
NEAR EAST UNIVERSITY

/' I ,:,,,

'
~,·

'
'

, '· I uı. .,. .
I ,., 'v
'\~"'".6,_ '\., •. I

~ \)?/ ~ıı, 193?.?"~-
Faculty of Engineering

Department of Computer Engineering

AIRCRAFT CREW MEMBERPLANNING

Graduation Project

_COM-400

Student: lshaq Ahmad

Supervisor: Assoc. Prof. Dr. Rahib Abiyev

Nicosia - 2003

'\\
' . \ \

..••.- 4 b

ACKNOWLEDGEMENT 'iıı. ,/ ,J'j)}J
, rnss •
·'--, -·--

"First ofa/I, I want topay my regards to my supervisor "Assoc.Prof Dr. Rahib Abieyv"

and all persons who have contributed in the preparation of my project to complete it

successfully. I am also thankful to who helped me a lot in my crises and gave mefull

support toward the completion of my project.

I would like to thank myparents who gave their lasting encouragement in my studies, so

that I could be successful in my life time. I specially thank to my mother whose prayers

have helped me to keep safe from every dark region of life. Special thank to myfather

who help m! in joining this prestigious university and helped me to make my future

brighter Special thanks to myfriend Alaa whose gave me precious time to help me to

complete my study..

I am also very much grateful to my all companions and colleagues who gave their

precious time to help me to encourage me their ever devotion and all valuable

information which I really need to complete myproject.

Further I am thankful to Near East University academic staff and all thosepersons who

helped me or encouraged me incompletion of myproject. Thanks!"

l

ABSTRACT

The purpose of this project is the developmentof Aircraft CrewmemberPlanning Database.

The analysis of the planning of the crewmembers has been made. The main structures and

elements of database system are clarified. The operation principle of each blocks of the

system is modeled in Delphi programming language.The developed system allows making

decision easily and decreasing time response of the system. Over the past decades people

have transferred in maintaining records through paper and pen, and now we are evolving

into the technologyaria.

This project has taken a lot of effort and time to send out a very clear and simple program

in Delphi concerning any airline company. Simplicity was the main object in modifying

and keeping records of database concerning airline issues such as crew information and

aircraft information .if there is anything that we should agree upon is program save a lot of

time and energy.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENT i
ABSTRACT ii
TABLE OF CONTENTS iii
INTRODUCTION 1
CHAPTER!: DESCRIPTION OF AIRCRAFT CREW PLANNING

1.1 Introduction 3
1.2 Records of Flight and Duty times 3
1.3 Crew Responsibilities 3
1.4 Flight Time Limitationof cockpit crewmembers 4
1.5 Limit terms explanation 4

LS.1 Rest time 4
1.6 Flight Time Limitation of Cabin crewmembers 5

ı.e.ı Rest time 5
1.7 How We Can Calculate the Flight Time, Duty Time and Rest Time 6

1.7.1 Flight Time 6
1. 7.2 Duty Time 6
1.7.3 Rest Time: 7

ı.s Crewmembers Duties: 7
1.9 Standby 7
1. 10 Terminology 8

CHAPTER 2: PROGRAM STRUCTURE FOR CREW PLANNING

2.1 Program Structure 10
2.1.1 Explanation of Block Diagram: 10

2.2 Flow ..Chart for Add new flight 12
2.2.lExplanation of the Add new flight flow-charts 17

2.3 Search Flow-Chart 19
2 .3.1 Explanation of the Search 19

CHAPTER 3: DATABASE USING DiLPHİ
3 .1 What Is Delphi? 20
3.2 Database Basics 20
3 .3 Local Databases 22
3 .4 Client/Server Databases 22
3 .5 The Borland Database Engine 23
3.6 BDE Drivers 23
3.7 BDE Aliases 24
3.8 Creating a 130'.E Alias 24
3.9 Creating an Alias with the BDE Administrator 25
3 .1 O Creating an Alias through Code 26

iii

3.11 SQL Links: 27
3.12 DATABASE SERVERS 27
3.13 Single-Tier, Two-Tier, and Multitier Database Architecture 27
3.14 LOCAL INTERBASE 29
3.15 Delphi Database Components 29
3.16 The TDataSet Class 30
3-.17 The Table Component · 30

, 3.18 Filters 31
3. 19 Using Filters In The Table Component 32

CHAPTER 4: COMPUTER REALIZATION OF CREW PLANNING
4 .1 Database Structure 33
4.2 Master/Detail Tables 36
4.3 Database Form 39

4.3.1 Log-in screen 39
4.3.2 Main Menu Screen 39
4.3.3 Member Information Screen 41
4.3.4 Address Screen 42
4.3.5 License Screen 42
4.3.6 Add new flight Screen 43
4.3.7 Flight CalculationScreen . 43
4.3.8 View Crew Screen 44
4.3.9 Members Available screen 44
4.3.10 Aircraft screen 45
4.3.11 Search Screens: 46
4.3.12 Report screen 48
4.3.13 Change Account Screen 48
4.3.14 Add new Account Screen 49

CONCLUSION SO
REFRENCES 51
APPENDIX 52

IV

INTRODUCTION

This aim of the project is the Aircraft Crewmember Planning using Object- oriented

programming technologies.

The intended audience for this project includes the follow:

(1) Codes - any codes that are responsible for creating and maintaining the data elements

and file description specified in this project.

(2) Screens - those individuals who wish to view the data collected and processed as part of

the Aircraft Crewmember Planning from a "summary' or "subtotaled" point of view. The

database files are used by the company staff to verify that the underlying unitary data

reported as part of the project are valid and consistent from term-to-term and year-to-year.

In this project, I am trying to send out a message in the shape of a program created in the

Delphi language. This message that I am trying to send to you (computer user) is that it is

much easier than you think it is to design a program in Delphi for airline companies.

Regarding this program which basically, divided into two main sections. A section for the

crewmember which consist of cabin chief; senior cabin attendant and cabin attendant and if

concentrates on the services and assurance of comfort to their passengers. The other section

is the cockpit crew which consists of the captain, first officer and flight engineer. Each

member has been assigned a special form in this program; these forms are updated

consistently depending on his working hours. In order to clarify this let take an example, if

we were to consider a captain X in Y airlines and he was assigned to flight from Ercan to

Istanbul , his personal form where his name, age and number of hours flown by him would
-,

automatically be updated upon his arrival in Istanbul. This will be very vital information in

his resume where he might be needing of any time of his life. Another important thing

about this program is it checks for the availability of either the cabin crew or the cockpit

crew and by doing so, you wont finds difficulty assigning your crew according to your

schedules.

1

This program capabilities do not end of the cabin and cockpit crew, it extends up to the

flight schedules which are linked directly with the aircraft menu.

The flight schedules are typed into the program manually and contain information about the

flight number which automatically gives you where the aircraft is heading to in other words

its destination and its type, name, capacity and what type of crew is assigned to it. One

other information is given about the aircraft in the program is its maintenance and the

duration regarding this issue. (Described in chapter 3)

However, the program can be updated in the sense of having its own schedule linked

to Delphi program but that would be a question of time:, The aircraft section in this

program varies in information all linked to its menu. Just like any information about any

aircraft in the world, this part of the program is designed for the identify of the aircraft

information such as name of aircraft , its type , number of passenger and number of

passenger and number of flight crew including a link to cabin and cockpit menu .the aircraft

maintenance is also among the information given the type of the aircraft also determine

which captain flies which aircraft and which aircraft is assigned to long hour flight and

issues like that. another important factor about the aircraft is that depending on number of

passenger and flight crew is the aircraft carefully selected .as an example and reference of

this program I have used some valuable information from Cyprus Turkish airlines where

they have three types of aircrafts which can be flown by any of their cockpit crew. In doing

so the flights are almost the some in avionic control

2

CHAPTERl

DESCRIPTION OF AIRCRAFT CREW PLANNING

1.1 Introduction

KTHY has established a Flight and Duty Time limitation and a rest scheme for all

crewmembers in accordance to some Rules .The Flight planning for a flight and cabin crew

should be planned in. accordance with limitations .Inthe planning process, possible delay

chances at the home base and out ofthe base will be taken into considerations. All flight
crewmembers should have the current licenses (no copies) in regard to their types of

airplanes and must be available when requested.

For Flight planning the following fiıctorsshould be considered:

• Command and Control ofFlight.

• An accident prevention procedure.

• The usage ofcommunication and navigation system.

• Command and Decision.

1.2 Records of Flight and Duty Times:

Sufficientlydetailed records ofcrewmember as:

• Block Times.

• Flight Duty Periods.

41 Duty Periods.

• Rest periods and local days free ofall duties are maintained by the flight operations

management to ensure compliance within there requirements. Each crewmember should

also keep the same records individually.

1.3 Crew Responsibilities:

A crewmember shall not operate on an aero-plane if feels unfit to extend that the flightmay

be endangered.

3

1.4 Flight Time Limitation of cockpit crewmembers:

Flight Time, Duty Time, and Rest Periods must not exceed the following limits:

Table 1. 1 Cockpit Limitations

MAX MAX FLIGHT TIME (HOURS) REST TIME HOURS
CREW DUTY

TIME DAY \.\'EEK MONTH YEAR DAY \.\'EEK

A A310 14 12 30 1 110 1000 8
I

48
I I

B B727 14 12 30 110 1000 8 48

C B737 14 12 30 110 1000 8 48

I
'-

1.5 Limit terms explanation:

1.5 .1 Rest time

The minimum rest time be the highest of A, B, C

A) 8 hours

B) 2 x Flight Time

C) 1 x-Duty Time

Note:

• Flight time limitations are for 3 landings only. Tf landing number exceeds, time limits

decrease; 1/2 hours for each extra landing.

• None of the Cockpit crewmember must exceed 300 hours flight time in consecutive

90 days.

• Each Flight Duty should not exceed 5 landings.

• Tn consecutive 7 days at least one continue rest period of 24 hour should be provided to

crewmembers.

4

• A crewmember should have at least 6 days rest period in a month and, at least 4 of them

should be consecutive 2 by 2.

• Deadhead Flight, before and after Flight Duty, should be considered Flight Duty hours.

Deadhead flight periods to home base as also considered as Flight duty hours for the

calculation of rest periods;

• Observer Flight should be considered as Duty periods.

Table 1.2 Cabin Limitations

MA.X MAX FLIGHT TIME (HOURS) REST TIME
CREW DUTY

TIME DAY WEEK MONTH YEAR DAY WEEK

A A310 16 12 30 110
I

1000 8 48

B B727 16 12 30 ııo 1000 8 48

C B737 16 12 30 11 O 1000 8 48

1.6 Flight Time Limitation of Cabin crewmembers:

1.6. l Rest time

The minimum rest time be the highest of A, B, C

A) 8 hours

B) 2 x Flight Hours

C) 1 x Duty Time

• The same limitations are applied to Cabin-crewmembers. However, if required, Flight

Duty and Duty Time limits can be increased by % 1 O, Rest periods remains the same.

• None of the Cabin-crewmembers must exceed 300 hours Flight time in consecutive

90days.

5

1.7 How We Can Calculate the Flight Time, Duty Time and Rest Time:

There is a Flight leaving from ERCAN at 05 :00 to 1STANBUL at 06:30 and then leaves

ISTANBUL at 07:30 to ERCAN at 09:00.

ECN 05:00 TST 06:30

1ST 07:30 ECN 09:00

ı..7.1 Flight Time:

The flight time from ECN to 1ST: 05:00 -06:30 =: Ol :30

The flight time from 1ST to ECN: 07:30 -09:00 ••• O 1:30

The total flight time of this flight: Ol :30 + 01:30 = 3 hours

1.7. 2 Duty Time:

In order to calculate the Duty Time certain steps are made which are the following:

A) Subtracting 1 hour from the first Departure Time.

B) Adding 30 minutes to the last Landing Time.

C) Duty time= Subtract the result ofA from the result ofB.

05 :00-0 I :00 = 04 :00

09:00 + 00:30 = 09:30

Duty Time: 09:30 - 04:00 = 05:30 hours.

1. 7 .3 Rest Time:

The minimum Rest Time is the highest of A, B and C.

A) 8 hours

B) 2 x Flight Time. -

C) I x Duty Time

Rest Time will be = 8 hours.

6

1.8 Crewmembers Duties:

Table 1.3 Crewmember Duties

AIRCRAFT COCKPIT CABIN

B-727 1 CAPTAIN 1 CABIN CHIEF
1 FIRST OFFICE 1 SENIOR CABIN

~ 1 FLIGHT ENGINEER 2 CABIN ATTENDANTS

B-737 1 CAPTAIN 1 CABIN CHIEF
1 FIRST OFFICE 11 SENIOR CABIN

2 CABIN ATTENDANTS

A-310 1 CAPTAIN 1 CABIN CHIEF
1 FIRST OFFICE 2 SENIOR CABIN

3 CABIN ATTENDANTS

I

1.9 Standby:

Table 1.4 Standbys

STANBYTYPE STANBY HOURS
Standby 1 Between 00:00 to 12 :00

Standby 2 Between 12:00 to 00:00

AJI standby crews will stay at home or a suitable place where they can be contacted directly

by the crew planning department or operation control center. When called by the company,

a crewmember on standby will be at KTHY operationoffice within reasonable time.

1. IO Terminology:

Actual Flight Operation: Actual flight operation starts at the reporting time and ends when

the crew goes off Duty.

7

Adequate Facilities: A quiet and comfortable place not opens to the public.

Augmentedflight Crew: A flight crew which comprises more then the minimum number

required for the operation of the aero plane and in which each flight crew member can leave

his post and be replaced by another appropriately qualified flight crew member.

'Flight Duty Period (FDB) (Duty Time): A period starting when the crew member ıs

required to report for a duty period which includes a flight, and which finishes at the block

time at the end of the final flight on which the crew member Is an operating crewmember

One hour before scheduled of block time until 112 hour after on block time.

Home Rase: The KTHYis normally nominated to the crew member ERCAN from Where

the Crewrnember starts and ends a duty period or a series of duty periods and not

responsible for the accommodation of the crewmember consumed.

Late Finishes I Warty starts: Any duty that is carried out within any part of the period 0100

to 0659 hours local time at the reporting place.

Local Day: A period from 0000 to 2400 local time.

Notification Time: The period of time that KTHY allows between the time a crew member

on standby receives a call requiring him/her to report for duty and the time he/she is

required to report for that duty.

Operation Crewmember: A crewmember who carries out his /her duties in an aero plane

during the flight or during any part of it.

Reporting Time: The time at which a crewmember is required by KTHY to report for any

duty.

Rest Period: An uninterrupted and defined period of time during which a crewmember is

free of all duties and be standby. (Start 1/2 hour after on Block time).

Split Duty: Flight duty periods, which consist of two duties, separated by a break.

Standby: A period of time in which a crewmember has not been assigned to any duty, but is

required to be contactable to receive an assignment for duty.

8

Suitable Accommodation: A suitably finished bedroom, with single occupancy, if required

by the crew member, which is subject to minimum noise, is well ventilated and should have

the facility to control the levels of light and temperature.

9

CHAPTERl

PROGRAM STRUCTURE FOR CREW PLANNING

2.1 Program Structure:

CABIN ASSIGNMENT ENTERING

COCKPIT CREW FLIGHT

CREW SEARCH

HELP

AIRCRAFT AIRCRAFT

2.1.1 Explanation of Block Diagram:

• Assignment Block: we enter certain information in order to assign the Crewınember
(he I she) whether be Cabin or Cockpit in a certain Flight .after so ,the information will be
stored in the database file.
-Entering Block: for this block entered information would be chosen due to three data
types which are as the following:
1. Crewmember information
2. Flight Schedule Information
3. Aircraft Information

10

After choosing the data type; entered information, will be stored in the database file.

• Viewing Block: This block shows all the information that has been entered about the
crewmembers, cabin, cockpit, aircraft and flight schedule.

• Search Block: we use this block to search for Crewmember (he/she) is cabin or cockpit
and we use it to search for aircrafts as well .For this task the program gets data from the
user compares it with the database, if the program finds it, then the rest of the data
information will appear.

• Help Block: this block is designed to support the usage of the operators for the whole
program. Unless you are going to be there to answer their question in person. A help file is
provided for that application.

11

2.2 Flow-Chart for Add new flight:

Start

YES

Add new
Personal

Information

Add new
Address

Add new
License

Add new
Medical
Report

12

Crew not
Available

NO

YES

Get I-Flight no
2-plane Type

Flight Time = O

Get Departure
Time

Get Landing
Time

13

2

Flight Time= Departure Time-Landing Time

Rest Time= O

A= 8 Hours

14

Flight
Time=O

Choose
another Crew

B = 2 * Flight Time

Choose another
Crew

C=DutyTime

NO
Get Duty Time

C<=
Limitation

Get Landing Time

B>A

) < :~
~s

And NO
B>C

A>C

V YES I

/"
B<= ~ NO < A<=

LimitationI Limitation

Choose another Crew

YES
YES

15

A= Departure Time - O 1 :00

B = Landing Time+ 00:30

C=B-A

C<=
Limitation

NO

YES

Plan Crew Program

16

Choose another
Crew

2.2.1 Explanation of the Add new flight flow-charts:

At the first the user should enter the flight number, takeoff time and the landing time ,then
enter the plane type and the crew type as well due to the entered data the program will start

assigning the crewmember whether it is a cabin or a cockpit then the program will check

the crewmember's license validity, availability, medical report updating, passport validity,

flight time limitation, duty time limitationand rest period limitation firstly the program will

check the availabilityof the crewmember

From the database, since not found (less choice able) alert message will occur showing that

the desired crewmember is not available and asking into a new crewmember. in this

message alerting system will show in respond to incomplete conditions in the case of the
more avoidably found crewmember .validity license check will be demonstrated for that

crewmember therefore a valid passport would be required for the crewmember The

calculationof the flight time is next step which, therefore as

1-assumingthe flight time= O (constant)

2-The program will get the departure time being entered by the operator and save it in a

variable (A).

3-The program will get the landingtime being entered and save it in another variable

(B)

4-the flight time = flight time + (B - A)

5-After so, will check the limit of the flight time, in case it passed over the limitation the

alert message will occur, if it does not then, the program will check the Duty time.

The calculationof the duty time as follows:

I -assuming A= 8 hours

2-get the flight time of the crewmemberfrom the database and multipliedby 2, then save

In a variable (B)

3-Get the duty time of the crewmemberfrom the databaseand save it in another variable

17

4-The program will take the highest value of those variables and save it as the rest time, and

then compare the rest time with limitation

after that the program will check the last condition which is the duty time, the program will

subtract one hour from departure time and save it in a variable (A), then the program will

add 30 minutes into the landing time and save the result in a variable (B), finally subtract B

from A, if the result of the subtraction passed over the limit the alert message will occur

other wise the crew will be assigned.

18

2.3 Search Flow-Chart:

Get the Data
(Name,
Flight, Code)

NO
No Data
Match

Shows the Rest
Information

2 .3.1 Explanation of the Search:

The required data which is entered to the program to search for will be checked to know

whether the data is matched or not according to the database. If the data is not matched then

alert message will occurs otherwise the program continue the process that shows· the rest

information.

19

CHAPTER3

DATABASE USING DELPHI

3.1 What is Delphi?

By now you know that Delphi is Borland's best-selling rapid application development

(RAD) product for writing Windows applications. With Delphi, you can write Windows
programs more quickly and more easily than was ever possible before. You can create

Win32 console applications or Win32 graphical user interface (GUI) programs. When

creating Win32 GUI applications with Delphi, you have all the power of a true compiled

programming language (Object Pascal) wrapped up in a RAD environment. What this

means is that you can create the user interface to a program (the user interface means the

menus, dialog boxes, main window, and so on) using drag-and-drop techniques for true
rapid application development. You can also drop ActiveX controls on forms to create

specialized programs such as Web browsers in a matter of minutes. Delphi gives you all
"c

this, and at virtually no cost: You don't sacrifice program execution speed because Delphi

generates fast compiled code.

3.2 Database Basics:

Database programming comes with a whole gaggle of buzzwords: BDE, client, server,

ODBC, alias, SQL, query, stored procedure, and so on. The good news is that it isn't all

that bad after you learn some basics. First, let's take a moment to talk about databases.

When you hear the word database, you probably imagine data stored in table format. The
table probably contains fields such as FirstName, LastName, and PhoneNumber. These

fields are filled with data to create individual records in a, database file.

If that's what you envision when you think of a database, you're not too far off, but you

aren't exactly correct, either. The term database is used to describe an all-encompassing

data creation and maintenance system. It is true that a database can be as simple as ohe

table. On the other hand, a real-world database can include dozens or even hundreds of

20

CHAPTER3
_)

DATABASE USING DELPHI

3.1 What is Delphi?

By now you know that Delphi is Borland's best-selling rapid application development

(RAD) product for writing Windows applications. With Delphi, you can write Windows
programs more quickly and more easily than was ever possible before. You can create

Win32 console applications or Win32 graphical user interface (GUI) programs. When
creating Win32 GUI applications with Delphi, you have all the power of a true compiled

programming language (Object Pascal) wrapped up in a RAD environment. What this

means is that you can create the user interface to a program (the user interface means the

menus, dialog boxes, main window, and so on) using drag-and-drop techniques fur true
rapid application development. You can also drop ActiveX controls on forms to create

specialized programs such as Web browsers in a matter of minutes. Delphi gives you all

this, and at virtually no cost: You don't sacrifice program execution speed because Delphi

generates rast compiled code.

3,.2 Database Basics:

Database programming comes with a whole gaggle of buzzwords: BDE, client, server,

ODBC, alias, SQL, query, stored procedure, and so on. The good news is that it isn't all

that bad after you leam some basics. First, let's take a moment to talk about databases.

When you hear the word database, you probably imagine data stored in table format. The
table probably contains fields such as FirstName, LastName, and PhoneNumber. These

fields are filled with data to create individual records in a database file.

If that's what you envision when you think of a database, you're not too fur off, but you

aren't exactly correct, either. The term database is used to describe an all-encompassing

data creation and maintenance system. It is true that a database can be as simple as one

table. On the other hand, a real-world database can include dozens or even hundreds of

20

tables with thousands or millions of records. These tables can contain one or more indexes.

A complete client/server SQL database solution can also contain numerous queries and

stored procedures. (Don't worry; I'll explain some of these terms later in the chapter.) So as

you can see, a database is more than just a table with data.

Speaking of tables, let's quickly cover some table basics. A table consists of at least two

parts: fields and records. Fields are the individual categories of data in a table. For example,

a table containing an address book would have a field called FirstName, a field called

LastName; one called Address, PhoneNumber, and so on. Fields are also referred to as

columns. A record, then, is one person's complete address: first name, last name, address,

and so on. Records are also called rows.

A database is just a collection of data, of course, but database tables are often displayed in

spreadsheet format. The column headers across the top indicate the field names. Each row

in the table contains a complete record. Figure 16. 1 shows just such a database table

Displayed in grid (or table) format.

I Your ApplicationI
..4 ••

~ r

BDE
•••
~ ••

Database

Figure 3 .1 a typical database table

21

3.3 Local Databases:

The simplest type of database is the local database. A local database is a database that

resides on a single machine. Imagine that you have a program that needs to store a list of

names and addresses. You could create a local database to store the data. This database

would probably consist of a single table. The table is accessed only by your program; no

one else has access to it. Any edits made to the database are written directly to the database.

Paradox, dBase, and Access databases are usually local databases.

3.4 Client/Server Databases:

Another way a database can be implemented is as a client/server database. The database

itself is stored and maintained on a file server (the server part of the equation). One or more

users (the clients) have access to the database. The users of this type of database are likely

to be spread across a network. Because the users are oblivious to one another, more than

one might attempt to access the database at the same time. This isn't a problem with

client/server databases because the server knows how to handle all the problems of

simultaneousdatabase access.

The users of a client/server database almost never work with the database directly. Instead,

they access the database through applications on their local computer. These applications,

called client applications, ensure that the users are following the rules and not doing things

to the database that they shouldn't be. It's up to the client application to prevent the user

from doing somethingthat would damage the database.

22

3.5 The Borland Database Engine:

To enable access to local databases and to client/server databases, Delphi provides the

Borland Database Engine (BDE). The BDE is a collection of DLLs and utilities that

enables access to a variety of databases.

To talk to client/server databases, you must have the Client/Server version of Delphi. This

version ships with SQL Links drivers used by the BDE to talk to client/server databases.

Figure 16.2shows the relationshipbetween your application,the BDE, and the database.

TOBTcxt

TDaseSource

Datasets (TTable, TQurey, TStoredProc)

Database

Figure 3 .2 your application,the BDE, and the database.

3.6 BDE Drivers:

Naturally, database formats and APis vary widely. For this reason the BDE comes with a

set of drivers that enables your application to talk to several different types of databases.

These drivers translate high-level database commands (such as open or post) into

23

commands specific to a particular database type. This permits your application to connect

to a database without needing to know the specifics of how that database works.

The drivers that are on your system depend on the version of Delphi you own. All versions

of Delphi come with a driver to enable you to connect to Paradox and dBASE databases.

This driver, called STANDARD, provides everything you need to work with these local

databases.

The Client/Server version of Delphi includes drivers to connect to databases by Sybase,

Oracle, Informix, InterBase, and others.

3.7 BDE Aliases:

The BDE uses an alias to access a particular database.This is one of those terms that might

confuse you at first. The terms alias and database are often used interchangeably when

talking about the BDE.

New Term: A BDE alias is a set ofparameters that describes a database connection.

When it comes right down to it, there isn't much to an alias. In its simplest form, an alias

tells the BDE which type of driver to use and the locationof the database files on disk. This

is the case with aliases you will set up for a local database. In other cases, such as aliases

for client/server databases, the alias contains other information as well, such as the

maximum size of BLOB data, the maximum number of rows, the open mode, or the user's

usemame. After you create an alias for your database, you can use that alias to select the
database in your Delphi programs. Later today, in the section "Creating a BDE Alias," rıı
tell you how to go about creating a BDE alias for your own databases.

3.8 Creating a BDE Alias:

You can go only so far in database programming without eventually creating a BDE alias.

The sample databases are fine, but sooner or later you will need to create an alias for your

own databases. When you deploy your Delphi database application, you will also need to

24

create one or more aliases on your users' machines as well. there are many ways to create

an alias:

• Through the BDE Administrator utility from the Delphi program group

• Through the Database Desktop program

• Through the SQL Explorer (Client/Server version only)

• Through code at runtime

To create an alias, either you must have your users run the BDE Administrator, or you must

create any needed aliases through code. Obviously, creating the alias yourself through code

is preferable (never underestimate the ability 'öf your users tö bötch even the most simple

tasks). First rıı show you how to use the BOE Administrator to create an alias. Then rıı
show you how to create an alias through code.

3.9 Creating an Alias with the BOE Administrator:

While you are developing your applications, you need to create öne ör more BDE aliases.

This is most easily done using one of the BDE utility programs provided with Delphi. The

steps for creating an alias using the BDE Administratorand the SQL Explorer are identical,

so for simplicity's sake rıı show you how to create an alias with the BDE Administrator.

Let's assume for a minute that you are going to create a mailing list application. The first

step you need to take is to create an alias for your database. You can create an alias in

several ways, but the easiest i's probably with the BDE Administrator utility. Perform these

steps:

ı. Start the BDE Administrator(looate the Delphi group from the Windows Start menu and

choose the BDE Administrator icon). The BDE Administrator will start and show a list of

database aliases currently installed.

l. Choose Object!Newfrom the BDE Administrator menu (make sure the Databases tab is

selected). The New Database Alias dialog box comes up and asks which driver to use for

the new alias.

25

3. You will be creating a database using the Standard driver, and because STANDARD is

already selected, you can simply click OK. Now the BDE Administrator

4. The BDE Administrator is waiting for you to type a name for your alias, so type

MyDatabase and press Enter.

At this point, you need to provide a few item's of information in the Definition window. The

Type is already set to STANDARD, so there's nothing to be done there. The DEFAULT

DRIVER field is 'set to PARADOX, which is the type you want, so there's nothing to be

done there, either (other choices include dBASE, FOXPRO, and ASCIIDRV). You can also

leave the default value for the ENABLE BCD field. The only information you need to

supply is the path on disk where the database files will be stored:

ı. Click on the PATH field and either type a path or use the ellipsis button to browse to a

path.
2. Close the BDE Administrator and say Yes when asked whether you want to save your

edits. That's it. You have created a BDE alias.

Switch back to Delphi and drop a Table component on a form. Check the DatabaseName

property in the Object Inspector to see whether your database alias shows up. If you did

everything right, you will 'see it listed there Withthe other database names. Your database

doesn't have any tables yet, but that's okay. You can take care ofthat later.

3.10 Creating an Alias through Code:

To avoid confusion with your users, you will probably want to create any aliases your

program needs the first time your program runs. Thankfully, creating an alias at runtime is

simple. Here's the code to create a local Paradox alias called WayCool:

CreateDirectory('C:', nil);

Session.AddStandardAlias('WayCool', 'C:', '');

That's it? Yes, that's all there is to it. Naturally, you should perform some checks to 'ensure

that the directory and alias were properly created, but that's about all there is to it.

26

3.11 SQL Links:

The Client/Server version of Delphi comes with SQL Links in addition to the BDE. SQL

Links is a collection of additional drivers for the BDE. These drivers enable Delphi

applications to connect to client/server databases such as those provided by Oracle,

InterBase, Informix, Sybase, and Microsoft. Details regarding deployment of SQL Links

drivers are also available in DEPLOY.TXT.

3.12 DATABASE SERVERS:

As long as I am talking about client/server databases, let's take a moment to talk about

database servers. Database servers come in several flavors. Some of the most popular

include offerings from InterBase (a Borland-owned company), Oracle, Sybase, Informix,

and Microsoft. When a companypurchases one of these database servers, it also purchases

a license that enables a maximum number of users to access the database server. These

licensed users are often referred to as seats. Let's say a company buys InterBase and

purchases licenses for 50 seats. If that company grows to the point that 75 users require

access to the database, that company will have to buy an additional 25 seats to be in

compliance with the license. Another way that client/server databases are sold is on a per

connection basis. A company can buy a license for 50 simultaneous connections. That

company can have 1,000 users of the database, but only 50 can be connected to the

database at any one time. The database server market is big business, no question about it.

3.13 Single-Tier, Two-Tier, and Multitier Database Architecture:

Local databases are often called single-tier databases. A single-tier database is a database

in which any changes--such as editing the data, inserting records, or deleting records-­

happen immediately.The program has a more direct connectionto the database.
l

In a two-tier database, the client application talks to the database server through database

drivers. The database server takes the responsibility for managing connections, and the

client application is largely responsible for ensuring that the correct information is being

27

written to the database. A fair amount of burden is put on the client application to make

sure the database's integrity is maintained.

hı a multitier client/server architecture, the client application talks to one or more

application servers that, in tum, talk to the database server. These middle-level programs

are called application servers because they service the needs of the client applications.One

applicationserver might act as a data broker, responding to and handling data requests from

the client and passing them on to the database. Another application server might only

handle security issues.

Client applications run on local machines; the application server is typically on a server,

and the database itself might be on another server. The idea behind the multitier

architecture is that client applications can be very small because the application servers do

most of the work. This enables you to write what are called thin-client applications.

Another reason to use a multitier architecture is management of programming resources.

The client applications can be written by less experienced programmersbecause the client

applications interact with the application server that controls access to the database itself

The application server can be written by more experienced programmers who know the

rules by which the database must operate. Put another way, the application server is written
by programmers whose job is to protect the data from possible corruption by errant client

applications.

Although there are always exceptions, most local databases make use of the single-tier

architecture.Client/serverdatabases use either a two-tier or a multitier architecture.

So how does this affect you? Most applications you write with Delphi for use with a

client/server database will be client applications. Although you might be one of the few

programmers given the task of writing server-side or middle-tier applications, it's a good

bet that you will write primarily client applications. As an application developer, you can't

talk directly to these database servers. Let's look next at how a Delphi applicationtalks to a

database.

28

3.14 LOCAL INTERBASE:

The Standard and Professional versions of Delphi come with a single-user copy of Local
InterBase. Local InterBase is just what its name implies: a version of InterBase that

operates on local databases. The Client/Serverversion of InterBase, on the other hand, is a

full-featuredclient/serverdatabase. The main reason that Delphi ships with Local InterBase

is so that you can write an application that operates on local databases and then later change

to a client/server database with no programming changes. This gives you an opportunity to

hone your client/serverprogramming skills without spending the money for a client/server

database.

If you attempt to access a Local InterBase table at either design time or runtime, you will be

prompted for a usemame and password. The Local InterBase administrator is set up with a

usemame of SYSDBA and a password of masterkey. You can use these for login, or you

can go to the InterBase Server Manager utility and add yourself as a new user to the
InterBase system.

3.15 Delphi Database Components:

Okay, so the preceding section isn't exactly the type of reading that keeps you up all night

turning pages. Still, it's important to understand how all the database pieces fit together.

With that background, you can now tum your attention to the database components

provided by VCL and how those components work together to create a database

application.First, I'll give you a quick overview of the VCL database components, and then

you'll look at individual classes and components in more detail.

The VCL database components fall into two categories: nonvisual data access components

and visual data-aware components. Simply put, the nonvisual data access components

provide the mechanism that enables you to get at the data, and the visual data-aware

components enable you to view and edit the data The data access components are derived

from the TDataSet class and include TTable, TQuery, and TStoredProc. The visual data­

aware components include TDBEdit, TDBListBox, TDBGrid, TDBNavigator, and more.

These components work much like the standard edit, list box, and grid components except

29

that they are tied to a particular table ör field in a table. By editing one öf the data-aware

components, you are actually editing the underlying database as well.

NOTE: All the VCL database components can be termed data components. I use the term

data access components for the nonvisual database components on the Data Access tab of

the Component palette and the term data-aware cömpöttents for the visual database

components from the Data Controls tab.

3.16 The TDataSet Class:

TDataSet is the ancestor class för Tl'able, TQuery, and TStötedProo. As such, mo·st

properties, methods, and events that these classes use are actually defined by TDataSet.

Because so many characteristics of the derived classes come from TDataSet, I'll list the

primary properties, methods, and events of TDataSet here, and later I'll list the properties,
methods, and events particular to each derived class.

3.17 The Table Component:

The Table component, represented by the TTable class, provides the quickest and ·simple-st

access to a table. Tables are more than adequate for most single-tier database applications.

Usually, you will use the Table component when dealing with local databases and the
Query component when dealing with SQL database servers.

The Tiable class has many properties and methods in addition to those in its ancestor class,

TDataSet. Table 16.4 lists the primary properties of the Tiable component and Table 16.5

lists the primary methods. Remember, ıhese ate properties and methods specific to Tl'able

and do not include those ofTiable's ancestor, TDataSet.

For the most part, the properties and methods are very intuitive. By that I mean that you can

usually figure out what a property or method does by just looking at its name. It doesn't

take a lot to figure out that the LockTable method locks a table for an application's specific

30

use and that the Unlock'Iable method unlocks the table again. Likewise, you don't have to

have an IQ of 150 to guess what the CreateTable, OeleteTable, and RenameTable methods

do. With that in mind, rm not going to cover every aspect of every property and method

listed here. Instead, let's get on to some of the more interesting aspects of the Table

component.

TABLE 3.1 Primary TTable Propertes

rroperty r-= I
~xclusive j Locks a local table so that only this application can use it. I

[Indexbefs , j Contains information about the table's indexes.

-== ı The number of fields that make up the current key.

IndexFieldNames Used to set the current key by specifying the names of the fields to use

for the index.

ılndexFieIds ı Used to retrieve information about a specific field in an index.

ı~ndexName ı Used to specify a secondary index for a table.

ıKeyFieldCoünt I The number of fields to use when searching on partial keys.

[MasterFields ı The field or fields that should join the master and detail tables.

MasterSource The table to be used as a master table when this table is used as a detail

table.

ıReadOnly J Specifies whether this table is read-only.

r-= r- name of the database table. I
jTableType ı The table's type (Paradox, dBASE, or ASCII). ı
3.18 Filters;

A common need of a database application is to filter a table. Before I discuss filters in

detail, I want to point out that filters are primarily used on local databases, Filters are rarely

used with client/server databases; instead, a SQL query

Is used to achieve the same effect that filters have on local databases .

31

So why filter? Consider that you might have a table with thousands of records, but you are

interested in displaying or working on only a small subset of the table. Let's say you have a

database that contains names and addresses of computer users all over the world. Your

company sells these names and addresses to other companies that want to do bulk mailings.

I call and want to order a mailing list from your company, but I want the list to contain only

those computer users who live in Colorado. You could filter your table by postal code and

generate a list of names with only Colorado addresses. Or, maybe Borland calls you and

wants a list of computer users in Great Britain who are programmers by occupation. In that

case, you could filter by occupation and country, thereby giving only the names and

addresses the customer is interested in.

3.19 Using Filters in the Table Component:

Filters in the Table component are handled in one of two ways: through the Filter property

or the OnFilterRecord event. Before I discuss these, let me talk about the Filtered property.

This property determines whether the table is filtered. If Filtered is True, the table will

apply the filter currently in force (either the contents of the Filter property or the results of

the OnFilterRecord event). If Filtered is False, the contents of the Filter property are

ignored and the OnFilterRecord event is never generated.

32

CHAPTER4

COMPUTER REALIZATION OF CREW PLANNING

4.1 Database Structure:

First thing to know about Delphi in the relational database model, how to use the

Paradox database objects to access and update existing databases, and how to use the

program to create and maintain databases. We also take a look at the design data entry

and how to create input validation routines at the keystrokes, field, and form levels.

Taking in mind that Paradox is the best way to make the relations and build up the main

structure that the Delphi depends upon. And below there are some database tables which

l used in this program:

Table 4.1 Main Table

Field Name Type Size Key
FfüıhtNo N *

Pilot A 15
FliclıtOfficer A 15

flightlingineer A 15
CabinChief A 15

SeniorCabin l A 15
SeniotCabinl A 15

PartTimeHoseesl A 15
PartTimeHosees2 A 15

Flight A 20
Date D

Dep'Time T
ArrTime T

PlaneName A 10

33

Table 4.2 Flight

Filed Name Type Size Key
Flight code A 10 *
Plane A 6
ID A 10
DepAir A 5
DepTime T
ArrAir A ' 5
AirTime T

Table 4.3 Airport

Filed Name Type Size Key
Capacity of air A 10
planeName A 10
Country A 10
Air code A 10
Available A 10

Table 4.4 personal Details

Field Name Type Size Key
Code A 5 *
Name A 10

Surname A 10
DateOfBirth D
PlaceOfBirth A 15

NameO:fMother A 10
Gender A 5

PassportNo A 20
Married L

Nationality A 15
Duty A 15

Picture G

Table 4.5 Duty

Filed Name Type Size Key
Duty code A 3 *
Duty A 20

34

Table 4.6 License

Filed Name Type Size Key
Code A 5 *
License No A 15
License Center A 25
License Cat A 5
Issue Date D
Expdate D
Remarks A

Table 4. 7 Address

Filed Name Type Size Key
Code A 5 *
Phone Nol A 15
Phone No2 A 15
Address I A 15
Address2 A 20

Table 4.8 Plane
Filed Name Type Size Key
Name A 8 *
Performance M 1
Production M 1
Weight M 1

Table 4.9 Maintenanc·e

Filed Name Type Size Key
Plane Name A 10 *
Day A 10
Starting Date D
Starting Time T
Finished Date D
Finished Time T
Manager A 15
Note A 30

35

Table 4.10 Plane Details

Field Name Type Size Key
planeName A 10 *
planeType A 10
planeSize s

No Passenger N
No Crew N
No Pilot N

No FlightOfficer N
No FlightEngineer N

No Cabin N
No SeniorCabin N

No PartTimeHostes N

Table 4.11 Password

Field Name Type Size Key
Name A 10 *

Usemame A 10
Password A 10

4. 2 Master/Detail Tables:

Setting up a master/detail relationship with the Delphi Table component is easy. Let me

explain a master/detail relationship and then I'll show you how to set up one. Let's say

you have a table called PLANE that contains information on your customers. That table

will likely be indexed on a field called Name.

Let's further assume that you have a table called Maintenance that contains a list of all

orders placed by your customers. Naturally, this table would also have a Plane Name

field. Now let's say you want to browse the table containing all your customers.Wouldn't

it be nice if you

Could see each customer's orders while you browse? A master/detail table enables you to

do that

36

1. Start with a new application. Place a Table component on the form. Set its

properties as follows:

=· ._-··----~-~-

ılName ıtMaster ı-~ s ı
i ı ı
i ·--~ . --~·-· . -· .. l ;

\Eat~aseN~~f~~:~~--J

\[~-~~~~~~. _JSı
2. Place a DataSource component on the form and set its Dataset property to

Master.

3. Now place a second Table component on the form and change its Name

property to Details. You'll set the rest of this table's properties in just a minute.

4. Place a second DataSource component on the form. Change its DataSource

property to Details.

5. Click on the Details Table component Change its properties as follows:

IIDatabaseName!IFiight --- 1
i l~-n~ •·--~·••M•--~-'" -•jL__ ..,,-~•-,.....•"~""'•-•~-,_,,..,__ ..!
!ITableName ! Maintenance.db]
ı! ... , ~,-.-~-~--- --·-·--- - ı _·-----·--·~~---~~-....~~.....,.,-.J
IE~t-~~-~~-ur~e [~_ataS~u~~-J

6. Click on the ellipsis button next to the Master Fields property. The Field Link

Designer dialog box is displayed.

7. At the top of the Field Link Designer dialog box is a combo box labeled

Available Indexes. Select the Name index from this combo box.

8. Now both the Detail Fields list box and the Master Fields list box have a Name

entry. Select Name in each of these list boxes and click the Add button to create

the relationship. The Joined Fields list box shows that the two tables are joined by

their Name fields.

9. Click OK to close the Field Link Designer dialog boxes.

10. Drop two DBGrid components on the form and link one to DataSource 1 and

the other to DataSource2.

37

lL Change the Active property of both tables to True. The Master table will show all

customers, and the Details table will show the orders for each customer.

What you just did was create a relationshipbetween the master table and the detail table.
This relationship joined these two tables through a common field: Name to fully

understand what this means, run the program and move from record to record in the

master table. As you select a customer name in the master table, you will see only that

customer'sorders in the detail table.

Figure 4.1 Master/DetailTables

38

4.3 Database Forms:

4.3.1 Log-in screen:

In order to protect our software a high level of security must be applied, so when the

program runs it ask the operator to enter the user name and his/her own password to

accomplish the iterance process. When the programs recognize the operator, the main

menu screen will accrue. in case of unrecognizing alert message will occur tells that

"invalid password, try again"

-· ---4'. logın , ~~•.

ENTER USERNAME AND PASSWORD

US~R NAtıiE

Figure 4.1 Log-In Screens

4.3.2 Main Menu Screen:

1- File Button: we can use this button to Change program background And Exit

from program.
2- Crew Information: The new information (personal Information .Address

,License) should be applied through this button

3- Flight: It consists of five buttons each button has a specific mission ,and these

missions as follow:

3. 1- Add new flight.

3.2-Flight Details.

39

3 .4-Show all.

3.5-Member Available.

4-Message: write new message.

5-Aircraft: It consists of tow buttons (Aircraft Information, Maintenance).

6- Search: The usage of this button is to find a certain data that we entered before

about the crew member and aircraft.

7-Report

8-user Accounts: it consists of tow buttons (Change Account, Add new Account).

~-Help: it consists of about button and it shows the· information about the

programmer.

.!!!..l.cı~.

00:01 :09 6/1/2003

Figure 4.2 Main Menu Screen

40

L

4.3.3 Member Information Screen:

The usage of this forın is to apply information about new members like Name,

Duty,Age,Nationality,Date ofBirth, etc.

Table 4.2.1 Button Task

Button Task

ADD Inserts a record in the dataset with the given field data and posts the edit

Delete To Delete unnecessary inserted data

Post Writes the edited record data to the database or to the cached update buffer

Next Moves the cursor to the next record.

Prev Moves the cursor to the previousrecord.

Last Positions the cursor on the last record in the dataset.

First Moves the cursor to the first record in the dataset

Browse To Add New Picture

Close Closes the dataset and Forın.

Figure 4.3 Member Information

41

4.3.4 Address Screen:

This Screen allows us to enter the address of the crewmembers

Figure 4.4 Address Screen

4.3.5 License Screen:

This screen allows us to apply general information about crewmembers license that are

so essentially to accomplish the availability procedures.

Figure 4.5 License Screen
42

4.3.6 Add new Flight Screen:

I-The user will be chosen the member from combo-box on the form the member who

not Available will not appear in combo-box then the user add flight name, Plane type,

date departure time, Arrival time.

2-The plane type should be chosen from the plane type combo-box.

3- To return back to the main menu click on the close button.

Figure 4.6 Add new Flight Screen

4.3. 7 Flight Calculation Screen:

This form usage to Calculate total ofFlight time, duty time and rest time for Specific

date e.g. For one month.

43

Figure 4. 7 Flight Calculation Screen

4.3.8 View Crew Screen:

Figure 4.8 View Crew Screen

4.3.9 Members Available screen:

This form usage to show the user who member is available the user will be put the date

and the code of members on the Edit boxl and Edit box2 then press ok.

44

Figure 4.9 Members Available Screen

4.3.10 Aircraft screen:

The usage of this form is to apply information about new aircraft that has been joined

to the air wing of the company the specification of new aircraft is formed through this

form.

Figure 4.1 O Aircraft Screen

45

4.3.11 Search Screens:

1-by Date

Figure 4.11 Searches by Date Screen

2-By Flight:

Figure 4.12 Searches by Flight Screen

46

4.3.11 Search Screens:

1-ByDate

ı:il.M-MAN-OLM
GEC~ST-GEC 10/412002 15:15
GEC-ADB-STN-ADB-GEC 11/1/2002 0040 2050 I lU 15.4
ECN~ST-ECN 1211'212002 llÜXl 08:00 '3 4.3

ECN-Al)B-EOl 2/26l2002 02:45 0000 3.15 4.45

ECN-OLM,TLV00LM-TLV,ECH '4/lS/2002 0000 23:00 17 18.31 34

GEC-AÖB-lH'A-AOB-GEC 111111/2002 ~·oo '23:35 15.35 i7.05! lJ.7

Figure 4.11 Searches by Date Screen

2-By Flight:

17:__ 1!-~i" --,.ıs.~~-·· ._fiı-J:Q,-~--~~ı-~-~~-

Figure 4.12 Searches by Flight Screen

46

3 Search for Members Information:

The usage of this form to search for personal information when the user put the code of

members and press search button all the information about personal information ,

address and license will be appear in the Grid .

Figure 4.13 Search for Members Information Screen

47

.3.12 Report Screen:

A database program is not complete without some way ofviewing and printing data,

and that is where reports enter the picture. Up to this point, you have been looking at

ways to view individual records this Screen allows us to view the Report and print out.

ır ıqı;·raı;·"
C)ııı,oııa1 wılonN!ion

C'.Adıtııı

ExitPııntPreview

Figure 4.14 Report Screen

4.3.13 Change Account Screen:

this screen allows us to change user account when the user write his/her name the

username and password will be appear in the screen automatically after this the user will

be press change button to change the username and password

Finally, by pressing ok button the account will be update.

48

ı,-- " -· -. - - . .· ----
1 IJıı Form29 ;!¥,~

Enteryour name
11SAAC

Figure 4.15 Change Account Screen

4.3.14 Add New Account Screen:

This screen allows us to:

ı~ Add new user button: this button usage to add new account.

2- Delete user button: this button usage to delete user.

Figure 4.16 Add New Account Screen

49

CONCLUSION

There are a lot of things in this project that I have learned for the very first time and even
though not all the things I wanted to achieve or do in this project have actually appeared in this
project hut this is mainly because of the lack of time and knowledge in programming with
Delphi, for example I wanted to link flight schedules to my Delphi program using Paradox, but
could not do this due to complexity of aircraft schedule and also not to forget to mention that this
consists of a huge information database which means more time in doing this. But we know how
the saying goes ''where there is a will there is a way . I have very high hopes in expanding the
capability of this program in near future and from there I will take-off in mastering Delphi to
design any program I want experience which is very important tool that I will need to tackle any
obstacles being faced in the future.

50

:~

iı

REFERENCES

[1] Mastering Delphi 5, sybex, Marco Cantu.

[2] Delphi 6, Ray, Dr.ramez qudseaha.

(3] Teach Yourself Borland Delphi 4 in 2 I Days, Macmillan Computer Publishing, Scotts

Valley.

[4] http:/ /www.about.com.

[5] http://www.marcocantu.com.

[6). http://www.DelphiMag.com.

[7]http://www.airlines.net

51

APPENDIX

PROGRAM CODE

unit Unitl;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics,. Corrtr o.I s ,

Forms,

Dialogs, jpeg, ExtCtrls, ComCtrls, Menus, DB, StdCtrls, Buttons,

ImgList,

ActnList, ExtDlgs, ToolWin;

type
TAviation = class(TForm)

TabControll: TTabC0fltr0l;

MainMenul: TMainMenu;

Filel: TMenuitem;

Exitl: TMenuitem;

Messagelı TMenuitem;

NewMessagelr TMenuitem;

Searchl: TMenuitem;

Viewl: TMenuitem;

Helpl: TMenuitem;

Newl: TMenuitem;

Repol: TMenuitem;

QReportl: TMenuitem;

Search2: TMenuitem;

Aboutl: TMenuitem;

ImageListl: TimageList;

ActionListl: TActionList;

Aetionl: TAction;

BitBtnl: TBitBtn;

Image3: Timage;

52

RestTimel: TMenuitem;

new2: TMenurtem;

Addressl: TMenuitem;

Licensel: TMenuitem;

MedicalReportl: TMenuitem;

rainingl: TMenuitem;

FlightOperationl: TMenuitem;

AddNewFlightl: TMenuitem;

Showalll: TMenuitem;

Buttonl: TButton;

BitBtn3: TBitBtn;

BitBtn4: TBitBtn;

CalculationReportl: TMenuitem;

Image2: Timage;

HeaderControll: THeaderControl;

ToolBarl: TToolBar;

ToolButtonl: TToolButton;

Too1Button2: TToolButton;

Too1Button3: TToolButton;

Too1Button4: TToolButton;

Too1Button6: TToolButton;

Too1Button8: TToolButton;

ToolButtonll: TToolButton;

Imagel: Timage;

LabelS: TLabel;

Label4: TLabel;

Too1Buttonl2: TToolButton;

Too1Button13: TToolButton;

ByDatel: TMenuitem;

forSpecificDatel: TMenuitem;

ByDutyFlightl: TMenuitem;

Personalinformationl: TMenuitem;

Nl: TMenuitem;

membersAvilablel: TMenuitem;

Image4: Timage;

UserAccountsl: TMenuitem;

ChangeAccountl: TMenuitem;

53

CreatanewAccountl: TMenuitem;

FlightDetailsl: TMenuitem;

AddNewFlight2: TMenuitem;

N2: TMenuitem;

FlightOperation2: TMenuitem;

FlightTimel: TMenuitem;

Maintenancel: TMenuitem;

SelectmembersAvilablel: TMenuitem;

procedure ExitlClick(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure NewMessagelClick(Sender: TObject);

procedure NewlClick(Sender: TObject);

procedure AboutlClick(Sender: TObject);

procedure LabellClick(Sender: TObject);

procedure Label2Click(Sender: TObject);

procedure QReportlClick(Sender: TObject);

procedure Label3Click(Sender: TObject);

procedure BitBtnlClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure ButtonlClick(Sender: TObject);

procedure BackGroundlClick(Sender: TObject);

procedure RestTimelClick(Sender: TObject);

procedure AddresslClick(Sender: TObject);

procedure LicenselClick(Sender: TObject);

procedure AddNewFlightlClick(Sender: TObject);

procedure ShowalllClick(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure CalculationReportlClick(Sender: TObject);

procedure ToolButtonlClick(Sender: TObject);

procedure Too1Button2Click(Sender: TObject);

procedure Too1Button3Click(Sender: TObject);

procedure Too1Button4Click(Sender: TObject);

procedure ByDatelClick(Sender: TObject);

procedure forSpecificDatelClick(Sender: TObject);

procedure ByDutyFlightlClick(Sender: TObject);

procedure PersonalinformationlClick(Sender: TObject);

procedure Too1Button7Click(Sender: TObject);

54

''•
.;

·-.•,/·

procedure Too1Button8Click(Sender: TObject);

procedure membersAvilablelClick(Sender: TObject);

procedure ToolButtonllClick(Sender: TObject);

procedure Too1Button9Click(Sender: TObject);

procedure ChangeAccountlClick(Sender: TObject);

procedure CreatanewAccountlClick(Sender: TObject);

procedure ToolButtonlOClick(Sender: TObject);

procedure AddNewFlight2Click(Sender: TObject);

procedure showFlightlClick(Sender: TObject);

procedure FlightOperation2Click(Sender: TObject);

procedure FlightTimelClick(Sender: TObject);

procedure MaintenancelClick(Sender: TObject);

procedure Too1Button6Click(Sender: TObject);

procedure SelectmembersAvilablelClick(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Aviation: TAviation;

implementation

uses Unit2,unit3,unit4,unit5,unit6,unit7, Unit9, Unit8, Unitll, Unitl2,

Unit13,unit14, Unit15, Unit16, Unitl8, Unit19, Unit21, Unit20, Unit22,

Unit17, Unit23, Unit25, Unit26, Unit24, Unit27,unit28, Unit30, Unit31,

Unit33, Unit34;

{$R *.dfm}

function IsPrime (N: Longint): Boolean;

var

Test: Longint;

begin

IsPrime := True;

for Test := 2 to N - 1 do

begin

55

O thenif (N mod Test)

begin

IsPrirne := False;

break; {jump out of the for loop}

end;

end;

end;

procedure TAviation.ExitlClick(Sender: TObject);

begin

close;

forrn28. Close;

end;

procedure TAviation.Button2Click(Sender: TObject);

begin

forrn3.ShowModal;

end;

procedure TAviation.NewMessagelClick(Sender: TObject);

begin

forrnS.ShowModal;

end;

procedure TAviation.NewlClick(Sender: TObject);

begin

aircraft.ShowModal;

end;

procedure TAviation.AboutlClick(Sender: TObject);

begin

forrn7.ShowModal

end;

procedure TAviation.LabellClick(Sender: TObject);

begin

flight.ShowModal;

end;

56

procedure TAviation.Label2Click(Sender: TObject);

begin

form3.ShowModal;

end;

procedure TAviation.QReportlClick(Sender: TObject);

begin

form9.ShowModal;

end;

procedure TAviation.Label3Click(Sender: TObject);

begin

Aircraft.ShowModal;

end;

procedure TAviation.BitBtnlClick(Sender: TObject);

begin

formll.ShowModal;

end;

procedure TAviation.Formcreate(Sender: TObject);

var

I: Integer;

SplashAbout: tform13;

begin

II create and show the splash form

SplashAbout := Tform13.Create (Application);

SplashAbout.MakeSplash;

II standard code ...

for I := 1 to 4000 do

if IsPrime (I) then

{ListBoxl.Items.Add (IntToStr (I));}

II get rid of the splash form, after a while

ŞplashAbout.Timerl.Enabled := True;

label4.Caption:=datetostr(date);

57

label5.Caption:=timetostr(time);

end;

procedure TAviation.ButtonlClick(Sender: TObject);

begin

form24. show;

//flight. Show;

//formlS.show;

end;

procedure TAviation.BackGroundlClick(Sender: TObject);

var

str:string;

begin

if OpenPictureDialogl.Execute then

begin

str:=OpenPictureDialogl.FileName;

Image4.Picture.LoadFromFile(str);

image4.Stretch:=true;

Imagel.Picture.LoadFromFile(str);

imagel.Stretch:=true;

end;

end;

procedure TAviation.RestTimelClick(Sender: TObject);

begin

form19.ShowModal;

end;

procedure TAviation.AddresslClick(Sender: TObject);

begin

58

form21. show;

end;

procedure TAviation.LicenselClick(Sender: TObject);

begin

fortn2 O. show;

end;

procedure TAviation.AddNewFlightlClick(Sender: TObject);

begin

formlB.ShowModal;

end;

procedure TAviation.ShowalllClick(Sender: TObject);

begin

form22. show;

end;

procedure TAviation.BitBtn3Click(Sender: TObject);

begin

flight,ShowModal;

end;

procedure TAviation.BitBtn4Click(Sender: TObject);

begin

form12.ShowModal;

end;

procedure TAviation.CalculationReportlClick(Sender: TObject);

begin

form26.ShowModal;

end;

procedure TAviation.ToolButtonlClick(Sender: TObject);

begin

formll.ShowModal;

59

end;

procedure TAviation.ToolButton2Click(Sender: TObject);

begin

forın3.ShowModal;

end;

procedure TAviation.ToolButton3Click(Sender: TObject);

begin

forın14.ShowModal;

end;

procedure TAviation.ToolButton4Click(Sender: TObject);

begin

form24.show;

end;

procedure TAviation.ByDatelClick(Sender: TObject);

begin

form15.ShowModal;

end;

procedure TAviation.forSpecificDatelClick(Sender: TObject);

begin

form17.ShowModal;

end;

procedure TAviation.ByDutyFlightlClick(Sender: TObject);

begin

form23.ShowModal;

end;

procedure TAviation.PersonalinformationlClick(Sender: TObject);

begin

form24.ShowModal;

end;

procedure TAviation.ToolButton7Click(Sender: TObject);

60

begin

form3.ShowModal;

end;

procedure TAviation.ToolButton8Click(Sender: TObject);

begin

form30.ShowModal;

end;

procedure TAviation.membersAvilablelClick(Sender; TObject);

begin

form27.ShowModal;

end;

procedure TAviation.ToolButtonllClick(Sender: TObject);

begin

Close;

end;

procedure TAviation.ToolButton9Click(Sender: TObject);

begin

FORM16.Show;

end;

procedure TAviation.ChangeAccountlClick(Sender: TObject);

begin

form30.ShowModal;

end;

procedure TAviation.CreatanewAccountlClick(Sender: TObject);

begin

form34.ShowModal;

end;

procedure TAviation.ToolButtonlOClick(Sender: TObject);

begin

forml3. Show

61

end;

procedure TAviation.AddNewFlight2Click(Sender: TObject);

begin

flight.ShowModal;

end;

procedure TAviation.showFlightlClick(Sender: TObject);

begin

fonn13.ShowModal;

end;

procedure TAviation.FlightOperation2Click(Sender: TObject);

begin

form14.ShowModal;

end;

procedure TAviation.FlightTimelClick(Sender: TObject);

begin

form12.Show;

end;

procedure TAviation.MaintenancelClick(Sender: TObject);

begin

maint.ShowModal;

end;

procedure TAviation.ToolButton6Click(Sender: TObject);

var

str:string;

begin

if OpenPictureDialogl.Execute then

begin

str:=OpenPictureDialogl.FileName;

Image4.Picture.LoadFromFile(str);

image4.Stretch:=true;

62

Imagel.Picture.LoadFromFile(str);

imagel.Stretch:=true;

end;

end;

procedure TAviation.SelectmembersAvilablelClick(Sender: TObject);

begin

form33.ShowModal;

end;

end.

63

unit Unit2;

interface

uses

Windows, Messages, sysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, StdCtrls, Mask, DBCtrls, DB, DBTables, ActnList, ImgList,

ComCtrls, ToolWin, DBActns, jpeg, ExtCtrls, Grids, DBGrids, ADODB;

type

Tflight ~ class(TForm)

DBGridl: TDBGrid;

Panell: TPanel;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label9: TLabel;

DBEdit3: TDBEdit;

ToolBarl: TToolBar;

Too1Button2: TToolButton;

Too1Button3: TToolButton;

Too1Button4: TToolButton;

ToolButtonl: TToolButton;

Too1Bar2: TToolBar;

Too1Button5: TToolButton;

Too1Button6: TToolButton;

DBEdit9: TDBEdit;

ImageListl: TimageList;

ActionListl: TActionList;

DataSetFirstl: TDataSetFirst;

DataSetPriorl: TDataSetPrior;

DataSetLastl: TDataSetLast;

DataSetNextl: TDataSetNext;

DataSetinsertl: TDatasetinsert;

DataSetDeletel: TDataSetDelete;

DataSetinsert2: TDataSetinsert;

Table2: TTable;

64

DataSource2: TDatasource;

Table2FlightCode; TStringField;

Table2ID: TStringField;

Table2Date: TDateField;

Table2Day: TStringField;

Table2Dep_Air: TStringField;

Table2Dep_Time: TTimeField;

Table2ArrAir: TStringField;

Table2ArrTime: TTimeField;

Tablel: TTable;

Datasourcel: TDatasource;

TablelPlaneName: TStringField;

TablelPlaneType: TStringField;

TablelPlanesize: TSmallintField;

TablelNO_passenger: TFloatField;

TablelNO Crew: TFloatField;

TablelNO_Captain: TFloatField;

TablelNO Firstofficer: TFloatField;

TablelNO_FlightEngineer: TFloatField;

TablelNO Cabin: TFloatField;

TablelNO SeniorCabin: TFloatField;

TablelNO PartHostes: TFloatField;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

procedure DataSourcelDataChange(Sender: TObject; Field: TField);

procedure MonthCalendarlClick(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

flight: Tflight;

implementation

uses Unit3,unit14;

65

{$R *.dfm}

procedure Tflight.DataSourcelDataChange(Sender: TObject; Field: TField);

begin

{monthcalendarl.date:=tableldate.Value;}

end;

procedure Tflight.MonthCalendarlClick(Sender: TObject);

begin

tablel.Edit;

end;

end.

66

unit Unit3;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, ComCtrls, ExtCtrls, DBCtrls, DB, DBTables, Stdctrls, Mask;

type

TForm3 = class(TForm)
PageControll: TPageControl;

TabSheet2: TTabSheet;

TabSheet3: TTabSheet;

DataSourcel: TDataSource;

Tablel: TTable;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

DBEdit6: TDBEdit;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label7: '!'Label;

Label8: TLabel;

DBNavigator2: TDBNavigator;

Datasource2: TDataSource;

Buttonl: TButton;

Label9: TLabel;

TablelPlaneName: TStringField;

TablelPlaneType: TStringField;

TablelPlanesize: TSmallintField;

LabellO: TLabel;

Labelll: TLabel;

DBEdit9: TDBEdit;

DBEditlO: TDBEdit;

DBEditll: TDBEdit;

Labell3: TLabel;

67

Table2: TTable;

DBNavigator3: TDBNavigator;

Label12: TLabel;

Table3: TTable;

Datasource3: TDataSource;

DBEdit14: TDBEdit;

DBEdit15: TDBEdit;

DBComboBoxl: TDBComboBox;

DBComboBox2: TDBComboBox;

DBComboBox3: TDBComboBox;

DBComboBox4: TDBComboBox;

Table3FlightCode: TStringField;

Table3PlaneName: TStringField;

Table3Countryl: TStringField;

Table3Available: TStringField;

Table3Country2: TStringField;

Table3Available2: TStringField;

Table3Country3: TStringField;

Table3Available3: TStringField;

Table2CapacityOfAir: TStringField;

Table2Nplane: TStringField;

Table2Country: TStringField;

Table2AirCode: TStringField;

Table2Available: TStringField;

procedure ButtonlClick(Sender: TObject);

private

{ Private declarations}

public

{ Public declarations)

end;

var

Form3: TForm3;

implementation

uses Unit4,unit2;

68

{$R *.dfm}

procedure TForrn3.ButtonlClick(Sender: TObject);

begin

form4. show;

end;

end.

69

unit Unit4;

interface

uses

Windows, Messages, sysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, StdCtrls;

type

TForm4 = class(TForm)

Labell: TLabel;

Buttonl: TButton;

Button2: TButton;

Editl: TEdit;

procedure ButtonlClick(Sender: TObject);

procedure Button2Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form4: TForm4;

implementation

uses Unit3,unitl;

{$R *.dfm}

procedure TForm4.ButtonlClick(Sender: TObject);

var

ch:string;

begin

70

form3.Label9.Caption:=editl.Text;

editl.Clear;

form4.Close;

end;

procedure TForm4.Button2Click(Sender: TObject);

begin

editl.Clear;

form4.Close;

end;

end.

71

~t Unit5;

:.nterface

~ses
Windows, Messages, sysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, ExtCtrls, DBCtrls, DB, DBTables, StdCtrls, Mask;

~ype

TForm5 = class(TForm)
DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBMemol: TDBMemo;

DBMemo2: TDBMemo;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Tablel: TTable;

DataSourcel: TDatasource;

DBNavigatorl: TDBNavigator;

DBEdit3: TDBEdit;

private

{ Private declarations)

public

{ Public declarations)

end;

var

Fo.rm5: TFo.rm5;

implementation

{$R *.dfm)

end.

72

unit Unit6;

interface

uses
Windows, Messages, sysUtils, Variants, Classes, Graphics, Controls,

Forms,
Dialogs, DB, DBTables, StdCtrls, Mask, DBCtrls, Extctrls, Grids,

DBGrids;

type

Tmaint: class(TForm)

Tablel: TTable;

Table2: TTable;

Table3: TTable;

DataSourcel: TDataSource;

DataSource2: TDataSource;

DataSource3: TDataSource;

DBMemol: TDBMemo;

DBMemo2: TDBMemo;

DBMemo3: TDBMemo;

DBEditl: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

DBEdit6: TDBEdit;

DBEdit7: TDBEdit;

DBEdit8: TDBEdit;

DBEdit9: TDBEdit;

DBEditlO: TDBEdit;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label 7: TLabel;

Label8: TLabel;

Label9: TLabel;

73

LabellO: TLabel;

Labelll: TLabel;

Buttonl: TButton;

Button2: TButton;

Button3: TButton;

Button4: TButton;

Button5: TButton;

Button6: TButton;

Button7: TButton;

DBGridl: TDBGrid;

Table3PlaneName: TStringField;

Table3PlaneType: TStringField;

Table3Planesize: TSmallintField;

Table3NO_passenger: TFloatField;

Table3NO Crew: TFloatField;

Table3NO_Captain: TFloatField;

Table3NO Firstofficer: TFloatField;

Table3NO_FlightEngineer: TFloatField;

Table3NO_Cabin: TFloatField;

Table3NO SeniorCabin: TFloatField;

Table3NO PartHostes: TFloatField;

Table2PlaneName: TStringField;

Table2Days: TStringField;

Table2StartingDate: TDateField;

Table2StartingTime: TTimeField;

Table2FinishedDate: TDateField;

Table2FinishedTime: TTimeField;

Table2Manager: TStringField;

Table2NOTE: TStringField;

Panell: TPanel;

procedure ButtonlClick(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button7Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

private

74

{ Private declarations }

public

{ Public declarations)

end;

var

maint: Trnaint;

implementation

uses Unit8;

{$R *.dfm)

procedure Tmaint.ButtonlClick(Sender: TObject);

begin

table2.First;

end;

procedure Tmaint.Button2Click(Sender: TObject);

begin

table2. Prior;

end;

procedure Tmaint.Button3Click(Sender: TObject);

begin

table2.Next;

end;

procedure Tmaint.Button4Click(Sender: TObject);

begin

table2.Last;

end;

procedure Tmaint.Button7Click(Sender: TObject);

begin

table2.Insert;

end;

75

procedure Tmaint.Button6Click(Sender: TObject);

begin

table2.Delete;

end;

procedure Tmaint.Button5Click(Sender: TObject);

begin

close;

end;

end.

76

unit Unit7;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, StdCtrls, jpeg, Extctrls;

type

TForm7 = class(TForm)

Imagel: Timage;

Image2: Timage;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label9: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label7: TLabel;

Labels: TLabel;

private

{ Private declarations }

public

{ Public declarations)

end;

var

Form7: TFonn7;

implementation

{$R *.dfrn}

end.

77

unit Unit8;

interface

uses

Windows, Messages, sysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, Extctrls, DBCtrls, Grids, DBGrids, DB, ADODB, ActnList,

DBTables, StdCtrls, Mask, DBActns;

type

TAircraft = class(TForm)

Tablel: TTable;

Datasourcel: TDataSource;

TablelPlaneName: TStringField;

TablelPlaneType: TStringField;

TablelPlanesize: TSmallintField;

TablelNO__passenger:TFloatField;

TablelNO Crew: TFloatField;

TablelNO_Captain: TFloatField;

TablelNO Firstofficer: TFloatField;

TablelNO_FlightEngineer: TFloatField;

TablelNO Cabin: TFloatField;

TablelNO SeniorCabin: TFloatField;

TablelNO PartHostes: TFloatField;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

DBEdit6: TDBEdit;

DBEdit7: TDBEdit;

DBEdit8: TDBEdit;

DBEdit9: TDBEdit;

DBEditlO: TDBEdit;

DBEditll: TDBEdit;

Labell: TLabel;

Label2: TLabel;

78

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label 7: TLabel;

Label8: TLabel;

Label9: TLabel;

LabellO: TLabel;

Labelll: TLabel;

Buttonl: TButton;

Button2: TButton;

Button3: TButton;

Button4: TButton;

Button5: TButton;

Panell: TPanel;

Button6: TButton;

Button7: TButton;

Button8: TButton;

ActionListl: TActionList;

DataSetPostl: TDataSetPost;

procedure Button4Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure ButtonlClick(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure Button7Click(Sender: TObject);

procedure Button8Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Aircraft: TAircraft;

implementation

79

{$R *.dfm)

procedure TAircraft.Button4Click(Sender: TObject);

begin

tablel.Last;

end;

procedure TAircraft.Button2Click(Sender: TObject);

begin

tablel.Prior;

end;

procedure TAircraft. ButtonlClick (Sender: TObject);

begin

tablel.First;

end;

procedure TAircraft.Button3Click(Sender: TObject);

begin

tablel.Next;

end;

procedure TAircraft.Button5Click(Sender: TObject);

begin

close;

end;

procedure TAircraft.Button6Click(Sender: TObject);

begin

TABLEl.Insert;

end;

procedure TAircraft.Button7Click(Sender: TObject);

begin

if MessageDlg('Are you sure Want Delete this Record. Exit now?',

mtconfirmation, [mbYes, mbNo], O) = mrYes then

tablel.Delete;

80

end;

procedure TAircraft.Button8Click(Sender: TObject);

begin

{ TABLE 1. Append;

tablel.Post;}

end;

end.

81

unit Unitll;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, StdCtrls,comobj;

type

TForınll ~ class(TFornı)

Editl; · TEdit;

Edit2: TEdit;

Memo 1 : TMemo;

Buttonl: TButton;

Button2: TButton;

Labell: TLabel;

Label2: TLabel;

Button3: TButton;

procedure ButtonlClick(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Formll: TFormll;

implementation

uses unitl;

{ $R * .dfm}

procedure TFormll.ButtonlClick(Sender: TObject);

const

olmailitem=O;

82

var

o,m:variant;

begin

o:=createoleobject('outlook.application');

m:=o.createitem(olmailitem);

m.to:=editl.Text;

m.subject:=edit2.Text;

m.body:=mernol.Text;

m. send;

end;

procedure TFormll.Button2Click(Sender: TObject);

begin

close;

end;

procedure TFormll.Button3Click(Sender: TObject);

begin

editl.Clear;

edit2.Clear;

memol.Clear;

end;

end.

83

unit Unit12;

interface

uses

Windows, Messages, SysUtils, variants, Classes, Graphics, controls,

Forms,

Dialogs,

E:x:tctrls;

StdCtrls, Grids, DBGrids, Mask, DBCtrls, DB, DBTables,

type

TForml2 = class(TForm)

Table2: TTable;

DataSource2: TDataSource;

DBNavigatorl: TDBNavigator;

Panell: TPanel;

DBGridl: TDBGrid;

Panel2: TPanel;

Labell: TLabel;

Editl: TEdit;

Button2: TButton;

Mernol: TMerno;

Buttonl: TButton;

Table2FlightCode: TStringField;

Table2ID: TStringField;

Table2Date: TDateField;

Table2Day: TStringField;

Table2Dep_Air: TStringField;

Table2Dep_Time: TTimeField;

Table2ArrAir: TStringField;

Table2ArrTirne: TTimeField;

Table2flighttime: TTimeField;

procedure ButtonlClick(Sender: TObject);

procedure Table2CalcFields(DataSet: TDataset);

procedure Button3Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Formcreate(Sender: TObject);

procedure Button4Click(Sender: TDbject);

84

procedure Table2PlaneChange(Sender: TField);

procedure Button5Click(Sender: TObject);

private

{ Private declarations }

public

d,h,total,duty:real; { Public declarations }

end;

var

Forml2: TForml2;

implementation

{$R *.dfm}

procedure TForml2.ButtonlClick(Sender: TObject);

begin

Table2.Filter:=1ID=111+editl.text+1111; llcode=1B'

Table2.Filtered:=true;

end;

procedure TForml2.Button2Click(Sender: TObject);

var

II total:ttime;

bookmark:tbookmarkstr;

g:string;

begin

Bookmark:= Table2.Bookmark;

Table2.DisableControls;

Total := O;

try

Table2.First;

85

while not Table2.EOF do

begin

Total :=Total+ Table2flighttime.Value;

Table2.Next;

end;

finally

II go back to the bookmark

Table2.Bookmark := Bookmark;

Table2.EnableControls;

end;

{MessageDlg ('Sum of new salaries is ' +

Format ('%m', [Total]), mtinformation, (mbOk), O);

g:=timetostr(total);

memol.Lines.Text:=g;

end;

procedure TForm12.Table2CalcFields(DataSet: TDataSet);

begin

table2flighttime.value:=table2arrtime.value-table2dep_time.value;

end;

procedure TForm12.Button3Click(Sender: TObject);

var

duty,j,d,m:ttime;

l:string;

begin

table2.Last;

j:=encodetime(00,30,00,00);

d:=table2arrtime.value+j;

m:=encodetime(l,00,00,00);

table2.first;

h:=table2dep_time.Value-m;

86

duty:=d-h;

l:=timetostr(duty);

memol.lines.text:=l;

end;

procedure TForm12.FormCreate(Sender: TObject);

var

d,j,m:ttime;

begin

m:=encodetime(l,00,00,00);

table2.first;

h:=table2dep_time.Value-m;

end;

procedure TForm12.Button4Click(Sender: TObject);

var

max,ft,m,ftime,restT:ttime;

str:string;

begin

form12.Button2Click(sender);

m:=encodetime(08,00,00,10);

fTime:=total+total;

II showmessage(timetostr(ftime));

rnax:=ftirne;

if m > max then

rnax:=m;

if duty> max then

max:=duty;

restT:=max;

str:=timetostr(restT);

memol.lines.text:=str;

87

end;

procedure TForm12.Table2PlaneChange(Sender: TField);

be'gin

showrnessage('aaaa');

end;

procedure TForm12.Button5Click(Sender: TObject);

VAR

STR:STRING;

begin

IITABLE2.Next;

llstr:=Table2Plane.Value

II table5.Filter:='plane='+str;

lltable5.Filtered:=true;

end;

end.

88

unit Unit13;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, StdCtrls, Buttons, Extctrls, jpeg;

type

TForm13 class(TForm)

Imagel: Timage;

Timerl: TTimer;

BitBtnl: TBitBtn;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label 6: TLabel;

Label7: TLabel;

Label8: TLabel;

Label9: TLabel;

procedure TimerlTimer(Sender: TObject);

private

{ Private declarations }

public

procedure MakeSplash;

Public declarations }

end;

var

Form13: TForml3;

implementation

{$R *.dfm}

procedure tform13.MakeSplash;

89

begin

BorderStyle := bsNone;

BitBtnl.Visible := False;

Show;

Update;

end;

procedure TForm13.Timer1Timer(Sender: TObject);

begin

Close;

Release;

end;

end.

90

unit Unit14;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, Mask,

Extctrls,

ComCtrls;

DBCtrls, StdCtrls, Grids, DBGrids, DBTables, DB,

type

TForm14 class (TForm)

Panell: TPanel;

Editl: TEdit;

Buttonl: TButton;

Labell: TLabel;

Label5: TLabel;

DBGridl: TDBGrid;

Panel2: TPanel;

Memol: TMerno;

Button2: TButton;

Memo2: TMemo;

Label7: TLabel;

Label8: TLabel;

DateTimePickerl: TDateTimePicker;

DateTimePicker2: TDateTimePicker;

Merno3: TMemo;

Label9: TLabel;

Label2: TLabel;

Label3: TLabel;

procedure ButtonlClick(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

91

end;

var

Form14: TForm14;

implementation

uses unit2,unit15, Unitl7;

{$R *.dfm}

procedure TForm14.ButtonlClick(Sender: TObject);

var

datel,date2,str,str2:string;

begin

forml7.Queryl.Filter:='Pilot=' ''+editl.text+'''or

''FlightEngineer='' '+editl.text+' ''';//and Date='' '+edit2.Text+' ''';

forml7.Queryl.Filtered:=tru'e;

editl.Clear;

datel:=Datetostr(DateTimePickerl.Date);

date2:=datetostr(DateTimePicker2.Date);

str:='select from calcpilot calcpilot."Date" between where *
' ' ' +date 1 + ' ' 'And '' '+date2+'' 'And calcpilot.pilot=' ''+editl.text+'' 'or

calcpilot.FlightEngineer=' ''+editl.Text+' ''or

calcpilot.Flightofficer='' '+editl.Text+'' 'or

calcpilot.CabinChief='' '+editl.Text+'' 'or

calcpilot.SeniorCabinl=' ''+editl.Text+'' 'or

calcpilot.SeniorCabin2~'''+editl.Text+'''or

calcpilot.PartTimeHostesl='' '+editl.Text+'''or

calcpilot.partTimehostes2=' ''+editl.Text+''' '''' I•

'
form17.queryl.SQL.Clear;

form17.queryl.SQL.Add(str);

forml7.queryl.Open;

92

end;

procedure TForm14.Button2Click(Sender: TObject);

var

total2,total3, total:real

bookmark:tbookmarkstr;

tl,t2,t3:string;

begin

Bookmark:= forml7.Queryl.Bookmark;

form17.Queryl.DisableControls;

Total : = O;

total2:=0;

total3:=0;

try

forml7.Queryl.First;

while not form17.Queryl.EOF do

begin

Total :=Total+ form17.Querylftime.Value;

total2:=total2+form17.Queryldtime.Value;

total3:=total3+form17.Query1Rtime.Value;

forml7.Queryl.Next;

end;

finally

II go back to the bookmark

form17.Queryl.Bookmark := Bookmark;

forml7.Queryl.EnableControls;

end;

{MessageDlg ('Sum of new salaries is ' +

Format ('%m', [Total}), mtinformation, [rnbOk}, O);

tl:=floattostr{total);

memol.Lines.Text:=tl;

93

t2:=floattostr(total2);

memo2.Lines.Text:=t2;

t3:=floattostr(total3);

memo3.Lines.Text:=t3;

end;

procedure TForm14.Button3Click(Sender: TObject);

var

str2:string;

begin

I I str2: =' SELECT * from

calcpilot.pilot='''+editl.text+' ''or

calcpilot.FlightEngineer=' ''+editl.Text+' ''or

calcpilot.Flightofficer='' '+editl.Text+'' 'or

calcpilot.CabinChief='' '+editl.Text+'' 'or

calcpilot.SeniorCabinl='' '+editl.Text+'''or

calcpilot.SeniorCabin2='''+editl.Text+'''or

calcpilot.PartTimeHostesl='' '+editl.Text+'''or

calcpilot.partTimehostes2='''+editl.Text+'''';

//forml7.Queryl.SQL.Clear;

//forml7.Queryl.SQL.Add(str2);

//forml7.Queryl.Open;

end;

end.

94

calcpilot where

unit Unitl5;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics,

Forms,

Dialogs,

Ex t Ctı r Ls ,

DBTables, StdCtrls, Grids, DBGrids, Mask, DB,

ComCtrls;

type

TForml5 class (TForm)

Panell: TPanel;

DateTimePickerl: TDateTimePicker;

Labell: TLabel;

Buttonl: TButton;

DBGridl: TDBGrid;

procedure ButtonlClick(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form15: TFormlS;

implementation

uses unit23,unit25,unit26,unit22;

{$R *.dfm}

95

-,-::. -:._ ----

procedure TForm15.Button1Click(Sender: TObject);

var

str:string;

begin

str:=datetostr(DateTimePickerl.Date);

form22.Tablel.Filter:='Date='' '+str+' '' ';//and Date=' ''+editl.Text+' '' ';

//code='B'

form22.Tablel.Filtered:=true;

end;

end.

96

unit Unitl9;

interface

uses

Windows, Messages, sysutils, Variants, Classes, Graphics, Ccc~==~s

Forms,
Dialogs, StdCtrls, Extctrls, DBCtrls, Mask, DB, DBTables, ExtDlgs,

ActnList, DBActns;

type

TForml9 = class(TForm)

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

DBEdit6: TDBEdit;

DBEdit7: TDBEdit;

DBRadioGroupl: TDBRadioGroup;

DBRadioGroup2: TDBRadioGroup;

DBimagel: TDBimage;

DBConıboBoxl:TDBComboBox;

Panell: TPanel;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label7: TLabel;

Label8: TLabel;

Buttonl: TButton;

Button2: TButton;

Button3: TButton;

Button4: TButton;

Buttons: TButton;

Button6: TButton;

97

DBEdit8: TDBEdit;

Label9: TLabel;

Button7: TButton;

OpenPictureDialogl: TOpenPictureDialog;

Buttons: TButton;

Tablel: TTable;

DataSourcel: TDataSource;

ActionListl: TActionList;

DatasetPostl: TDataSetPost;

procedure ButtonlClick(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Eutton3Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure Button7Click(Sender: TObject);

procedure DBimagelClick(Sender: TObject);

procedure Button8Click(Sender: TObject);

private

{ Private declarations}

public

{ Public declarations }

end;

var

Forml9: TForml9;

implementation

uses clipbrd,unit20;

{$R *.dfm}

procedure TFonnl9.ButtonlClick(Sender: TObject);

begin

tablel.First;

end;

procedure TForml9.Button2Click(Sender: TObject);

begin

98

tablel. Prior;

end;

procedure TForm19.Button3Click(Sender: TObject);

begin

tablel.Next;

end;

procedure TForm19.Button4Click(Sender: TObject);

begin

tablel.Last;

end;

procedure TForm19.Button5Click(Sender: TObject);

begin

tablel.Edit;

tablel. Insert;

end;

procedure TForm19.Button6Click(Sender: TObject);

begin

if MessageDlg('Are you sure Want Delete this Record. Exit now?',

mtconfirmation, [mbYes, mbNo], O) = mrYes then

tablel.Delete;

end;

procedure TForm19.Button7Click(Sender: TObject);

var

str:string;

begin

if OpenPictureDialogl.Execute then

begin

str:=OpenPictureDialogl.FileName;

dbimagel.Picture.LoadFromFile(str);

end;

99

end;

procedure TForm19.DBimagelClick(Sender: TObject);

begin

DBimagel.Picture.Bitmap.LoadFromFile('c:\2.bmp');

end;

procedure TForm19.Button8Click(Sender: TObject);

begin

if MessageDlg('Are sure you Want Change this Record. Exit now?',

mtConfirmation, [mbYes, mbNo], 0) = mrYes then

begin

tablel.edit;

tablel.Post;

end;)

end;

end.

100

unit Unit20;

interface

uses

Windows, Messages, sysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs,

DBTables;

DBCtrls, Grids, DBGrids, stdctrls, Mask, Extctrls, DB,

type

TForm20 class (TForm)

Panell: TPanel;

Label 1: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Labels: TLabel;

Label 6: TLabel;

Label 7: TLabel;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEditS: TDBEdit;

DBEdit6: TDBEdit;

DBEdit7: TDBEdit;

DBGridl: TDBGrid;

DBNavigatorl: TDBNavigator;

Tablel: TTable;

Datasourcel: TDatasource;

TablelCode: TStringField;

TablelLicenceNO: TStringField;

TablelLicencecenter: TStringField;

TablelLicencecat: TStringField;

TablelRemarks: TStringField;

TablelissueDate: TDateField;

TablelExpdate: TDateField;

101

Table2: TTable;

Datasource2: TDatasource;

Table2Code: TStringField;

Table2Name: TStringField;

Table2Surname: TStringField;

Table2Dateofbirth: TDateField;

Table2Placeofbirth: TStringField;

Table2Nameofmother: TStringField;

Table2Gender: TStringField;

Table2Noofpassport: TStringField;

Table2Married: TStringField;

Table2Nationality: TStringField;

Table2Duty: TStringField;

Table2Picture: TGraphicField;

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form20: TForm20;

implementation

uses unit19;

{$R *.dfm)

end.

102

unit Unit21;

interface

uses

Windows, Messages, sysUtils, variants, Classes, Graphics, Controls,

Forms,

Dialogs, DBCtrls, DB, DBTables, Extctrls, StdCtrls, Mask, Grids,

DBGrids;

type

TForm21 = class(TForm)

DBGridl: TDBGrid;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEditS: TDBEdit;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Panell: TPanel;

Tablel: TTable;

Datasourcel: TDatasource;

DBNavigatorl: TDBNavigator;

DataSource2: TDataSource;

Table2: TTable;

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form21: TForm21;

103

implementation

($R *.dfm}

end.

104

it Unit23;

ın.terface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, DB, DBTables, StdCtrls, Grids, DBGrids, DBCtrls, ExtCtrls;

type

TForm23 class (TForm)

Panell: TPanel;

DBNavigatorl: TDBNavigator;

DBGridl: TDBGrid;

ComboBoxl: TComboBox;

Buttonl: TButton;

Editl: TEdit;

Labell: TLabel;

Label2: TLabel;

procedure ButtonlClick(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Forrn23: TForrn23;

implementatioµ

uses unitl5, Unit22;

{$R *.dfm}

procedure TForrn23.ButtonlClick(Sender: TObject);

begin

if comboboxl.Text='Duty' then

begin

105

form22.Tablel.Filter:='Duty=' ''+editl.text+' '' ';//and

Date=' ''+editl.Text+''' '; //code='B'

form22.Tablel.Filtered:=true;

end

else

begin

form22.Tablel.Filter:='Flight=' ''+editl.text+'' '';//and

Date='' '+editl.Text+' '' '; //code='B'

form22.Tablel.Filtered:=true;

end;

end;

end.

106

unit Unit24;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, StdCtrls, DB, DBTables, DBCtrls, Grids, DBGrids, Comctrls,

Extctrls;

type

TForrn24 = class(TForm)
Panell: TPanel;

PageControll: TPageControl;

TabSheetl: TTabSheet;

TabSheet2: TTabSheet;

TabSheet3: TTabSheet;

DBGridl: TDBGrid;

DBGrid2: TDBGrid;

DBGrid3: TDBGrid;

DBNavigatorl: TDBNavigator;

DBNavigator2: TDBNavigator;

DBNavigator3: TDBNavigator;

Tablel: TTable;

Table2: TTable;

Table3: TTable;

DataSourcel: TDataSource;

DataSource2: TDatasource;

DataSource3: TDatasource;

Labell: TLabel;

Editl: TEdit;

Buttonl: TButton;

TablelCode: TStringField;

TablelName: TStringField;

TablelSurname: TStringField;

TablelDateofbirth: TDateField;

TablelPlaceofbirth: TStringField;

TablelNameofmother: TStringField;

107

TablelGender: TStringField;

TablelNoofpassport: TStringField;

TablelMarried: TStringField;

TablelNationality: TStringField;

TablelDuty: TStringField;

TablelPicture: TGraphicField;

Button2: TButton;

Table3Code: TStringField;

Table3LicenceNO: TStringField;

Table3Licencecenter: TStringField;

Table3LicenceCat: TStringField;

Table3IssueDate: TDateField;

Table3Expdate: TDateField;

Table3Remarks: TStringField;

Table2Code: TStringField;

Table2PhoneNOl: TStringField;

Table2PhoneN02: TStringField;

Table2Addressl: TStringField;

Table2Address2: TStringField;

procedure ButtonlClick(Sender: TObject);

procedure Button2Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form24: TForm24;

implementation

{$R *.dfm}

procedure TForm24.Button1Click(Sender: TObject);

begin

108

Tablel.Filter:='Code='' '+editl.text+'' '';//and

//code='B'

Tablel.Filtered:=true;

Table2.Filter:='Code='' '+editl.text+'' '';//and

((code='B'

Table2.Filtered:=true;

Table2.Filter:='Code='' '+editl.text+'' '';//and

//code='B'

Table2.Filtered:=true;

end;

procedure TForm24.Button2Click(Sender: TObject);

begin

tablel.Edit;

tablel.UpdateRecord;

end;

end.

109

Date='' '+editl.Text+'''';

Date=' ''+editl.Text+'

Date=' ''+editl.Text+'

t I I• ,

I I I•
'

unit Unit25;

interface

uses

Windows, Messages, sysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, DB, StdCtrls, DBTables, ExtCtrls, QuickRpt, QRCtrls;

type

TForm25 = class(TForm)
QuickRepl: TQuickRep;

PageHeaderBandl: TQRBand;

TitleBandl: TQRBand;

ColumnHeaderBandl: TQRBand;

DetailBandl: TQRBand;

QRLabell: TQRLabel;

QRLabel2: TQRLabel;

QRLabel3: TQRLabel;

QRDBTextl: TQRDBText;

QRLabel4: TQRLabel;

QRLabel5: TQRLabel;

QRLabel6: TQRLabel;

QRLabel7: TQRLabel;

QRLabel8: TQRLabel;

QRLabel9: TQRLabel;

QRLabellO: TQRLabel;

QRDBText2: TQRDBText;

QRDBText3: TQRDBText;

QRDBText4: TQRDBText;

QRDBText5: TQRDBText;

QRDBText6: TQRDBText;

QRDBText7: TQRDBText;

QRDBText8: TQRDBText;

QRLabelll: TQRLabel;

QRSysDatal: TQRSysData;

110

private

{ Private declarations}

public

{ Public declarations }

end;

var

Form25: TForm25;

implementation

uses unitl7,unit15,unit26;

{$R *.dfm}

end.

111

