
NEAR EAST UNIVERSITY

F.aculty of Engineering

Department of Electrical and Electronic
Engineering

MECHATRONIC COIN COUNTER

Graduation Project
EE-400

. Student: Amar Adam (20001384)

Supervisor: Asst. Professor
Kadri Buruncuk

AKNOWLEDGMENTS

First, I want to thank Assis.Professor.Dr.Kadri Buruncuk to be my advisor. Under his

guidance, I successfully overcome many difficulties and learn a lot about Mechatronics.

In each discussion, he explained my questions patiently, and I felt my quick progress

from his advises. He always helps me a lot either in this project or other courses. He

answers all of my questions quickly and in detail.

Thanks to the lab assistants: Mr.Kamil and Mr.Burhan for their interesting advises in my

project and thanks to Faculty of Engineering for having such a good staff in the

laboratories, that reflects their high observance for recruitment.

Thanks to my colleagues and friends, especially, Mohamed El-amin and Amir Joda,

They really helped a lot in preparation of this project. Thanks to everybody tried to help,
.'- -·-. .-- . ·""

my appreciation for them one by one, especially, Omer Ahmed.

Finally, I want to thank my family, especially my parents. Without their endless support

and love for me, I would never achieve my current position. And I promise not to stop on

this. My goal is their satisfaction.

ABSTRACT

In the last century, we witnessed the revolution of mechanics, industries, and electronics.

And while the importance of each one of them is increasing by the needs of human

everywhere all over the world, they had to be improved more and more, to have more

applications and studies applied to them.

The study that cared about the development of mechanic and electric disciplines

was Mechatronics. It was quite useful and made marvelous positive changes in industries

and every field depending on mechanics and electronics.

Then, the PLC programming comes to add different influences in the whole field.

PLC is a three-letter abbreviation for (Programmable Logic Controller). From its name, we

can realize its essence. The PLC is a device which a program can be filled in it and then, it

• C •• -, can be connected to fill order-receivable mechanical system to control· its functions.

The coin counter is one of the many applications that the PLC can be involved in

its structure. In this project, the design will include it as an elemental stuff, and it will play

basic steps in counting the coins and classifying them.

PLC was the best choice for the system because it is reducing the error-appearing

probability. The other equipments can not have the same efficiency of it so; it was the right

choice for the design.

TABLE OF CONTENTS

1. INTRODUCTION TO MECHATRONICS AND SENSORS
1.1 What is Mechatronics?
1.2 Sensors

1
1
11

2. PLC PROGRAMMING
2.1 Hard Wired Control
2.2 Basic PLC Operation
2.3 Advantages of PLC
2.4 Terminology
2.5 Sensors
2.6 Actuators
2. 7 Discrete Inputs
2.8 Analog Inputs
2.9 Discrete Outputs
2.10 Analog Outputs
2.11 CPU

_ 2,1_2 Programming
2.13 Ladder Logic
2.14 Ladder Logic Diagram
2.15 Statements List
2.16 Function Block Diagram
2.17 PLC Scan
2.18 Software
2.19 Hardware
2.20 Memory Size
2.21 RAM
2.22 ROM
2.23 EPROM
2.24 Firmware
2.25 Putting it together
2.26 Programming a PLC
2.27 Testing a Program
2.28 Status Function
2.29 Forcing
2.30 Discrete Inputs/Outputs
2.31 Wiring
2.32 Program Instruction
2.33 Motor Starter Example
2.34 Program Instruction for Motor
2.35 Expanding the Application
2.36 Adding a Limit Switch
2.37 Analog Inputs/Outputs

15
15
17
18
18
19
19
19
20
20
21
21
22
22
23
24
24
25
25
26
26
26
27
27
27
27
28
34
34
35
37
37
38
39
41
44
46
49

2.38 Timers
2.39 Counters

49
52

3. A COIN COUNTER DESIGN 56

CONCLUSION
REFERENCES

60
61

Chapter 1

1.1 What is Mechatronics?

Introductoin to Mechatronics and Sensors

Mechatronics is a natural stage in the evolutionary process of modem engineering

design. The development of the computer, and then the microcomputer, embedded

computers, and associated information technologies and software advances, made

mechatronics an imperative in the latter part of the twentieth century. Standing at the

threshold of the twenty-first century, with expected advances in integrated bioelectro

mechanical systems, and other unforeseen developments, the future of mechatronics is full

of potential and bright possibilities.

1.1.1 Basic Definitions

The definition of mechatronics has evolved since the original definition by the

Y asakawa Electric Company. In trademark application documents, Y asakawa defined

mechatronics in this way:

The word, mechatronics, is composed of "mecha" from mechanism and the

"tronics" from electronics. In other words, technologies and developed products will be

incorporating electronics more and more into mechanisms, intimately and organically, and

making it impossible to tell where one ends and the other begins.

The definition of mechanics continued to evolve after Yasakawa suggested the

original definition. One quoted definition of mechatronics was presented by Harashima,

Tomizuka, and Fukada in 1996, in their words mechatronics is defined as:

The synergistic integration of mechanical engineering, with electronics and

intelligent computer control in the design and manufacturing of industrial products and

processes.

That same year another definition was suggested by Auslander and Kempf:

Mechatronics is the application of complex decision making to the operation of physical

systems.

Yet another definition due to Shetty and Kolk appeared in kl 997:

Mechatronics is a methodology used for the optimal design of electomechanical products.

A mechatronic system is not just a marriage of electrical and mechanical systems

and is more than just a contro 1 system; it is a complete integration of all of them.

Chapter 1 Introductoin to Mechatronics and Sensors

All of these definitions and statements about mechatronics are accurate and

informative, yet each one in and of itself fails to capture the totality of mechatronics.

Despite continuing efforts to define mechatronics, to classify mechatronic products, and to

develop a standard mechatronics curriculum, a consensus opinion on an all-encompassing

description of "what is mechatronics" eludes us. This lack of consensus is a healthy sign. It

says that the field is alive, that it is a youthful subject. Even without an unarguably

definitive description of mechatronics, engineers understand from the definitions given

above and from their own personal experiences the essence of the philosophy of

mechatronics.

For many practicing engineers on the front line of engineering design,

mechatronics is nothing new. Many engineering products of the last 25 years integrated

mechanical, electrical, and computer systems yet were designed by engineers that were

never formally trained in mechatronics per se, it appears tat modem concurrent engineering

design practices, now formally viewed as part of the mechatronics specialty, are natural

design processes'. What is evident is' that the· study cfmechatroriics provides a mechanism .

for scholars interested in understanding and explaining the engineering design process to

define, classify, organize, and integrate many aspects of product design into a coherent

package, as the historical divisions between mechanical, electrical, aerospace, chemical,

civil, and computer engineering become less clearly defined, we should take comfort in the

existence of mechatronics as a field of study in academia. The mechatronics specialty

provides an educational path; that is, a roadmap; for engineering students studying within

the traditional structure of most engineering colleges. Mechatronics is generally recognized

worldwide as a vibrant area of study. Undergraduate and graduate programs in

mechatronic engineering art now offered in many universities. Refereed journals are being

published and dedicated conferences are being organized and are generally highly

attended.

It should be understood that mechatronics is not jest a convenient structure for

investigative studies by academicians; it is a way of life in modern engineering practice.

The introduction of the microprocessor in the early 1980s and the ever increasing desired

performance to cost ratio revolutionized the paradigm of engineering design. The number

of new products being developed at the intersection of traditional disciplines of

2

Chapter 1 Introductoin to Mechatronics and Sensors

engineering, computer science, and the natural sciences is ever increasing. New

developments in these traditional disciplines are being absorbed into mechatronics design

at an ever increasing pace. The ongoing information technology revolution, advances in

wireless communication, smart sensors design (enabled by MEMS technology), and

embedded systems engineering ensures that the engineering design paradigm will continue

to evolve in the early twenty-first century.

The figure shown below illustrates a mechatronic system:

·-

MECHANICAL SYSl'EM
- ,;ya.em ll1 cdel - dynm ic rnpon:e

ACTIJATORS SENSORS INPUT SIGNAL

- solmaids. 'O'oi.ce coils
CONDITIONING

H • ~s • ,;:trm~
•••••• AND INTERFACING

• di: ll1 etc[!: - pobU'm.OJD.rter · thm!Locrupl!
- rteI!)erlll ans -phct.oel!ctri::s - l'J.Ccel!ranew · dismU C :irui£ · fiJW;
-Ser,TOlll~ • dzj!lu. encoder · :Ml!Ms
-~s.pmtmmcs - ill!l.plfi.ers · .tvD.DID

• _ .•· .. • • , C I ... · -- -· - - - .. - •... - _.:._ · .. -- -. ·- •. -·- - .-· : .. ·-- ·.-- - ..

I ,I,

OUTPUT SIGNAL DIGITAL CONTROL
GRAPHICAL CONDITIONING ARCHITECTURES
DISPLAYS ~

AND INTERFACING ~ · sequmc~ and tim.~ - lofj.c c:irolis
-LEDs -LCD · DIA Di!) -powirnu:i.tors

- lll :i:rocattroiler - lofj.c and mll'lllleti:
• dzj!lu. disph)TS · C Rl' . 'llll.plfi.ers • pOM! (J) 'llll.P,

-SBC - co:ntrohlglrl:J:m,.s

-PW:M -PLC - cainmuro:wm

Figure 1.1 a mechatronic system

1.1.2 Key elements of Mechatronics:

The study of mechatronics can be divided into the following areas specialty:

1. Physical systems modeling

2. Sensors and Actuators

3. Signals and Systems

4. Computers and Logic Systems

5. Software and Data Acquisition

,.,
.)

Chapter 1 Introductoin to Mechatronics and Sensors

The key elements of mechatronics are illustrated in Figure 1.2 As the field of

mechatronics continues to mature; the list of relevant topics associated with the area will

most certainly expand and evolve.

Figure 1.2 the key element of rnechatronics ·

4

Chapter 1 Introductoin to Mechatronics and Sensors

1.1.3 Historical Perspective

Attempts to construct automated mechanical systems has an interesting history.

Actually, the term "automation" was not popularized until the 1940s when it was coined by

the Ford Motor Company to denote a process in which a machine transferred a sub

assembly item from one station to another and then positioned the item precisely for

additional assembly operations. But successful development of automated mechanical

systems occurred long before then. For example early applications of automatic control

systems appeared in Greece from 300 to 1 B.C. with the development of float regulator

mechanisms. Tow important examples include the water clock of Ktesibios that used a

float regulator, and an oil lamp devised by Philon, which also used a float regulator to

maintain a constant level of fuel oil. Later, in the first century, Heron of Alexandria

published a book entitled Pneumatica that described different types of water-level

mechanisms using float regulators.
:. ·. . - -~- -

In Europe and Russia, between seventeenth and nineteenth centuries, many

important devices were invented that would eventually contribute to mechatronics.

Cornelis Drebble (1572-1633) of Holland devised the temperature regulator representing

one of the feedback systems of that area. Subsequently, Dennis Papin (1647-1712)

invented a pressure safety regulator for steam boilers in 1681. Papin's pressure regulator is

similar to a modern-day pressure-cooker valve. The first mechanical calculating machine

was invented by Pascal in 1°642; The first historical feedback system claimed by Russia
was developed by polzunov in 1765. Polzunov's water-level float regulator employs a float

that rises and lowers in relation to the water level, thereby controlling the valve that water

inlet in the boiler.

Further evolution in automation was enabled by advancements in control theory

traced back to the Watt flyball governor was used to control the speed of a steam engine.

Employing a measurement of the speed of the output shaft and utilizing the motion of the

flyball to control the valve, the amount of steam entering the engine is controlled. As the

speed of the engine increases, the metal spheres on the governor apparatus rise and extend

away from the shaft axis, thereby closing the valve. This is an example of a feed back

5

Chapter 1 Introductoin to Mechatronics and Sensors

control system where the feedback signal and the control actuation are completely coupled

in the mechanical hardware.

These early successful automation developments were achieved through intuition,

application of practical skills, and persistence. The next step in the evolution of automation

required a theory of automatic control. The precursor to the numerically controlled (NC)

machines for automated manufacturing (to be developed in the 1950s and 60s at MIT)

appeared in the early 1800s with the invention of feed-forward control of weaving looms

by Jacquard of France. In the late 1800s, the subject now known as control theory was

initiated by J.C. Maxwell through analysis of the set of differential equations describing

the fl.yball governor. Maxwell investigated the effect. Various system parameters had on

the system performance. At about the same time, Vyshnegradskii formulated a

mathematical theory of regulators. In the 1830s, Michael Faraday described the law of

induction that would form the basic of the electric motor and the electric dynamo.

Subsequently, in the late 1880, Nikola Tesla invented the alternating-current induction

·• motor. the 'basic idea of controlling" a mechanical system automatically was firmly · -

established by the end of 1800s. The evolution of automation would accelerate

significantly in the twentieth century.

The development of pneumatic control elements in the 1930s matured to a point of

finding applications in the process industries. However, prior to 1940, the design of control

systems remained an art generally characterized by trial-and-error methods. During the

1940s; continued advances in mathematical and analytical methods solidified the notion of

control engineering as an independent engineering discipline. In the United States, the

development of the telephone system and electronic and electronic feedback amplifiers

spurred the use of feedback by Bode, Nyquist, and Black at Bell Telephone Laboratories.

The operation of the feedback amplifiers was described in the frequency domain and the

ensuing design and analysis practices are now generally classified as "classical control."

During the same time period, control theory was also developing in Russia and Eastern

Europe. Mathematicians and applied mechanicians in the former Soviet Union dominated

the field of control and concentrated on time domain formulations and differential equation

models of systems. Further developments of time domain formulations using state variable

6

Chapter 1 Introductoin to Mechatronics and Sensors

system representation occurred in the 1960s and led to design and analysis practices now

generally classified as "modem control."

The World War II war effort led to further advances in the theory and practice of

automatic control in an effort to design and construct automatic airplane pilots, gun

positioning systems, radar antenna control systems, and other military systems. The

complexity and expected performance of these military systems necessitated an extension

of the available control techniques and fostered interest in control systems and the

development of new insights and methods. Frequency domain techniques continued to

dominate the field of controls following World War II, with the increased use of the

Laplace transform, and the use of the so-called s-plane methods, such as designing control

systems using root locus.

On the commercial side, driven by cost savings achieved through mass production,

automation of the production process was a high priority beginning in 1940s. During the

1950s, the invention of the cam linkages, and chain drives became the major enabling

tech"ndlogte's for the iii'(f-entfoii· ofnew' productsand 'high-speedprecision manufacturing '

and assembly. Examples include textile and printing machines, paper converting

machinery, and sewing machines. High-volume precision manufacturing became a reality

during this period. The automated paperboard container-manufacturing machine employs a

sheet-fed process wherein the paperboard is cut into a fan shape to form the tapered

sidewall, and wrapped around a mandrel. The seam is then heat sealed and held until cured.

Another sheet-fed source of paperboard is used to cut out the plate to form the bottom of

the paperboard container, formed into a shallow dish through scoring and creasing

operations I a die, and assembled to the cup shell. The lower edge of the cup shell is bent

inwards over the edge of the bottom plate sidewall, and heat-sealed under high pressure to

provide a ring-on-shell structure to provide the stiffness needed for its functionality. All of

these operations are carried out while the work piece undergoes a precision transfer from

one turret to another and is then ejected. The production rate of a typical machine averages

over 200 cups per minute. The automated paperboard container manufacturing did not

involve any nonOmechanical system except an electric motor for driving the line shaft.

These machines are typical of paper converting and textile machinery and represent

automated systems significantly more complex than their predecessors.

7

Chapter 1 Introductoin to Mechatronics and Sensors

The development of the microprocessor in the late 1960s led to early forms of

computer control in process and product design. Examples include numerically controlled

(NC) machines and air craft control systems. Yet the manufacturing processes were still

entirely mechanical in nature and the automation and control systems were implemented

only as an afterthought. The launch of Sputnik and the advent of the space age provided

yet another impetus to the continued development of controlled mechanical systems.

Missiles and space probes necessitated the development of complex, highly accurate

control systems. Furthermore, the need to minimize satellite mass (that is, to minimize the

amount of fuel required for the mission) while providing accurate control encouraged

advancements in the important field of optimal control. Time domain methods developed

by Liapunov, Minorsky, and others, as well as the theories of optimal control developed by

L.S. Pontryagin in the former Soviet Union and R.Bellman in the United States, were well

matched with the increasing availability of highOspeed computers and new programming

languages for scientific use.

· 'Advanceniehts in 'semiconductor 'and integrated circuits manufacturing led to the

development of a new class of products that incorporated mechanical and electronics in the

system and required the two together for their functionality. The term mechatronics was

introduced by Y asakawa Electric in 1969 to represent such systems. Y asakawa was

granted a trademark in 1972, but after widespread usage of the term, released its trademark

rights in 1982. Initially, mechatronics referred to systems with only mechanical systems

and electrical components-no computation was involved; Examples of such systems

include the automatic sliding door, vending machines, and garage door openers.

In the late 1970s, the Japan Society for the Promotion of Machine Industry (JSPMI)

classified mechatronics products into four categories:

1. Class I: Primarily mechanical products with electronics incorporated to

enhance functionality. Examples include numerically controlled machine

tools and variable speed drives in manufacturing machines.

2. Class II: Traditional mechanical systems with significantly updated

internal devices incorporating electronics. The external user interfaces are

8

Chapter 1 Introductoin to Mechatronics and Sensors

unaltered. Examples include the modem sewing machine and automated

manufacturing systems.

3. Class III: Systems that retain the functionality of the traditional

mechanical system, but the internal mechanisms are replaced by

electronics. An example is the digital watch.

4. Class IV: Products designed with mechanical and electronic technologies

through synergistic integration. Examples include photocopiers,

intelligent washers and dryers, rice cookers, and automatic ovens.

The enabling technologies for each mechatronic product class illustrate the

progression of electromechanical products in stride with developments in control theory,

computation technologies, and microprocessors. Class I products were enabled by servo

technology, power electronics, and control theory. Class II products were enabled by the

availability of early computational and memory devices and custom circuit design

'capabilltieaClass UI products relied-heavily on the microprocessor and integrated circuits" -- " ·-.-·

to replace mechanical systems. Finally, Class IV products marked the beginning of true

mechatronic system, through integration of mechanical systems and electronics. It was not

until the 1970s with the development of the microprocessor by the Intel Corporation that

integration of computational systems with mechanical systems became practical.

The divide between classical control and modem control was significantly reduced

in the 1980s with the advent of'v'robust control" theory. It is now generally accepted that

control engineering must consider both the time domain and the frequency domain

approaches simultaneously in the analysis and design of control systems. Also, during the

1980s, the utilization of digital computers as integral components of control system

became routine. There are literally hundreds of thousands of digital process control

computers installed worldwide. Whatever definition of mechatronics one chooses to adopt,

it is evident that modem mechatronics involves computation as the central element. In fact,

the incorporation of the microprocessor to precisely modulate mechanical power and to

adapt to changes in environment are the essence of modem mechatronics and smart

products.

9

Chapter 1 Introductoin to Mechatronics and Sensors

In the future, growth in mechatronic systems will be fueled by the growth in the

constituent areas. Advancement in traditional disciplines fuel the growth of mechatronics

systems by providing "enabling technologies." For example, the invention of the

microprocessor had a profound effect on the redesign of mechanical systems and design of

new mechatronics systems. We should expect continued advancements in cost-effective

microprocessors and microcontrollers, sensor and actuator development enabled by

advancements in applications of :MEMS, adaptive control methodologies and real-time

programming methods, networking and wireless technologies, mature CAE technologies

for advanced system modeling, virtual prototyping, and testing. The continued rapid

development in these areas will only accelerate the pace of smart product development.

The Internet is a technology that, when utilized in combination with wireless technology,

may also lead to new mechatronic products. While developments in automotives provide

vivid examples of mechatronics development, there are numerous examples of intelligent

systems in all walks of life, including smart home appliances such as dishwashers, vacuum

cleaners, microwaves, . and wireless network enabled devices. In the -··arei::t" or"nuriian-'··

friendly machines" (a term used by H.Kobayashi), we can expect advances in robot

assisted surgery, and implantable sensors and actuators. Other areas that will benefit from

mechatronic advances may include robotics, manufacturing, space technology, and

transportation. The future of mechatronics is wide open.

10

Chapter 1 Introductoin to Mechatronics and Sensors

1.2 Sensors

One type of feedback frequently needed by industrial-control systems is the position of one
or more components of the operation being controlled. Sensors are devices used to provide
information on the presence or absence of an object.

-- A Fl ... ·. ..({ \ t \ ·.· .
/ \ ..•..• · ,.

Figure 1.3 Application for sensors

1.2.1 Siemens Sensors
Siemens sensors include limit switches, photoelectric, inductive, capacitive, and ultrasonic
sensors. These products are packaged in various configurations to meet virtually any
requirement found- in commercial and industrial applications. · --- = -- - · ' -- -

Each type of sensor will be discussed in detail. At the end of the course an application
guide is provided to help determine the right sensor for a given application.

t . . h '6;l
Figure 1.4 Siemens sensors

1.2.2 Technologies

Limit switches use a mechanical actuator input, requiring the sensor to change its output
when an object is physically touching the switch. Sensors, such as photoelectric, inductive,
capacitive, and ultrasonic, change their output when an object is present, but not touching
the sensor. In addition to the advantages and disadvantages of each of these sensor types,
different sensor technologies are better suited for certain applications. The following table
lists the sensor technologies that will be discussed in this course.

11

Chapter 1 Introductoin to Mechatronics and Sensors

1.2.3 Contact Arrangement

Contacts are available in several configurations. They may be normally open (NO),
normally closed (NC), or a combination of normally open and normally closed contacts.
Circuit symbols are used to indicate an open or closed path of current flow. Contacts are
shown as normally open (NO) or normally closed (NC). The standard method of showing a
contact is by indicating the circuit condition it produces when the contact-actuating device
is in the reenergized or no operated state. For the purpose of explanation in this text a
contact or device shown in a state opposite of its normal state will be highlighted.
Highlighted symbols used to indicate the opposite state of a contact or device is not
legitimate symbols. They are used here for illustrative purposes only.

II
Nr;w.nll,· ()f,61\

Dot-lrtiJffj'.Wf}cl .Sun,~
t\brmalt; Cltiifn
:C.1:1iM!lit:oo :Sli.rtf!

N<lr,r,,,;1lt1 tl1lli®
bu'.l'ltoli,liZtclSWw.

tt~x~,1¥ 'Cbi«d
t:ntit{ili.I(1 $t~tu

Figure 1.5 contacts configurations

·-Mechanical limit switches; which will be -covered -in-the next-section, use-a different set of· · ·-.
symbols. Highlighted symbols are used for illustrative purposes only.

i\'Crti12lh11 Cltte:J
H~l(lO.~as,

.,4:
.~_,,,-•"' Q

tfooMltrO;:ei
iil,JJdCf~-"~

tform,lt, Orw,~
K'.<H,·Cb$;;,,;I

i110p,e1)~ilo/Jl!i

Nofm•lt;• 'Clr4?d
itt (;l.µQ!'t f:i3~_j)a)O:

t•1<wmslt;t;~1
heli:iiOl"-'l

in CIO:»'iJd Ju.,-;flien

Figure 1.6 Positions· ofcontacts

1.2.4 Circuit Example
In figure 1.7, a mechanical limit switch (LSl) has been placed in series with a Run/Stop
contact and the "M" contactor coil. The Run/Stop contact is in the Run condition and the
motor is running a process. This could be a conveyor or some other device. Note that the
"M" contacts and the "Run/ Stop" are shown highlighted, indicating they are normally
open contacts in the closed position. LS 1 is a normally closed contact of the mechanical
limit switch.

12

Chapter 1 Introductoin to Mechatronics and Sensors

Figure 1. 7 LS 1 in short circuit position

When an object makes contact with the mechanical limit switch the LS 1 contacts will
change state. In this example the normally closed contacts of LS 1 open. The mechanical
limit switch symbol is highlighted. The "M" contactor coil is reenergized, returning the
normally open contacts of the "M" contactor to their normal position, stopping the motor
and the process.

r• "I_J.1·'' , ...
L:tur1;.M "l
L,, :1 · i : M
:l-'' -1 : . .• s1~I .,

I . J I .: Hi r;1~.sit;;:,,,,v£i ,,.-,. !/;.. ~L_,___ · '~""'-· .. _ _(M }----1'[=-~: ',..._../ ··ri;;

Figure [8 LS 1 in open circuit position

l.2.5 Limit Switches
A typical limit switch consists of a switch body and an operating head. The switch body
includes electrical contacts to energize and reenergize a circuit. The operating head
incorporates some type of lever arm or plunger, referred to as an actuator. The standard
limit switch is a mechanical device that uses physical contact to detect the presence of an
object (target). When the target comes in contact with the actuator, the actuator is rotated
from its normal position to the operating position. This mechanical operation activates
contacts within the switch body.

13

Chapter l Introductoin to Mechatronics and Sensors

Figure 1.9 Limit switch

1.2.6 Principle of Operation

A number of terms must be understood to understand how a mechanical limit switch
operates. The free position is the position of the actuator when no external force is applied.
Pret ravel is the distance or angle traveled in moving the actuator from the free position to
the operating position. The operating position is where contacts in the limit switch change
from their normal state (NO or NC) to their operated state.
Over travel is the distance the actuator can travel safely beyond the operating point.
Differential travel is the distance traveled between the operating position and the release
position.' The release position is where' the contacts change- from their operated state to. .,
their normal state. Release travel is the distance traveled from the release position to the
free position. Figure 1.10 is illustrating the operation principle.

Figure 1.10 Operation principle of limit switch

14

Chapter 2 PLC Programming

2.1 Hard-Wired Control
Prior to PLCs, many of these control tasks were solved with contactor or relay controls.

This is often referred to as hardwired control. Circuit diagrams had to be designed,

electrical components specified and installed, and wiring lists created. Electricians would

then wire the components necessary to perform a specific task. If an error was made, the

wires had to be reconnected correctly. A change in function or system expansion required

extensive component changes and rewiring.

li'ilAC & , .. _~-------- r ~
··-~j-J''--'"

ca

Figure 2.1 Hard wired controls

The programmable controller was detailed on New Year's Day, 1968, and from

hence till now, a slow steady growth has allowed the manufacturing and process control

industries to take advantage of applications-oriented software.

The early days however, were not as straightforward or as simple.

For example, the programmable controller, according to the system architecture

specification, did not need to go fast. The initial machine, which was never delivered, only

had 125 words of memory, and speed was not a criteria as mentioned earlier. You can

imagine what happened!

15

Chapter 2 PLC Programming

During the last ten to fifteen years a wide range of different programming techniques has

been used to write programs for industrial control applications and for Programmable

Logic Controllers (PLCs). Control applications have been developed in BASIC, FORTH,

C, Structured English, Instruction List and numerous other proprietary languages including

various dialects of Ladder programming. Unfortunately, the only thing that can be said of

all of these programming languages is that they are all different. For people involved with

such systems from technicians, maintenance personnel, system designers to plant

managers, this results in inefficient use of time and money. There is clearly a waste of

human resources involved in training staff in skills in so many different control languages.

Programmable Logic Controllers (PLCs) also referred to as programmable controllers are

in the computer family. They are used in commercial and industrial applications. A PLC

monitors inputs, makes decisions based on its program, and controls outputs to automate a

process or machine .

. - -- __ Fortunately .the .international industrial. community-recognized that anew standard for-

programmable logic controllers was required. A working group within the International

Electro-technical Commission (IEC) was set up to look at the complete design of

programmable logic controllers, including the hardware design, installation, testing,

documentation, programming and communications. The IEC as a sister organization to the

International Standardization Organization (ISO) based in Geneva, has committees and

working groups formed from representatives put forward by standardization bodies of most _

industrial countries of the world.

During the early 1990s, the IEC published various parts of the IEC6 l 131 standard that

covers the complete life cycle of the Programmable Logic Controllers (PLCs), these are:

1. General information Definition of basic terminology and concepts.

2. Equipment requirements and tests Electronic and mechanical construction and

verification tests.

3. Programmable languages PLC software structure, languages and program execution.

4. User guidelines Guidance on selection, installation, maintenance of PLCs. 5.Messaging

service specification Software facilities to communicate with other devices using

16

Chapter 2 PLC Programming

communications based on MAP Manufacturing Messaging Services.

6. Communications via field bus Software facilities of PLC communications using IEC

field bus -Awaiting completion of field bus standards.

7. Fuzzy control programming Software facilities, including standard function blocks for

handling fuzzy logic within PLCs.

8. Programmable controllers Application guidelines for the implementation ofIEC61131-3

languages.

The IEC recognize that industrial instrumentation and control systems need an open

systems approach to build large systems using equipment from different manufacturers.

Until the IEC 61131-3 standard was published in March 1993, there was no suitable

standard that defined the way control systems such as PLCs could be programmed. Ladder

Programming has become as one of the most popular graphical languages for

programming PLCs but unfortunately had a number of problems .

. 2.2 Basic.PLC-Operatio11c.- ·-" ,_ _ ... -·" .. -

PLCs consist of input modules or points, a Central Processing Unit (CPU), and output

modules or points. An input accepts a variety of digital or analog signals from various field

devices (sensors) and converts them into a logic signal that can be used by the CPU. The

CPU makes decisions and executes control instructions based on program instructions in

memory. Output modules convert control instructions from the CPU into a digital or

analog signal that can be used to control various field devices (actuators). A programming

device is used to input the desired instructions. These instructions determine what the PLC

will do or a specific input. An operator interface device allows process information to be

displayed and new control parameters to be entered.

17

Chapter 2 PLC Programming

b r---.-1 ~
Or1,10 Mmorn

pl.Ji.;t,hijtl:m-1
$1i1thf!.~

Figure 2.2 Basic PLC operation

2.3 Advantages of PLCs

The same, as well as more complex tasks can be done with a PLC. Wiring between devices
·- ~ ::- . - ·- - ~ :.. ·. ·. - - :. .- . - . : .· ,_ ··-- .. __ ··- .. - :-·-.· -~.. -- . - -

and relay contacts is done in the PLC program. Hard wiring, though still required to

connect field devices, is less intensive. Modifying the application and correcting errors are

easier to handle. It is easier to create and change a program in a PLC than it is to wire and

rewire a circuit Fallowing are just a few of the advantages of PL Cs:

• Smaller physical size.

• Faster a_nd easier.

• PLCs have integrated diagnostics and override functions.

• Diagnostics are centrally available:

• Applications can be immediately documented.

• Applications can be duplicated faster and less expensively.

2.4 Terminology

The language of PLCs consists of a commonly used set of terms; many of which are

unique to PLCs. In order to understand the ideas and concepts of PLCs, an understanding

of these terms is necessary.

18

Chapter 2 PLC Programming

2.5 Sensors

A sensor is a device that converts a physical condition into an electrical signal for use by

the PLC. Sensors are connected to the input of a PLC. A pushbutton is one example of a

sensor that is connected to the PLC input. An electrical signal is sent from the pushbutton

to the PLC indicating the condition (open/ closed) of the pushbutton contacts.

?ushbatttt,
(Soi:1&1,,1

PtC
:: I lnp_1Jt 1

Figure 2.3 Sensor with a pushbutton

2.6 Actuators

Actuators convert an electrical signal from the PLC into a physical condition. Actuators

are connected to the PLC output. A motor starter is one example of an actuator that is

connected to the PLC output. Depending on the output PLC signal the motor starter will

either start or stop the motor.

!>;Mtnr $1Jlrt\'<
lAtWil~[,

Figure 2.4 Actuator position in a system

2. 7 Discrete Inputs

A discrete input also referred to as a digital input, is an input that is either in an ON or OFF

condition. Pushbuttons, toggle switches, limit switches, proximity switches, and contact

closures are examples of discrete sensors, which are connected to the PLCs discrete or

digital inputs. In the ON condition a discrete input may be referred to as logic 1 or logic

high. In the OFF condition a discrete input may be referred to as logic O or logic low.

19

Chapter 2 PLC Programming

,--· ~~l:
'

?LC
lrurutR

Figure 2.5 PLC inputs

_.i._s Malog _I~p~t~ c.·.- .

An analog input is an input signal that has a continuous signal. Typical analog inputs may

vary from O to 20 milliamps, 4 to 20 milliamps, or O to 10 volts e.g. level transmitter

monitors, see figure 2.6.

Figure 2.6 Analog input

2.9 Discrete Outputs

A discrete output is an output that is either in an ON or OFF condition. Solenoids,

contactor coils, and lamps are examples of actuator devices connected to discrete outputs.

20

Chapter 2 PLC Programming

Discrete outputs may also be referred to as digital outputs e.g. a lamp can be turned on or

off by the PLC output it is connected to.

Figure 2. 7 A discrete output

2.10 Analog Outputs

An analog output is an output signal that has a continuous signal. The output may be as

simple as a 0-10 VDC level that drives an analog meter. Examples of analog meter outputs

are speed, weight, and temperature. The output signal may also be used on more complex
- -. ···- .: . - . . - . -- - ·-

applications such as a current to pneumatic transducer that controls an air-operated flow

control valve.

f}LC
(~.npuu;

Figure 2.8 Analog outputs

2.11 CPU

The central processor unit (CPU) is a microprocessor system that contains the system

memory and is the PLC decision-making nit. The CPU monitors the inputs and makes

decisions asked on instructions held in the program memory. The PU performs relay,

counting, timing, data comparison, and sequential operations.

21

Chapter 2 PLC Programming

Figure 2.9 CPU in PLC

2.12 Programming

A program consists of one or more instructions that accomplish task. Programming a PLC

is simply constructing a set of instructions. There are several ways to look at a program

such s ladder logic, statement lists, or function block diagrams.

2.13 Ladder Logic

- Ladder -logic (LAD)' is one programming language used· in PLCs. Ladder logic uses-: -

components that resemble elements used in a line diagram format to describe hard-wired

control.

PLC had to be maintainable by technicians and electrical personnel. To support the

programming language of Ladder Logic was developed. Ladder Logic is based on the

relay and contact symbols technicians were used to through wiring diagrams of electrical

control panels ..

Until recently there has been no formal programming standard for PLC's. The introduction

of the IEC 61131 Standard in 1998 provides a more formal approach to coding. PLC

Manufacturers have so far been slow on the uptake of the standard with partial

implementation.

The documentation for early PLC Programs was either non existent or very poor, just

providing simple addressing or basic comments, making large programs difficult to

follow. This has been greatly improved with the development of PLC Programming

Packages.

22

Chapter 2 PLC Programming

2.14 Ladder Logic Diagram

The left vertical line of a ladder logic diagram represents the power or energized

conductor. The output element or instruction represents the neutral or return path of the

circuit. The right vertical line, which represents the return path on a hard-wired control line

diagram, is omitted. Ladder logic diagrams are read from left-to-right, top-to-bottom.

Rungs are sometimes referred to as networks. A network may have several control

elements, but only one output coil.

ii . ···. ,' 01::,1
'__J- . - -()

IP.!\···· ... _ .•• ' ,· I . ____ -.---=-! : •

Figure 2.10 Ladder Logic Diagram

In-the example program-shown example IO.O, IO.I and QO:O represent the first instruction

combination. If inputs IO.O and IO. l are energized, output relay QO.O energizes. The inputs

could be switches, pushbuttons, or contact closures. I0.4, I0.5, and

Q 1.1 represent the second instruction combination. If either input I0.4 or I0.5 are

energized, output relay QO. l energizes.

23

Chapter 2 PLC Programming

2.15 Statements list

A statement list (STL) provides another view of a set of instructions. The operation, what

is to be done, is shown on the left. The operand, the item to be operated on by the

operation, is shown on the right. A comparison between the statements list shown below,

and the ladder logic shown on the previous page, reveals a similar structure. The set of

instructions in this statement list perform the same task as the ladder diagram.

Lt'J IC•.O
/!., 10.i

00.-0

LD 10.4
0 l(l.$
* Q0.1

Figure 2.11 Statements list

2.16 Function Block Diagrams

Function Block Diagrams (FBD) provides another view of a set of instructions. Each

function has a name to designate its specific task. Functions are indicated by a rectangle.

Inputs are shown on the left-hand side of the rectangle and outputs are shown on the right

hand side. The function block diagram shown below performs the same function as shown

by the ladder diagram and statement list.

Figure 2.12 Function Block Diagrams

24

Chapter 2 PLC Programming

2.17 PLC Scan

The PLC program is executed as part of a repetitive process referred to as a scan. A PLC

scan starts with the CPU reading the status of inputs. The application program is executed

using. the status of the inputs. Once the program is completed, the CPU performs internal

diagnostics and communication tasks. The scan cycle ends by updating the outputs, and

then starts over. The cycle time depends on the size of the program, the number of I/Os,

and the amount of communication required.

. . - - .; .. ·-·.

Figure 2.133 PLC Scan

2.18 Software

Software is any information in a form that a computer or PLC can use. Software includes

- the instructions or programs that direct hardware, see figure 2.14.

Figure 2.14 Example for software

25

Chapter 2 PLC Programming

2.19 Hardware

Hardware is the actual equipment. The PLC, the programming device, and the connecting

cable are examples of hardware, see figure 2.15.

Figure 2.15 Hardware

2.20 Memory Size

Kilo, abbreviated K, normally refers to 1000 units. When talking about computer or PLC

memory, however, JK means 1024-._.This .Is .because of'.jhe, .binary. number. sysJem.,.

(210=1024). This can be 1024 bits, 1024 bytes, or 1024 words, depending on memory type.

Hllt
.29i!S1
,H!itS<

1 Byre
iBvi:as
3thtas

1Wtvc
2\11,fouls
swords

J
Figure 2.16 Kilo=1024 units

2.21 RAM

Random Access Memory (RAM) is memory where data can be directly accessed at any

address. Data can be written to and read from RAM. RAM is used as a temporary storage

area. RAM is volatile, meaning that the data stored in RAM will be lost if power is lost. A

battery backup is required to avoid losing data in the event of a power loss.

26

Chapter 2 PLC Programming

2.22 ROM

Read Only Memory (ROM) is a type of memory that data can be read from but not written

to. This type of memory is used to protect data or programs from accidental erasure. ROM

memory is nonvolatile. This means a user program will not lose data during a loss of

electrical power. ROM is normally used to store the programs that define the capabilities

of the PLC.

2.23EPROM

Erasable Programmable Read Only Memory (EPROM) provides some level of security

against unauthorized or unwanted changes in a program. EPROMs are designed so that

data stored in them can be read, but not easily altered. Changing EPROM data requires a

special effort. UVEPROMs (ultraviolet erasable programmable read only memory) can

only be erased with an ultraviolet light. EEPROM (electronically erasable programmable

read only memory), can only be erased electronically.
·-· -·-- _;_ - .- .. ,_ ··-

2.24 Firmware

Firmware is user or application specific software burned into EPROM and delivered as

part of the hardware. Firmware gives the PLC its basic functionality.

Figure 2.17 Firmware

2.25 Putting it together

The memory of siemens S?-200 is divided into three areas:

2.25.1 Program space

Program space stores the ladder logic (LAD) or statement list (SIL)

program instructions. This area of memory controls the way data space and

I/0 points are used. LAD or STL instructions are written using a

programming device such as a PC, then loaded into program memory of the

PLC.

27

Chapter 2 PLC Programming

2.25.2 Data space

Data space is used as a working area, and includes memory locations for

calculations, temporary storage of intermediate results and constants. Data

space includes memory

Locations for devices such as timers, counters, high-speed counters, and·

analog inputs and outputs. Data space can be accessed under program

control.

2.25.3 Configurable parameter space

Configurable parameter space, or memory, stores either the default or

modified configuration parameters.

Figure 2.18 Configuration of parameter space

2.26 Programming A PLC

A number of instructions that must be arranged in a logical order to obtain the desired PLC

operation. These instructions are divided into three groups: standard instructions, special

instructions, and high-speed instructions.

28

Chapter 2 PLC Programming

2.26.1 Standard Instructions

Standard instructions consist of instructions that are found in most programs. Standard

instructions include; timer, counter, math, logical, increment/decrement/invert, move, and

block instructions.

2.26.2 Special Instructions

Special instructions are used to manipulate data. Special instructions include shift, table,

find, conversion, for/next, and real-time instructions.

2.26.3 High-Speed Instructions

High-speed instructions allow for events and interrupts to occur independent of the PLC

scan time. These include high-speed counters, interrupts, output, and transmit instructions.

The programming software can be run Off-line or On-line. Offline programming allows

the user ·10 edittlie 'ladder diagram andperform a number ofmaintenance tasks: Tlfo.PLC

does not need to be connected to the programming device in this mode. On-line

programming requires the PLC to be connected to the programming device. In this mode

program changes are downloaded to the PLC. In addition, status of the input/output

elements can be monitored. The CPU can be started, stopped, or reset.

2.26.4 Symbols

In order to understand the instructions a PLC is to carry out, an understanding of the

language is necessary. The language of PLC ladder logic consists of commonly used set

symbols that represent control components and instructions.

2.26.5 Contacts

One of the most confusing aspects of PLC programming for first-time users is the

relationship between the device that controls a status bit and the programming function that

uses a status bit. Two of the most common programming functions are the normally open

(NO) contact and the normally closed (NC) contact. Symbolically, power flows through

these contacts when they are closed. The normally open contact (NO) is true (closed) when

29

Chapter 2 PLC Programming

the input or output status bit controlling the contact is 1. The normally closed contact (NC)

is true (closed) when the input or output status bit controlling the contact is 0.

d
{' L............
I j
) ~

Norr,,A-,• ()par,
iN"::l)

t~oon,allv Cb,ed
,Nt:J

Figure 2.19 Contacts

2.26.6 Coils

Coils represent relays that are energized when power flows to them. When a coil is

energized, it causes a corresponding output to tum on by changing the state of the status bit

controlling that output to 1. That same output status bit may be used to control normally

open and normally closed contacts elsewhere in the program, see figure 2.20 .
. . - - - . ~ .. :.. ·. -- -·- - .- - ·-

/ --()
j

Figure 2.20

2.26. 7 Boxes

Boxes represent various instructions or functions that are executed when power flows to
·- -- -

the box. Typical box functions are timers, counters, and math operations.

Figure 2.21 A box

2.26.8 Entering Elements

Control elements are entered in the ladder diagram by positioning the cursor and selecting

the element from lists. In the following example the cursor has been placed in the position

30

Chapter 2 PLC Programming

to the right of I0.2. A coil was selected from a pull down list and inserted in this position,

see figure 2.22.

Figure 2.22

2.26.9 An AND Operation

E~ch ru~g or network on a ladder\-~presents·a Iogic operation. The following programming

example demonstrates an AND operation. Two contact closures and one output coil are

placed on network 1. They were assigned addresses IO.O, IO.I, and

QO.O. Note that in the statement list a new logic operation always begins with a load

instruction (LD). In this example IO.O (input 1) and (A in the statement list) IO. l (input 2)

must be true in order for output QO.O (output 1) to be true. It can also be seen That IO.O and

IO. I must be - true for QO.O to be true by looking at the function block diagram

representation.

Ladder Diagram Representation

10.0 10.1

H
Figure 2.23 AND Operation

31

Chapter 2 PLC Programming

Statement List Representation

Network 1:
LJ) 10.0
A. I0.'"1
= no.o
Function Block Diagram Representation, see the next figure:

Network 1

10· .. · .. JJ .. -· -~.·· .. ·.. .. QO.O AND
10.1-

Figure 2.24

Another way to see how an AND function works is with a Boolean logic diagram. In

Boolean logic an AND gate is represented by a number of inputs on the left side. In this

case there are two inputs. The output is represented on the right side. It can be seen from

the table that both,inputs.must.be.logic.1-in:orderfor the output-to be-logic 1, -

Ano (A/ Function .And (AI Functi>on

I
,..,, ·=e················ <, 1

n·•. P .. :u· .. ·.·•• •1 · .. ;·:········ ~Output, 1 . : /
lnput2 · i _j

Input i j input 2 I Output 1 --·o- o I o
o 1 I o
1 {J i D

li:
1 I "l

r~o 1'.i. 10·0·: .. .1 ----1 JJO·o········ .. ·o
D I 1 0

0 0

Figure 2.25 AND (A) Function

2.26.10 An OR Operation

In this example an OR operation is used in network 1. It can be seen that if either input

I0.2 (input 3) or (0 in the statement list) input I0.3 (input 4), or both are true, then output

QO.l (output 2) will be true.

Ladder Diagram Representation

32

Chapter 2 PLC Programming

Network 1

Q0.11
/
t
\,.,

I0.3

Figure 2.26 OR Operation

Statement List Representation

Net';iVork 1
!l~P· - KJ.2e . " .. ec . .

0 l(t3
== 00:l

Function Block Diagram Representation, see the figure below:
Network 1

10··.2~: •.. Q0.1 OR
10 • .>

Figure 2.27

Another way to see how an OR function works is with a Boolean logic diagram. The

symbol differs slightly from an AND function. The OR function is represented by a

number of inputs on the left side. In this case there are two inputs. The output is

represented on the right side. It can be seen from the table that any input can be logic 1 in

order for the output to be logic 1.

Chapter 2 PLC Programming

Or (0) Function Or (Ol Function

>-- Out:put.2 10.4--,

10c!'5
>--Q0.1 lnput:3

-~-'::'13 ! tnput 4 IOurtpur2

0 ,j 0 I 0 ' 0 l 1 I 1
1 0 ~

l :1

1 I --!i ~
e e

·1110~ .. 4··········· \·· ... {} .

1 •.
'1 •

1'0;5 Q0.1
0
1
0
i

Figure 2.28 OR (0) Function

2.27 Testing a Program
Once a program has been written it needs to be tested and debugged. One way this can be

done is to simulate the field inputs with an input simulator, such as the one made for the

S7-200. The program is first downloaded from the programming device to the CPU. The

selector switch is placed in the RUN position. The simulator switches are operated and the

- _ -resu1ting,indication--is.-ob-served on the.outputstatus indicator lamps.

Figure 2.29 Testing Program Machine

2.28 Status Functions
After a program has been loaded and is running in the PLC, the actual status of ladder

elements can be monitored. The standard method of showing a ladder element is by

34

Chapter 2 PLC Programming

indicating the circuit condition. It produces when the device is in the reenergized or non

operated state. In the following illustration (figure 2.30), input 1 (10.0) is programmed as a

normally open (NO) contact. In this condition, power will not flow through the contacts to

the output (QO.O).

Tog:glll
$v,1ltcih

C?U
l(Mi QQ,O

..... :1 :.IL{. '} l j '1 J

Lamp
.(---.;

~/

Figure 2.30

When viewing the ladder diagram in the status mode, control elements that are active, or

true (logic 1), are highlighted. In the example shown the toggle switch connected to input 1

has been 'closed. 'Power can now 'flow through: the contra I elerrient associated with input I -
(IO.O) and activate the output (QO.O). The lamp will illuminate, see the figure 2.31.

CPIJ

T.?g,gl&
Swttc:h

Lamp
"\..~/

I /' l r-) <._

Figure 2.31

2.29 Forcing

Forcing is another useful tool in the commissioning of an application. It can be used to

temporarily override the input or output status of the application in order to test and debug

the program. The force function can also be used to override discrete output points. The

force function can be used to skip portions of a program by enabling a jump instruction

with a forced memory bit. Under normal circumstances the toggle switch, shown in the

35

Chapter 2 PLC Programming

illustration below (figure 2.32), would have to be closed to enable input 1 (IO.O) and tum

on the output light. Forcing enables input 1 even though the input toggle switch is open.

With input 1 forced high the output light will illuminate. When a function is forced the

control bit identifier is highlighted. The element is also highlighted because it is on.

--- ,,,_--- <>
T<>gr,;ilo
S·wiu:.:h

-----:
,og;gle
5"A,ft-ch

~. ~·:_ . ~·. - .

CPU
10.0 oo.o

-1~ r-()

Figure 2 .3 2 .

The next figure (figure 2.33) shows the appearance of ladder elements in the off,

forced, and on condition.

StttttJn 3i':t On
Cor:ii:act,c:, Closed

St;at'u!i Sh On
Ctn1m-c.ts G'P~o

N:o'tfflelly c,., •.•. d
eo •• ~-

Statut:i. 8.it Or'!:
Coil El'ler9ired

O,ut;put
C..Us

Statuti Sit O,ff
-C)..:int.~c~-.;;.. Open

Stmus EM.
Ft~:roe:-d 01'!i

Co:nl¥1Ct~ C!c,~d

Stati..ts: :Bit.
,"arced O.tf

Co-:n~s-_Open - I I
Sta:tu:0. !Bit .t)tf

Contact:& CloaJJd
Status th't
FDrc&:JOr-1>:

C1:;:1T1=tac~- Ope.n

StaU.Mia :Bit
,-'1>mod0ff

CC11~-i;i:,:ts C.lo:'f.ed

sunu,s, Bil ON
-Cc,{I Dee~"'!.WJ{ftz:od

::ii:t:u~sBit:
F,-;rno,d On

-Co:il E~e~gj;.-r,,ad

S-tliltl£S 1~11
R>rc<> d :Off

c:0;1 o •••••.••• ,rgio:ad

SU
) {

i
\

Figure 2.33

36

Chapter 2 PLC Programming

2.30 Discrete Inputs/Outputs

To understand discrete control of a programmable controller the same simple lamp circuit

illustrated in (figure 2.34) with forcing will be used. This is only for instructional purposes,

as a circuit this simple would not require a programmable controller. In this example the

lamp is off when the switch is open and on when the switch is closed.

_......,
---{..,_ .• ,.,.- o----""""

1bg9lo
Switori

PLC

Figure 2.34

2.31 Wiring
-::·a···, - - . ·-

To accomplish this task, a switch is wired to the input of the PLC and an indicator light is

wired to output terminal.

Figure 2.35 Wiring

37

Chapter 2 PLC Programming

The following drawing (figure 2.36) illustrates the sequence of events. A switch is

wired to the input module of the PLC. A lamp is wired to the output module. The program

is in the CPU. The CPU scans the inputs. When it finds the switch open IO.O receives a

binary 0. This instructs QO.O to send a binary O to the output module. The lamp is off.

When it finds the switch closed 10.0 receives a binary 1. This instructs QO.O to send a

binary 1 to the output module, turning on the lamp.

CPJJ

~ .. ~
c>-..,,.. o--·
'foggle
$witch

Output

',·~.
"·:sr.~ ~

to;igls,
swi:~

CPU

, : . ·.c.-' ·I'

Figure 2.36

2.32 Program Instruction

When the switch is open the CPU receives logic O from input 10.0. The CPU sends logic 0

to output QO.O and the light is off, the ladder representation is illustrated in (figure 2.37).

10.0
00.0

Figure 2.37

When the switch is closed the CPU receives logic 1 from input 10.0. The CPU sends logic

1 to output QO.O, thus activating QO.O. The light turns on, se the next figure (2.38).

38

Chapter 2 PLC Programming

10.0 00.0

LD 10.0
QO.:O

Figure 2.38

2.33 Motor Starter Example

The following example involves a motor start and stop circuit. The line diagram illustrates

how a normally open and a normally closed pushbutton might be used in a control circuit.

In this example a motor started (M) is wired in series with a normally open momentary

pushbutton (Start), a normally closed momentary pushbutton (Stop), and the normally

closed contacts of an overload relay (OL).

Figure 2.39 An example of motor starter

39

Chapter 2 PLC Programming

Momentarily depressing the Start pushbutton completes the path of current flow and

energizes the motor starter (M), see the figure 2.40.

Ma

Figure 2.40

This closes the associated M and Ma (auxiliary contact located in the motor starter)

ontacts. When the Start button is released a holding circuit exists to the M contactor

through the auxiliary contacts Ma. The motor will run until the normally closed Stop

button ·is depressed, (see the next figure 2-.4.1}0r,the.overload relay opens,the·OLcontacts,>

breaking the path of current flow to the motor starter and opening the associated M and Ma

contacts.

Figure 2.41

40

Chapter 2 PLC Programming

The control task illustrated in (figure 2.42) also can be accomplished with PLC.

Motor St.;;rtm
iAcuat1;:ir}

PLC

... ····-

Start/Stop Pushbuttons
(Sensors)

Figure 2.42

2.34 Program Instruction for Motor

A normally open Start pushbutton is wired to the first input (IO.O), a normally closed Stop

pushbutton is wired to the second input (I0.1), and normally closed overload relay contacts

(part of the motor starter) are connected to the third input (10.2).

The first input (10.0), second input (I0.1), and third input (I0.2) form an AND circuit and

are used to control normally open programming function contacts on Network 1. 10.1

status bit is logic 1 because the normally closed (NC) Stop Pushbutton is closed. 10.2 status

bit is logic 1 because the normally closed (NC) overload relay (OL) contacts are closed.

Output QO.O is also programmed on Network 1. In addition, a normally open set of

41

Chapter 2 PLC Programming

contacts associated with QO.O is programmed on Network 1 to form an OR circuit. A

motor starter is connected to output QO.O, see the next figure (figure 2.43).

Stilrt.l'.NQ1
~

10.0
IO.O I0.1 I0.2 QO.O J1r H· n_._.H/_· !: : ''1 . .

>

.~\
(,_Ji--;t, tu Motor

M.c:1alct
·Starter

Stop!NC)

~L

10.2' one

Iii put CPU

Figure 2.43

When the Start pushbutton is depressed the CPU receives logic 1 from input IO.O. This

causes the IO.O contact-to close: AH three inputs -are now -logic I. The- CPU sends logicl- to- ·.

output QO.O. The motor starter is energized and the motor starts, as shown in (figure 2.44).

-~art1N0),
'\

.,r--..,,f----',> tc 'iv1o.ior
\...__/
~..lkl!!'ff
.Starter

OL

10.Cl In. 1 10.2

mi H 1· d 00.C,

~10.2

l,put CPU

Figure 2.44

When the Start pushbutton is pressed, output QO.O is now true and on the next scan, when

normally open contact QO.O is solved, the contact will close and output QO.O will stay on

even if the Start pushbutton has been released, as shown in (figure 2.45).

42

Chapter 2 PLC Programming

...•.• , , ... \ .•... -~·

.. j'"7 to i'i'!r.JtCT
·.~

ri ... ~otot
Starrer

10.0 oe,c
IO.O 10.i I0.2 QO.O

L.' -A)----j 10<.t o."-· I
CL

10.2
QO.O

CPU

Figure 2.45

The motor will continue to run until the Stop pushbutton is depressed. Input I0.1 will now

be logic O (false). The CPU will send a binary O to output QO.O. As in (figure 2.46), the

motor will turn off.

. ·. Sui:t,(MOl·
J .~

. -~ to rv,ctar
'--.,,/
Motor
Staner

0 IO,O QO.O
IO.D I0.1 I0.2 Q1).0

I0.1
)

OL

CPU

Figure 2.46

When the Stop pushbutton is released IO. l logic function will again be true and the

program ready for the next time the Start pushbutton is pressed, see (figure 2.27).

43

Chapter 2 PLC Programming

·""'"' t_)-7 't>.J t•Jlotor
Motor
Starter

10.0 oao tr
lti.O ICJ 10.2 QO.O

J t-rllL!II /
'~ ~ ill

\
i i

OL

--t,~ 10~2

Input OutptJt CPU

Figure 2.47

2.35 Expanding the Application

The application can be easily expanded to include indicator lights for RUN and STOP

conditions. In this example, a RUN indicator light is connected to output Q0.1 and a STOP

indicator light is connected to output Q0.2.

l\i1ot,.r;:{' ~~art&.!'·
(,Azuat:o:r)

ll"lput Start/Slop Pf.;,Shb\'.ltlOrll!l
tS.e:n·so:.a'.i

Figure 2.48 Expanding Machine

44

Chapter 2 PLC Programming

It can be seen from the ladder logic that a normally open output Q0.0 is connected

on Network 2 to output Q0.1 and a normally closed QO.O contact is connected to output
'

Q0.2 on network 3. In a stopped condition output QO.O is off. The normally open QO.O

contacts on Network 2 are open and the RUN indicator, connected to output QO. l light is

off. The normally closed QO. l on Network 3 lights are closed and the STOP indicator

light, connected to output Q0.2 is on, as illustrated in (figure 2.49).

,.,,~\ ' ..•.. t·
\ . 'f'"7 to , Aot.or
,.J
tviooor
Stan ear

10.(l oao ie,o 10•;1 10.2 oo.o IJI ~
ec.o

00.2

1

'.f
,,

-lL-l If'" 1f 1 I .v • .c

O!M 10.0.1 \ I \ 1 \ ,'

00.2

CP'IJ

Figure 2.49--

When the PLC starts the motoroutput QO.O is now logic high (On). The normally open

QO.O contacts on Network 2 now switch to a logic 1 (closed) and output QO. l turns the

RUN indicator on. The normally closed QO.O contacts on Network 3 switch to a logic 0

(open) and the STOP indicator light connected to output Q0.2 is now off, like illustrated in

(figure 2.50).

45

Chapter 2 PLC Programming

~
0

r=; ao.o H ~ tr., Mote!
\....,./

Motor
Staner

10.0

OL

10.2 ao.o

Input

Q(l,0 ,a:0.2
,i~ { \ Ji ' f .\ l

Figure 2.50
. ~· .. ::. ·.·

2.36 Adding a Limit Switch

Adding a limit switch with normally open contacts to input I0.3 can further expand the

application.

Motet Starter
(P..t:Ullt1:H)

S:tart/Satop P\Jt1hbutton®
(S<1ns,c-,..:rsJ

Figure 2.51 Adding a limit switch

46

Chapter 2 PLC Programming

A limit switch could be used to stop the motor or prevent the motor from being started. An

access door to the motor, or its associated equipment, is one example of a limit switch's

use. If the access door is open, the normally open contacts of LS 1 connected to input I0.3

are open and the motor will not start, as illustrated in (figure 2.52).

10.(J

OL

/C.2

LS1

- - - ·-

10.0 10.1! 10.2 10.:3 Q(:,.O

' 1-llH) H/ '\. l"" ' \ J
QO.O

00.0 l-00~·1)
!-------! I. '.,, J

OQ_.O

00.0 r"'\ " ti:,. Mr.ner \.....__. ... r-» .·.
f\fiq~:,:,1:
Starter

CP'U

Figure 2.52

Cl0.1

00.7 T"{ SiOP Indicator)---·<.,

When the access door is closed, the normally open contacts on the limit switch (LS 1) are

closed. Input I0.3 is now on (logic 1), and the motor will start when the Start pushbutton is

pressed, see (figure 2.53).

l:0: .. 0

IC.?

l•0' .. 3

oo.o

OO;;O t·OO."t ··~
' \

.l

·00,0 00,2 ~~~~.' ,WI ~l:j

Figure 2.53

47

ao.o·
r,,--.._,~
~ -~- t-o ~'',.l.k:,1.0:r .,,,,__..,... ..
r,~,,c1·~..:,~
S·t;&t''t:C:F

Chapter 2 PLC Programming

-Expansion The PLC program can be expanded to accommodate many commercial and

industrial applications. Additional Start/Stop pushbuttons and indicator lights can be added

for remote operation, or control of a second motor starter and motor. Over travel limit

switches can be added along with proximity switches for sensing object position. In

addition, expansion modules can be added to further increase the VO capability. The

number of I/Os and amount of memory available on the PLC only limits the applications,

see (figure 2.54).

Motor Starte.rs
_ _ , " _ ,. {QJgrtal.P1.1tRu,wJ

PJJshbtitti:ms
1Diy1tial lnpu1Ss} Sernsor:;

rm~l.ll lripu~J

Figure 2.54

2.37 Analog Inputs and Outputs

48

Chapter 2 PLC Programming

PLCs must also work with continuous or analog signals. Typical analog signals are O - 10

VDC or 4 - 20 mA. Analog signals are used to represent changing values such as speed,

temperature, weight, and level. A PLC cannot process these signals in an analog form. The

PLC must convert the analog signal into a digital representation. An expansion module,

capable of converting the analog signal, must be used. The S7-200 analog modules convert

standard voltage and current analog values into a 12-bit digital representation. The digital

values are transferred to the PLC for use in register or word locations. In addition, analog

modules are available for use with thermocouple and RTD type sensors used in to achieve

a high level of accuracy in temperature measurement.

Figure 2.55 Analog Expansion Module

2.38 Timers

Timers are devices that count increments of time .. Traffic lights are one example where

timers are used. In this example timers are used to control the length of time between

signal changes.

Boxes in ladder logic represent timers. When a timer receives an enable, the timer starts to

time. The timer compares its current time with the preset time. The output of the timer is

logic O as long as the current time is less than the preset time. When the current time is

greater than the preset time the timer output is logic 1. S7-200 uses three types of timers:

On- Delay (TON), Retentive On-Delay (TONR), and Off-Delay (TOF).

49

Chapter 2 PLC Programming

ltJ IN TG<t~R
'D()'V

~ -h_J PT

Figure 2.56 Timers

2.38.1 S7-200 Timers

S7-200 timers are provided with resolutions of 1 millisecond, 10 milliseconds, and 100

milliseconds. The maximum value of these timers is 32.767 seconds, 327 .67 seconds, and

3276.7 seconds, respectively. By adding program elements, logic can be programmed for

much greater time intervals.

2.38.2 Hard-Wired Timing Circuit

- -- , . Timers used with PLCs· can-be compared-to timing circuits used in hard-wired-control-line·

diagrams. In the following example, a normally open (NO) switch (S 1) is used with a timer

(TRI). For this example the timer has been set for 5 seconds. When Sl is closed, TRI

begins timing. When 5 seconds have elapsed, TRI will close its associated normally open

TRI contacts, illuminating pilot light PLl. When S 1 is open, reenergizing TRI, the TRI

contacts open, immediately extinguishing PL 1. This type of timer is referred to as ON

delay .. ON. delay indicates that once a timer receives an enable signal, a predetermined.

amount of time (set by the timer) must pass before the timer's contacts change state.

ct¥~5 :!';i Seton:it.
l1lliit1$l J,t-Ct;J:;,itj

Figure 2.57 Hard wired timing circuit

50

Chapter 2 PLC Programming

2.38.3 On-Delay (TON)

When the On-Delay timer (TON) receives an enable (logic 1) at its input (IN), a

predetermined amount of time (preset time - PT) passes before the timer bit (T-bit) turns

on, see (figure 2.58). The T-bit is a logic function internal to the timer and is not shown on

the symbol.

The timer resets to the starting time when the enabling input goes to logic 0.

Figure 2.58

2.38.4 Retentive. On-Delay (TONR).

The Retentive On-Delay timer (TONR) functions in a similar manner to the On-Delay

timer (TON). There is one difference. The Retentive On-Delay timer times as long as the

enabling input is on, but does not reset when the input goes off. The timer must be reset

with a RESET (R) instruction, see (figure 2.59).

Figure 2.59

2.38.5 Off-Delay (TOF)

The Off-Delay timer is used to delay an output off for a fixed period of time after the input

turns off. When the enabling bit turns on the timer bit turns on immediately and the value

is set to 0. When the input turns off, the timer counts until the preset time has elapsed

before the timer bit turns off.

51

Chapter 2 PLC Programming

'lX)(l(

'IU'I'

Figure 2.60 Off-Delay (TOF)

The S7-200s have 256 timers. The specific T number chosen for the timer determines its
' time base and whether it is TON, TONR, or TOF', check (Table 2.1).

Timer Type Resolution Maximum Value Timer Numi>er

tO(J rns 13276.1 seconds IT5-1'3t T6S-T9£

100 ms 13276.7.s~c:otids IT$7-T6~. THJ1-T2E5

Table 2:1

2.39 Counters
Counters used in PLCs serve the same function ~s mechanical counters. Counters compare

an accumulated value. to a preset value to cont~ol circuit functions. Control applications

that commonly use counters include the following:

• Count to a preset value and cause an event to occur

• Cause an event to occur until the count reaches'a preset value

A bottling machine, for example, may use a counter to count bottles into groups of six for,

packaging.

52

Chapter 2 PLC Programming

Figure 2.62 Counter's Application

Boxes in ladder logic represent counters. Counters increment/decrement one count each
' time the input transitions from off (logic 0) to on.(logic l). The counters are reset when

a RESET instruction is executed. S7-200 uses three types of counters: up counter (CTU),
I.

down counter (CTD), and up/down counter (CTUD), see (figure 2.63).

X)CK XX>(
CTU cro: CTUD

cu CD
CD
cu
H
PV

A LD

P\/ PV

O.tunt Up

Figure 2.;63

2.39.1S7-200 Counters

There are 256 counters in the S7-200, numbered CO through C255. The same number

cannot be assigned to more than one counter. For example, if an up counter is assigned ,.
number 45, a down counter cannot also be assigned number 45. The maximum count value

of a counter is ±32,767.

53

Chapter 2 PLC Programming

2.39.2 Up Counter

The up counter counts up from a current value to a preset value (PV). Input CU is the

count input. Each time CU transitions from logic O to logic 1 the counter increments by a

count of I. Input R is the reset. A preset count value is stored in PY input. If the current

count is equal to or greater than the preset value stored in PY, the output bit (Q) turns on

(not shown).

XXX
CTU

cu

R

PV

Figure 2.64 Up counter

2.39.3 Down Counter

The down counter counts down from the preset value (PV) each time CD transitions from a

logic Oto a logic 1. When the current value is equal to zero the counter output bit (Q) turns

on (not shown). The counter resets and loads thecurrent value with e
,,

preset value (PV) when the load input (LD) is enabled.
;

XXX
CID

CD

LO

P\I

Figure 2.65 Down counter

2.39.4 Up/Down Cou n ter

The up/down counter counts up or down from the preset value each time either CD or CU

transitions from logic O to logic 1. When the cm'.~ent value is equal to the preset value, the

output QU turns on. When the current value (CV) is equal to zero, the output QD turns on.

The counter loads the current value (CV) with the preset value (PY) when the load input

54

Chapter 2 PLC Programming

(LD) is enabled. Similarly, the counter resets arid loads the current value (CV) with zero

when the reset (R) is enabled. The counter stops counting when it reaches preset or zero.

CTUD.
CD
cu
R
LD
P\I

Figure 2.66 Up/Down counter

55

Chapter 3 A Coin Counter Design

A mechatronic design of a coin counter:

For this problem, we need three sensors to classify the coins been put in the system.

The sensors will classify the coins according to their diameter. The process of

classification will be as shown in the figure 3 .1 shown below:

Figure 3 .1 Classificationprocesses of coins

In the figure3. l, it's clear that the diameter of (for example) the nickel will be N, if

it passed, the sensorl will give a signal to the pie, and the plc then will decide (by some

program) that the coin passed was a nickel. And if the dime passed through the corridor,

the sensors 1 and 2 will sense it, then, both of tl~em will send signals to the plc and it will
,,

decide (by the same program) that the coin passed was a dime. The same process will be

applied to the quarter coin.

Now, we insured that the coins will be classified by their diameters and the

mechanical part of the system did its job successfully. Here, we have to look after the

electronic part of the system which is represe11ted by the pie program, how will it be

successful and how will it deal with our mechanical part. Before starting our program, we
;

have, first, to put some guide lines to be followed by the programmer to achieve the goals

of the experiment.

56

Chapter 3 A Coin Counter Design

The program is expected to have errors in counting part and confusion in receiving

the signals, and to avoid those expected errors, we don't have to rush in putting the steps of

the program. '

Difficulties faced in buildmg the PLC program:

While I was building the pie program, ~ found some difficulties which were not

expected. The following program was the first 011e that I had put:

Figure 3.2

This was made.in order to receive the signals from the mechanical part and classify

them by deciding that the signal is for nickel or dime or quarter, the decision will be

referred to the received signal as follows, if the. sensorl, only, sent a signal, that means a

nickel has passed through it, and that's right, but don't forget that when you have a dime,

the sensorl will sense it too, then, we will have an error. The system will behave like there

is a nickel; it will add one to the counter responsible of the nickel while it had to add one to

the counter of dime. Also, we will have the same error when a quarter passes through the

corridor. That is the sensors 1 and 2 will send signals to the program and it will behave like

there were both (nickel and dime). It is not important that we succeed sensing the quarter

while we have an error in the system. So, how can we avoid such an error?
I.

Solution:

To avoid the previous problem, we have to notice the point which caused it. The

point can be explained in few words: while we are using just three sensors to sense the

57

Chapter 3 A Coin Counter Design

three types of coins, and one type only needs one sensor to sense it, the others need more
,,

than one sensor, of the same previous sensors. When we have a signal from the sensor3,

that makes it sure that the quarter passed through the corridor, the diameters of the other

types are not enough for them to reach the point which the sensor3 is placed at. So, we can

replace network (3) with another containing just the sensor3 as a stipulation to activate Q

(or it is not important). But the exact aim of the correction is to prevent D to activate when

sensor! and sensor give signals caused from passing of a quarter, also preventing N to

activate when sensor! gives a signal caused from passing of a quarter or a dime. For the I"

case, we have to add another gate to the second network to insure that the sensors (1 and 2)

are not activating by a. quarter, and for the 2nd case, we have to add two gates to the first

network to insure that the sensorl is not activating by a quarter or a dime, as shown in the

figure 3.3:

Figure 33

Now, after we did this program, when· we have a quarter passing through the

corridor, all of the sensors will be sensing it, but neither the D nor the N will be active with ,.

it, that's will happen because we did not program them to activate any time the sl gives

signal. The program is stipulating for the N to activate that the sensors (2 and3) are not

sensing to insure that is for nickel. Also for the dime we are making a condition to it to

activate that sensor3 is not sensing, because if all of the sensors are sensing that means we

are having a quarter passing through the corridor not a dime. So we have solved the first

error in the system we are building.

58

Chapter 3 A Coin Counter Design

The second problem I faced was the counting process, how to translate the gates Q,
·'

D, and N into existing gates in the PLC programming to count the quarters, dimes, and

nickels. I had, as a first try, added counters inst~ad of the Q, D, and N symbols as coming

in the figure 3.4. Then, the counter (CO) represents N and counts down from M to O to

reach the maximum possible number of nickels can be counted by the system. So, the

counting process will be dependent, as same as N, on the sensors sl, s2, and s3, sensor one
should be sensing and both 2 and 3 should be .off in order to let the network! have the

output of activating the counter (CO). Also the other networks are replaced with (Cl) and

(C2) to count from M to O to reach the maximum possible number of nickels and quarters

can be counted by the system.

Figure 3'.4

59

Cenclusion

The coin counter design was modeled using a mechatronic system, containing, of course, a

mechanical part and an electronic part. The electronic part was the PLC program, it

controlled the counting process completely, then,' a logic circuit had to be put in the last

step of the system, to receive the pulses been produced by the PLC and count them one by
I

one.

Also, we can use a display unit in order to see the final result of the counter. A
;

perfect choice can be the dual-7-seg-display unit, to allow the system to count till 99 coins.
. I

I

We can add other circuits to the system to improve its properties, such as,

multipliers, adders, and modem counters and display units.

The multipliers can be added to multiply the number of the coins been inserted to

the system by their unit values in order to perform the total value of them and display it

beside their number.

The adders can improve the system too, they can add the values together to perform

the final quantity of money been inserted, and this is useful in the banks and the

supermarkets and such applications, it is ready to be developed. We can, also, develop the

mechanical system, and distribute the responsibilities between the mechanical part and the

electronic part.

Fina!Jy, the mechatronic system is depending on the designer's model that will be

put. The model should satisfy the conditions of the using field, and the design in this

project is just one of hundreds can be built.

'·

60

REFERENCES:

Introduction to mechatronics and measurement systems second edition by David G.
Alciatore and Michael B. Histand Second Edition (2003; available July, 2002)
Siemens STEP 2000 siries Basics of PLCs
Siemens STEP 2000 deries Basics of sensors
A CAPSTONE DESIGN PROJECT FOR ENGINEERING TECHNOLOGY
STUDENTS Sohail Anwarl, Ph.D., Damian Marchetti2, 30th ASEE/IEEE Frontiers in
Education Conference.

	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 1
	Titles
	AKNOWLEDGMENTS

	Page 2
	Page 3
	Titles
	TABLE OF CONTENTS
	49

	Page 4
	Page 5
	Titles
	1.1 What is Mechatronics?

	Images
	Image 1

	Page 6
	Page 7
	Titles
	,.,

	Images
	Image 1

	Tables
	Table 1

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Titles
	5

	Page 10
	Page 11
	Page 12
	Page 13
	Titles
	9

	Page 14
	Page 1
	Titles
	1.2 Sensors
	-- A
	t .
	h
	'6;l

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 2
	Titles
	II

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 3
	Titles
_J.1·'' , ...
	L:tur1;.M "l
	.Ł s1~I .,
	I . J
	I .: Hi r;1~.sit;;:,,,,v£i ,,.-,. !/;..

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	2.1 Hard-Wired Control

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 6
	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Titles
	,--· ~~l:

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Titles
	ii . ···. ,' 01::,1
	'__J- . - -()
	,· I .

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 14
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Titles
	J

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 3
	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	--(
)

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 7
	Titles
	H

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 8
	Titles
	= no.o
	--·o- o I o
	o 1 I o

	Images
	Image 1

	Page 9
	Titles
	== 00:l

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 10
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 11
	Titles
 :1 :.IL{. '}

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles

	-1~ r-()
	-----:
	-
	I I
)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 13
	Titles
	37

	Images
	Image 1
	Image 2

	Page 14
	Titles
	',·~.

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 16
	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Images
	Image 1
	Image 2

	Page 1
	Titles
	mi H
	1· d

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 2
	Titles
	.~
)
	J

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 3
	Titles
	\
	J t-rllL!II /
	'~ ~ ill

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 4
	Titles
	oao
	I \ 1
	IJI ~
	ec.o

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 5
	Titles
	r=;
	ao.o

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12
	Image 13
	Image 14

	Page 6
	Titles
	'.,, J
	' 1-llH) H/ '\.
	l"" ' \ J
	~~~~.' 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12
	Image 13
	Image 14
	Image 15
	Image 16
	Image 17
	Image 18


	Page 7
	Images
	Image 1
	Image 2
	Image 3


	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 9
	Titles
	~ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 10
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 11
	Titles
	2.39 Counters 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 12
	Titles
	cro: 
	cu 
	,. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 13
	Titles
	cu 

	Images
	Image 1


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1
	Image 2


	Page 1
	Images
	Image 1
	Image 2


	Page 2
	Images
	Image 1
	Image 2


	Page 3
	Images
	Image 1
	Image 2


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1



