
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

.NET PASSPORT

Graduation Project
COM400

Student: Yakup Kalkan (20001067)

Supervisor: Mr. Kaan Uyar

Nicosia-2005

ACKNOWLEDGMENTS

"First, I would like to thank my supervisor Mr. Kaan Uyar for supervising my project. If

there aren't his helps and advice, my project doesn't better then its situation. Under the

guidance of him I successfully overcome many difficulties and I learned a lot about

microsoft .net and .net passport. He always help me and ready to help me every time. I am

so grateful."

"Second , I would like to thank to express my gratitude to Near East University for

scholarship that made the work possible."

"Third, I would also would like to thank Kıvanç Eram and other friends for their advice

and support."

.,..

ABSTRACT
The term "Microsoft .NET" refers to a massive effort on Microsoft's part to get away from

traditional software development and to build-with help from partners all over the

industry-the Internet into a service-oriented software platform. The Internet will become a

software platform with an API far richer than any operating system. Today's applications

rely primarily on operating system services. Tomorrow's applications will use Web

services to validate credit card purchases, check the status of airline flights, and perform

other everyday tasks. Microsoft .NET services can be seem in any application on the web

which are .NET Passport, .NET Alert and MSN Wallet. .NET Passport is examined in that

project and ASP.NET is used.

ASP .NET is better for Microsoft .Net and is more complicated end easier then other web

programming. It has a lot of advantages on the web.ASP.NET is improved with each

passing day .

.NET Passport allows users to create a single sign-in name and password to access any site

that has implemented the Passport single sign-in (SSI) service. In this project the basic

implementation .NET Passport is written and all details are declared clearly.

11

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

TABLE OF CONTENTS

INTRODUCTION

CHAPTER ONE: INTRODUCTİON .NET

1. 1. What is .NET?

i

ii

iii

1

1.1.1. What are Web Services?

1.1.2. What is .NET Built On?

1 .2. Introduction to .NET Services

1.2.1. .NET Passport

1 .2.2.. NET Alerts

1.2.3. MSN Wallet

CHAPTER TWO: Introduction ASP.NET

2. 1. Introduction

2.2 Overview of ASP.NET

2.3. Why ASP.NET?

2.3. 1. Improved Performance and Scalability

2.3.2. Enhanced Reliability

2.3.3. Easy Deployment

2.3.4. New Application Models

2.3.5. Developer Productivity

2.4. ASP.NET Features

1

1

1

3

4

4

4

2.4.1. Easy Programming Model

2.4.2. Flexible Language Options

2.4.3. Great Tool Support

2.4.4. Rich Class Framework

-\

5

5

8

8

9

9

10

10

11

11

11

11

12

iii

2.4.5. Compiled execution

2.4.6. Rich output caching

2.4.7. Web-Farm Session State

2.4.8. Enhanced Reliability

2.4.9. Memory Leak, DeadLock and Crash Protection

2.4. 10. Easy Deployment

2.4.11. Dynamic update of running application

2.4. 12. Easy Migration Path

2.4.13. XML Web Services

2.4. 14. Mobile Web Device Support

2.5. Advantages Using ASP.NET

12

12

13

13

13

13

14

14

14

14

15

2.6. Differences between ASP.NET and Client-Side Technologies 15

2.6. 1. Client-Side Scripting 16

2.6.2. Server-Side Scripting 16

2.7. Installing ASP.NET (IIS 6.0)

2.8. Overview of ASP.NET Security (IIS 6.0)

2.9. Architecture in ASP.NET (IIS 6.0)

2.9.1. Integrating with US

2.9.2. Using ASP.NET Configuration Files

2.10. How Security Works in ASP.NET (IIS 6.0)

2.11. Data Flow in ASP.NET (IIS 6.0)

2.11. 1. Scenario 1: Impersonation

2. 1 1 .2. Scenario 2 - Forms Authentication

16

18

19

19

20

24

25

25

27

CHAPTER THREE: .NET PASSPORT

3. 1. Introduction

3 .2. Passport Authentication

3.3.. NET Passport System Requirements

3.3. 1. Web Server Requirements

3.3.fl. Hardware

30

31

32

32

32

iv

3.3.1.2. Software 32

3.3.1.3. Operations 33

3.3.2. Client Computer Requirements 33

3.3.3. Browser Compatibility 33

3 .4. Installing .NET Passport Encryption Keys 34

3.4.1. The Key Installation Program 35

3.5. Installing the .NET Passport SDK and Passport Manager 35

3.5.1 Installation Instructions 36

3.5.1.1. To install from a CD 36

3.5.1.2. To install from a share 36

3.5.1.3. To install from the Web 36

3.5.2. Deploying Passport Manager 39
3.5.3. Uninstalling Passport Manager and the .NETPassport SDK 40

3.5.4. HTTP-only Cookie Support in Passport Manager 2.5 41

3.6. SSL Sign-In 42

3.6.1. SSL Required 43

3.6.2. Security Key 44

3.6.3. Why Use SSL Sign-In? 45

3.6.4. Requirements for Using SSL Sign-In 45

3.6.5. Possible Disadvantagesof Using SSL Sign-In? 45

3.7. SSL Certificates 46

3.7 .1. Installing SSL Certificates on a Server 47

3.7.2. Installing SSL Certificates on a Browser 47

3.8. Passport Authentication Provider in ASP.NET (IIS 6.0) 47

3.9. Setting Up .NET Passport in IIS 6.0 (IIS 6.0) 49

3.10 .. NET Passport Environments 50

3. 1 O. 1. Testing and Preproduction (PREP) 51

3. 10.2.Limitations in the Default Installation Environment 51

3. 10.3.Configuringfor Preproduction 52

3. 10.4.Configuringfor Production 53

V

3.10.5. Passport Manager Administration Utility 54

3.11. Passport Manager Administration Utility 54

3.11. 1. Passport Manager Administration Utility 5 8

3.12 .. NET Passport Cookies 66

3. 12. 1. Domain-Authority Cookies 66

3. 12.2. Participating Site Cookies 67

3.13 .. NET Passport Unique ID 68

3.14. Enabling .NET Passport Authentication in IIS 6.0 (IIS 6.0) 69

CONCLUSION 71

REFERENCES 72

APPENDIX A: WEB CODES AND FIGURE 73

vi

INTRODUCTION

Before getting deeply into the subject we will first know how Businesses are related to

Internet, what .NET means to them and what exactly .NET is built upon. As per the product

documentation from a Business perspective, there are three phases of the Internet. The First

phase gets back to the early 1990's when Internet first came into general use and which

brought a big revolution for Businesses. In the First phase of the Internet Businesses

designed and launched their Website's and focused on the number of hits to know how

many customers were visiting their site and interested in their products, etc. The Second

phase is what we are in right now and in this phase Businesses are generating revenue

through Online Transactions. We are now moving into the Third phase of the Internet

where profit is the main priority. The focus here is to Businesses effectively communicated

with their customers and partners, who are geographically isolated, participate in Digital

Economy and deliver a wide range of services. How can that be possible? The answer, with

.NET.

CHAPTER ONE

MICROSOFT .NET

1.1. What is .NET?

Many people reckon that it's Microsoft's way of controlling the Internet, which is false .

.NET is Microsoft's strategy of software that provides services to people any time, any

place, on any device. An accurate definition of .NET is, it's an XML Web Services platform

which allows us to build rich .NET applications, which allows users to interact with the

Internet using wide range of smart devices (tablet devices, pocket PC's, web phones etc),

which allows to build and integrate Web Services and which comes with many rich set of

tools like Visual Studio to fully develop and build those applications.

1.1.1. What are Web Services?

Web Services are the applications that run on a Web Server and communicate with other

applications. It uses a series of protocols to respond to different requests. The protocols on

1

which Web Services are built are summarized below:

UDDI: Stands for Universal Discovery and Description Integration. It's said to be the

Yellow Pages of Web Services which allows Businesses to search for other Businesses

allowing them to search for the services it needs, know about the services and contact them.

WSDL: Stands for Web Services Description Language, often called as whiz-dull. WSDL

is an XML document that describes a set of SOAP messages and how those messages are

exchanged.

SOAP: Stands for Simple Object Access Protocol. It's the communication protocol for Web

Services.

XML, HTTP and SMTP: Stands for Extensible Markup Language, Hyper Text Transfer

Protocol and Simple Message Transfer Protocol respectively. UDDI, WSDL and SOAP

rely on these protocols for communication.

1.1.2. What is .NET Built On?

.NET is built on the Windows Server System to take major advantage of the OS and which

comes with a host of different servers which allows for building, deploying, managing and

maintaining Web-based solutions. The Windows Server System is designed with

performance as priority and it provides scalability, reliability, and manageability for the

global, Web-enabled enterprise. The Windows Server System integrated software products

are built for interoperability using open Web standards such as XML and SOAP.

Core Windows Server System Products include:

SQL Server2000: This Database Server is Web enabled and is designed with priority for

.NET based applications. It is scalable, easy to manage and has a native XML store.

Application Center 2000: This product is designed to manage Web Applications.

Commerce Server 2000: This powerful Server is designed for creating E-Commerce based

applications.

Mobile Information Server: This Server provides real-time access for the mobile

community. Now Outlook users can use their Pocket PC's to access all their Outlook data

while they are moving.

2

Exchange Server 2000: This is a messaging system Server and allows applications on any

device to access information and collaborate using XML.

BizTalk Server 2000: This is the first product created for .NET which is XML based and

allows to build business process that integrate with other services in the organization or

with other Businesses.

Internet Security and Acceleration Server 2000: This Server provides Security and

Protection for machines. It is an integrated firewall and Web cache server built to make the

Web-enabled enterprise safer, faster, and more manageable.

Host Integration Server 2000: This Server allows for the Integration of mainframe

systems with .NET.

When developing real world projects if you don't know how to use the above mentioned

Server's which are built for .NET based applications do not worry. Your System

Administrator is always there to help you.

1.2. Introductionto .NET Services

Microsoft® .NET Services are Internet-enabled, user-centric services that provide the

building blocks to develop your own powerful, connected Web applications. Microsoft

.NET Services are built on open industry-standard protocols such as SOAP, XML, and

Universal Description, Discovery, and Integration (UDDI). Because .NET Services work in

heterogeneous technological environments, you can leverage your current technology

investments and integrate .NET Services into any application that supports an XML Web

Services programming model.

C\)1\Wc<;:,\~~ 'o.'i:)'i:)\\<;:,'o.\\c;.)\\~ 'i:)fü'l\ıile ö. \\le~ \\!-'lie\ cıt C-Cl\\'l\!-file\\c.e, 1..\\e-1:.e~ed value, effrc1..en.q,

and ease-of-use to your customers. Applications that use .NET Services provide users with

a powerful and consistent user experience across a variety of interfaces, from desktop

computers to wireless devices. Microsoft .NET Services a))ow app)Jı:ahons, devices, Web

sites, and Web services to work together more effectively.

3

1.2.1. .NET Passport

Microsoft® .NET Passport is a suite of Web-based services that makes using the

Internet and purchasing online easier and faster. Microsoft .NET Passport single

sign-in (SSI) is used for user authentication. Kids Passport is designed to give

parents the ability to manage how participating Web sites collect and store personal

information about their children.

1.2.2 .. NET Alerts

Microsoft® .NET Alerts is a message and notification routing service that makes

delivering customer communications easy, and avoids the negative perceptions

associated with junk e-mail. Content providers can send messages to customers who

choose to receive them. Alerts are routed to Microsoft® Windows® desktops,

cellular phones, wireless personal digital assistants (PDAs), or any e-mail address

all based on the customer's delivery preferences.

1.2.3. MSN Wallet

MSN® Wallet is an easy-to-implement, server-based, consumer wallet system

designed to create a consistent and convenient online purchasing experience. With

MSN Wallet, users can easily store and retrieve information commonly needed to

complete online purchases, such as shipping addresses and methods of payment.

Users also gain access to special promotions available only through the use of MSN

Wallet.

4

CHAPTER TWO

Introduction ASP.NET

2.1. Introduction

ASP.NET, the next version of ASP, is a programming framework used to create enterprise

class Web Applications. These applications are accessible on a global basis leading to

effecient information managment. The advantages ASP.NET offers is more than just the

next version of ASP.

2.2. Overview of ASP.NET

ASP.NET is a unified Web application platform that provides the services necessary to

build and deploy enterprise-class Web applications. ASP.NET offers a new programming

model and infrastructure for more secure, scalable, and stable applications that can target

any browser or device.

ASP.NET is part of the Microsoft .NET Framework, a computing environment that

simplifies application development in the highly distributed environment of the Internet.

The .NET Framework includes the common language runtime (CLR), which provides core

services such as memory management, thread management, and code security. It also

includes the .NET Framework class library, which is a comprehensive, object-oriented

collection of types that developers can use to create applications.

ASP.NET offers the following benefits:

• Manageability: ASP.NET uses a text-based, hierarchical configuration system that

simplifies applying settings to your server environment and Web applications.

Because configuration information is stored as plain text, new settings can be

applied without the aid of local administration tools. Any changes to the

configuration files are automatically detected and applied to the application.

5

• Security: ASP.NET provides default authorization and authentication schemes for

Web applications. Developers can easily add to, remove, or replace these schemes

depending on the needs of the application.

• Ease of Deployment: An ASP.NET application is deployed to a server by simply

copying the necessary files to the server. No server restart is required - not even to

deploy or replace running compiled code.

• Enhanced Performance: ASP.NET is compiled code running on the server. Unlike

traditional Active Server Pages (ASP), ASP.NET can take advantage of early

binding, just-in-time (JIT) compilation, native optimization, and caching services

right out of the box for improved performance.

• Flexible Output Caching: ASP.NET can cache page data, portions of a page, or

whole pages, depending on the needs of the application. Cached items can be

dependent on files or other items in the cache, or they can be refreshed based on an

expiration policy.

• Internationalization: ASP.NET uses Unicode internally to represent request and

response data. Internationalization settings can be configured for each computer,

each directory, and each page.

• Mobile Device Support: ASP.NET supports any browser on any device. Developers

use the same programming techniques to target new mobile devices that they use for

traditional desktop browsers.

• Scalability and Availability: ASP.NET was designed to be scalable, with features

specifically tailored to improve performance in clustered and multiprocessor

environments. Moreover, processes are closely monitored and managed by Internet

Information Services (US) and the ASP.NET CLR so that if one misbehaves, a new

process can be created in its place, which helps keep your application available to

handle requests.

• Tracing and Debugging: ASP.NET provides tracing services that can be enabled

during debugging at both the application level and the page level. You can choose

to view the information either in a page or using the application-level trace viewing

tool. ASP.NET supports local and remote debugging with .NET Framework

debugging tools, both during development and when the application is in

6

production. When an application is put into production, tracing statements can be

left in the production code with no impact on performance.

• Integration with the .NET Framework: Because ASP.NET is part of the .NET

Framework, the power and flexibility of the entire platform is available to Web

applications. The .NET class library, as well as solutions for messaging and data

access, are all seamlessly accessible from the Web. ASP.NET is language

independent, so developers can choose the language that best applies to the

application. In addition, CLR interoperability preserves existing investments in

COM-based development.

• Compatibility with Existing ASP Applications: ASP and ASP.NET can run side by

side on an IIS Web server without interference; there is no chance of corrupting an

existing ASP application by installing ASP.NET. Only files with a .aspx file name

extension are processed by ASP.NET. Files with an .asp file name extension will

continue to be processed by the ASP engine. You should note, however, that session

state and application state are not shared between ASP and ASP.NET pages.

ASP.NET enables two features for distributed applications: Web Forms and XML Web

services. These two features are supported by the same configuration and debugging

infrastructure.

• Web Forms technology enables you to build powerful form-based Web pages. Web

Forms pages use reusable built-in or custom components to simplify the code of a

page.

• XML Web services that are created using ASP.NET enable you to access servers

remotely. Using XML Web services, businesses can provide programmatic

interfaces to their data or business logic, which in turn can be obtained and

manipulated by client and server applications. XML Web services enable the

exchange of data using standards such as XML messaging and HTTP across

firewalls in client/server and server/server scenarios. Programs written in any

language and running on any operating system can call XML Web services.

7

2.3. Why ASP.NET?

Since 1995, Microsoft has been constantly working to shift it's focus from Windows-based

platforms to the Internet. As a result, Microsoft introduced ASP (Active Server Pages) in

November 1996. ASP offered the efficiency of ISAPI applications along with a new level

of simplicity that made it easy to understand and use. However, ASP script was an

interpreted script and consisted unstructured code and was difficult to debug and

maintain. As the web consists of many different technologies, software integration for Web

development was complicated and required to understand many different technologies.

Also, as applications grew bigger in size and became more complex, the number of lines

of source code in ASP applications increased dramatically and was hard to

maintain. Therefore, an architecture was needed that would allow development of Web

applications in a structured and consistent way.

The .NET Framework was introduced with a vision to create globally distributed software

with Internet functionality and interoperability. The .NET Framework consists of many

class libraries, 'mc\uc\esmultiple language support an.cl a common execution platform. lt's a

very flexible foundation on which many different types of top class applications can be

developed that do different things. Developing Internet applications with the .NET

Framework is very easy. ASP.NET is built into this framework, we can create ASP.NET

applications using any of the built-in languages.

Unlike ASP, ASP.NET uses the Common Language Runtime (CLR) provided by the .NET

Framework. This CLR manages execution of the code we write. ASP .NET code is a

compiled CLR code instead of interpreted code (ASP). CLR also allows objects written in

different languages to interact with each other. The CLR makes developement of Web

applications simple.

2.3.1. Improved Performance and Scalability

• Compiled Execution: ASP.NET is much faster than classic ASP, while preserving

the "just hit save" update model of ASP. No explicit compile step is required.

ASP.NET automatically detects any change, dynamically compiles files if needed,

8

• Easy Migration Path: ASP.NET runs side by side on IIS with classic ASP

applications on Microsoft Windows 2000 and Windows XP, and on members of the

Windows Server 2003 family. You can migrate one application at a time, or even

single pages. ASP.NET even lets you continue to use your existing classic COM

business components.

2.3.4. New Application Models

• XML Web Services: XML Web services allow applications to communicate and

share data over the Internet, regardless of operating system or programming

language. ASP.NET makes exposing and calling XML Web services simple.

• Mobile Web Device Support: ASP.NET mobile controls let you target over 80

mobile Web devices using ASP.NET. You write the application once, and the

mobile controls automatically generate pages for the requesting device.

2.3.5. Developer Productivity

• Easy Programming Model: ASP.NET makes building real-world Web applications

dramatically easier with server controls that let you build great pages with far less

code than classic ASP.

• Flexible Language Options. ASP.NET supports not only Microsoft Visual Basic

Scripting Edition (VBScript) and Microsoft JScript but also more than 25 .NET

languages, including built-in support for Visual Basic .NET, Microsoft C#, and

JScript .NET.

• Rich Class Framework: The .NET Framework class library offers over 4,500 classes

that encapsulate rich functionality such as XML, data access, file upload, regular

expressions, image generation, performance monitoring and logging, transactions,

message queuing, and SMTP mail.

10

2.4. ASP.NET Features

ASP.NET is not just a simple upgrade or the latest version of ASP. ASP.NET combines

unprecedented developer productivity with performance, reliability, and deployment.

ASP.NET redesigns the whole process. It's still easy to grasp for new comers but it

provides many new ways of managing projects. Below are the features of ASP.NET.

2.4.1. Easy Programming Model

ASP.NET makes building real world Web applications dramatically easier. ASP.NET

server controls enable an HTML-like style of declarative programming that let you build

great pages with far less code than with classic ASP. Displaying data, validating user

input, and uploading files are all amazingly easy. Best of all, ASP.NET pages work in all

browsers including Netscape, Opera, AOL, and Internet Explorer.

2.4.2. Flexible Language Options

ASP.NET lets you leverage your current programming language skills. Unlike classic

ASP, which supports only interpreted VBScript and JScript, ASP.NET now supports more

than 25 .NET languages (built-in support for VB.NET, C#, and JScript.NET), giving you

unprecedented flexibility in your choice of language.

2.4.3. Great Tool Support

You can harness the full power of ASP.NET using any text editor, even Notepad. But

Visual Studio .NET adds the productivity of Visual Basic-style development to the

Web. Now you can visually design ASP.NET Web Forms using familiar drag-drop

doubleclick techniques, and enjoy full-fledged code support including statement

completion and color-coding. VS.NET also provides integrated support for debugging and

deploying ASP.NET Web applications. The Enterprise versions of Visual Studio .NET

deliver life-cycle features to help organizations plan, analyze, design, build, test, and

coordinate teams that develop ASP.NET Web applications. These include UML class

modeling, database modeling (conceptual, logical, and physical models), testing tools

11

(functional, performance and scalability), and enterprise frameworks and templates, all

available within the integrated Visual Studio .NET environment.

2.4.4. Rich Class Framework

Application features that used to be hard to implement, or required a 3rd-party component,

can now be added in just a few lines of code using the .NET Framework. The .NET

Framework offers over 4500 classes that encapsulate rich functionality like XML, data

access, file upload, regular expressions, image generation, performance monitoring and

logging, transactions, message queuing, SMTP mail, and much more. With Improved

Performance and Scalability ASP.NET lets you use serve more users with the same

hardware.

2.4.5. Compiled execution

ASP.NET is much faster than classic ASP, while preserving the "just hit save" update

model of ASP. However, no explicit compile step is required. ASP.NET will automatically

detect any changes, dynamically compile the files if needed, and store the compiled results

to reuse for subsequent requests. Dynamic compilation ensures that your application is

always up to date, and compiled execution makes it fast. Most applications migrated from

classic

ASP see a 3x to 5x increase in pages served.

2.4.6. Rich output caching

ASP.NET output caching can dramatically improve the performance and scalability of your

application. When output caching is enabled on a page, ASP.NET executes the page just

once, and saves the result in memory in addition to sending it to the user. When another

user requests the same page, ASP.NET serves the cached result from memory without re

executing the page. Output caching is configurable, and can be used to cache individual

regions or an entire page. Output caching can dramatically improve the performance of

data-driven pages by eliminating the need to query the database on every request.

12

2.4.7. Web-Farm Session State

ASP.NET session state lets you share session data user-specific state values across all

machines in your Web farm. Now a user can hit different servers in the Web farm over

multiple requests and still have full access to her session. And since business components

created with the .NET Framework are free-threaded, you no longer need to worry about

thread affinity.

2.4.8. Enhanced Reliability

ASP.NET ensures that your application is always available to your users.

2.4.9. Memory Leak, DeadLock and Crash Protection

ASP.NET automatically detects and recovers from errors like deadlocks and memory leaks

to ensure your application is always available to your users. For example, say that your

application has a small memory leak, and that after a week the leak has tied up a significant

percentage of your server's virtual memory. ASP.NET will detect this condition,

automatically start up another copy of the ASP.NET worker process, and direct all new

requests to the new process. Once the old process has finished processing its pending

requests, it is gracefully disposed and the leaked memory is released. Automatically,

without administrator intervention or any interruption of service, ASP.NET has recovered

from the error.

2.4.10. Easy Deployment

ASP.NET takes the pain out of deploying server applications. "No touch" application

deployment. ASP.NET dramatically simplifies installation of your application. With

ASP.NET, you can deploy an entire application as easily as an HTML page, just copy it to

the server. No need to run regsvr32 to register any components, and configuration settings

are stored in an XML file within the application.

13

2.4.11. Dynamic update of running application

ASP.NET now lets you update compiled components without restarting the web server. In

the past with classic COM components, the developer would have to restart the web server

each time he deployed an update. With ASP.NET, you simply copy the component over

the existing DLL, ASP.NET will automatically detect the change and start using the new

code.

2.4.12. Easy Migration Path

You don't have to migrate your ,existing applications to start using ASP.NET. ASP.NET

runs on IIS side-by-side with classic ASP on Windows 2000 and Windows XP platforms.

Your existing ASP applications continue to be processed by ASP.DLL, while new

ASP.NET pages are processed by the new ASP.NET engine. You can migrate application

by application, or single pages. And ASP.NET even lets you continue to use your existing

classic COM business components.

2.4.13. XML Web Services

XML Web services allow applications to communicate and share data over the Internet,

regardless of operating system or programming language. ASP.NET makes exposing and

calling XML Web Services simple. Any class can be converted into an XML Web Service

with just a few lines of code, and can be called by any SOAP client. Likewise, ASP.NET

makes it incredibly easy to call XML Web Services from your application. No knowledge

of networking, XML, or SOAP is required.

2.4.14. Mobile Web Device Support

ASP.NET Mobile Controls let you easily target cell phones, PDAs and over 80 mobile Web

devices. You write your application just once, and the mobile controls automatically

generate WAP/WML, HTML, or iMode as required by the requesting device.

14

2.5. Advantages Using ASP.NET

• ASP.NET drastically reduces the amount of code required to build large

applications
• ASP.NET makes development simpler and easier to maintain with an event-driven,

server-side programming model

• ASP.NET pages are easy to write and maintain because the source code and HTML

are together
• The source code is executed on the server. The pages have lots of power and

flexibility by this approach

• The source code is compiled the first time the page is requested. Execution is fast as

the Web Server compiles the page the first time it is requested. The server saves the

compiled version of the page for use next time the page is requested

• The HTML produced by the ASP.NET page is sent back to the browser. The

application source code you write is not sent and is not easily stolen

• ASP.NET makes for easy deployment. There is no need to register components

because the configuration information is built-in

• The Web server continuously monitors the pages, components and applications

running on it. If it noticies memory leaks, infinite loops, other illegal software or

activities, it seamlessly kills those activities and restarts itself

• ASP.NET validates information (validation controls) entered by the user without

writing a single line of code

• ASP.NET easily works with ADO .NET using data-binding and page formatting

features
• ASP.NET applications run fater and counters large volumes of users without

performance problems

2.6. Differences between ASP.NET and Client-Side Technologies

Client-side refers to the browser and the machine running the browser. Server-side on the

other hand refers to a Web server.

15

2.6.1. Client-Side Scripting

Javascript and VBScript and generally used for Client-side scripting. Client-side scripting

executes in the browser after the page is loaded. Using client-side scripting you can add

some cool features to your page. Both, HTML and the script are together in the same file

and the script is download as part of the page which anyone can view. A client-side script

runs only on a browser that supports scripting and specifically the scripting language that is

used. Since the script is in the same file as the HTML and as it executes on the machine

you use, the page may take longer time to download.

2.6.2. Server-Side Scripting

ASP.NET is purely server-side technology. ASP.NET code executes on the server before it

is sent to the browser. The code that is sent back to the browser is pure HTML and not

ASP.NET code. Like client-side scripting, ASP.NET code is similar in a way that it allows

you to write your code alongside HTML. Unlike client-side scripting, ASP.NET code is

executed on the server and not in the browser. The script that you write alongside your

HTML is not sent back to the browser and that prevents others from stealing the code you

developed.

2.7. Installing ASP.NET (IIS 6.0)

ASP.NET is supported on the Windows Server™ 2003 family, Windows 2000

(Professional, Server, and Advanced Server), and Windows XP Professional for both client

and server applications.

A server running a member of the Microsoft Windows Server 2003 family can be

configured as an application server, with ASP.NET as an option that you can enable while

configuring the application server role. To deploy ASP.NET Web applications to a

production server, you must be sure to enable the ASP.NET and IIS roles on the production

server before you distribute the application.

If you want to install ASP.NET on a domain controller, there are special steps you must

take to make the installation work correctly

16

ASP.NET, along with the .NET Framework version 1. 1, is installed as a part of Windows

Server 2003. You simply need to add it as a new program from Control Panel or enable it

by using the Configure Your Server wizard.

To install ASP.NET on a server running Windows Server 2003 using the Configure Your

Server wizard

1. From the Start menu, click Manage Your Server; in the Manage Your Server

window, click Add or remove a role.

2. In the Configure Your Server Wizard, click Next, and in the Server Role dialog box,

check Application Server (IIS, ASP.NET) and then click Next.

3. In the Application Server Options dialog box, select the Enable ASP.NET check

box, click Next, and then click Next again.

4. If necessary, insert your Windows Server 2003 installation CD in the CD-ROM

drive and then click Next.

5. When the installation is complete, click Finish.

To install ASP.NET on a server running Windows Server 2003 using the Add or Remove

Programs dialog box

1. From the Start menu, point to Control Panel, and then click Add or Remove

Programs.

2. In the Add or Remove Programs dialog box, click Add/Remove Windows

Components.

3. In the Add or Remove Programs dialog box, click Add/Remove Windows

Components.

4. When the Windows Components wizard has finished configuring Windows Server

2003, click Finish

To enable ASP.NET in IIS Manager on a server running Windows Server 2003

1. From the Start menu, click Run.

2. In the Open box in the Run dialog box, type inetmgr, and then click OK.

3. In IIS Manager, expand the local computer and then click Web Service Extensions.

17

4. In the details pane, right-click ASP.NET and then click Allow. The status of

ASP.NET changes to Allowed.

2.8. Overview of ASP.NET Security (HS 6.0)

Most Web sites need to selectively restrict access to some portions of the site. You can

think of a Web site as somewhat analogous to an art gallery. The gallery is open for the

public to come in and browse, but there are certain parts of the facility, such as the business

offices, that are accessible only to people with certain credentials, such as employees.

When a Web site stores its customers' credit card information in a database, for example,

ASP.NET helps protect the database from public access. ASP.NET security addresses this

and many other security issues.

ASP.NET, in conjunction with Internet Information Services (IIS), can authenticate user

credentials such as names and passwords using any of the following authentication

methods:

• Windows: Basic, digest, or Integrated Windows Authentication (NTLM or

Kerberos).

• Microsoft Passport authentication

• Forms authentication

• Client Certificate authentication

ASP.NET helps control access to site information by comparing authenticated credentials,

or representations of them, to NTFS file system permissions or to an XML file that lists

authorized users, authorized roles (groups), or authorized HTTP verbs.

The topics in this section describe the specifics of ASP.NET security.

18

2.9. Architecture in ASP.NET (IIS 6.0)

This section provides an overview of the ASP.NET infrastructure and subsystem

relationships, as they relate to the subject of security. The following illustration shows the

relationships among the security systems in ASP.NET.

Web clients

ASP.NET
applications

.NET
Framework

Windows Serııer 200 3 family
operating systems

Figure2.9. - Security system in ASP

As the illustration shows, all Web clients communicate with ASP.NET applications through

Internet Information Services (IIS). IIS deciphers and optionally authenticates the request.

If Allow Anonymous is set to true, no authentication occurs. IIS also finds the requested

resource (such as an ASP.NET application), and, if the client is authorized, returns the

appropriate resource.

In addition to the built-in ASP.NET features, an ASP.NET application can use the low

level security features of the .NET Framework.

2.9.1. Integrating with IIS

When considering ASP.NET authentication, you should understand the interaction with IIS

authentication services.

IIS always assumes that a set of credentials maps to a Microsoft Windows NT account and

uses them to authenticate a user. There are three different kinds of authentication available

in IIS 5.0 through IIS 6.0: basic, digest, and Integrated Windows Authentication (NTLM or

Kerberos). You can select the type of authentication to use in IIS administrative services.

19

If you request a URL containing an ASP.NET application, the request and authentication

information are handed off to the application. ASP.NET provides the two additional types

of authentication described in the following table.

authentication
provider

I ;orms
II ~~~e-ntication

A system by which unauthenticated requests are redirected to an HTMLform
i using HTTPclient side redirection. The user provides credentials and submits the

- I form. If the application authenticates the request, the system issues an
authentication ticket in a cookie that contains the credentials or a key for

ı reacquiring the identity. Subsequent requests are issued with the cookie in the
: request headers; they are authenticated and authorized by an ASP.NEThandler
I using whatever validation method the application developer specifies.

='" ~ ·-····--"·-

: Centralized authentication service provided by Microsoft that offers a singleı Passport
I

authentication ±logon and core profile services for member sites.:·· .~ .,.._...., -=·"...«, ,.._ ,.'- '>, - -,c=o --~·----"'
--- -~ .. =~--= . ------ , --~- ·=

Table2.9.1. - ASP.NET Authentication Provider

2.9.2. Using ASP.NET Configuration Files

ASP.NET configuration, of which security is a part, has a hierarchical architecture. All

configuration information for ASP.NET is contained in files named Web.config and

Machine.config. Web.config can be placed in the same directories as the application files.

The Machine.config file is in the Config directory of the install root. Subdirectories inherit

a directory's settings unless overridden by a Web.config file in the subdirectory. In a

Web.config file, there are sections for each major category of ASP.NET functionality. To

see an example of the way in which the hierarchical configuration system works for

security.

20

The security section of a Web.config file is organized as follows.

<authentication mode=" [WindowslFormslPassportlNone] ">

<forms name=" [name]"

loginUrl="[url]"

protection=" [All IN onelEncryptionlValidation]"

path="[path]" timeout="[minutes]"

requireSSL=" [truelfalse]"

slidingExpiration=" [truelf alse] ">

<credentials passwordFormat=" [ClearlMD 5 ISHA 1] ">

<user name="[UserName]"

password='' [password]",'>

-c/credentials>

</forms>

<passport redirectUrl=" internal" I>

-c/authentication>

<authorization>

<allow users="[comma separated list of users]"

roles='' [comma separated list of roles]" I>

<deny users=" [comma separated list of users]"

roles="[comma separated list of roles]",'>

<I authorization>

<identity impersonate = 11
[truelfalse] 11

userName= 11
[domain \user_name]"

21

password=" [user_password] "I>

<trust Ievel=" [FulllHighlMediumlLowlMinimal]"

originUrl=""/>

<security Policy>

<trustLevel name='Tull'' policyFile="internal"/>

<trustLevel name="High" policyFile="web_hightrust.config"/>

<trustLevel name="Medium" policyFile="web_mediumtrust.config"/>

<trustLevel name= "Low" policy File= "web_lowtrust.config" I>

<trustLevel name="Minimal" policyFile="web_minimaltrust.config"/>

-c/securityf'olicy>

The default settings for these elements are shown in the following table.

Default value Description

<allow roles= > No default value.

<allow users="*"> All

<authentication mode="Windows"> The authentication mode cannot be set at a level below
the application root directory.

<credentials passwordFormat="SHAl" > The hashing algorithm to be used on passwords.
I -------- -- -·

<deny roles="">
·-----------

Empty

<deny users=""> Empty

<forms loginUrl="login.aspx"> If you set the mode to Forms, and if the request does
not have a valid ticket (cookie), this is the URL to which
the request is directed for a forms-based logon.

<forms narne=" .ASPXAUTH"> Default cookie name.

22

<forms path="/"> ' Path

<forms protection="AII"> Type= [All\ None\ Encryption \Validation].

<forms requireSSL="false"> Specifies that an encrypted connection is not required to

transmit the authentication cookie.

<forms slidingExpiration="true"> Specifies that sliding expiration is enabled.

<forms timeout="30"> Time-out in minutes. 30 minutes is the default.

<identity impersonate="false"> Impersonation is disabled by default.

<identity userName='"'> Empty

<identity password='"'> Empty

<passport redirectUrl="internal"> If you set the mode to Passport, and if the requested

I
h-------i <trustLevel name="Full"

1 policyFile="internal"/>

page requires authentication (anonymous users are
denied access)but the user has not logged on with

\ Passport,then the user will be redirected to this URL.

Default policy file for Full trust level.

,.............,,__ - -· --· --- --
1 <trustLevel name="High"
ı policyFile="web_hightrust.config"/>

~--·
· <trustLevel name="Medium"I poucyFile~'web_mediumt'"''· conflq"I> -

ustLevel name="Low"

Default policy file for High trust level.

1 Default policy file for Mediumtrust level.

Default policy file for Lowtrust level.

Table2.9.2. - Definition of web.config's elements

23

There are three major subsections to a Web.config file: authentication, authorization, and

identity. The values for each of the security elements are usually set by overriding a section

of the computer-level configuration file with a similar section in an application

configuration file placed in the application root directory. All subdirectories automatically

inherit those settings. However, subdirectories can have their own configuration files that

override other settings.

ASP.NET configuration applies only to ASP.NET resources (those registered to be handled

by Aspnet_isapi.dll). Unfortunately, ASP.NET configuration cannot provide authorization

for non-Aspnet_isapi.dll resources, so TXT, HTML, GIF, JPEG, ASP, and other types of

files are still accessible by all users, subject to IIS permissions. For example, although the

ASP.NET resources in a directory might be restricted by a Web.config file, all users can

still view the files located in that directory if directory browsing is turned on and no other

restrictions are in place.

You can avoid this situation by explicitly mapping such files, but not directories, to

Aspnet_isapi.dll using the IIS administration tool. However, there could be a performance

impact if you do this.

You can use the -clocationc-c/locatiorı> tags to specify a particular file or directory to which

settings should apply.

2.10. How Security Works in ASP.NET (IIS 6.0)

Helping protect Web sites against unauthorized access is a critical, complex issue for Web

developers. A successful system requires careful planning, and Web site administrators and

programmers must have a clear understanding of the options for securing their site.

ASP.NET works in concert with the Microsoft .NET Framework and Internet Information

Services (IIS) to help provide Web application protection. To help protect an ASP.NET

application, you must perform the two fundamental functions described in the following

table.

24

function

Authentication in Assures that the user is, in fact, who the user claims to be. The application
ASP.NET !__ ı obtains credentials (various forms of identification, such as name and

'password) from a user and validates those credentials against some authority.

If the credentials are valid, the entity that submitted the credentials is

considered an authenticated identity.
I, ·-· ·--- - - ···- '' - _..... . .

1
Limits access rights by granting or denying specific permissions to anAuthorization in

ASP.NET
. authenticated identity.

Table2.10. - Security Function

US can also grant or deny access based on a user's host name or IP address. Any further

access authorization is performed by NTFS file access permission's URL authorization.

It is helpful to understand how all the various security subsystems interact. Since ASP.NET

is built on the Microsoft .NET Framework, the ASP.NET application developer also has

access to all the built-in security features of the .NET Framework, such as code access

security and role-based user-access security.

2.11. Data Flow in ASP.NET (IIS 6.0)

There are a number of different ways to design security into ASP.NET applications. This

section describes the data flow for two common scenarios: impersonation and forms

authentication using cookies.

2.11.1. Scenario 1: Impersonation

This scenario relies on Internet Information Services (US) authentication and Microsoft

Windows NT® file access security to minimize security programming in the ASP.NET

application itself. The data flow is shown in the following illustration.

25

? us rec.eives a
ns request
---- -----------------------·

No
IP address and c:]Access denied

domain peırmitted? No

/ .

ve':(Use, authenUcated?

. · ns spawns the
L__] requested .ASP.NET

ASJ.~'EJ {- -a~~i~~o: __ •• _ •• __

~/',) No
. / ASP.NET

i meerscnetıiorı
Yes 1 enabled?

r-:---:-1 ASP. NET a ppliç
assumes client
ıcte.ntlty

+
/~ No

"-(N. TFS. permissions
Yes ! allow access?

C]+------------'
Access granted

ASP.NET applicationQ n,ms with process! Identity

No \
/

/,., .h 't••ass ot: er secun ~
checks'? ·

Yes

Figure2.11.1. - Data flow in impersonation

The illustration shows the following sequence of events:

- A request for access comes to IIS from a network client.

- IIS authenticates the client using basic, digest, or Integrated Windows Authentication

NTLM or Kerberos).

- If the client is authenticated, IIS hands the authenticated request over to ASP.NET.

26

- The ASP.NET application impersonates the requesting client using the access token

passed from IIS, and relies on NTFS file permissions for granting access. The ASP.NET

application needs only to verify that in the ASP.NET configuration file, the impersonation

enable directive is set to true; no ASP.NET security code needs to be written.

Notice that if impersonation is not enabled, the application runs with the IIS process

identity. For Microsoft Windows® 2000 Server and Windows XP, the default identity is a

User account named ASPNET that is created automatically when ASP.NET is installed.

For products in the Microsoft Windows Server 2003 family, the default identity is the

Network Service account. If you want to restrict access, you must use some other means of

authorization, such as URL authorization.

- If access is granted, the ASP.NET application returns the requested page through IIS.

2.11.2. Scenario 2 - Forms Authentication

In this scenario an application uses ASP.NET forms authentication, a process that enables

the application to collect credentials such as name and password directly from the client

requestor and make its own determination about their authenticity. IIS authentication is not

used by the application, but IIS authentication settings are important to the ASP.NET forms

authentication process. Unless you decide to reject all requests that do not meet the criteria

for the enabled method of IIS authentication, you must enable the IIS Anonymous Access

setting.

If you do not enable anonymous access in IIS, requests not meeting the criteria for IIS

authentication will be rejected and never reach the ASP.NET application.

27

•

The data flow in this scenario is shown in the following illustration.

Client request

as

T I. f II$ Authent.i:ca.tio.n setting$
are s.et properrv, the request
is passed to ASP.NET

----- ---------------
ASP . N:IIT ..-..

') No 9· Logon form.~ • collects user
/ Authentication··· credentıals

cookie attached?

LJ Autl,.enbcateT credentials

Authenttcated?

Yes •9 Attach cookie

LJTest--r a uttıortzetlon

No

_ _ _ _ _ _ _ _ \.(,: Authcrlzed? _

JYes No

D
Allow access to

orctecte d resource
Deny access

Figure2.11.2. - Data flow in forms authentication

This illustration shows the following sequence of events:

- A client generates a request for a protected resource.

- US receives the request, and if the requestor is authenticated by US, or if US anonymous

access is enabled, the request gets passed on to the ASP.NET application. Because the

authentication mode in the ASP.NET application is set to forms in this case, US

authentication is not used.

28

- If there is no cookie attached to the request, ASP.NET redirects the request to a logon

page, the path of which resides in the application's configuration file. On the logon page,

the client user enters the required credentials (usually a name and password).

- The application code checks the credentials to confirm their authenticity, usually in an

event handler. If the credentials are authenticated, the application code attaches a ticket (as

a cookie) containing the user name, but not the password. If authentication fails, the request

is usually returned with an Access Denied message or the logon form is presented again.

- After a ticket is issued by the application, ASP.NET just checks the ticket for validity

using a message authentication check. Applications do not need the credentials in the

* .config files. In fact, ASP.NET does not check them after the cookie is issued, even if they

are present.

- If the user is authenticated, ASP.NET checks authorization and can either allow access to

the originally requested, protected resource or redirect the request to some other page,

depending on the design of the application. It can also direct the request to a custom

authorization module where the credentials are tested for authorization to access the

protected resource. If authorization fails, ASP.NET always redirects to the logon page.

- If the user is authorized, access is granted to the protected resource; or the application

might require an additional test of the credentials before authorizing access to the protected

resource, depending on the design of the application.

29

CHAPTER THREE

.NET PASSPORT

3.1.Introduction

.NET Passport allows users to create a single sign-in name and password to access any site

that has implemented the Passport single sign-in (SSI) service. By implementing the

Passport SSI, you won't have to implement your own user-authentication mechanism. Users

authenticate with the SSI, which passes their identities to your site securely. Although

Passport authenticates users, it doesn't grant or deny access to individual sites i.e .. NET

Passport does only authentication not authorization. Passport simply tells a participating

site who the user is. Each site must implement its own access-control mechanisms based on

the user's Passport User ID (PUID). Here is how .NET Passport Authentication works,

Pattitipatihg sit~

(3J Req0u(Mt sign~n

·- _, {:2) Redirect ıcu

. Wııllsıırver F'asspM
M',mag:iirUser

datab,ıs.a
Webşıırvıır

{7} l;:nçryplııd suthenticaıion.
qu-0ry slrin9

{€) Upcia.l:e ıısr..pon,ocım·---------t-cookios and ıııdire,ct
(Bi Sito ~ookies and

reqtıesled page

Figure3.1. - .NET Passport Authentication

First user requests any page from his web server. Since user is not authenticated, web

server redirect its request for authentication with Sign-In logo. When user presses Sign-In

button, request will go to Passport server for Sign-In page. Once the Sign-In page comes to

browser, user will enter his authentication details like Passport ID and Password. When

30

user credentials are submitted Credentials are validated in Passport server. Then Cookies

are created in server and response is send to the browser with encrypted querystring. Now

both cookies and querystring is having details about authentication. Once user is

authenticate, he will be taken to page which is requested first.

3.2. Passport Authentication

Passport is a centralized authentication service created by Microsoft, you can use it at any

participating web site. One important plus of this technology is that user does not need to

remember login data for each site, as it often needed when your usual account already

exists on a certain web site. Passport allows to resolve this problem due to using common

user database, that is why at web sites supporting .Net Passport you will always enter one

and the same login data: your e-mail and password.

Passport authentication uses standard Web technologies for of convenience and

confidentiality:

- SSL protected protocol

- cookie-files

- JavaScript 1.2

- 3DES encryption

To use all power of Passport possibilities you need to do the following:

1. Download .NET passport SDK at:

http://msdn.microsoft.com/library/default.asp?url=/downloads/list/websrvpass.asp

2. Then you need to register your site with .Net Passport service:

http:// go.microsoft. com/fw link/?LinkID=973 2

If you do not register you possibilities will be extremely limited and you will not be able to

get expected result, for example, to logout, you will have to close all browser windows and

delete all cookie-files with passport data after this.

31

3.3 .. NET Passport System Requirements

This page describes the Web server and client computer requirements for the Microsoft®

.NET Passport service.

The .NET Passport version 2.5 Software Development Kit (SDK) and Passport Manager

version 2.5 require Microsoft® Windows® 2000 Server, Microsoft® Windows® XP

Professional, or Microsoft® Windows® .NET Server.

3.3.1. Web Server Requirements

To code for the .NET Passport single sign-in (SSI) service using Passport Manager, your

Web server must meet the following requirements:

3.3.1.1. Hardware

• X86 computer with a Pentium processor or faster

• 64 megabytes (MB) RAM or more

• Network card and a resolvable Domain Name Server

The .NET Passport SSI hardware requirements are the same as those for serving content on

a Web site.

3.3.1.2. Software

• Microsoft Windows 2000 Server or Microsoft Windows XP Professional

• Microsoft® Internet Information Services (IIS) version 5.0 or later

• Microsoft® Internet Explorer version 4.01 with Service Pack 2, or Internet Explorer

5.01 or later

Installation and use on Microsoft Windows 2000 Professional is also possible, but

recommended only for testing and development purposes.

• Web server capable of handling HTTP GET and POST requests

32

• Support for Secure Sockets Layer (SSL) certificates

3.3.1.3. Operations

• Microsoft .NET Passport-issued Site ID and encryption key

• Ability to handle SSL forms

• Ability to serve SSL Web pages

3.3.2. Client Computer Requirements

Microsoft .NET Passport users are able to use .NET Passport services with no client

download and on all common browsers.

3.3.3. Browser Compatibility

The .NET Passport services require browsers that support SSL and cookies. For full

cobranding support and optimal performance, JavaScript support (in an enabled state) is

also required.

Microsoft .NET Passport uses several session cookies that are downloaded to the client

computer during the user's session on the Web. The cookies facilitate the SSL sign-in and

profile sharing to other Web servers that support .NET Passport. After the user has signed

out of .NET Passport, the cookies are removed from the client computer and cannot be

retrieved.

The .NET Passport SSI and core profile service has been explicitly tested on Internet

Explorer 4.0 and later, Netscape Navigator/Communicator 4.08, 4.5, 4.6, 4.7 and 4.8, and

MSN®TV.

The cobranding experience is best viewed on Netscape Navigator 4.08, 4.5, 4.6, 4.7 and

4.8, and Internet Explorer 4.0 or later, or on MSN TV.

33

Microsoft .NET Passport does not officially support Netscape 6.0 and 6.1, and, since the

release of .NET Passport 2.1, no longer explicitly supports Netscape Navigator version

4.05.

3.4. Installing .NET Passport Encryption Keys

Key installation is currently handled through an out-of-band process: Microsoft® .NET

Passport personnel send a key installation program to a requesting site as an executable file

attachment to an e-mail message, or as a file on disk. The material submitted with the key

installation program includes documentation in a Readme file that explains how to run the

program and install keys. Save the documentation and the program file in case you need it

again in the future (to reinstall or propagate the Passport Manager keys to new computers).

Documentation for key installation provided here should match the documentation sent

with the program file, but if there are discrepancies, follow the instructions sent with the

program.

You should receive your encryption key within three to four business days from the time

that you submit your registration. If you have not received the key within this time, contact

Microsoft Product Support Services.

You will need two different encryption keys: one for your Development/Test site, and one

for your Production site.

You must take steps to restrict access to this encryption key. This includes keeping it in a

restricted place on your server and, if you have it on a disk, storing that disk in a restricted

location, such as a safe. If you suspect your key has been compromised, contact Microsoft

Product Support Services immediately.

The instructions for installing an encryption key differ slightly depending on whether you

have previously installed an encryption key on your computer.

34

3.4.1. The Key Installation Program

The key installation program is a command-line executable file with two basic functions:

• To install the source material of an asymmetric triple-DES key into the server's

registry.

• To specify and synchronize the stored key that Passport Manager should use to

encrypt and decrypt communication with the .NET Passport network.

Each installation program is specifically compiled to be used by one and only one site and

Site ID. The same program can be used to install keys to multiple servers (for example, in

configuring a cluster of servers). The name of the program contains the Site ID for which it

is intended, as well as the version of the key. For example, if your site's assigned Site ID is

1000, and this is the first time your site has registered and requested a Site ID and

encryption key, the name of the key installation program for your site will be

PartnerlOOO_l.exe (where 1000 is your Site ID and 1 is the version of the key contained by

the program).

3.5. Installing the .NET Passport SDK and Passport Manager

Before you install the Microsoft® .NET Passport Software Development Kit (SDK), make

sure your system meets all of the minimum requirements.

You must be signed in as an Administrator when installing the .NET Passport SDK and

Passport Manager on a Microsoft® Windows NT®, Microsoft Windows® 2000, or

Microsoft Windows XP computer because installing the .NET Passport SDK changes

registry settings and installs files to the system folder. Depending on the installation options

1<::-ı~ C,\\.<::-ı<::-ı~I:!., \.~m'ı..\.\.\.'b~I:!.\.~~ fü'o..1 'o..\~<::-ı ~\.<::'!~ Th<i ~\.'o.rt \.\\.1:!. M.\C.l<::'ı~<::'ıtt® fo..t~m.~t l\\fmmafo:m.

Services (IIS) server process, install virtual directories, or install ISAPI filters to the default

Web site root.

35

3.5.1 Installation Instructions

The following are instructions for starting the Setup program from CD-ROM, a share on a

local area network, or the Web:

3.5.1.1. To install from a CD

• Click the Install option that automatically appears when you insert the .NET

Passport SDK CD-ROM, and then follow the instructions on the screen.

If the Install option does not appear, or if you have already inserted the CD to browse this

documentation, follow these steps:

1. From the Start menu, click Run.

2. Type d:\setup and click OK.

Substitute the correct drive name for your CD-ROM drive if other than "d:".

3.5.1.2. To install from a share

• Run Setup.exe in the supplied installation path or share.

3.5.1.3. To install from the Web

1. Download the .NET Passport SDK 2.5 installation files.

2. Choose Run this program from its current location and click Yes to install.

If you are using a Netscape browser, download the SDK to your computer and run the

executable locally.

Setup provides you with several installation options. The primary option is to specify which

.NET Passport environment this .NET Passport SDK installation should use. In most cases,

you should choose the default (Preproduction). If you are deploying Passport Manager to

36

multiple servers in anticipation of going live to Production, or if you are testing isolated

servers against Production, the Production option may be appropriate.

If the server on which the .NET Passport SDK is being installed has an earlier version of

the .NET Passport SDK installed and has undergone extensive .NET Passport-related

configuration already, the Keep existing configuration settings option may be appropriate.

In this case, you may wish to select the components to be installed.

By default, the check box that allows you to specify each component to be installed is not

selected. This is because Setup chooses default groups of components that are appropriate

for each setup type and environment. However, you can select this box to verify and

confirm each component for any of the three setup options. The default component lists for

each installation option are shown in the following table.

Component

Sample Sites-Installs the "Adventure Works" Active Server ~

Pages (ASP) sample site as a local virtual directory (VDir) on

the server. This VDir is by default "/PassportExample" but can

be changed using administrative consoles later. At a later phase

in Setup, you can configure this VDir to be created in a specific

Web root other than the default Web site root configured on the

server. Optional component.

Documentation-Installs only the Readme file specific to the ~

release. All other documentation exists on the .NET Passport

Web sites. Optional component.

C++ Support Files-Installs various header and library files ~

required for C++ implementation. These files are not required

for normal operation of the Passport Manager object on the

server or for implementation in script. Optional component.

37

Passport Manager

Simple Test Site-Installs the "Simple Test" ASP sample site as ~ lıC] lıC]

a local VDir on the server. This VDir is by default

"/PassportTest" but can be changed using administrative

consoles later. At a later phase in Setup, you can configure this

VDir to be created in a specific Web root other than the default

Web site root configured on the server. This directory contains

only a few files and can be useful in verifying that the initial

configuration of either Development or Production servers is

correct. For more information, see Test Site. Optional

component.

Note Use your Preproduction (PREP) .NET Passport to sign in

to the test site. Disabling the sample site installation prevents the

use of the manual refresh function of the Passport Manager

Administration utility. The automatic refresh of the Passport

Manager will continue to function as expected.

Passport Dynamic-Link Libraries (DLLs)-Installs the core~ ~

DLLs that support the Passport Manager, Passport Crypt,

Passport FastAuth, Passport LookupTable, and Passport

Factory objects. Also installs Msppfltr.dll, an ISAPI filter that is

installed to the default Web server root and is required for .NET

Passport authentication interactions. Required component.

Administration Tools-Installs the Passport Manager ~ ~

Administration utility and support files, plus an initial version of

the Component Configuration Document (CCD) file. Required

component.

Other Components

Dictionary Files-Installs the dictionary files required to look ~ lıC] 1£]

38

up friendly strings for GeoIDs, using the Passport

LookupTable object. This is a potential operational requirement

because several .NET Passport profile attributes use GeoIDs as

their representation. By default, these dictionary files are

installed in the directory specified on installation in a

Dictionaries subfolder, with multiple subfolders underneath

corresponding to a Web-style language-locale directory

structure. For more information, see GeoID Dictionaries.

Required component. (Dictionary files may be removed if you

decide not to do any reading or writing of profile information in

GeoID form.) Does not appear as a component in the custom

component dialog.

Table3.5.1.3. - Component list

3.5.2. Deploying Passport Manager

Installing the .NET Passport SDK always installs the Passport Manager server-side object

that provides the application programming interface (API) for most of the sign-in and

profile service implementation done by a participating site. The .NET Passport SDK can be

installed on single or multiple computers used by participating site developers as they

integrate .NET Passport sign-in services with their site's existing code.

If you wish to deploy Passport Manager to live Web servers and you wish to install only the

bare minimum-the object and files to support your .NET Passport-related code when it

has been developed-choose the Production environment option when installing. You may

wish initially to install the "/PassportTest" sample site, which can be used for a quick

"smoke test" of basic Passport Manager functionality, but remove the VDir after such

testing is complete. For more information about using the sample site for testing, see Test

Site in SDK.

39

3.5.3. Uninstalling Passport Manager and the .NET Passport SDK

Uninstall is handled by InstallShield. Uninstall reads the .isu file and removes all

unmodified components that were installed initially. Components modified since the initial

installation are left in place.

To remove Passport Manager and .NET Passport SDK files

1. From the Start menu, point to Settings, click Control Panel, and then click

Add/Remove Programs.

2. From the list box, select Passport Manager, click Remove, and then click Yes to

confirm.

• Read the Readme file related to the SDK version being installed. The Readme file

contains late additions to the .NET Passport SDK documentation and new details or

instructions about installing the .NET Passport SDK and software.

• Reinstalling the .NET Passport SDK will save any existing configuration settings of

a previous Passport Manager installation. To be safe, save these settings first, using

the Save menu features of the Passport Manager Administration utility. The

InstallShield uninstall program removes most .NET Passport components. However,

it does not change the IIS configuration settings or remove Access Control Lists

(ACLs) on any files or directories, or any files that you have made any changes to

(such as modified Sample Site files).

• Reinstalling the SDK may require that previously installed encryption keys be

reinstalled ..

40

3.5.4. HTTP-only Cookie Support in Passport Manager 2.5

Cross-site scripting attacks can expose sensitive information about the users of the Web

site. In order to help mitigate the risk of cross-site scripting, a new feature has been

introduced in Microsoft® Internet Explorer 6. This feature is a new attribute for cookies

which helps prevent them from being accessed through client-side script. A cookie with

this attribute is called an HTTP-only cookie. Any information contained in an HTTP-only

cookie is less likely to be disclosed to a hacker or malicious Web site. New installations of

Passport Manager version 2.5 will enable the HTTP-only property in all .NET Passport

cookies. When upgrading from an earlier version of Passport Manager, the Setup

application will not enable this functionality.

The registry key and value that enable HTTP-only cookies are not imported or exported

through the Passport Manager Administration utility.You must manually create a registry

entry for each site you want to use this option.

To enable or disable the HTTP-only cookie feature after installation, change the value for

the following registry key:

HKEY _LOCAL_MACHINBSO FTWARB.Microsoft\P assportWotUseHITPOnly

Set to 11011 to enable the HTTP-only property in .NET Passport cookies. Set to 11111 to disable

the HTTP-only property in .NET Passport cookies. In a multi-site configuration, the value

must be set for each site:

HKEY_LOCAL_MACHINEı.SOFTWARB.Microsoft\Passport\Sites\{YourSiteNames}WotUs

eHITPOnly

41

3.6. SSL Sign-In

Secure Sockets Layer (SSL) sign-in provides a way to minimize vulnerability to replay and

dictionary attacks. Sending the domain-authority cookies in the header made it remotely

possible to intercept them at a packet-sniffing or gateway level, and then to make an

attempt to authenticate in another Microsoft® .NET Passport domain as long as the site's

time-window requirements were .satisfied. Similarly, intercepting the t and p parameters of

a query string and submitting them back to the same site would also spoof a user as far as a

site's calls to the IsAuthenticated method are concerned, and would satisfy authentication

for the remainder of the time window.

The base .NET Passport service has a vulnerability to a concerted brute-force attack against

a user's credentials. The Login servers for .NET Passport implement a slow-down

mechanism to discourage casual attempts to gain access to a user's account by repeatedly

guessing passwords. This functionality is intended to provide a moderate level of security

combined with a reasonable level of usability without creating a vulnerability to a denial of

service attack directed against user credentials.

SSL sign-in eliminates these vulnerabilities by adding features to the sign-in process. The

IsAuthenticated, LogoTag2, and AuthURL2 methods of Passport Manager and related

interfaces accept a new parameter that allows your site to indicate one of the two new levels

of authentication security:

• The first level (called SSL Required) requires the use of SSL communication for all

authentication iterations and also determines whether your domain Secure cookie

should be decrypted and checked against the user's .NET Passport Unique ID

(PUID) in the Ticket. If there is a mismatch, the user is not considered

authenticated. The user should then be sent to the SSL sign-in server to be

reauthenticated.

42

• The second level (called Security Key) requires that the user select a secondary

credential, known as a Security Key, which is used to sign in to participating sites

that require it. This Security Key is considered to be strong because it requires the

compromise of the base credentials in order to attack it (effectively increasing the

overall protection of the base credential on a protected site), and because it is

protected by a lock-out mechanism that goes into effect after five failed attempts.

The Security Key does not automatically unlock and requires the user to go through

a reset process to regain access to protected sites.

3.6.1. SSL Required

The SSL Required level of SSL sign-in includes the following features to eliminate the

packet-sniffing window of vulnerability.

• The Login server URL pages are served from a secure domain if a SSL sign-in is

requested by a site. Previously, the sign-in process used a secure address only when

silently redirecting to the network-side page used to set the Ticket-Granting cookie.

• SSL sign-in now writes a new "Secure" cookie in the HTTPS header both into

passport.com and into your domain. The Secure cookie contains the encrypted

PUID (MemberIDHigh and MemberIDLow attributes of the core profile) that

uniquely identifies a .NET Passport user. Packet sniffing cannot extract the Secure

cookie from the query string and cannot use it to spoof a user.

• When SSL sign-in is used, if the PUIDs in the Ticket and Secure cookies do not

match (or no Secure cookie exists), no cookies are copied; the SSL sign-in user

interface (UI) is presented, through which the user must resubmit credentials. This

prevents the case in which cookies submitted in headers to the Login server could

be copied and used on other sites.

• Upon completion of any SSL sign-in, Passport Manager writes the Secure cookie

into your domain as an HTTPS cookie. If SSL sign-in is requested, the return URL

given must therefore be an HTTPS URL. The Ticket and Profile are still written as

nonsecure cookies so that they can still be accessed by non-HTTPS pages on your

site if desired.

43

• The .NET Passport application programming interface (API) will continue to extract

the required timestamping information from the regular Ticket. However, if you call

the IsAuthenticated method to check for Ticket validity within the time window,

you can specify Securel.evel=ı'i. Returning True now necessitates that the last sign

in has written the Secure cookie, and that the PUID in the Secure cookie must

match that in the nonsecure Ticket.

• Secure and nonsecure versions of the t and p parameters submitted to your site, as

well as the cookies in headers, are physically different even though they are

encrypted in the same key. Unscrupulous users cannot simply submit the nonsecure

Ticket and Profile cookies they captured and use them to connect to the secure

Login server and get secure Ticket and Profile copies back. The Secure cookie is

never transmitted as a query string parameter.

• An efficient use of SSL sign-in would be to request SSL sign-in on the initial check

for authentication when you send the user to the Login server. Subsequent checks

for authentication can use IsAuthenticated, which does not require a Login server

redirect, specifying that the Secure cookie should be checked. Even if someone

captured t or p parameters to your site, or managed to submit captured cookies in

the header to the Login server, the authentication would fail because there would

not be a Secure cookie to match the most recent Ticket.

3.6.2. Security Key

The Security Key level of SSL sign-in was introduced in .NET Passport version 2.0 to

support sites that had even higher security requirements than handling sign-in over secure

channels. This level includes all of the features of SSL Required, plus additional security

features.

The first time a user attempts to access a site where the Security Key is indicated, a

Security Key selection page is displayed. The user is required to select a four-character

Security Key along with three different secret question-and-answer combinations. The

Security Key is used by the user to sign in to any SSL sign-in-enabled site that has 'request

44

Security Key' level security. The secret questions and answers are used if the user nee-

change or reset the Security Key.

3.6.3. Why Use SSL Sign-In?

Your site might use SSL sign-in if you are already using fairly long time windows (such -

the 10,000-second default) and thus do not expect to be making manv runner

reauthentication checks. Longer time windows increase the opportunity for replay atta,

but help to provide better performance on a site because of fewer required redirects back co

the Login server. You could also use SSL sign-in if successful .NET Passport

authentication provides your users access to extensive personal or sensitive information.

such as transactional abilities or the ability to edit personal data above and beyond the

.NET Passport profile.

3.6.4. Requirements for Using SSL Sign-In

The primary requirement for using SSL sign-in is that your site be capable of serving page

using HTTPS protocol. This requires that your site has established and signed certificates.

Microsoft .NET Passport servers already use HTTPS in order to write secure Ticket

Granting cookies. Requiring that your users have HTTPS-capable browsers does not

increase the requirements for your users and will not intrude in the user experience any

further, as long as your certificates are signed and in order. If you are using cobranding o

the Login server and other network servers and specifying SSL sign-in requirements.

cobranding elements must also be available using HTTPS. Cobranding with SSL sign-in ·

limited to the logo image URLs you specify when registering your .NET Passport

participating site. This limitation is designed to increase the security of the transaction.

3.6.5. Possible Disadvantages of Using SSL Sign-In?

The possible disadvantages of using SSL sign-in are primarily in terms of performance.

Serving pages over HTTPS transmits more data because of the added infrastructure of me

key exchange, which can take more time to construct and serve at the server end. HTIP

pages also take more time to be loaded and rendered at the client end. If your site does no

45

expose extremely sensitive user data on the basis of .NET Passport authentication, or

already uses Time Window parameters to assure that sensitive data pages are difficult to

access through replay attacks, the standard HTTP Login server and standard Passport

Manager calls are probably adequate for your needs and will be more efficient.

3.7. SSL Certificates

Secure Sockets Layer (SSL) is the most common client-server encryption schema used on

the Web today. Most browsers support SSL transactions, and enabling SSL on a server

platform is usually simple.

For Microsoft® .NET Passport single sign-in (SSI) service or for obtaining core profile

information, SSL support is not strictly required. However, SSL is required to implement

the SSL Required level of SSL sign-in.

Your site will need to obtain and install SSL certificates for proper cobranding support

under certain circumstances. SSL is also a requirement for cobranding registration pages,

because your cobranding information renders in the same page as the .NET Passport

initiated user interface (UI). Microsoft .NET Passport's portion must be served HTTPS so

that the user's password is always passed using encryption.

HTTPS is required for cobranding because of the way browsers behave when presented

with a page that contains both secure and nonsecure elements. Some browsers give a

specific "mixed-content" warning message to protect users from framing or "spoofing"

situations, where data could be captured or redirected to some other non-SSL domain

hosted within an SSL frame. Because this warning message interferes with the end-user

experience, all .NET Passport server pages that use cobranding perform prerendering

checks for mixed content and discard any cobranding material supplied by your site that

would cause a mixed-content warning to appear. Microsoft .NET Passport defaults are

rendered so that the pages are either 100% SSL content or 100% non-SSL content, but

never a mixture that triggers the warning.

46

If you are implementing Kids Passport, the Account Data and Account Removal pages

should also be served HTTPS.

3.7.1. Installing SSL Certificates on a Server

This documentation does not discuss obtaining or installing SSL certificates, because the

particulars involved vary, depending on which server your site uses and also on whether

your site supports its own certificate service or relies on one of the commonly used

certification authorities. If you are using Microsoft® Internet Information Services (IIS),

see "Certificate Wizard" in the IIS documentation.

3.7.2. Installing SSL Certificates on a Browser

This documentation also does not discuss how to install or approve an SSL certificate on a

client browser. Browser users must specifically accept any certificate not issued by a

trusted root domain, and the list of certification authorities potentially varies with each

browser and each version thereof. Sites operating live in the Production environment

should hold certificates issued by one of the commonly accepted certification authorities. If

it is necessary to install or accept a specific certificate (for example, if the browser is being

used to view a site using a test certificate not issued by a common certification authority),

consult the documentation that comes with that particular browser and review the

procedures for accepting or importing SSL certificates.

3.8. Passport Authentication Provider in ASP.NET (IIS 6.0)

Passport authentication is a centralized authentication service provided by Microsoft that

offers a single logon and core profile services for member sites. This benefits the user

because it is no longer necessary to log on to access new encrypted resources or sites. If

you want your site to be compatible with Passport authentication and authorization, this is

the provider you should use. This topic provides some introductory material about

Microsoft .NET Passport and the ASP.NET support for it. For more information, see the

47

Passport documentation located at http://www.passport.com. In order to access the

documentation, you must get a Passport and register.

Passport is a cookies-based authentication service. A sample transaction conversation using

Passport authentication might look similar to the following:

1. A client issues an HTTP GET request for a protected resource, such as

http://www.contoso.com/default.aspx.

2. The client's cookies are examined for an existing Passport authentication ticket. If

the site finds valid credentials, the site authenticates the client. If the request does

not include a valid authentication ticket, the server returns status code 302 and

redirects the client to the Passport Logon Service. The response includes a URL in

the query string that is sent to the Passport logon service to direct the client back to

the original site.
3. The client follows the redirect and requests the original resource again, this time

with the Passport cookie.

4. The Passport logon server presents the client with a logon form.

5. The client fills out the form and does a POST back to the logon server, using Secure

Sockets Layer (SSL).

6. The logon server authenticates the user and redirects the client back to the original

URL (http://www.contoso.com/default.aspx). The response contains an encrypted

Passport cookie in the query string.

7. The client follows the redirect and requests the original protected resource again,

this time with the Passport cookie.

8. Back on the originating server, the PassportAuthenticationModule detects the

presence of the Passport cookie and tests for authentication. If successful, the

request is then authenticated.

48

3.9. Setting Up .NET Passport in IIS 6.0 (IIS 6.0)

Before setting up Microsoft .NET Passport authentication on your Web sites in a

production environment, you are· required to test IIS against .NET Passport preproduction

servers. By working through this process, you confirm that your IIS server and the .NET

Passport server are communicating correctly, your site(s) is registered with .NET Passport

(which might involve signing forms and agreements), and your Web sites have the required

site IDs. You must complete each process for every Web site you want to enable with .NET

Passport authentication.

This topic includes the following information:

• NET Passport Environments

• Configuring for Preproduction (PREP)

• Configuring for Production

• Passport Manager Administration Utility

With .NET Passport authentication on members of the Windows Server 2003 family, the

default .NET Passport SecureLevel setting is 10. This means that new sites using .NET

Passport authentication (and default settings) require an Secure Sockets Layer (SSL) server

certificate. You can change the SecureLevel setting for a site by changing a registry value.

Using Registry Editor incorrectly can cause serious problems that require reinstalling the

operating system. Because Registry Editor bypasses the standard safeguards that prevent

you from entering settings that are conflicting or likely to degrade performance or damage

your system, exercise caution when making changes to the registry. Microsoft cannot

guarantee that problems resulting from the incorrect use of Registry Editor can be solved.

49

To change the SecureLevel setting for the default Web site

Enter a new value in the registry for the following key:

• HKEY _LOCAL_MACHINE\Software\Microsoft\Passport\SecureLevel

To change the SecureLevel setting for any Web site other than the default Web site

Enter a new value in the registry for the following key:

• HKEY _LOCAL_MACHINE\Software\Microsoft\Passport\Sites\<Site

Name> \SecureLevel

3.10 .. NET Passport Environments

Setting up .NET Passport on your Web sites involves testing and configuring IIS against

the following three .NET Passport environments:

• Default installation environment: By default, the Microsoft .NET Passport SDK and

Internet Information Services (IIS) (with the Passport Manager object) are

configured for testing. The test or default installation environment uses a site ID of

1 (one), and has a default encryption key instead of a private, site-specific key.

• Preproduction: The Preproduction (PREP) environment enables sites to verify their

development efforts against .NET Passport servers without access to real-world

.NET Passport user identifications and profiles. While in PREP mode, prospective

.NET Passport participating sites can manipulate data, create new users, and run

other tests against the user base without affecting existing deployed .NET Passport

sites.
• Production: The .NET Passport Production environment is shared by all working

and approved .NET Passport participating sites after they are deployed to the public.

50

3.10.1. Testing and Preproduction (PREP)

You can determine whether your site is in the default installation environment by checking

the Site ID field in the Passport Manager Administration utility. If the value in the Site ID

field is 1, your site is in the default installation environment. While your site is in this

environment, you can perform an initial evaluation of the single sign-in service (SSI) and

test any dynamic content on your site against the Passport Manager object. You can

develop your Web site and any applications on your site before registering your site and

requesting a site ID, or while you are waiting for the site ID and key after registration. After

you have a site ID, there should be no reason to use the default installation environment

again. The restrictions imposed by this mode are intended only to prevent developers from

accessing certain .NET Passport features before having signed the necessary agreements or

contracts.

The preproduction environment requires a .NET Passport preproduction logon account. To

set up a preproduction logon account.

3.10.2. Limitations in the Default Installation Environment

The following operational limitations exist in the default installation environment:

• Cannot read full core profile data or profile cookies: A Web site running in the

default installation environment indicates that the administrator has not yet signed

the necessary agreements that specify a site's requirements for privacy. For this

reason, a site running in the default installation environment cannot access all .NET

Passport user information .. NET Passport user information displayed on a test site

contains several fields of default placeholder values, as generated by the logon

server.

51

-

• Cannot use co-branding: Co-branding support is dependent on several URLs that

you must provide when registering as a .NET Passport participating site. Until you

register and provide these URLs, the co-branding logo and text exist as

placeholders. For details about how to implement co-branding after your site has

registered as a .NET Passport participating site, see ".NET Passport Cobranding

Overview" in .NET Passport SDK Help.
• Cannot sign users out from sign-out page: On a registered .NET Passport site, when

members choose to sign out by clicking the .NET Passport sign-out link, they are

redirected to a central page that enables deletion of all .NET Passport cookies from

all of the sites the member visited during the session. This is not the case in the

default installation environment, so .NET Passport cookies remain on the user's

browser until the user closes the browser entirely. If the .NET Passport user chose

to save their password (thus making all session cookies persistent cookies), .NET

Passport cookies written in the test site's domain are still not deleted. For this

reason, when testing browser behavior in the default installation environment, you

may occasionally need to quit the browser to reproduce a clean .NET Passport sign-

in.

3.10.3. Configuring for Preproduction

Real-world .NET Passport users probably do not have existing e-mail names within the

PREP environment. Part of your site's development and testing effort might require that

you first create a store of users within the PREP environment and then use these accounts

for testing against the .NET Passport authentication and profile-access portions of your

site's code. The .NET Passport server code that runs the services in the PREP environment

is essentially identical to the code that runs live in the Production environment; Production

and PREP are released in tandem. This means that going live should be a matter of simply

stopping the servers on a site currently running against the PREP environment,

reconfiguring Passport Manager on those servers to run against the Production environment

instead, and then restarting the servers.

52

For more information about getting a PREP site ID, see "Registering Your .NET Passport

Site" in the .NET Passport SDK (starting with version 2.1) Help. For more information

about PREP Passports, see "Get a PREP Passport" and "Sign in to PREP Passport" in .NET

Passport SDK (starting with version 2.1) Help. Also, see "Going Live: Deploying Passport

Manager and Site Code."

Upon completion of the registration process, you will see a confirmation page that indicates

your new .NET Passport sign-in name. This is the name you will use while in the

development phase.

3.10.4. Configuring for Production

All Microsoft .NET Passport users already have an account in this environment. Users of

Microsoft MSN Internet Access and MSN Explorer, as well as users who registered

directly at the Passport.com Web site, also have passports in this environment. Within the

Production environment, sites can expect to handle many real-world .NET Passport users

who might already have been authenticated at various other Passport participating sites.

To deploy the .NET Passport code of your site, the Passport Manager server-side object

must be reconfigured to work against the Production environment. To deploy against the

Production environment, your site must also register for a site ID in the Production

environment, and must supply some configuration information about your site that is

specific to the Production deployment. Approval of a site ID in the Production environment

might require some basic remote checking of your site's .NET Passport implementation by

the .NET Passport team, and might also require some additional contracts or agreements.

Do not place co-branded URLs in a virtual directory on which .NET Passport

authentication is enabled. If a co-branded URL resides in a virtual directory on which .NET

Passport authentication is enabled, client requests are challenged to authenticate before the

co-branded information is passed to the client. This can result in a situation where a client

might not be able to authenticate and view the desired page.

53

• ' t'

\\
\\

..: L
~l

To deploy against the .NET Passport Production environment, see "Ret.._~
Passport Web Site" in the .NET Passport SDK (starting with version 2.1) Hel~able

the default installation environment and enable normal operation, enter a different site ID in

the Site ID field and commit changes. Note that if you change the site ID to something

other than 1, a matching encryption key must also be installed. The key, as well as the

unique site ID assigned to any particular participating site, can be obtained only by

registering as a .NET Passport participating site.

Be sure to reconfigure your Windows XP clients for .NET Passport production mode as

well. For more information, see '.'.NET Passport SDK: System Requirements" in the .NET

Passport SDK (starting with version 2. 1) Help. More specifically, read the section titled

"Client Computer Requirements."

3.10.5. Passport Manager Administration Utility

The Microsoft Passport Manager Administration utility is a graphical user interface (GUI)

alternative to editing the registry when changing Passport Manager object settings. The

most common use of the Passport Manager Administration utility is to change the default

settings. For details about how defaults can be set and affect the behavior of Passport

Manager methods, see "Setting Passport Manager Defaults" in .NET Passport SDK Help.

To access the Passport Manager Administration utility

1. From the Start menu, click Run.

2. In the Open box, type msppcnfg.exe, and click OK.

3.11. Passport Manager Administration Utility

The Passport Manager Administration utility is a graphical-interface alternative to editing

the registry to change Passport Manager settings. The most common use of the Passport

Manager Administration utility is to change the default parameter values used by

Passportldentity methods if optional parameters are omitted when the methods are called.

The term "Passport Manager" refers to the interface with Microsoft® .NET Passport servers

that is controlled in ASP.NET code by instances of the Passportidentity class.

54

Although some parameters of .NET Passport methods are overloaded and can be

considered optional, these methods (for example, Passportldentity.LoginUser) still generate

URLs or results that reflect default values when called. These default parameter values can

be used to provide consistent site-wide values, such as the required time window within

which all users must be authenticated.

The following are the primary defaults that affect Passportldentity implementation:

• Time Window

Change this value to the default time window you wish to set. The time window

specifies how old a Ticket can be before the IsAuthenticated method returns False

for an otherwise valid Ticket. It also qualifies how old a Ticket as submitted to the

Login server can be wi~out requiring a refresh for purposes of the LoginUser,

AuthURL2, or LogoTag2 methods. The default as installed is 1800 seconds (equal

to 30 minutes).

• Force Login

Change this value to be either True (checked) or False (unchecked).

True specifies that the Ticket as read by the IsAuthenticated property must represent

a refresh in which the user physically enters a password, not a silent refresh, in

order for IsAuthenticated to return True itself. A True default for Force Login also

changes the behavior at the Login server for any user sent there by URLs derived

from the LoginUser, AuthURL2, or LogoTag2 methods. Specifically, the Login

server does not silently refresh and always asks for a password if the existing Ticket

is past the specified time window.

A False default for Force Login means that any Ticket within the time window is

acceptable either to the IsAuthenticated property or to handling at the Login server

55

as accessed by means of the AuthURL2 or LogoTag2 output URLs (or a Login User

redirect).

• Language ID

If a server on your site is dedicated to a particular language or locale, it may be

useful to set the Language ID on that server always to be a consistent value rather

than declaring the locale ID (LCID) in each method call. The Language ID declares

the language that .NET Passport service pages (such as Sign-in and Registration)

render in when obtained with the URL results of the LoginUser, AuthURL2,

LogoTag2, or GetDomainAttribute methods. There may still be reasons to declare

an LCID by method call or user access if your site expects to handle multiple

languages and uses either .NET Passport profile information or browser sniffing to

determine the user's probable language choice.

To run the Passport Manager Administration utility

1. Click Start, point to Programs, and then to Microsoft Passport.

2. Click Passport Manager Administration Utility.

56

The following figure shows the main user interface of the Passport Manager Administration

utility.

Server t~cn3 j<Loecl H:ıst:, S!~ ID

I ns:al Dr ıı..::\J-'ıogıam ~ les\\iı::r=t: Pessocr: fld.rn URL

[od: Oh: 30 m: J;Iiıre ~in±w (secon:ls) f1 sno
D o_gotcr URL

).an;,.,age l[ı f E n;jist" -Un tee 3t:tes
Codd? Dorncin

r Foıce ~~n In r Di;a:ıe Cxj);;,s

r· ~ land A one l!jode

r ye·boS3 ~Od3 - nn:::P.'i r.r.-~ i~ Dnnv=in

Ccmen: Co:J<İe P:th
:urre--t IPrcdu:ti:n

ı E n:tle Manu31 R e'resh
r· R:::::f:0:~h N"J-~\orl• ,L::r:ı

Ch,r-ge
~ e:ı.,r3 Dornein

~ec.se P:th

!Cemi: Ch,r-ge~il __[ln± :rı~--.;;eo

Figure3.11. - Passport Manager Administration utility

57

3.11.1. Passport Manager Administration Utility

The following table describes the various elements of the user interface (Ul) and their

default values (if applicable).

Dialog

box Default Description

element

Web Site

Name

drop-

down list

box

New

button

Displays the "friendly name" of the currently selected
<default>

site configuration.

When clicked, displays the Add a New Web Site dialog

box used to create a new site configuration. The newly

created configuration subsequently appears in the Web

Site Name drop-down list box.

Displays the host name of the currently selected site

configuration. Not displayed for the default site's

configuration.

Displays the IP address of the currently selected site

configuration. Not displayed for the default site's

configuration.

When clicked, removes the site configuration currently

selected in the Web Site Name drop-down list box.

Displays the name of the server hosting Passport

Manager. (The value is read-only here, but can be set

using the Computer menu).

c:\Program Displays the directory where the .NET Passport Software

NIA

Host

Name Blank

text box

IP

Address Blank

text box

Remove
NIA

button

Server

Name Localhost

text box

Install

Dir Files\Micr Development Kit (SDK), but not the Passport DLL, is

58

Passportldentity object methods Login User,

AuthURL2, GetlsAuthenticated, and LogoTag2,
In Unchecked

among others. Specifies whether user sign-ins falling

text box osoft

Passport

Time

Window
1800

combo

box

Languag

e ID 1033,

combo English

box

Force

Sign

check box

installed (a read-only value).

Used to fill in defaults for the iTimeWindow parameter

used in Passportldentity object methods LoginUser,

AuthURL2, IsAuthenticated, and LogoTag2, among

others. iTime Window specifies the maximum duration

allowed between either silent or forced manual sign-in to

a participating site. iTimeWindow must be >=100 and

<=1000000.

This drop-down list box allows you to set the language

preference sent by the Passportldentity object on

requests to the Login server. This becomes the default

value of the iLang!D parameter, also called the LCID,

used by Passportldentity object methods AuthURL2

and LogoTag2, among others. Users see different

localized text at the Login server depending on this

LCID. If the LCID you require is not available, you can

add it by selecting all the text in the text box and then

typing in a new LCID number. If the LCID is included in

the Passport Manager Administration utility support

code, this will display the language name next to the new

LCID.

Used to fill in defaults for fForceLogin parameter used in

outside of iTime Window are allowed to be silent or

require the user to enter the password again.

Disable Disables the use of cookies with the Passportldentity
Unchecked

Cookies object. If you disable cookies, all profile information

59

check box must be passed page-to-page using the query string. This

practice is not recommended, because it requires a large

amount of query string handling, and writing code to

handle requests at the HTTP level.

When checked, sets the Passport Manager installation to

stand-alone mode, which is for cases in which all Login

Stand servers at .NET Passport are down. Stand-alone mode

Alone treats all existing user cookies as valid and does not
Unchecked

Mode contact the Login server or compare timestamps,

check box effectively disabling any application programming

interface (API) methods that would ordinarily reject a

user with an old Ticket.

When checked, sets this Passport Manager installation to

verbose mode, which helps to enable better debugging

Verbose through a text log of all Passportldentity method calls

Mode Unchecked and operations. Verbose mode should be used only to

check box debug specific problems, because it slows performance

and generates a large text log if left on for extended

periods.

Current
Depends

(environm Use this control to reconfigure the environment that
on initial

ent) Passport Manager will run against.
installation

controls

Change
NIA

button

Enable

Manual
Checked

Refresh

check box

Click this button to open the Choose Environment

dialog box in which you can select an environment from

one of the options in the Environment section.

Sets a registry entry (NSRefresh) when checked. This

allows the Web sitepassporttest

(http://localhost/passporttest/default.asp) to receive the

latest version of the Partner.xml file. You cannot get the

60

Refresh

Network

Map

check box

Site ID
1

text box

Return

URL

text box

latest Partner.xml from the passporttest Web site without

setting this registry entry because the default.asp page

checks the registry entry prior to instantiating

Passportldentity object and calling Refresh.

When checked, this will cause the Passport Manager

Administration utility to launch the passporttest Web site

on localhost when the Commit Changes button is

pressed. The appropriate query string parameters are

passed to the site, which will instruct it to download the

Unchecked Partner.xml. After clicking Commit Changes, a

MessageBox is displayed indicating that the Network

Map is about to be updated. Clicking OK will cause the

passporttest site to be launched as:
http://localhost/passporttest/default.asp?Refr

esh=True&Env=Prep&NewID=False

Displays the participating Site ID number. This Site ID

qualifies all communication with the .NET Passport

servers. The .NET Services Manager will provide your

participating site with an executable program that can be

run on each Passport Manager-enabled server to install

site-~pecific encryption keys. At this time, you should set

your Site ID to the value provided in instructions sent

with the key installation program, and this is generally

the only time that the Site ID value should be edited.

Attempting to change this value in the Passport Manager

Administration utility will cause a warning message to be

displayed. The initial Site ID of 1 means that this

Passport Manager is running in test mode.

Blank

Used to fill in defaults for the strReturnURL parameter

given in Passportldentity object methods LoginUser,

AuthURL2, and LogoTag2, among others.

61

Co brand

Args Blank

text box

Disaster

URL Blank

text box

Cookie

Domain Blank

text box

Cookie

Path

text box

Blank

Consent

Cookie

Domain

text box

Blank

Used to fill in defaults for the strCoBrandedArgs

parameter given in Passportldentity object methods

Login User, AuthURL2, and LogoTag2, among others.

Specifies the URL used to replace any .NET Passport

network server URL in cases in which the Passport

Manager is configured to run in stand-alone mode.

The domain to which the Passportldentity object should

write Ticket and Profile cookies. Typically this should be

the same as the value given by

Request.ServerVariables("SERVER_NAME") for a

page. that uses this Passportldentity object.If you are

writing cookies to a subdomain of your own domain, you

should precede the domain path with a dot (". ")

character. For example, if your issite

shopping.example.com and theyou want

Passportldentity object to set cookies in example.com,

set the Cookie Domain entry to .example.com (note the

preceding dot, a requirement for some Netscape

browsers).

Within the domain, the path to which Ticket and Profile

cookies are written.

The domain to which the Passportldentity object should

write Consent cookies. Typically, this should be left

blank, or at least be the same as the value given by

Request.ServerVariables("SERVER_NAME ") for a

page that uses this Passportldentity object. Consent

cookies are written by Passport Manager only if you

specifically inform your .NET Passport representative

that you intend to enable a "property" model, where

62

Consent

Cookie
Blank

Path

text box

Secure

Domain Blank

text box

Secure

Path Blank

text box

Secure

Level

text box

Blank

several properties share a Ticket for authentication but

each property is distinct for purposes of Kids Passport

and consent.

If Passport Manager is writing the Consent cookie,

Consent domain entry should not match the Cookie

domain, and should instead be written to a tertiary

domain. Each property must be distinct for purposes of

establishing unique consent status. The Consent cookie

written to the tertiary domains will contain the consent

status granted each individual property. The domain must

still fall within the root domain specified at registration

time.

Within the domain, the path to which Consent cookies

are written.

The domain to which the Passportldentity object should

write Secure cookies. Secure cookies are used as

verification for SSL sign-in when calling the

IsAuthenticated property.

Within the domain, the path to which Profile cookies are

written.

Displays the default per-site security level of the sign-in.

Valid values are:

O (or blank)

Sign-in UI is served HITP from the .NET
Passport domain authority (default). Even using
this option, there will be an intermediate

63

Commit

Changes NIA

button

Undo

Changes NIA

button

transition to HTTPS on the .NET Passport server
side to enable writing a Secure cookie that is set
by domain authorities for the persistent sign-in
option.

10
Sign-in UI is served HTTPS from the .NET
Passport domain authority. Requires that return
URL be an HTTPS URL; otherwise, the
authentication will fail.

100
Sign-in UI is served HTTPS from the .NET
Passport domain authority, and sign-in process
now requires submission of a security key in
addition to password. Requires that return URL
be an HTTPS URL; otherwise, the authentication
will fail. For more information, see SSL Sign-In.

Click to assign values in current Passport Manager

Administration utility controls to the Passport Manager

and the associated Passportldentity instances, and

assign these values to the underlying registry keys. You

must click Commit Changes in order to actually make

any configuration changes.

Click to redisplay saved registry values. This does not

undo any changes committed to the registry. Create .ppi

files as backups if there is a need to revert to previously

saved or overwritten registry settings.

Table3.11.l. - Dialog box table

• Consistency between servers

When changed, many settings in the Passport Manager Administration utility

display a message window informing you that changes to specific Passport Manager

values should be consistent across servers in your site. In general, a site's Passport

Manager-enabled servers should all have the same Passport Manager

Administration utility settings, so that cookies written by one installation will not

react differently when the user returns to the site and rotates to another server. You

64

can use the Select Server command from the Computer menu to access and

configure any remote server that is accessible on the LAN and already has Passport

Manager installed.

• Cookie path and domain

Make sure that all required installations of Passport Manager on your site can both

read and write to a common path and domain location. If they cannot, cookies set by

one Passportldentity instantiation may not be able to read the cookies set by

another. A symptom of this would be that a user does not always appear to have a

Ticket even though he or she signed in to .NET Passport and your site before.

• Saving text-file versions of Passport Manager Administration utility settings

From the File menu, the Save and Save As commands save all current Passport

Manager Administration utility values as a text file with the extension ".ppi," but

they do not commit the values to the registry. (To commit values to the registry,

click the Commit Changes button.) These text (.ppi) files are useful for configuring

multiple servers in exactly the same way without having to extract the required keys

to make a .reg file. From the File menu, choose Open to load a previously saved

.ppi file and assign these values to the various controls in the Passport Manager

Administration utility. A common use for this feature would be to save all settings

on a single computer as a .ppi file, use the Computer menu to access a remote

server's configuration, load the saved .ppi file, click Commit Changes to commit

those settings to the remote computer, and repeat as necessary to propagate all

settings identically across multiple computers.

• Cobrand Args and Return URL

Setting Cobrand Args and Return URL as site-wide defaults does not make sense in

most cases; these should probably be left blank and set on each method call. Other

attributes as set in the Passport Manager Administration utility do not necessarily

affect Passportldentity method defaults directly.

65

3.12 .. NET Passport Cookies

Using the Passport Manager object, Microsoft® .NET Passport reads and writes cookies

that are used to persist authentication and profile information on the user's computer in

order to provide the user with the experience of an authentication session.

3.12.1. Domain-Authority Cookies

The following five cookies are written to the .passport.com domain. None of these cookies

can be accessed directly by a participating site.

Description and Contents

Encrypted with .NET Passport key. Contains each of the

core profile attributes.

Set when the SSL sign-in feature is enabled on your site.

MSPSecAuth Contains a token that allows Passport Manager to help verify

Common Name Label

Profile MSPProf

Secure

Ticket MSPAuth

Ticket-Granting MSPSec

Visited Sites MSPVis

that the SSL sign-in process was invoked.

Encrypted with .NET Passport key. Contains the .NET

Passport timestamps, saved-password flag, key version

verification, and any flags set by network servers.

Sent using HTTPS protocol for all browsers that allow

HTTPS cookie writes. Contains the SSL-encoded .NET

Passport Unique ID (PUID) and password, used for silent

sign-in.

Used by the Login server to compile the list of sites that

must be signed out from when the user clicks any sign-out

link. Each new .NET Passport participating site visited has

its Site ID written to this cookie. No encryption.

Table3.12.1. - Command name

66

3.12.2. Participating Site Cookies

The following two cookies are written to the domain and path to which the participating

site's Passport Manager object is configured. By default, cookies are written to the

participating site's root domain. Subdomains can be used, by entering values in the Cookie

Domain and Cookie Path text boxes of the Passport Manager Administration utility. The

participating site is responsible for deleting all cookies, including those in subdomains

Common Name Label Description and Contents

Encrypted with .NET Passport key. Contains

the user's consent status. This cookie is set in

the domain and path specified in the Consent
MSPConsent

Cookie Domain and Consent Cookie Path
Consent

Secure

fields in the Passport Manager Administration

utility.

Encrypted with .NET Passport key. Contains

each of the core profile attributes.

Encrypted with .NET Passport key. Set when

the SSL sign-in feature is enabled. Contains a

MSPSecAuth token that allows Passport Manager to help

Profile MSPProf

verify that the SSL sign-in process was

invoked.

Table 3.12.2. - Common name

67

3.13 .. NET Passport Unique ID

For the purpose of unique identification in a site's internal, private database, Microsoft®

.NET Passport users should be referenced by their .NET Passport Unique ID (PUID),

which is a combination of two .NET Passport profile attributes, MemberIDHigh and

MemberIDLow, and is reflected as a 16-character string in the HexPUID property of the

Passportldentity class.

The PUID is used for three reasons: security, uniqueness, and the lack of support for 64-bit

unsigned integers in commonly used development languages.

Although the user's sign-in name does uniquely identify users for the purpose of signing in

to .NET Passport, for security reasons, the sign-in name is not stored anywhere in a .NET

Passport profile, and is therefore unavailable for method calls. The sign-in name is verified,

but not distributed to participating sites. Allowing sign-in names themselves to be stored in

any database other than the .NET Passport central database introduces the risk of misuse or

theft of users' personal data.

The PUID is also the only .NET Passport profile element that is guaranteed to be unique.

The MemberName attribute, for example, lacks such a guarantee, as many people have the

same name, and so is inappropriate for this purpose. The PreferredEmail is not a required

attribute, so it cannot be used as a unique identifier. Furthermore, sign-in names may

potentially be recycled or even reassigned, but the network-side unique identifiers (and thus

the resulting PUID) are never reused.

The PUID is generated in two parts for the user's profile due to more common support for

32-bit than for 64-bit data types. Although this requires that the two values be combined, it

avoids forcing developers to write applications only in languages with 64-bit support. It is

strongly recommended that participating sites use a common derivation algorithm

throughout an application for constructing a PUID.

The use of a common algorithm for deriving PUIDs from the MemberIDHigh and

MemberIDLow values is particularly important if several participating sites share a

68

common private database but do not necessarily share a complete code base. There are

several derivations that will produce a unique PUID value when combining the two 32-bit

values. For implementations in C# and for databases, the best alternative is usually to store

the PUID as a native 64-bit data type. That is, the string value returned by the HexPUID

property of the Passportldentity object should be converted into an unsigned long integer.

Microsoft® Visual Basic® and Visual Basic Scripting Edition (VBScript) do not support

an unsigned integer data type or a true INT type of 64-bit size. This complicates the task of

implementing a derivation if both C# and script are used to read and write PUIDs to a

common database. The preferred solution is to represent the PUID not as a true numeric

value, but as a string representing the concatenation of the hexadecimal character

representation of the two 32-bit values. This is why the HexPUID property is of type

string rather than type ulong. Members 0-7 of the resulting vector are always the

MemberIDHigh component and members 8-15 of the string vector are the MemberIDLow

component.

3.14. Enabling .NET Passport Authentication in HS 6.0 (IIS 6.0)

When .NET Passport is enabled, requests coming into IIS must contain .NET Passport

credentials either on the query string or within a cookie. The credentials also have to be

valid, meaning the ticket has not expired. If IIS does not detect .NET Passport credentials,

requests are redirected to the .NET Passport sign-in page .

.NET Passport uses cookies, which contain information that can be compromised.

However, .NET Passport authentication can be used over a Secure Sockets Layer (SSL)

connection, which reduces the potential of replay attacks.

You must be a member of the Administrators group on the local computer to run scripts

and executables. As a security best practice, log on to your computer by using an account

that is not in the Administrators group, and then use the runas command to run your script

or executable as an administrator. At a command prompt, type runas /profile

!User:MyComputer\Administrator cmd to open a command window with administrator

69

rights and then type cscript.exeScriptName (include the script's full path and any

parameters).

Procedures are follow:

To enable .NET Passport authentication on a Web site

ı. In IIS Manager, expand the local computer, expand the Web Sites folder, right-click

the Web site on which you want to enable .NET Passport authentication, and click

Properties.

2. Click the Directory Security tab.

3. In the Anonymous access and authentication control section, click Edit.

4. Select the .NET Passport Authentication check box. There are fundamental

differences in the way .NET Passport validates user credentials, so .NET Passport

cannot be used with other authentication methods. When .NET Passport

authentication is selected, all other authentication methods are unavailable.

s. Click OK.

70

CONCLUSION
At the beginning the microsoft .NET is explained and is examined. This project answers

the what the .NET, ASP.NET and how the .NET Passport is implementing on the web in

real life. When these questions are answered, some details of windows and IIS are

searched and declared in the project.NET Services are considered to understand clearly the

system of Microsoft .NET then Windows Server System is represented to learn what .NET

is boult on.

ASP.NET is considered becouse of the implemention .NET Passport is written with the it.

ASP.NET is choosed to write the web application because it is better then other languages.

The adventages and features of ASP.NET is introdused and examined one by one. For the

.NET Passport the ASP.NET Security is declared and explained how it use. How the

ASP.NET is declared in IIS that is written step by step. Some command in ASP.NET are

examined to understand the .NET Passport implementation which is written in project.

Special arrangment and declaration is written about IIS 6.0 in the project.

.NET Passport Architecture is illustrated and explained how it work on web clearly in the

project. System requirement is considered for .NET Passport, all details are written for the

implementation. At the end, implementation .NET Passport is written and illustrated in the

project.

71

RERERENCES

http://www.microsoft.com

http://www.passport.com

http://www.xlinesoft.com

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/llS

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Li brary/IIS/ 1n 4eac5-
9005-4f91-9137-f63b73eefde8.mspx

http://msdn.microsoft.com/library/default.asp?url=/library/en
us/cpgenref/html/gngrfASPNETConfigurationSectionSchema.asp

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/1D4eac5-
9005-4f91-9137-f63b73eefde8.mspx

http://msdn.microsoft.com/library/default.asp?url=/library/en
us/passport25/NET_Passport_ VBScript_Documentation/Testing_And_ Troubleshooting/Tr
oubleshooting/tshoot3. asp

http://msdn.microsoft.com/library/default.asp?url=/library/en
us/passport25/NET_Passport_ VBScript_Documentation/NET _Passport_Fundamentals/Inst
allation.asp

Microsoft .NET Passport SGK, NET Passport Service Guide Kit version 2.5

Mesbah Ahmed, Chris Garrett, Jeremy Faircloth, Chris Payne, ASP.NET Web Developer's
Guide, 800 Hingham Street Rockland, MA 02370, 2002

Danny Ryan and Tommy Ryan, ASP.NET Your visual blueprint for creating Web
applications on the .NET Framework, Hungry Minds, Inc. 909 Third Avenue NY 10022,
2002

Scott Mitchell, Bill Anders, Rob Howard, Doug Seven, Stephen Walther, Christop Wille,
and Don Wolthuis, Draft,SAMS, 201 West 103rd St., Indianapolis, Indiana, 46290
USA,2001

Jeff Prosise, Programming Microsoft .NET, Microsoft Press, 2002

72

APPENDIX A

WEB CODES AND FIGURE

4.1. Web.Config

Passport\ Web.Config

<configuration>

-csystem.web>

<authentication mode="Passport">

<passport redirectUrl="/Login.aspx"/>

</authentication>

-c/system.web>

-c/configuration>

7 The Authentication type is declared.

73

4.2. Def ault.aspx

Passport/Default.aspx

<html>

<head><title>Default.aspx</title><lhead>

<body>

<script runat="server">

Sub page_Load

Dim objPassportID As Passportldentity

objPassport= User .Identity

If objPassportID.GetFromNetworkServer Then

Response.Redirect(Request.Path)

End If
plhPassport.Controls.Add(New LiteralControl(objPassportID.LogoTag2()))

End Sub

-c/script>
<asp:PlaceHolder ID="plhPassport" runat="Server"/>

<hr>
<h2> Welcome to our Web site!</h2>

-c/body>

-c/html>

74

File Ed~ View Favorites Tools Help

<?Back • ,+. , @ @I QI I [@Personal Bar ~Search t!]Favorites C, J ~·~~]El~~~
Address j.~ http://superexpert/chapter/default.aspx . •:I !?Go I links »

Welcome to our Web site!

Figure 4.2. Default page

75

4.3. Login.aspx

Login.aspx

<html>

-cheadxctitle> Login.aspx -c/headc-c/title>

<script runat="server">

Sub Page_Load

Dim objPassportID As Passportldentity

objPassportID=User.ldenttity

If objPassportID.IsAuthenticated Then

Response.Redirect(''Default.aspx")

End If

plhPassport.Controls.Add(New LiteralControl(objPassportID.LogoTag2))

End Sub

<Zscript>

<body>

<h2> Please Login.c/lrZ>

<p>You have requested a restricted resource.cbr>

To continue, please login by clicking the following button:

<IP>

<asp:PlaceHolder ID="plhPassport" runat="server" I>

</body>

<!html>

76

4.4. N ews.aspx

News.aspx

<html>
<head><title> News .aspx</title><lhead>

<script runat="server">
Sub Page_Load(s As Object, e As EventArgs)

Dim objPassportID as Passportldentity

objPassportID=User.Identity

If objPassportID.GetFromNetworkServer Then

Response.Redirect(Request.Path)

End If
plhPassport.Controls.Add(New LiteralControl(objPassportID.LogoTag2()))

If objPassportID.IsAuthenticated Then

pnlAuth.Visible=True

Else

pnlAnon. Visible=True

End If

End Sub

-c/script>

<asp :Placeholder ID="plhPassport" Runat="Server" I>

<hr>
<asp:Panel ID="pnlAuth" Visible="false" Runat="server">

<h2>Customized News-c/hZ>

<p> News customized only for you ...<r>
-c/asp.Panel>
-casp.Panel ID="pnlAnon" Visible="False" Runat="Server">

<h2> Anonymous News <lh2>

-cpc-Newsfor anonymous users«r>
-c/asp.Panel>

-c/body>

-c/html>

77

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGMENTS

	Images
	Image 1
	Image 2

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	CHAPTER ONE: INTRODUCTİON .NET
	1 .2. Introduction to .NET Services
	CHAPTER TWO: Introduction ASP.NET
	2. 1. Introduction
	2.2 Overview of ASP.NET
	2.4. ASP.NET Features
	i
	ii
	iii
	1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	3 .4. Installing .NET Passport Encryption Keys 34
	3.5. Installing the .NET Passport SDK and Passport Manager 35
	3.6. SSL Sign-In 42
	3.7. SSL Certificates 46
	3.8. Passport Authentication Provider in ASP.NET (IIS 6.0) 47
	3.9. Setting Up .NET Passport in IIS 6.0 (IIS 6.0) 49
	3.10 .. NET Passport Environments 50

	Images
	Image 1

	Page 7
	Titles
	3.11. Passport Manager Administration Utility 54
	3.12 .. NET Passport Cookies 66
	3.13 .. NET Passport Unique ID 68
	3.14. Enabling .NET Passport Authentication in IIS 6.0 (IIS 6.0) 69
	CONCLUSION 71
	REFERENCES 72
	APPENDIX A: WEB CODES AND FIGURE 73

	Page 8
	Titles
	INTRODUCTION
	CHAPTER ONE

	Page 9
	Page 10
	Images
	Image 1

	Page 11
	Page 12
	Titles
	CHAPTER TWO
	Introduction ASP.NET

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1

	Page 2
	Titles
	2.4. ASP.NET Features

	Images
	Image 1

	Page 3
	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Titles
	2.8. Overview of ASP.NET Security (HS 6.0)

	Images
	Image 1

	Page 10
	Titles
	2.9. Architecture in ASP.NET (IIS 6.0)
	2.9.1. Integrating with IIS

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Titles
	2.9.2. Using ASP.NET Configuration Files
	Table2.9.1. - ASP.NET Authentication Provider
	:·· .~ .,.._...., -=·"...«, ,.._ ,.'- '>, - -,c=o --~·----"'

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	21

	Images
	Image 1

	Page 13
	Titles
	·-----------
	22

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 14
	Titles
	23
	Table2.9.2. - Definition of web.config's elements
	,.............,,__ - -· --· --- --
	~--·
	I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 15
	Titles
	2.10. How Security Works in ASP.NET (IIS 6.0)

	Images
	Image 1
	Image 2

	Page 1
	Titles
	2.11.1. Scenario 1: Impersonation
	2.11. Data Flow in ASP.NET (IIS 6.0)

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Titles
	+
	C]+------------'
	---- -----------------------·

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 3
	Titles
	2.11.2. Scenario 2 - Forms Authentication

	Images
	Image 1
	Image 2

	Page 4
	Titles
	•
	LJTest
	D
	----- ---------------

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 5
	Images
	Image 1

	Page 6
	Titles
	·---------t-
	·- _,
	CHAPTER THREE
	.NET PASSPORT

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 7
	Images
	Image 1

	Page 8
	Titles
	3.3 .. NET Passport System Requirements
	3.3.1. Web Server Requirements
	3.3.1.1. Hardware
	3.3.1.2. Software

	Images
	Image 1

	Page 9
	Titles
	3.3.1.3. Operations
	3.3.2. Client Computer Requirements
	3.3.3. Browser Compatibility

	Images
	Image 1
	Image 2

	Page 10
	Titles
	3.4. Installing .NET Passport Encryption Keys

	Images
	Image 1
	Image 2

	Page 11
	Titles
	3.4.1. The Key Installation Program

	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Images
	Image 1

	Page 3
	Titles
	3.6. SSL Sign-In

	Images
	Image 1

	Page 4
	Titles
	3.6.1. SSL Required

	Images
	Image 1

	Page 5
	Titles
	3.6.2. Security Key

	Images
	Image 1
	Image 2

	Page 6
	Titles
	3.6.3. Why Use SSL Sign-In?
	3.6.4. Requirements for Using SSL Sign-In
	3.6.5. Possible Disadvantages of Using SSL Sign-In?

	Images
	Image 1
	Image 2

	Page 7
	Titles
	3.7. SSL Certificates

	Images
	Image 1
	Image 2

	Page 8
	Titles
	3.7.1. Installing SSL Certificates on a Server
	3.7.2. Installing SSL Certificates on a Browser

	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Titles
	-

	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Titles
	..: L
	~l
	3.11. Passport Manager Administration Utility

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	57
	Figure3.11. - Passport Manager Administration utility
	The following figure shows the main user interface of the Passport Manager Administration

	Images
	Image 1
	Image 2

	Page 4
	Titles
	NIA

	Images
	Image 1

	Tables
	Table 1

	Page 5
	Titles
	59

	Images
	Image 1

	Page 6
	Images
	Image 1

	Tables
	Table 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Tables
	Table 1

	Page 9
	Images
	Image 1

	Tables
	Table 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	3.12 .. NET Passport Cookies
	3.12.1. Domain-Authority Cookies
	Table3.12.1. - Command name
	Description and Contents
	Common Name Label

	Images
	Image 1

	Page 13
	Titles
	3.12.2. Participating Site Cookies
	Table 3.12.2. - Common name

	Images
	Image 1

	Page 14
	Titles
	3.13 .. NET Passport Unique ID

	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	CONCLUSION

	Images
	Image 1

	Page 3
	Titles
	RERERENCES
	http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/llS

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	APPENDIX A
	WEB CODES AND FIGURE

	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1

	Page 6
	Titles
	Welcome to our Web site!
	Figure 4.2. Default page
	75

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 7
	Page 8

