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ABSTRACT

..

In industry same technological processes are characterized by unpredictable and

hard formulized factors, uncertainty and fuzziness of information. In this situation

deterministic models is not enough adequately describe those processes and at the

results control on their base begin difficult. In these conditions it is advisable to use

fuzzy technology, which provide independency of the model to disturbance and

adequacy of the model.

The aim of thesis is the development of the fuzzy control system for

technological processes. To solye this problem the state of application problem of fuzzy

control systems in real industry is considered. The structure and operation principle of

fuzzy control system are described. Different fuzzy processıng mechanisms are

analyzed.

The development of fuzzy control system is performed. The one of main

problem in synthesis of fuzzy system is the development fuzzy knowledge base The

synthesis of the fuzzy knowledge base for PD-like fuzzy controller is carried out.

Processing mechanisms of fuzzy rules are described. By using max-min fuzzy
'A>

processing of Zade the inference mechanism of fuzzy system is realized.

The fuzzy controller for control temperature of heater is modeled .

The simulation and obtained results satisfy the efficiency of application of fuzzy

technology to industry.
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INTRODUCTION

Presently large class of industrial processes is characterized with non-linearity, time­

variance, the overlapped presence of various disturbance and so on. As a result, it is

difficult to develop sufficiently adequate models of these processes and, consequently,

to design a control system using traditional methods of the control theory, even if

sophisticated mathematical models are applied. At the same time it is surprising that a

skilled human-expert successfully performs his duties due to a great amount of

qualitative information, which he uses intuitively while elaborating a control strategy.

Usually, he keeps in mind this information in the form of linguistic rules, which make

up an intrinsic control algorithm. Furthermore, a human operator often is able to

aggregate a great amount of quantitative information, to extract most essential

peculiarities and interconnections as well as to define the most important qualitative

control indices. Fuzzy set theory was found to be a very effective mathematical tool for

dealing with the modeling and control aspects of complex industrial and not industrial

processes as an alternative to other, much more sophisticated mathematical models .

. Further, the latter circumstance led to the appearance at the beginning of the 1970's of

fuzzy logic computer controllers which became a powerfully tool for coping with the

complexity and uncertainty with which we_ are faced in many real-world problems of

industrial process control. The first investigations in this field had to answer the

question: ls it possible to realize a process controller which deals like a man with the

involved linguistic information? The results of these inquires led to the design of the

first fuzzy control systems which implemented in hardware and software a lingtistic

contro 1 algorithm. A control engineer on the base of the interviews then fonnulated such

a control algorithm with human experts who currently work as process operators. The

most simple fuzzy feedback control systems contain a fuzzy logio controller (FLC) in

the fo1111 of a table of linguistic rules, or fuzzy relation matrix and input-output

interfaces. Fuzzy logic has been successfully applied to many of industrial spheres. ın

robotics, in complex decision-making and diagnostic system, for data compression, ın

TV and others Fuzzy sets can be used as a universal approximate that is very important

for nıodelıng unknown objects. Fuzzy technology has such characteristıcs as

ınterpretability, transparency, plausibılity, gradualist, modeling, reasoning, imprecision



.olcrance. In the thesis the development of fuzzy system for technological processes control

- considered. The thesis consists of introduction, 4 chapters and conclusion.

Chapter l describes the state of application problems of fuzzy technology to solve

control problems and the mile stone achievements to the problem.

Chapter 2 describes the architecture of fuzzy systems for technological processes

control. The structure of fuzzy systems, the functions of its main blocks are described.

The structures of PD-like, PI-like and PLD-like fuzzy controller are described.

Chapter 3 presents the operations in fuzzy system. The description of linguistic rules,

their characteristics, fuzzy rules firing, different types of fuzzy processing mechanisms

are given. The representation of max-min processing of Zade is described.

Chapter 4 describes the development of fuzzy system for technological process control.

Using fuzzy desired time response characteristic of the systern, fuzzy model of the

technological processes the synthesis of fuzzy control system is performed. Using these

the development of the synthesis procedures and simulation of neural control system are

perfonned. '-
Chapter 5 describes the, simulation of the fuzzy system to control temperature of heater.

The results of simulation of PD-like fuzzy control system are described. The effıcıency

of its application is analyzed. Conclusion presents the obtained important results and

contributions in the thesis.

..
•
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CHAPTER l

-TATE OF APPLICATION PROBLEM OF FUZZY SYSTEM
FOR TECHNOLOGICAL PROCESSES CONTROL

xıany decision-making and problem-solving tasks are too complex te- be understood

antitatively, however, people succeed by using knowledge that is imprecise rather

than precise. Fuzzy set theory, originally introduced by Lotfi Zadeh in the 1960's,

resembles human reasoning in its use of approximate information and uncertainty to

generate decisions. It was specifically designed to mathematically represent uncertainty

and vagueness and provide formalized tools for dealing with the imprecision intrinsic to

many problems. By contrast, traditional computing demands precision down to each bit.

ince knowledge can be expressed in a more natural by using fuzzy sets, many

engineering and decision problems can be greatly simplified. Fuzzy set theory

implements classes or groupings of data with boundaries that are not sharply defined

(i.e., fuzzy). Any methodology or theory implementing "crisp" definitions such as

classical set theory, arithmetic, and programming, may be "fuzzified" by generalizing

the concept of a crisp set to a fuzzy set with blurred boundaries. The benefit Öf

extending crisp theory and analysis methods to fuzzy techniques is the strength ın

solving real-world problems, which inevitably entail some degree of imprecision and

noise in the variables and parameters measured and processed for the application.

Accordingly, linguistic variables are a critical aspect of some fuzzy logic applicatiD:ns,

where general terms such a "large," "medium," and "small" are each used to capture a

range of numerical values. While similar t2 conventional quantization, fuzzy logic

allows these stratified sets to overlap (e.g., a 85 kilogram man may be classified ın both~ .
the "large" and "medium" categories, with varying degrees of belonging or membership

to each group). Fuzzy set theory encompasses fuzzy logic, fuzzy arithmetic, fuzzy

mathematical programming, fuzzy topology, fuzzy graph theory, and fuzzy data

analysis, though the term fuzzy logic is often used to describe all of these. Fuzzy logic

emerged into the mainstream of infoıınation technology in the late l 980's and early

l 990's. Fuzzy logic is a departure from classical Boolean logic in that it implements

soft linguistic variables on a continuous range of truth values which allows intermedıatc

values to be defined between conventional binary. It can often be considered a superset
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f Boolean or "crisp logic" in the way fuzzy set theory is a superset of conventional set

- .. eory. Since fuzzy logic can handle approximate information in a systematic way, it is

ilea! for controlling nonlinear systems and for modeling complex systems where an

nexact model exists or systems where ambiguity or vagueness is common. A typical

'.ll.ZY system consists of a rule base, membership functions, and an inference procedure.

Today, fuzzy logic is found in a variety of control applications including chemical

_ rocess control, manufacturing, and in such consumer products as washing machines,

video cameras, and automobiles. Fuzzy logic is nowadays applied in almost all sectors

of industry and science in the western world, especially in the field of control and in

attem recognition. The fuzzy logic has been until now widely accepted by the

industrial world in Japan, Europe and USA as a valuable theory to rapidly develop

. rototypes, especially in control. Because of the ability of fuzzy logic to model

imprecise and subjective notions makes it possible to mimic humanlike reasoning. This

ability of systems in which fuzzy logic is included makes it possible to combine very

different types of information and use these to control real life processes. According to

many authors there are three main reasons for the present popularity and therefore many

different applications of fuzzy logic control in industry. These reasons are:

1. Fuzzy logic can be easily combined with existing methods.

2. Process control often has to deal with intrinsic uncertainties, due to change ın

parameters and/or difficult and indirect measurements, these uncertainties can be

handled by controller based on fuzzy logıc, and not by human operators as ın

case in which classical controllers are used.

3. Fuzzy logic is suitable for rapid prototyping, It is reasonable to use fuzzy logic

in control systems in the following cases:

•
• If we are dealing with multi-variable systems.

• In the presence of strong noise in the system and if a wide control range

is demanded,
• In the case of presence of nonlinear and/or dead time component in the

system,
• In the case of absence of the good mathematical model of the system
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· ıs known that in the design of any kind of controller three different methodologie

·~ followed:
1. Using the physical model of the system can control the simple processes

Unfortunately, in solving realistic control problems we deal very rarely with

processes of that kind.
2. The process identification model is a second possible approach. This approacn

has disadvantages due to problems connected with identifications routınes.

especially in the case of nonlinear and non-minimum phase systems.

3. Fuzzy Logic can be exploit to model the control behavior of an expert operator.

ln this case it is not necessary to have an in-depth understanding of the interrelations of

all parameters or availability of the process for experiments. Inside thepower syste

complex and multi-variable system by its nature, many different control circui

contained. Many of them are complex and multi-variable themselves. Many of chem are

also nonlinear and I or nonminimum-phase systems. In addition, all systems inside the

power system have to be robust and reliable. In some cases in power systems is also

almost impossible to· ensure knowledge of all parameters, e.g. in secondary caner-o

circuits. One of the cases in which fuzzy control can be used is load-frequency control.

The fundamental purpose of automatic secondary load-frequency control in po» er

systems is to maintain a cons}arit equilibrium between production and consumption.

case there is such equilibrium, based on the power system nature, it is easy to concl

that:
l. Load exchange with neighboring power systems is within agreed values.

2. · Frequency value is equal to the referable value.

Since power systems are complex and multi-variable, to realize automatic secondar-
~

load-frequency control is not always an easy task. ·Due to complexity and multi-,·ar;'.!o'·
It •

conditions of the power system, classic methods of automatic control do not gi,e g00

results and therefore do not represent good enough solutions. The facts that all sıa:

variables are well-known are aggravated by constant changes of system confıgurauo,

while it functions and it represents a problem when classic control methods ar

considered to be used. Limitations and problems that appear when classic regulators ar

used may be surpassed if either adaptive control methods or procedures of fuzzy conrrc

are applied. These problems are even more transparent in the case of secondary volrag

control. Because the fuzzy control is nonlinear by its nature it could be interesting ·
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explore possible applications in primary turbine control. An efficient comer-matching

algorithm is developed to minimize the amount of calculation. To reduce the amount of

calculation, all available information from a comer detector is used to make model. This

ınformation has uncertainties due to discretization noise and geometric distortion, and

this is represented by fuzzy rule base, which can represent and handle the uncertainties.

From fuzzy inference procedure, a matched segment list is extracted, and resulted

segment list is used to calculate the transfonnation between object of model and scene.

In order to reduce the fuzzy rule set, an overlapping cost to minimize the matched

segment list is introduced. Also an auto-tuning scheme of the fuzzy rule base is

developed to find out the uncertainties of features from recognized results

utomatically. To show the effectiveness of the developed algorithm, experiments are

onducted for images of real electronic components. Incorporate learning mechanisms

into electro-mechanical drives permits design systems with self-learning capabilities

and produces more autonomous processes with some intelligence degn~e. The [5]

presents a control system that uses a fuzzy learning methodology to design an inverse­

model compensation controller. The controller shows generalization and learning

capabilities to c?mpensate non-linear terms that affect the system dynamics. To

investigate the controller, an experimental system composed by an electro-hydraulic

actuator is used. The system dynamic is marked by a dominant non-linear c:1aracteristic

constituted by a dead-zone and hysteresys effects. The ·[SJ shows experimental. results

describing the real-time controller capability in compensate the nonlinearities of the

actuator and learning to improve its performance in trajectory following. One of the

major problems of a proportional plus integral plus derivative (PID) type fuzzy coı1,trol

system is the requirement of '!,a ?-dimenisional rule-base. This complicates the desıgn

and increases the real-time computational efforts.' Another major problem of such an

integral fuzzy controller is the excessive noise encountered in implementations. In [6] is
~ .

developed a direct implementation oriented fuzzy PI and PID control architecture,

whose designs are optimized and automated by genetic algorithm based evolutionary

computing techniques. Using these architectures. a 1-D reduction of the rule-base is

achieved. The proposed fuzzy control approach is illustrated through both fuzzy Pl and

fuzzy PID control of an asymmetrical nonlinear liquid-level regulation system

Comparisons are made with traditional fuzzy control architectures, showing superıor

perfom1ances in both simulations and implernenta'.:ions of the proposed scheme Fuzzy

logic ıs a powerful problem-solving methodology with a myriad of applications in
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mbedded control and information processing. Fuzzy provides a remarkably simple

way to draw definite conclusions from vague, ambiguous or imprecise information In

a sense, fuzzy logic resembles human decision making with its ability to work from

approximate data and find precise solutions. Unlike classical logic, which requires a

deep understanding of a system, exact equations. and precise numeric values, Fuzzy

logic incorporates an alternative way of thinking, which allows modeling complex

systems using a higher level of abstraction originating from our knowledge and

experience. Fuzzy Logic allows expressing this knowledge with subjective concepts

such as very hot, bright red, and a long time, which are mapped into exact numeric

ranges. Fuzzy Logic has been gaining increasing acceptance during the past few years.

There are over two thousand commercially available products using Fuzzy Logic,

ranging from washing machines to high-speed trains. Nearly every application can

potentially realize some of the benefits of Fuzzy Logic, such as performance, simplicity,

lower cost, and productivity. Fuzzy Logic has been found to be very suitable for

embedded control applications. Several manufacturers in the automotive industry are

using fuzzy technology to improve quality and reduce development time. In aerospace,

fuzzy enables very complex real time problems to be tackled using a simple approach.

In consumer electronics, fuzzy improves time to market and helps reduce costs. In

manufacturing, fuzzy is proven to be invaluable in increasing equipment efficiency and

diagnosing malfunctions. Fuzzy sets and logic must be viewed as a formal mathematical

theory for the representation of uncertainty. Uncertainty is crucial for the management

of real systems: if you had to park your car precisely in one place, it would not be

possible. Instead, you work within, 'say, 10 cm tolerances. The presence of uncertainty

is the price you pay for handling a complex system. Nevertheless, fuzzy logic is a

mathematical formalism, and a membership grade is a precise number .

lt •
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CHAPTER2

THE STRUCTURES AND OPERA TIONS OF
FUZZY CONTROL SYSTEM

The primary goal of control engineering is to distill and apply knowledge about how to

control a process so that the resulting control system will reliably and safely achieve

high- performance operation. Fuzzy logic provides a methodology for representing and

implementing our knowledge about how best to control a process.

2. 1 The Structure of Fuzzy Control System:

A block diagram of a Fuzzy Control System is shown in Figure (2.1). The fuzzy

controller is composed of the following four elements:
J. A rule-base (a set of If-Then rules), which contains a fuzzy logic quantification

of the expert's linguistic description of how to achieve good control

2. An inference mechanism (also called an "inference engine" or "fuzzy inference"

module), which emulates the expert's decision making in interpreting and

applying knowledge about how best to control the plant.

3. A fuzzification interface, which converts controller inputs into information that

the inference mechanism can easily use to activate and apply rules

4. A defuzzification interface, which converts the conclusions of the inference

mechanism into actual inputs for the process.
••Consider each of the components of the fuzzy controller for a simple problem of

balancing an inverted pendulum on a cart, as~ shown in Figure (2. 1 ). Here, (y) denotes

the angle that the pendulum makes with the »vertıcal (in radian!). (l ) is the half­

pendulum length (in meters), and (u) is the force input that moves the can ( in Newtons)

(r) denotes the desired angular position of the pendulum. The goal is to balance the

pendulum in the upright position (i.e., r = O) when it initially starts with some nonzero

angle off the vertical (i.e., yf- O). This is a very simple and academic nonlinear control

problem, and many good techniques already exist for its solution ..

8



Fuzzy controller

Co
C
C

Inference
ınechan i sın Inputs Outputs

------,
Y._Reference Process

Input r(t)

u

Fig (2. 1) Inverted pendulum on a cart.

The fuzzy controller is to be designed to automate how a human expert who ıs

successful at this task would control the system. First, the expert tells us (the designers

of the fuzzy controller) what information she or he will use as inputs to the decision­

making process. Suppose that for the inverted pendulum, the expert says that she or he

wili use:

e(t)=r(t)-y(t)

and

de(t)/dt, •
As the variables on which to base decisions. Certainly, there are many other choices

(e.g., 91e integral of the error (e) could also be used) but this choice makes good

intuitive sense. Next. identify the controlled varilble. For the inverted pendulum. it is

allowed to control only the force that moves the cart, so the choice here is simple. For

more complex applications. the choice of the inputs to the controller and outputs of the

controller (inputs to the plant) can be more difficult. If the designer believes that proper

information is not available for making control decisions. he ur she mav have tu in , c:-;t.._. . .,

in another sensor that can provide a measurement of another system \ .uiablc

Alternatively. the designer may implement some ıiltering or other processing Lıl· the

plant outputs. Once the fuzzy controller inputs and outputs are chosen. \\ huı the

9



"'~rence inputs are should be determined. For the inverted pendulum, the choice of the

• .::~rence input (r =O) is clear. In some situations, choose (r) as some nonzero constant

lance the pendulum in the off-vertical position. To do this, the controller must

inıain the cart at a constant velocity so that the pendulum will not fall After all the

-;uts and outputs are defined for the fuzzy controller, the fuzzy control system can be

---~--ifıed. The fuzzy control system for the inverted pendulum, with our choice of inputs

outputs, is shown in Figure (2.2). The choice of the inputs and outputs of the

controller places certain constraints on the remainder of the fuzzy control design

orocess. If the proper information is not provided to the fuzzy controller, there will be

le hope for being able to design a good rule-base or inference mechanism. Moreover,

even if the proper information is available to make control decisions, this will be of

little use if the controller is not able to properly affect the process variables via the

process inputs. The choice of the controller inputs and outputs is a fundamentally

important part of the control design process.

r +
~

Fuzzy
Controller

Inverted
pedelum

yue

de/dt

Fig. (2.2) Fuzzy controller for an inverted pendulum on a cart.

2.1.1 Putting Control Knowledge into Rule-Bases

The linguistic description provided by the expert can generally be broken into several.
parts. There will be "linguistic variables" that describe each of the time-varying fuzzy
- "'
controller inputs and outputs. For the inverted pendulum,

~
"error" describes e(t)

• • 
"change-in-error" describes de(t)/dt;

"force" describes u (t ),

'The linguistic descriptions as short as possible (e.g., using "e(t)" as the linguistic

variable for e(t)), yet accurate enough so that they adequately represent the variables

Suppose for the pendulum example that "error," "change-in-error," and "force" take on

the following values:
"neg large", "negsmall", "zero". "possmal l", "pos large",

10



Using "negsmall" as an abbreviation for "negative small in size" and so on for the,other

·ariables. Here "neg" is negative, "pos" is positive. Every linguistic value nicely

'."epresent that the varible has a numeric quality. The linguistic variables and values

, rovide a language for the expert to express her or his ideas about the control decision­

making process in the context of the framework established by our choice of fuzzy

ontroller inputs and outputs. Recall that for the inverted pendulum (r = O) and ( e = r -

y) so that:
(e = - y)

and
(de /dt = -dy/dt),

~since ( dr/dt = O). For the inverted pendulum each of the following statements quantifies

a different configuration of the pendulum:
• The statement "error is poslarge" can represent the situation where the pendulum

is at a significant angle to the left of the vertical.
• The statement "error is negsmall" can represent the situation where the

pendulum is just slightly to the right of the vertical, but not too close to the vertical

to justify quantifying it as "zero" and not too far away to justify quantifying it as

"neg large."
• The statement "error is zero" can represent the situation where the pendulum is

very near the vertical position (a linguistic quantification is not precise, hence we

are willing to accept any value of the error around (e(t) = O) as being quantified

lingüistically by "zero" since this can be considered a better quantification than

"possmall" or "negsmali").
• The statement "error .is poslarge and change-in-error is possmall" can represent

the situation where the pendulum is to the left of the vertical and, since (dy/dt<O),

the pendulum is moving away from the upright position (note that in this case the~ .
pendulum is moving counterclockwise).

• The statement "error is negsrnall and change-in-error is possma\1" can represent

the situation where the pendulum is slightly to the right of the vertical and. since

(dy/dt<O), the pendulun, is moving toward the upright position (note that in this case

the pendulum is also moving counterclockwise).

11



.ow. using the above linguistic quantification to specify a set of rules that captures the

expert's knowledge about how to control the plant. In particular, for the inverted

endulum in the three positions shown in Figure (23), the following rules are applied:

1. "If error is neglarge and change-in-error is neglarge' .then force is

poslarge".

This rule quantifies the situation in Figure (2.3a) where the pendulum has a large

. ositive angle and is moving clockwise; hence it is clear that we should apply a strong

positive force (to the right) so that we can try to start the pendulum moving in the

proper .direction.

2. "If error is zero and change-in-error is possmall then force is negsmall".

This rule quantifies the situation in Figure (2.3b) where the pendulum has nearly a zero

angle with the vertical (a linguistic quantification of zero does not imply that e(t) = O

exactly) and is moving counterclockwise; hence we should apply a small negative force

(to the left) to counteract the movement so that it moves toward zero (a positive force

could result in the pendulum overshooting the desired position).

3. "If error is poslarge and change-in-error is negsmall then force is

neg small".

This rule quantifies the situation in Figure (2.3c) where the pendulum is far to the left

of the vertical and is moving clockwise: hence we should apply a small negative force

(to the left) to assist the movement, but not a big one since the pendulum is already

moving in the proper direction.

a) b)

~t=
o o 

c)

•

Fig (2.3) Inverted pendulum in various position.

Each of the three rules listed above is a "linguistic rule" since it is formed solely rrom

linguistic variables and values. Since linguistic values are not precise representations oı·

the underlying quantities that they describe. linguistic rules are not precise either. They

are simply abstract ideas about how to achieve good control that could mean somewhat

p



ıfferent things to different people. The general form of the linguistic rules listed above

If premise Then consequent,

r rom the three rules listed above, the premises (which are sometimes called

tecedents") are associated with the fuzzy controller inputs and are on the left-hand­

-..ae of the rules. The consequents (sometimes called "actions") are associated with the

:::.zzy controller outputs and are on the right-hand-side of the rules. For the pendulum

. roblem, with two inputs and five linguistic values for each of these, there are at most

-~ = 25) possible rules. ~ tabular representation of one possible set of rules for the

inverted pendulum is shown in Table (2.1). The body of the table lists the linguistic­

numeric consequents of the rules, and the left column and top row of the table contain

he linguistic-numeric premise terms. Then, for instance, the (2, -1) position has a "-1"

("negsmall") in the body of the table and represents the rule

If error is poslarge and change-in-error is negsrnall Then force is negsmall.

Table (2.1) represents abstract knowledge that the expert has about how to control the

pendulu~ given the error and its derivative as inputs.

"force" "Change-in-enor" e '
u -2 -1 o 1 2 

"error" -2 2 2 2 1 o
e -1 2 2 1 o -1

o 2 1 o - 1 -2 

1 1 o i -1 -2 -2 - I
2 o -1 I -2 -2 -2 

•• i

Table (2.1) Rule table for the mverted pendulum>

13



2.1.2 Fuzzy Quantification

The meaning of linguistic descriptions may automate. ın the fuzzy controller. the

control rules specified by the expert.

µ
"possmall"

1.0

0.5
I I \

1rc/4 1rc/2 e(t),(rad.)

Fig (2.4) Membership function for linguistic value "possmall".

The membership function quantifies, in a continuous manner, whether values of e(t)

belong to (are members of) the set of values that are "possmall," and hence it quantifies

the meaning of the linguistic statement "error is possmall." This is why it is called a

membership function. It is important to recognize that the meni.bership function in Fig

(2.4) is only one possible definition of the meaning of "error is possmall".

1 .O "possmall",---, µ,,+. "poss mall"

ı.o r (\
O .5 t , \l .

0.5

rr/2 e (t )

rc/4 rc/2 e(t),(rad.)

a)Trapezoid b)Gaussian

.. µ
µ
i 

ı.o "
0.5

lt •
~ "/ ı, poss mall"

/
1.0
0.5

n/4 n/2 e(t),(rad.)

c)Sharp peak

rc/4 rc/2 3n/4 e( t)

d) Skewed triangle

Fig ('.?. . .5) A few membership function choices for representing .. error is possmall"
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Depending on the application and the designer ( expert), many different choices of

.•. embership functions are possible. A "crisp" (as contrasted to "fuzzy") quantification

of "possmall" can also be specified, but via the membership function shown in

Figure(2.6). This membership function is simply an alternative representation for the

interval on the real line. and it indicates that this interval of numbers represents

"possmall." Clearly, this characterization of crisp sets is simply another way to represent

a normal interval (set) of real numbers.

µ

1.0

0.5

n/4 n/2 e(t)

Fig (2.6) membership function for a crisp.

-2 -1 2
"neglarge" "negssmal"

~2 -1
"neglarge" "negssmal"

2
"pos large"

n/4 de/dt. (rad)

-2 -1 o
..pos small" "pos large"

2
"negla-ge" "negssmal"

u(t). (N)

Fig (2.7) membership functions for an inverted pendulum on a cart.
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For the output u, the membership functions at the outermost edges cannot be saturated

for the fuzzy system to be properly defined. The basic reason for this takes actions an

xact value for the process input. Generally, "any value bigger than, say, (l O), is

acceptable." The rule-base of the fuzzy controller holds the linguistic variables,

linguistic values, their associated membership functions, and the set of all linguistic

rules (shown in Table (2. 1), so, the description of the simple inverted pendulum is

completed.

2. 1 .3 Matching

The inference proc~ss -generally involves two steps:
l. The premises of all the rules are compared to the controller inputs to determine

which rules apply to the current situation. This "matching" process involves

determining the certainty that each rule applies, and typically we will more

strongly take into account the recommendations of rules that we are more

certain apply to the current situation.

2. The conclusions (what control actions to take) are determined using the rules

that have been determined to apply at the current time.The conclusions are

characterized with a fuzzy set (or sets) that represents the certainty that the input

to the plant should take on various values.

To perform inference we must first quantify each of the rules with fuzzy logic. To do

this we first quantify the meaning of the premises of the rules that are composed of

several terms, each of which involves a fuzzy controller input. Consider Fig (2.8),

where we 1ist two terms from the premise of the rule

If error is zero and change-in-eıTor is pos small Then force is negsmall

Above, the meaning of the linguistic terms, "error is zero" and "change-in- error ıs

possmall" via the membership functions shown ın Fig(2.7) had bee;.n quantified. Now

seek to quantify the linguistic premise 11e1Tor is zero AND change-in-etTor is

possmall.". Hence, the main item to focus on is how to quantify the logical "AND"

operation that combines the meaning of two linguistic terms. Use standard Boolean

logic to combine these linguistic terms; since ıt has quantified them more precısely

with fuzzy sets (i.e., the membership functions), so using these.
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.. error ıs zero AND cbaoge-io-euar is possmall"ıı
quantified withı quantified withı

o
"zero" "possmall"

µzero
~lposmal I

-rr/4 rr/4 e(t), (rad) rr/16 rr/4 de/dt, (rad/sec ı

Fig(2.8). Membership functions of premise terms.

To see how to quantify the "AND". operation, begin by supposing that e(t)=n/8 and

_de(t)/dt=n/32, so that using Fig (2.7) (or Fig (2.8):

µzero(e(t)) = 0.5

and

µpossmaıı( de/dt) = 0.25

It will need to denote this certainty by ~Lpremise. There are actually several ways to defin

it:

• Minimum: Define ~tpremise = min.{0._5,0.25}= 0.25, that is, using the minimum of

the two membership values.

• Product: Define ~Lpremise= (0.5)(0.25)'-" 0.125, that is, using the product of the two

membership values.

Notice that both ways-of quantifying the "AND" operation in the premise indicate th

there are no more certain about the conj unction of two statements than they are abam

the individual terms that make them up (note that Os:; ~Lpremise :s; 1 for either case). T

simply shown how to quantify the "AND" operation for one value of e(t) and de(t) d ..

consider all possible e(t) and d_e(t)/dt values. that gives a multidimensional mernbershi]

function ~Lpremise(e(t). de(t)/dt) that is a function of e(t) and de(t)/dt for each rule. For our

example. if by choosing the minimum operation to represent the "AND" in the prernis

then that will give the multidimensional membership function ~Lprerııise(e(t).de(t) dt).

Notice that the values for e(t) and cle(t)/dt. the value of the premise certaıntv

~Lııre,ııise(e(t).de(t)/dt) represents how certain it is that the rule:

If error is zero and change-in-error is possmall Then force is negsrnall
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picable for specifying the force input to the plant. As e(t) and de(t)/dt change, the

ce of ~Lpreınise(e(t),de(t)/dt) changes according to Fig (2.9), and it will give less or

e certain of the applicability of this rule.

µµreıııise ·:?
/1- rc/4

e(t), (rad)

rc/4

Fig (2.9) Membership function of the premise for a single rule.

Determining the applicability of each rule is called "matching." The rule is "on at time

t" if its _premise membership function ~Lµremise(e(t),de(t)/dt) > O. Hence._ the inference

mechanism seeks to determine which rules are on to find out which rules are relevant to

the current situation. Consider, for the inverted pendulum example. Suppose that

e(t) = O

and

de(t)/dt = n/8 - n/32( = 0.294)

Fig (2. l O) shows the membership functions for the inputs and indicates with thick

black vertical lines the values aıove for e(t) and de(t)/dt. Notice that ~Lzeıo(e(t)) =l but

that the other membership functions for the e(t) input are all "off' (i.e .. their values are

zero). For the de(t)/dt input.that is ~tzero(de(t)/dt)~0.25 and ~Lµossıııaıı(dc!(t)/dt) = 0.75 and

that all the other membership functions are off.

"error is zero"

"change-in-error is zero"

"change-in-error is possmall"
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ıs implies that rules that have the premise terms are on (all other rules have

•.. ;ırenıise(e(t).de(t)/dt)) = O. So, which rules are these? Using Tabfe (2. 1 ), the rules that

are on are the following:

1. If error is zero and change-in-error is zero Then force is zero

2. If error is zero and change-in-error is possmall Then force is negsmall.

);°ote that since for the pendulum example, which gives at most two membership

functions over-lapping, it will never give more than four rules on at one time (this

concept generalizes to many inputs). Actually, for this system it will either give one.

two. or four rules on at any one time. To get only one rule on choose, for example, e(t)

= O and de(t)/dt=n/8 so that only rule (2) above is on.

-2 - 1 o 2
"possmall" "poslarge""neglarge" "negssmal"

-n/4 e(t), (rad)

-2 - 1 o 2
"possmall" "poslarge"

de(t)/dt, (rad)

"neglarge" "negssmal"

n:/16 'n/8 n/4

Fig (2.1 O) input member functions with input values .

••It is useful to consider pictorially which rules are on. Consider Table (2.2). which is a

copy of Table (2.1) with boxes drawn around the consequents of the rules that are on

(notice that these are the same two rules listed above). Notice that since e(t) = O(e(t) is

directly in the middle between the membership functions for "possmall" and

"negsmall") both these membership functions are off. If it is perturbed e(t) slightly

positive (negative). then it would give the two rules below (above) the t\NO highlighted

ones on also
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"force" "Change-in-error" e'
u -2 -1 o l 2

"error" -2 2 2 2 l o
e -1 - 2 2 l o -1 

o 2 l ~ -T 1 -2

l l o -1 -2 -2

2 o -1 -2 -2 -2

Table (2.2) rule table for the inverted pendulum with rules

Those are "ON" highlighted.

2.1.4 Inference Step

Consider how to determine which conclusions should be reached when the rules that

are on are applied to deciding what the force input to the cart carrying the inverted

pendulum should be. To do this, first consider the recommendations of each rule

independently. Then later combine all the recommendations from all the rules to

determine the force input to the cart. Consider the conclusion reached by the rule

If error is zero and change-in-error is zero Then force is zero

which for convenience it will refer to as "rule (l)." Using the minimum to represent the

premise, it gives:

~lprenıise ı =min { 0.25, 1} =0.25

(the notation ~Lprenıise ı represents ~Lprenıise for rule ( l)) so that, O .25 certain that this rule

applies to the current situation. The rule indicates that if its premise is true then the

action indicated by its consequent should be taken. For rule (1) the consequent is "for'e'e

is zero" (this makes sense, for here the pendulum is balanced, so any force should not

be applied since this would tend to move the yendulum away from the vertical). The

membership function for this consequent is shown in Fig (2.11 a).•The membership•
function for the conclusion reached by rule (1 ), which denoted by ~Lı, is shown in Fig

(2.11 b) and is given by

~Lı(u) =rnin{0.25, ~Lıer0(u)j

This membership function defines the "implied fuzzy set" for rule ( 1) (i.e.. it is the

conclusion that is implied by rule ( l )). The justification for the use ol" the minimum

operator to represent the implication is that there would be no more certain about our

consequent than our premise. Notice that the membership function ~Lı(u) is a functıon
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and that the minimum operation will generally "chop off the top" of the µzero(u)

mbership function to produce µı(ut). For different values of e(t) and de(t)/dt there

. be different values of the premise certainty µµrernise(e(t), de(t)/dt) for rule (1) and

nee different functions µı(u) obtained (i.e., it will chop off the top at different

ınts). See that ~Lı(u) is in general a time-varying function that quantifies how certain

ie (1) is that the force input u should take on certain values. It is most certain that the

rcrce input should lie in a region around zero (see Fig: (2.11 b ), and it indicates that it is

certain that the force input should not be too large in either the positive or negative

"irection-this makes sense if the linguistic meaning of the rule is considered. The

embership function µı(u) quantifies the conclusion reached by only rule (1) and only

•.or the current e(t) and de(t)/dt. It is important that to be able to picture how the shape

uf the implied fuzzy set changes as the rule's premise certainty changes over time.

o
"zero"

-1 O 10 u(t), (N) -1 O 1 O u(t)(N)

(a) (b)

Fig (2.11). (a) Consequent membership function and (b) implied fuzzy set with

membership function ~u(u) for rule (1).

Then. consider the conclusion reached by the other rule that is on.

If error is zero and change-in-error is possmall Then force is negsmall

which for convenience it will refer to as "rule (2)." Using the minimum to represent the

premise. it gives
•

~Lpreıııisı::2(u) = miı1{0.75. 1} = 0.75

Now. 0.75 certain that this rule applies to the current situation. For rule (2.) the

consequent is "force is negsmall" (this makes sense. for here the pendulum is perfectly

balanced but is moving in the counterclockwise direction with a small velocity). The

membership function for this consequent is shown in Fig (2.12a). The membership

function for the conclusion reached by rule (2). denoted by ~L2(u). is shown in Fig

(2.12b) (the shaded region) and is given by

~L2(u) = min{0.75. ~Lıı~gsıııaıı(u)
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.ıis membership function defines the implied fuzzy set for rule (2) (i.e., it is the

onclusion that is reached by rule (2)). Once again, for different values of e(t) and

.:~(t)/dt there will be different values of ~Lpreıııisd(e(t),de(t)/dt)for rule (2) and hence

.:ifferent functions µ2(u) obtained. Rule (2) is quite certain that the co1:trol output

rocess input) should be a small negative value. This makes sense since if the

. endulum has some counterclockwise velocity then it will need to apply a negative

force (i.e., one to the left). As rule (2) has a premise membership function that has

.. igher certainty than for rule ( 1 ), and it would be more certain of the conclusion

reached by rule (2).

-1
"negsmall"

-20 -1 O u(t), (N) -20 - 1 O
b)

u(t), (N)
a)

Fig (2. 12) (a) Consequent membership function and,

(b) Implied fuzzy set with membership function µ(2ı(u) for rule (2). ·

This completes the operations of the inference mechanism in Fig (2. 1 ). While the input

to the inference process is the set of rules that are on. its output is the set of implied

fuzzy sets that represent the conclusions reached by all the" rules that are on. For O.;:,.!r

example. there are at most four conclusions reached since there are at most four rules on

"at any one time. (In fact, you could say that there are always four conclusions reached

for our example. but that the implied fuzzy sets for some of the rules may have implied

membership functions that are zero for all values). •
•

2.1.5 Converting Decisions into Actions

Consider the defuzzifıcation operation. which is the final component of the fuzzy

controller shown in Fig (2.1 ). Defuzzifıcation operates on the implied fuzzy sets

produced by the inference mechanism and combines their effects to provide the "most

certain" controller output (plant input). Some think of defuzzification as "decoding" the

fuzzy set information produced by the inference process (i.e .. the implied fuzzy sets)
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numeric fuzzy controller outputs. To understand defuzzification, it is best to first

, all the implied fuzzy sets on one axis as shown in Fig (2. 13 ). We want to find the

.~ output, which we denote by "ucrısp,, that best represents the conclusions of the fuzzy

troller that are represented with the implied fuzzy sets. There are actually many

_. roaches to defuzzification. Due to its popularity, first consider the "center of

_ vity" (COG) defuzzification method for combining the recommendations

represented by the implied fuzzy sets from all the rules. Let bi denote the center of the

raembership function (i.e., where it reaches its peak for our example) of the consequent

f rule (i). For our example we have

bı =O

;:ınd

bz=>! 0

l
20 30

~
-30 -20 -1 O 10

Fig (2.13) Implied fuzzy sets.

as shown in Fig (2. 13). Let

•
denote the area under the membership function ~Li i) . The COG method computes uerıs»

to be

ucrısp = I,i b; f µ(İ)

Li j µ(i)

( I )

)"_.)



~ is the classical formula for computing the center of gravity. In this case it is for

.• puting the center of gravity of the implied fuzzy sets. Three items about

ati on ( l) is important to note:

1. Practically, we cannot have output membership functions that have infinite area

since even though they may be "chopped off' in the minimum operation for the

implication (or scaled for the· product operation) they can still end up with

infinite area. This is the reason we do not allow infinite area membership

functions for the linguistic values for the controller output (e.g., we did not

allow the saturated membership functions at the outermost edges as we had for

the inputs shown in Fig (2. 7).

2. You must be careful to define the input and output membership functions so 'that

the sum in the denominator of Equation (1 ) is not equal to zero no matter what

the inputs to the fuzzy controller are. Essentially, this means that we must have

some sort of conclusion for all possible control situations we may encounter.

3. While at first glance it may not appear so, fµ, is easy to compute for our

example. For the case where we have symmetric triangular output membership

functions that peak at one and have a base width of w, simple geometry can be

used to show that the area under a triangle "chopped off' at a height of h (such

as the ones in Fig (2.11 and Fig (2.14)) is equal to

w(h-1/ /2)

Given this, the computations needed to compute ucrisp are not too significant. We see

that the property of membership functions being symmetric for the output is important
. 1

since in this case no matter whether the minimum or product is used to represent the

implication, it will be the case tltat the center of the implied fuzzy set will be the same

as the center of the consequent fuzzy set from which it is computed. If the output

membership functions are not symmetric, then their centers, which are needed in the

computation of the COG, will change depending on the membership value of the

premise. This will result irı the need to recompute the center at each time instant. As

another example, it is interesting to consider how to compute. by hand, the operations

that the fuzzy controller takes when we use the product to represent the implication or.

the "center-average" defuzzification method. First, consider the use of the product.

Consider Fig (2.15), where we have drawn the output membership functions for
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gsmall" and "zero" as dotted lines. The implied fuzzy set from rule (1) is given by

membership function

~u(u) = 0.25 ~Lzero(u)

__.own in Fig (2.15) as the shaded triangle; and the implied fuzzy set for rule (2) is given

_ the membership function

~L2(U) = 0.75 ~Lnegsnıaıı(u)

saown in Fig (2. 15) as the dark triangle. Notice that computation of the COG is easy

since we can use (1 wh) as the area for a triangle with base width wand height h. When

-~ useproduct to represent the implication, we obtain

crispu =
(O) (0.25) + (-10) (0.75)

= -7.5
0.25 + 0.75

\\ hich also makes sense

-1 o
negsmau(;\ ~._zero··············· 0.7} 0.25\<' J '>,~ ,.,· / / ,'

' '

-20 -1 O o 10 20

Fig (2.15) Implied fuzzy sets when the product is used to represent the implication.

Next, as another example of how to combine recommendations, we·will introduce the

"center-average" method for defuzzification. For this method we let

· L b 1 µ prenııse.
Cl"/.'ı"j) - I

U - L Ji preıııııe,
(2) •

where to compute µprenıisei vve use, for example, minimum.We call it the "center­

average" method since Equation (2) is a weighted average of the center values of the

output membership function centers. Basically. the center-average method replaces the

areas of the implied fuzzy sets that are used in COG with the values of ~Lprcrııısci .This is a

valid replacement since the area of the implied fuzzy set is generally proportional to

,Llprcrııisci sınce ~Lprcıııisci is used to chop the top off (minimum) Or scale (product) the
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cgular output membership function when COG is used for our example. For the

ve example, we have

ucrisp =
(O) (0.25) + (-10) (0.75)

= -7.5
0.25 + 0.75

· ich just happens to be the same value as above. Some like the center-average

efuzzification method because the computations needed are simpler than for COG and

oecause the output membership functions are easy to store since the only relevant

formation they provide is their center values (bi) (i.e., their shape does not matter, just

their center value). Notice that while both values computed for the different inference

d defuzzification methods provide reasonable command inputs to the plant, it is

iffıcult to say which is best without further investigations (e.g., simulations or

implementation). This ambiguity about how to define the fuzzy controller actually

extends to the general case and also arises in the specification of all the other fuzzy

controller components, as we discuss below. Some would call this "ambiguity" a design

flexibility, but unfortunately there are not too many guidelines on how best to choose

the inference strategy and defuzzification method, so such flexibility is of questionable

value.

2. 1. 6 Graphical Depiction of Fuzzy Decision Making

For convenience, let us summanze the procedure that the fuzzy controller uses to

compute its outputs given its inputs in Fig (2.16). Here, we use the minimum operator to

represent the "AND" in the premise and the implication and COG defuzzifıcation.The

"reader is advised to study each step in this diagram to gain a fuller understanding of the
t

operation of the fuzzy controller. To do this, develop a similar diagram for the case

where the product operator is used to represent the "AND" in the ·premise and the

implication, and choose values of e(t) and de(t)/dt that will result in four rules being on.

Then, repeat the process when center-average de(t)/dt defuzzifıcation is used with either

minimum or product used for the premise Also, learn how to picture in your mind how

the parameters of this graphical representation of the fuzzy controller operations change

as the fuzzy controller inputs change.
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A ·;,"zero"
ı' \

ı' '
- - - - - - ' ' 0.25::mımı::mrnıı:· :rng:ı:

I I)
-IO IO «n. (N)

8 !6 8 a,e I

I
change-in-error is zero Then force is zero

"negsmall"
I'

' '

u(I}, (N)

Fig (2.16) Graphical representation of fuzzy controller operations.

This completes the description of the operation of a simple fuzzy controller. You will

find that while we will treat the fully general fuzzy controller in the next section, there

will be little that is conceptually different &om this simple example. We simply show·

how to handle the case where there are more inputs and outputs and show a fuller range

of choices that you can make for the various components of the fuzzy controller.

2.2 Fuzzification

Fuzzy sets are used to quantify the information in the rule-base, and the inference

mechanism operates on fuzzy sets to produce fuzzy sets; hence, we must specify how•the fuzzy system will convert its numeric inputs UiE U: into fuzzy sets (a process called

"fuzzification") so that they carrbe used 'by the fuzzy system. Let U."; denote the set of

all possible fuzzy sets that can be defined on Ut. Given Ui.EU: . fuzzification transforms

u: to a fuzzy set denoted by
' tuzAi defined on- the universe of discourse U; This

transformation is produced by the fuzzification operator F defined by

F:Ui->Ui*
where

F( ·ı - A, _ı-u,
Uı - I .

Quite often "singleton fuzzifıcation" is used. which produces a fuzzy set }.)uı E ut \\ ith

a membership function defined by
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µ>/""' ~ {~
X = Ll,

otherwise

Any fuzzy set with this form for its memb .ership function is called a "singleton."

Basically, the reader should simply think of the singleton fuzzy set as a different repre­

sentatiorı for the number u., Singleton fuzzification is generally used ın

implementations since, without the presence of noise, we are absolutely certain that u,

takes on its measured value (and no other value), and since it provides certain savings

in the computations needed to implement a fuzzy system (relative to, for example,

"Gaussian fuzzification," which would involve forming bell-shaped· membership

functions about input points, or triangular fuzzification, which would use triangles).

Tlıe reasons other fuzzification methods have not been used very much are

: I .. They add computational complexity to the inference process,

2. The need for them has not been that well justified,

This is partly due to the fact _that very good functional c~pabilities can be achieved with

the fuzzy system when only singleton fuzzification is used. It is actually the case that

for most fuzzy controllers the fuzzification block in Figurel can be ignored since this

process is so simple. For now, the reader should simply think of the fuzzification

process as the act of obtaining a value of an input variable (e.g., e(t))and finding the

numeric values of the membership function(s) that are defined for that variable. For

example, if e(t) = n/4 and de(t)/dt = n/16, the fuzzification process amounts to finding

the values of the input membership functions for these. In this case ~L possnıaıı=l (with all

others zero) and ~Lzero(de(t)/dt)=~L possnıaıı(de(t)/dt)=0.5.

2.3 Inference Mechanism

The inference mechanism has two_ basic tasks: •
•l. Determining the extent to which each rule is relevant to the current situation as

characterized by the inputs u., i = 1, 2, ... , n (we call this task "matching");

2. Drawing conclusions using the current inputs u, and the information in the rule-

base (we call this task an "inference step").

For matching note that Aıj x A/ x ... x A111 is the fuzzy set representing the premise of

the ." rule ( j, k, ... , I; p, q); (there may be more than one such rule with this premise)

Suppose that at some time we get inputs u., i = 1, 2, ... , n, and fuzzifıcation produces

A, ruz A, l'tız A, l'uz.
I , 2 , ... , n
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the fuzzy sets representing the inputs. Tliere are then two basic steps to matching.

Step l: Combine Inputs with Rule Premises: The first step in matching involves finding

fuzzy sets A..1\ A/,... , A..ı,1, with membership functio

µ ~ I ( ) _ µ I ( ) * µ ~ hız ( )A» Un - A» . Un A» lln

(for all j, k, ... , 1) that combine the fuzzy sets from fuzzifıcation with the fuzzy

used in each of the teıms in the premises of the rules. If singleton fuzzifıcation is u

then each of these fuzzy sets is a singleton that is scaled by the premise membership

function (e.g., µA) (ü.) = µAıj (üı)) for ılı= u, and µ1~) (ılı)= O for ılı:t:uı) That İ~.

with singleton fuzzifıcation we have µA/uz (u.) = 1, for all i = 1, 2, ... , n for the given

u, inputs so that

It is clear that when singleton fuzzifıcation is used, combining the fuzzy sets that wer

created by the fuzzifıcation process to represent the inputs with the prerni

membership functions for the rules ıs particularly sin;ple. It simply reduces to

computing the membership values of the input fuzzy sets for the: given inputs u ı, u2 ..

' Un,

Step 2: Detem1ine Which Rules Are On: In the second step. we form membershi

values ~L;(u1 ,u2, ... , Un) for the i111 rule's premise (what we called ~Lıırcıııisc in the last

section on the ınverted pendulum) that represent the certainty that each rule prenıis

holds for the given inputs.
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etine

µ . - ( )- µ' j ( ) * µ ' k ( ) * µ' I ( ),- u. , U2, ..... , Un - A• u, A2 U2 A» Un

vhich is simply a function of the inputs u.. When singleton fuzzificatiorı is used, we

ave

We use to represent the certainty that the premise of rule (i) matches the input

information when we use singleton fuzzification. This µi(u1 ,u2, ..• ,un) is simply a

multidimensional certainty surface, a generalization of the surface shown in Fig (2.9)

for the inverted pendulum example. It represents the certainty of a premise of a rule

and thereby represents the degree to which a particular rule holds for a given set .of

inputs. Finally, we would remark that sometimes an additional "rule certainty" is

multiplied by ~L,. Such a certainty could represent our a priori confidence in each rule's

applicability and would normally be a number between zero and one. If for rule i its

certainty is (0.1), we are not very confident in the knowledge that it represents; while if

for some rule U) we let its certainty be (0.99), we are quite certain that the knowledge it

represents is true. This concludes the process of matching input information with the

premises of the rules. There are two standard alternatives to performing the inference

step, one that involves the use of implied fuzzy sets (as we did for the pendulum

earlier) and the other that uses the overall implied fuzzy set.

Alternative l: Detem1ine Implied Fuzzy Sets: Next, the inference step is taken by

computing, for the i-th rule ( j, k, . . , l; p.q), , the "implied fuzzy set" Bq witb

membership function

The implied fuzzy set (B' qi ) specifies the certainty level that the oulput should be a

specific crisp output yq within the universe of discourse Yq. taking into consideration

only rule (i). Note that since ~Li(uı .uz. ... , un) will vary with time, so will the shape of

the membership functions µB',i (yq) for each rule. An example of an implied fuzzy

set can be seen in Fig (2 .11 b) for the inverted pendulum exarnp le.
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..\lternative 2: Determine the Overall Implied Fuzzy Set: Alternatively, the inference

mechanism could, in addition, compute the "overall implied fuzzy set" B'q with

membership function

That represents the conclusion reached considering all the rules in the rule-base at the

same time (notice that determining B'q can, in general, require significant

omputational resources). Notice that we did not consider this possibility for the

inverted pendulum example for reasons that will become clearer in the next

subsection. Instead, our COG or centeraverage defuzzification method performed the

aggregation of the conclusions of all the. rules that are represented by the implied fuzzy

.)

sets. Using the mathematical terminology of fuzzy sets, the computation of LlB'cı (yq)

is said to be produced by a "sup-star compositional rule of inference". The "sup" ın

this terminology corresponds to the EB operation, and the "star" corresponds to *
"Zadeh's compositional rule of inference" is the special case of the sup-star

compositional rule of inference when maximum is used for EB and minimum is used

for (*). The overall justification for using the above operations to represent the

inference step lies in the fact that we can be no more certain about our conclusions

than we are about our premises. The operations performed in taking an inference step

adhere to this principle. To see this, we should study Equation (3) and note that the

scaling from ~li(uı,u2, ... , un) that is produced by the premise matching process will

always ensure that SUpYcı { µ13,q (Yc.ı)} < µ, (u., u2, .. , u, ). The fact that we are ı

more certain of our consequents. than our premises is shown graphically in Fig (2.17)

where the heights of the implied fuzzy sets are gı.lways less than the certainty values for

all the premise terms. •

2.4 Defuzzification

A number of defuzzifıcation strategies exist, and it is not hard to invent more. Each

provides a means to choose a single output (which we denote with (yqn,sp) based on

either the implied fuzzy sets or the overall implied fuzzy set (depending on the type of

ınference strategy chosen, "Alternative l or 2." respectively. in the previous section).
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As they are more common, we first specify typical defuzzification techniques for the

.rnplied fuzzy sets µBAq; :

• Center of gravity (COG): A crisp output yq crisp is chosen using the center of area

and area of each implied fuzzy set, and is giveıi. by

R

1:i=lbiq Jyq µBAqi (yq)dyq

Y crısp _q - !( ::___ ~

where R is the number of rules, b." is the center of area of the membership function of

B/ associated with the implied fuzzy set BAq; for the itlı rule ( j, k, ... ·, l; p, q)i, and

fYq µBAqi (yq)dyq

Denotes the area under denotes the area under µBAq; (yq). Notice that COG can be easy

to compute since. it is often easy to fi~d closed-form expressions for. fyq µBAq; (y-q)dyq.

which is the area under a membership function. Notice that the area under each implied

fuzzy set must be computable, so the area under each of the output membership

functions (that are used in the consequent of a rule) must be finite (this is why we

cannot "saturate" the membership functions at the outermost edges of the output

universe of discourse). Also, notice that the fuzzy system must be defined so that

R

1: =If Yq µBA(Ji (yq)dyq :;t:Ü

for all u, or yt'5P will not be properly defined. This value will be nonzero if there is a

rule that is on for every posJible combination of the fuzzy system inputs and the

consequent fuzzy sets all have nonzero area. •"
• Center-average: A crisp output yqrisp is chosen using the centers of each of the

output membership functions and the maximum certainty of each of the conclusions

represented with the implied fuzzy sets, and is given by

R

" b q I ~l A i (y ) I~i=ı i supyq ' B cı cı ı
Y (IIS[)

q
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vhere "sup" denotes the "supremum" (i.e., the least upper bound which can often be

thought of as the maximum value). Hence, sup, {~L(x)} can simply be thought of as the

· ighest value of µ(x) (e.g., supu{~t1(u)} = 0.25 for ~Lı(x) when product is used to

represent the implication, as shown in Fig(2. 15). Also, b." is the center of area of the

membership function ofB/ associated with the implied fuzzy set B~q; forthe /ıı rule ( j,

., ... , l; p, q), . Notice that the fuzzy system must be defined so that

R

L;=ı supy, { µB~qi (yq)} :;ı=O

for all u;. Also, note that supy, { µB~q; (yq)} is often very easy to compute since if

µB_q; (yq)=l for at least one yq (which is the normal way to define consequent

membership functions), then for many inference strategies, using Equation (3), we have

supy, { µB_q;·(Yq)} = µ; (u., u2, .. , Un), which has already been computed in the matching

process. Moreover, the formula for defuzzification is then given by

R

L;=ıb;q µ; (u., U2, .. , Un),
Y crisp_

q ~

R

L;=İ µ;(llı, Lı2, .. , Un)

where we must ensure that R

•
for all u.. Also note that this implies that the shape of the membership functions for the

output fuzzy sets does not matter; hence, you ..can simply use singletons centered at the

appropriate positions. Next, we present typical defuzzification techniques for the O\ era! l

implied fuzzy set B~<ı

• Max criterion: A crisp output Ytısıı is chosen as the point on the output uni erse

of discourse yq for which the overall implied fuzzy set B~cı achieves a maximum that

ıs;

,..,,..,
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ere. "argsupx{µ(x)}" returns the value of(x) that results in the. supremum of the

tion ~L(x) being achieved. For example, suppose that µoveraıı(u) denotes the

mbership function for the overall implied fuzzy set that is obtained by taking the

ximum of the certainty values of (µı) and (~L2) over all (u) in Fig (2. 16) (i.e.,

~nıı(u)==maxuhu(u),~L2(u)} per Equation (4)). In this case, argsupu{µoveraıı(u)}== -10,

h is the defuzzified value via the max criterion. Sometimes the supremum can

cur at more than one point in Y, (e.g.,consider the use of the max criterion for the

se where minimum is used to represent the implication, and triangular membership

tions are used on the output universe of discourse, such as in Fig (2. 14). In this

se you also need to specify a strategy on how to pick only one point for Ycıcrısp (e.g.,

-'"'oosing the smallest value). Often this defuzzification strategy is avoided due to this

ambiguity; however, the next defuzzification method does offer a way around it.

Mean of maximıım· A crisp output yqcrisp is chosen to represent the mean value

of all elements whose membership in is a maximum.

'e define b tax as the supremum of the membership function of ff q over the universe

of discourse Yq. Moreover, we define a fuzzy set B'q* with a membership function,

•

defined as

Otherwise

then a crisp output, using the mean of maximum method, is defined as

Jyq yq µs·~·cyq)dyq
crısp _,

yq - --------

Jyq µs<CYcı)dYcı

~ .
where the fuzzy system must be defined' so that Jyq µB'q·(yq)dyq :t:O for all u.. As an

example. suppose that for Fig (2.17) the two implied fuzzy sets are used to form an

overall implied fuzzy set by taking the maximum of the two certainty values over all of

u (i.e .. ~L,,vcraıı(u)= maxuhLı(u). ~L2(u)} per Equation (4)). ln this case there is an interval

of (u) values around (-10) where the overall implied fuzzy set is at its maxi- mum

value. and hence there is an ambiguity about which is the best defuzzifıed value. The

mean of the maximum method would pick the value in the middle of the interval as the
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efuzzified value, so it ~ould choose (-1 O). This can require. excessive computational

resources for continuous universes of discourse. For some types of membership

functions, simple ideas from geometry can be used to simplify the calculations;

.•owever, for some choices of membership functions, there may be many subintervals

snread across the universe of discourse where the maximum is achieved. In these cases

can be quite difficult to compute· the defuzzified value unless the membership

functions are discretized. Complications such as these often cause designers to choose

other defuzzification methods.

• _Center of area (COA): A crisp output yqcrisp is chosen as the center of area for

the mem- bership function of the overall implied fuzzy set B' q- For a continuous

output universe of discourse Yq, the center of area output is denoted by

- J µ .Yq Yq B'q (yq)dyq
crısp .:_ ·

yq - -;.-• --------
- Jyq µB'cı·(yq)dyq

The fuzzy system must be defined so that Jyq µB'cı'(yq)dyq :;tO for all u, Note that,

similar to the mean of the maximum method, this defuzzifıcation approach can be

computationally expensive. For instance, we leave it to the reader to compute the area

of the overall implied fuzzy set µoveraıı(u)= maxuÜLı(u), ~L2(u)} for Fig 16. Notice that in

this case the computation is not as easy as just adding the areas of the two chopped- off

triangles that represent the implied fuzzy sets. Ccmputation of the area of the overall

ımplied fuzzy sst does not couıJt the area that the implied fuzzy sets overlap twice;

hence, the area of the overall implied fuzzy set can in general be much more difficult to

compute in real time. It is important to note that each of the above equations for

defuzzification actually provides a mathematical quantification of the operation of the

entire fuzzy system provided that each·of the tenvs in the descriptio:gs are fully defined. ·

We discuss this in more detail in the next section. Overall, we see that using the overall

implied fuzzy set in defuzzifıcation is often unde- sirable for two reasons:

1. The overall implied fuzzy set B'q is itself difficult to compute in general,

2. The defuzzifıcation techniques based on an inference mechanism that provides

B'q are also difficult to compute.
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CHAPTER3

THE DEVELOPMENT OF
FUZZY CONTROL SYSTEM

The inference engine is the heart of a fuzzy controller (and any fuzzy rules system)

operation can be divided into three steps (Fig 3. 1):

Fuzzification - actual inputs are fuzzified and fuzzy inputs are obtained.

Fuzzy processing - processing fuzzy inputs according to the rules set and

producing fuzzy output.

Defuzzification - producing a crisp real value for fuzzy output.

Actual input

If pressure is Neg Big then tııne is Short
If pressure is Neg small then tiıne is Shorr
If pressure is Zero then time is average
If pressure is Pos small then time ıs Long
If pressure is Pos Big then time is Long

Fuzzification
Fuzzy
Inputs

Fuzzy
Output

Defuzzificatioı
Control
Output

Fig (3 .1) Operating of a fuzzy controller

In real control system, the cor~trol\er output should be used to control a real object or

process. It needed to know a scrip value for every output signal. Defuzzification.
produces this value on the basis of output membership functions. Fu{:ZY control gives us

••
a rather simple to use method for producing high quality controller with complicated

input/output characteristics. In order to construct a fuzzy controller, it is needed just to

write some rules. The classical design scheme contains the following steps:

1. Define the input and control variable -determine which states of the process

shall be observed and which control action are to be considered. Define the

condition interface-fix the ways in which observation of the process are

expressed as fuzzy sets.

36



Design the rule base-determine, which rules are to be applied under which

conditions.

3. Design the computational unit-supply algorithms to perform fuzzy

computations. That unit will generally lead to fuzzy outputs.

-ı. Determine rules according to which fuzzy control statement can be transformed

into crisp control actions.

e typical structure of fuzzy controller is given in (Fig 3 .2)

----------------------------------------------------- ----

.-------- Knowledge base
Database rule base

Controller----------------, I
I
Ioutput

membershiplfunction
I
I
I
I
I
I•fuzzy

outpu
Defuzzifıcation

I

In~ut.
embership function

I
I
I.
I
I

• I
I
!

rules
table

•
---------------------------------------------- 

fuzzy
ınput

Fuzzifıcation Inference engine

cnsp
input

crısp
output

Process or object under control

Fig (3.2) The fuzzy logic controller Ca basic structure)

Let us develop the rules table for the fuzzy controller of a vacuum cleaner. This

controller should regulate the force of sucking dust from a surface being cleaned. This

force can be described as a linguistic variable with values: very strong, strong, ordinary.

week, very weak. The input of this controller should ordinary consider an amount ~­

dust on the surface. The surface can be very dirty, dirty, rather dirty, almost clean.

clean. The controller can change the force depending on how dirty the surface is. One

can propose the following set of rules to describe the controller operation:

If surface is very dirty

If surface is dirty

lf surface is rather dirty

If surface is almost clean

If surface is clean
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then force is very strong,

then force ts strong.

then force is ordinary.

then force is weak.

then force is very weak.



- more convenient to write this rules set in a table form.

Surface
Very dirty
Dirty .
Rather dirty
Almost clean
Clean

Force
Very strong
Strong

Ordinary
Weak
Very weak

Table (3.1) Rules table for a fuzzy vacuum cleaner

To improve the performance, one should apply some extra expert's knowledge. So

. erhaps a driving force should depend not only on an amount of dust, but on the

surface _texture and fabric also. There is some difference in cleaning wood and wool,

for example. So let us introduce another input: surface type with linguistic values of

wood, tatami, and carpet. This will help to implement the following rules table.

Table (3.4)

Clean I Almost Clea.nT . Rather Dirty Very
Dirty Dirty

Wood Very Weak Very Weak Weak Ordinary Strong

Tatami Very Weak Weak- Ordinary Strong Very Strong

Carpet Weak Ordinary Ordinary Strong Very Strong

Table (3.2) Rules table for surface type and dust amount.

These names, or linguistic labels, have a symbolic sense only. They just mark different

membership function which should describe how easy it is to clean a particular surface.

i.e. to mark a different degree of 'easyness'. These degrees are fuzzy, in that fabric Cc!J;.l

be considered as 'a little tatami and mainly wood'. This could be placed between tatami-and carpet and considered as a little of this and a little of that. The dust sensor includes.
a phototransistor, which is mounted opposite an infrared light-emitting diode. Infrared

• lı •

rays are emitted in a beam. When they pass through the dust, some rays are lost;

causıng the amount that reaches the phototransistor to decrease. The varying

component is amplified and used to evaluate the amount of dust on the surface being

cleaned.
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Fuzzy
controller

Dust sensor

Surface type
indicator

Drive circuit

,ı (
Time counter Fan motor

Fig (3 .3) The structure of the vacuum cleaner fuzzy cleaner.

As cleaning proceeds, the amount of dust decreases, but the speed of decreasing

depends on the surface type. If the surface is smooth like wood, it is cleaned very fast

because it is easy to pickup dust from such a surface. On the other hand, it is hard to

clean wool carpet surface. Thus, by evaluation of the change of the dust amount

collected during a time unit, we can judge the typ.e of the surface being cleaned. This

controller works well under different conditions. So in this controller, the first input is

the amount of dust collected during a time unit. And the second input is the change in

this amount. Then the second input can be considered as a derivative of the first one.

So our fuzzy controller is an analogy to a classical PD-controller.

3. 1 PD-Like Fuzzy Controller

The equation giving a conventional PD-controller is

u(k) = K11 * e(t) +Ko* 6e(t). Equation (3 .1)
••Where Kr and Ko are the proportional and the differential gain factors.

control plantFuzzy
controller

Delay 6t

Fig (3.4) A block-diagram of a PD-like fuzzy control system.

39



To describe this equation with the help of rules, what inputs and outputs should be used

for this rules table. The PD controller for any pair of the values of error (e) and change­

of-en-or (L'ı.e) calculate the control signal (u). The fuzzy controller should do the same

thing. For any pair of en-or and change-of-en-or, it should work out the control signal.

Then a PD-like fuzzy controller consists if rules, and a symbolic description of each are

gıven as:

If e(t) is <property symbol> and L'ı.e(t) is <property symbol> then u(t) is

<property symbol>,

Where <property symbol> is the symbolic name of a linguistic value.

The natural language equivalent of the above symbolic description reads as follows. For

each sampling time (t):

If the value of en-or is <linguistic value> and the value of change-of-en-or is < linguistic

value> then the value of control output is< linguistic value>.

Consider the explicit reference to sampling time (t) is being omitted, since such a rule

expresses a casual relationship between the process state and control output variables,

which holds for any sampling time (t). This is one of the linguistic qualifiers, determine

for the proper variable: en-or, change-of-error or control signal, for example: high. low,

medium, etc. So, it is needed to have membership functions, describing all these

qualifiers for all our variables: en-or, change-of-error or control. Definitely. And these

variables might be measured in different units. So the rules if the PD controller can be

like:

If error is positive big and change-of-error is negative big then

control is negative small.

It is needed to describe an error sighal. Because the actual process output (y) can be

higher than the desired one as well as lower, the en-or can be negative as well as

poşitive. Values of error (e) with a negative sign meaft that the current process output

v(t) has a value below that set-point CYsıı) since [ e(t) = Ysp - y(t) < OJ. A negative value

describes the magnitude of the difference (Ysıı ~y). On the other hand, linguistic value of

(e) with a positive sign means that the current value of (y) is above the set-point. The

magnitude of such a positive value is the magnitude of the difference (ı·sıı -~ı·). The

change-of-error (L'ı.e) with a negative sign mean that the current process output r(t) has

increased when compared with its previous value y(t-1 ), since L'ı.e(t) = e(t) - e(t-1) = -y(t)

+ y(t-1) <O. The magnitude of this negative value given by the magnitude of this
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rease. Linguistic value of 6e(t) with a positive sign means that y(t) has decreased its

'alue when compared to y(t-1). The magnitude of this value is the magnitude of the

ecrease. Linguistic values of (e) with a negative sign mean that the current process

utput y has a value below the set-point ysp since e(t) = Ysp - y(t) <O. The magnitude of

negative value describes the magnitude of the difference Ysp -y. On the other hand,

inguistic vaiues of ( e) with a positive sign mean that the current value of (y) is above

he set-point. The magnitude of such a positive value is the magnitude of the difference

_:,µ -y. A Linguistic value of (6e) with a negative sign mean that the current process

output y(t) has increased when compared with its previous value y(t-1) since 6e(t)=­

(y(t)-y(t-1 ))<O. The magnitude of such a negative value is given by the magnitude of

his increase. A Linguistic value of 6e(t) with a positive sign means that y(t) has

decreased its value when compared to y(t-1). The magnitude. of such a value is the

magnitude of the decrease. A linguistic value of 'zero' for (e) means that the current

process output is about the set-point. A 'zero' for (6e) means that the current process

output has not changed significantly from its previous value (i.e.[-(y(t)-y(t-1))=0). The

sign and the magnitude for (u) constitute the value of the control signal. The table (3.3)

is suitable when we have two inputs and one output. On the topside of the table it

should be written the possible linguistic values for the change-öf-error (6e) and on the

left side the error (e). The cell of the table at the intersection of the row and the column

will contain the linguistic value for the output corresponding to the value of the first

input written as the beginning of the row and the value of the second input written on

the top of the column. Let us consider the example [drian93] where both inputs and an

output have a set of possible linguistic values {NB, NM, NS, Z, PS, PM, PB} where~

stand for Negative Big, NM stands for Negative Medium, NS stands for Negative
~

Small, Z stands for Zero, PS strands for Positive Small, PM stands for Positive Medium

and PB stands for Positive Big. The cell defined by the intersection of the first row and
•

the first column represents a rule such as:
ı,

If e(t) is NB and 6e(t) is NB .then u(t) is NB.
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NM NB
NS z

PY! PS 
PS 

·,

PM
z
~s
~M 
~B

The table includes 49 rules. It is taking into account now not just the error but the

harıge-of-error as well. It allows describing the dynamic of the controller. To explain

how this rules set works and how to choose the rules, let us divide the set of all rules

into the following five groups:

Group O: in this group of rules both (e) and (6e) are (positive or negative) small or zero.

This means that the current value of the process output variable (y) has divided from the

desired level (the set-point) but is still close to it. Because of this closeness the control

signal should be zero or small in magnitude and is intended to correct small deviation

from the set-point. Therefore, the rules in this group are related to the steady-state

behavior of the process. The change-of-error, when it is negative small or positive

small, shifts the output to negative or positive region, because in this case. for example.

when e(t) and 6e(t) are both negative small the error is already negative and, due to the

negative change-of-error, tends to become more negative. To prevent this trend. one

needs to increase the magnitude of the control output.

Graııp 1 · for this group of rules e(t) is positive big or medium which implies that y(t)ris

significantly above the set-point. At the same time since 6e(t) is negative, this means
"that (y) is moving towards the set-point The control signal is intended to either speed

up or slow down the approach to the set-point. For example, if y(t) is much below the
•lt

set-point (e(t) is positive big) and it's moving toward the set-point with small step (tıe(t)

is negative small) then the magnitude of this step has to be significantly increased (u(t)

is negative medium). However, when y(t) is still much below the set-point (e(t) ıs

positive big) but it is moving towards the set-point very fast (tıe(t) is negative big) no

control action can be recommended because the error will be compensated due to the

current trend.
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Group 2: for this group of rules y(t) is either close to the set-point(e(t) is positive small,

zero, negative small) or significantly above it (negative medium, negative big). At the

same time, since 6e(t) is negative, y(t) is moving away from the set-point. The control

here is intended to reverse this trend and make y(t), instead of moving away from the

set-point, start moving toward it. So here the main reason for the control action -choice is

not just the current error but also the trend in its change.

Group 3 :· for this group of rules e(t) is negative medium or big, which means that y(t) is

significantly below the set-point. At the same time, since 6e(t) is positive, y(t) is

moving towards the set-point. The control is intended to either speed up or slow down

the approach to the set-point. For example, if y(t) is much above the set-point (e(t) is

negative big) and its moving towards the set-point with a somewhat large step (6e(t) is

positive medium), then the magnitude of this step has to be only slightly enlarged (u(t)

is negative·-sİnall).
Group 4: the situation here is similar to the group ·(2) in some sense. For this group of

rules e(t) is either close to the set-point (positive small, zero, negative small) or

significantly above it (positive medium, positive big). At the same time since (6e) is

positive y(t) is moving away from the set-point. This control signal-is intended to

reverse this trend and make y(t) instead of moving away from the set-point start moving·

towards it. So, to design a PD-like controller it is needed just to create a rules table like

table (3.3). The contents of the table can be different. For example, we may replace the

rule:
If e is PS and 6e is PM then u is NB

With the rule:
If e is PS and 6e is PM then u is NM.

3.2 Pl-like fuzzy controller •
The equation given a conventional PI-controller is

u(t) =KP* e(t) + K, * Je(t)dt, Equation (3.2)

Where KP and K1 are the proportional and the integral gain coefficients. A block

diagram for a fuzzy control system looks like Fig (::ı.5).
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Set-point
Ul:P-Ut lı,I
ref.input)

error

Fuzzy Plant

controller

J
Integral of

error

Fig (3 .5) A block-diagram of a Pl fuzzy control system

It seems in this diagram to have a different form from the previous one. Differentiation

with integration and a change-of-error with an integral error are replaced. Now the

fuzzy controller and the rule table have other inputs. It means that the rules themselves

should be reformulated. Sometimes it is difficult to formulate rules depending on an

integral error, because it may have the very wide universe of discourse. Move the

integration from the part proceeding to a fuzzy controller to the part following it. It may

have the error and the change of e~ror inputs and still realize the Pl-controL When the

derivative, with respect to time, of the equation (3 .2) is taken, it is transformed into an

equivalent expression
du(t) I dt =Kr* de(t) I dt + Kı * e(t)

Or in the discrete form:
tı.u(t) =Kr* tı.e(t) + Kı * e(t)

One can see here that one has the error and the change-of-error input and one needs just

to integrate the output of a controller. One may consider the controller output not as a

control signal, but as a change in the control signal. The gain factor Kı is usecf with th"

error input and Kr with the changa-of-errcr. The rule can be written as:

If e is<property symbol> and 6.e is< property symbol >then zxu is< pr~erty symbol>

In this case. to obtain the value of the control output variable u(t), the change -of­

control output tı.u(t) is added to u(t- \ ). It is necessary to stress here that this take place

outside the PI-like fuzzy controller. and is not reflected in the rule they.
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plant

change
of control

Delay t::J

Fig (3 .6) a block diagram of PI fuzzy control system.

e output is nota control signal but the change-of-control. let us change something.

Table (3.4)

~
PB PM PS z NS NM NB

PB NB NB NB NB NM NS z
..

PM NB NB NB NM NS z PS ..

: PS NB NB NM NS z PS PM

I

z NB NB NM z PM PM PB

I NS NM NS z PS PM PB PB

I NM NS ·z PS PM PB PB PB

j NB z PS PM PB PB PB PB
i

If e is Z and le is NS then tu is PM

And: •
If e is Z and 6-e is PS then t,u is NM.

The correction will lead to the change of the control surface. The controller will become

more reactive in the neighborhood of the set-point. Jt means that even.small deviation

errors will be lowed by larger control signals. lt is difficult to say if it will become

better in a general case. However. usually a designer tries to make the control surface

smoother in the vicinity of a set-point. If it needed to make our controller less reactive

to the large errors. In this case we need to modify the top and the bottom rows
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Table (3 .5

PB PM PS z NS NM NP

NB NB NB NM - NS z z

?~1 NB NB NB NM NS z PS

?S NB NB NM NS z PS PM

z NB NM NS z PS PM PB

NM NS z PS PM PB P.B

_0'{
\

NS z PS PM PB PB PB

_ :B z z PS PM PB PB PB

f it needed to change the left bottom corner to PS, for example there vtil~ be a gap

etween two adjacent cells. So when (e) changed a little bit from PM to PB, the output

will jump from NS to PS. Generally, these gaps should be avoided arid perform a

mooth transformatton between adjacent cells. It means that to make significant

modifications, it is best to make changes to the regions than to changes in individual

cells.

3 .3 PID-like fuzzy controller

The equation for a PID-controller is as follows:
u =Kr* e + Kd * e +_Kı * [edt ,

Thus, in the discrete case of a PID-like fuzzy controller one as an additional process

state variables, namely sum-of-errors, denoted (oe) and computed as:

0e(t) = I. e(i) ,
ı=\

The last one has three conditions in the antecedent part but the previous ones had just
•two. So it will need to formulate many more rules to describe the PID-controller. If any

input is described with seven linguistic values, as'it was before, then because the PIO­

controller has three inputs and any rule has three corlditions, it will need [7'7'7-03-ll]

rules. Previously it had just [7*7=49] rules. It is too much work to write [343] rules.

The PIO-like fuzzy controller can be constructed as a parallel structure of a PD-like

fuzzy controller and a PI-like fuzzy controller with the output approximated as:

u = (Kp I 2 * e + Kd * de/dt) + (Kp I 2 * e + Ki * [edı).
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.s-: ue I controller
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e

Fig (3.7) The structure for PID-like fuzzy controller.

When information about the object or process under control and its structure is

available, one may not want to be confined to using error, change of error, and sum of

errors as process state variables, but rather use the actual process state variables.

1 rıe>r1

Turbine
Delay t:,tActuator

Control
PID-like

Fuzzy
controller

Fig (3 .8) The block diagram of fuzzy controller system for a turbine speed control.

The fuzzy controller has been designed to control the turbine speed and pressure. The

block diagram of fuzzy control system for a turbine speed control is given in Fig (3.8).

JX'll blocks on this figure demonstrate a nonlinear behrnvior. which is thGııı main reason

for a fuzzy control application. The fuzzy controller has been desigı1ed as PlD-like

fuzzy controller. 1t bas three inputs: the error (the difference between a set-poınt and an

actual output). the change of error. and the integral-error. and one output. To fuzzy the

inputs. three classes are applied for each input with the membership function gıven ın

Fig (3.9a).
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a) Input
b) Output

z
N

·l o L--t o L
Fig (3.9) Membership functions for the inputs and outputs.

In order to defuzzify the output,' seven classes are applied with the membership

functions presented in Fig (3.9b). Because the fuzzy controller has three inputs, its

rules table has a three-dimensional image given in Fig (3 .1 O).

Çhange _
of error

..

N

z
p

·l O L Integral error

Fig (3. 1 O) the rules table for the fuzzy controller.
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The best way to improve the perfoımance of fuzzy controller is to increase the number

of rules used. Whether they were fuzzy or classical didn't really matter, but the non -

fuzzy rules were much easier to implement. Some types of servo operators are much

simpler with standard rules (e.g., if the sensor goes past this line,· then actuate). The

advantage of fuzzy logic for this case would be using fewer, simpler rules to handle all

the cases reasonably. With fuzzy logic it needs to write three to six rules for size,

motion, etc., and sum them. The rules follow more closely what a truck driver standing

behind a truck does: instead of examining every item and plugging in every rule he or

she knows about objects and decides that something is either 'a problem' or 'can be

ignored' or c Keep an eye on it' as the driver is guided backwards. This allows them to

ignore cats; birds, open lunch boxes, paper bags, ignore pedestrians who obviously see

the truck and are moving at safe distance form it without having to make a special rule
. .for each of them, thinks like drunks stumbling under the wheels, broken glass, other

trucks or unaware pedestrians receive more attention because they fit into the class of

'problem item'. In öne sense 'all measured inputs have some fuzziness even in classical

control all have limits to precision. As a result no rule will be 'absolutely accurate',

since the error terms, physical limitation (e.g., phase-shift and attenuation) and input

noise will norn1ally be a noticeable part of the input. Also filtering inevitably reduces

the leğitimate input, attenuating the original single. At the point, fuzzy logic simply

recognizes what have been doing all along. and 'hard' rules are ignored: approximations

onto the response that makes the useful outcome more likely. Fuzzy controller can be

particularly good as an operator replacement. However, an operator in process control

systen1 usually controls different technical devices including PID-contro llers. In this

case a fuzzy controller is placed on a higher, more intelligent level. It produces

c;mmand signals for conventional c~mtrollers. Another possible task for fuzzy

controller -in this structure is a future prediction. The famous Japanese subway and

helicopter control system are based on these principles~ A modern aircraft is well

equipped with conventional control techniques and, in particular, various PlD

controllers that demonstrate a good perforn1ance and successfully solve different

guidance problems. Guidance control is the PlD controllers producing the control

signals, which are applied, to ailerons and elevaı.ors perform a modern aircraft. The

necessary reference inputs for PlD controller are usually supplied by the aircraft crew

based on different data, fırst of all the current position provided through the global

positioning system (OPS). Some piloted aircraft classes are to be replaced with
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utonomous vehicles; which are cheaper in operation and have some other advantages.

The hybrid guidance control system, incorporating conventional PID controllers and

fuzzy controller, is proposed for this aircraft. A fuzzy controller takes the place of a

pilot (on operator) in developing signals for a PID controller. The navigation of the self­

piloted vehicle is organized by the onboard (GPS) receiver tied to a PC-based flight

director. Flight-planning software generates a list of consecutive points necessary to

track the mission-determined flight path. .Onboard autopilots keep the aircraft stable.

while the flight director (guidance system) interprets the point positions to determine

the course, speed, climb rate and turns of the aircraft. The object of the guidance system

is to bring the aircraft to the next operational point at a specified altitude and to stabilize

the-vehicle to allow for the operation of the onboard photographic and/or measurement

equipment. The aircraft is assumed to 'be guided to an initial position during the take-off

stage before the guidance system takes over a control. The designed control structure is

shown schematically in Fig (3.11). The altitude of the aircraft is controlled by low-level

conventional PID feedback controller through aerodynamic ailerons and elevator with

mechanical limits of their deflection angles. The throttle setting controls a speed· of the

aircraft. The guidance fuzzy controller has to provide reference signals for the PIO
-

controller, whiclı are required roll and pitch angles (8ref respectively) for a leveled flight.

and also to prod1.1ce the throttle setting command Te. if change of altitude is required.

GSP Data

Reference
trajectory
data

Tr1ı Aircraft
modelFuzzy

controller PIDC ôa 8eCDref 8ref

•.. Fig (3 .11) Structure of the combined control system .

An operation of the fuzzy controller developed is illustrated in Fig (3 .12). Coordinates

of the aircraft current position and of the next operational point are used to estimate an

offset angle, 6. between the direction to the operational point and the current velocity

vector. u, and the rate of change of the offset angle. ö, as we] l as an altitude difference

between the current position of the aircraft and the operational altitude. h. and the rate
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of change of the altitude difference fı. These estimates become the input signals for the

fuzzy controller and are subject to fuzzification.

Memberships for
..... i rıptıt ..pcırcı.J:P: c:.tc:ı:s .

\AMMA

Input

\ AMM/\

Fuzzification

Rule sets
Memberships_ for

, .. o.11tptı~.. pcırc1rrı(::t~~s .

I I I I I I - -

Rule evaluation Defuzzification

Fig (3.12) Operational block diagram of the fuzzy control system.

The whole control structure consists of three fuzzy controllers operating independently

with each of them having two input and one-output signals. This input-output mapping

provides a simple two-dimensional structure of the linguistic rules sets. The fuzzy

controller output mainly depends on a definition of the membership functions and the

rules. The control variables 8, 8 and domains are divided into seven linguistic values

. - with the relative memberships, and the control variable fı into five, respectively. The
,.

rule definition is subjective and based on the expert's knowledge and experience. For a
;, .

system•• with two control variables and seven membership functions in each range it

may lead to a (7x7) decision table. The total of three rules sets is used in this fuzzy

controller design: for the roll angle control. the pitch angle control and the throttle

position control. These rules sets can be viewed as (7x7. 7v..5 and 7x5) decision tables.

respectively. As an illustration. the rules set for roll angle control is given in table (3 6).

where equally shaded cells produce the same fuzzy output.
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Table (3.6)

~ NB NM NS SM PS PM PB
NB LB LB LB LB LB LB LL
NM LB .LL LL LL LL LL .LM
NS LL LM LM LM LM LM LUT
SM LM LUT LUT LUT LUT LUT LMN
PS LUT LMN LMN LMN LMN LMN LLN
PM LMN LLN LLN LLN LLN LLN LBN
PB LLN LBN LBN LBN · LBN LBN LBN

In-this· table linguistic tables for roll angle denoted: LB, big; LL, large, LM, medium;

LUT, little; the character N denotes negative. Simplicity and low hardware

implementation cost determine a choice of the membership functions of a singleton type

for the output parameters (roll angle, pitch angle and throttle position). The linguistic

variables of the fuzzy outp1-:ts that are evaluated by cycling through the rule sets are

projected onto output sets of the memberships. The defuzzification process takes place

after the generation of the fuzzy control signals is completed using the inference

mechanism. As more than one fuzzy output variable can be assigned a non-zero degree.

the. contribution of each variable into the physical output should be taken into account.

The defuzzification method was based on calculating the center of gravity of all fuzzy

outputs for each system physical output.
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CHAPTER4

IMPLEMENTATION OF
FUZZY CONTROL SYSTEM

The simplest and the most usual way to implement a fuzzy controller is to realize it as a

computer program on a general-purpose processor. However, a large number of fuzzy

control applications require a real-time operation to interface high-speed external

devices. For example, automobile speed control, electric motor control robot control are

characterized by severe speed constraints, software implementation of fuzzy logic on

general purpose processors can not be considered as a suitable design solution for this

type of application. In such cases, specialized fuzzy processors can match design

specifications. The requirements to the hardware implementation are:

• High-speed performance.

• Low complexity.

• High flexibility.

These conditions contradict each other. So it is not easy to choose the right way,

especiaUy_if one takes into account some other· factors, such as manufacturing cost (very

important for consumer product fuzzy controllers) or design cost (important in research

and development). Low complexity means that · algorithms for fuzzy processing,

fuzzification and defuzzifications have to be very simple and demand as small an

amount of memory as possible for their realization. Flexibility means the ability of the

hardware to be used successfully in different applications and configurations. Durıng

recent years, there has been an increasing interest in the development of efficient fuzzy

controller hardware capable of coping with the requirements of real-time applications.

The first fuzzy logic chip has been developed in 1985. Later, a fuzzy logic hardwareı,..using analog techniques has been developed. Since then, several chips have been

proposed utilizing both analog and digital techniques. Generally, three different ways of

implernentating fuzzy controller hardware can be proposed. They are summarized,

together with their advantages and disadvantages, in table (4.1 ).
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Table (4.1)

Class of hardware Advantages Disadvantages

Implementation

Digital general purpose - Flexibility in choice of Low performance unless a

processor. hardware and software very powerful one is used.

tools.

Digital specialized Increasing Incrementing complexity

processor. Performance. and cost, as it must be

coupled with a standard

host processor.

- - -
.•-

..
Lack of flexibility, as it

.. may be applied to a limited

class of problems.

- . · Higher cost -

Analog processor High performance. Mainly the research topic.

Low cost. Low accuracy.

~ Low·power consumption. Lack of flexibility.-

.. I
One can see that any hardware type has its positive and negative sides for fuzzy

contro Iler application. •
4. 1 Implementation On a Digital General Purpose Processor

Nowadays, most fuzzy controllers are implemented as software programs on general­

purpose processors and microprocessors. If there is'a need for higher operation speed. a

specialized fuzzy processor can be added. An example of such a processor is the FCl 10.

The advantage of this processor is the powerful arithmetic logical unit. However, for

defuzzifıcation implementation, a fast multiplication and division are needed. If an 8-or

l ô-bit microprocessor is applied for a fuzzy controller realization, the FC 11 O speeds up

the operation significantly. If a 32-bit or 64-bit microprocessor is used, the advantage of

the FC 11 O processor is only the fast minimum and maximum operations. At the same

time, other operations can be performed faster on a general-purpose processor. Some

54



advice can be provided on how to speed up a controller operation on a general

processor. In this case, the optimization is based not on the features of a particular

platform, but on the specific features of the fuzzy controller operation. Research has

demonstrated that only two stages of a fuzzy controller operation take most of the

processing time, about 83 per cent for rules processing and 16 per cent for

defuzzifıcation. These are why the main efforts should be and are concentrated on the

inference engine implementation. On the other hand, the important features of modern

general microprocessors should be considered as well. These features include the

following:
• Addition, multiplication and division operations are about 1 O to l 00 times

faster with integer numbers 'than with floating point numbers. Floating-point.

operations are not available on microcontroller.

• Usually minimum and maximum operations are not available.

• Jumps for short distances are fast.--
• Data that is often used is held in the processor cache or register memory.

Based on this, the following recommendations can be provided:
• All calculations operations must be done with integer-numbers. It can be easily

realized as the input signal for the fuzzy controller 'comes from the AD

converter outputs an integer code.
• The membership functions for the inputs are to be stored in look-up tables. In

this case, the antecedent parts of the rules can be calculated very fast.

• Data dependencies, especially the property of the minimum operation. that min

(X, O) = O, can reduce the number of operations drastically. It can cause a
ıı,

significant reduction in the rules calculation time. If an antecedent part is Zero

and the t norm operation is interpreted as the min operation, then this rule is not

activate. There is no need to calculate the '"consequent part. Nioreover. other..
antecedent conditions need not to be checked.

All other rules with the same antecedent part do not need to be calculated either

Generally, if similar antecedent parts are used in different rules (that is-quite common ın

fuzzy controllers), there is no need to recalculate them, and the result of the first

calculation can be reused in the actual rule. As an example, the comparison between

55 



PC80486, 33 MHz, the FCl 10 and the MC8052,

<
·C~:~\\;,.',,.,<-~

\ ,j lı

12 MHz is given, figure (4.1 )'. Tit ·
' •,,,.

•
FCl 1 O is nearly 20 times faster than MC8052 and needs less program memory.

100000 

75000 

50000 

25000 
o~~.,,

DMC8052

8FC110
coprocessor

O FCllO stand
alone

O Processor
80486

Fig (4.1) comparison results for a standard micro controller MC8052, a

.. .specialized digital processor FC 11 O, and a general digital processor PC80486:. - .•. ..- ,

performance benchmark in iterations per second.

ln general, microcontrollers like the MC8052, which is an 8-bit type, are suitable as a

cheap realization of fuzzy contro!lers with a. medium complexity an~_ low or medium

execution time. These and similar microcontrollers are well tested and often used.

However, the PC80486 with an optimized C-code implementation is faster than the

FC 11 O because of the improved algorithm. The. generation and optimization of an

assembler code can reduce the execution time for it reduced even further. So, for faster

processing, the extension and optimization of some basic fuzzy operations are the most

important.

4.2 Implementation on a Digital Specialized Processor

Research into the balance between performance and cost has recently led to the. ~development of architecture solutions with a specific support, and several accelerator

coprocessors dedicated to fuzzy logic and control have been proposed. Dedicated

hardware may be considered as the best way in terms of perfom1ance, but it '"can only

cover a limited range of applications. In spite of the lack of flexibility, the choice of the

entire specialized hardware solutions may represent an effective way, in particular for

the applications, which require a large number of rules. Specific fuzzy hardware allows

us in many cases to reach a better cost-performance ratio because of the exploitation of

parallelism in fuzzy processing and the introduction of special purpose units. To

introduce this type of implementation, consider two specialized processors. The fırst

one is FC 11 O; it is rather old (a few years). The second one is AL220, which is very
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new. The FC 11 O digital fuzzy processor was developed as a specialized fuzzy

processor. It is a single chip small enough for sensitive embedded applications. Its

architecture supposes high communication possibilities for working together with a host

processor. It is not oriented to any particular host type and is flexible in possible

applications. Variable data are stored in a 256-byte on-chip RAM. At least the low 64

bytes are shared between the host and the device with arbitration- provided by the

FCl 10. Special communication capabilities are assigned to two of the addresses. Off­

chip data interfacing is also possible. Due to this architecture, the microprocessor allows

the program and all ·the constant data to reside in an off-chip ROM and the variable data

to be placed in an on-chip RAM that both the host and the device can access. The

sharedRô.M is used for temporary storage and to transfer observations, commands, and

conclusions. Additional RAM is provided in a 192-byte segment adjacent to the shared

RAM. The AL220 is an inexpensive,· high performance; stand-alone microcontroller

utilizing fuzzy control. The device contains four 8-bit resolution analog inputs and four

·s-bit analog outputs, and an internal clock generator. Inputs can be directly connected to

sensors or switches.' Outputs can be connected to analog devices or used to control a

mechanism. The AL220 consumes very little power during normal operation and has a

power-down mode. The AL220 diagram is given on figure (4.2).

..
, ••..~I+'.

ın•,'4''•'),+

~

Fig (4.2) Detailed AL220 block diagram

•

The main elen-;ents are a fuzzier, a defuzzier and a controller, perforn1ing fuzzy

processing. The knowledge base containing rules and membership functions is realized
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as an EEPROMIROM with the capacity of (256 * 8 bits). It is available in either an 18-

pin DIP or 20-pin SOIC versions. One can see that this device includes on-chip AID and

DlA converters that eliminates a need in external devices and gives a designer a one­

chip solution. The microcontroller reads voltage levels from its four analog inputs using

an 8-bit AID converter, processes the channel data according to fuzzy rules contained

on the chip, and generates four analog inputs via its 8-bit DlA converters and four

sample-and-hold output drivers. Fuzzy processing is performed at a decision rate of

500,000 rules per second that allows one to carry out first, second and third-order

derivatives calculation and contro 1, automatic calibration and rule-based timing at

l 0,000 samples per second for each of the four analog channels. Have a look at some

fuzzy processor chips currently being developed. In order not to be accused of any

biased approach, two fuzzy chips are presented. One of a Japanese design and another

one of European design, table (4.2). data given is from the manufacturers. Omron is

famous for the world's first high-speed controller, FZ-1000. FP-3000 is a new

generation fuzzy processor that is applied in different Omron products. WARP (Weight

Associative Rule Processor) by SGS-Thomson, figure (4.3), is claimed to be the

technological state-of-the-art processor. Table (4.2) is not comparing these two chips,

but presenting some real-life data and demonstrating how fast this area is being

'developed.

.. •

Fig (4.3) WARP fuzzy processor.
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Table (4.2)

Key features '
FP-3000, WARP,

Omron SGS-Thomson "

.\"o. of rules processing

inputs 8 16

No. of rules processing

outputs 4 16

No. of possible

membership functions for· 7
. 16

each input

No. of possible

membership functions for 7 128 .-

each output

No. of types.of membership

ı functions supported 4 shapes (L, P, S, Z) All

i No. of rules Single mode: 29 .

Expanded mode: 128 per Up to 256

group with 3 groups

Operating time 20 rules with 5 inputs and 2 32 rules with 5 inputs and

outputs and defuzzifıcation 1 output are evaluated in

I by center-of-gravity 1.85 µs ( 1.5 MFLIPS)

I methods in 650 us
..

Data resolution Unsigned 12 bit 8 bit '!
eo

A fuzzy coprocessor by Togai, the VY86C570, is a high-performance fuzzy coprocessor

with a l z-bit FCA (Fuzzy Computational Acceleration) core, 4K * 12 OCTD
lt..

(Observation, Conclusion and Temporary Data), RB (Rule Base), SMI (Shared Memory

Interface), and host interface logic combined in a single chip. The VY86C570 is capable

of executing simple to very complex fuzzy computation at high speeds, making it

suitable for a wide range of fuzzy logic applications. Simple-to-medium complexity

fuzzy logic rule bases can be directly downloaded by a host processor to 4K words

(approximately 200 rules) of on-chip rule base memory. This allows designers to create

fuzzy coprocess;ng systems without the need for an expensive on-board memory.
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For larger fuzzy application requirements, the VY86C570 includes an external rule base

interface that allows up to 64K words (over 1,000 rules) of rule base memory. In a

typical fuzzy application, figure (4.4), a fuzzy rule base is downloaded by the host into

RB memory prior to the start of any fuzzy computation. At the beginning of a fuzzy

computation, 'crisp' input values, or observations, are downloaded by the ·host into

OCTD SMI. The fuzzy core uses the rule base information stored in the RB memory to

perform calculations and produce a set of 'crisp' output values or calculations. These

values are stored by the fuzzy core in the OCTD SMI and are read by the host through

the host interface. Control status registers are used to control the models of the chip and

to provide status read-back.

Fig (4.4) Typical application when a custom ASIC chip is used as a fuzzy processor

4.3 Specialized Processor Development System

..

A special design environment is supplied to put all these data onto the microcontroller

chip called a development system. FCl 10 has a development system, while AL220 has

one called INSIGHT HieTM. This includes some software and a special hardware unit.

All together this system provides an interface and tools for design development,

simulation, real-time emulation and debugging. The development process is conducted

on the personal computer in an MS-Windows environment and is pretty easy to

perform. The block diagram for the FCl l O development system is presented in fıgure

(4.5), which explains the contents and operation of this system. In the Togai Infralogıc

design package, the fuzzy controller rule base is written in FPL high-level language

The development system should translate this FPL description into an executable code

that can be downloaded into the FC l l O processor. The system 'includes a special

Compiler, Assembler and Linker.
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The Compiler translates the FPL code into the machine code optimized for the FC l l O

digital processor. The Assembler converts additional files written in assembler language

into relocatable files. These files may contain information other than a knowledge base.

The Linker combines all the parts of the code together. It utilizes specific information

describing the board configuration. The Linker produces the code, which will ·be

downloaded into the target board, if the knowledge base memory is implemented as

RAM, burned in, if the memory is a PROM or permanently programmed into a ROM. It

also outputs the C-code file which is used for the interface with the application software

programs.

Fig (4.5) The FC l l O development system block diagram.

4.4 Implementation On Analog Devices

During the last years, analog circuits attracted close attention as a good candidate for a

f.ı.ızzy controller implementation. This implementation is characterized• with a higher

operation speed and lower power consumption. The functional efficiency is also much

larger than for the digital realization because of the possibility of the versatile

exploitation of small analog devices for a wide variety of iow le'-'.el linear and nonlinear

processing required for fuzzy inference realization The fuzzy controller appJication is a

lucky exemption, which does not required high accuracy. Accuracy of 6-9 bits is

enough and is quite affordable even for the cheapest analog implementation.
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This makes analog circuits natural candidate for designing fuzzy controller chips with

optimum speed-to-power ratio figures for low and medium precision applications, up to

about 1 per cent. That's why some circuits and chips have been developed and

· implemented already. The·whole fuzzy system is divided into two parts according to

their functions, that is, the rule chip for fuzzy inference (FP9000) and the defuzzifıer

chip for defuzzification (FP9001). This functional division facilitates flexible system

configuration. The distinctive features of these chips are: high-speed fuzzy logic

operation in parallel mode, compact fuzzy systems (chip saving) suitable for built-in

application and adaptability of the fuzzy system based on a rule set during execution of

fuzzy inference. These design features fıave allowed an £I1fere11c&J'pB8D Df ))JDJt'. !JJ,m )
mega fuzzy logical inference per second, excluding defuzzification. The fuzzy engine is

implemented in a parallel architecture where the consequents of all rules in response to

the determined antecedents are defined and programmed internally, aggregated by an

analog 'or' construction and combined to produce a defuzzified output value. The

internal processing in both FP9000 and FP9001 is performed in an analog mode as

opposed to other implementation, although a digital interface has been included in the

latest version in order to define, modify (write) and read the parameters of each fuzzy

rule quickly. The rule chip consists of an antecedent block, a consequent block and a

rule memory" to store fuzzy rule sets. Up to four fuzzy rules can be stored and processed

simultaneously, each with three antecedent variables and one consequent variable. The

(t) norm operation applied to the antecedent parts is performed by a min circuit. To

describe input fuzzy variables, only S or Z functions are allowed as membership

functions. Each membership function circuit can produce up to six different alternate...•.
function types, with a total of 31 different center positions within the universe of

••discourse. The consequent block has four demultiplexer circuits (one for each rule in

memory) to decode the single consequent label defined for each fuzzy rule. A three-bit

••opcode provides seven possible combinations (code 000 is not assigned) labeled NL.

NM, NS, Z ,PS, PM, PL for the defined of the consequent center values within the

universe of discourse. The consequent block performs a max operation (t conorm). The

rule memory supports a digital interface for fuzzy rules definition and application. lt is a

two-stage memory consisting of 24 8-bit registers (three duplicated antecedents and four

inference engines) and four 3-bit registers for the consequent parts of each engine The

defuzzifıer chip accepts a set of singletons. one from each rule consequent, which is

considered as the centers of the fuzzy outputs. Singletons are applied to increase the
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computation speed and decrease the complexity. They calculate a crisp output by the

center of gravity method, using the assigned weights for each singleton. The three types

of S and Z types membership functions are terms to describe the classes of membership

given in figure (4.6), which are standard for hardware implementation.

Z-type P-type S-type L-type

Fig (4.6) standard membership function types.

Both P-type and L-type are minimum combination of Z-type and S-type functions. It is

not necessary to apply chips to develop a fuzzy controller. One may construct the whole ·

circuit from simple elements, this can be done layer by layer. Because a fuzzy controller

operation includes some stages like fuzzifıcation, fuzzy rules processing.

defuzzifıcation, a circuit using it contains parts or layers corresponding to these

operations. Each layer realizes one of the operations. For example, consider

constructing the simple circuit based on the operational amplifier, which realizes the S-
. 'type of membership functions. This circuit is applied in fuzzification. Note that, the Z-

type membership function has two parameters: a and b. then it can be defined as:

Z(a,b,x) = min (1. max (O, Zo (a,b,x))),

Where
Zo(a,b,x) = Yı - (x-a) * b.

•..
To realize this membership function the circuit given in figure (4.7) with the symmetric

power supply V cc can be proposed. In this case:
a= R2/Rı

Ycc(a + l) (R2/Rı)
b = -------------------------

a(R2/Rı + l)

'"ı)..J
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Fig (4.7) Circuit for the implementation of Z-type membership functions.

It is not so that difficult to design analog fuzzy controller if one only has to consider

basic design principles. The example of analog reconfigurable fuzzy controller recently

developed is given in [Guo94, Guo95]. This controller has a modular architecture and

reconfigurable inference engine. It is a two-input and one-output fuzzy controller which

implements Mamdani's min-max inference engine and center-of-area defuzzification

method. Each input and output includes five membership functions. The controller

implements 13 rules: It was designed with analog circuits working in a voltage mode.

The design was implemented in 2.4 micron COMS technology.

.. •

Fig (4.8) A reconfigurable fuzzy controller.
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4.5 Integration of Fuzzy and Conventional Control

As fuzzy control has become popular and a number of successful real life applications

have been developed, hardware developers have started proposing complex solutions,

integrating fuzzy software and hardware with conventional PLC (Programmable Logic

Control) and DCS (Distributed Control System) l:ıardware. The aim is to provide an

opportunity to complete a design and implement a controller for any particular

1application without any need for any extra software and hardware. Two ways of

transforming fuzzy controller design methodology into real industrial applications are

given below. The first one is called UNACTM' which was developed by CICS

Automa~ion. It proposes the combination of fuzzy and conventional technology on a

'macro' level. UNAC consists of a design package, including fuzzy control

methodology, and a hardware part (SAAC TM ), figure (4.9), which is downloaded with a

controller code developed by the software.

Fig (4.9) SAAC 1 OOOTM port1ble controller. •..
The SAAC 1000 uses a DEC Alpha AXPVMETM processor board utilizing a

VxWorks1iY1 real-time operating system. It incorporates a VME backplane and supports

an extensive range of VME TM cards. Communication with the workstation running a

software package is via 10 Mbit/s Ethernet using TCP/IP. High-speed sampling is

provided via VME based I/O cards, and other systems can be accessed using RS-232,

RS-485 and GPlB. SAAC 1000 may be integrated into OCS OR PLC systems via
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communication protocols such as Modbus. This provides SAAC l 000 with access to the

DCS/PLC operator interface and plant 1/0. and in its tum, it provides the DCS/PLC

system with a user-friendly advanced process control facility. The second methodology

is the 'micro' level solution, developed by Inform software and Klockner-Moeller, and

consists of two chips, field bus connections and interface. An analog ASIC handle the

analog/digital interface at industry standard 12-bit resolution. Snap-on modules can

extend the periphery for large applications of up to about l 00 signa_ls. An integrated

field bus connection, based on RS485, provides further extension by networking. The

conventional and the fuzzy logic computation are handled by a 16-bit RISC

microcontroller. The operating system and communication routines, developed by

Klockner-Moeller, are based on a commercial real-time multitasking kernel. The

internal RAM of 256 kB can be extended by memory cards using flash technology.

Thus the fuzzy PLC TM, figure (4.1O), is capable of solving real complex problems of

industrial automation. The fuzzy PLC is programmed by an enhanced version of the

standard fuzzy logic system development software fuzzy TECH TM of inform software.

Unlike all other control design packages, fuzzy TECH has been enhanced with editors

and functions to support the conventional programming of the PLC. Thus, a user only

needs one tool to program both conventional and fuzzy logic parts of the solution. The

software runs on a PC and is linked to the fuzzy PLC by a standard serial cable (RS232)

or the field bus (RS485). Through this link, the developer downloads the designed

system to the fuzzy PLC. Because fuzzy logic systems often require optimization 'on·

the-fly', fuzzy TECH and the fuzzy PLC feature 'online debugging', where the system

running on the fuzzy PLC is completely visualized by the graphical editors and

analyzers of fuzzy TECH. Plus, in on\ine-debugging modes, any modifıcatıon oft~

fuzzy logic system is instantly translated to the fuzzy PLC without halting operation .

' '

••
•

Fig (4. l O) Fuzzy PLCTM,an integration of fuzzy and automation hardware
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CHAPTER 5

SIMULATION OF FUZZY CONTROL SYSTEM

5.1 Simulation Of Fuzzy Control System For Active Noise Cancellation

There is no more popul_ar problem in telecommunic~tion engineering than one of noise

cancellation. One of the methods explored which is called an active noise control

(ANC) is producing an anti-noise signal. Adaptive logic, Inc. has developed a solution

based on fuzzy controller design and realization. The solution achieves audio noise

reduction of over (-20 dB). By adjusting phase and gain values from the measured noise

level, the controller reduces significantly the dynamic error measured at the cancellation

point.

Noise +~
Source · \ \ Error

SensorNoise
Ses or Anti-Noise

Source

Controller

Fig. (5.1) A typical ANC system.

.. " .The idea of an ANC is to produce an anti-noise signal coinciding with the noıse ın

phase and magnitude to cancel it out. Figure (5. l) shows a typical ANC system that

contains a noise source, noise sensor, error sensor and the controlor anti-noise source.

The system can be modeled as a closed loop system. where the error is continuously

being minimized. Though there are various methods for producing the anti-noise. they

all rely on the principle that a signal, when added to the inverse of itself will produce a

null. The problem is that in a time variable world, producing the exact inverse signal
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can be very difficult. Additionally, acoustic reflections can add to the original signal

producing even more complexity in the system. The exact specifications for the anti­

noise signal might be known for some very periodic systems. In these cases, only the

phase and amplitude need to be adjusted. An example of such a system might be a large

transformer or motor which being driven at (60 Hz), produces (60 Hz) noise and

harmonics. For this system, the exact frequency is known so it can be regenerated,

phase shifted and amplitude adjusted to make the anti-noise. Figure (5.2) shows a

waveform synthesis system.

60 Hz
Noise
Source

·Gs)

60Hz
Source

Phase
Shifter

Controller

Fig. (5.2) Waveform synthesis for an ANC.

For simplicity in this example, the error signal is RMS value of the noise sensor signal.

Response time is critical, because if~set too slow, transients will not be seen, and if too

fast. a null may never be reached. The controller monitors the error signal. and
•

generates a derivative, so that the direction of the error can be measured. The derivative
•• •

is" simply produced by copying the error signal to an output and then on the following

cycle comparing the old stored value at the output (internally feedback) with the new

error signal. By monitoring the error and delayed error. the controller can determine if

the overall error is improving or getting worse. Since this is the entire controller knows.

it must try parameter changes to see how they affect the error. In other words. the

controller does not know if the phase should be increased or decreased. It only knows

that since an error exists, an adjustment must be made. If after making adjustment to the
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phase or amplitude, the error has improved, then the controller makes the same

adjustment again. When an increase in the error signal is measured, the controller 'takes

back' the last change made, which caused the error to increase. It then begins to adjust

the other parameter in the same way before again returning to readjust the first

parameter. It will continually switch back-and- forth between parameter adjustments

turning them for optimal noise cancellation. By making the adjustment larger when the

error is large, and smaller when the error is small the time needed to reach a null can be.

shorted. Because the dynamics of this system are slow, audio frequencies, it needs to be

sure that after making a change, it needs to wait for the system to respond before the

change to error is read. If the remaining harmonics are high enough to cause concern,

they too might need tobe cancelled in a similar manner, but with a separate phase and

amplitude circuit. For most systems of this type, only the primary frequency and first

harmonic need to be cancelled. The phase accuracy of the anti-noise causes the most

change and therefore error in this type of system. Figure (5.3) illustrates a single wave

being cancelled by its inverse, but with (5) degrees of error. It can be seen that with only

this small degree 'of error, a significant signal still remains.

08 -

04 -

0-

-04 -

-08 -
•

Fig. (5.3) Error caused by a small phase shift.

This problem is only worsened with more complex signals; therefore care must be taken

in the phase shifter design. The delay in a given system remains fairly constant over

time. This means that the phase shifting circuit need not vary more than the delay would

change over a long term, typically less than (45) degrees. So concentrating it to the
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narrower region can effectively increase the resolution of the _controller. The rule set for

this example developed by adaptive logic, Inc. is listed in figure (5.4). This example

uses one analog input, Error, and tow analog outputs, Phase and Gain. Tow other

outputs; state and ErrorDL Y are used for internal variable storage. The state variable

forms a state machine that controls the flow of the systems. As discussed earlier,

ErrorD LY, is used to determine the direction of error. In other words, it tells the

controller if error is getting better or worse. The rules are divided into four sections -

one section for each of the tow outputs and tow variable registers. For each sample only

one rule in each section can win. That rule then adjusts the output. If no rules are fired,

the output does not change. The delayed error, ErrorDL Y, is simply the error delayed by

one sample time. To solve the terms 'Error is Worse' and 'Error is BetterSame, Error is

compared with En-orDL Y. Otherwise, it is Better or the Same. There are four Phase and

fourGain states. In either case, state (2) increases the parameter, and state (3) decreases

it. Stat es ( 1 and 4) are used to provide time for the parameter change to settle before

checking the response of Error.

Phase control rules section

O. if State is Zero then Phase= 127.

1. lfState is PHASESTATES2 and En-or is High then Phase+ 5.

2. · if State is PHASESTATES3 and Error is High then Phase - 5.

3. If State is PHASEST ATES2 then Phase+ 1:

4. if State is PHASEST ATES3 then Phase - l.

5. lfState is PHASESTATESl~and Error is Worse then Phase - 1.

6. I/State is PHASESTATES4 and Error is Worse then Phase+ 1.

•..
Gain control rules section

7. if State is Zero then Gain= 127.

8. if State is GainState2 and Error is High then Gain+ 5.

9. I/State is GainState3 and Error is High then Gain - 5.

I O If State is GainState2 then Gain+ 1.

11. if State is GainState3 then Gain - l .

12. lfState is GainStatel and Error is Worse then Gain+ l.
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13. -lfState is GainState4 and Error is Worse then Gain - 1.

State control rules section

14. -lfState is Zero then State= PHASESTATESl.

15. If Error is Zero and State is NotZero then State= PHASEST ATES 1.

16. If State is PHASESTATES 1 and Error is BetterSame then State

PHASESTATES2.

17. -if State is PHASESTATES2 then State= PHASESTATES 1.

18.1/State is PHASESTATESl and Error is Worse then State= PHASESTATES3.

19. -if State is PHASESTATES3 then State= PHASESTATES4.

20. -lfState is PHASESTATES4 and Error is BetterSame then= PHASESTATES3.

21. -lfState is PHASESTATES4 and Error is Worse then State= GainStatel.
-22. If State is GainStatel and Error is BetterSame then State= GainState2.

23. If State is GainState2 then State= GainState l.

24. -lfState is GainStatel and Error is Worse then State= GainState3.

25. -if State is GainState3 then State= GainState4.

26. If State is GainState4 and Error is 3etterSame then State = GainState3.

27. -lfState is GainState4 and Error is Worse then State= PHASESTATEl.

Error delayed rules section

28. lf anything then ErrorDLY = Error.

Fig. (5.4) Rule set.

To illustrate the efficiency of tae fuzzy control methodology, figure (5.5) shows the

frequency spectrum of a noise source with many; spurious frequencies .

•..

Fig (5.5) Complex noise source frequency spectrum.

71



The frequencies, though centered.~round (500 Hz), extend down to (O Hz) and up over

(6 KHz). The noise level at the peak is about (-2 dB). Figure (5 .6) shows the cancelled

spectrum for this noise source. With the active cancellation, the peak noise level is now

at (-25 dB) and the energy contained in the other frequencies is dramatically reduced.

With multimode cancellation other frequencies could be further reduced as well.

:' 11= ı i .. ' I ,
' . i : !- L, l=x~ t . il J -

,, "' ,,; ~ ,.. ., ~ tJ .~ • J <, l,ı- ,_, ~ ;", :-: ':, •• •••. ;; -:. •;

Fig (5.6) Cancelled complex noise frequency spectrum.

5.2 Development öf Fuzzy Control System For Power Systems

Today many types of fuzzy controllers are available. Their robustness and reliability

make them useful in solving wide range of control problems. For the single input-single

output type. of system the fuzzy controller shown on the Figure ( 5. 7) can be used. In the

Figure (5.7) kp and ki are the proportional and the integral gain respectively. The fuzzy

controller input can be also the derivative of e together with signal E as in Figure (5.7).

In Figure (5.7) the block "fuzzy controller" includes fuzzification of E, inference

mechanism and defuzzification, so the output Y is a crisp value. •

..

controller ;

1
ı,

E
•

fuzzy
- y

..•. k c--+r controller ,---. k ;is --... u

Fig (5.7) The simple fuzzy controller.

For the multi input-multi output system, the fuzzy state controller shown on the
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Figure ( 5. 8) can be used.

w
. ___>--• y_

A

u
______ _J F N --Ml - - X

Fig (5.8) The state space fuzzy controller.

In Fig ( 1.2) A, B, C, D are the system matrix~s and FN is nonlinear function of the state_ .

space fuzzy controller. Other vectors in Fig (5.8) are:

w - reference input vector.
y - output vector.

x - state vector.

!::!_- input control vector.

The output of the state space . fuzzy controller is, similarly to linear state space

controller, the vector u:
(1)

By using several different inputs into fuzzy controller it is possible to make logical

control connection between diffefent variables of the system. Of course, if one wants to

make a fuzzy application he must have a sufficient knowledge on bow operates the

•• system that is to be controlled. Changing the shape and number ot• its membership

functions, by changing its defuzzification method and its inference mechanism, can

influence the perfom1ance of the fuzzy controller. These operations can be done in

relatively easy manner without need for knowledge of all system parameters and

without use of mathematical operations of any kind. Industrial fuzzy controllers

available today are also very robust and reliable. This makes them very useful ın

solving wide range of control problems in power systems. As an illustrative example,
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simulation on mathematical model by using software FUZCONTR, as shown in Figure

(5 .9),

where are:
df - change of system frequency in Hz

u - control signal from the controller in pu (per unit)

R - measure of the static speed drop of the uncontro lied turbine
generator in Hz I pu

f.'" 1 __,
ı- ı-..

.
..-,. \

-.
C}t

.-,ı
ı....-.•. c~ r f--lı I._T:ı;:~', •• .. ....

,I
. ..

,•' '- -
:lf

Fig (5.9) The block diagram of the sample power system.

The transfer functions of the system shown in Figure (5.9)

1 (2)
1+s~

1
Gt = ı + sT,

_Kp.,·

(3)

4)
Gp,· l .+ s7ı_,,

Where are:
Tg - time constant of the governor

Tr - time constant of the turbine

Tps - time constant of the power system

Kps - power system gain in Hz I pu

•
••

The controller en this power system is connected as shown in Figure (5. I O) In Figure

(5.1O) the block 'system' repJesents the system shown in Figure (5.9). The block

'controller' represents controller, which will be, in simulation on this mathemat.cal
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model, a proportional-integral (PI) controller in one case and, in another, a fuzzy

controller shown in Figure (5. 7). The variables shown in Figure ( 5 .1 O) are:

w - frequency reference input in Hz.

df~ change of system frequency in Hz.

e - input of the controller-in Hz.

u - control signal from the controller in pu.

e~ ,...- .., ı,,, ~' ~ contr o\ler ~
df

svstem
•'

df

Fig (5 .1 O) Implementation of the controller into system.

Simulations were pe_rformed with following set of parameters:

R=2.4 Hz I pu;

Kps =120 Hz I pu;

Tg=0.08s;

T, =0.3 s;

Tps =20 s;

The parameters of the conventional proportional-integral discrete controller used in

simulation are:

..

~ Sample time T = 0.1 s

- Proportional gain kpp = 0.2

-Integral gain kpi ~ O. 9

The proportional-integral control law is of course:

u(nT)= -kppe(nT) - kp1Ie(nT) (5)

•

The structure of fuzzy controller used in simulation is shown in Figure ( 5 7). The

parameters of the fuzzy controller were:

- Proportional gain kp = 2.2

Integral gain k, = 0.5
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The membership functions of the fuzzy controller are shown in Figure (5.11).
~- . -~.

1.0 NB

I), (ı ,__ ---'..__,--~---''--~--.c.;...------''------'-'-------1, 00 Yfpu/5] 1. OD

Fig (5.11) Membership functions of the fuzzy controller.

Inference mechanism is realized by five rules:

If E=NB Then Y=PB

If E=NS Then Y=PS

IfE=ZE Then Y=ZE

IfE=PS Then Y=NS

IfE=PB Then Y=NB

Defuzzifıcation is performed by center of gravity method. The response of the system

with PI controller on the reference change of ı,Hz is shown on Figure (5. 12).

Hz

w
----- ----- - ---

..

o. m
0.00 

T(s] 10.00

Fig (5.12) The response of the system with Pl controller.
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The response of the system with fuzzy controller on the reference change of ( 1 Hz) is

shown on Figure (5.13).
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0.00
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Fig (5. 13) The response of the system with fuzzy controller.

If one replaces the membership functions shown in Figure (5.11) with new set of

membership functions shown in Fig (5.14) the response of the system will look as in

Figure (5.15).
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Fig (5.14) The new membership functions.

77



,,.,.
-----

In Figure (5.16) and Figure (5.17) are shown responses of the system with PI and fuzzy

controller respectively in case ofreference changing by sinus law.

1.20

.,- .• ~ ,l ,I ..._.,

Hı I d1 

Q,00
0,00

T(•I
r

~0.00

Fig ( 5 .15) The response of the system with new fuzzy controller.

By comparing the responses of the system with PI and with fuzzy controller one can

conclude that the fuzzy controller gives b~tter-perforınances. Its response is faster and

more accurate than the response of the system with Pl controller:

w df

/'·
.,
J'

•..
,. ,

'.,/

LW
o.oo

Tisl tQO,O

Fig (5.16) The response oftbe system with Pl controller.
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Fig (5. 17) The response of the system with new fuzzy controller.

In a method of identifying a process model from plant input-output data has been

developed. The model is in the form of qualitative linguistic relationships that are

represented and evaluated using fuzzy set theory. This so-called fuzzy identification is

used in the design of fuzzy model-based controllers. On-line identification is used to

produce an adaptive fuzzy controller.

ıı,

•
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CONCLUSION

The analysis of· some industrial and non-industrial processes show, that they are

characterized with uncertainty of their functioning principle, fuzziness of information.

In these condition the fuzzy system is effective mathematical tool for modeling and

control both industrial and non-industrial processes.

The structure of fuzzy system for technological processes control is given. The

functions of its main blocks- fuzzification, inference engine, defuzzification, and fuzzy

knowledge base are described.

The development of fuzzy PD-like controller is performed. Using time response

characteristics of system and fuzzy model of the processes the fuzzy knowledge base for

this controller is developed. The inference engine mechanism is realized by using max­

min type fuzzy processing of Zade. Defuzzification mechanism is realized by using

"Center of Gravity" Algorithm.

The modeling of fuzzy controller for control of temperature of heater.is carried out. The

simulation of system is realized in C programming language. In the result of simulation

obtained time response characteristics of system show the efficiency of application of

fuzzy controller in complicated processes.

..
•

••
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