFirstError:
MsgBox Err.Description

End Sub

Private Sub cmdLast_Click()
On Error GoTo GoLastError

adoPrimaryRS.MoveLast
mbDataChanged= False

Exit Sub

GoLastError:
MsgBox Err.Description

End Sub

Private Sub cmdNext_Click()
On Error GoTo GoNextError

IfNot adoPrimaryRS.EOF Then adoPrimaryRS.MoveNext
If adoPrimaryRS.EOFAnd adoPrimaryRS.RecordCount> O Then
Beep
'moved offthe end so go back

adoPrimaryRS.MoveLast
End If
'show the current record
mbDataChanged= False

Exit Sub
GoNextError:
MsgBox Err.Description

End Sub

Private Sub cmdPrevious_Click()
On Error GoTo GoPrevError

IfNot adoPrimaryRS.BOF Then adoPrimaryRS.MovePrevious
If adoPrimaıyRS.BOF And adoPrimaryRS.RecordCount> O Then
Beep
'moved off the end so go back
adoPrimaryRS.MoveFirst

End If
'show the current record
mbDataChanged == False

65

••



Exit Sub

GoPrevError:
MsgBox Err.Description

End Sub

Private Sub SetButtons(b Val As Boolean)
cmdAdd. Visible = bVal
cmdEdit. Visible = bVal
cmdUpdate.Visible = Not bVal
cmdCancel.Visible = Not bVal
cmdDelete. Visible = bVal
cmdClose. Visible = bVal
cmdRefresh. Visible = bVal
cmdNext.Enabled = bVal
cmdFirst.Enabled = bVal
cmdLast.Enabled = bVal
cmdPrevious.Enabled = bVal

End Sub

Products - Code: 

Dim WithEvents adoPrimaryRS As Recordset
Dim mbChangedByCode As Boolean
Dim mvBookMark As Variant
Dim mbEditFlag As Boolean
Dim mbAddNewFlag As Boolean
Dim mbDataChanged As Boolean

Private Sub Form_ Loadt)
Dim db As Connection
Set db = New Conrtection
db.CursorLocation = adUseClient
db.Open "PROVIDER==Microsoft.Jet.OLEDB.3.Sl;Data

Source=C: \stock\STOCKY Arndb;"

Set adoPrimaryRS = New Recordset
adoPrimaryRS. Open "select

Category ID,ProductID,ProductName, QuantityPerUnit, UnitPrice, UnitslnStock, UnitsOnôrder
from Products Order by ProductlD", db, adOpenStatic, adLockOptimistic

Dim oText As TextBox
'Bind the text boxes to the data provider
For Each oText In Me.txtFields

Set oText.DataSource = adoPrimaryRS
Next

mbDataChanged = False
End Sub

66



Private Sub Form_ Resize()
On Error Resume Next
lblStatus.Wıdth = Me.Width - 1500
cmdNext.Left = lblStatus.Width+ 700
cmdLast.Left = cmd.Next.Left+ 340

End Sub

Private Sub Form_KeyDown(KeyCodeAs Integer, Shift As Integer)
If mbEditFlag Or mbAddNewFlagThen Exit Sub

Select Case KeyCode
Case vbKeyEscape
cmdClose Click

Case vbKeyEnd
cmdLast Click

Case vbKeyHome
cmdFirst Click

Case vbKeyUp, vbKeyPageUp
If Shift= vbCtrlMask Then
cmdFirst Click

Else
cmdPrevious Click

End If
Case-vbKeyDown,vbKeyPageDown
If Shift = vbCtrlMask Then
cmdLast Click

Else
cmdNext Click

End If
End Select

End Sub

Private Sub Form_Unload(Cancel As Integer)
Screen.MousePointer = vbDefault

End Sub

Private Sub adoPrimaryRS_MoveComplete(ByValadReason As
ADODB.EventReasonEnum, ByVal pError As ADODB.Error, adStatus As
ADODB.EventStatusEnum, ByVal pRecordset As ADODB.Recordset)
'This will displaythe current record position for this recordset
lblStatus.Caption = "Record: " & CStr(adoPrimaryRS.AbsolutePosition)

End Sub

• 

Private Sub adoPrimaryRS__WillChangeRecord(ByValadReason As
ADODB.EventReasonEnum,ByVal cRecords As Long, adStatus As
ADODB.EventStatusEnum, ByVal pRecordset As ADODB.Recordset)
'This is where you put validation code
'This event gets calledwhen the following actions occur
Dim bCancel As Boolean

67



Select Case adReason
Case adRsnAddNew
Case adRsnCiose
Case adRsnDelete
Case adRsnFirstChange
Case adRsnMove
Case adRsnRequery
Case adRsnResynch
Case adRsnUndoAddNew
Case adRsnUndoDelete
Case adRsnUndoUpdate
Case adRsnUpdate
End Select

Private Sub cmdDelete _Clickı)
On Error GoTo DeleteErr
With adoPrimaryRS

.Delete

.MoveNext
If .EOF Then .MoveLast

End With
Exit Sub

DeleteErr:
MsgBox Err.Description

End Sub

• 

IfbCancel Then adStatus = adStatusCancel
End Sub

Private Sub cmdAdd _Clickt)
On Error GoTo AddErr
With adoPrimaryRS
IfNot (.BOF And .EOF) Then
mvBookMark = .Bookmark

End If
.AddNew
lblStatus.Caption = "Add record"
mbAddNewFlag = True
SetButtons False

End With

Exit Sub
AddErr:
MsgBox Err.Description

End Sub

Private Sub cmdRefresh_ Click/)
'This is only needed for multi user apps
On Error GoTo RefreshErr

68 



adoPrimaryRS.Requery
Exit Sub

RefreshErr:
MsgBox Err.Description

End Sub

Private Sub cmdEdit_ Clickı)
On Error GoTo EditErr

If mbAddNewFlag Then
adoPrimaryRS.MoveLast

End If
'move to the new record • 

lblStatus.Caption = "Edit record"
mbEditFlag = True
SetButtons False
Exit Sub

EditErr:
MsgBox Err.Description

End Sub
Private Sub cmdCancel_ Clickı)

On Error Resume Next

SetButtons True
mbEditFlag = False
mbAddNewFlag == False
adoPrimaryRS. CancelUpdate
If mvBookMark > O Then
adoPrimaryRS.Bookmark = mvBookMark

Else
adoPrimaryRS.MoveFirst

End If
mbDataChanged = False

End Sub

Private Sub cmdUpdate_ClickO
On Error GoTo UpdateErr

adoPrimaryRS. UpdateBatch adAffectAll

mbEditFlag = False
mbAddNewFlag = False
SetButtons True
mbDataChanged = False

Exit Sub
UpdateErr:
MsgBox Err.Description

69 



End Sub

Private Sub cmdClose _Clickt)
Unload Me

End Sub

Private Sub cmdFirst_ ClickO
On Error GoTo GoFirstError

adoPrimaryRS.MoveFirst
mbDataChanged = False

Exit Sub

GoFirstError:
MsgBox Err.Description

End Sub

Private Sub cmdLast _Clickt)
On Error GoTo GoLastError

adoPrimaryRS .MoveLast
mbDataChanged = False

Exit Sub

GoLastError:
MsgBox Err.Description

End Sub

Private Sub cmdNext_ClickO
On Error GoTo GoNextError

IfNot adoPrimaryRS.EOF Then adoPrimaryRS.MoveNext
If adoPrimaryRS.EOF And adoPrimaryRS.RecordCount > O Then
Beep
'moved off the end so go back

adoPrimaryRS.MoveLast
End If
'show the current record
mbDataChanged = False

••

"' 

Exit Sub
GoNextError:
MsgBox Err.Description

End Sub

Private Sub cmdPrevious _Clickf)
On Error GoTo GoPrevError

70 



IfNot adoPrimaryRS.BOF Then adoPrimaryRS.MovePrevious
If adoPrimaryRS.BOF And adoPrimaryRS.RecordCount > O Then

Beep
'moved off the end so go back
adoPrimaryRS.MoveFirst

End If
'show the current record
mbDataChanged = False

Exit Sub

GoPrevError:
MsgBox Err.Description

End Sub

Private Sub SetButtons(b Val As Boolean)
cmdAdd.Visible = bVal
cmdEdit. Visible = bVal
cmdUpdate.Visible = Not bVal
cmdCancel.Visible = Not bVal
cmdDelete.Visible = bVal
cmdClose. Visible = bVal
cmdRefresh. Visible = bVal
cmdNext.Enabled = bVal
cmdFirst.Enabled = bVal
cmdLast.Enabled = bVal
cmdPrevious.Enabled = bVal

End Sub

-~

71



CONCLUSION 

The database programming are one of the most growing up fields in the computer

world, and the applications of it are spreading and entering everywhere in our real life.

Despite of it being one of the best Object Oriented Programming languages The

Visual Basic is also one of the most used database programs builders referring to its high

control on user interface of databases management and design, I believe that the entire Visual

Basic had become more useful and gaining more ground on the application world, but the

· main reason for me to use Visual Basic is, because I have been very aggressive to learn it and

I got some experience in solving database problems using database engines so its advisable to
maintainnew control through on objects through VisualBasic.

In this project, the Stock control database has been taken with in regards to a small

Business Company, and it can apply the same services that is provided here to a more

generalized Stock requirements of bigger Companies, which may recommend adding network
capabilities.

This program is designed easy enough to use by any public user, security
considerations was bared in mind and upgrading capabilities are wide open. All these features
fall in favors of the program hoping to improve work in the future.

••

72



REFERENCES 

[ 1] Microsoft Corporation, Visual Basic 6. O Programmer's Guide, Microsoft Press,
Washington, 1998.

[2] John Lewis, Advanced Visual Basic Programming, Jerry Blank/SIS, USA, 1998.

[3] Gordon C., Database Management, McGraw-Hill, Singapore, 1986.

[4] Database SystemDesign.
"http:/ lwww.gogle.com/edulx89 3&z00cvp/da.t. htm" 

[5] Microsoft Access.
"http: I !www.microsoft.com/train _cert" 

• 

73 


