
Faculty of Engineering

Department of Computer Engineering

Car Gallery

Graduation Project
COM-400

Student Name: Juma Al-khatib (20032650)

Supervisor: Assoc. Prof Dr. Adil Amirjanov

Nicosia - 2007

Acknowledgement.
Abstract.
Introduction.

,"",;:·,.

\

Contents Page No

Chapter 1: VISUAL BASIC 1

1.1 OVERVIEW 1

· 1.2 GRAF I CAL CMPONENTS 2

1.3 COMMON COMMAND BUTTONS : 4

1.4 FUNCTIONS 5

1~ PRIVATE AND PUBLIC PROCEDURE 7

1.6 SHARING EVENT HANDLERS 8

1.7 EVENTS 9

1.8 OVERVIEW OF ARRAYS 10

Chapter 2: DATA BASE 11

2.1 OVERVIEW 11

2.2 RELATIONAL MODEL 13

2.3 RELATIONAL OPERATIONS 14

2.4 OBJECT DAT ABASE MODELS , 15

2.5 DATABASE TABLES 16

2.6 WHAT IS SQL 17
_./

2.6.1 SQL KEYWORDS 17

2.6.2 DATARETRJEVAL 17

2.6.3 DATA MANIPULATION 18

. ----

Chapter 3: ODBC 19

3.1 OPENING DATABASE 19

3.2 ADDING A RECORD TO A RECORD SET 19

3.3 EDITING A RECORD IN A RECORD SET 20

3.4 MOVING TO THE FIRST RECORD IN A RECORD SET 20

3.5 MOVING TO THE LAST RECORD IN A RECORD SET. 20

3.6 DELETING A RECORD IN A RECORD SET 21

3. 7 UPDATING ARE CORD IN A RECORD SET 22

3.8 SORTING A RECORD SET 23

3.9 SEARCHING A RECORD SET 23

Chapter 4:CAR GALLERY 24
4.1 OVERVIEW 24

4.2 BLOCK DIAGRAM _25

4.3 SECURITY 26

_4.4 MAIN FORM 27

4.5 FORM USER 28

4.6 FORM CAR 30
4.6.1 FORM ADD NEW CAR 30

4.6.2 SEARCH CAR FORM 32
4.6.3 SEARCH FOR A UNIQUE CAR 33

4.6.4 VIEW FORM_ 34

4.7 FORM EDIT A CAR 35
4.8 FORM SELL A CAR 36

4.9_QUSTOMER FORM 38

4.9.1 ADD CUSTOMER FORM 38

4.9.2 FORM SEARCH FOR A CUSTOMER .40

4.9.3 FORM EDIT FOR A CUSTOMER .42

CONCLUSION 43
REFERENCES 44

2

--·-~·-·

ACKNOLEDGMENT

First, I would like. to thank Allah (God) for guiding me through my study and also a

special thanks to my supervisor ASSOC. Prof. Dr. Adil Amirjanov Who has

supervised this project and who has reviewed each chapter as it was produced, and he

never deprived me from his helpful which without I will not have achieved this work.

I would like also to thank my family that supports me any time that I needed.

Especially to my father and mother and I wish from my god to give them along life. I

would like also to thank all Drs. in the computer-engineering department for their

incredible assistance. Finally, I would like to declare that is my responsibility if any

mistake occurred in my document of either omissions or commissions.

Abstract

Car gallery is a business of buying and selling cars. The company that

works in this business called car dealer. The dealer either buys brand new car

import from the other countries or buys a second hand car from these clients.

The project is to solve the dealer's main problems of keeping the record of all

cars in the gallery wise and category wise. As well as at the same time we keep

the record from whom the car was bought , when and for how much , as well as

we do keep the record of those to whom we sell our car just in case we need to

know where that car is now.

Day after day, the numbers of people that use cars are increasing

rapidly, and the number of gallery companies is increasing too, the main role of

these companies is SELLING AND BUYING CARS.

Buying cars is the process when a customer requests a certain cars, then the

employee checks for available cars then the customer choose a car will be

provided to him after payment.

Computers have become an essential part of every aspects of life, car gallery

companies are using computers and computer systems to ease up the selling

process.

INTRODUCTION

This project is talking about car gallery by using the visual basic program
language and database access 2003.

It is explained in my chapters about how visual basic work and which data

base it's used and how the connection is occurs between visual basic and
Microsoft access 2003.

This project contains four chapters:

The first chapter describes the general information about visual basic

programming language and variable scope (including object variables),
overview about function in visual basic.

The second chapter talks about the data base how to construct it, and some

explanations about my tables, SQL statement: insert, delete, update ... etc.

The third chapter describes the connection between database and visual

basic, how they are working together in the program.

The forth chapter represents my program, explained step by step, and first showed

the whole project in a big block diagram. Then discussed how to insert, delete, update, ~
sell and search for a car and customer in the gallery.

-·--

CHAPTER I

VISUAL BASIC

1.1 OVERVIEW:

Visual Basic (VB) is an event driven programming language and associated

development environment from Microsoft. VB has been replaced by Visual Basic

.NET. The older version of VB was derived heavily from BASIC and enables the

rapid application development (RAD) of graphical user interface (GUI) applications,

access to databases using DAO, RDO, or ADO, and creation of ActiveX controls and

objects. In many ways, Visual Basic is a lot like the language that you use every day ..

When you speak or write, you use different types of words, such as nouns or verbs,

which define how they are used. Visual Basic also has different types of words known

as programming elements that define how they are used to write programs.

Programming elements in Visual Basic include statements, declarations, methods,

operators, and keywords.

A programmer can put together an application .using the components provided

with VisualBasic itself. Programs written in Visual Basic can also use the Windows

API, but doing so requires external function declarations.

In business programming, Visual Basic has one of the largest user bases.

According to some sources, as of 2003, 52% of software developers used Visual

Basic, making it the most popular programming language at that time. Another point

of view was provided by the research done by Evans Data that found that 43% of

Visual Basic developers planned to move to other languages. Visual Basic currently

competes with PHP and C++ as the third most popular programming language behind

Java and C [1).

1

1.2 GRAFICAL COMPONENTS OF VISUAL BASIC

Projects can become quite advanced in Visual Basic, even containing subprojects

of different types. From a programming point of view, however, standard Visual

Basic projects usually contain just four types of items: global items, forms, modules,

and variable scope.

• Forms

Forms are familiar to all Visual Basic programmers, of course they are

the templates you base windows on. Besides standard forms, Visual Basic also

supports Multiple Document Interface (MDI) forms, as well as a whole

number of predefined forms.

• Modules

Modules are collections of code and data that function something like

objects in object-oriented programming (OOP), but without defining OOP

characteristics like inheritance, polymorphism, and so on. The point behind

modules is to enclose procedures and data in a way that hides them from the

rest of the program.

Well discuss the importance of doing this later in this chapter when we

cover Visual Basic programming techniques and style; breaking a large

program into smaller, self-contained modules can be invaluable for creating

and maintaining code.
____,-/

You can think of well-designed modules conceptually as programming

objects; for example, you might have a module that handles screen display that

includes a dozen internal (unseen by the rest of the program) procedures and

one or two procedures accessible to the rest of the program. In this way, the

rest of the program only has to deal with one or two procedures, not a dozen.

2

• Global Items

Global items are accessible to all modules and forms in a project, and

you declare them with the Public keyword. However, Microsoft recommends

that you keep the number of global items to an absolute minimum and, in fact,

suggests their use only when you need to communicate between forms.

One reason to avoid global variables is their accessibility from

anywhere in the program; while you are working with a global variable in one

part of a program, another part of the program might be busy changing that

variable, giving you unpredictable results.

• Variable Scope

You declare variables in a number of ways. Most often, you use the

Dim statement to declare a variable. If you do not specify the variable type

when you use Dim, it creates a variant, which can operate as any variable type.

You can specify the variable type using the as keyword like this:

Dim Integer Value as Integer

Besides Dim, you can also use ReDim to redimension space for

dynamic arrays, Private to restrict it to a module or form, Public to make it

global that is, accessible to all modules or forms or Static to make sure its

Jalue does not change between procedure calls.

There are three levels of variable scope in Visual Basic: at the

procedure level, at the form or module level, and at the global level

schematically [1].

3

1.3 COMMON COMMAND BUTTONS

a. Back Color:

Specifies the command button's background color. Click the Back Color's

palette down arrow to see a list of colors and click Categorized to see a list of

common Windows control colors. Before the command button displays the

background color, you must change the Style property from 0-Standard to 1-

Graphical.

b. Cancel:

Determines whether the command button gets a Click event if the user

presses Esc.

c. Caption:

Holds the text that appears on the command button. Default determines if

the command button responds to an Enter key press even if another control has

the focus.

d. Enabled:

Determines whether the command button is active. Often, you'll change

the Enabled property at runtime with code when a command button is no

longer needed and you want to gray out the command button.

e. Font:

Produces a Font dialog box in which you can set the caption's font name,

style, and size.

f. Height:

Holds the height of the command button.

g. L)ft:
Holds the number from the command button's left edge to the Form

window's left edge.

h. Picture:

Holds the name of an icon graphic image that appears on the command

button as long as the Style property is set to I-Graphical.

i. Style:

Determines whether the command button appears as a standard Windows

command button (if set to 0-Standard) or a command button with a color and

possible picture (if set to I-Graphical).

4

j. Tab Index:

Specifies the order of the command button in the focus order.

k. Visible:

Determines whether the command button appears or is hidden from the

user. (Invisible controls cannot receive the focus until the running code

changes the visible property to True.)

1. Width:

Holds the width of the command button [l].

1.4 FUNCTIONS

There are two types of procedures in Visual Basic: subroutines and functions.

Subroutines can take arguments passed in parentheses but do not return a value.

Functions do the same but do return values (which can be discarded). A function is a

block of code that you call and pass arguments to, and using a function helps break

your code up into manageable parts. For reference's sake, here's how you declare a

function:

[Private I Public] [Static] Function name [(arglist)] [As type]

[Statements]

[Name= expression]

[Exit Function]
)

[Statements]

End Function

The Public keyword makes a procedure accessible to all other procedures in

all modules and forms.

The Private keyword makes a procedure accessible only to other procedures in

the Module or form in which it is declared.

5

The Static keyword specifies that the procedure local variables should be

preserved between calls.

The name identifier is the name of the procedure.

The arglist identifier is a list of variables representing arguments that are

passed to the procedure when it is called. You separate multiple variables with

commas.

The Statements identifier is the group of statements to be executed within the

procedure.

The arglist identifier has this following syntax:

[Optional] [ByVal ByRef] [ParamArray] varname

[()] [As type]

[= defaul. tval.ue]

In arglist

Optional means that an argument is not required.

By Val means that the argument's passed by value.

By Ref means that the argument is passed by reference (By Ref is the default in

Visual Basic).

Para4rray is used as the last argument in arglist to indicate that

The final argument is an array of Variant elements; varname is the name of the

variable passed as an argument; type is the data type of the argument; and

defaultvalue is any constant or constant expression, which is used as the

argument's default value if you've used

The Optional keyword. The type identifier is the data type returned by the

function.

6

The Exit Function keywords cause an immediate exit from a Function

procedure. You call a Function procedure using the function name, followed

by the argument list in Parentheses. You return a value from a function by

assigning the value you want to return to the function's name like this:

Name= expression. Finally, End Function

Ends the procedure definition [I].

1.5 PRIVATE AND PUBLIC PROCEDURE

Using Call can be a time-saver and make your programs much more

Maintainable because you put common code in a procedure and call that

Procedure from anywhere in the program when you need the code to execute.

You might even write a routine in one application that you will want to use

Elsewhere in another application. For example, perhaps you write a report title

That includes your company's name and address, and you want to place that

Title at the top of other reports generated in other applications.

If the procedure is located in the general section of a Form module, no other

Application can use that procedure without that Form module. Therefore, you

Can place that procedure inside a Code module.

Over time, you might fill a particular reporting Code module with several

routines that you will use for reporting. Then, any application that produces

reports can use those procedures without your having to rewrite them for each

application. All you must do is right-click over the application's Project window

and select Add, Module from the pop-up menu to bring your general procedure

module into whatever application that can use the code.

Code inside a Fann module can use the code inside an added Code module.

All you need to do is call the procedure from the Form module code with one

Exception: You can call public procedures from outside the current module, not

Private Procedures. Consider the following procedure declaration statement:

7

Private Sub Reportlt ()

This procedure can only be called from the module in which it resides. If you

Wrote the procedure as a public procedure, by defining it as follows, any

Procedure from any module in that application can call the procedure:

Public Sub Reportlt ()

Therefore, the general-purpose procedures that you write should all be public

If you want those procedures to be callable from other modules.

Therefore, you now can understand these rules:

• A procedure declared as Private can be used only within its own

Module.

• A procedure declared as Public can be used by any procedure

Within its application [1].

1.6 SHARING EVENT HANDLERS

The following example demonstrates sharing the Change event handler for a

group of three command controls. In Visual Basic 2005, the Handles clause of the

event handler specifies which control the event will handle. The event handler

returns a generic Object, so it must be cast to the specific object type (in this case,

command) that you want to handle using the Direct Cast method.

Private Sub Commandl_ Click (Index As Integer)

Select Case Index

Case 0

MsgBox ("You clicked the first command button")

Case 1

MsgBox ("You clicked the second command button ")

8

Case 2

MsgBox ("You clicked the third command button ")

End Select

End Sub

1.7 EVENTS IN VISUAL BASIC

1.7.1 Initialize Event:

In Visual Basic 6.0, the Initialize event is used to execute code before

a form is loaded.

Private Sub Form Initialize O
MsgBox ("The form is loading")

End Sub

1.7.2 Terminate Event

In Visual Basic 6.0, the Terminate event is used to execute code after a

form is unloaded

Private Sub Form Terminate O
MsgBox "The form was terminated"

End Sub

1.7.3 Unload Event

In Visual Basic 6.0, the Unload event has a Cancel argument.

Private sub command click ()

Unload me

End sub

9

1.8 OVERVIEW OF ARRAYS IN VISUAL BASIC

An array is a set of values that are logically related to each other, such

as the number of students in each grade in a grammar school.

An array allows you to refer to these related values by the same name

and to use a number, called an index or subscript, to tell them apart. The

individual values are called the elements of the array. They are contiguous

from index O through the highest index value [1].

10

CHAPTER2

DATABASE

2.1 OVERVIEW

The term database originated within the computer industry. Although its

meanmg has been broadened by popular use, even to include non-electronic

databases, this article takes a more technical perspective. A possible definition is that

a database is a collection of records stored in a computer in a systematic way, so that a

computer program can consult it to answer questions. The items retrieved in answer to

queries become information that can be used to make decisions. The computer

program used to manage and query a database is known as a database management

system (DBMS). The properties and design of database systems are included in the
study of information science.

The central concept of a database is that of a collection of records, or pieces of

knowledge. Typically, for a given database, there is a structural description of the type

of facts held in that database: this description is known as a schema. The schema

describes the objects that are represented in the database, and the relationships among

them. There are a number of different ways of organizing a schema, that is, of

modeling the database structure: these are known as database models (or data

models). The model in most common use today is the relational model, which in

layman's terms represents all information in the form of multiple related tables each

consisting of rows and columns (the true definition uses mathematical terminology).

This model represents relationships by the use of values common to more than one

table. Other models such as the hierarchical model and the network model use a more
explicit representation of relationships.

Strictly speaking, the term database refers to the collection of related records, and

the software should be referred to as the database management system or DBMS.

11

integrity and quality, if it allows shared access by a community of users, if it has a

schema, or if it supports a query language. However, there is no agreed definition of

these properties.

Database management systems are usually categorized according to the data

model that they support: relational, object-relational, network, and so on.

The data model will tend to determine the query languages that are available

to access the database. A great deal of the internal engineering of a DBMS,

however, is independent of the data model, and is concerned with managing

factors such as performance, concurrency, integrity, and recovery from

hardware failures. In these areas there are large differences between products

A database is a collection of information that's related to a particular subject or

purpose, such as tracking customer orders or maintaining a music collection. If your

database isn't stored on a computer, or only parts of it are, you may be tracking

· information from a variety of sources that you have to coordinate and organize

yourself.

Good database design ensures that your database is easy to maintain. You store data

in tables and each table contains data about only one subject, such as customers.

Therefore, you update a particular piece of data, such as an address, in just one place

and that change automatically appears throughout the database [2].

12

2.2 Relational model

The relational model was introduced in an academic paper in 1970 as a way to

make database management systems more independent of any particular application.

It is a mathematical model defined in terms of predicate logic and set theory.

The products that are generally referred to as relational databases in fact

implement a model that is only an approximation to the mathematical model defined

by Code. The data structures in these products are tables, rather than relations: the

main differences being that tables can contain duplicate rows, and that the rows (and

columns) can be treated as being ordered. The same criticism applies to the SQL

language which is the primary interface to these products. There has been

considerable controversy, mainly due to Code himself, as to whether it is correct to

describe SQL implementations as "relational": but the fact is that the world does so,

and the following description uses the term in its popular sense.

A relational database contains multipletables, each similar to the one in the "flat"

database model. Relationships between tables are not defined explicitly; instead, keys

are used to match up rows of data in different tables. A key is a collection of one or

more columns in one table whose values match corresponding columns in other

tables: for example, an Employee table may contain a column named Location which

contains a value that matches the key of a Location table. Any column can be a key,

or multiple columns can be grouped together into a single key. It is not necessary to

define all the keys in advance; a column can be used as a key even if it was not

originally intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique key.

Typically one of the unique keys is the preferred way to refer to a row; this is defined

as the table's primary key.

A key that has an external, real-world meaning (such as a person's name, a book's

ISBN, or a car's serial number) is sometimes called a "natural" key. If no natural key

is suitable (think of the many people named Brown), an arbitrary key can be assigned

(such as by giving employees ID numbers). In practice, most databases have both

generated and natural keys, because generated keys can be used internally to create

links between rows that cannot break, while natural keys can be used, less reliably, for

searches and for integration with other databases. (For example, records in two

13

independently developed databases could be matched up by social security number,

except when the social security numbers are incorrect, missing, or have changed[2].

2.3 Relational operations

Users (or programs) request data from a relational database by sending it a query

that is written in a special language, usually a dialect of SQL. Although SQL was

originally intended for end-users, it is much more common for SQL queries to be

embedded into software that provides an easier user interface. Many web sites, such

as Wikipedia, perform SQL queries when generating pages.

In response to a query, the database returns a result set, which is just a list of rows

containing the answers. The simplest query is just to return all the rows from a table,

but more often, the rows are filtered in some way to return just the answer wanted.

Often, data from multiple tables are combined into one, by doing a join.

Conceptually, this is done by taking all possible combinations of rows (the Cartesian

product), and then filtering out everything except the answer. In practice, relational

database management systems rewrite ("optimize") queries to perform faster, using a

variety of techniques.

There are a number of relational operations in addition to join. These include

project (the process of eliminating some of the columns), restrict (the process of
/

eliminating some of the rows), union (a way of combining two tables with similar

structures), difference (which lists the rows in one table that are not found in the

other), intersect (which lists the rows found in both tables), and product (mentioned

above, which combines each row of one table with each row of the other). Depending

on which other sources you consult, there are a number of other operators - many of

which can be defined in terms of those listed above. These include semi-join, outer

operators such as outer join and outer union, and various forms of division. Then there

are operators to rename columns, and summarizing or aggregating operators, and if

you permit relation values as attributes (RVA - relation-valued attribute), then

operators such as group and ungroup. The SELECT statement in SQL serves to

handle all of these except for the group and ungroup operators.

14

The flexibility of relational databases allows programmers to write queries that

were not anticipated by the database designers. As a result, relational databases can be

used by multiple applications in ways the original designers did not foresee, which is

especially important for databases that might be used for decades. This has made the

idea and implementation ofrelational databases very popular with businesses [2].

2.4 Object database models

In recent years, the object-oriented paradigm has been applied to database

technology, creating a new programming model known as object databases. These

databases attempt to bring the database world and the application programming world

closer together, in particular by ensuring that the database uses the same type system

as the application program. This aims to avoid the overhead (sometimes referred to as

the impedance mismatch) of converting information between its representation in the

database (for example as rows in tables) and its representation in the application

program (typically as objects). At the same time object databases attempt to introduce

the key ideas of object programming, such as encapsulation and polymorphism, into

the world of databases.

A variety of these ways have been tried for storing objects in a database. Some

products have approached the problem from the application programming end, by

making the objects manipulated by the program persistent. This also typically requires

th~ddition of some kind of query language, since conventional programming

languages do not have the ability to find objects based on their information content.

Others have attacked the problem from the database end, by defining an object­

oriented data model for the database, and defining a database programming language

that allows full programming capabilities as well as traditional query facilities.

Object databases suffered because of a lack of standardization: although standards

were defined by ODMG, they were never implemented well enough to ensure

interoperability between products. Nevertheless, object databases have been used

successfully in many applications: usually specialized applications such as

engmeenng databases or molecular biology databases rather than mainstream

commercial data processing. However, object database ideas were picked up by the

15

Others have attacked the problem from the database end, by defining an object­

oriented data model for the database, and defining a database programming language

that allows full programming capabilities as well as traditional query facilities.

Object databases suffered because of a lack of standardization: although standards

were defined by ODMG, they were never implemented well enough to ensure

interoperability between products. Nevertheless, object databases have been used

successfully in many applications: usually specialized applications such as

engmeenng databases or molecular biology databases rather than mainstream

commercial data processing. However, object database ideas were picked up by the

relational vendors and influenced extensions made to these products and indeed to the

SQL language [2].

16

2.5 DAT ABASE TABLES

D)
MODEL
TYPE
COLOR
CLASS
MOTORSIZE
KMPASSED
POWER ST
ABSBRAKE
EXTRAS
ORIGINAi.PRICE
SOLOPRlCE
PROFIT
CUSTID
USERIO
MOTORNUM
LCSPLT

LNAME
AOORESS
M08ILE

TE

Figure 2.1: Database Tables

As we see it is used four tables in this project as follows:

• Cars table: indicate the car objectives include model,type,motorsize,color,class

Km passed.
) v

• Customer table: indicate the information about the client including first name,

last name, address, mobile and selling date.

• Employee table: indicate the employee (salesman) in the project which include

first name, last name, mobile, salary and date of birth.

• User table: indicate the user which allowed to enter the system which include

user name, password.

17

SQLSTATEMENTSTHATUSED

2.6 WHAT IS SQL

SQL stands for Structured Query Language. SQL is used to communicate with a

database. According to ANSI (American National Standards Institute), it is the

standard language for relational database management systems. SQL statements are

used to perform tasks such as update data on a database, or retrieve data from a

database. Some common relational database management systems that use SQL are:

Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc. Although most database

systems use SQL, most of them also have their own additional proprietary extensions

that are usually only used on their system. However, the standard SQL commands

such as "Select", "Insert", "Update", "Delete" can be used to accomplish almost

everything that one needs to do with a database. This tutorial will provide you with

the instruction on the basics of each of these commands as well as allow you to put

them to practice using the SQL Interpreter [3).

2.6.l SQL keywords

SQL keywords fall into several groups.
-) '

2.6.2 Data retrieval

The most frequently used operation in transactional databases is the data retrieval

operation. When restricted to data retrieval commands, SQL acts as a declarative

language.

SELECT is used to retrieve zero or more rows from one or more tables in a

database. In most applications, SELECT is the most commonly used Data

Manipulation Language command. In specifying a SELECT query, the user specifies

a description of the desired result set, but they do not specify what physical operations

must be executed to produce that result set. Translating the query into an efficient

query plan is left to the database system, more specifically to the query optimizer.

17

Commonly available keyword~ated to SELECT include:

FROM is used to indicate from which tables the data is to be taken, as well as how

the tables JOIN to each other.

WHERE is used to identify which rows to be retrieved, or applied to GROUP BY.

WHERE is evaluated before the GROUP BY.

GROUP BY is used to combine rows with related values into elements of a

smaller set of rows.

HAVING is used to identify which of the "combined rows" (combined rows are

produced when the query has a GROUP BY keyword or when the SELECT part

contains aggregates), are to be retrieved. HAVING acts much like a WHERE, but it

operates on the results of the GROUP BY and hence can use aggregate functions.

ORDER BY is used to identify which columns are used to sort the resulting data.

Data retrieval is very often combined with data projection; usually it isn't the data

stored in primitive's data types that a user is looking for or a query is written to serve.

Often the data needs to be expressed differently from how it's stored. SQL allows a

wide variety of formulas included in the select list to project data. A common

example would be:

SELECT Unit Cost* Quantity As Total Cost FROM Orders [3]

)

2.6.3 Data manipulation

First there are the standard Data Manipulation Language (DML) elements. DML
-

is the subset of the language used to add, update and delete data.

INSERT is used to add zero or more rows to an existing table.

UPDATE is used to modify the values of a set of existing table rows.

18

MERGE is used to combine the data of multiple tables. It is something of a

combination of the INSERT and UPDATE elements. It is defined in the SQL: 2003

standard; prior to that, some databases provided similar functionality via different

syntax, sometimes called an "upsert".

TRUNCATE deletes all data from a table (non-standard, but common SQL

command).

DELETE removes zero or more existing rows from a table.

Example:

INSERT INTO my table (field 1, field2, field3) VALUES ('test', 'N', NULL);

UPDATE my table SET field 1 = 'updated value' WHERE field2 = 'N';

DELETE FROM my table WHERE field2 = 'N';

EXAMPLE FOR (insert, update, delete):

INSERT INTO CUSTOMERS (ID, FNAME, LNAME, ADDRESS, MOBILE)

VALUES("& txtCUSID.Text &","& txtCUSFNAME.Text &","&

txtCUSLNANE.Text&","&txtCUSADD.Text&","& txtCUSMOB.Text &")

UPDATE ~pSTOMER SET FNAME = "& txtCUSID.Text &", LNAME="&

txtCUSLNAME.Text"&,"& ADDRESS="& txtCUSADD.Text"&

WHERE ID="& txtCUSID.Text

19

CHAPTER3

Open Database Connectivity

ODBC

3.1 OPENING DATABASE:

To open an existing DAO Database, I use the DAO Open Database method, passing it

the name of the Database to open, and this is the syntax:

Set Database=Open Database ("db path\db name.mdb'')

• Db name the name of an existing Database file.

• Db path the location of my database.

3.2 ADDING A RECORD TO A RECORD SET:

To add a new record to a DAO record set, you use the AddNew method

Private Sub Commandl_Click ()

Set db= open database ("path\cars.mdb")

Set tb= db.openrecordset ("cars")

dbrecordset.AddN ew

Textl.Text = ""

Text2.Text = ""

Tb.close

Db.close

19

3.3 EDITING A RECORD IN A RECORD SET:

Besides adding new records to the record set, users might want to edit the existing

records.

To do that, you use the Edit method like this in our DAO code.

Private Sub Command2 Click ()

dbrecordset.Edit

End Sub

3.4 MOVING TO THE FIRST RECORD IN A RECORD SET:

To make the first record in a record set the current record, you use the MoveFirst

method.

Here's how we move to the first record when the user clicks the appropriate button in

our DAO code

Private Sub Command3 _Click()

dbrecordset.MoveFirst

End Sub

3.5 MOVING TO THE LAST RECORD IN A RECORD SET:

To make the last record in a record set the current record, you use the MoveLast
method. Here's how we move to the last record when the user clicks the appropriate
button in our DAO code.

Private Sub Command4 _ Click()

dbrecordset.MoveLast

End Sub

20

After moving to the last record, we display that record's fields in the two text

boxes in the program,

Textl and Text2:

Private Sub Commands_ Click()

dbrecordset.MoveLast

Textl .Text= dbrecordset.fields(O)

Text2.Text = dbrecordset.fields(l)

End Sub

3.6 DELETING A RECORD IN A RECORD SET:

To delete a record in a DAO record set, you use the Delete method.

Private Sub Cornmand6 _ Click ()

Textl .Text= ""

Text2.Text = ""

dbrecordset.Delete

End Sub

21

3.7 UPDATING A RECORD IN A RECORD SET:

When the user changes the data in a record or adds a new record, we must update the

Database to record that change, and you use the record set Update method to do that:

recordset.Update (type, force)

Here are the arguments in this function:

• Type-Constant indicating the type of update, as specified in Settings

(ODBCDirect workspaces only).

• Force-Boolean value indicating whether or not to force the changes into the

Database, regardless of whether the data has been changed by another user

(ODBCDirect workspaces only).

Private Sub Command7 Click()

dbrecordset.fields(O) = Textl .Text

dbrecordset.fields(l) = Text2.Text

End Sub

After loading the data into the current record's fields, we save that record to the

Database using the Update method:

Private Sub Command6 _ Click()

dbrecordset.fields(O) = Text} .Text

dbrecordset.fields(l) = Text2.Text

dbrecordset. Update

End Sub

22

3.8 SORTING A RECORD SET:

To sort a record set, you can install the index you want to sort with in the record

set's Index property.

For example, we can sort the record set in our DAO code example, the DAO code

project, with the index we've created this way:

Sub Sort Click()

Set dbindex = td.Indexes(O)

dbrecordset.Index = dbindex.Name

After the record set is sorted, we display the first record in the two main text

boxes, Textl and Text2:

Sub Sort Click()

Set dbindex = td.lndexes(O)

dbrecordset.Index = dbindex.Name

Textl .Text= dbrecordset.fields(O)

Text2.Text = dbrecordset.fields(l)

End Sub

3.9 SEARCHING A RECORD SET:

You can search a record set with an index; we just set its Index property to the

index we want to search and then set its Seek property to the string we want to

search for. Let's see an example. When the user selects the Search menu item in

our DAO.

Installed the index based on the first field in the record set and show the dialog

box named Search.

23

Private Sub Search_ Click()

Set dbindex = td.Indexes(O)

dbrecordset.Index = dbindex.Name

SearchForm.Show

End Sub

After the user dismisses the Search ... dialog box, we retrieve the text to search for

from that dialog box's text box and place that text in the record set's Seek property,

along with the command "=", which indicates we want to find exact matches to the

search text:

Sub SearchTable()

dbrecordset.Seek "=", SearchForm.Textl.Text

Besides =, you can also search using <, <=, >=, and >. When the search is

complete, we display the found record in the project's main text boxes, Textl and

Text2:

Sub SearchTable()

dbrecordset.Seek "=", SearchForm.Textl.Text

Text} .Text= dbrecordset.fields(O)

Text2.Text = dbrecordset.fields(l)

End Sub

24

)

CHAPTER4

CAR GALLERY

4.1 OVERVIEW

This project is an efficient and flexible for using. And any one can use

it without any effort.

My project contained many forms each of them have a task. The

program has a security for accessing to the main program. This allowed the

manager to access to main form and make all the operation that the system

supports.

And allowed employee (salesman) to search about a car and sell it only.

Now I decided to create a block diagram for whole system to see the

features and how the system work and what are forms contain.

24

4.2 BLOCK DIAGRAM

"O
"O

<

.t::
"O

LJ e e
OJI c,: :a
~
(.I
0 J ~ J;l ::c 1H .. ~ ...• <l)

..,;. > t = OJI

@

..•
u

~
c:<l

@ •...
c$2 u ~ ..c:: -5 u

~
~

<l)
V)

•... hm <l)

"' :J

.: y •...
<l) •••. I :a ;z: ro

"1-l "O u
"O

< I I ~-. ~
~

25

4.3 SECURITY

Figure 4 .. 2: the security of system

In this form the users or the manager should enter there usemame and

password to log in the program, if the user or the manager entered a wrong

password they will not Allowed to access to the system visa versa for the user

name. And each user has a unique password and username for entering.

And here what is written in login button:

Private Sub cmdLogin Click()

Set DB= OpenDatabase(App.Path & "\carsdb.mdb")

Set TB= DB.OpenRecordset("SELECT * FROM USERS WHERE" &

"USERNAME='" & txtUser.Text & "'")

If TB.EOF = False Then

If TB("PASSWORD") = txtPass.Text Then

myUserID = TB.Fields("ID")

If txtUser.Text = "juma" Then

If frmMain .. Visible = False Then

frmMain.Show

Else

MsgBox "Access To The Main Program Is Forbidden!",

vbCritical, "Sales Manager"

frmSrchForCar.Show

frmSrchForCar.cmdEditCar.Enabled

End If

Unload Me

Else

False

MsgBox "Wrong Password!", vbCritical, "Error"

End If

26

Else

MsgBox "User Not Found!", vbCritical, "Error"

End If

End Sub

4.4 MAIN FORM

Figure 4.3: main form (home page)

This is the main form for this project that has the following menu file,

cars, customer, report, and help.

27

4.5 FORM USER

In this form it is mentioned about the users (employee) that I have them

in my gallery which is salesman.

10 _llirst N.n10 I tast Name-]Addre"
533847906: Un t<nvwn cies, !efkosa ·e384oio·:u~"i<nown·ci~?iefk0$·a

{los•

Figure 4.4: Users

In the users form it is used msflexgried components for construct a

table, as follows:
Private Sub RefillGrid()

With flxMain

.Clear

.Rows 1

.Cols= 7

.Row= 0

.Col= 0

._ext:= "ID"

• _,OW 0

.ce;

.=ex= = "First Name"

0
.~o.::_ = 2

.=exc = "Last Name"

28

.Row= 0

.Col= 3

.Text "Mobile"

.Row= 0

.Col= 4

.Text= "Salary"

.Row= 0

.Col= 5

.Text "Address"

.Row 0

. Col 6

.Text= "Date Of Birth"

.ColWidth(O) = 800

.ColWidth(l) = 2900

.Co1Width(2) = 2000

.Co1Width(3) = 1600

.Co1Width(4) = 14 00 -

.ColWidth(S) = 2400

.Co1Width(6) = 1400

While Not TB.EOF

.Additem TB.Fields("ID") & Chr(9) &

TB.Fields("FNAME") & Chr(9) &

TB.Fields("LNAME") & Chr(9) &

TB.Fields("MOBILE") & Chr(9) &

GetCarClass (TB. Fields ("CLASS")) & Chr (9) &

TB.Fields("ADDRESS") & Chr(9) &

TB. Fields ("DOFBIRTH")

TB.MoveNext

DoEvents

Wend

End With

End Sub

29

4.6 FOMf CAR

[
[_]

Add New
Car

Car

" i
Search for a LView

Car
·-

Figure 4.5: this diagram showed the car form

4.6.l FOm1AODNE\VCAR

Figure 4.6: this form for add anew car

This form have capable of adding (buying) anew car that the manager

buying it from the free zone car. And having full information including the

price and extra options and here we will see how add car button work by code:

30

Private Sub cmdAddCar Click()

If CheckTexts = False Then Exit Sub

DB.Execute ("INSERT INTO CARS(ID, LCSPLT, MODEL, TYPE, " &

"COLOR, CLASS, MOTORSIZE, MOTORNUM, POWERST, KMPASSED, " &

"ABSBRAKE, ORIGINALPRICE, EXTRAS, SOLDPRICE) " &

"VALUES (" & txtCarDet (0) . Text & ", " &

"'" & txtCarDet(9) .Text & II I II & I

txtCarDet (l) . Text & II II & ,
"'" & txtCarDet (2) . Text & II &

"'" & txtCarDet(3) .Text & II &

comClass.Listindex & II II & I

txtCarDet (4) . Text & II II &

"'" & txtCarDet (5) . Text & " &

comSteering.Listindex & " " &

txtCarDet (6) . Text & ", " &

IIf(comBrakes.Listindex = 0, DB~TRUE, -DB FALSE) & " " &

txtCarDet (7) . Text & " " &

"'" & t x t.Ca r De t; (8) . Text & 0) ") .·

If MsgBox("Car Was Added Successfully!" & vbNewLine &

"Add Another?",

vbYesNo + vbinformation, "Add A New Car")

Call ClearTexts

Call MakeID

txtCarDet (0) . Set Focus

vbYes Then

Else

Unload Me

End If

End Sub

31

'11Gl1C21212
LK90.B3,it

1
599K1'PPK:Paz­
tlMSWOO

1 -15454JKJL45S 1•m=~,u

I

Herce,d~~ ·aer-2 S·El:so_o
Mertedes

l r;~:ercedes dalw~

lm~ritedcs enc ..240
toyot~ celic a I .
I
I

·!

Figure 4.7: The form for search a unique car

This form allow the manager to edit car and sell it if it is need, and

allow for the users to sell a car only if it is need.

32

4.6.3 SEARCH FOR A UNIQUE CAR

Figure 4.8: search for unique car

se form this form is to find out the car which the customer

·- form helps the customer to select a suitable car for him,

_.-. In this form you don't need to fill all text. You have just

~r"m automatically searches for you depend on what the field you

h about.

33

4.6.4 VIE\V FORM

Figure 4.9: this form for view all car

The purpose of this form is to view the entire car that the gallery
includes

And containing some information about the car.

34

4. 7 FORM EDIT A CAR

Figure 4.10: edit a car

In this section the manager can update information about a special car

after selected it and then he have to press to the save button to save the changes

that he have made it to my database.

Here the code of save car button:

Private Sub cmdSave_Click()

If CheckTexts = False Then Exit Sub

Dim SQL$

SQL = ("UPDATE CARS SET LCSPLT= '" & txtCarDet(9) .Text &

" ' , MODEL= " & txtCarDet (1) . Text & ", " &

"TYPE='" & txtCarDet(2).Text & "', " &

"COLOR='" & txtCarDet(3) .Text & "', " &

"CLASS=" & comClass. List Index & ", " &

"MOTORSIZE=" & txtCarDet (4) . Text & ", " &

35

•r.~-OTO:l!'mY=' '' & t.x t.Ca r De t (5) . Text & 11', 11 &

"?C,•C:RS?=" & comSteering. Listindex & 11, 11 &

"K,.'~?h.SSED=" & txtCarDet (6) . Text & 11, 11 &

"..:-3S3~=" & IIf(comBrakes.Listindex 0, DB_TRUE,

DB FALSE) & II' II &

"ORIGINALPRICE=" & txtCarDet (7) . Text & 11, 11 &

"EXTRAS=' 11 & txtCarDet (8) . Text & 11' 11 &

"WHERE ID=" & txtCarDet(O).Text & 11;11)

DB.Execute SQL

MsgBox "Car Was Updated Successfully!", vbinformation,

"Update Car"

frmSrchForCar.IsChanged

Unload Me

True

End Sub

4.8 FORM SELL A CAR

•• ' ••••••••••••• ' •••• ' •• ' •• >' •••••••••••••••• ', ' •• ' ••••• ' •••••• > •. '.

: seiing :c~r oet~H~:
" ; ' • ' • ' ' ' • ' ' ' ' • ·, ' ' • ~ ' ' • ' • • • • • > • • l • • • • • • • a • • , , ,· • , , , ~ ,

• ~ , • • • • • • > • • •· • • • ' • • • • • ' a , • •

0 0 • ' • 0 • T •. 0 0 ~ 0 0 0 > • •, , 0 :, T , 0 ' "

· 1::ar-10: · · · · · · · · · · · · · · · · · · ·
••••• '...... < •••••••••••• ,, •• >.'

:: : : M~~~I; .: : : : : I I : : : : : : : : :: : : '. : : : : : : : >
:T:YP~,:: ::::::1-=================;-:-'.:-:-:-:-:--:-:--:-:-::-:-:~ ·.. . . : ~:0,f?".:: ..

l : : :: : : : : : : :: : : :: : : : :: : : : : : :
' • • ~ ••.. '· • • > •,.' ' • • ~ •• •· ' r:o~~~ $~e:e:ri~o:f comsteer,ng

:A:~~~~~~~~:: : : jc~m8rakes:::]
:::] . . . ' .. ' ,

...... ·, .. ,., . '. '.
~· '. > •. •• • • •, ••• >.' '. '·, •.'.

· First-Name: ·
iell Car j '.

'' i
&_ancel

: : : : -~~~~ ~~~~:: : : : ; .. Add. OJ ·~e~r~h j
•pat~;:::::::: I I:::::::::::·:::::::::::::

Figure 4.11: selling a car

After the customer takes decision for choosing his car finally we go to

the last operation which is the selling part, after selling the car i made

hnioue to save all cars that I have sold it, but the question now how we can

6

Ye sold and the car that not sold, the answer

"sold " word in my database, After that we

car button:

- ~= 3~~~~g, curProfit As Currency

a~.~x~:a~~ec(S) .Text) <= 0 Then

--=o:==x "C:"'"r Price Cannot Be Zero!", vbCritical, "Error"

=~~~~o:it = CCur(txtCarDet(S) .Text) - OriginalPrice

SQ::.., = "UPDATE CARS SET SOLDPRICE=" & txtCarDet (5) . Text &

, PROFIT=" & curProfit &

, C\JSTID=" & txtCustID.Text &

, USERID=" & myUserID & _

" WHERE IO=" & txtCarDet (0) . Text

OB.Execute SQL
MsgBox "Car Was Sold Successfully1" & vbNewLine &

"Congratulations For Both Dealer And Customer!",

vbinformation, "Sold"

Unload Me

End If

EndSub

Customer

.Y.
Search

Edit Search Add

Figure 4.12: customer diagram

4.9.1 ADD CUSTOMER FORM

.13: .add

In this form we can add customer whose have sold a car from our

gallery

This form has all information about the customer.

The following code is indicated the add customer button (see figure13):

Private Sub cmdAddCust Click()

If IsNumeric(txtCusMob.Text) = False Then

MsgBox "Please enter a valid mobile number!", vbCritical,

"Error"

txtCusMob.SetFocus

SendKeys "{home}+{end}"

Exit Sub

End If

If IsDate(txtCusSelDt.Text) = False Then

MsgBox "Please enter a valid date 1
", vbCri t.ical,

"Error"

txtCusSelDt.SetFocus

SendKeys "{home}+{end}"

Exit Sub

End If

If txtCusFName.Text =""Or txtCusLName.Text =""Or

txtCusMob.Text "" Or txtCusSelDt.Text =""Then

MsgBox "Please enter all customer details1", vbCritical,

"Error"

Else

Dim SQL As String

SQL = "INSERT INTO CUSTOMERS (ID, FNAME, LNAME, ADDRESS, " &

"MOBILE, SELLINGDATE) VALUES(" &

txtCusID. Text & ", '" & txtCusFName. Text & '" &

txtCusLName.Text & '" &

txtCusAdd.Text & " & txtCusMob.Text & " " &

txtCusSelDt. Text & ");"

DB.Execute SQL

MsgBox "Customer Was Added Successfully.", vbinformation,

"Successful"

39

If frmSellCar.Visible = True Then

frmSellCar.txtCustFLName.Text txtCusFName.Text & " " &

txtCusLName.Text

frmSellCar.txtCustID.Text txtCusID.Text

End If

Unload Me

End If

End Sub

4.9.2 FORM SEARCH FOR A CUSTOMER

Entel Costome1 Name: ~
Cancel \

Mobile Address

s

795558454
123123123
323232323
533888888
533875665

Amman, Tla3 al 3aly
qweqweqweq
Amman, Jordan
Gonyeli Belediyesi Arkasinda
gonialy

iearch
!;_lose ~dit Add New

Figure 4.14: search for a customer

In this form we can search about any customer that we have saved them in my
database and we want take some information about any customer that the manager

wants.

40

Here the code of search button that indicates in figurel 4:

Private Sub cmdSearch Click()

Dim x$

x = Input Box ("Enter Customer Name:", "Search For Customer")

If Not X =""Then

Dim i As Integer

For i = 0 To lstID.ListCount

If LCase$(Left$(lstName.List(i), Len(x))) = LCase(x) Then

MsgBox "Selected Customer Was Found!", vbinformation,

"Found"

lstID.Listindex i

Call lstID Click

Exit Sub

End If

DoEvents

Next i

Else

Exit Sub

End If

MsgBox "Selected Customer Was Not Found!", vbinformation,

"Not Found"

Call RefreshLists

End Sub

1

4.9.3 FOR.,1 EDIT FOR A CUSTOMER

Figure 4.15: edit a customer

after select the customer that we want to update some

him and then we press the save button that will

ged in my database.

of Cancel Button:

42

Conclusion

-~ intention was to build my car gallery system from the bottom

ssed by Allah. Started step by step, I used new programming

_ efficient and easy to understand, learnt how to gather

now confidently used too many tools such as, Visual Studio

access2003.

re purchase a car so easy to the use without any much effort.

rtant thing in my working that any one can use it and no need

ssional person, so it's very easy and very clear.

ser has a particular authority in using this program by defining

ons and that related to his name and password and it's

~acred to be security for the program

Reference

visual basic 6 c.e:~~-:1 =i.-c1
4. the complete vis _· Evanglos Petros

ebsites:

1. http://WW\1,_L}.._,~~h.u
2. http://wv

