
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Internet Programming and Reserving a Book on
The Web Using ASP

Graduation Project
COM-400

Student: Mohammed Jalal Mohammed
(980887)

Supervisor: Mr. Umit llhan

Nicosia - 2002

.. ACKNOWLEDGMENTS

I would like to thank Mr. Umit for letting me choose the project by my self and

also searching for the idea and improve it. It allowed me to improve my self and do the

progress of the project in a good manner. Also, I would like to thank the Chairman of

Computer Engineering Department Assoc. Prof. Dr Dogan Ibrahim for taking good care

of the department's students. Finally, its my pleasure to thank Mr. Tayseer Alshanableh

for his support during all my years in the University.

I am pleased to mention in my acknowledgment my family and thank them for

encouraging me to do it and perform in it as well as I can.

ABSTRACT .•

Inernet programming and web designing technology, nowadays, is a very

important application. In this project, I will talk about this useful topic in general.

The project is divided into three main chapters. Each chapter includes specific

topics that are related to Internet services and designing web pages. Also, including

some definitions, examples and applications.

The Internet is a common word that almost every body knows it and uses it in

most of his daily life needs. It has all the kinds of information and fun stuff that is

available for every person in the world. Although, its easy to use and understandable to

any one and some of the web sites on the Internet are available in different languages

but most of them are in English, which is almost the language that every body knows.

Today, the Internet is a way to connect people with each other and make them

communicate easily. The advantage of this that it doesn't cost lot money and it's

cheaper than using the ?ther communication tools such as telephones, faxes ... etc.

As it is mentioned above, the project is divided into three different chapters, and

each chapter has main topics and sub topics, which are defiantly related to each other in

a way, and related to the main topic of the project, which is Web Designing with an

Example of (Reserving a Book on The Web Using ASP).

II

TABLE OF CONTENTS

Acknowledgments i

Abstract. ii

Contents .iii

Introduction vi

Chapter 1 World Wide Web (www) Overview 1

1.1 Introduction .

1.2 Website - · 3

1.3 Web Interface Definition Language (WIDL) 4

1.3.1 BenefitsofWIDL. 5

1.4 Web Services Description Language (WSDL) 8

1.4.1 SOAP Binding 10

1.4.2 HTTP GET & POST Binding 10

1.4.3 MIME Binding 11

1.5 FTP (File Transfer Protocol) 12

Chapter 2 Tools and. Languages of Internet Programming 13

2.1 HTML 13

2.1.1 Document Tags 15

2.1.2 Basic Text Structures 16

2.1.3 Anchors 18

2.1.4 Images 18

2.2 Dynamic HTML (DHTML) and CSS 19

2.2.1 The Document Object Model 21

2.2.1.1 Pixel Level Accuracy: Absolute Positioning with CSS 22

2.2. l .2Malleable Content: Dynamic Control of CSS Styles 22

2.2.1.3 Pages on the Fly: Dynamic Creation of Content 23

2.2.1.4 Multimedia Medium: Microsoft's Multimedia Control. 23

2.2.2 Usages and Some Examples 24

2.3 JAVA and Java Script.. 25

2.3.1 Scope : .30

lll

2.3.4 Comparison .33 ..
2.3.5 Boolean 33

2.3.6 String 34

2.3.7 Assignment 34

2.3.8 Special. .35

2.3.9 Statements 35

2.3.10 Conditionals 36

2.3.10.1 If. .. Else 36

2.3.10.2 Switch (Netscape & MISE 4) 36

2.3.11 Loops 37

2.3.11.1 For 37

2.3.11.2 Do While (Netscape & MISE 4) 38

2.3.11.3 While 38

2.3.11.4 Break and Continue 39

2.3.12 Comments 39

2.3.13 Functions 40

2.3 .13 .1 Defining Functions 40

2.3.13.2 Calling Functions 41

2.3 .14 Document Object Model. .42

2.3.14.1 Properties 43

2.3.14.2 Methods 44

2.3.15 Summary 44

2.4 VB Script 45

2.4.1 Example: Script-Level Code .48

2.4.2 Adding VB Script to Web Pages 49

2.4.2.1 The <SCRIPT> Tag 49

2.4.3 Defining Subroutines 50

2.4.3.1 Subroutine Names 51

2.4.3.2 Example: Using a Custom Subroutine to Share Code 52

2.5 Common Gateway Interface (CGI) 52

2.5.1 CGI Beyond the World Wide Web and HTML 53

2.5.2 How CGI Works 54

2.5.2.1 Standard Input and Output. 55

2.5.3 Where CGI Scripts Live 56

IV

2.5.4 CGI Server Requirements 57
' 2.6 Active Server Pages (ASP) 58

Chapter 3 Reserving a Book From Library (Using ASP) 59

3.1 Creating the Database 59

3.2 The Page's Code 60

Conclusion 70

References 71

V

INTRODUCTION .•

This project main utility is to create a web page that has a communicating

activity to a certain database stored in a specific server. Before designing and

programming this important and powerful application, we had to take a tour over the

Internet world and its programming tools and languages.

The project is divided into three main chapters including several topics such as

Internet services, web pages programming tools, definitions, examples and applications.

The first chapter indicates an over view to World Wide Web (www) and

defining the meaning of a web site. It also includes explanation of the web interface

definition language (WIDL) with its benefits and the web services description language

(WSDL). Finally, the last section of this chapter explains an important feature in

transferring data to and from the Internet, which is the File Transfer Protocol (FTP).

The second chapter of the project defines the different Internet programming

tools and languages that are used to design and program any web page. This includes

HTML, Dynamic HTML (DHTML), Java and Java Scripts, Visual Basic Scripting (VB

Script), Common Gateway Interface (CGI) and the most powerful tool, which is the

Active Server Pages (ASP).

Finally, the last chapter of the project, which is the third one, indicated the main

purpose of this project, which is reserving a book from library on the web using an

Active Server Page (ASP). It includes creating the database with its articles that are

needed to be stored in the library's server. Then the ASP code to create the active page

with its description, and finally the layout of the page after applying the ASP program

code.

The project is organized such as it goes in a step by step explaining manner until

the desired purpose of this project is reached in the last chapter of the project.

VI

Chapter 1

World Wide Web (www) Overview

1.1 Introduction

WWW" is shorthand for "World Wide Web."

Conceived in 1989 by Tim Berners-Lee, the Web is a way to use the

Internet to share files from computers around the world.

No one "owns" the Web, and no one "runs" the Web - at least in the usual

sense of that word. It is preserved from being chaotic because there is general

agreement on a set of standards for Web pages. These standards have nothing to

do with the content of the page, just how it will be transferred from one computer

to another and how different computers will read it.

There are two fundamental types of software needed to make the Web a

reality. One is the piece of software that is designed to serve Web files to the rest

of the world. This software is called a Web "server." There are Web servers

designed to run on all the popular operating systems, including Unix, Windows,

and Macintosh.

The second piece of software is technically called a "client," but most

people know it as a "browser." It is what you are using to read this message.

Browsers first dealt with text only. In 1994 a browser called Mosaic generated an

explosion in Web growth because it also read images and included a simple,

graphical user interface. The most popular Web browser in 1996 is Netscape, but

there are several others challenging it, includirig various versions of Mosaic.

In 1993-94 there was much talk about how we should build an

"Information Superhighway." You don't hear that term too much any more, for as

people were talking about it as something to be done in a more distant future,

others knew it was already here. It was the Internet and its most exciting use was

the Web.

•
The World Wide Web (WWW or Web) is defined by two characteristics:

1. It is a "hyperlinked" communications service that piggy-backs on top

of the Internet's TCP/IP communications technology.

2. It is composed of millions of hyperlinked, graphical Web pages that

may host a wide range of text, image, audio, and video media.

"Hyperlinks" are a way of actively linking text or graphical documents (or

other kinds of files) that contained active communications links ("hyperlinks") to

other documents or files (usually Web pages) on other computers (usually called

Web "hosts" or "servers") across the Internet.

"Hypertext" documents (usually Web pages) on the WWW are files that

contain active hyperlinks to other documents or files, which, in turn, may contain

links to other documents, etc.

Clicking on a link, which may be text (usually blue and underlined) or an

image, takes the user to another document.

o Specifically, it cause a request to be send to the computer hosting

the other documents or Web pages. The request asks for the Web page and

related files (such as images on the Web page) to be sent.

0 The browser on the local computer then displays the Web page.

The "Hypertext Transfer Protocol" (http) is the communications protocol

that makes this possible.

Http runs on top of the Internet's TCP/IP protocol and defines how

\ different types of hyperlinked data (text and multimedia) are transmitted and

accessed.

Internet communications equipment and wiring is equivalent to the letter

carriers and trucks and airplanes that deliver the mail.

2

TCP/IP, the protocol defining the format for carrying information on the

Internet, is the envelope.

Http, the protocol defining the format for information on the Web, is the

letter.

Hyperlinked, graphical Web pages:

The millions of hyperlinked, graphical Web pages containing text, image,

audio, and video media are displayed by browsers that have sufficient

sophistication to handle the various media.

Graphical "hyperlinked" Web pages are created and displayed mostly

through theuse of the Hypertext Markup Language (HTML).

1.2 Website

A Web site (we prefer the two words rather than Website) is a collection of

Web files on a particular subject that includes a beginning file called a home page.

For example, most companies, organizations, or individuals that have Web sites

have a single address that they give you. This is their home page address. From

the home page, you can get to all the other pages on their site. For example, the

Web site for IBM has the home page address of http://www.ibm.com. (In this

case, the actual file name of the home page file doesn't have to be included

because IBM has named this file index. html and told the server that this address

really means http://www.ibm.com/index.html.)

Since it sounds like geography is involved, a Web site can be confused

with a Web server. A server in this context is a computer that holds the files for

". one or more sites. A very large Web site may reside on a number of servers

located in many different geographic places. IBM is a good example; its Web site

consists of thousands of files spread out over many servers in worldwide

locations. But a more typical example is probably the site you are looking at,

whatis.com. We reside on a commercial space provider's server with a number of

other sites that have nothing to do with Internet glossaries.

3

A synonym and less frequently used term for Web site is "Web presence."

That term seems to better express the idea that a site is \ot tied to specific

geographic location, but is "somewhere in cyberspace." However, "Web site"

seems to be used much more frequently.

1.3 Web Interface Definition Language (WIDL)

The purpose of the Web Interface Definition Language (WIDL) is to

enable automation of all interactions with HTML/XML documents and forms,

providing a general method of representing request/response interactions over

standard Web protocols, and allowing the Web to be utilized as a universal

integration platform.

A central feature of WIDL is that programmatic interfaces can be defined

and managed for data (HTML, XML or text files) and services (CGl-bin,

database, or other back end systems) that are not under the direct control of

programs that require such access. WIDL definitions can be co-located with client

programs, centrally managed in client/server architecture, or referenced directly

from HTML/XML documents.

WIDL definitions provide a mapping between Web resources and

applications written in conventional programming languages such as CIC++,

COBOL, Visual Basic, Java, JavaScript, etc., enabling automatic and structured

Web access by compatible client programs, including mainstream business

applications, desktop applications, applets, Web agents, and server-side Web

programs (CGI, etc.).

Automatic means that complex interactions with Web servers do not

require human intervention; programs can request Web data and services by

making local calls to functions which encapsulate standard Web access protocols

and utilize WIDL definitions to provide naming services, change management,

error handling, condition processing and intelligent data binding.

Structured means that Web data and services are described as interfaces

with well defined input and output variables.

4

Standard Web access protocols means HTTP and HTTPS .
•

Compatible means any program that both utilizes WIDL definitions to

define the location of Web services and the structure of data that is returned by

standard HTTP and HTTPS requests, and allows WIDL definitions to be managed

locally, centrally, or by individual service providers.

WIDL describes business objects on the Web, providing the basis for a

common API across Web servers, legacy systems, databases, and middleware

infrastructures, and effectively transforming the Web from an access medium into

an integration platform.

1.3.1 Benefits of WIDL

A major part of the value of an Interface Definition Language (IDL) is that

it can define services offered by applications in an abstract but highly usable

fashion. WIDL brings to the Web many of the features of IDL concepts that have

been implemented in distributed computing and transaction processing platforms

including DCE, and CORBA.

1- Business-to-Business Integration

WIDL makes it easy for organizations to automate business transactions

with customers and suppliers. WIDL describes and automates interactions with

services hosted by Web servers on intranets, extranets and the Internet; it

transforms the Web into a standard integration platform and provides a universal

API for all Web-enabled systems.

Using HTML, XML, HTTP and HTTPS as corporate standards glue,

, WIDL requires only that target systems be Web-enabled. There are hundreds of
'\

products in the market today which Web-enable existing systems, from

mainframes to client/server applications. The use of standard Web technologies

empowers various IT departments to make independent technology selections.

This has the effect of lowering both the technical and 'political' barriers that have

typically derailed cross-organizational integration projects.

5

A number of analysts have already warned that proprietary e-commerce

platforms could lock suppliers into relationships by forcing them to integrate their

systems with one infrastructure for business-to-business integration, making it

costly for them to switch to or integrate with other partners who have selected

alternate e-commerce platforms. Buyer-supplier integration issues involve many­

to-many relationships, and demand a standard platform for functional integration

and data exchange.

A service defined by WIDL is equivalent to a function call in standard

programming languages. At the highest level, WIDL files describe the locations

(URLs) of services, input parameters to be submitted (via Get or Post methods) to

each service, conditions for successful processing, and output parameters to be

returned by each service.

WIDL provides the following features:

• A browser is not required to drive Web applications.

• WIDL definitions are dynamically interpreted and can be centrally

managed.

• Client applications are insulated from changes in service locations and

data extraction methods.

• Developers are insulated from network programming concerns.

• Application resources can be integrated through firewalls and proxies.

WIDL can be used to describe interfaces and services for:

" '

• Static documents (HTML, XML, and plain text files)

• Dynamically generated documents (HTML, XML, and plain text files)

• HTML forms

• URL directory structures

WIDL can be used:

• To automate interactions with Web servers

• For both on-demand and scheduled extraction of targeted Web data

6

• To aggregate data from a number of Web sources
•

• To chain services across multiple Web sites

• To rapidly integrate Web resources with traditional . application

development languages and environments

WIDL has the ability to specify conditions for successful processing, and

error messages to be returned to calling programs. Conditions further enable

services to be defined that span multiple documents.

2- Change Management

One of WIDL's most significant benefits is its ability to insulate client

programs from changes in the format and location of Web documents. Unlike the

way CORB,A and DCE IDL are normally used, WIDL is interpreted at runtime; as

a result, service URLs, object references in variables, definitions of document

regions, success/failure conditions, and directives for service chaining can all be

administered without requiring modification of client code. This usage model

supports application-to-application linkages that are far more robust and

maintainable than if they were coded by hand.

There are three models for WIDL management:

• Client side - where WIDL files are co-located with a client program

• Naming service - where WIDL definitions are centrally managed and

referenced via directory services, i.e. LDAP

• Server side - where WIDL files are referenced by, co-located with, or

embedded within Web documents.

WIDL does not require that existing Web resources be modified in any

way. Flexible management models allow organizations to describe and integrate

Web sites that are uncontrolled, as well as to provide their business partners with

interfaces to services that are controlled. The ability to seamlessly migrate from

independent to shared management eases the transition from informal to formal

business-to-business integration.

7

3- Language Bindings •.
The primary purpose of WIDL is integration of Web resources with

corporate business applications. In much the same way that DCE or CORBA IDL

is used to generate code fragments, or 'stubs', to be included in· application

development projects, WIDL provides the structure necessary for generating

client code in languages such as CIC++, Java, COBOL, and Visual Basic.

Developers can thus be insulated from the need to understand both HTlvfL/XML

parsing and Web protocols. This capability enables the existing skills of

innumerable programmers to be rapidly leveraged in the utilization of Web based

resources.

1.4 Web Services Description Language (WSDL)

WSDL is an Xlvll. format for describing network services as a set of

endpoints operating on messages containing either document-oriented or

procedure-oriented information. The operations and messages are described

abstractly, and then bound to a concrete network protocol and message format to

define an endpoint. Related concrete endpoints are combined into abstract

endpoints (services). WSDL is extensible to allow description of endpoints and

their messages regardless of what message formats or network protocols are used

to communicate, however, the only bindings described in this document describe

how to use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME.

As communications protocols and message formats are standardized in the

web community, it becomes increasingly possible and important to be able to

describe the communications in some structured way. WSDL addresses this need

by defining an XML grammar for describing network services as collections of

communication endpoints capable of exchanging messages. WSDL service

definitions provide documentation for distributed systems and serve as a recipe for

automating the details involved in applications communication.

8

A WSDL document defines services as collections of network endpoints,
•

or ports. In WSDL, the abstract definition of endpoints and messages is separated

from their concrete network deployment or data format bindings. This allows the

reuse of abstract definitions: messages, which are abstract descriptions of the data

being exchanged, and port types, which are abstract collections of operations.

The concrete protocol and data format specifications for a particular port type

constitutes a reusable binding. A port is defined by associating a network address

with a reusable binding, and a collection of ports defines a service. Hence, a

WSDL document uses the following elements in the definition of network

services:

• Types- a container for data type definitions using some type system (such

as XSD).

• Message- an abstract, typed definition of the data being communicated.

• Operation- an abstract description of an action supported by the service.

• Port Type-an abstract set of operations supported by one or more

endpoints.

• Binding- a concrete protocol and data format specification for a particular

port type.

• Port- a single endpoint defined as a combination of a binding and a

network address.

• Service- a collection of related endpoints.

It is important to observe that WSDL does not introduce a new type

definition language. WSDL recognizes the need for rich type systems for

describing message formats, and supports the XML Schemas specification (XSD)

as its canonical type system.

However, since it is unreasonable to expect a single type system grammar

to be used to describe all message formats present and future, WSDL allows using

other type definition languages via extensibility.

In addition, WSDL defines a common binding mechanism. This is used to

attach a specific protocol or data format or structure to an abstract message,

operation, or endpoint. It allows the reuse of abstract definitions.

9

In addition to the core service definition framework, this specification

introduces specific binding extensions for the following protocols and message

formats:

• SOAP 1.1

• HTTP GET I POST

• MIME

1.4.1 SOAP Binding

WSDL includes a binding for SOAP 1.1 endpoints, which supports the

specificatio~ of the following protocol specific information:

• An indication that a binding is bound to the SOAP 1.1 protocol.

• A way of specifying an address for a SOAP endpoint.

• The URI for the SOAPAction HTTP header for the HTTP binding of

SOAP.

• A list of definitions for Headers that are transmitted as part of the SOAP

Envelope.

This binding grammar it is not an exhaustive specification since the set of

SOAP bindings is evolving. Nothing precludes additional SOAP bindings to be

derived from portions of this grammar. For example:

• SOAP bindings that do not employ a URI addressing scheme may

substitute another addressing scheme by replacing the soap.

• SOAP bindings that do not require a SOAP Action.

1.4.2 HTTP GET & POST Binding

WSDL includes a binding for HTTP 1.1 's GET and POST verbs in order to

describe the interaction between a Web Browser and a web site. This allows

applications other than Web Browsers to interact with the site. The following

protocol specific information may be specified:

10

• An indication that a binding uses HTTP GET or POST . ..
• An address for the port.

• A relative address for each operation (relative to the base address defined

by the port).

1.4.3 MIME Binding

WSDL includes a way to bind abstract types to concrete messages in some

MIME format. Bindings for the following MIME types are defined:

• Multi part/related.

• Text/xml.

• Application/x-www-form-unrecorded (the format used to submit a form in

HTML).

• Others (by specifying the MIME type string).

The set of defined MIME types is both large and evolving, so it is not a

goal for WSDL to exhaustively define XML grammar for each MIME type.

Nothing precludes additional grammar to be added to define additional MIME

types as necessary. If a MIME type string is sufficient to describe the content, the

mime element defined below can be used.

1.5 FTP (File Tran sf er Protocol)

FTP (File Transfer Protocol) is a method of copying files between two

different locations. In order to use FTP you must have an FTP client on the

computer you are using, and the computer you wish to access must have an FTP

server.

You can obtain FTP servers to run on your own computer so that you can

access files on your computer from other computers. You should not use these

unless you are very comfortable with networking and computer setup since it may

give other people access to your computer's files.

11

--------------- -----------

To use FTP you run the client and tell it the location of the FTP server you

want to connect to. All Princeton FTP servers will prompt you'for a user name and

password. (This is the same as the user name and password you use for email.)

The client connects to the server and displays a list of all the files and folders on

the computer where the server is running. Once this connection is established you

can copy files from the server to the client or vice versa. Most clients also give

you the ability to do common file tasks like delete, rename, create new folders,

etc.

FTP is useful because you can connect to an FTP server from any

computer that has an FTP client. Thus, you could store all your files on one of the

UNIX systems and use FTP to access those files from any computer on campus

whenever you need them. If you create a document in a cluster you can FTP it to

Arizona, then later FTP it from Arizona to your computer in your room. Since

your files always stay on a hard drive, you avoid the danger of lost or damaged

floppies. In addition, FTP has no inherent limit on the size of the files it can

transfer; files too large for a floppy can easily be moved using FTP.

12

Chapter 2

TOOLS and LANGUAGES of INTERNET PROGRAMMING

2.1 HTML

HyperText Markup Language. This is the code that World Wide Web

documents are written in. A Web browser interprets this code to decide where and

how to display images and links in a Web document and how to layout the text.

Web browsers are not standard, however, and some support certain HTML tags in

different ways, or don't support them at all.

If you view the source of a Web document (this should be an option for

your browser) you can see what an HTML document looks like. All HTML code

is enclosed in the "<" and the ">" characters.

Short for HyperText Markup Language, the authoring language used to

create documents on the World Wide Web. HTML is similar to SGML, although

it is not a strict subset.

Language is a system for communicating. Written languages use symbols

(that is, characters) to build words. The entire set of words is the language's

vocabulary. The ways in which the words can be meaningfully combined is

defined by the language's syntax and grammar. The actual meaning of words and

combinations of words is defined by the language's semantics. In computer

science, human languages are known as natural languages. Unfortunately,

computers are not sophisticated enough to understand natural languages. As a

result, we must communicate with computers using special computer languages.

There are many different classes of computer languages, including machine

languages, programming languages, and fourth-generation languages.

Document in the PC world, a file created with a word processor. In

addition to text, documents can contain graphics, charts, and other objects.

Increasingly, the line separating word processing files from files produced by

other applications is becoming blurred. A word processing application can

13

produce graphics and a graphics application can produce words. This trend is

accelerating with new technologies such as OLE and Ope~Doc that allow an

application to combine many components. Consequently, the term document is

used more and more to describe any file produced by an application. Interestingly,

this is the way the term has always been used in Macintosh environments.

World Wide Web (www) is a system of Internet servers that support

specially formatted documents. The documents are formatted in a script called

HTML (HyperText Markup Language) that supports links to other documents, as

well as graphics, audio, and video files. This means you can jump from one

document to another simply by clicking on hot spots. Not all Internet servers are

part of the World Wide Web. There are several applications called Web browsers

that make it easy to access the World Wide Web; Two of the most popular being

Netscape Navigator and Microsoft's Internet Explorer.

SGML is the Abbreviation of Standard Generalized Markup Language, a

system for organizing and tagging elements of a document. SGML was developed

and standardized by the International Organization for Standards (ISO) in 1986.

SGML itself does not specify any particular formatting; rather, it specifies the

rules for tagging elements. These tags can then be interpreted to format elements

in different ways.

SGML is used widely to manage large documents that are subject to

frequent revisions and need to be printed in different formats. Because it is a large

and complex system, it is not yet widely used on personal computers. However,

the growth of Internet, and especially the World Wide Web, is creating renewed

interest in SGML because the World Wide Web uses HTML, which is one way of

defining and interpreting tags according to SGML rules.

HTML defines the structure and layout of a Web document by using a

variety of tags and attributes. The correct structure for an HTML document starts

with <HTML><HEAD>(enter here what document is about)</HEAD><BODY>

and ends with </BODY></HTML>. All the information you'd like to include in

your Web page fits in between the <BODY> and </BODY> tags.

14

HTML is composed of tags. HTML tags are always enclosed in angle­

brackets (< >) and are case-insensitive; that is, it doesn't matter whether you type

them in upper or lower case. I almost always use upper case, because it makes the

tags easier to pick out in a document, but that's just me. You can do whatever you

like.

Tags typically occur in begin-end pairs. These pairs are in the form

<tag> . . . </tag>

where the <tag> indicates the beginning of a tag-pair, and the </tag>

indicates the end. (The three dots indicate an arbitrary amount of content

between the tags.) The usual way to refer to each tag is "tag" for the first

and "slash-tag" for the second, where tag is the actual name of the tag being

discussed.

These pairs define containers. Any content within a container has the rules

of that container applied to it. For example, the text within a "boldface container"

would be boldfaced. Similarly, paragraphs are defined using a "paragraph

container."

2.1.1 Document Tags
Document tags are the tags, which divide up a Web page into its basic

sections, such as the header information and the part of the page, which contains

the displayed text and graphics.

The first and last tags in a document should always be the HTML tags.

These are the tags that tell a Web browser where the HTML in your document

begins and ends. The absolute most basic of all possible Web documents is:

<HTML>

</HTML>

15

The HEAD tags contain all of the document's header information. Header
• does not mean what appears at the top of the browser window, but things like the

document title and so on.

The title of the document is placed between the TITLE tags. This will

appear at the top of the browser's title bar, and also appears in the history list.

What is typed should probably be something, which indicates the document's

contents, but it doesn't have to be. The length of the title is pretty much unlimited,

but don't go overboard. Users will either sneer at or be confused by exceedingly

long titles.

BODY comes after the HEAD structure. Between the BODY tags, all of

the stuff that gets displayed in the browser window. All of the text, the graphics,

and links, and so on -- these things occur between the BODY tags.

<HTML>

<HEAD>

<TITLE> Document Title</TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

2.1.2 Basic Text Structures

Headings: The heading structures are most commonly used to set apart

document or section titles. For example, the word "Headings" at the beginning of

this section is a heading. There are six levels of headings, from Heading 1 through

Heading 6. Heading 1 (Hl) is "most important" and Heading 6 (H6) is "least

important." By default, browsers will display the six heading levels in the same

font, with the point size decreasing as the importance of the heading decreases.

Here are all six HTML pairs, in descending order of importance:

16

<Hl>Heading I </HI>

<H2>Heading 2</H2>

<H3>Heading 3</H3>

<H4>Heading 4</H4>

<H5>Heading 5</H5>

<H6>Heading 6</H6>

•

These six lines, when placed into an HTML document, will simply display

the six levels of headings.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5

Heading 6

Paragraphs: paragraphs are quite common in Web pages. They are one

of the most basic structures in HTML. The overall structure is a page. The page is

composed of a number of sections, each of which is composed of one or more

paragraphs. Each paragraph is composed of words, and each word of letters.

Admittedly, this is a simplified way of looking at text, but it will do for

our purposes. The furthest HTML goes down this progression is to the paragraph

level. The beginning of a paragraph is marked by <P>, and the end by <IP>.

Line Break: Line break is used when it is needed to end a· line after a
certain word but without starting a new paragraph, which is involved by using the

 tag. This forces a line break wherever you place it in the content (that is,

17

whatever is after the
 tag will start from the left margin of the next line on
• the screen.)

2.1.3 Anchors

The real point of the Web, of course, is that documents can be linked to

each other, or to other types of files such as movies or sound clips, through the use

of hyperlinks. These links allow authors to link documents together in intuitive

ways, as opposed to traditional linear texts such as books, articles, or almost

anything else printed.

The simplest possible anchor starts with <A> and ends with .

However, the <A> tag is never ever used by itself, because it doesn't do anything.

It must be enhanced with attributes.

HREF: HREF stands for "Hypertext Reference" which is another way of

saying, "The location of the file I want to load." Most anchors are in the form , where URL is the location of the resource to which· the link

points to. The words between the open and close of the anchor would be displayed

as a hyperlink.

Name: Using the NAME attribute, we can invisibly mark certain points

of a document as places that can be jumped to directly, instead of loading the

document and then scrolling around to find what is wanted. This is accomplished

by using a named anchor, which is slightly different than the anchor used. to

create a hyperlink. Unlike HREF, the double-quotes in the NAME attribute are

never optional (because of the# character).

2.1.4 Images

~
\

Besides hyperlinks, the other great advantage of the Web is the ability to

integrate graphic images into a document. Some would argue that this represents

one of the greatest strengths of the Web. Graphics are certainly used as heavily as

hyperlinks, and represent most of the data, which is transferred.

18

Images are placed in Web documents using the IMG tag. This tag is
•

empty, and therefore has no closing tag. The basic form of the image tag is

, but just like <A>, by itself is pointless-- it will do nothing. At the

very least, the browser should know where to find the image that it's supposed to

place in the document.

This brings up an important point. Visually speaking, images are part of a

Web document, but in reality an HTML file and any graphics it refers to are

actually all separate files. In other words, one HTML file, which has five graphics

within it, makes a total of six files required to make the page look right. These

files are all stored on a Web server, but don't have to all been in the same exact

place. (Often, server administrators will set up separate directories for pictures.)

In order to make the IMG tag work, an SRC attribute is used. SRC stands

for "source," as in, "the source of this graphic." The value of SRC is the URL of

the graphic to be displayed on the Web Page. Thus, a typical image tag will take

the form:

ALT: The ALT attribute is used to define "alternate text" for an image.

The value of ALT is author-defined text, enclosed in double-quotes, and ALT text

can be any amount of plain text, long or short. To pick one of an infinite number

of examples, a warning symbol could be marked up as follows:

2.2 Dynamic HTML (DHTML) and CSS

Dynamic HTML is a combination of client side scripting technology and

HTML that work together to make HTML pages more interactive. For instance,

with DHTML you can cause letters to changes colors when the mouse is placed

over them and graphics can be animated.

19

Dynamic HTML (DHTML) is not any one specific technology (such as
4

JavaScript or ActiveX). Nor is it a tag, a plug-in, or a browser. Dynamic HTML is

one of the most exciting and useful things to happen to the Web in recent

memory. It is a concept that has been enabled (to different extents in different

browsers) by a number of technologies, including JavaScript, VBScript, the

Document Object Model (DOM), layers, and Cascading style sheets (CSS).

Dynamic HTML is a powerful extension to HTML that allows for active

WebPages like never before. Users now have the ability to drag-and-drop Internet

objects, watch complicated animated presentations complete with sound, and have

full interaction with websites. Actually, it is simply HTML that can change even

after a page has been loaded into a browser. A paragraph could turn blue when the

mouse moves over it, or a header could slide across the screen. Anything that can

, be done in HTML can be redone after the page is loaded.

These three parts make up Dynamic HTML (DHTML):

• Client-side Scripting

People have been using client-side scripting languages (JavaScript and

VBScript in particular) to change HTML for a long time. If an image changes

when you roll your mouse over it, you're looking at an example of dynamic

HTML. The 4.0 browsers from both Microsoft and Netscape allow more of a

page's HTML elements to be accessible from within scripting languages. The

mechanism whereby page elements (or document objects) are opened to scripting

languages is called the Document Object Model.

• DOM (Document Object Model)

In a sense, the Document Object Model is the real core of dynamic

HTML. It makes HTML changeable. The DOM is the hierarchy of elements that

are present in the browser at any given time. This includes environmental

information such as the current date and time, browser properties such as the

browser's version number, window properties such as window. Location (the page's

20

URL), and HTML elements such as <p> tags, divs, or tables. By exposing the
•

DOM to scripting languages, browsers enable you to access these elements. While

some elements such as the time of day can't be changed themselves, scripts to

modify other elements can use them.

• CSS (Cascading Style Sheets)

DHTML allows content to be displayed with more design flexibility and

accuracy through the use of Cascading Style Sheets (CSS). Using CSS, a standard

from the World Wide Web Consortium (W3C), web authors can define fonts,

margins, and line spacing for different parts of an HTML document. In addition to

these stylistic improvements, CSS allows the absolute positioning of content by

specifying x,y coordinates, and even a z-index, which allows different elements to

overlap (see the Demo page: House Decorator example). The Microsoft

implementation of DHTML also adds built-in multimedia and data objects

(treated as properties of cascading style sheets) that can be controlled through

scripting languages, allowing for stereo sound, on-the-fly image manipulation,

and even access to server-side databases.

2.2.1 The Document Object Model

Document object models have been in browsers since the first client-side

scripting language was introduced to the web in Netscape Navigator 2.0, but not

all of the objects in the model were exposed to scripting. The document object

model has evolved with the introduction of DHTML. Navigator 4 exposes many

more objects to JavaScript, and IE4 exposes all of them (and not just to

JavaScript, but to VB Script as well).

The document object model and event model combine to exercise great

power over the page. For example, the text of a link can change in size and color

when the mouse is moved over it, the contents of an article can expand in size

when the reader selects it, and the phone number being typed into a form can be

validated as each key is pressed.

21

2.2.1.1 Pixel Level Accuracy: Absolute Positioning .. Through CSS

CSS is a big part of DHTML, and absolute positioning of content is a big

part of CSS. Absolute positioning means that content--text, images, and anything

else that can be put in a page--can be placed at exact coordinates. Text can be

overlapped, the background can be aligned with the foreground without frame and

table tricks, and content can be organized within independent blocks instead of

just within the constricting cells of a table.

With absolute positioning comes animation of content. Because DHTML

exposes every part of the page (or most of it, in the case of Navigator 4) to

scripting languages through the document object model, blocks of absolutely

positioned content can be hidden, shown, and flown about the page with the help

of a script. For example, a script could detect a user selecting a piece of content

from a menu and highlight it. It could also move the content across the page to a

more prominent position.

Navigator 4 also provides the <LA YER> tag for absolute positioning of

content. IE 4, however, does not support the <LA YER> tag. Because both

Navigator 4 and IE 4 support absolute positioning with CSS, and because the

. W3C rejected the <LA YER> tag as a standard, the preferred method of absolute

positioning in both browsers is CSS.

2.2.1.2 Malleable Content: Dynamic Control of CSS Styles

With CSS styles, everything from line height to margin width to font face

can be specified (and in the case of font face, if not found, degraded to the next

best match). No longer are web pages limited to seven sizes of fonts; CSS allows

exact point and pixel values. Internet Explorer supported CSS styles with version

3.0; Navigator adds support for them in version 4.0.

There's more to it than that though. IE 4's implementation of DHTML

allows all aspects of a document's styles to be modified at any time during the

22

document's existence. A hypertext link could expand in size when the mouse is
&

moved over it, items in a table of contents could light up when selected, and key

words in a five thousand word article could turn bright red for easier access and

more efficient browsing. Currently, Navigator 4 does not support controlling CSS

styles with JavaScript.

2.2.1.3 Pages on the Fly: Dynamic Creation of Content

With absolute positioning, a document's content can be positioned and

animated. With dynamic control of styles, the appearance of content can be

changed at any time (IE 4 only). Now, with dynamic creation of content, content

can be created and displayed without reloading or redrawing a document (either

directly through the document object model in IE 4, or through hiding and

showing layers in Navigator 4). Though the ability to create content "on-the-fly"

existed before DHTML, it required that the entire document or frame be redrawn.

With DHTML, scores in a DHTML game can be tabulated and displayed as they

occur, and JavaScript clocks can tick away without being restricted to form

elements.

2.2.1.4 Multimedia Medium: Microsoft's Multimedia Controls

Microsoft's implementation of DHTML comes with a host of built-in

multimedia controls that enhance the visual and auditory aesthetics of any

document. All of these cross-platform controls can be controlled through scripting

languages, allowing them to interact with the user in interesting ways.

With the transition control, authors can make HTML documents enter or

exit gracefully. The transition control comes with a plethora of preset transitions

(for example, wipe, box in, and dissolve) that can be applied to the document or to

any objects within the document and controlled through a script.

The animation control gives more accuracy to animations. Previously, web

authors had to rely on animated GIFs (which cannot be controlled with scripting

languages) to animate their pages. With the animation control, web authors can

23

control the frames per second, frame order, and various other properties of an

animation and do so through scripts as well as through HTML. This means

animations can respond to user interaction like any other object on the page.

In the audio arena, the mixer control can be used to create and play multi­

channel stereo sounds. Sound files can be loaded into the mixer control, combined

with other sound files, and then played on demand through scripts. In Navigator 4,

on-demand scriptable audio can be played through the LiveAudio plug-in.

2.2.2 Usages and Some Examples

Here is an example, this one shows and hides the text.

function show() {

eval(layerRef+'[''Test'']'+styleRef+'visibility=''visible''')

}

function hide() {

eval(layerRef+'[''Test'']'+styleRef+'visibility=''hidden''')

}

The show function obviously shows the layer and the hide function hides

it. As you can see I use the visibility property of the div object and set it to visible

and hidden. You have maybe seen other ways to do this, but both 4.x browsers

support this.

\

Now this script will look like:

<HTML>

<HEAD>

<TITLE>Hide-Show Text Demo</TITLE>

</HEAD>

<BODY>

hidel <a

24

href="javascript:show('Test')">show 1
•

<div id="Test" style="position:absolute; left:30;width:300; height:400; top: 100">

This is the text that hides and shows, it is actually very easy to do. This is

a simple example for how to use DHTML.

</div>

</BODY>

</HTML>

And then we add the complete script inside the <head> tag:

<script language="javascript">
<!--
//if explorer (4.x)
if (document.all) {
layerRef='document.all'
styleRef='.style.'

}
//else if netscape (4.x)
else if (document.layers) {
layerRef='document. layers'
sty leRef='.'

}
else {
location.href="not4x.html"

}
function show() {
eval(layerRef+'["Test"]'+styleRef+'visibility="visible"')

}
function hide() {
eval(layerRef+'["Test"]'+styleRef+'visibility="hidden''')

}
//--></script>

2.3 JAVA and JAVA SCRIPT

A scripting language developed by Netscape to enable Web authors to

design interactive sites. Although it shares many of the features and structures of

the full Java language, it was developed independently. Javascript can interact

with HTML source code, enabling Web authors to spice up their sites with

25

dynamic content. JavaScript is endorsed by a number of software companies and
•

is an open language that anyone can use without purchasing a license. It is

supported by recent browsers from Netscape and Microsoft, though Internet

Explorer supports only a subset, which Microsoft calls Jscript.

Script is another term for macro or batch file, a script is a list of commands

that can be executed without user interaction. A script language is a simple

programming language with which you can write scripts. Apple Computer uses

the term script to refer to programs written in its HyperCard or Apple Script

language.

Java is a high-level programming language developed by Sun

Microsystems. Java was originally called OAK, and was designed for handheld

devices and set-top boxes. Oak was unsuccessful so in 1995 Sun changed the

name to Java and modified the language to take advantage of the burgeoning

World Wide Web.

Java is an object-oriented language similar to C++, but simplified to

eliminate language features that cause common programming errors. Java source

code files (files with a .java extension) are compiled into a format called bytecode

(files with a .class extension), which can then be executed by a Java interpreter.

Compiled Java code can run on most computers because Java interpreters and

runtime environments, known as Java Virtual Machines (VMs), exist for most

operating systems, including UNIX, the Macintosh OS, and Windows. Bytecode

can also be converted directly into machine language instructions by a just-in-time

compiler (JIT).

Java is a general purpose programming language with a number of

features that make the language well suited for use on the World Wide Web.

Small Java applications are called Java applets and can be downloaded from a

Web server and run on your computer by a Java-compatible Web browser, such as

Netscape Navigator or Microsoft Internet Explorer.

JScript is Microsoft 's extended implementation of ECMAScript

(ECMA262), an international standard based on the Netscape 's JavaScript and

26

Microsoft's JScript languages. JScript is implemented as a Windows Script
• engine. This means that it can be "plugged in" to any application that supports

Windows Script, such as Internet Explorer, Active Server Pages, and Windows

Script Host. It also means that any application supporting Windows Script can use

multiple languages - JScript, VBScript, Perl, and others.

JScript (and the other languages) can be used for both simple tasks (such

as mouseovers on Web pages) and for more complex tasks (such as updating a

database with ASP or running logon scripts for Windows NT). Windows Script

relies on external "object models" to carry out much of its work. For example,

Internet Explorer's DOM provides objects such as 'document' and methods such as

'write()' to enable the scripting of Web pages.

There are several versions of JavaScript supported by certain browsers and

browser versions. Unfortunately, this can often lead to confusion and

incompatibilities. Since Netscape originally introduced JavaScript, JavaScript 1.0

was the language specification supported in Netscape Navigator 2.0.

Subsequently, Navigator 3.0 supported new enhancements which comprised

JavaScript 1.1. At present, Navigator 4.0 supports JavaScript 1.2.

In parallel, Microsoft attempted to support JavaScript 1.0 in their Internet

Explorer 3.0 browser. Known as "Jscript," Microsoft's initial JavaScript support

was unreliable and buggy. A push to standardize the language resulted in an

"official" version of JavaScript sanctioned by the ECMA. Internet Explorer 4.0

includes robust support for the ECMA standardized JavaScript, which, although it

shares much in common with Netscape's JavaScript 1.2, is not exactly equivalent.

~\

While programming for any single version of JavaScript is relatively

simple, writing code which functions across disparate versions, most notably

Navigator 4 and MSIE 4, is one of the major challenges and topics of discussion

in JavaScript programming at this time.

JavaScript code is typically embedded into an HTML document using the

SCRIPT tag. You are free to embed as many scripts into a single document as you

27

like, using multiple SCRIPT tags. A script embedded in HTML with the SCRIPT

tag uses the format:

<script language=" JavaScript">
<!--
document.write("Hello World!");
//-->
</script>

The LANGUAGE attribute is optional, but recommended. You may

specify that a section of code only be executed by browsers which support a
I

particular version of JavaScript; for instance:

<script language="JavaScriptl .2">

Another attribute of the SCRIPT tag, SRC, can be used to include an

external file containing JavaScript code rather than code embedded into the

HTML:

<script language=" JavaScript" src="corefunctions.js ">
</script>

The external file is simply a text file containing JavaScript code, and

whose filename ends with the extension ".js". Note that although some version 3

browsers support the SRC attribute, it only functions reliably across platforms in

the version 4 browsers.

Scripts can be placed inside comment fields to ensure that your JavaScript

code is not displayed by old browsers that do not recognize JavaScript. The

markup to begin a comment field is<!-- while you close a comment field using//­

->. This practice is certainly optional, but considered good form when your page

is likely to be visited by older browsers. Certainly, as older browsers fade away,

this practice will likely become unnecessary.

JavaScript code, much like other programming languages, is made up of

statements which serve to make assignments, compare values, and execute other

sections of code. By and large, programmers will already be familiar with

28

JavaScript's usage of variables, operators, and statements. Below is a chart

summarizing the main elements of JavaScript grammar.

Variables Labels which refer to a changeable value.
Example: total may be possess a value of 100.

Operators Actors which can be used to calculate or compare values.
Example: Two values may be summed using the addition operator(+);
total+tax
Example: Two values may be compared using the greater-than operator(>);
total>200.

Expressions Any combination of variables, operators, and statements which
evaluate to some result. In English parlance this might be
termed a "sentence" or even a "phrase", in that grammatical
elements are combined into a cogent meaning.
Example: total=100;
Example: if (total>100)

Statements As in English, a statement pulls all grammatical elements
together into a full thought. JavaScript statements may take the
form of conditionals, loops, or object manipulations. It is good
form to separate statements by semicolons, although this is
only mandatory if multiple statements reside on the same line.
Example: if (total>100) {statements;} else {statements;}
Example: while (clicks<10) {statements;}

Objects Containing constructs which possess a set of values, each
value reflected into an individual property of that object. Objects
are a critical concept and feature of JavaScript. A single object
may contain many properties, each property which acts like a
variable reflecting a certain value. JavaScript can reference a
large number of "built-in" objects which refer to characteristics
of a Web document. For instance, the document object contains
properties which reflect the background color of the current
document, its title, and many more. For a fuller explanation of
the built-in objects of JavaScript, see the section on "Document
Object Model".

Functions
and Methods

A JavaScript function is quite similar to a "procedure" or
"subroutine" in other programming languages. A function is a
discrete set of statements which perform some action. It may
accept incoming values (parameters), and it may return an
outgoing value. A function is "called" from a JavaScript
statement to perform its duty. A method is simply a function
which is contained in an object. For instance, a function which
closes the current window, named close(), is part of the window
object; thus, window.close() is known as a method.

Chart 2.1 Main Elements of Java Script

29

Variables store and retrieve data, also known as "values". A variable can
• refer to a value which changes or is changed. Variables are referred to by name,

although the name you give them must conform to certain rules. A JavaScript

identifier, or name, must start with a letter or underscore ("_"); subsequent

characters can also be digits (0-9). Because JavaScript is case sensitive, letters

include the characters "A" through "Z" (uppercase) and the characters "a" through

"z" (lowercase). Typically, variable names are chosen to be meaningful regarding

the value they hold. For example, a good variable name for containing the total

price of goods orders would be total.

2.3.1 Scope

When you assign a new variable to an initial value, you must consider the

issue of scope. A variable may be scoped as either global or local. A global

variable may be accessed from any JavaScript on the page. A local variable may

only be accessed from within the function in which it was assigned.

Commonly, you create a new global variable by simply assigning it a

value:

newVariable=5;

However, if you are coding within a function and you want to create a

local variable which only scopes within that function you must declare the new

variable using the var statement:

function newFunction()
{ var loop=l;
total=O;
... additional statements ..

In the example above, the variable loop will be local to newliunctiont),

while total will be global to the entire page.

2.3.2 Type

A value, the data assigned to a variable, may consist of any sort of data.

However, JavaScript considers data to fall into several possible types. Depending

30

on the type of data, certain operations may or may not be able to be performed on
•

the values. For example, you cannot arithmetically multiply two string values.

Variables can be these types:

Numbers

~ooleans

Strings

Objects

Null

Undefined

3 or 7.987, Integer and floating-point numbers.

• Integers can be positive, 0, or negative; Integers can be
expressed in decimal (base 10), hexadecimal (base 16),
and octal (base 8). A decimal integer literal consists of a
sequence of digits without a leading O (zero). A leading O
(zero) on an integer literal indicates it is in octal: a
leading Ox (or OX) indicates hexadecimal. Hexadecimal
integers can include digits (0-9) and the letters a-f and A­
F. Octal integers can include only the digits 0-7.

• A floatinq-point number can contain either a decimal
point, an "e" (uppercase or lowercase), which is used to
represent "ten to the power of' in scientific notation, or
both. The exponent part is an "e" or "E" followed by an
integer, which can be signed (preceded by"+" or"-"). A
floating-point literal must have at least one digit and
either a decimal point or "e" (or "E").

True or False. The possible Boolean values are true and false.
These are special values, and are not usable as 1 and 0. In a
comparison, any expression that evaluates to O is taken to be
false, and any statement that evaluates to a number other than
0 is taken to be true.

"Hello World !" Strings are delineated by single or double
quotation marks. (Use single quotes to type strings that contain
quotation marks.)

myObj = new Object();

Not the same as zero - no value at all. A null value is one that
has no value and means nothing.

A value that is undefined is a value held by a variable after it
has been created, but before a value has been assigned to it.

Chart 2.2 Types of Variables

That said, JavaScript is a loosely typed language -- you do not have to

specify the data type of a variable when you declare it, and data types are

converted automatically as needed during script execution. By and large, you may

simply assign any type of data to any variable. The only time data-typing matters

31

is when you need to perform operations on the data. Certain operators behave
•

differently depending on the type of data being deal with. For example, consider

the + operator:

"5" +
"10" yields "51 O" (string concatenation)

5 + 10 yields 15 (arithmetic sum)

Operators take one or more variables or values (operands) and return a

new value; e.g. the '+' operator can add two numbers to produce a third. You use

operators in expressions to relate values, whether to perform arithmetic or

compare quantities. Operators are divided into several classes depending on the

relation they perform.

2.3.3 Arithmetic or computational

Arithmetic operators take numerical values (either literals or variables) as

their operands and return a single numerical value. The standard arithmetic

operators are:

+ Addition

Subtraction

* Multiplication

I Division

% Modulus: the remainder after division;
e.g. 1 O % 3 yields 1.

9
\

++

Unary increment: this operator only takes one operand. The
operand's value is increased by 1. The value returned depends on
whether the++ operator is placed before or after the operand; e.g.
++x will return the value of x following the increment whereas x++ will
return the value of x prior to the increment.

Unary decrement: this operator only takes one operand. The
operand's value is decreased by 1. The value returned depends on
whether the -- operator is placed before or after the operand; e.g. --x
will return the value of x following the decrement whereas x-- will

32

return the value of x prior to the decremen

Unary negation: returns the negation of operand.

Chart 2.3 Arithmetic Operations

2.3.4 Comparison

A comparison operator compares its operands and returns a logical value

based on whether the comparison is true or not. The operands can be numerical or

string values. When used on string values, the comparisons are based on the

standard lexicographical (alphabetic) ordering.

!=

"Equal to" returns true if operands are equal.

"Not equal to" returns true if operands are not equal.

"Greater than" returns true if left operand is greater than right operand.

"Greater than or equal to" returns true if left operand is greater than or
equal to right operand.

"Less than" returns true if left operand is less than right operand.

"Less than or equal to" returns true if left operand is less than or equal
to right operand. '

>

>=

<

<=

Chart 2.4 Comparison

2.3.5 Boolean

Boolean operators are typically used to combine multiple comparisons into

a conditional expression. For example, you might want to test whether (total> 100)

AND (stateTax=true). A boolean operator takes two operands, each of which is a

true or false value, and returns a true or false result.

&& "And" returns true if both operands are true.

33

II "Or" returns true if either operand is true. •
"Not" returns true if the negation of the operand is true (e.g. the
operand is false).

Chart 2.5 Boolean

2.3.6 String

Strings can be compared using the comparison operators. Additionally,

you can concatenate strings using the + operator.

"dog" + "bert" yields "dogbert"

2.3. 7 Assignment

The assignment operator(=) lets you assign a value to a variable. You can

assign any value to a variable, including another variable (whose value will be

assigned). Several shorthand assignment operators allow you to perform an

operation and assign its result to a variable in one step.

= Assigns the value of the righthand operand to the
variable on the left.
Example: total=100;
Example: total=(price+tax+shipping)

+=
(also -=, *=, /=)

Adds the value of the righthand operand to the lefthand
variable and stores the result in the lefthand variable.
Example: total+=shipping (adds value of shipping to total and
assigned result to tota~

&=
(also i=)

Assigns result of (lefthand operand && righthand
operand) to lefthand operand.

Chart 2.6 Assignment

34

2.3.8 Special •.
Several JavaScript operators, rarely used, fall into no particular category.

These operators are summarized below.

Conditional operator Assigns a specified value to a variable if a
condition is true, otherwise assigns an alternate
value if condition is false.
Example:
preferredPet =(cats> dogs) ? "felines" : "canines"
If (cats>dogs), preferredPet will be assigned the
string value "felines," otherwise it will be assigned
"canines".

(condition) ? trueVal :
false Val

typeof operand Returns the data type of operand.
Example -- test a variable to determine if it contains a
number:
if (typeof total=="number") ...

Chart 2. 7 Special Operators

2.3.9 Stateinents

Statements define the flow of a script, known as "program flow." A

statement, like a fully grammatical English sentence, is made up of smaller

expressions, which, altogether, evaluate into a cogent meaning. In JavaScript,

statements are organized as conditionals, loops, object manipulations, and

comments.

Good practice suggests that each JavaScript statements should be

terminated with a semicolon (;). This is often not strictly necessary, as a new line

also serves to separate statements, but when multiple statements reside on the

\ same line the semicolon delimiter is mandatory.

A set of statements that is surrounded by braces is called a block. Blocks

of statements are used, for example, in functions and conditionals.

35

Normally statements are executed sequentially: x = I, y = 2; z = x + y, but ,.
this can be altered by some statements which test a condition and branch or loop

according to the result.

2.3.10 Conditionals

Conditional statements direct program flow in specified directions

depending upon the outcomes of specified conditions. These tests are a major

influence on the order of execution in a program.

2.3.10.1 If ... else

As seen in many programming languages, if the condition evaluates to true
then the block of statements] is executed. Optionally, an else clause specifies a

block of statements2, which are executed otherwise. You may omit the else clause

ifthere are no statements, which need to be executed if the condition is false.

if (condition)
{ statements I; }

else
{ statements2; }

2.3.10.2 Switch (Netscape & MSIE 4)

Commonly known as a "case statement," switch matches an expression

with a specified case, and executes the statements defined for that case. In

essence, the switch statement is a sort of shorthand for combining many implied if
statements together.

switch (expression){
case label:
statement;
break;

case label :
statement;

36

break;

default : statement;
}

For example, imagine that you wanted to execute different sets of

statements depending on whether favoritePet was "dog," "cat," or "iguana." Note

that the break; statement prevents any cases below the match from being

executed. The default case is matched if none of the cases match the expression.

switch (favoritePet){
case "dog":
statements;
break;

case "cat" :
statements;
break;

case "iguana" :
statements;
break;

default : statements;
}

2.3.11 Loops

2.3.11.1 For

The venerable for loop repeatedly cycles through a block of statements

until a test condition is false. Typically, the number of times a loop is repeated

depends on a counter. The JavaScript for syntax incorporates the counter and its

increments:

for (initial-statement; test; increment)
{ statements; }

The initial-statement is executed first, and once only. Commonly, this

statement is used to initialize a counter variable. Then the test is applied and if it

succeeds then the statements are executed. The increment is applied to the counter

37

variable and then the loop starts again. For instance, consider a loop, which
•

executes 10 times:

for (i=O; i<lO; i++)
{ statements; }

2.3.11.2 Do ... while (Netscape & MSIE 4)

Another loop, a do ... while statement executes a block of statements

repeatedly until a condition becomes false. Due to its structure, this loop

necessarily executes the statement at least once.

do
{ statements;}
while (condition)

2.3.11.3 While

In similar fashion as the do ... while statement, the while statement executes

its statement block as long as the condition is true. The main difference between

while and do ... while, aside from the fact that only while is supported in all

JavaScript versions, is that a while loop may not execute the statements even once

if the condition is initially false.

while (condition)
{ statements; }

38

2.3.11.4 Break and Continue

Both of these statements may be used to "jump the tracks" of an iterating

loop. When used within the statement block of a loop, each statement behaves

slightly differently:

break Aborts execution of the loop, drops out of loop to
the next statement following the loop.

Aborts this single iteration of the loop, returns
execution to the loop control, meaning the
condition specified by the loop statement. Loop
may execute again if condition is still true.

continue

2.3.12 Comments

Despite the fact that comments are purely optional, they can easily be a

crucial part of your program. Comments can explain the action, like a color

commentary, which can be a great help in understanding the code. Whether as a

teaching tool or to simply remind yourself what the code does, comments are best

sprinkled liberally throughout a program. Remember, comments are for humans,

so write them that way.

Comments can also be used for debugging -- you can comment "out"

sections of code to prevent them from being executed. In doing so you may learn

more about why a certain problem is occurring in your program.

Because JavaScript must ignore comments, there is an appropriate syntax

for demarcating text as a comment. For single line comments, simply precede the

line with two backslashes. For multi-line comment blocks, begin the comment

with/* and close with */.

!IA lonely ol' single line comment
/* A dense thicket of commentary, spanning many captivating lines
of explanation and intrigue. */

39

2.3.13 Functions

A function groups together a set of statements under a named subroutine.

This allows you to conveniently "call" the function whenever its action is

required. Functions are a fundamental building block of most JavaScript

programs, so you'll become quite familiar with their use. Before you can call on a

function, of course, you must first create it. We can break down the use of

functions, then, into two logical categories: defining functions and calling

functions.

2.3.13.1 Defining Functions

The function definition is a statement, which describes the function: its

name, any values (known as "arguments"), which it accepts incoming, and the

statements of which the function is comprised.

function funcName(argumentl ,argument2,etc)
{ statements; }

A function doesn't necessarily require arguments, in which case you need

only write out the parenthesis; e.g. funcName(). If you do specify arguments,

those arguments will be variables within the function body (the statements which

make up the function). The initial values of those variables will be any values

passed on by the function call.

Generally it's best to define the functions for a page in the HEAD portion

of a document. Since the HEAD is loaded first, this guarantees that functions are

loaded before the user has a chance to do anything that might call a function.

Alternately, some programmers place all of their functions into a separate file, and

include them in a page using the SRC attribute of the SCRIPT tag. Either way, the

key is to load the function definitions before any code is executed.

Consider, for example, a simple function, which outputs an argument to

the Web page, as a bold and blinking message:

function boldblink(message)
{ document.write("<blink>"+message+"</blink>"); }

40

Some functions may return a value to the calling expression. The
•

following function accepts two arguments, x and y, and returns the result of x

raised to the y power:

function raiseP(x,y)
{ total=l;
for (j=O; j<y; j++)
{ total *=x; }
return total; //result of x raised toy power

}

2.3.13.2 Calling Functions

A function waits in the wings until it is called onto the stage. You call a

function simply by specifying its name followed by a parenthetical list of

arguments, if any:

clearPage();
boldblink("Call me gaudy!");

Functions, which return a result, should be called from within an

expression:

total=raiseP(2,8);
if (raiseP(tax,2)<100) ...

An object is a "package" of data; a collection of properties (variables) and

methods (functions) all classed under a single name. For example, imagine that

there was an object named car. We could say that the car object possesses several

properties: make, model, year, and color, for example. We might even say that car

possesses some methods: go(), stop(), and reverse(). Although car is obviously

fictional, you can see that its properties and methods all relate to a common

theme.

In JavaScript you may create your own objects for storing data. More

commonly, though, you will use the many "built-in" objects, which allow you to

work with, manipulate, and access the Web page and Web browser. This set of

pre-existing objects is known as the "Document Object Model".

41

2.3.14 Document Object Model

Often referred to as the DOM, this object model is a hierarchy of all

objects "built in" to JavaScript. Most of these objects are directly related to

characteristics of the Web page or browser. The reason we qualify the term "built

in" is because the DOM is technically separate from JavaScript itself. That is, the

JavaScript language specification, standardized by the ECMA, does not actually

specify the nature or specifics of the DOM. Consequently, Netscape and

Microsoft have developed their own individual DOM's, which are not entirely

compatible. Additionally, the DOM stands apart from JavaScript because other

scripting languages could theoretically access it as well.

In summary, then, what we refer to as "JavaScript" is actually made up of

JavaScript, the language, and the DOM, or object model, which JavaScript can

access. In a future WDVL article we will take a closer look at the DOM and its

current and future role.

Below is a graphical chart (Figure 2.1) illustrating a high-level view of

Netscape's DOM. Microsoft's DOM is actually a superset of Netscape's, and so

the chart below actually represents a subset of Microsoft's own DOM.

42

'0lindow

Frame

document

Location

History

Texture a
-- --
Text

Layer I
~

Image I
- -
Area I Submit

Anchor I Reset

App~ Radio - -
Plug in I H Checkbox
- -
Form 1----+-l Button

navigator

Plugin

Mime Type

Option

Reprinted from Netscape's JavaScript Guide

2.3.14.1 Properties

Figure 2.1 High Level View

carObj.make="Toyota";
carObj .model="Camry";
car0bj.year=l990;
document.write(carObj .year);

43

Access the properties of an object with a simple notation:

objectName.propertyName. Both the object name and property name are case

sensitive, so watch your typing. Because a property is essentially a variable, you

can create new properties by simply assigning it a value. Assuming, for instance,

that carObj already exists (we'll learn to create a new object shortly), you can give

it properties named make, model, and year as follows:

Select

A JavaScript object, basically, is an array. If you're familiar with other
•

languages you probably recognize an array as a collection of values residing

within a single named data structure. You can access an object's properties either

using the objectName.propertyName syntax illustrated above, or by using array

syntax:

carObj ["make"]="Toyota";
carObj ["model "]="Camry";
document. write(carObj ["year"]);

2.3.14.2 Methods

Unlike a basic data array, an object can also contain functions, which are

known as methods when part of an object. You call a method using the basic

syntax: objectName.methodName(). Any arguments required for the method are

passed between the parentheses, just like a normal function call.

For example, the window object possesses a method named closet), which

simply closes the specified browser window:

window.close();

2.3.15 Summary

It can be said that a JavaScript program is a series of statements, which

work together towards a particular goal, and are made up of component

grammatical elements, such as expressions and operators. Because JavaScript is a

programming language invented "for the Web," it is oriented towards the specific

needs of Web developers. The set of pre-built objects largely reflect

characteristics of the Web page, allowing your JavaScript program to manipulate,

modify, and react to the Web page.

Interactivity is the driving force behind JavaScript, and so most JavaScript

programs are launched by actions, which occur on the Web page, often by the

44

user. In doing so, JavaScript's purpose is to nudge Web pages away from static
•

displays of data towards applications, which can process and react.

2.4 VB SCRIPT

VBScript, Microsoft's Visual Basic Scripting Edition, is a scaled down

version of Visual Basic. While it doesn't offer the functionality of Visual Basic, it

does provide a powerful, easy to learn tool that can be used to add interaction to

the web pages.

VBScript brings professional programming techniques to HTML web

documents. With VBScript, documents and applications can be created, which are

previously could only have been made available as a desktop program written

with something like Visual Basic. It gives the ability to interact with and

manipulate HTML documents directly from the browser. With VBScript, even

interacting with and manipulating the browser itself can be done, sending it

instructions from the VBScript program, and pulling in its variables for own use.

Specifically, VBScript was created by Microsoft to use either as a client­

side scripting language for the Microsoft Internet Explorer (versions 3.0 and later)

or as a server-side scripting language with the Microsoft Internet Information

Server (versions 3.0 and later). A primary advantage for using the server-side

approach is that the VBScript is processed by the server before it is transmitted to

the client. Therefore, the client only receives an HTML page and we do not have

to concern ourselves as to whether the browser can interpret the VBScript. In

contrast, by using the client-side approach, purposely, the workload is transferred

to the browser in order to reduce the workload of the server. Unfortunately, older

or non-Microsoft browsers may not be able to correctly interpret and display the

transmitted file. In addition to this, the source code is exposed to the browser user.

On the brighter side, a client-side program can produce a more-responsive

application, since user input can be processed on the client machine, and not sent

back to the server for processing.

45

The true importance of VB Script is that it is the default language of Active
•

Server Pages (ASP).

ASP is an exciting technology from Microsoft that is of significant value

to developers. ASP extends standard HTML by adding built-in objects and server­

side scripting, and by allowing access to databases and other server-side ActiveX

components. This will be explained later in this chapter.

For many Web-application developers, VBScript may very well be the

most important programming language.

VBScript Version 5.0 was released in 1999. Certainly, the most important

new feature of Version 5.0 is the ability to use the Class statement to create your

own class objects. Other new features of interest include the Timer function, the

With statement, and regular expression searching using the RegExp and Match

objects.

Recently, Microsoft renamed VBScript Version 5.0 to Version 5.5 to

signify that it is part of the Windows Script Version 5.5 package.

Figure 2.2 shows a web page that displays the date on which this particular

HTML file was last modified, and also shows the referrer of this page, or the URL

of the document whose hyperlink was followed to reach this page. It is impossible

to display either of these items of information with standard HTML (unless, of

course, you "hardcode" them into your HTML document, in which case you're

probably not really displaying the date the file was last modified or the hyperlink

by which it was reached). Instead, HTML intermixed with VBScript was used to

produce this page.

46

Quick VBScript Ex:armples

This docum,int was cAU.Yd by:
http!f/W"Wllt.Vbscrlpts.tontltostlexam111e.hlml

Figure 2.2 Diplaying Date

Some of the main uses of VB Script are:

• Reference and manipulate document objects

• Reference and manipulate the browser

• Reference the contents of another loaded document or documents

• Create a document "on the fly" from the browser

• Store, reference, and manipulate data input by the user

• Store, reference, and manipulate data downloaded from the server

• Perform calculations on data

• Display messages to the user

• Access cookies easily

• Reference and manipulate a wide range of "add-on" components,

both ActiveX controls and Java applets

• Display two-dimensional HTML

In order to write VBScript, you have to know how to structure your code

so that your scripts and programs execute properly. Each of the different types of

VBScript that you write has different rules regarding its structure.

47

2.4.1 EXAMPLE: Script-Level Code in WSH

Option Explicit

Dimx

X = 10

Private Function Increment(!Var)

!Var= !Var+ 1

· Increment = !Var

End Function

Private Function Decrement(!Var)

!Var= !Var - 1

Decrement= !Var

End Function

Dim sMsg

sMsg = "The current value ofx is" & x & vbCrLf

Dimy

y = 20

If x = 0 Then x = 10

sMsg = sMsg & "Value returned by Increment: " & Increment(x) &

vbCrLf

sMsg = sMsg & "Value returned by Increment: " & Increment(x) &

vbCrLf

sMsg = sMsg & "Value returned by Decrement: " & Decrement(x)

& vbCrLf

sMsg = sMsg & "The value of x is now " & x & vbCrLf

sMsg = sMsg & "The value ofy is" & y & vbCrLf

MsgBox sMsg

48

Figure 2.3 Example

2.4.2 Adding VBScript to Web Pages

Scripting languages, like JavaScript and VBScript, are designed as an

extension to HTML. The web browser receives scripts along with the rest of the

web document. It is the browser's responsibility to parse and process the scripts.

HTML was extended to include a tag that is used to incorporate scripts into

HTML-the <SCRIPT> tag.

2.4.2.1 The <SCRIPT> Tag

Scripts are added into web pages within a pair of <SCRIPT> tags. The

<SCRIPT> tag signifies the start of the script section, while </SCRIPT> marks

the end. An example of this is shown below:

<HTML>

<HEAD>

<TITLE>Working With VBScript</TITLE>

<SCRIPT LANGUAGE="VBScript">

MsgBox "Welcome to my Web page!"

</SCRIPT>

The beginning <SCRIPT> tag includes a LANGUAGE argument that

indicates the scripting language that will be used. The LANGUAGE argument is

49

required because there is more than one scripting language. Without the
• LANGUAGE argument, a web browser would not know if the text between the

tags were JavaScript, VBScript or another scripting language.

While technically scripts can be placed throughout an HTML document

using pairs of <SCRIPT> tags, typically scripts are often found at either the top or

bottom of a Web document. This provides for easy reference and maintenance.

Although, functions and procedures (or subroutines) are central to modern

programming. Dividing the script into subroutines helps to maintain and write

programs by segregating related code into smaller, manageable sections. It also

helps to reduce the number of lines of code to write by allowing reusing the same

subroutine or function many times in different situations and from different parts

of the program.

2.4.3 Defining Subroutines: The Sub ... End Sub Construct

The Sub ... End Sub construct is used to define a subroutine; that is, a

procedure that performs some operation but does not return a value to its calling

program. Blocks of code defined as subroutines with the Sub ... End Sub construct

can be called in two ways:

1- Automatically

Some subroutines provide the means by which an object interfaces with

the script. For instance, when a class defined with the Class ... End Class construct

is initialized, its Initialize event, if one has been defined, is executed

automatically. For subroutines of this type, the routine's name can be constructed

in only one way, as follows:

Sub objectname_event

For example, Sub Class _Initialize is a valid name of a subroutine. This

type of subroutine is known as an event handler or an event procedure.

50

2- Referring to it by name fl{~ <~;)
•• CID ,,..,

cP 1'>' ' J,..
A subroutine can be executed at any time by referring to it by nam~

another part of the script. While it is possible to execute event procedures in thi~

way, this method is most commonly used to execute custom subroutines. Custom

subroutines are constructed to perform particular tasks within a program, and can

be assigned virtually any name. They allow you to place code that's commonly

used or that is shared by more than one part of a program in a single place and no

need to duplicate the same code through the application.

2.4.3.1 Subroutine Names

There are several very straightforward rules to remember when giving

names to subroutines:

• The name can contain any alphabetical or numeric characters and

the underscore character.

• The name cannot start with a numeric character.

• The name cannot contain any spaces. Use the underscore character

to separate words to make them easier to read.

For example:

Sub 123MySub() ' Illegal

Sub My Sub Routine() ' Illegal

both contain illegal subroutine names. However:

Sub MySub 123() ' Legal

Sub MySubRoutine() ' Legal

are legal subroutine names.

51

2.4.3.1 Example : Using a Custom Subroutine to Share Code
'

Sub cmdButtonl OnClick

Call Show AlertBox(cmdButton 1. Value)

End Sub

Sub cmdButton2 OnClick

Show AlertBox cmdButton2. Value

End Sub

Sub cmdButton3 OnClick

ShowAlertBox cmdButton3.Value

End Sub

Sub Show AlertBox(strButton Value)

dim strMessage

strMessage = "This is to let you know" & vbCrLf

strMessage = strMessage & "you just pressed the button" & vbCrLf

strMessage = strMessage & "marked " & strButton Value

Alert strMessage

End Sub

2.5 Common Gateway Interface (CGI)

Common Gateway Interface is a method to allow programmers to write

programs that send and received data from websites. CGI is commonly used with

HTML forms that allow users to submit data via the form. One problem with CGI

is that it must start a new process for every user request, this can quickly slow

down busy servers, and consequently CGI is not considered a very scalable

solution. However, CGI can be implemented on a larger range of server software.

The Common Gateway Interface (CGI) specification lets Web servers

execute other programs and incorporate their output into the text, graphics, and

52

audio sent to a Web browser. .The server and the CGI program work together to

enhance and customize the World Wide Web's capabilities.
..

By providing a standard interface, the CGI specification lets developers

use a wide variety of programming tools. CGI programs work the magic behind

processing forms, looking up records in a database, sending e-mail, building on­

the-fly page counters, and dozens of other activities. Without CGI, a Web server

can offer only static documents and links to other pages or servers. With CGI, the

Web comes alive-it becomes interactive, informative, and useful. CGI can also be

a lot of fun!

2.5.1 CGI Beyond the World Wide Web and HTML

Browsers and Web servers communicate by using the Hypertext Transfer

Protocol (HTTP). Tim Berners-Lee at CERN developed the World Wide Web

using HTTP and one other incredibly useful concept: the Universal Resource

Locator (URL). The URL is an addressing scheme that lets browsers know where

to go, how to get there, and what to do after they reach the destination.

Technically, a URL is a form of Universal Resource Identifier (URI) used to

access an object using existing Internet protocols. Because this book deals only

with existing protocols, all URLs will be called URLs, not worrying about the

technical hair-splitting. URLs are defined by RFC 1630.

Fortunately, most browsers keep a local copy, called a cache, of recently

accessed documents. When the browser notices that it's about to re-fetch

something already in the cache, it just supplies the information from the cache

rather than contact the server again. This alleviates a great deal of network traffic

Your Web browser doesn't know much about the documents it asks for. It

just submits the URL and finds out what it's getting when the answer comes back.

The server supplies certain codes, using the Multipurpose Internet Mail

Extensions (MIME) specifications, to tell the browser what's what. This is how

your browser knows to display a graphic but save a .ZIP file to disk. Most Web

documents are Hypertext Markup Language (HTML): just plain text with

53

embedded instructions for formatting and displaying. By itself, the server is only ..
smart enough to send documents and to tell the browser what kind of documents

they are. But the server also knows one key thing: How to launch other programs.

When a server sees that a URL points to a file, it sends back the contents of that

file. When the URL points to a program, however, the server fires up the program.

The server then sends back the program's output as if it were a file.

Well, for one thing, a CGI program can read and write data files (a Web

server can only read them) and produce different results each time it runs. This is

how page counters work. Each time the page counter is called, it hunts up the

previous count from information stored on the server, increments it by one, and

creates a .GIF or .JPG on the fly as its output. The server sends the graphics data

back to the browser just as if it were a real file living somewhere on the server.

2.5.2 How CGI Works

A CGI program isn't anything special by itself. That is, it doesn't do magic

tricks or require a genius to create it. In fact, most CGI programs are fairly simple

things, written in C or Perl (two popular programming languages).

CGI programs are often called scripts because the first CGI programs were

written using UNIX shell scripts (bash or sh) and Perl. Perl is an interpreted

language, somewhat like a DOS batch file, but much more powerful. When a Perl

program is executed, the · Perl instructions are interpreted and compiled into

machine instructions right then. In this sense, a Perl program is a script for the

interpreter to follow, much as Shakespeare's Hamlet is a script for actors to

follow.

Other languages, like C, are compiled ahead of time, and the resultant

executable isn't normally called a script. Compiled programs usually run faster but

often are more complicated to program and certainly harder to modify.

In the CGI world, however, interpreted and compiled programs are called

scripts.

54

Before the server launches the script, it prepares a number of environment ..
variables representing the current state of the server, who is asking for the

information, and so on. The environment variables given to a script are exactly

like normal environment variables, except that they can't set them from the

command line. They're created on the fly and last only until that particular script

is finished. Each script gets its own unique set of variables. In fact, a busy server

often has many scripts executing at once, each with its own environment.

Also, depending on how the script is invoked, the server may pass

information another way, too. Although each server handles things a little

differently, and although Windows servers often have other methods available, the

CGI specification calls for the server to use STDOUT (Standard Output) to pass

information to the script.

2.5.2.1 Standard Input and Output

STDIN and STDOUT are mnemonics for Standard Input and Standard

Output, two predefined stream/file handles. Each process inherits these two

handles already open. Command-line programs that write to the screen usually do

so by writing to STDOUT. If the input to a program is redirected, really STD IN is

been redirected. If the output of a program is redirected, really STDOUT is

redirected. This mechanism is what allows pipes to work.

For Web servers, STDOUT is the feed leading to the script's STDIN. The

script's STDOUT feeds back to the server's STDIN, making a complete route.

From the script's point of view, STDIN is what comes from the server, and

STDOUT is where it writes its output. Beyond that, the script doesn't need to

worry about what's being redirected where. The server uses its STDOUT when

invoking a CGI program with the POST method. For the GET method, the server

doesn't use STDOUT. In both cases, however, the server expects the CGI script to

return its information via the script's STDOUT.

This standard works well in the text-based UNIX environment where all

processes have access to STDIN and STDOUT. In the Windows and Windows

NT environments, however, STDIN and STDOUT are available only to non-

55

graphical (console-mode) programs. To complicate matters further, NT creates a
•

different sort of STDIN and STDOUT for 32-bit programs than it does for 16-bit

programs. Because most Web servers are 32-bit services under NT, this means

that CGI scripts have to be 32-bit console-mode programs. That leaves popular

languages such as Visual Basic and Delphi out in the cold. One popular NT

server, the freeware HTTPS from EMW AC, can talk only to CGI programs this

way. Fortunately, there are several ways around this problem.

2.5.3 Where CGI Scripts Live

Just like any other file on a server, CGI scripts have to live somewhere.

Depending on the server, CGI scripts may have to live all in one special directory.

Typically-whether required by the server or not-Webmasters, a special

case of the system administrator disease, put all the scripts in one place. This

directory is usually part of the Web server's tree, often just one level beneath the

Web server's root. By far the most common directory name is CGI-BIN, a

tradition that got started by the earliest servers to support CGI: servers that

(believe it or not) hard-coded the directory name. UNIX hacks will like the BIN

part, but because the files are rarely named *. bin and often aren't in binary format

anyway, the rest of the world roll their eyes and shrug. Today, servers usually

allow specifying the name of the directory and often support multiple CGI

directories for multiple virtual servers (that is, one physical server that pretends to

be many different ones, each with its own directory tree).

Suppose that the UNIX Web server is installed so that the fully qualified

path name is /usr/bin/https/Webroot. The CGI-BIN directory would then be

/usr/bin/https/Webroot/cgi-bin. That's where the Webmaster, puts the files. From

the Web server's point of view, /usr/bin/https/Webroot is the directory tree's root,

so it would be possible to refer to a file there called index.html with a URL of

/index.html. A script called myscript.pl living in the CGI-BIN directory would be

referred to as /cgi-bin/rnyscript.pl.

56

On a Windows or NT server, much the same thing happens. The server might be •.
installed in c:\winnt35\system32\https, with a server root of d:\ Webroot. It is possible to

refer to the file default.htm in the server root as /default.htm, never minding that its real

location is d:\Webroot\default.htm. If the CGI directory is d:\Webroot\scripts, we

would refer to a script called myscript.exe as /scripts/myscript.exe.

2.5.4 CGI Server Requirements

CGI scripts, by their very nature, place an extra burden on the Web server.

They're separate programs, which means the server process must spawn a new task for

every CGI script that's executed. The server can't just launch the program and then sit

around waiting for the response-chances are good that others are asking for URLs in the

meantime. So the new task must operate asynchronously, and the server has to monitor

the task to see when it's done.

The overhead of spawning a task and waiting for it to complete is usually

minimal, but the task itself will use system resources-memory and disk-and also will

consume processor time slices. Even so, any server that can't run two programs at a

time isn't much of a server. But the other URLs being satisfied while the program is

running.

What if there are a dozen, or a hundred, of them, and what if most of them are

also CGI scripts? A popular site can easily garner dozens of hits almost simultaneously.

If the server tries to satisfy all of them, and each one takes up memory, disk, and

processor time, we can quickly bog the server down so far that it becomes worthless.

There's also the matter of file contention. Not only are the various processes

(CGI scripts, the server itself, plus whatever else may be running) vying for processor

time and memory, they may be trying to access the same files. For example, a guest

book script may be displaying the guest book to three browsers while updating it with

the input from a fourth. (There's nothing to keep the multiple scripts running from

being the same script multiple times.) The mechanisms for ensuring a file is available­

locking it while writing and releasing it when done-all take time: system OS time and

simple computation time. Making a script foolproof this way also makes the script

bigger and more complex, meaning longer load times and longer execution times.

57

Therefore, to run CGI scripts the server's capacity should be known, the site has
~

to planned and monitor performance on an ongoing basis. These requirements are based

on the software being running on the server, what CGI scripts being used and what kind

of traffic the server sees.

2.6 Active Server Pages (ASP)

Active Server Pages (ASP) is a compile-free, text based scripting environment

for creating dynamic web sites. It allows a developer to quickly and easily create

dynamic database-driven web sites, intranets and extranets.

To write an ASP script all we need is a text editor, Notepad will do. To run ASP

we need an installation of Internet Information Server (IIS) or a version of personal

web server. ASP can connect to all popular databases but most ASP programmers start

out with Access or SQL Server. There are also ASP environments available for other

operating systems such as Chilisoft ASP, which will run on operating systems such as

UNIX.

ASP first became available to developers in October 96 with the release of the

public beta for Internet Information Server 3 (IIS). Up until this point, ASP has been

known by the project name "Denali". Microsoft followed up with ASP 2 in August

1997 as part of IIS 4 and with IIS 5 and Windows 2000, ASP is now at version 3.

Microsoft has developed a new replacement for what many people call "Classic

ASP" called ASP.NET. as part of their huge .NET initiative, but many people and

companies will need to keep their classic asp systems for a while even once ASP.NET

is officially released.

ASP.NET is a revolutionary programming framework that enables the rapid

development of powerful web applications and services. Part of the Microsoft .NET

Platform, it provides the easiest and most scalable way to build, deploy and run web

applications that can target any browser or device.

58

Chapter 3

RESERVING A BOOK FROM LIBRARY
(USING ASP)

In this chapter, I will introduce an example of using Active Server Pages (ASP)

to reserve a book on the web from a certain library, for instance the Near East

University Library.

To perform this application, it is needed to create a database that contains certain

variables and connect it to the web page. The ASP can work with any popular database

including Access and SQL, as it was mentioned before.

3.1 Creating the Database

The database will be called (studentdb.dbf) and it will contain variables that are

related to the student registered in the university's database files, such as the student

name, student number, the name of the book reserved and the department (Figure 3 .1).

I will use Access 2000 to create the database file, and then connect it to the web

page. The database file will be located in the server of the library, which is also

connected to the web page using specific commands in ASP.

59

Figure 3.1 Database layout

3.2 The Page's Code

The code of the page is written using HTML and ASP so that the page would be

able to communicate with the server. I used Dreamwaver program to design the page

(Figure 3.2).

The first page that will appear is going to display a list of the books' names that

can be reserved. These books' names will be retrieved from the database located in the

library's server.

We connect to the data base with the following code:

<%

Dim objConn

'create an ADO connection object

60

Set objConn = Server.CreateObject("ADODB.Connection")
6

'open the connection to the database

'sqlservername = the name of the SQL server (if used)

'accessdb = the path to the access db from this script

'bookname=the bookname to be retreived

ObjConn. Open "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=" &

Server.MapPath ("studentdb")

%>

The code of the list page will be:

<html>

<head>

<meta http-equiv="Content-Language" content="en-us">

<meta name="GENERATOR" content="Microsoft FrontPage 5.0">

<meta name="Progld" content="FrontPage.Editor.Document">

<meta http-equiv=" Content-Type" content= "text/html; charset=windows-

1252">

<title> THE LIBRARY </title>

</head>

<body>

<form method="POST" action="--WEBBOT-SELF--">

<!--webbot bot="SaveResults" u-file="_private/form _results.csv" s­

format="TEXT/CSV" s-label-fields="TRUE" --><p>

 </p>

<p>

LIBRARY </p>

<p>SELECT YOUR BOOK FROM THE

CURRENTLY AVAILABLE LIST:</p>

 THE

<p><input type="radio" value="Vl" checked name="Rl ">Book name

l

61

<input type="radio" name="Rl" value="Vl5">Book
6

name8

</p>

<p><input type="radio" name="Rl" value="V2">Book name

2

<input type="radio" name="Rl" value="V9">Book name9</p>

<p><input type="radio" name="Rl" value="V3 ">Book name

3

<input type="radio" name="Rl" value="V 1 O"> Book name 1 O</p>

<p><input type="radio" name="Rl" value="V4">Book name

4

<input type="radio" name="Rl" value="Vl I ">Book namel 1 </p>

<p><input type="radio" name="Rl" value="V5">Book name

5

<input type="radio" name="Rl" value="V12">Book name12</p>

<p><input type="radio" name="Rl" value="V6">Book name

6

<input type="radio" name="Rl" value="Vl3">Book namel3</p>

<p><input type="radio" name="Rl" value="V7">Book name

7 &n bsp ; ; ; ; ; ;

<input type="radio" name="Rl" value="Vl4">Book namel4</p>

<p> </p>

<p> &

nbsp; <input type=''submit''

value="Continue" action="reserve.asp" method="POST" name="B 1 "></p>

<p> </p>

<p> </p>

<p> </p>

<p> </p>

<p> </p>

<p> </p>

<p> </p>

62

<p> </p>

<p> </p>

<p> </p>

<p> </p>

<p> </p>

</form>

..

</body>

</html>

The layout of the index.html page (listing page) will be as shown in figure 3.2.

,I THE LIBRARY, Micro,oft Internet Explorer
File: Edt ._,iew F~orit-es rods Help

THE LIBRARY

SELECT YOUR BOOR FROM TIIE CURRENTLY AV AJLABLE LI$'T

©Book name I () Book name8

() Book name 2 () Book oame9

() Book name 3 () Book name 10

OBookname 4 C1 Book name 11

0 Book name 5 () Bo.:ik name 12

0 Book name 6 () Book name 13

()Book name 7 0 Book name 14

Figure 3.2 Listing Page Layout

When pressing the (Continue) button, the Reserving page will appear. There, we

will connect again to the database. To implement this progress is as follows:

63

<%

Dim objConn
..

'create an ADO connection object

Set objConn = Server.CreateObject("ADODB.Connection")

'open the connection to the database

'sqlservername = the name of the SQL server (if used)

'accessdb = the path to the access db from this script

'studentname = student name to connect to the db

'studentnumber = student number to connect to the db

'department= department to connect to the db

ObjConn. Open "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=" &

Server.MapPath ("studentdb")

%>

Now we are connected to the database.

The code of the reservation page (reserve. asp) will be as follows:

<%

Option Explicit

Dim strError, strSQL

'see if the form has been submitted

If Request.Form("action")="reserve" Then

'the form has been submitted

'II validate the form
/

'check if a student name has been entered

If Request.Form("studentname") =""Then_

strError = strError & "- Please enter your name
" & vbNewLine

64

'check if the number has been entered

If Request.Form("studentnumber") =""Then_

strError = strError & "- Please enter your number
" & vbNewLine

'II check if an error has occured

If strError = "" Then

'continue

'include database connection code

%>

<!--#include file="inc-dbconnection.asp"-->

<%

On Error Resume Next

'II create the SQL

strSQL = "INSERT INTO members

([studentname],[studentnumber],[department]) VALUES" & _

"("' & fixQuotes(Request.Form("studentname")) & "',"' & _

fixQuotes(Request.Form("studentnumber")) & "',"' & _

fixQuotes(Request.F orm(" department")) & '")"

'II run the SQL

objConn.Execute strSQL

'II check for an error

If Err.Number= 222 Then

strError = "- You Entered a wromg name
" & vbNewLine

Else Err.Number<> 0 Then

strError = "- An error occured. " & Err.Number & " : " &

Err.Description & "
" & vbNewLine

Response.End

End If

'restore standard error handling

On Error Goto 0

65

End If ..
If strError <> "" Then

'output the error message

'add extra HTML ...

strError = "<p>The following errors

occured:" &

"
" & vbNewLine & strError

End If

End If

Function fixQuotes(strData)

fixQuotes = Replace(strData,""',""")

End Function

%>

<html>

<head>

<title>RESERVE YOUR BOOK-NEAR EAST UNIVERSITY</title>

<script language="JavaScript">

<!--

function MM_reloadPage(init) { //reloads the window ifNav4 resized

if (init==true) with (navigator) { if

((appName=="Netscape")&&(parselnt(appVersion)==4)) {

document.MM _pg W=innerWidth; document.MM _pgH =inner Height;

onresize=MM_reloadPage;}}

else if (innerWidth!=document.MM_pgW II
innerHeight !=document.MM _pgH) location.reload();

}

MM _reloadPage(true);

II-->

</script>

</head>

<body bgcolor="#FF9933">

<div id="Layerl" style="position:absolute; left:382px; top: 165px;

width:266px; height:41 px; z-index: 1 ">

66

<hl align="center">THE LIBRARY</hl>

</div>

<div id="Layerl" style="position:absolute; left:94px; top:247px;

width:400px; height:28px; z-index: 1 ">

<p><i><u><font

color="#OOOOFF">Please

fill out the following form to reserve your desired

book:</u></i></p>

</div>

<%=strError%>

<div id="Layer2" style="position:absolute; left:213px; top:68px;

width:627px; height:52px; z-index:2"><font size="+4"

color="#990000">NEAR

EAST UNIVERSITY </div>

<div id="Layer3" style="position:absolute; left:205px; top:700px;

width:482px; height: 19px; z-index:3 ">

<p align="center"><i><font face="Georgia, Times New Roman, Times,

serif' size=" I"> All

rights reserved © 2002 by Mohamemed J.

Mohammed</i></p>

</div>

<form action="reserve.asp" method="POST">

<div align="center">

<div id="Layerl" style="position:absolute; left:245px; top:509px;

width:400px; height: 118px; z-index: 1 ">

<input type="hidden" name="action" value="reserve">

<table border="O">

<tr>

<td height="29">Student Name</td>

<td height="29">

<%=Server .HTMLEncode(Request.F orm (" studentname "))%>

<input type="text" name="studentname" value="">

<ltd>

</tr>

67

<tr>

<td>Student Number</td>

<td>

<%=Server .HTMLEncode(Req uest.F orm(" studentnum ber"))%>

<input type="text" maxlength=20 name="studentnumber">

<ltd>

</tr>

<tr>

<td> Department <ltd>

<td>

<div align="left">

<%=Server .HTMLEncode(Req uest.F orm ("department"))%>

<input type="text" maxlength=20 name="department">

</div>

<ltd>

</tr>

<tr>

<td> </td>

<td>

<input type="submit" value="Complete Reservation">

<ltd>

</tr>

</table>

</div>

</div>

<div align="center"></div>

<div id="Layerl" style="position:absolute; left:220px; top:309px;

width:400px; height: 118px; z-index: 1 ">

<p>For how long do you want to reserve the

book?! </p>

<p>

68

<input type="radio" name="radiobutton" value="radiobutton"> .•
 1-3 Days</p>

<p>

<input type="radio" name="radiobutton" value="radiobutton">

 3-5 Days</p>

<p>

<input type="radio" name="radiobutton" value="radiobutton">

One week</p>

<p> </p>

</div>

</form>

</body>

</html>

When the code is implemented, the web page we look as in figure 3.3

Figure 3.3 Web page layout

69

CONCLUSION •.
Web technology is strong on interactivity, but low on automation. Electronic

commerce on the Web is primarily driven manually via a browser. In order to achieve

business-to-business integration organizations have resorted to proprietary protocols.

The many-to-many nature of Web commerce demands a standard for automated

integration.

This proposal defines the infrastructure necessary for Web resources to be

described as functional interfaces that can be invoked directly from business

applications written in languages such as Java, CIC++, COBOL, and Visual Basic.

By capturing details such as input parameters, service URLs, and data extraction

methods for output parameters, WIDL enables automation of interactions normally

performed manually via a browser.

In a general view, nowadays, Internet programming and web designing

technology is a very important and useful application that helps and affects in a lot of

our daily life. This importance comes from the Internet it self in providing useful

information in all our life fields.

Specifically, Active Server Pages (ASP) is 'the most powerful page on the web

because it has the ability to communicate with a server and perform specific

applications with the database saved in that server.

ASP technology was first in October 1996 and its in version 3 now. It is

continuing to be developed because of its importance. By the coming couple of years,

ASP will lead the world to a new type oflnternet technology.

70

REFERENCES ..

[1] Paul Lomax, Leaming VB Script, 1st Edition.

[2] Aaron Weiss, Java Script Tutorial for Programmers.

[3] A. Keyton Weissigner, ASP in a Nutshell, A Desktop Quick Reference.

[4] Scott Mitchell, Designing Active Server Pages.

[5] Louis Rosenfeld & Peter Morville, Information Architecture for The World Wide Web.

[6] Paul Lomax, Matt Childs & Ron Petrusha, VB Script in a Nutshell.

[7] Shelly Powers, Developing ASP Components.

[8] http://www.examples.oreilly.com/devaspcom2/chapters/

[9] http://www.web.oreilly.com.

[10] http://www.oreilly.com.

[11] http://www.webopedia.intemet.com.

[12] http://www.cwru.edu.

71

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	ACKNOWLEDGMENTS
	..

	Images
	Image 1
	Image 2

	Page 3
	Titles
	ABSTRACT
	.Ł

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS

	Images
	Image 1

	Page 5
	Titles
	..

	Images
	Image 1

	Page 6
	Titles
	'

	Images
	Image 1

	Page 7
	Titles
	INTRODUCTION
	.Ł

	Images
	Image 1

	Page 8
	Titles
	Chapter 1
	World Wide Web (www) Overview
	1.1 Introduction

	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	1.2 Website

	Images
	Image 1

	Page 11
	Titles
	1.3 Web Interface Definition Language (WIDL)
	4

	Images
	Image 1

	Page 12
	Titles
	Ł
	1.3.1 Benefits of WIDL

	Images
	Image 1

	Page 13
	Titles
	"
	6

	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Titles
	Ł.
	1.4 Web Services Description Language (WSDL)

	Images
	Image 1

	Page 16
	Titles
	Ł

	Images
	Image 1

	Page 17
	Titles
	1.4.1 SOAP Binding
	1.4.2 HTTP GET & POST Binding

	Images
	Image 1

	Page 18
	Titles
	..
	1.4.3 MIME Binding
	1.5 FTP (File Tran sf er Protocol)

	Page 19
	Images
	Image 1

	Page 20
	Titles
	Chapter 2
	TOOLS and LANGUAGES of INTERNET PROGRAMMING
	2.1 HTML

	Images
	Image 1

	Page 21
	Images
	Image 1

	Page 22
	Titles
	2.1.1 Document Tags

	Images
	Image 1

	Page 23
	Titles
	Ł
	2.1.2 Basic Text Structures

	Images
	Image 1

	Page 24
	Titles
	Heading 1
	Heading 2
	Heading 3

	Images
	Image 1

	Page 25
	Titles
	Ł
	2.1.3 Anchors
	2.1.4 Images

	Images
	Image 1

	Page 26
	Titles
	Ł
	2.2 Dynamic HTML (DHTML) and CSS

	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 1
	Titles
	Ł
	Ł CSS (Cascading Style Sheets)
	2.2.1 The Document Object Model

	Images
	Image 1

	Page 2
	Titles
	2.2.1.1 Pixel Level Accuracy: Absolute Positioning .. Through CSS
	2.2.1.2 Malleable Content: Dynamic Control of CSS Styles

	Images
	Image 1

	Page 3
	Titles
	2.2.1.3 Pages on the Fly: Dynamic Creation of Content
	2.2.1.4 Multimedia Medium: Microsoft's Multimedia Controls

	Images
	Image 1

	Page 4
	Titles
	\
	2.2.2 Usages and Some Examples
	}

	Images
	Image 1

	Page 5
	Titles
	Ł
	a
	for
	}
	}
	2.3 JAVA and JAVA SCRIPT

	Images
	Image 1

	Page 6
	Titles
	Ł

	Images
	Image 1

	Page 7
	Titles
	Ł

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	Ł
	2.3.1 Scope
	2.3.2 Type

	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	Ł
	"5" +
	5 + 10
	yields
	yields
	"51 O" (string concatenation)
	15 (arithmetic sum)
	2.3.3 Arithmetic or computational
	*
	I
	%
	++

	Images
	Image 1

	Page 13
	Titles
	2.3.4 Comparison
	!=
	>
	>=
	<=
	2.3.5 Boolean

	Images
	Image 1

	Page 14
	Titles
	II
	2.3.6 String
	Ł
	2.3. 7 Assignment
	yields
	=
	+=

	Images
	Image 1

	Page 15
	Titles
	2.3.8 Special
	Ł.
	Conditional operator
	typeof operand
	2.3.9 Stateinents

	Images
	Image 1

	Page 16
	Titles
	,.
	2.3.10 Conditionals
	2.3.10.1 If ... else
	2.3.10.2 Switch (Netscape & MSIE 4)

	Images
	Image 1

	Page 17
	Titles
	2.3.11 Loops
	2.3.11.1 For

	Images
	Image 1

	Page 18
	Titles
	2.3.11.2 Do ... while (Netscape & MSIE 4)
	2.3.11.3 While

	Images
	Image 1

	Page 19
	Titles
	2.3.11.4 Break and Continue
	break
	continue
	2.3.12 Comments

	Images
	Image 1

	Page 20
	Titles
	2.3.13 Functions
	2.3.13.1 Defining Functions

	Images
	Image 1

	Page 21
	Titles
	Ł
	2.3.13.2 Calling Functions

	Images
	Image 1

	Page 22
	Titles
	2.3.14 Document Object Model

	Images
	Image 1

	Page 23
	Titles
	2.3.14.1 Properties

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 24
	Titles
	2.3.14.2 Methods
	2.3.15 Summary

	Images
	Image 1

	Page 25
	Titles
	Ł
	2.4 VB SCRIPT

	Images
	Image 1

	Page 26
	Titles
	Ł
	46

	Images
	Image 1

	Page 1
	Titles
	Quick VBScript Ex:armples

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Titles
	2.4.1 EXAMPLE: Script-Level Code in WSH

	Images
	Image 1

	Page 3
	Titles
	2.4.2 Adding VBScript to Web Pages
	2.4.2.1 The <SCRIPT> Tag

	Images
	Image 1
	Image 2

	Page 4
	Titles
	Ł
	2.4.3 Defining Subroutines: The Sub ... End Sub Construct

	Images
	Image 1

	Page 5
	Titles
	2.4.3.1 Subroutine Names

	Images
	Image 1
	Image 2

	Page 6
	Titles
	2.4.3.1 Example : Using a Custom Subroutine to Share Code
	'
	2.5 Common Gateway Interface (CGI)

	Images
	Image 1

	Page 7
	Titles
	..
	2.5.1 CGI Beyond the World Wide Web and HTML

	Images
	Image 1

	Page 8
	Titles
	..
	2.5.2 How CGI Works

	Images
	Image 1

	Page 9
	Titles
	..
	2.5.2.1 Standard Input and Output

	Images
	Image 1

	Page 10
	Titles
	Ł
	2.5.3 Where CGI Scripts Live

	Images
	Image 1

	Page 11
	Titles
	Ł.
	2.5.4 CGI Server Requirements

	Images
	Image 1

	Page 12
	Titles
	2.6 Active Server Pages (ASP)

	Images
	Image 1

	Page 13
	Titles
	Chapter 3
	RESERVING A BOOK FROM LIBRARY
	3.1 Creating the Database

	Images
	Image 1

	Page 14
	Titles
	3.2 The Page's Code

	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Titles
	..

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 18
	Titles
	..
	/
	64

	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	..

	Images
	Image 1
	Image 2

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1

	Page 23
	Titles
	.Ł

	Images
	Image 1
	Image 2

	Page 24
	Titles
	CONCLUSION
	Ł.

	Images
	Image 1

	Page 25
	Titles
	REFERENCES ..

	Images
	Image 1

