
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

ACCOUNT FEE STUDENT
SYSTEM

Graduation Project
COM-400

Student: Omar Yasin (20021859)

Supervisor: Assoc. Prof. Dr. Adil Amirjanov

\

Nicosia - 2007

ACKNOWLEDGEMENT

First of all I would like to thanks Allah {God) for guiding me through my study.

More over I want to pay special regards to my parents who are enduring these all

expenses and supporting me in all events. I am nothing without their prayers. They also

encouraged me in crises. I shall never forget their sacrifices for my education so that I

can enjoy my successful life as they are expecting. They may get peaceful life in Heaven.

Also, I feel proud to pay my special regards to my project adviser "Assoc. Prof Dr.

Adil". He never disappointed me in any affair. He delivered me too much information

and did his best of efforts to make me able to complete my project. He has Devine place

in my heart and I am less than the half without his help. I am really thankful to my

teacher.

The best of acknowledge, I want to honor those all persons who have supported me or

helped me in my project. I also pay my special thanks to my all friends who have helped

me in my project and gave me their precious time to complete my project. Also my

especial thanks go to my friends, Fadi aqeal, yosaf Al-arouri, Masa Yasin, Rami

Abda/ah, Ibrahim Ismail, and Adana Abu Yosaf

At the end I am again thankful to those all persons who helped me or even encouraged

me to complete me, my project. My all efforts to complete this project might be

fruitfully.

)

ABSTRACT

This project showed the useful uses in Database application in account fee student

system, and for use.

In the project can add user will use this project and give user name and password for

the user, in password have a particular authority in using this program by defining his

actions and that related to his name and password, and also can delete the user and

edit the information for the user if have any mastic in the information.

In the project can add student, and update the student only the money and also you

can edit the information for student and you can see if he has debt or credit.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

CONTENTS

INTRODUCTION

1. Visual Basic

1.1 Overview

1 .2 Creating A Project In Visual Basic

1 .2.1 Designing The Tic-Tac-Toe Program

1 .2.2 The Parts Of A Visual Basic Project

1 .3 Coding In Visual Basic

1.3. 1 PROGRAMDESIGN LANGUAGE

11

Ill

1 .4 Coding To Get The Most From Visual Basic

1

2

2

3

3

4

7

8

9

2. Data Base 13

2. 1 Overview 13

2.2 Relational Database 13

2.3 Changing Data Into Information 14

2.4 Access Database 14

2.4.1 Maintaining Access Databases 14

(2.4.1. 1 Repairing In Place 15

2.4.2 The Access User Interface 16

2.4.2.1 Navigating The Database View Window 17

2.5 SQL Database 19

Ill

3. Open Database Connection

3.1 Overview

3 .2 Opening Database

3 .3 Adding A Record To A Record Set

3.4 Editing A Record In A Record Set

3.5 Updating A Record In A Record Set

3.6 Moving To The First Record In A Record Set

3.7 Moving To The Last Record In A Record Set

3.8 Deleting A Record In A Record Set

3.9 Searching A Record Set

21

21

21

24

25

25

26

27

28

28

4.Registration Student 30

4.1 Over View 30

4.2 Security 31

4.3 Users 31

4.3.1 Add New Users 31

4.3.2 Edit Users 32

4.3.3 Delete Users 33

4.3.4 Viewing All Users 34

4.4 Student 35

4.4.1 Add New Student 35

4.4.2 Update Old Student 36

4.4.3 Edit Student Information 38

4.4.4 Delete Student 38

4.4.5 Debt And Payment For Student 39

ıv

CONCLUSION

REFERENCES

APPENDIX

40

41

42

V

INTRODUCTION

This project is talking about the registering of students in university by using the

visual basic programming language and data base.

In my chapters I tried to describe how the visual basic working and how I used it

in my program, how I connected it with the data base and how can the user use this

program.

This project includes 4 chapters:

The first chapter describes the visual basic programming language with its coding

and variable scope (including object variables) and procedure scope, how its working,

how to create and design projects in visual basic.

The second chapter talks about the data base how to make it, active it and how to

insert, search, delete and edit the information in it.

Chapter three describes the connection between data base and visual basic and

how they are working together in the same program.

Chapter four represents my program in a diagrams how to use it and how to insert

a new student, register old students and delete graduated students

1

CHAPTERl

VISUAL BASIC

1.1 OVERVIEW

Ifs no secret that Visual Basic is the favorite programming environment of many

programmers. When Visual Basic first appeared, it created a revolution in Windows

programming, and that revolution continues to this day. Never before had Windows

programming been so easy just build the program you want, right before your eyes,

and then run it. Visual Basic introduced unheard-of ease to Windows programming

and changed programming from a chore to something very fun.

Well start with an overview of Visual Basic, taking a look at topics common to the

material in the rest of the text. In this chapter, well create the foundation well rely on

later as we take a look at the basics of Visual Basic, including how to create Visual

Basic projects and seeing what is in such projects. Well also get an overview of

essential Visual Basic concepts like forms, controls, events, properties, methods, and

so on. And well examine the structure of a Visual Basic program, taking a look at

variables, variable scope, and modules. In other words, were going to lay bare the

anatomy of a Visual Basic program here.

Most Visual Basic programmers do not have formal programming training and

have to learn a lot of this material the hard way. As programming has matured,

programmers have learned more and more about what are called best practices the

programming techniques that make robust, easily debugged programs. Well take a

look at those practices in this chapter, because they are becoming more and more

essential for programmers in commercial environments these days, especially those

programmer~hat work in teams. And well look at those practices from the viewpoint

of programmers who program for a living; frequently there's a gap between the way

best practices are taught by academics and how they are actually needed by

programmers facing the prospect of writing a 20,000-line program as part of a team of

programmers.

2

1.2 CREA TING A PROJECT IN VISUAL BASIC

There are three different editions of Visual Basic:

• "The Leaming Edition, which is the most basic edition .This edition allows

you to write many different types of programs, but lacks a number of tools that the

other editions have.

• "The Professional Edition, designed for professionals. This edition contains all

that the Leaming Edition contains and more, such as the capability to write ActiveX

controls and documents.

• "The Enterprise Edition, which is the most complete Visual Basic edition.

This edition is targeted towards professional programmers who may work in a team

and includes additional tools such as Visual SourceSafe, a version-control system that

coordinates team programming.

1.2.1 DESIGNING THE TIC-TAC-TOE PROGRAM

Using the Command Button tool in the Visual Basic toolbox, add a new command

button to the main form in our program now, in the Properties window, change the

Name property of this button from Commandl to Command in preparation for setting

up a control array, and clear its Caption property so the button appears blank.

Next, add a second button to the form, and set its Name property to Command as

well. When you do, Visual Basic opens a dialog box that states: _You already have a

control named _Command_. Do you want to set up a control array?_ Click Yes to

create a control array, which means we will be able to refer to our controls using an

index instead of simply by name.

Add a total of nine buttons to the main form in our program, arranged in a 3x3

grid similar to a standard tic-tac-toe game, give each of the buttons the name

Command, and clear their captions:' That completes the preliminary design now were

ready to write some code.

3

1.2.2 THE PARTS OF A VISUAL BASIC PROJECT

Projects can become quite advanced in Visual Basic, even containing subprojects

of different types. From a programming point of view, however, standard Visual

Basic projects usually contain just three types of items: global items, forms, and

modules.

• Forms

Forms are familiar to all Visual Basic programmers, of course they are the

emplates you base windows on. Besides standard forms, Visual Basic also supports

Multiple Document Interface (MDI) forms, as well as a whole number of predefined

torms.

• Modules

Modules are collections of code and data that function something like objects in

bject-oriented programming (OOP), but without defining OOP characteristics like

ınheritance, polymorphism, and so on. The point behind modules is to enclose

rocedures and data in a way that hides them from the rest of the program.

Well discuss the importance of doing this later in this chapter when we cover

isual Basic programming techniques and style; breaking a large program into

smaller, self-contained modules can be invaluable for creating and maintaining code.

You can think of well-designed modules conceptually as programming objects;

or example, you might have a module that handles screen display that includes a

dozen internal (unseen by the rest of the program) procedures and one or two

rocedures accessible to the rest of the program. In this way, the rest of the program

only has to deal with one or two procedures, not a dozen.

• Global Items

Global items are accessible to all modules and forms in a project, and you declare

them with the Public keyword. However, Microsoft recommends that you keep the

4

number of global items to an absolute minimum and, in fact, suggests their use only

when you need to communicate between forms.

One reason to avoid global variables is their accessibility from anywhere in the

program; while you are working with a global variable in one part of a program,

another part of the program might be busy changing that variable, giving you

unpredictable results.

• Project Scope

An objects scope indicates how much visibility it has throughout the project in the

procedure where it's declared, throughout a form or module, or global scope (which

means it's accessible everywhere). There are two types of scope in Visual Basic

projects:

• Variable scope (including object variables) and

• Procedure scope.

We'll take a look at both of them here as we continue our overview of Visual

Basic projects and how the parts of those projects interact.

• Variable Scope

You declare variables in a number of ways. Most often, you use the Dim

tatement to declare a variable. If you do not specify the variable type when you use

Dim, it creates a variant, which can operate as any variable type. You can specify the

ariable type using the as keyword like this:

Dim Integer Value as Integer

Besides Dim, you can also use ReDim to redimension space for dynamic arrays,

Private to restrict it to a module or form, Public to make it global that is, accessible to

all modules or forms or Static to make sure its value does not change between

procedure calls.

5

There are three levels of variable scope in Visual Basic: at the procedure level, at

ce form or module level, and at the global level schematically.

When you are designing your program, Microsoft suggests you limit your

aıiables to the minimum possible scope in order to make things simpler and to avoid

conflicts. Next, we '11 takes a look at the other type of scope: procedure scope.

• Procedure Scope

As with variables, you can restrict the scope of procedures, and you do that with

ıae Private, Public, Friend, and Static keywords. The Private and Public keywords are

.... e main keywords here; using them, you can specify if a subroutine or function is

nrivate to the module or form in which it is declared or public (that is, global) to all

rorrns and modules. You use these keywords before the Sub or Function keywords

.ike this:

Private Function Returns 7 O

Dim Retval

Retval = 7

Returns7 = Retval

End Function

You can also declare procedures as friend procedures with the Friend keyword.

Friend procedures are usually used in class modules (they are not available in

standard modules, although you can declare them in forms) to declare that the

rocedure is available outside the class, but not outside the current project.

This restricts those functions from being called if the current project serves as an

OLE automation server, for example.

Besides the earlier declarations, you can also declare procedures as Static, which

means that the variables in the procedure do not change between procedure calls, and

6

that can be very useful in cases like this, where we support a counter variable that is

ıncremented each time a function is called:

Static Function Counter O

Dim Counter Value as Integer

CounterValue = CounterValue + 1

Counter= CounterValue

End Sub

1.3 CODING IN VISUAL BASIC

The full construction of a commercial program is usually a project that involves

many clear and definite steps. There have been whole volumes written on this topic,

which are usually only interesting if you are a software project manager (or write

omputer books and have to know the details so you can write about them!). Such

ooks get pretty involved, encompassing ideas like module coupling and cohesion,

ottom-up composition, incremental integration, and much more.

On the whole, however, one can break the software design process into steps like

hese (note that the explanation of each step is very flexible; there is no one-size-fits

all here):

• "Requirements analysis Identify the problem for the software to tackle.

• "Creating specifications Determine what exactly the software should do.

• "Overall design Break the overall project into parts, modules, and so on.

• "Detailed design the actual data structures, procedures, and so on.

• "Coding Go from PDL to code.

• "Debugging Solve design-time, compilation, and obvious errors.

• "Testing Try to break the software.

• "Maintenance React to user feedback and keep testing.

Each of these steps may have many subparts, of course. (For example, the

maintenance part may take up as much time as the rest of the project taken together.)

7

s the design process continues, a model of what the program does evolves. You

se this model to get a conceptual handle on the software (while keeping in mind that

els are usually flawed at some level).

Keeping the model in mind, then, many programmers use a program design

nguage to start the actual coding process .

. 1 PROGRAM DESIGN LANGUAGE

Everyone seems to think that programmers use flowcharts, but the reality is

ally different (flowcharts are nice to show to nonprogrammers, though). One tool

at commercial programmers do find useful is program design language (PDL).

.though there are formal specifications for PDL, many programmers simply regard

step as writing out what a program does in English as a sort of pseudo-code.

For example, if we want to create a new function named dblSqrt() that returns a

umbers square root, we might write its PDL this way in English, where we break

hat the function does into steps:

Function db/Sqrt O

Check if the input parameter is negative

If the input parameter is negative, return -1

If the input parameter is positive, return its square root

End Function

When you actually write the code, the PDL can often become the comments in

at code; for example, here's the completed function:

'***

'dblSqrtO

'Purpose: Returns the passed parameter's square root

'Inputs: db/Parameter, the parameter whose square root we need

'Returns: The input value's square root
8

'***

Function dblSqrt(dblParameter As Double) As Double

'Check if the input parameter is negative

If db/Parameter < O Then

'If the input parameter is negative, return -I

db/Sqrt = -I

Else

'If the input parameter is positive, return its square root

db/Sqrt = Sqr(dblParameter)

End If

End Function

In this way, developing your program using PDL, where every line of PDL has

one (and only one) specific task, can be very useful.

1.4 CODING TO GET THE MOST FROM VISUAL BASIC

In this section, we'11 discuss some best practices coding for Visual Basic. All of

these practices come from professional programmers, but of course whether you

implement them or not is up to you. Here we go:

"Avoid _magic numbers_ when you can. A magic number is a number (excluding

O or 1) that s hardwired right into your code like this:

Function blnCheckSize(dblParameter As Double) As Boolean

If db/Parameter > I 024 Then

blnCheckSize = True

Else

bln CheckSize = False

End If
9

End Function

Here, 1024 is a magic number. Ifs better to declare such numbers as constants,

specially if you have a number of them. When it's time to change your code, you just

aave to change the constant declaration in one place, not try to find all the magic

aumbers scattered around your code.

"Be modular. Putting code and data together into modules hides it from the rest of

ıae program, makes it easier to debug, makes it easier to work with conceptually, and

even makes load-time of procedures in the same module quicker. Being modular also

called information-hiding (and encapsulation in true OOP) is the backbone of

·orking with larger programs. Divide and conquer is the idea here.

"Program defensively. An example of programming defensively would be to

check data passed to you in a procedure before using it. This can save a bug from

ropagating throughout your program and help pinpoint its source. Make no

sumptions.

"Visual Basic procedures should have only one purpose, ideally. This is also an

aid in larger programs when things start to get complex. Certainly if a procedure has

.vo distinct tasks, consider breaking it up.

"Avoid deep nesting of conditionals or loops. Debugging deeply nested

conditionals visually is very, very inefficient. If you need to, place some of the inner

oops or conditionals in new procedures and call them. Three levels of nesting should

e about the maximum.

"Use access procedures to protect sensitive data. (This is part of programming

defensively.) Access procedures are also called Get/Set procedures, and they are

•.alled by the rest of the program when you want to work with sensitive data. If the

rest of the program must call a Set() procedure to set that data, you can test to make

·me that the new value is acceptable, providing a screen between that data and the rest

f the program.

10

"Ideally, variables should always be defined with the smallest scope possible.

Global variables can create enormously complex conditions. (In fact, Microsoft

recommends that global variables should be used only when there is no other

onvenient way to share data between forms.)

"Do not pass global variables to procedures. If you pass global variables to

procedures, the procedure you pass that variable to might give it one name (as a

passed parameter) and also reference it as a global variable. This can lead to some

serious bugs, because now the procedure has two different names for the variable.

"Use the operator when linking strings and the + operator when working with

numerical values. This is per Microsoft's recommendations.

"When you create a long string, use the underscore line-continuation character to

create multiple lines of code. This is so you can read or debug the string easily. For

example:

Dim Msg As String

Msg = "Well, there is a problem 11_

&"with your program. I am not sure 11
_

&"what the problem is, but there is 11
_

&"definitely something wrong. 11

"Avoid using variants if you can. Although convenient, they waste not only

memory but time. You may be surprised by this. Remember, however, that Visual

Basic has to convert the data in a variant to the proper type when it learns what is

required, and that conversion actually takes a great deal of time.

"Indent your code with four spaces per Microsoft is recommendations. Believe it

or not, there have been serious studies undertaken here, and 2 to 4 spaces were found

to be best. Be consistent.

"Finally, watch out for one big Visual Basic pitfall: misspelled variables. Because

you do not have to declare a variable in Visual Basic to use it, you might end up

11

rised when Visual Basic creates a new variable after you have misspelled a

ıriable is name. For example, here is some perfectly legal code modified from our

-tac-toe project that compiles and runs, but because of a misspelling xNoww for

.ow it does not work at all:

Private Sub Command_ Click(lndex As Integer)

lfxNow Then

Command (Indexı.Capıion = "x"

Else

Command (Indexı.Capıion = "o"

Endlf

xNoww = Not xNow

End Sub

Because Visual Basic treats xNoww as a legal variable, this kind of bug is very

rd to find when debugging.

TIP: Because Visual Basic auto-declares variables, it's usually better to use

riable names that say something (like intCurrentlndex) instead of ones that do not

·-e intDD35A) to avoid declaring a variable through misspelling its name. A better

is to use Option Explicit to make sure all variables must be explicitly declared.

If you work in teams, use version control. There are several well-known utilities

help programmers work in teams, such as Microsoft's Visual SourceSafe. This

ity, which is designed to work with programming environments like Visual Basic,

restricts access to code so that two programmers do not end up modifying

-"ependent copies of the same file.

12

CHAPTER2

DATA BASE

__ ı OVERVIEW

The purpose of a Database system such as Microsoft Access is to change data into

nformation. Many people use those two terms interchangeably, but there is a world of

ıfference between the two if you consider information as being the same as

.nowledge. Data is a collection of facts. Information is that data organized or

..,resented in such a way as to be useful for decision making.

This shows actual voter registration data for a particular county shown in Access.

· includes voters' names, addresses, registration information such as political party,

d also the voting records for each person registered. It doesn't, of course, show who

oters voted for (that's unavailable as data), but it does show whether and how the

oters voted for each election cycle. A voter can vote by mail-in ballot, early voting,

rat the polls.

-·2 RELATIONAL DATABASE

A relational Database, simply defined, is a Database that is made up of tables and

columns that relate to one another. These relationships are based on a key value that is

contained in a column. For example, you could have a table called Orders that

contains all the information that is required to process an order, such as the order

umber, date the item was ordered, and the date the item was shipped. You could also

· ave a table called Customers that contains all the data that pertains to customers,

such as a name and address. These two tables could be related to each other.

The relational Database model was developed by E.F. Codd back in the early

970s. He proposed that a Database should consist of data stored in columns and

·ables that could be related to each other. This kind of thinking was very different

~ om the hierarchical file system that was used at the time. His thinking truly

revolutionized the way Databases are created and used.

13

