
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Electrical and Electronic
Engineering

CONTROL ELECTRIC COUNTERSWITH PLC
· DEVICE

Graduation Project
EE-400

Student: Buğra Tansu (20000275)

Supervisor: Mr. Özgür Özerdem

Lefkoşa-2001

ACKNOWLEDGMENTS

First I want to thank Mr. Özgür Özerdem to be my advisor. Under his guidance, I

successfully overcome many difficulties and learn a lot about PLC' s. In each discussion, he

explained my question patiently, and I left my quick progress from his advises. He always

help me a lot either in my study. I asked him many questions in PLC's and he always

answered my question quickly and in detail.

Special thanks to Cemal. With he kind help, I could use Step7-Microwin16, which is

called Simatic successfully to perform computational problem. Thanks to faculty

Engineering for having such a good computational environment.

I also want to thank my friends in NEU: Bora, Mertsan, Türkay and Cüneyt.

Finally, I want to thank my family, especially my parents. Without their endless support

and love for me, I would never achieve my current position.

ABSTRACT

My project aim is control the electric counter with PLC device and CPU 212. First step

sensor read the red point on the electric counter and to work out the units that are connected

to the counter when they reach the value that we determine.

I can do PLC device with STEP 7-Micro/WIN programming. STEP 7-Micro/WIN is a

programming software application for the S7-200 family of programmable logic

controllers.

When programming in statement list (STL), in order to ensure that your user program

will also display, compile, and run correctly in ladder (LAD).

STEP 7-Micro/WIN automatically compiles a project when you perform a project

download. Components that fail to compile will not be downloaded.

The STEP 7-Micro/WIN STL compiler checks all lines for proper comment syntax,

makes sure the program contains valid instruction names with the correct number of

parameters, and verifies that correct address identifiers are used.

In LAD programs, the basic elements of logic are represented with contacts, coils, and

boxes. A set of interconnected elements that make a complete circuit is called a network.

STL program elements are represented by a set of instructions for performing the desired

functions.

S7-200 programs consist of a main user program that may be followed by subroutines

and/or interrupt routines. The main program is terminated by an unconditional END

(MEND in STL).

When writing your program, you can use either of two modes of addressing instruction

operands; direct or indirect.

Direct addressing specifies the memory area, size, and location, you can address

indirectly the data types Q, M, T, C, V, and I.

The user memory in the S7-200 CPUs consists of three blocks; program, data, and

configurable parameters.

11

INTRODUCTION

A PLC (i.e. Programmable Logic Controller) is a device that was invented to replace the

necessaıy sequential relay circuits for machine control. The PLC works by looking at its

inputs and depending upon their state, turning on/off its outputs. The user enters a program,

usually via software, that gives the desired results.

The first chapter represent, histoıy of PLC and communication began to appear in

approximately 1973. The first such system was Modicson's Modbus.

In chapter two, the PLC mainly consists of a CPU, memoıy areas, and appropriate

circuits to receive input/output data.

Chapter three represents, a PLC works by continually scanning a program.

The fourth chapter explain ladder diagram with give examples and explain how we can

understand truth table.

Chapter five present, the CPU 212 is the low-cost entıy into the SIMATIC S7-200

family; explain functions and how we can use programming.

In chapter six, the S7-200 series is a line of micro-programmable logic controllers that

can control a variety of automation applications and explain S7-200 Programming

Language.

Chapter seven present direct addressing, counter and timer.

Chapter eight present of the project.

Chapter nine explains part of processing unit and advantages of PLC.

In TRNC PLC devices are used, in local newspaper, medicine factoıy and washing

machine room in a hotel.

PLC is veıy expensive, but they occupy small area and we can change their program.

111

PLC is used in communication are widely.

Nowadays, PLC, PC and relay systems are used in the control of Industrial Machines.

From two type of PL Cs, although the compact PLC cheaper than the modular PLC,

modular PLC is used widely rather than compact PLC.

ıv

TABLE OF CONTENTS

ACKNOWLEDGMENTS

ABSTRACT

~TRODUCTION

CHAPTER I

PLCIDSTORY

11

lll

1.1 First Introduced

1.2 Control System

1.3 Mid70's the dominant PLC technologies

1.4 Communications

1

1

1

1

2

CHAPTER2

PLC MAINLY CONSIST 3

3

3

3

3

4

5

5

2.1 What does each part do?

2.1.1 Input Relays (contacts)

2.1.2 Internal Utility Relays (contacts)

2.1.3 Counters

2.1.4 Timers

2.1. 5 Output Relays (coils)

2.1.6 Data Storage

CHAPTER3

PLC OPERATION
3 .1 PLC Scanning

3.1.1 Check Input Status (stepl)

3.1.2 Execute Program (step 2)

3.1.3 Update Output Status (step 3)

3 .2 Response Time Concerns

3.2. 1 Pulse Stretch Function

3.2.2 Interrupt Function

6

6

6

6

6

7

8

8

V

APTER4

PLC REGISTERS 10

10

11

12

.1 Ladder Diagram and PLC Registers

4.2 Truth Table

4.3 The Program Scan

HAPTER5

PU212 15

15

15

15

16

18

5 .1 Overview

5.2 Area of application

5.3 Design

5.4 Functions

5. 5 Programming

HAPTER6

7-200 MICRO PLC 19

6.1 Introducing the S7-200 Micro PLC 19

6.2 Comparing the Features of the S7-200 Micro PLCs 19

6.2.1 Equipment Requirements 19

6.2.2 Capabilities of the S7-200 CPUs 20

6.3 Major Components of the S7-200 Micro PLC 21

6.3.1 S7-200 CPU Module 21

6.4 Installing and Using the STEP 7-Micro/WIN Software 22

6.5 Installing the Step 7-micro/win software 22

6.5. 1 Pre-Installation Instruction 22

6.5.2 Installation Instruction for windows 3.1 23

6.5.3 Installation instruction for Windows 95 or windows NT 4.0 23

6.5.4 Troubleshooting the Installation 24

6.6 Using STEP7-Micro/WIN to set up to the Communications Hardware 24

6.6. 1 General Information for Installing or Removing the Communications

Hardware 24

6. 7 Special Hardware Installation Information for Windows NT Users 25

Vl

6.8 Establishing Communication with the S7-200 CPU

6.8. 1 Connection Your Computer to the S7-200 CPU

Using the PC/PPI Cable

6.8.2 Connecting your computer to the S7-200

Using the MPI or CP Card

6.8.3 From what point do I set up Communications?

6.9 Setting Up Communication within STEP 7-Micro/WIN

6. 1 O Setting up communication from the Windows Control Panel

6. 11 Setting up communication during installation

6. 12 Selecting the correct module parameter set and setting it up

6.13 Concept ofan S7-200 Program

6. 13. 1 Relating the program to inputs and outputs

6. 14 Concepts of the S7-200 Programming Languages

6. 14.1 Understanding the basic elements ofladder logic

6. 14.2 Understanding the statement list instruction

6. 15 Basic Elements for Constructing a Program

6. 15. 1 Organizing a Program

6. 15 .2 Example Program using subroutines and interrupts

6. 16 Selecting the Mode of Operation for the CPU

6. 16. 1 Changing the operating mode with the mode switch

6. 16.2 Changing the operating mode with STEP7-Micro/WIN

6. 16.3 Changing the operating mode from the program

CHAPTER7

DIRECT ADDRESSING

26

26

27

29

29

30

31

31

32

32

33

33

34

35

35

37

37

38

38

38

7. 1 Direct Addressing of the CPU Memory Areas

7. 1. 1 Using the Memory Address to Access Data

7.2 Timers and Counter

7.2. 1 Addressing the Timer Memory Area

7.2.2 Addressing the Counter Memory Area

7.2.3 On-Delay Timer, Retentive On-Delay Timer

7.2.4 Understanding the S7-200 Timer instruction

39

39

39

40

40

41

42

43

vıı

7.2.5 Updating Timers with lms Resolution

7.2.6 Updating Timers with lOms Resolution

7.2.7 Updating Timers with lOOms Resolution

7.2.8 Updating the Timer Current Value

7.2.9 Count Up Counter, Count Up/Down Counter

7.2. 1 O Understanding the High-Speed Counter Instruction

"'.3 Addressing a local and expansion I/O

7.3. 1 Examples of local and expansion I/O

-.4 Using the Selectable input filter to provide noise rejection

"'.5 Using the output table to configure the states of the outputs

-.6 Analog Adjustments

HAPTER8

GRADUATION PROJECT

44

45

45

46

48

49

50

51

53

53

54

.1 Explanation of the Project

.2 Program of the Project

.3 PLC Programmable Logic controller

8.3.1 CompactPLC's

8.3.2 Modular PLC's

8.3.3 Input Unit

8.3.4 Output Unit

8.3.5 Programming Technique

CHAPTER9

PROCESSING UNIT

56

56

57

60

60

60

60

60

61

9.1 System Memory

9.2 CPU

9. 3 Program Memory

9.4 Data Bus

9.5 Image Register

9.6 PLC Operating System

9.7 User Program Operating

9. 7.1 When the PLC is in RUN mode

62

62

62

62

62

62

63

63

63

vııı

8 Accessing Data Memory

9.8.1 Bit Access

9.8.2 Byte word double word access

. 9 Advantage PLC

64

64

64

64

ONCLUSION

FERENCES

END IX
CPU 212 Product Image

CPU 212 Technical data

65

66

67

67

70

ıx

CHAPTERl

PLC HISTORY

First Introduced

., the late l 960's PLCs were first introduced. The primaıy reason for designing such a

e was eliminating the large cost involved in replacing the complicated relay based

chine control systems. Bedford Associates (Bedford, MA) proposed something called a

ular Digital Controller (MODICON) to a major US car manufacturer. Other companies

etime proposed computer based schemes, one of which was based upon the PDP-8.

e :MODICON 084 brought the world's first PLC into commercial production .

. 1 Control System

nen production requirements changed so did the control system. This becomes veıy

_ cpensive when the change is frequent. Since relays are mechanical devices they also have

.mited lifetime, which required strict adhesion to maintenance schedules.

I roubleshooting was also quite tedious when so many relays are involved. Now picture a

-,whine control panel that included many, possibly hundreds or thousands, of individual

re.ays. The size could be mind-boggling. How about the complicated initial wiring of so

'"Y individual devices! These relays would be individually wired together in a manner

~r would yield the desired outcome.

These "new controllers" also had to be easily programmed by maintenance and plant

_ ıgineers. The lifetime had to be long and programming changes easily performed. They

so had to survive the harsh industrial environment. That's a lot to ask! The answers were

ea programming technique most people were already familiar with and replace

echanical parts with solid-state ones .

.3 '1id70's the dominant PLC technologies

the mid70's the dominant PLC technologies were sequencer state-machines and the

t-slice based CPU. The AMD 2901 and 2903 were quite popular in Modicon and A-B

•... Cs. Conventional microprocessors lacked the power to quickly solve PLC logic in all but

·-e smallest PLCs. As conventional microprocessors evolved, larger and larger PLCs were

1

= based upon them. However, even today some are still based upon the 2903.(ref A-B's

-3) Modicon has yet to build a faster PLC than their 984A/B/X which was based upon

_ 2901 .

..... Communications

Communications abilities began to appear in approximately 1973. The first such system

- Modicon's Modbus. The PLC could now talk to other PLCs and they could be far away

the actual machine they were controlling. They could also now be used to send and

__eive varying voltages to allow them to enter the analog world. Unfortunately, the lack of

dardization coupled with continually changing technology has made PLC

:nmunications a nightmare of incompatible protocols and physical networks. Still, it was

eat decade for the PLC!

The 80's saw an attempt to standardize communications with General Motor's

.:ınufacturing automation protocol (MAP). It was also a time for reducing the size of the

C and making them software programmable through symbolic programming on personal

mputers instead of dedicated programming terminals or handheld programmers. Today

e world's smallest PLC is about the size of a single control relay!

The 90's have seen a gradual reduction in the introduction of new protocols, and the

dernization of the physical layers of some of the more popular protocols that survived

e l 980's. The latest standard (IEC 1131-3) has tried to merge pk-programming languages

der one international standard. We now have PLCs that are programmable in function

ock diagrams, instruction lists, C and structured text all at the same time! PC's are also

ing used to replace PLCs in some applications. The original company who commissioned

tae MODICON 084 has actually switched to a PC based control system.

2

CHAPTER2

PLC MAINLY CONSISTS

The PLC mainly consists of a CPU, memory areas, and appropriate circuits to receive

tioutput data. We can actually consider the PLC to be a box full of hundreds or

sands of separate relays, counters, timers and data storage locations. Do these counters,

ers, etc. really exist? No, they don't "physically" exist but rather they are simulated and

be considered software counters, timers, etc. These internal relays are simulated

rough bit locations in registers (Figure 2.1)

İ ----~-----,- pc-- --
1 Input ·I · j' • • ,--==11
I Ci~it Ii !1 J"~ut !!counters II Output I ı
'ıciiu---ıı _ !i e YB ıı ii Relays J ıl~;~il..+lfı:;n~ı~llrLTimej!t--Data_ 1i
~ llzRelays, _JL_Storage II

Figure 2.1 PLC mainly consist

-·1 What does each part do?
_.ı.ı Input Relays (contacts)

These are connected to the outside world. They physically exist and receive signals from

switches, sensors, etc. Typically they are not relays but rather they are transistors.

_,1.2 Internal Utility Relays (contacts)

These do not receive signals from the outside world nor do they physically exist. They

are simulated relays and are what enables a PLC to eliminate external relays. There are also

some special relays that are dedicated to performing only one task. Some are always on

vhile some are always off. Some are on only once during power-on and are typically used

or initializing data that was stored.

2.1.3 Counters

These again do not physically exist. They are simulated counters and they can be

programmed to count pulses. Typically these counters can count up, down or both up and

3

Since they are simulated they are limited in their counting speed. Some

ufacturers also include high-speed counters that are hardware based. We can think of

e- e as physically existing. Most times these counters can count up, down or up and down.

rnbol shows Figure 2.1.1). The Count Up/Down (CTUD) box counts up on rising edges

e Count Up (CU) input. It counts down on the rising edges of the Count Down (CD)

It resets when the Reset (R) input turns on.

Cxxx
---1CU CTUD

-,CD

---,R

-ıPV

Figure 2.1.1

l..t Timers

ese also do not physically exist. They come in many varieties and increments. The

~1 common type is an on-delay type. Others include off-delay and both retentive and

-retentive types. Increments vary from lms through ls. The On-Delay Timer (TON)

x times up to the maximum value when the enabling Input (IN) comes on. When the

rrerıt value (Txxx) is >= the Preset Time (PT), the timer bit turns on. It resets when the

_ ıabling input goes off. Timing stops upon reaching the maximum value.

In the status chart, you can display timer and counter values as either bits or words. If

u display a timer or counter value as a bit, the output status is displayed (output on or

. If you display a timer or counter value as a wont the current value is used.

The On-Delay Timers time in one of three resolutions, depending on the timer number

u use. Each increment of the current value is a multiple of the time base. For example, a

~=-eset of 20 for a 1 O-millisecond timer represents 200 milliseconds. (Symbol shows in

Figure 2.1.2)

4

Txxx

~

~

Figure 2.1.2

1.5 Output Relays (coils)

These are connected to the outside world. They physically exist and send on/off signals

solenoids, lights, etc. They can be transistors, relays, or triacs depending upon the model

-~Osen.

1.6 Data Storage

Typically there are registers assigned to simply store data. They are usually used as

porary storage for math or data manipulation. They can also typically be used to store

zata when power is removed from the PLC. Upon power-up they will still have the same

ccntents as before power was removed and very convenient and necessary.

5

CHAPTER3

PLC OPERATION

LC Scanning

C works by continually scanning a program (Figure 3. 1). We can think of this scan

_ as consisting of 3 important steps. There are typically more than 3 but we can focus

""'ınıportant parts and not worry about the others. Typically the others are checking the

and updating the current internal counter and timer values.

CHECK INPUT STATUS

EXECUTE PR.OGRAM

UPDATE OUTPUT STATUS

Figure 3.1 Scanning a program

Execute Program (step 2)

~ext the PLC executes your program one instruction at a time. Maybe your program said

f the first input was on then it should turn on the first output. Since it already knows

inputs are on/off from the previous step it will be able to decide whether the first

should be turned on based on the state of the first input. It will store the execution

·~ for use later during the next step .

.3 Update Output Status (step 3)

Fınally the PLC updates the status of the outputs. It updates the outputs based on which

~ uts were on during the first step and the results of executing your program during the

econd step. Based on the example in step 2 it would now turn on the first output because

e first input was on and your program said to turn on the first output when this condition

6

cer the third step the PLC goes back to step one and repeats the steps continuously.

Response Time Concerns

IHPUT RESPONSE TIME ::-1
PROGRAM E:ECUTION TIM'-=:J O TOTAL RESPONSE TIME

OUTPUT RESPONSE TIME

Figure 3.2 Response Time Concerns

that we know about response time, here's what it really means to the application.

= PLC can only see an input turn on/off when it's looking. In other words, it only looks at

uts during the check input status part of the scan.

l • I I I I
I ft}J I 1..tJı ı 3 I
I Ji , I I I .£,. I ' . : I

ONl,:ı ::ı ı::UlLl
OFF I I I I I I I

I I I' ' I PROG I .• : PROG I I' I PROG I I
i0Ul1 ,t. ; EXEC pu ~ m, EXEC ~UT: il\! : EXEC ~u11

I : : I I I : :
'

SCAN1 SCAN2 SCAN3

Figure 3.3

the Figure3.3, input 1 is not seen until scan 2. This is because when input 1 turned on,

1 had already finished looking at the inputs.

put 2 is not seen until scan 3. This is also because when the input turned on scans 2 had

ready finished looking at the inputs.

put 3 is never seen. This is because when scan 3 was looking at the inputs, signal 3 was

- on yet. It turns off before scan 4 looks at the inputs. Therefore signal 3 is never seen by

= PLC.

7

: PROG
QUT' lt.l I EXEC
I I '
I I I

i '
:our: m:
I

Figure 3.4

d this we say that the input should be on for at least 1 input delay time + one scan

what if it was not possible for the input to be on this long? Then the PLC doesn't

ıput tum on. Therefore it becomes a paperweight. Not true, of course there must be

get around this. Actually there are 2 ways.

e Stretch Function

~ function extends the length of the input signal until the PLC looks at the inputs

::: 3 5) during the next scan (i.e. it stretches the duration of the pulse.)

,;;r1:,ı~ i.,.:A,\~::"'t' ~

I
I

I nl 'I: I I I I
I I I
I I I PROG I I Iour, n~ , EXEC ıour.1 ıt~ ,
I I I ' I

I I I I
' I

rıIJ,-...;.-,;---
PULSE STRETCH

Figure 3.5

Interrupt Function

- function interrupts the scan to process a special routine that you have written (Figure

e. As soon as the input turns on, regardless of where the scan currently is, the PLC

-~.cdiately stops what its doing and executes an interrupt routine. (A routine can be

_ t ofas a mini program outside of the main program.) After its done executing the

errupt routine, it goes back to the point it left off at and continues on with the normal

8

mHRRUPT
t I

i :n: .~.~.•...-;.......ı I I
I I I PROG I I Iour, ıN , EXEC ıou~ m ,
I I I :

1
I

i SCAN I I

Figure 3.6

s consider the longest time for an output to actually tum on. Let's assume that

switch turns on we need to turn on a load connected to the PLC output.

gure 3.7 below shows the longest delay (worst case because the input is not seen

Z) for the output to turn on after the input has turned on .

.ximum delay is thus 2 scan cycles - 1 input delay time.

OH
OFF.

I
I
I

SCAti 1

Figure 3.7 The longest delay

9

CHAPTER4

PLC REGISTERS

.1 Ladder Diagram and PLC Registers

We'll now change switch 2 (SW2) to a normally closed symbol (load bar instruction).

1 will be physically OFF and SW2 will be physically ON initially. The ladder diagram

ows in the Figure 4. 1.

0000
;JUTFUT

0500 0001

Figure 4.1 Ladder diagram

Notice also that we now gave each symbol (or instruction) an address. This address sets

side a certain storage area in the PLCs data files so that the status of the instruction (i.e.

e/false) can be stored. Many PLCs use 16 slot or bit storage locations. In the example

ove (Table 4. 1) we are using two different storage locations or registers.

Table 4.1 Two different storage locations or registers

ı 1 s I 14 ı 13 L1?J 1_U 1 oJ os i os I 07 J os 05 ! 04 I 03 i 02 I O 1 ! 00
L J _ J l.... ··1 1 I O

REGISTER 05
~--~""""'--"'=--=~-c=-=c--· - • • • - • -"'-=-~------·-,-· ··· =-.:~-

In the table 4.2 above we can see that in register 00, bit 00 (i.e. input 0000) was logic O

d bit Ol (i.e. input 0001) was logic 1. Register 05 shows that bit 00 (i.e. output 0500) was

gic O. The logic O or 1 indicates whether an instruction is False or True.

10

Table 4.2 The register

~=~~-~e._,···-•- - -··. -·-·' •-·-- - • •• - •••. ~ıLOGICAL CONDITION OF SYMBOL
'

LOGIC BITS j LO l LOB OUT1 j- - . - -) - - - ·-Logic O l False True False
- . - - ~ .. - --Logic 1 ! True False True .Jl.. -- ı. - ; - -

The PLC will only energize an output when all conditions on the rung are TRUE. So,

king at the table above, we see that in the previous example SWI has to be logic 1 and

T2 must be logic O. Then and only then will the coil be true (i.e. energized). If any of the

structions on the rung before the output (coil) are false then the output (coil) will be false
t energized).

In LAD programs, the basic elements of logic are represented with contacts, coils, and

. xes. A set of interconnected elements that make a complete circuit is called a network.

A hard-wired input is represented by a symbol called a contact. A normally open contact

bles power flow when closed. A contact can also be normally closed. In this case, power

w occurs when the contact is opened.

' Truth Table

Let's now look at a truth table 4.3 of our previous program to further illustrate this

portant point. Our truth table will show all possible combinations of the status of the two
uts.

Table 4.3 Truth Table

SW1(LD)

o o j
Inputs Outputs Register Logic Bits

COIL(OUT) SW1(LD) SW2(LDB) COIL(OUT) j
False - I False o

1 l J.~.I False False False r· o I 1 I ul l
True True ! True I 1 J o l 1ITrue False . ! False .. L 1 I 1 l o iı ı. ' ·- .. j_ . - - - -

-otice from the chart that as the inputs change their states over time, so will the outputs.

output is only true (energized) when all preceding instructions on the rung are true.

The Program Scan
et's watch what happens in this program scan by scan with Figure 4.2, Figure 4.3,

=-re 4.4 and Figure 4.5.

L-ın~,·-·'-·UU nnr··'

tr
u._ı,_ı ı ·j '1,'.J•-·U, u

1000 f------C
0500

END

Figure 4.2

Initially the tank is empty. Therefore, input 0000 is TRUE and input 0001 is also

ili.

'rTrne True

True True

END END

Figure 4.3 Figure 4.4

After 100 scans the oil level rises above the low level sensor and it becomes open.

_ FALSE)

12

Figure 4.5

otice that even when the low level sensor is false there is still a path of true logic from

:o right. This is why we used an internal relay. Relay 1000 is latching the output (500)

• will stay this way until there is no true logic path from left to right.(i.e. when 0001

mes false) After 1000 scans the oil level rises above the high level sensor at it also

__ımes open (i.e. false) (Figure 4.6 and Figure 4.7)

END END

Figure 4.6 Figure 4.7

ce there is no more true logic path, output 500 is no longer energized (true) and

efore the motor turns off
1er 1050 scans the oil level falls below the high level sensor and it will become true

(Figure 4.8)

13

:::h-t
'<,~~

False

END

Figure 4.8

14

CHAPTERS

CPU212

Overview
,. Low-cost entry into the SIMATIC S7-21x Series

All round talent with a wide spectrum of connectable expansion modules

• With analog value processing

Area of application
The CPU 212 is the low-cost entry into the SIMATIC S7-200 family. A wide range of

ectable expansion modules not only opens up the world of analog value processing but

makes the CPU a real all round talent.

Design

Figure 5.1

15

CPU 212 (Figure 5.1) features:

,. Integrated 24 V transmitter and load power supply;

for direct connection of sensors and transmitters. With its 180mA output current it

can also be used to supply loads.

7 variants;

with different supply voltages and control voltages.

Integrated digital inputs and outputs;

8 inputs and 6 outputs.

Interrupt inputs;

for extremely rapid response to rising or falling edges of process signals.

High-speed counter;

1 high-speed counter (2 kHz), for implementation as an up or down counter.

• Problem-free expansion with digital and analog expansion modules (EM, optional).

• Simulator (optional);

for simulating the integrated inputs and testing the user program.

• Analog potentiometer;

1 analog potentiometer, easy-to-use in everyday operation as a set point adjuster, e.g.

for setting timers .

.ı Functions

• Comprehensive instruction set;

numerous basic operations such as binary logic operations, result assignment,

storing, counting, setting up timers, loading, transferring, comparing, shifting,

rotating, generating complements, calling subroutines, integrated communication

instructions (e.g. RECEIVE Freeport) and user-friendly functions such as pulse

width modulation, pulse sequence function, arithmetic functions, jump functions,

loop functions and code conversions aid programming.

• Counting;

user-friendly counter functions in conjunction with the integrated counters open up

new applications for the user.

16

• Interrupt handling;

• Edge-triggered interrupts (activated by rising or falling edges of process signals on

interrupt inputs) support a rapid response to process events.

• Timed interrupts can be set from 5 ms to 255 ms at intervals of 1 ms.

• Counter interrupts can be triggered when a set point is reached or when the

direction of counting changes.

• Communication interrupts support the fast and easy exchange of information with

I/O devices, e.g. printers or barcode readers.

• Direct scanning and control of inputs and outputs;

inputs and outputs can also be directly scanned and set independently of the cycle.

The controller is then able to respond quickly to process events (e.g. direct resetting

of outputs on the occurrence of an interrupt).

• Password protection;

the three-level password protection concept provides effective protection for

company expertise. The protection concept features the following modes of access

to the user program:

• Complete access: The program can be changed as required.

• Read-only: The program is protected against unauthorized modification. Testing,

setting system parameters and copying the program are all possible.

• Complete protection: The program is protected against modifications and

unauthorized reading and copying. Parameters can be set.

• Test and diagnosis functions;

user-friendly functions support test and diagnosis: The complete program is

executed over a number of cycles that can be specified and analyzed. Internal

parameters, such as bit-memories, timers or counters are logged over up to 124

cycles.

• "Forcing" of inputs and outputs in test and diagnosis mode;

inputs and outputs can be set independent of the cycle and therefore permanently,

for the purpose of testing the user program for example.

17

- Programming

e program packages STEP 7-Micro/DOS Vl.3, STEP 7-Micro/WIN16 V2.6 or

~. EP 7-Micro/WIN32 V3.0 are available for programming the CPU 212.

Every function of the CPU can be programmed using these packages. If programming is

formed via the serial interface of the programming device or PC, a PC/PPI cable will

-~ be necessary.

the programming software STEP 7-Micro/WIN32 V3.0 is used, it is also possible to

gram the CPU via the SIMATIC CPs CP 5511 or CP 5611. In this manner,

:nmunication rates of up to 187 kbit/s are possible.

18

CHAPTER6

S7-200 MICRO PLC

1 Introducing the S7-200 Micro PLC

The S7-200 series is a line of micro-programmable logic controllers (Micro PLCs) that

control a variety of automation applications. Figure 6-1 shows an S7-200 Micro PLC.

e compact design, expandability, low cost, and powerful instruction set of the S7-200

.ıcro PLC make a perfect solution for controlling small applications. In addition, the wide

ariety of CPU sizes and voltages provides you with the flexibility you need to solve your

tomation problems.

Figure 6.1 S7-200 Micro PLC

.2 Comparing the Features of the S7-200 Micro PLCs
-.2.1 Equipment Requirements

Figure 6.2 shows the basic S7-200 Micro PLC system, which includes an S7-200 CPU

odule, a personal computer, STEP 7-Micro/WIN programming software, and a

communications cable. In order to use a personal computer (PC), you must have one of the

following sets of equipment:

• A PC/PPI cable

• A communications processor (CP) card and multipoint interface (MPI) cable

• A multipoint interface (MPI) card. A communications cable is provided with the

MPicard.

19

Figure 6.2 The basic S7-200 Micro PLC system

Capabilities of the S7-200 CPUs

The S7-200 family includes a wide variety of CPUs. This variety provides a range of

res to aid in designing a cost-effective automation solution. Table 6.1 provides a

ary of the major features of each S7-200 CPU

Table 6.1 Provides a summary of the major features of each S7-200 CPU

lı:ımres CPU 212 CPU 214 CPU 215 CPU 216
160mmx80mm 197mmx80mm 218mmx80mm ~18mmx80mm

Pr.~ Sizeof Unit x62mm x62mm x62mm x62mm
ıııı.orv
~:ım (EEPROM) 512 words 2kwords 4kwords 4kwords
t...:r data 512 words 2kwords 2.5kwords 2.5kwords
liı&:mal memorvbits 128 256 256 256
W::ı:ı:ıoı)· cartridge none Yes(EEPROM) Yes(EEPROM) IYes(EEPROM)
ür~~al batteıy cartridge none 200 days typical 200 days typical 200 days typical
Ea.:!.:tıp upper capac 50 hours typical 190 hours typical 190 hours typical 190 hours typical
lıııımJOutputs (1/0)
U\::.LL'O 8DI16DQ 14 Dl/10 DQ 14 DI/10 DQ 24 Dl/16 DQ
E~.msion modules (max.) 2modules 7 modules 7 modules 7 modules
P-:ı.ess-imageI/O 64DI164DQ 64DI164DQ 64 Dl/64 DQ 64D1/64DQ
~ 1/0 (expansion) 16 AL/16AQ 16 AL/16AQ 16 AL/16 AQ 16 AL/16AQ
"'ic:~uble input filters No yes ıves yes
ı.tructions
6ııı,c,,i.,eın execuationspeed 1.2µs/instıııction 0.8µs/instıııction O .8µs/instıııction O.8µs/instıııction
C.ıııı:ııers/timers 64/64 128/128 256/256 256/256
F~iloops No Yes Yes !Yes
im.~~math Yes Yes Yes IYes
ikıi.math No Yes Yes Yes
!:"D No No Yes !Yes

20

;.aı,titiıional Features
Ima speedcounter 1 S/W 1 S/W,2H/W 1 S/W,2H/W 1 S/W,2H/Wr~"g adjustments 1 2 2 2
Plı......::ontputs None 2 2 2

1 transmit/ 1 transmit/ 1 transmit/ 2 transmit/
~unication interruptevants lreciver lreciver 2reciver 4reciver
T.ırd! interrupts 1 2 2 2
~"n""are input interrupts 1 4 4 4
9ı::ı:. ame clock None Yes Yes Yes
Cımmunications
~ of common ports 1 (RS-485) 1 (RS-485) 2 (RS-485) 2 (RS-485)
Puı.:x:ol supportedPort O: PPI, Freeport PPI, Freeport PPI, Freeport,MPI!PPI, Freeport,MPI

Port 1: NIA NIA DP,MPI IPPI,Freeport,MPI
P= ıo peer Slaveonly Yes Yes [Yes

_:fajor Components of the S7-200 Micro PLC

S7-200 Micro PLC consists of an S7-200 CPU module alone or with a variety of

orıal expansion modules.

S7-200 CPU Module

e S7-200 CPU module combines a central processing unit (CPU), power supply, and

ete I/O points into a compact, stand-alone device.

• The CPU executes the program and stores the data for controlling the automation

task or process.

• The power supply provides electrical power for the base unit and for any expansion

module that is connected.

• The inputs and outputs are the system control points: the inputs monitor the signals

from the field devices (such as sensors and switches), and the outputs control

pumps, motors, or other devices in your process.

• The communications port allows you to connect the CPU to a programming device

or to other devices. Some S7-200 CPUs have two communications ports.

• Status lights provide visual information about the CPU mode (RUN or STOP), the

current state of the local 1/0, and whether a system fault has been detected.
I

21

.II

Installing and Using the STEP 7-Micro/WIN Software

TEP 7-Micro/WIN is a Windows-based software application that supports both the 16-

"indows 3. 1 environment (STEP 7-Micro/WIN 16) and the 32-bit Windows 95 and

dows NT environments (STEP 7-Micro/WIN 32). In order to use STEP 7-Micro/WIN,

following equipment is recommended:

• Recommended: a personal computer (PC) with an 80586 or greater processor and

16 Mbytes of RAM, or a Siemens programming device (such as a PG 740);

minimum computer requirement: 80486 processor with 8 Mbytes

• One of the following sets of equipment:

• A PC/PPI cable connected to your communications port (PC COMI or COM2)

• A communications processor (CP) card and multipoint interface (MPI) cable

• A multipoint interface (MPI) card (A communications cable comes with the MPI

card.)

• VGA monitor, or any monitor supported by Microsoft Windows

• At least 50 Mbytes of free hard disk space

• Microsoft Windows 3 .1, Windows for Workgroups 3. 11, Windows 95, or Windows

NT 4.O or greater

• Optional but recommended: any mouse supported by Microsoft Windows STEP 7-

Micro/WIN provides extensive online help. Use the Help menu command or press

Fl to obtain the most current information.

5 Installing the STEP 7-Micro/WIN Software
-.ı Pre-Installation Instructions

Before running the setup procedure, do the following:

• If a previous version of STEP 7-Micro/WIN is installed, back up all STEP 7-

Micro/WIN projects to diskette.

• Make sure all applications are closed, including the Microsoft Office toolbar.

Installation may require that you restart your computer.

22

Installation Instructions for Windows 3.1

you have Windows 3.1 (Windows for Workgroups 3.11) on your machine, use the

Jing procedure to install the STEP 7-Micro/WIN 16 software:

tın by inserting Disk 1 in the disk drive of your computer (usually drive A or drive B).

rom the Program Manager, select the menu command File-Run ...

the Run dialog box, type a:\setup and click "OK" or press ENTER This starts the

!"' procedure.

- ollow the online setup procedure to complete the installation.

Installation Instructions for Windows 95 or Windows NT 4.0

If you have Windows 95 or Windows NT 4.0 on your machine, use the following

cedure to install the STEP 7-Micro/WIN 32 software:

- zart by inserting Disk 1 in the disk drive of your computer (usually drive A or drive B).

-lick once on the "Start" button to open the Windows 95 menu .

.ick on the Run ... menu item.

the Run dialog box, type a:\setup and click on "OK" or press ENTER This starts the

p procedure.

~ How the online setup procedure to complete the installation.

the end of the installation, the Install/Remove Modules dialog box appears

matically. See Figure 6.3. You can install the hardware for your machine to

unicate now, or you can wait until later.

Figure 6.3 Install/Remove Modules Dialog Box

23

.t Troubleshooting the Installation

following situations can cause the installation to fail:

• Not enough memory: at least 50 Mbytes of free space are required on your hard

disk.

• Bad diskette: verify that the diskette is bad, then call your salesman or distributor.

• Operator error: start over and read the instructions carefully.

• Failure to close any open applications, including the Microsoft Office tool bar

ew the README x.TXT file included on your diskettes for the most recent

rmation about STEP 7-Micro/WIN. (In the x position, the letter A= German, B =

=;1sh, C = French, D = Spanish, E = Italian.)

Tsing STEP 7-Micro/WIN to Set Up the Communications Hardware

General Information for Installing or Removing the Communications Hardware

r you are using Windows 95 or Windows NT 4.0, the Install/Remove Modules dialog

appears automatically at the end of your software installation. See Figure 6.3. If you

zsing Windows 3 .1, follow these steps:

~ elect the menu command Setup-Communications. The Communications dialog box

.ick the "PG/PC Interface ... " button. The Setting the PG/PC Interface dialog box

rs.

- ck the "Install ... " button. The Install/Remove Modules dialog box appears. See Figure

vill need to base your installation of communications hardware on the following

"na:

• The operating system that you are using (Windows 3 .1, Windows 9 5, or Windows

NT 4.0)

• The type of hardware you are using, for example:

• PC with PC/PPI cable

• PC or SIMATIC programming device with multipoint interface (MPI) or

communications processor (CP) card.

• CPU 212, CPU 214, CPU 215, CPU 216

24

Modem

The baud rate you are using

ınle 6.2 shows the possible hardware configurations and baud rates that STEP 7-

WIN support, depending on the type of CPU that you are using.

Table 6.2 Hardware Configurations Supported by STEP 7- Micro/WIN

TYi>" ,,r ,:Pu I sı:ıcy 1-M.ı:m I f.br,Jwoo-~ıı,,p;ı.,tt<ııl I üıtıı.'il R•t.• I t)p,,f. :tımıt I :rn,.e ..ı
WIN Vimıll11• S,ı·ııpmJ~ s,.,_ı.,.,. l'ıır,,ııMc·l" !iel

cm:ı :ı:rı,, I :Mk,,,,wıw 'J6 11''..cal'i"l •"*"'· Ml'i,ISt, 19.H,l,~,ı;fo-: I w.ıı,J.<;.,;ı.;;.ı ırii'l.
(1?D2J~. ~ 11:.1.Z .k.h.!.rWi fTt ,ruııtlw.t~:w....~

Mk~:,·,,vrNsı I p,c·-__(~ t"~ı:t:" 1'Ir·_r~.L.'sA 19 .6 ~utl er I ~'hub·ı;.ı:s95 ,[§ I rrt
cı,ı,I,Ml!'MilA«,ml"" H/;1 k!auJ wı.ııı., .••. ~ NT ffl ,ı;;ıı,ı,..,,...,.ı.;ı
1><:ıar,L-Ci-' 141!,
CP5:S.tt..('P5fi!1

CPU 215 p~,d l I MJcırı.:ınınN16 I ND1 3J.lf~~1,fıM
ff)!' p;ıı:tJ

N,o,,; iı1ıl'J1<'lıioct I W,ıı'~:>'-'\i s, I I ~fol ııııppı.xcl!iıi
'1'.tind:n.l,l.ii 95-111t
Wimih:t'ıt~ Nl-

1.l·fü:~n/\\?tN J.2 I ?ı.~t-,15./i. e.ti\11

N'&! •.tSA ,;:%td fRt
ho,ır<l .. C!>5411.
CP 55t11,c~:;·5,ıfrfl

pecial Hardware Installation Information for Windows NT Users
stalling hardware modules under the Windows NT operating system is slightly

erent from installing hardware modules under Windows 95. Although the hardware

zules are the same for either operating system, installation under Windows NT requires

e knowledge of the hardware that you want to install. Windows 95 tries automatically

up system resources for you; however, Windows NT does not. Windows NT provides

ith default values only. These values may or may not match the hardware

--guration.

ever, these parameters can be modified easily to match the required system settings.

- en you have installed a piece of hardware, select it from the Installed list box and

the "Resources" button. The Resources dialog box appears. See Figure 6.4. The

urces dialog box allows you to modify the system settings for the actual piece of

_ vare that you installed. If this button is unavailable (gray), you do not need to do

taıng more.

·· this point you may need to refer to your hardware manual to determine the setting for

25

+ the parameters listed in the dialog box, depending on your hardware settings. You

ceed to try several different interrupts in order to establish communication correctly.

Figure 6.4 Resources Dialog Box for Windows NT

tablishing Communication with the S7-200 CPU
an arrange the S7-200 CPUs in a variety of configurations to support network

unications. You can install the STEP 7-Micro/WlN software on a personal computer

t has a Windows 3. lx, Windows 95, or Windows NT operating system, or you can

t on a SIMATIC programming device (such as a PG 740). You can use the PC or

gramming device as a master device in any of the following communications

A single master device is connected to one or more slave devices. See Figure 6.5.

A single master device is connected to one or more slave devices and one or more

master devices. See Figure 6.6 and Figure 6. 7.

A CPU 215 functions as a remote 1/0 module owned by an S7-300 or S7-400

programmable logic controller or by another PROFIBUS master. See Figure 6.8.

A single master device is connected to one or more slave devices. This master

device is connected by means of 11-bit modems to either one S7-200 CPU

functioning as a slave device or else to a network of S7-200 CPUs functioning as

slave devices. See Figure 6.9.

Connecting Your Computer to the S7-200 CPU Using the PC/PPI Cable

gure 6. 5 shows a typical configuration for connecting your personal computer to your

26

vith the PC/PPI cable. To establish proper communications between the components,

.~· these steps:

the DIP switches on the PC/PPI cable for the baud rate.

nnect the RS-232 end of the PC/PPI cable labeled PC to the communications port of

- computer, either COMl or COM2, and tighten the connecting screws.

nnect the other end (RS-485) of the PC/PPI cable to the communications port of the

-. and tighten the connecting screws.

Figure 6.5 Communicating with a CPU in PPI Mode

Figure 6.6 shows a configuration with a personal computer connected to several S7-

CPU modules. STEP 7-Micro/WlN is designed to communicate with one S7-200 CPU

nme; however, you can access any CPU on the network. The CPU modules in Figure

could be either slave or master devices. The TD 200 is a master device.

:S1' ,:il\.~ ·[WiJ
ai~:'-i\·1

i!f1-.Z.tJı:;.fl'lj
Et-ın~ı~

~7~.'~Alf;;.PLl
~k':'!14

~- e 6.6 Using a PC/PPI Cable for Communicating with Several S7-200 CPU Modules

.2 Connecting Your Computer to the S7-200 CPU Using the MPI or CP Card

.ou can use STEP 7-Micro/WlN with a multipoint interface (MPI) or communications

27

essor (CP) card. Either card provides a single RS-485 port for connection to the

rk using an MPI cable. STEP 7 Micro/WlN 32 (the 32-bit version) supports the MPI

eter set for an MPI network; STEP 7-Micro/WIN 16 (the 16-bit version) does not.

establishing MPI communications, you can connect STEP 7-Micro/WIN on a

rk that contains other master devices. Each master must have a unique address.

e 6. 7 shows a sample network with master and slave devices.

Ml"iı:'./1.Jı,~------~------~~------------~-
~"~,tt:5~

;\ll!,.ts>.ıf ,/twia,,.-
OPHS Ci'Ll}'l•

EZ.,.r.,r:,

Figure 6.7 Example of an MPI or CP Card with Master and Slave Devices

-~
t.Pi I PiWl'llfü-S I PC
%i!ıra,11>:~

Figure 6.8 CPU 215 on a PROFIBUS Subnetwork, with MPI Subnetwork

Figure 6.9 S7-200 Data Communications Using an 11-Bit Modem

28

om What Point Do I Set Up Communications?

ding on the operating system that you are using, you can set up communications

y of the following points:

T nder Windows 3 .1

Within STEP 7-Micro/WIN 16 only

Tnder Windows 95 or Windows NT 4.0

During the final step of the installation (see Section 3 .1)

From the Setting the PG/PC Interface icon, found in the Windows Control Panel

.Vithin STEP 7-Micro/WIN 32

tting Up Communications within STEP 7-Micro/WIN
n STEP 7-Micro/WIN there is a Communications dialog box that you can use to

=ure your communications setup. See Figure 6.1 O. You can use one of the following

.o find this dialog box:

Select the menu command Setup-Communications .

Create a new project and click the "Communications " button in the CPU Type

dialog box.

If you have a project open, select the menu command CPU-Type ... and click the

"Communications" button in the CPU Type dialog box.

~-re 6.10 Setting Up the Communications between Programming Device or PC and the

CPU

29

er you have called up the Communications dialog box, click the "PG/PC Interface"

_ :ron. The Setting the PG/PC Interface dialog box appears. See Figure 6.11.

Figure 6.11 Setting the PG/PC Interface Dialog Box

10 Setting Up Communications from the Windows Control Panel

If you are using the Windows 95 or Windows NT 4.0 operating system, you can set

. the communications configuration by means of the Control Panel. From the Control

:ınel, select the Setting the PG/PC Interface icon. See Figure 6.12.

30

Figure 6.12 Control Panel with Setting the PG/PC Interface Icon

1 Setting Up Communications during Installation
_ nder the Windows 95 or Windows NT 4.0 operating system, at the end of the STEP 7-

-o/WIN installation, the Communications dialog box appears automatically. You can

~P your configuration at that time, or later.

2 Selecting the Correct Module Parameter Set and Setting It Up
en you have reached the Setting the PG/PC Interface dialog box (see Figure 6.11),

must select "Micro/WIN" in the Access Point of Application list box in the Access

·- tab. This dialog box is common to several different applications, such as STEP 7 and

CC, so you must tell the program the application for which you are setting parameters.

ben you have selected "Micro/WIN" and have installed your hardware, you need to set

e actual properties for communicating with your hardware. The first step is to determine

protocol that you want to use on your network. See Table 6.2. In most cases, you will

""the PPI protocol for all of your CPU modules, except for the high-speed port (DP port)

the CPU 215. This port uses the MPI protocol.

ben you have decided what protocol you want to use, you can choose the correct setup

the Module Parameter Set Used list box in the Setting the PG/PC Interface dialog box.

This box lists each hardware type that you have installed, along with the protocol type in

rerıtheses. For example, a simple setup might require you to use the PC/PPI cable to

mmunicate with a CPU 214. In this case, you select "PC/PPI cable (PPI)." Another

ecample is a setup that requires communicating with a CPU 215 through its high-speed port

DP port) by means of a plain MPI-ISA card that you have installed in your computer. In

31

- case, you select "MPI-ISA Card (MPI)."

rter you have selected the correct module parameter set, you must set up the individual

rameters for the current configuration. Click the "Properties ... " button in the Setting the

PC Interface dialog box. This action takes you to one of several possible dialog boxes,

_ ending on the parameter set that you selected. The sections that follow describe each of

se dialog boxes in detail.

summary, to select a module parameter set, follow these steps:

ss Point of Application list box in the Access Path tab.

-· ·re that your hardware is installed ..

ermine the protocol that you want to use.

ct the correct setup from the Module Parameter Set Used list box in the PG/PC

~ce dialog box.

-L· the "Properties ..." button in the Setting the PG/PC Interface dialog box.

Concepts of an S7-200 Program

1 Relating the Program to Inputs and Outputs

sic operation of the S7-200 CPU is very simple:
The CPU reads the status of the inputs.
The program that is stored in the CPU uses these inputs to evaluate the control

logic. As

rogram runs, the CPU updates the data.

• The CPU writes the data to the outputs.

Figure 6.13 shows a simple diagram of how an electrical relay diagram relates to the

--··-·v CPU. In this example, the state of the operator panel switch for opening the drain is

- to the states of other inputs. The calculations of these states then determine the state

e output that goes to the solenoid that closes the drain.

e CPU continuously cycles through the program, reading and writing data.

32

Figure 6.14 Relating the Program to Inputs and Outputs

14 Concepts of the S7-200 Programming Languages

The S7-200 CPU (and STEP 7-Micro/WIN) supports the following programming
guages:

• Statement list (STL) is a set of mnemonic instructions that represent functions of

the CPU.

• Ladder logic (LAD) is a graphical language that resembles the electrical relay

diagrams for the equipment.

STEP 7-Micro/WIN also provides two representations for displaying the addresses and

e programming instructions in the program: international and SIMATIC. Both the

ternational and SIMATIC representations refer to the same S7-200 instruction set. There

- a direct correspondence between the international and the SIMATIC representation; both

representations have the same functionality .

. 14.1 Understanding the Basic Elements of Ladder Logic

When you write a program in ladder, you create and arrange the graphical components

ıo form a network of logic. As shown in Figure 6.15, the following types of elements are

available for creating your program:

• Contacts: each of these elements represents a switch through which power can flow

when a switch is closed.

• Coils: each of these elements represents a relay that is energized by power flowing

to that relay.

33

• Boxes: each of these elements represents a function that is executed when power

flows to the box.

• Networks: each of these elements forms a complete circuit. Power flows from the

left power rail through the closed contacts to energize the coils or boxes.

Figure 6.15 Basic Elements of Ladder Logic

6.14.2 Understanding the Statement List Instructions

Statement list (STL) is a programming language in which each statement in your program

ıncludes an instruction that uses a mnemonic abbreviation to represent a function of the

CPU. You combine these instructions into a program to produce the control logic for your

application.

Figure 6. 16 shows the basic elements of a statement list program.

~~ırotrn~"t!'w·~fi~
<İ'1.ı!.~Ui!/'.ı,,;/tfıl

~r.:ffeını //@l't.,a~t li!:ll::eı:t"·:
ao ~st;,..~t;J~ Ji~t~i UL"J iü: eo
.\l:1 ~•.... s .•. .s:t.:;;ı;ıl"' //ar-A. ltLı .i~ Mat: .an ,

Q\\\.~ .//•.!>001 tu,m "" ~"'""'"Y'"' '""'~
1.~~Jl!E: //R. •. .?Ji:..fı..f?, funV~V5~>:: ~ L..:::=-.J

W 1:G-.l~:t..SS=iill.
t) ~ i/,e.'!l "!ffi.ı).!;Ji .'B;•.&t".'-'=i" :l i~ ~iı),r

r. . '2', .. £ :'"'ı-----..~ off' '"""'~"l''"'."""t"'".
~'l'fr-;).ru! //Znd. .6-f ~.t:e.1~l ~-~n~~,ı,

Figure 6-17 STL Editor Window with Sample Program

The STL instructions use a logic stack in the CPU for solving your control logic. As

34

shown in Figure 6-18, this logic stack is nine bits deep by one bit wide. Most of the STL

instructions work either with the first bit or with the first and the second bits of the logic

stack. New values can be "pushed" (or added) onto the stack; when the top two bits of the

stack are combined, the stack is "popped" (reduced by one bit).

While most STL instructions only read the values in the logic stack, many STL

instructions also modify the values stored in the logic stack. Figure 6-18 shows examples of

how three instructions use the logic stack.

Sihr:t.O hısıtrt~~ k!,,.;-;;&!.Jf·itı.poft,ı~~,.
Sbck1 Sıh.'n!ıi.i~.ıı,ki;,,-ı;!
@.tıı:k:ı=: 1'h}pj~,k ~·ffl
-&i1d!. 3 fmıt~lı~-ck t'ev,t;l
st.c!< 4 !'lllıi!iliYA< w,'i.f
St:.ek ı; w.fu ..ı:ı.tk ı.>rel
Sw.rJ,; n ~#.!itth -~~~~
stıtit"f E~ftciff ~ ~
Sl,itk il Niıi!fı ~!ıW.i!: ,,,..,,.1

Lö.:ifil~LD'
Ltı.<i<~.~'17.~i~.ik~ (rı:'.l1 !i.-r'Z.ıt'!~-

A'mi'(A)

::~·::~.=J:t;;:;1;;:
St)-:i'iru:"'rıı.:

t.d~ ~lı'i. ~l*:{,~j'f"'"'

CiriC)
Or-:&~ r~- :ıt..t~>t; e-,~ ~\ ıt'~WH..i
't~~} ~J)/J. i':~ lJfü- lt".ı:r.ı ı:.'1 ~ ~mi~
81};';:'fıııfl-;.,u;·

fr,fiw4,i+jr.,;..·~~•••. nıı.f/"lôni',:','.rıtı-~1".,.,;<C;:JiiiJ;.~~"ji;(,'~~~~ '-ıı"I" ~;f.,j.•~!lfi.'Ul ~üı,.ti öt~~~'~" ~ld
'W~~if-~uı~~·,,:~,-..-.ı:~itttabW~~

Figure 6-5 Logic Stack of the S7-200 CPU

6.15 Basic Elements for Constructing a Program

The S7-200 CPU continuously executes your program to control a task or process.

You create this program with STEP 7-Micro/WIN and download it to the CPU. From the

main program, you can call different subroutines or interrupt routines.

6.15.1 Organizing the Program

Programs for an S7-200 CPU are constructed from three basic elements: the main

program, subroutines (optional), and interrupt routines (optional). As shown in Figure 6.19,

an S7-200 program is structured into the following organizational elements:

• Main program: The main body of the program is where you place the instructions

35

that control your application. The instructions in the main program are executed

sequentially, once per scan of the CPU. To terminate the main program, use an

Unconditional End coil in ladder or a Main Program End instruction (1\1END) in

STL. See in Figure 6.19.

• Subroutines: These optional elements of your program are executed only when

called from the main program. Place the subroutines after the end of the main

program (following the Unconditional End coil in ladder logic or the 1\1END

instruction in STL). Use a Return (RET) instruction to terminate each subroutine.

See in Figure 6.19.

• Interrupt routines: These optional elements of your program are executed on each

occurrence of the interrupt event. Place the interrupt routines after the end of the

main program (following the Unconditional End coil in ladder logic or the 1\1END

instruction in STL). Use a Return From Interrupt (RETI) instruction to terminate

each interrupt routine. See in Figure 6.19.

Subroutines and interrupt routines follow the Unconditional End coil or 1\1END

instruction of the main program; there is no other requirement for locating the subroutines

and interrupt routines within your program. You can mix subroutines and interrupt routines

following the main program; however, in order to provide a program structure that is easy

to read and understand, consider grouping all of the subroutines together after the main

program, and then group all of the interrupt routines together after the subroutines.

Figure 6.19 Program Structure for an S7-200 CPU

36

6.15.2 Example Program Using Subroutines and Interrupts

Figure 6.20 shows a sample program for a timed interrupt, which can be used for

applications such as reading the value of an analog input. In this example, the sample rate

of the analog input is set to 100 ms.

r---------.ı Rfill)

bt.~OI'..k: 3
$BR {l I te~gjaı::mt:ır.ootiü.t:< tı
~kW".c1S:-1ii. ,t:

.Ln s.tm . -O I /A.'3.:Y:;;,Yif. a,~ 3t-iıiroW ı:-..s. t: r
M~ .lGO..,,, S.M2::ı)-* //9.ı;;,1'}, i.ııt.-tı~ ili?-:~ O.

ll itı.t•evü t,,:ı u;o:r&il
."£1l'l! I /Gl.lJ~fı:.ı :ırıı.~~rı>Up:t h..aöl~
Att"'S e, ac //'Jıct,4.e"Ji. ·tıt~ruı. 'lı."&it. {I :c~

ıııı.ın I i/it>L ,,..""'u".e.
l't~tw-od:. .!i
liE'T

lıl"'fıit~N. ~
rn 11 //a~~iiti!lie... f!eut: .tro''1 fr .

~?.!1:1'~tit 7
U'!).W A.I'i(4,.'J'""~l~i3' //'S.~ltı. k-iU.~ liifUl! ,f

!Ç;,vct.•;ı(~~~ (!

l'$l'I f {r:ıa:11::U,eit~'it i:ıt;~r:ıi-Jfı't
-~f.)'!.Jt:i:nı:

Figure 6.20 Sample Program for Using a Subroutine and an Interrupt Routine

6.16 Selecting the Mode of Operation for the CPU

The S7-200 CPU has two modes of operation:

• STOP: The CPU is not executing the program. You can download a program or

configure the CPU when the CPU is in STOP mode.

• RUN: The CPU is running the program. When the CPU is in RUN mode, you

cannot download a program or configure the CPU.

37

• The status LED on the front of the CPU indicates the current mode of operation.

You must place the CPU in the STOP mode to load the program into program
memoıy.

6.16.1 Changing the Operating Mode with the Mode Switch

You can use the mode switch (located under the access door of the CPU module) to

select the operating mode for the CPU manually:

• Setting the mode switch to STOP mode stops the execution of the program.

• Setting the mode switch to RUN mode starts the execution of the program.

• Setting the mode switch to TERM (terminal) mode does not change the CPU

operating mode, but it does allow the programming software (STEP 7-Micro/WIN)

to change the CPU operating mode.

If a power cycle occurs when the mode switch is set to STOP or TERM, the CPU goes

automatically to STOP mode when power is restored. If a power cycle occurs when the

mode switch is set to RUN, the CPU goes to RUN mode when power is restored.

6.16.2 Changing the Operating Mode with STEP 7-Micro/WIN

As shown in Figure 6.21, you can use STEP 7-Micro/WIN to change the operating mode

of the CPU. To enable the software to change the operating mode, you must set the mode

switch on the CPU to either TERM or RUN.

Figure 6-9 Using STEP 7-Micro/WIN to Change the Operating Mode of the CPU

6.16.3 Changing the Operating Mode from the Program

You can insert the STOP instruction in your program to change the CPU to STOP mode.

This allows you to halt the execution of your program based on the program logic.

38

CHAPTER7

DIRECT ADDRESSING

7.1 Direct Addressing of the CPU Memory Areas

The S7-200 CPU stores information in different memoıy locations that have unique

addresses. You can explicitly identify the memoıy address that you want to access. This

allows your program to have direct access to the information.

7.1.1 Using the Memory Address to Access Data

To access a bit in a memoıy area, you specify the address, which includes the memoıy

area identifier, the byte address, and the bit number. Figure 7. 1 shows an example of

accessing a bit (which is also called "byte. bit" addressing). In this example, the memoıy

area and byte address (l=input, and 3=byte 3) are followed by a period(".") to separate the
bit address (bit 4).

'! .J ~ ıl

I
ı;ı:,ı tıf !ı'fl'1, ,~· bli ..-.uı,••,ııc Iii 4 of ıı (tı to1}

PB001i'sesarseee ~h~ l;.,,;te f¥J!W{~
tf•Mtfil~titi fWJlt.~

•-¥" Md,,,, •., ll'_i'«; 3 (!,i>e ftıı.ııfü ı,~t;,ı
t,;;i',/; kı.mıtkı' fr " ,np,.,t)

W-~~ ı..~
7' a,; 4 :ı: :.· 1 fr

n II I I I I I I I
r £nll 1111111lııl.ttt-, ~*4-J~1';:..u~

l.i!:~"' IWl-tı ~i&•,iri:i,$,(

Figure 7.1 Example of accessing bit

By using the byte address format, you can access data in many CPU memoıy areas (V, I,

Q, M, and SM) as bytes, words, or double words. To access a byte, word, or double word of

data in the CPU memoıy, you must specify the address in a way similar to specifying the

address for a bit. This includes an area identifier, data size designation, and the starting byte

address of the byte, word, or double word value, as shown in Figure 7.2. Data in other CPU

memoıy areas (such as T, C, HC, and the accumulators) are accessed by using an address

format that includes an area identifier and a device number.

39

.~!{% (~
: •l-

V f..l f~ı;
I L rıvı-e a&J-
L_ ;ı.,u:-e'B ro ~- D}'t~ ~ıe

,!.t,,ı,ili,ı'tiifuw{\I ıııeıı)rn'\'}

V 'W",<it}
l'lyt,,ooıJ,,,,;,ı;
AtL"'ifA tQ 3\fıW~~~

Am~ı~rrmrf!/ m:ın·l':'Sf)?,
~-ıt~a·il!~f~

~:~b J ~ &____ ~ı'.i ~

~H.ıajr1Ti..'ri:i:IS:~
I ,.&1ı

e J t n

-~~ ..•. tiıi&'!·i~~~
r:~"' ~'ll*i 'fhtı!'!Se~~-,a-t

I Loıvk>ı:ıı.tJr..,,;;,
l.___ iJ,tı:-!<:,,r;l,r,,ı;tıiı!,·"'ıi<l'l¥Le

t\re~ ii1eı1iifü.~ ·tv n=xtn~...~.1}

Figure 7.2 Data size designation

7.2 Timers and Counter

7.2.1 Addressing the Timer (T) Memory Area

In the S7-200 CPU, timers are devices that count increments of time. The S7-200 timers

have resolutions (time-base increments) of lms, 1 O ms, or 1 OOms. There are two variables
that are associated with a timer:

• Current value: this 16-bit signed integer stores the amount of time counted by the
timer.

• Timer bit: this bit turns on (is set to 1) when the current value of the timer is greater

than or equal to the preset value. (The preset value is entered as part of the timer
instruction.)

You access both of these variables by using the timer address (T + timer number).

Access to either the timer bit or the current value is dependent on the instruction used:

instructions with bit operands access the timer bit, while instructions with word operands

access the current value. As shown in Figure 7.3, the Normally Open Contact instruction

accesses the timer bit, while the Move Word (MOV_W) instruction accesses the current
value of the timer.

Format: T [timer number] T24

40

l',<it<lı'Bi!1;-ı
ii
·z

Figure 7.3 Normally Open Contact instruction accesses the timer bit

7.2.2 Addressing the Counter (C) Memory Area

In the S7-200 CPU, counters are devices that count each low-to-high transition event on

the counter input(s). The CPU provides two types of counters: one type counts up only, and

the other counts both up and down. There are two variables that are associated with a

counter:

• Current value: this 16-bit signed integer stores the accumulated count.

• Counter bit: this bit turns on (is set to 1) when the current value of the counter is

greater than or equal to the preset value. (The preset value is entered as part of the

counter instruction.)

You access both of these variables by using the counter address (C + counter number).

Access to either the counter bit or the current value is dependent on the instruction used:

Instructions with bit operands access the counter bit, while instructions with word operands

access the current value. As shown in Figure 7.4, the Normally Open Contact instruction

accesses the counter bit, while the Move Word (MOV _W) instruction accesses the current

value of the counter.

Format: C [counter number]

41

Couttt<5r'9ib
(!%$<l'.'l!ltitr.j

Mı'".J\/"_Vi?
l&l.

t C~M.f.:·f!K!i~tt
\~1~ert,t~~- ~~ffit}

!1i!Y!f~~i't.Wet (taı::r:,-ı:~J

Figure7.4 The Normally Open Contact instruction accesses the counter bit

.2.3 On-Delay Timer, Retentive On-Delay Timer

The On-Delay Timer and Retentive On-Delay Timer instruction time up the maximum

value when enabled. When the current value (Txxx) is >= to the Preset Time (PT), the timer

bit turns on. The On-Delay timer is reset when disable, while the Retentive On-Delay timer

stops timing when disable. Both timers stop timing when disabled. Both timers stop timing

when they reach the maximum value. (Figure 7.5)

Operands: Txxx:

lms

l Oms

TON

T32, T96

T33 to T36

T97 to TlOO

T37 to T63

Tl Ol to T255

TONR

TO,T64

Tl to T4

T65 to T66

TS to T31

T69 to T95

lOOms

PT:

VD,AC,SW

VW, T, C, IW, QW, MW, SMW, AC, AIW, Constant,

42

Figure 7.5

TON and TONR timers are available in three resolutions. The resolution is determined by

tne timer number and is shown in Table 7.1. Each count of the current value is a multiple of

ıhe time base. For example, a count of 50 on a 1 O-millisecond (ms) timer represents 500

Table 7.1 The resolution is determined by the timer number

.2.4 Understanding the S7-200 Timer Instructions

You can use timers to implement time-based counting functions. The S7-200 provides

two different timer instructions: the On-Delay Timer (TON), and the Retentive On-Delay

Timer (TONR). The two types of timers (TON and TONR) differ in the ways that they

react to the state of the enabling input. Both TON and TONR timers time up while the

enabling input is on: the timers do not time up while the enabling input is off, but when the

43

g input is off, a TON timer is reset automatically and a TONR timer is not reset and

· ıts last value. Therefore, the TON timer is best used when you are timing a single

-al. The TONR timer is appropriate when you need to accumulate a number of timed

_:)0 timers have the following characteristics:

Timers are controlled with a single enabling input, and have a current value that

maintains the elapsed time since the timer was enabled. The timers also have a

preset time value (PT) that is compared to the current value each time the current

value is updated and when the timer instruction is executed.

,e A timer bit is set or reset based upon the result of the comparison of current value to

the preset time value.

• When the current value is greater than or equal to the preset time value, the timer bit

(T-bit), is turned on.

When you reset a timer, its current value is set to zero and its T-bit is turned off. You

reset any timer by using the Reset instruction, but using a Reset instruction is the only

thod for resetting a TONR timer. Writing a zero to a timer's current value does not reset

rimer bit. In the same way, writing a zero to the timer's T-bit does not reset its current

ue .

. 5 Updating Timers with 1-ms Resolution

The S7-200 CPU provides timers that are updated once per millisecond (1-ms timers) by

e system routine that maintains the system time base. These timers provide precise

ntrol of an operation.

Since the current value of an active 1-ms timer is updated in a system routine, the update

- automatic. Once a 1-ms timer has been enabled, the execution of the timer's controlling

ON/TONR instruction is required only to control the enabled/disabled state of the timer.

Since the current value and T-bit of a I-ms timer are updated by a system routine

independent from the programmable logic controller scan and the user program), the

current value and T-bits of these timers can be updated anywhere in the scan and are

updated more than once per scan if the scan time exceeds one millisecond. Therefore, these

values are not guaranteed to remain constant throughout a given execution of the main user

44

rogram.

Resetting an enabled I-ms timer turns the timer off, resets the timer's current value to

zero, and clears the timer T-bit.

-.ı.6 Updating Timers with 10-ms Resolution

The S7-200 CPU provides timers that count the number of I O-ms intervals that have

elapsed since the active I O-ms timer was enabled. These timers are updated at the

eginning of each scan by adding the accumulated number of I O-ms intervals (since the

eginning of the previous scan) to the current value for the timer.

Since the current value of an active I O-ms timer is updated at the beginning of the scan,

:he update is automatic. Once a I O-ms timer is enabled, execution of the timer's controlling

ON/TONR instruction is required only to control the enabled or disabled state of the

:ımer.

Unlike the I-ms timers, a I O-ms timer's current value is updated only once per scan and

remains constant throughout a given execution of the main user program.

A reset of an enabled 1 O-ms timer turns it off, resets its current value to zero, and clears

ts T-bit.

-.2.7 Updating Timers with 100-ms Resolution

Most of the timers provided by the S7-200 use a IOO-ms resolution. These timers

ount the number of I 00-ms intervals that have elapsed since the I 00-ms timer was last

updated. These timers are updated by adding the accumulated number of I 00-ms intervals

since the beginning of the previous scan) to the timer's current value when the timer

ınstruction is executed.

The update of I 00-ms timers is not automatic, since the current value of a I 00-ms

imer is updated only if the timer instruction is executed. Consequently, if a I 00-ms timer is

enabled but the timer instruction is not executed each scan, the current value for that timer

is not updated and it loses time. Likewise, if the same 100-ms timer instruction is executed

multiple times in a single scan, the number of 100-ms intervals is added to the timer's

current value multiple times, and it gains time. Therefore, I 00-ms timers should only be

used where the timer instruction is executed exactly once per scan. A reset of a I 00-ms

45

er sets its current value to zero and clears its T-bit.

8 Updating the Timer Current Value

he effect of the various ways in which current time values are updated depends upon

-the timers are used. For example, consider the timer operation shown in Figure 7.6.

• In the case where the 1-ms timer is used, QO.O is turned on for one scan whenever

the timer's current value is updated after the normally closed contact T32 is

executed and before the normally open contact T32 is executed.

• In the case where the 1 O-ms timer is used, QO.O is never turned on, because the

timer bit T33 is turned on from the top of the scan to the point where the timer box

is executed. Once the timer box has been executed, the timer's current value and its

T-bit is set to zero. When the normally open contact T33 is executed, T33 is off and

QO.O is turned off.

• In the case where the 100-ms timer is used, QO.O is always turned on for one scan

whenever the timer's current value reaches the preset value. By using the normally

closed contact QO.O instead of the timer bit as the enabling input to the timer box,

the output QO.O is guaranteed to be turned on for one scan each time the timer

reaches the preset value (see Figure 7.6). Figure 7.7 and Figure 7.8 show examples

of the Timer instructions for ladder logic and statement list.

46

T'lı ,:10.'lJ'

r--{)
L-----,Ei'fD)

·mt Q\Hı
I----(

ı-------{E!ıf.:i) ı-------fSll!.l)

H'l?!----(,m,,ı
f----{tN.:>)

i;:if tli.\6

t~EN~
Figure 7.6 Example of Automatically Retargeted One Shot Timer

!.2: •. (f
"1'.J]\

TH (t>lij -------'

'
: P.T:r,1

Figure 7.7 Example of On-Delay Timer Instruction for LAD and STL

47

sn.

ttı. .l'Z~l
1,"{:~ :?2,, ıı:ı

.
PT~ 1tl

'.r:. («ır-11
T.ıı (r.ıii) ..J

Figure 7.8 Example of Retentive On-Delay Timer Instruction for LAD and STL

-.2.9 Count Up Counter, Count Up/Down Counter

The Count Up instruction counts up to the maximum value on the rising edges of the

ount Up (CU) input. When the current value (Cxxx) greater than or equal to the Preset

:alue (PV), the counter bit (Cxxx) turns on. The counter is reset when the Reset (R) input

turns on. In STL, the Reset input is the top of the stack value, while the Count Up input is

the value loaded in the second stack location. The Count Up/Down instruction counts up on

rising edges of the Count Up (CU) input. It counts down on the rising edges of the Count

Down (CD) input. When the current value (Cxxx) is greater than or equal to the Preset

Value (PV), the counter bit (Cxxx) turns on. The counter is reset when the Reset (R) input

turns on. In STL, the Reset input is the top of the stack value, the Count Down input is the

value loaded in the second stack location, and the Count Up input is the value loaded in the

third stack location (Figure 7.9).

Operands: Cxxx: O to 255

PV: VW, T, C, IW, QW, MW, SMW, AC,

AIW, Constant, *VD, *AC, SW

48

Figure 7.9

7.2.10 Understanding the High-Speed Counter Instructions

The Up Counter (CTU) counts up from the current value of that counter each time the

count-up input makes the transition from off to on (Figure 7.1 O). The counter is reset when

the reset input turns on, or when the Reset instruction is executed. The counter stops upon

reaching the maximum value (32,767). The Up/Down Counter (CTUD) counts up each

time the count-up input makes the transition from off to on, and counts down each time the

countdown input makes the transition from off to on. The counter is reset when the reset

input turns on, or when the Reset instruction is executed. Upon reaching maximum value

(32,767), the next rising edge at the count-up input causes the current count to wrap around

to the minimum value (-32,768). Likewise on reaching the minimum value (-32,768), the

next rising edge at the countdown input causes the current count to wrap around to the

maximum value (32,767). When you reset a counter using the Reset instruction, both the

counter bit and the counter current value are reset. The Up and Up/Down counters have a

current value that maintains the current count. They also have a preset value (PV) that is

compared to the current value whenever the counter instruction is executed. When the

current value is greater than or equal to the preset value, the counter bit (C-bit) turns on.

Otherwise, the C-bit turns off

49

LAO sn
tl) 14.'ll ııeo-ım:~ Qi> c:ı.oe~

1:1,-0 ıicomıt Oıc>ı.'li cır.«:ı,k
Z2 • -O I /P.elfi~'r/:.

ra.c

!2,ö

Timing Diagram

'!:4' o
U;:ı
!l,0
Qzyııı,
!.2 .. 0
~~ ..et

C4B
(ttil'l'Sf'ı(}

c.ıa
(tıtf) L_

Figure 7.10 Example of Counter Instruction for LAD and STL

.3 Addressing the Local and Expansion 1/0

The local I/O provided by the CPU module provides a fixed set of I/O addresses. You can

add I/O points to the CPU by connecting expansion I/O modules to the right side of the

CPU, forming an I/O chain. The type ofI/0 and the position of the module in the chain,

with respect to the preceding input or output module of the same type determine the

addresses of the points of the module. For example, an output module does not affect the

addresses of the points on an input module, and vice versa. Likewise, analog modules do

not affect the addressing of digital modules, and vice versa.

Discrete or digital expansion modules always reserve process-image register space in

increments of eight bits (one byte). If a module does not provide a physical point for each

bit of each reserved byte, these unused bits cannot be assigned to subsequent modules in

the I/O chain. For output modules, the unused bits in the reserved bytes can be used like

internal memory bits (M bits). For input modules, the unused bits in reserved bytes are set

to zero with each input update cycle, and therefore cannot be used as internal memory bits.

50

Analog expansion modules are always allocated in increments of two points. If a module

:oes not provide physical I/O for each of these points, these I/O points are lost and are not

_ .ailable for assignment to subsequent modules in the I/O chain. Since there is no image

emory provided for analog I/0, there is no way to use these unused analog I/O points. All

alog I/O accesses are made immediately at the time of instruction execution.

- .3.1 Examples of Local and Expansion 1/0

Figures 7-11, 7-12, and 7-13 provide examples that show how different hardware

onfıgurations affect the I/O numbering. Your program cannot use notice that some of the

onfıgurations contain gaps in the addressing that, while other I/O addresses can be used in

:he same manner as the internal memory (M) bits .

.b}I} fliJ.ı:ı ~L(! ~..ıurı..ı •):\'J il..i ,;,u
liX1 (JJ2 il,} qu,
.fü.1 !;.oQ.:; u.ı ı;ı,u.
Ili.4 r;~--~ !1.4 \'Jt4
j!):__, {lb n.s QU
ır,.ı; &L<i ~)i.6
IQ.'} !LI QU

~{J j'''' I ~}l.0
'· :J

':-
n.1 I ı;ın

Figure 7-11 I/O Numbering Examples for a CPU 212

51

rırn qfüı_ ·ru ,;_ rn ,ııı I Mwrı .~911/(1
!IH r.ru ı:t.ı Ql! ı:u AlVi-"2
!14.1 t:t!ı -~ LL.1 Q2.1 llJ .:\i'W4
Tl).~ -ı:~cl H.:i Q2.J fl:~
tfa-4 t),,. I),;,
rıu q<Ji ıB
15.~6 ı)UA.i BA·
ffil ~J ~·
Ji.I.' QUır::; !)."Li
[O
lU
ILI

,\JW2i Al:W,'4
:.\fil.'"fö
~\fi'tltl

:Pt-a.t~~--itv'Hir.,.# hD ft~f .U~ ctm~ i..aed .~ iıv.:r.ttlWıı~.Mmty ,!;filli.

SL! gı; ~4...~, ~-~ o,

-QL4. {~}_i;ı
(Jl.5 t:tı.1
QLıti I ır-1
{)l.T

.f!tF.Jt.~~Js:r11~tı-.r.:ı ıt!~f.'if'-.1:!tım,y.H-~~a,ıtJt~ teed'.r::; I iii ('''k';'{c},•,;•,-,, ·····-····ı A nm

tt6u..,

Figure 7-12 I/O Numbering Examples for a CPU 214 or CPU 215

{.,"5!..ö fM q:ı,ı;i{J.lJ Q!}.& B.iı- Ql.(ı ı..ıı J;!;J Q-HIf;_J Q<J.I ı:u Q'U ltl q;u il,.1 Çtt2!U Qfi..:t !J.l W-~ lt.2 ,.ı,.u [(L, l~~::i.~!in f,Jı)J ıu {ıl.J, l.U {?:J,J l!i4 Q:!AtNıA (~f.; I.Li Q'i..t 1t4 !,Y3vı ib.~ tJ:t~e.s ı:..~ti rs.s ,~H }t5 QlJ. r,te: <;ı1AIi'.ui c;~J.,ti ~3,('" Qt.6 14£;. ~3.-5 ıtı..1 Q:i.1i{i_j' c;,ıı1 n., qrr JC (tl:l
Q~J;.f1JJflli t.;)L>i J~M {,\tJ) ru f,)GiWI oı.ı LU (fi.~ JY.? Qt;.nn.2 (ll.l fS.2 1~4.ı ru QU fL! qu Hl.~ •;«-• 11:4 ÜMİr14 QL~ B.4 •:.\4.4 I~'5 ı;Jı~.5li 5 Ql.5 IS.5 ',~H lr.h Qt:~6H.,t'; QJJi .fü\ ı~.:L6 U.J Q6.'lIP QU r~.t> ~.il

fil)
ti.i
ta.2
t2.J
t).4
,d
ıu.,

ln.ı

Figure 7-13 I/O Numbering Examples for a CPU 216

52

.4 Using the Selectable Input Filter to Provide Noise Rejection

Some S7-200 CPUs allow you to select an input filter that defines a delay time

selectable from 0.2 ms to 8. 7 ms) for some or all of the local digital input points. As shown

Figure 7-14, this delay time is added to the standard response time for groups of four

put points. This delay helps to filter noise on the input wiring that could cause inadvertent

anges to the states of the inputs.

The input filter is part of the CPU configuration data that is downloaded and stored in the

PU memory.

Use the menu command CPU-Configure and click on the Input Filters tab to

configure the delay times for the input filter.

Figure 7-14 Configuring the Input Filters for Rejecting Noise

7.5 Using the Output Table to Configure the States of the Outputs
The S7-200 CPU provides the capability either to set the state of the digital output points

to known values upon a transition to the STOP mode, or to leave the outputs in the state

they were in prior to the transition to the STOP mode.

The output table is part of the CPU configuration data that is downloaded and stored in

the CPU memory.

The configuration of output values applies only to the digital outputs. Analog output

values are effectively frozen upon a transition to the STOP mode. This occurs because your

53

rogram is responsible for updating the analog outputs as required. The CPU does not

pdate the analog inputs or outputs as a system function. The CPU maintains no internal

memory image for these points.

Select the menu command CPU-Configure and click on the Output Table tab to

access the output table configuration dialog. See Figure 7-15. You have two options for

configuring the outputs:

• If you want to freeze the outputs in their last state, choose the Freeze Outputs box

and click on "OK."

• If you want to copy the table values to the outputs, then enter the output table

values.

Click the checkbox for each output bit you want to set to On (1) after a run-to-stop

:ransition, and click on "OK" to save your selections.

The default setting of the CPU is the mode of copying the output table values to the

outputs.

The default values of the table are all zeroes.

Figure 7-15 Configuring the State of the Outputs

7.6 Analog Adjustments
Your S7-200 CPU module provides one or two analog adjustments (potentiometers

located under the access cover of the module). You can adjust these potentiometers to

54

crease or decrease values that are stored in bytes of Special Memory (SMB28 and

IB29). These read-only values can be used by the program for a variety of functions,

h as updating the current value for a timer or a counter, entering or changing the preset

lues, or setting limits.

SMB28 holds the digital value that represents the position of analog adjustment O.

IB29 holds the digital value that represents the position of analog adjustment 1. The

alog adjustment has a nominal range of O to 255 and a guaranteed range of 1 O to 200.

You use a small screwdriver to make the adjustments: turn the potentiometer clockwise

ıo the right) to increase the value, and counterclockwise (to the left) to decrease the value.

Fıgure 7-16 shows an example program using the analog adjustment.

i..AO sn,
oil)
l:11}1/W
ı,ı;:ıı,;;- ~:i,~

MO, 'i/'11'0~

w:Jirt_tJ
~:f.J'-11

!<miloır,,ıl,J(ı.,,w,,;""''ıı:o.

;!::u.~~1r~w~·bl!ti'Jd
'i<i•.reit,.\i'N1£1/J·.

MOV)Kt
l.___._jf.tt

~-tt 1JW- Vi-Gf'~,-t"rl~e,cl
·wık..""8 a a prP...icl" f.Jt -'1
~~; Tt~ oo tlOd.1
-\ttmrı T;;jJ 1f~

~"'-

~U.~- . 'fO,'iI / '/N
vu:oı;; PT

Figure 7-16 Example of Analog Adjustment

55

CHAPTERS

GRADUATION PROJECT

1 Explanation of the Project

The counter that measures consumption is 3-phase and 165rotation/kmh. Eveıy 300

econds the measurement should be utilize. If it is above 1 Okwh, which means reaching to

Ikwh's, then specific units will be out of work.

If 1 kwh= 165rotation/kwh then 1 kwh= 1815 rotation. For 3 00 seconds it is 151
-~tations.

If counter makes more than 152 rotations in 300 seconds then the units will be out of

-ork as stepped. It will be taken into circuit if they are below 150 rotations.

0.1 energy control system (start)

0.2 energy control system (stop)

0.3 counter rotation sensor.

32 It is the timer that defined measurement interval.

AIWO

CO The counter counts counter rotation.

Cl The counter that provides units to out as stepped and to real them.

Ql The work out of l " stepped load.

Q2 The work out of 2nd stepped load.

Mx.x The helper relays.

56

Program of the Project

PROGRAM TITLE COMMENTS

Press Fl for help and example program

~TWORK 1 //NETWORK TITLE (single line)

NETWORK COMMENTS

LD IO.I

O MO.I

AN I0.2

MO.I

~TWORK2

LD MO.I

AN M0.2

TON T37, +3000

NETWORK3

LD T37

M0.2

NETWORK4

LD MO.I

AN M0.2

A co
LD MO.I

AN co

57

A M0.2

LD MO.l

O IO.O

ALD

LD I0.2

CTUD Cl, +6

NETWORKS

LD Cl

Ml.I

NETWORK.6

LDN Cl

M0.2

NETWORK.7

MEND

58

=~OGRAM TITLE CO:MMENTS

?ress Fl for help and example program

.e two r k 1 NETWORK TITLE (single line)

I0.1 I0.2 M0.1

I I ()
M0.1

_ietwork 2

M0.1 M0.2 T37

I I I I i IN TONI
+30üü~PT....______,

Network 3

T37 M0.2

---, I C)

[59]

e two r k 4

MO.l M0.2 co Cl

I I I I I I ICU CTUD

MO.l co M0.2 MO.l

I I I I I T I lco I

IO.O

I0.2

+6-IPV

i:twork 5

Cl Ml. 1

I C)

et.wor k 6

Cl M0.2

I I ()

"et.wor k 7

[59]

8.3 PLC Programmable Logic Controller

PLC's are known as industrial computers. They are designed to replace the conventional

control mechanism. They are widely used in industrial automation. They have various

application areas besides industry. They operate in the range of 0-55 °c and 0-35% of

humidity. They have noise immunity. We have two types of PLC, compact PLC and

Modular PLC.

8.3.1 Compact PLC's

All the parts are mounted in a special case in compact form (inputs, outputs, memory,

processor power, supply etc.). Usually they have low capacity, but they are very cheap

devices.

8.3.2 Modular PLC's

Mounting separate modules called RACKS together forms them. This three units are,

input unit, process unit and output unit.

8.3.3 Input Unit

It converts the electrical signal (coming from the system that is a going to be controlled)

in the logic levels. The digital or analog signals coming from the sensors like pressure,

level, heat, optical is send to processed by the input unit.

The digital input signals are usually 24V de or depending upon application can be 48V

de ı ıov de etc.

Analog signals on the other hand can be 0-lOV, -5V ... O ... +5V, -IOV ... O ... +lOV etc.

The parasitic signals coming from the inputs are first filtered by an RC filter in this unit and

then pass through optocuplers that produce galvanized isolation.

8.3.4 Output Units

Are suitable manufactured to successfully control the activators in the system?

Digital output signals control contactor relays NPN or PNP transistors or Triacs etc.

PLC's output cannot supply large currents so by digital output relays and their contactor

groups name contactor or winding are operates. In this way units like motors, hydraulic

values and heaters can be operated.

Parallel RC's suppresses the relay outputs of PLC's in order to prevent arcs. An

optocupler is present after output memory in order to prevent internal interference.

Analog outputs like the analog inputs are passed through DAC this time to convert the

numerical values to standard output signals.

Special input output models, adjustable counter, heat sensing module and step moor

output model.

8.3.5 Programming Technique

1) Statement list or instruction list programming

2) Ladder Programming

61

CHAPTER9

PROCESSING UNIT
It's composed of the sub unit given below.

9.1 System Memory

Memory unit that the PLC's operating system is present. It has 3 main functions and it is
composed of PROM or EPROM.

a) To organize the relation between PLC and programming unit do the digastrics test,

give message when an error is present due to user and PLC.

b) The convert the user program to a way that it can process by the help of a compiler
in it.

c) To function block and system modules formed by the software in it's library and to

serve it to user program when it is necessary.

9.2 CPU

It is also given the name processing unit it processor all the input signals according to the

user programs instructions and direct the related output signals to corresponding outputs.

This process is controlled by a microprocessor some times instead of microprocessor a

micro controller is used. The differences are that processor memory and I/O interfaces are

all in one unit a micro controller as a memory ROM and RAM is used. Data for operating

system and PLC that cannot be changed are kept in ROM and user program and I/O data
are kept.

9.3 Program Memory

It is also defined as user memory it is the memory where the user program is kept. It's

capacity is variable according to the instruction number.

9.4 Data Bus

It used to transfer data between the units.

9.5 Image Register

They are the register where the input and output signals are kept for one cycle. The input

signals read at the beginning of the cycle are kept that at input image register, fixed unit the

62

beginner next cycle. The output signals obtained at the end of the cycle are kept at the

image register until the end of next cycle.

9.6 PLC Operating System

In all PLC operating system similar operating system programs are used.

These programs are in ROM and they are loaded into the system while manufacturing. In

general a PLC operating system does the following.

• Operates the user program

• Event and time dependent service program are operated by operating system.

• Organize the communication of PLC and control the operation of the system.

9.7 User Program Operating

A user program loaded to program memory of PLC starting from the first instruction

until the last instruction is executed step by step.

If there is a jump or branching in the program the instruction until the jump address are

not executed when the last instruction. This operation is like an infinite loop.

The time taken by the PLC to tum back to the same instruction is called scanning period.

The scanning period of PLC is depending upon I/O number, programs length and operating
frequency of the CPU

9.7.1 When the PLC is in RUN mode

1) The value at input unit are transferred to display memory and kept there constant
until next cycle.

2) According to the user programs type the instructions are executed step by step.

While operating the system program provides calculated intermediate values of

input signal at the display memories. They cannot change during the cycle.

3) The values calculated as a result of executing the user program are transferred to

output display memory and are send to output unit. After transferring the data

output unit the program returns to first step. The data at output display register and

output unit does not change until next cycle.

4) In some PLC' s the output data is directly sent to output unit (DSP Direct Processing

System, Hitachi H-200)

5) In some PLC's you can reach real time input and output directly by some

63

instruction (Static S7)

9.8 Accessing Data Memory
Data memory for S7-200 consists of five areas. I (input), Q (output), M (internal memory

bit), SM (special memory bit) and V (variable memory bit)

Memory areas can be accessed either as a bit, a byte, a word or a double word.

9.8.1 Bit Access
The access a bit specifies the address of the bit, which consists of an area identifier and

the byte bit number. Zero is the first address for all data areas.

9.8.2 Byte word double word access
To access a byte, word specifies the address, which consist of an area identifier a letter

signifying data size and the address number.

9.9 Advantage PLC

• Physical dimension: PLC is the minimum place-occupying device among all control

devices.

• Cost you can find optimum cost PLC for any control system.

• Time saving while the following factory working you can program the PLC.

• Simplicity the manufacturing: it is very easy to mount the PLC on the panels than

conversional system.

• Easy to find faults: PLC's need almost no maintenance they are give information

when they have a fault.

• Easy in operation: You can change the program of PLC easily when it is necessary

without changing the circuiting of the panel.

64

CONCLUSION

In this project, I learned how to write PLC Program with Simatic Program. The aim of

my program is to control electric counters with PLC device and to work out the units that

are connected to the counter when they reach the value that we determine.

PLC device control the red point on electric counter with sensor.

PLC device make the unit workout that are connected to the counter when the units reach

the value that we determine. Counter (CTUD) is between the electric counter and connect

units. It control the power of connects units.

Usually, this project is used industrial factory, because factory owner control the which

units are take electric more than other.

By using PLC device, we can control our electric usage in more economical way.

65

REFERENCES

1)"http://siemens.com "Retrieved April 15,2001

2) "S7-200 Programmable Controller System Manual" Copyright Siemens AG 1998,April 17,2001

[3] Özerdem, Özgür "PLC lecturernotes", April 26, 2001

[4] "STEP7 -Micro/WIN 16", Siem.ens energy and automation manual 1998, June 15,2001

[5) "http://plc.com", June 5,2001

66

APENDIX

PRODUCT I1\1AGE

Source: ~ BildDB - Powerpoint (RGB or b/w; 142 KB
12)_(.tif)

1.0

Vari~hts: .! BildDB - Vector graphic (not
·~ specific) (.FH8)

23 KB 1.0

EProperties

'fitteiGefrrıarı<i > CPU 212

TiUe Erıglish> . CPU 212 .

~ı:>:::ı!'.r..btP.rmls\.>· Grafiken; Graphiken; graphics; Symbote; symbols; CPU
212; S7-200; Micro-SPS; Automatisierungsgerat;
programmable logic controller; PLC; Micro-PLC; SIMATIC
Controller

Picturftype// .· ..• Product image

SIMATIC

6ES7 2

..Fôrmaf<···•···· Vector graphic

···ıo~.ST70001>created 5/12/98

Source: _;;;l, BildDB - b/w (b) (.TIF)o
280 KB 1.0

67

Variarits:i Jl BildDB - Powerpoint (RGB or b/w: 46 KB
B QL(.TIF)

1.0

E!Properties

·.· TiUeiGerrnarr > CPU 212

·•ritre·•e.rıglislı/ CPU 212

$e~rih)erriı(s)<i •.•. CPU.212;Zentralbaugruppe; central processing unit;
>• .: < SIMATICS7-200; SIMATICController

Pfcturftyp¢/ //) Product image

SlMATIC

Source: O BildDB - b/w (b) (.TlF) 286 KB

\/aric1.11ts: O BildDB - Powerpoint (RGB or b/w; 53 KB
i < ii ru_(.TIF)

EProperties

1.0

1.0

Title Gernıarı < .

Title English

Search term(s)

CPU 212

CPU 212

CPU 212; Zentralbaugruppe; central processing unit;
SIMATICS7-200; SIMATICController

·PicttJretyp~i<<

Product fanıily .·.·

Branch

SIMATIC

68

rv1LFB(e,g;6ES74t)i i <i••.<••••>•••• ..•.... · ... · · -. ·.·.·.·

Source: O BildDB - Colour (RGB; v) (.TIF)

yiirİiin~=. D BildDB - b/w (b) (.TIF)

1,583
KB

560 KB

1.0

1.0

O BildDB - Powerpoint (RGB or b/w: 222 KB
Ql.(.tif)

1.0

5Properties

Title English CPU 212

Searchter:m{s) < S7-200; CPU 212; SIMATIC S7-200; Zentralbaugruppe;
· · ·.·.·•·· Central processing unit; SIMATIC Controller

· .. Picture type < .·..

Productfamilyi

Branch

SIMATIC

Format Photo (masked)

69

TECHNICAL DATA

Program
execution

• free cycle (OB I)

interrupt-controlled

time-controlled (85 to 255 ms)

70

Bit memories 128

• of these retentive O to 127, programmable

Timers 64

of these
retentive

32, selectable

• Range 2 timers, 1 ms to 30 s
8 timers, 1 O ms to 5 min.

54 timers, 100 ms to 54 min.

71

Interfaces RS 485 communication interface; either:
I

• PPI mode for programming and connecting
programming devices or PCs (via PC/PPI cable),

TD 200, OP (9.6 and 19.2 kbit/s)

•
1 User-programmable interface mode with interrupt

capability for serial data exchange with devices
from other vendors (0.3 to 19.2 kbit/s) (CPU 212,
e.g. with ASCII protocol; PC/PPI cable can be used
as a RS 232/RS 485 converter (from 0.6 kbit/s)

Backplane bus:

• Connection of expansion modules (EM) 1).
Only EMs from the S7-21x series can be used.

Onboard I/Os

• Digital inputs 8; incl. I channel for use as a hardware interrupt or
for high-speed functions

• Digital
outputs

6

• Analog
potentiometer

1 analog potentiometer; resolution 1/200

72

Ambient
temperature

• With
horizontal
installation

Oto 55 °C

• When
mounted
vertically

O to 45 °C

Power supply: 24 V
DC

120 to
230V
AC/
24V
AC

120 to
230 V
AC

120 to
230V
AC

120 to
230V
AC

120
to 230
VAC

73

Inputs: 24 V 24 V 24 V 24V 120V 120V
DC DC DC AC AC AC

(sink), (src.),

Outputs: 24 V Relay Relay 120 to 120 to Relay
DC 230V 230V

AC AC

Power
consumption
max.

SW 6W/
7W

6W 7W 7W 7W

Output current for sensors (24 V DC)

• Rated
value

180 mA I 180 mA I 180 mA I 180 mA I 180 mA I 180 mA

74

• Short- Electronic, Electronic, Electronic, Electronic, Electronic, Electronic,

circuit non- non- non- non- non- non-

protection latching latching latching latching latching latching

Isolation Optocoupler I Optocoupler I Optocoupler I Optocoupler I Optocoupler I Optocoupler

• In
groups
of

4 4/8 4 8 8 8

75

~ ---==----

Input delay (at rated value of the input voltage)

• For standard
inputs max.

(IO.O to (IO.O to 0.3 ms (IO.O to I 15 ms I 15 ms
I0.7) I0.7) I0.7)
0.3 ms 0.3 ms 15 ms

• For interrupt ı (IO.O)
inputstyp./max. -

(IO.O) (IO.O)

• For high-speed (IO.O)
counter O 30/70
typ./max. ms

(IO.O)
30/70

(IO.) 15
ms

ms

• For high speed , -
counters 1, 2,
typ./max.

Cable lengths

• Unshielded I 300 m I 300 m I 300 m I 300 m I 300 m I 300
(not for high-
speed signals))

Shielded 500 m 500m 500m 500m 500m 500m
standard
input

• Shielded, 50m 50m 50m 50m 50m 50m
interrupt
inputs,
high-
speed
counter

76

Rated load 24 V 24 V 24 V 24 24 24 V
voltage DC DC/24 DC/24 to 230 to 230 DC/24
L+/Ll to to VAC VAC to

230V 230V 230V
AC AC AC

• Permitted 20.4 to 28.8 5 to 5 to 24 5 to
range VDC 30V 30V to 264 24 to 30V

DC/20 DC/ V 264 V DC/20
to 250 20 to AC AC to
VAC 250V 250V

AC AC

Isolation Optocoupler I Relay I Relay I Optocoupler I Optocoupler I Relay

• In groups I 6
of

3 3 3 3 3

77

Sum of all output currents per common

• At 40 °C, 12.25 A 12 A I 12 A I 3.5 A 3.5 A 12 A
max.

• At 55 °C, I 1.75 A 12 A I 12 A 12.5 A 2.5A 12A
max.
(horizontal
installation)

Switching frequency of outputs

• For 4kHz 5Hz 5Hz 2x 2x l5Hz
resistive frequency frequency
load of of

sup.volt. sup.volt.

• 0.5 0.5 Hz 0.5 Hz 0.5 Hz 0.5Hz I 0.5 Hz For
inductive Hz
load

• For a lamp I 1 Hz I ı Hz I ı Hz I ı Hz I ı Hz I ı Hz
load

78

	Page 1
	Titles
	NEAR EAST UNIVERSITY

	Images
	Image 1

	Page 1
	Titles
	ACKNOWLEDGMENTS

	Images
	Image 1

	Page 2
	Titles
	ABSTRACT

	Page 3
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Titles
	TABLE OF CONTENTS
	ABSTRACT
	~TRODUCTION
	CHAPTER I
	PLCIDSTORY
	CHAPTER2
	PLC MAINLY CONSIST
	CHAPTER3
	PLC OPERATION

	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	CHAPTER7
	DIRECT ADDRESSING

	Page 8
	Titles
	HAPTER8
	GRADUATION PROJECT
	PROCESSING UNIT

	Page 9
	Page 1
	Titles
	CHAPTERl
	First Introduced
	. 1 Control System
	.3 '1id70's the dominant PLC technologies

	Page 2
	Titles
 Communications

	Page 3
	Titles
	CHAPTER2
	PLC MAINLY CONSISTS
	1 Input ·I · j' • • ,--==11
	I Ci~it Ii !1 J"~ut !!counters II Output I ı
	'ıciiu---ıı _ !i e YB ıı ii Relays J ı
	l~;~il..lfı:;n~ı~llrL Timej!t--Data_ 1i
	~ llzRelays, _JL_Storage II
	-·1 What does each part do?

	Page 4
	Page 5
	Page 6
	Titles
	CHAPTER3
	LC Scanning

	Images
	Image 1

	Page 7
	Titles
	Response Time Concerns
	ONl,:ı ::ı ı::UlLl
	7

	Images
	Image 1
	Image 2

	Page 8
	Titles
	I nl 'I
	rıIJ

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 9
	Titles
	n: .

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 10
	Titles
	CHAPTER4
	.1 Ladder Diagram and PLC Registers
	L J _ J l. ... ··1

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 1
	Titles
	~ı
	' Truth Table
	o j
	o
	o

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 2
	Titles
	The Program Scan
	1000 f------C
	'rTrne

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 4
	Titles
	:::h-t

	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	CHAPTERS
	Overview
	Area of application
	Design

	Images
	Image 1
	Image 2

	Page 6
	Titles
	.ı Functions

	Images
	Image 1

	Page 7
	Page 8
	Titles
	- Programming

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Titles
	Figure 6.2 The basic S7-200 Micro PLC system
	The S7-200 family includes a wide variety of CPUs. This variety provides a range of
	ary of the major features of each S7-200 CPU
	Table 6.1 Provides a summary of the major features of each S7-200 CPU
	20

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 1
	Titles
	_:fajor Components of the S7-200 Micro PLC

	Tables
	Table 1

	Page 2
	Titles
	Installing and Using the STEP 7-Micro/WIN Software
	5 Installing the STEP 7-Micro/WIN Software

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	pecial Hardware Installation Information for Windows NT Users

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 6
	Titles
	tablishing Communication with the S7-200 CPU

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 9
	Titles
	tting Up Communications within STEP 7-Micro/WIN

	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 1
	Titles
	1 Setting Up Communications during Installation
	2 Selecting the Correct Module Parameter Set and Setting It Up

	Images
	Image 1
	Image 2

	Page 2
	Titles
	Concepts of an S7-200 Program

	Page 3
	Titles
	Figure 6.14 Relating the Program to Inputs and Outputs

	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 5
	Titles
	::~·::~.=J:t;;:;1;;:
	6.15 Basic Elements for Constructing a Program

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1

	Page 9
	Titles
	CHAPTER7
	7.1 Direct Addressing of the CPU Memory Areas

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 10
	Titles
	7.2 Timers and Counter

	Images
	Image 1
	Image 2
	Image 3

	Page 1
	Titles
	ii

	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1
	Image 2

	Page 4
	Page 5
	Page 6
	Images
	Image 1

	Page 7
	Titles
	t~EN~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 8
	Titles
	.

	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	sn
	L_
	.3 Addressing the Local and Expansion 1/0

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 1
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 3
	Titles
	7.5 Using the Output Table to Configure the States of the Outputs

	Images
	Image 1

	Page 4
	Titles
	7.6 Analog Adjustments

	Images
	Image 1

	Page 5
	Titles
	-

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 6
	Titles
	CHAPTERS
	GRADUATION PROJECT
	1 Explanation of the Project

	Page 7
	Titles
	Program of the Project

	Tables
	Table 1

	Page 8
	Page 9
	Titles
	I I ()
	I I I I i IN TONI
	+30üü~PT
_ __ ___,
	---, I C)
	[59]

	Page 10
	Titles
	+6-IPV
	I C)
	I I ()
	[59]

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 11
	Titles
	8.3 PLC Programmable Logic Controller

	Images
	Image 1

	Page 1
	Page 2
	Titles
	CHAPTER9
	9.1 System Memory
	9.2 CPU
	9.3 Program Memory
	9.4 Data Bus
	9.5 Image Register

	Images
	Image 1

	Page 3
	Titles
	9.6 PLC Operating System
	9.7 User Program Operating

	Page 4
	Titles
	9.8 Accessing Data Memory
	9.9 Advantage PLC

	Page 5
	Titles
	CONCLUSION

	Images
	Image 1

	Page 6
	Titles
	REFERENCES
	66

	Page 7
	Titles
	APENDIX
	PRODUCT I1\1AGE

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 8
	Titles
	Pfcturftyp¢/ //) Product image

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 9
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 10
	Titles
	TECHNICAL DATA

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Titles
	•
	Ł
	•
	•

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 15
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 16
	Images
	Image 1

	Tables
	Table 1

	Page 17
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

