
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

STOCK CONTROL MANAGAMENT

Graduation Project
COM-400

Student: Menderes BOZKURT

Supervisor: Ümit İLHAN

Nicossia - 2004

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

CONTENTS

INTRODUCTION

1

11

111

İV

CHAPTER 1

VİSUAL BASİC PROGRAM

1.1 VB advantages

1.2 Very First Visual Basic Program

1.3 The Form Object

1.4 Adding Controls to a Form

1. 5 Setting Properties of Controls

1.6 Naming Controls

1. 7 Adding Code

1.8 Running and Debugging the Program

1.9 Refınning the Sample Program

1. 1 O Ready, Compile, Run;

CHAPTER2

DATABASE AND ACCESS

3

3

3

4

5

7

9

11

12

15

17

2. 1 Why is the computer necessary in our life

2.2 How to develop a database application

2.3 Relational database

2.4 The facilities of access

2.5 Visual Basic and Access-

2.5. 1 DAO (Data Access objects)

2.5.2 ADO (Active X Data Objects)

2.6 The Application Of Access

2.6.1 Tables Design

CHAPTER3

MAİN PROGRAM

3. 1 MA.İN :MENU

21

21

21

22

22

23

23

24

25

26

26

BALANCES

CONCLUSSION

RE FE RANCES

53

54

55

3.2 THE PASSWORD SCREEN 29

3.;3 UNIT EXPIRE DATE 31

3.4 UNIT RECORD OF MADICINE 33

3 .5 UNIT RECORDE 35

3 .6 UNITE ACCOMPANIMENT 42

3. 7 UNIT CALCULATOR 46

3.8 UNIT SALLING 49

3 .9 UNIT REPORT 51

3 .1 O UNIT DATA ENVIRONMENT 52

AC-KNOWLDGMENTS

First of all I would like to thank Mr. UMIT lLHAN for his endless id untiring

support and help-and his persistence, in the course of the preparation of this oject.

Under his guidance, I have overcome many difficulties that I face during the

various stages of the preparation of this project.

Finally, I would like to thank my family, especially my father who na te is Mr

HASAN BOZKURT and my brothers who name is Mr MURAT BOZKUR1 MUSA

BOZKURT, IBRAHIM BOZKURT and ALİi BOZKURT, .Their love and .uidance

saw me through doubtul times. Their never-ending belief in me and their

encouragement has been a crucial and a very strong pillar that has held me t< .ether

ABSTRACT

As the information age has effected every aspect of om life, tl need for

computer-iz-ing-manyinformation systems has raised.
Once oft-he important branches that are effected by information revc ıtion is the

computer programming languages.
This project is concerned about using compueter program iı Pharmacy

management system . It is written using Visual Basic 6.0 programming le guage and

used Microsoft Access Database language for databases. Visual Basic is on of the best

and easy programming languages.
This project is accomlete Pharmacy management program, tha covers all

services needed in most Pharmacy, such as computer related irıforrnatk .madicine,

goods and many other Pharmacy management related services.
Before coming to this point, this project has gone through some imp: tant steps;

• First one was the requirements definition for which I r d to go to

some Pharmacy and study their systems.

• The second steps were designing the system and sof ıre that ıs

intended to serve an integrated Pharmacy management sysı ın.

• The final steps was the implementation of the design on t : computer

using Visual Basic Language.

INTRODUCTION

Visual Basic is a Microsoft Windows programming Language. Visu Basic

programs are created in an Integrated Development Environment (IDE) . 1 ıe IDE

allows the programmer to create, run and debug Visual Basic programs corıv: .iently.

IDEs allow a programmer to create working programs in a fraction of the tin that it

would normally take to code programs without using IDEs. The process oJ apidly

creating an application is typically referred to as Rapid Application Deve .pment

(RAD). Visual Basic is the world's most widely used RAD language.

Visual Basic is derived from the BASIC programming language. Visu Basic

is a distinctly different language providing powerfull features such as graphi al user

interfaces, even handling, access to the Win32 API, object-oriented featur. , error

handling, structured programming, and much more.

The Visual Basic IDE allows Windows programs to be created witı .ut the

need for the programmer to be a Windows programming export.
r

Microsoft provides several version of Visual Basic, namely the 1 arnıng

Edition , the Professional Edition and the Enterprice Edition. The Learning .dition

provides fundemantal programming capabilities than the Learning Edition an is the

choice of many programmers- to write Visual Basic applications. The Eı erprıce

Edition is used for developing large-scale computing systems that meet the ı .eds of

substandial organizations.

Visual Basic is an interpreted language. However , the professio al and

Enterprice Edition allows Visual Basic code to be compiled to native code.

Visual Basic evolved from BASIC(Beginner's All purpose S nbolic

Instruction Code). Basic was developed in the mid 1960's by· Professoı John

Kemeny and Thomas Kurtz of Darthmouth College as a language for writin: simple

programs. BASIC's primary purpose was to help people learn how to progran

The widespread use of BASIC with various types of computers (so etimes

called hardware platforms) led to many enhancements to the language. \ ith the

development of the Microsoft windows graphical user interface (GUI) in 1e late

1

1980s and the early 1990s, the natural evolution of BASIC was Visual Basit which

was created by Microsoft Corporation in 1991.

Until Visual Basic appeared, develoing Microsoft Windov -based

applications was a diffucult and cumbersome process. Visual Basic greatly si ıplifies

Windows application development. Since 1991 six versions have been releas i, with

the latest-Visual Basic 6-appearing in september 1998.

After a brief explanation about the Visual Basic 6.0 and the de, loping

layers, I hope that you will find the necessary information that you need , about

the Visual Basic even if you are a text based programmer.

2

CHAPTER!

Visual Basic Program

1.1.VB Advantages

So what makes VB a great programming language? The answer is simply that 'B

provides more of the actual code for a programmer than any other non-visual

programming language.

If you've ever programmed in theolder BASIC or other command line prograı .nıng

language, then you'll remember that the programmer had to write the code for ıe

entire user interface. Todays windows, buttons, lists, and other application feaı res

such as menus were not built-in to the BASIC programming language. Prograı ıners

had to create the code for these features on their own!

As much as 80% of a programmer's time was spent writing code to create the ı er

interface to his applications (the visual interface). To eliminate this huge dı:ain ,n a

programmer's time, Microsoft has provided Visual Basic with the built-in c: ability

to create the user interface using nothing more than a mouse!

This built-in interface creation capability has had the further benefit of stand dizing

on the user interface to Windows applications. Today, users can move fr m one

Windows program to another and see the same basic interface tools to wor with -

allowing them to concentrate solely on the unique capabilities of the applicatic

The bottom line is that you can create an entire application shell (the user iı erface)

very quickly and then spend most of your time working on the feature which

differentiate you application from its competition.

1.2.Very First Visual Basic Program

Visual Basic lets you build a complete and functional Windows applier on by

dropping a bunch of controls on a rm and writing some code that execut . when

something happens to those controls or to the Im itself For instance, you c ı write

code that executes when a [fll loads or unloads or when the user resizes it. L ewıse,

you can write code that executes when the user clicks on a control or types v rile the

control has the input focus.

3

This programming paradigm is also known as event-driven programming ecause

your application is made-up of several event procedures executed in an ord ,· that's

dependent on what happens at run time. The order of execution can't, in geı ral, be

foreseen when the program is under construction. This programming model t ntrasts

with the procedural approach, which was dominant in the old days.

This section offers a quick review of the event-driven model and uses a .ample

application as a context for introducing Visual Basie's intrinsic controls, w h their

properties, methods, and events. This sample application, a very simple one, ıuerres

the user for the lengths of the two sides of a rectangle, evaluates its perim er and

area, and displays the results to the user. Like all lengthy code examples and p .grams

illustrated in this book, this application is included on the companion CD.

1.3.The [m Object

After this long introductory description of properties, methods, and events ıat are

common to most Visual Basic objects, it's time to see the particular features :' all of

them individually. The most important visible object is undoubtedly the rm object

because you can't display any control without a parent [Zil. Conversely, nı can

write some moderately useful applications using only [i!III that have no car ·ols on

them. In this section, I'll show a number of examples that are centered oı forms'

singular features.

You create a new [m at design time using the Add [imi command from the)roject

menu or by clicking on the corresponding icon on the standard toolbar. ' ıu can

create rımm from scratch, or you can take advantage of the many rm tt ıplates

provided by Visual Basic 6. If you don't see the dialog box shown in Fig ·e 2-7,

invoke the Options command from the Tools menu, click the Environm~nt b, and

select the topmost check box on the. right.

Feel free to create new [m templates when you need them. A rm template Ioesn't

necessarily have to be a complexJim with many controls on it. Even an emj y.
with a group of properties carefully set can save you some precious ti, e. For

4

example, see the Dialog m template provided by Visual Basic. To prodı e your

·"".UStOm. templates, you just have to create a rm, add any necessary com ıls and

ode, and then save it in the \Template\fflffl directory. (The complete path o Visual

Basie's template directory can be read and modified in the Environment ta of the

Options dialog box.)

:~'t t!~wffl l~<)ı.ıt: Qi~~~ W~b 6:ı'·Wf}!:t Ci~~.

tı .tl

1.4.Adding Controls to a B
We're-ready to get practical. Launch the Visual Basic IDE, and select a Stand, d EXE

project. You should have a blank __ near the center of the work are More

accurately, you have am designer, which you use to define the appearanı of the

main window of your application. You can also create otherm, if you ne< them,

and you can create other objects as well, using different designers (the Useı .ontrol

and UserDocument designers, for example). Other chapters of this book are evoted

to such designers.

5

········•·•···············•···

One of the greatest strengths of the Visual Basic language is that programn .rs can

design an application and-then test it without leaving the environment. But yoı should

be aware that designing and testing a program are two completely different t .ks. At

design time, you create your ri'm!I and other visible objects, set their proper ıs, and

write code in their event procedures. Conversely, at run time you monitor th effects

of your programming efforts: What you see on your screen is, more or less, w tt your

end users will see. At run time, you can't invoke the ri:1Jm designer, and you h: e only

a limited ability to modify the code you have written at design time. For insta, :e, you

can modify existing statements and add new ones, but you can't add new pro .dures,

rmml, or controls. On the other hand, at run time you can use some diagnos c tools

that aren't available at design time because they would make no sense in that .ontext

(for example, the Locals, the Watches, and the Call Stack windows).

To create one or more controls on a form's surface, you select the control t)e that

you want from the Toolbox window, click on the mJm, and drag the mous cursor

until the control has the size and shape you want. (Not all controls ar~ rı izable.

Some, such as the Timer control, will allow you to drag but will return) their

original size and shape when you release the mouse button.) Alternatively,)U can

place a control on the form's surface by double-clicking its icon in the Toon .x: this

action creates a control in the center of the rm. Regardless of the metl .d you

follow, you can then move and resize the control on the [m using the mouse

TIP

If you need to create multiple controls of the same type, you can follov

this three-step procedure: First, click on the control's icon on the Tooİbo:

window while you keep the Ctrl key pressed Next, draw multiple controls b~

clicking the left button on the form's surface and then dragging the cursor

Finally, when you're finished creating controls, press the Escape key or clicl

the Pointer icon in the upper left corner of the Toolbox.

6

To complete our Rectangle sample application, we need four TextBox centre :-two

or entering the rectangle's width and height and two for showing the ı suiting

perimeter and area, as shown in Figure 1-8. Even if they aren't strictly requir 1 from

an operational point of view, we also need four Label controls for clarif ng the

purpose of each TextBox control. Finally we add a CommandButton contro named

Evaluate that starts the computation and shows the results.

Place these controls on the [m, and then move and resize them as depicted i Figure

1-8. Don't worry too much if the controls aren't perfectly aligned because)U can

later move and resize them using the mouse or using the commands in the 7ormat

menu.

Figure 1-8 The Rectangle Demo [:ml! at design time, soon after the place ıent of

its controls.

1.5.SettingProperties of Controls

Each control is characterized by a set of properties that define its beha- Jr and

appearance. For instance, Label controls expose a Caption property that con sponds

to the character string displayed on the control itself, and a BorderStyle prop ty that

affects the app.earance of a border around the label. The TextBox contra ; most

important property is Text, which corresponds to the string of characters that ppears

within the control itself and that can be edited by the user.

In all cases, you can modify one or more properties of a control by selec ng the

control -in the----designer and then pressing F4 to show the Properties wind. v. You

7

scroll through the contents of the Properties window until the propert you're

erested in becomes visible. You can then select it and enter a new value.

.sing this procedure, you can modify the Caption property of all four Label .ıntrols

&Width, &Height, &Perimeter, and &Area, respectively. You win note ıat the

ampersand character doesn't appear on the control and that its effect is to u Ierline

e character that follows it. This operation actually creates a hot key and assr iates it

.ith the control. When a control is associated with a hot key, the user can [uickly

move the focus to the control by pressing an Alt+x key combination, as your rmally

o within most Windows applications. Notice that only controls exposing a 'aption

roperty can be associated with a hot key. Such controls include the Label -rame,

CommandButton, OptionButton, and CheckBox.

A quick way to select all the controls on a m is to click anywhere Ol

the rill and press the Ctr!+ A key combination. After selecting all controls

you can deselect a few of them by clicking on them while pressing the Shift o

Ctr! key. Note that this shortcut doesn't selectcontrols that are contained iı

other controls.When you select a group of controls and then press the F4 key

the Properties windowdisplays only the properties that are common to all th,

selected controls. The onlyproperties that are exposed by any control are Leji

Top, Width, and Height. If youselect a group of controls that display a string o

haracters, such as the TextBox,Label, and CommandButton controls in ou

Rectangle example, the Font property isalso available and can therefore b.

selected. When you double-click on the Font item in the Properties window,;

Font dialog box appears. Let's select a Tahoma font and set its size to 1

points.

8

Figure 1-9. The Rectangle Demo [Im! at design time, after setting the c ntrols'

properties.

T-IP

"·····"·"·······""··""""·"···································---·,•.•.•.•.•.•.•.•.•,•.•,•,•,•,•.•.•.•.•.•.•,•.•,•.•.•.•.•.•.•.•.•,•,•.•,•,•.•.•.•.•.•,•,•,•,··•·•·•·•······•·•·•·•·····················

When a control is created from the Toolbox, its Font property reflect

he font of the parent tmll. For this reason, you can often avoi:

individual font settings by changing the form's Font property befor

placing any controls on the tmll itself

1.6.Naming Controls

One property that every control has and that's very important to Visu: Basic

programmers is the Name property. This is the string of characters that ident ies the

control in code. This property can't be an empty string, and you can't have two or

more controls on a mJm with the same name. The special nature of this prr erty is

indirectly confirmed by the fact that it appears as (Name) in the Properties , ındow,

where the initial parenthesis serves to move it to the beginning of the property st.

When you create a control, Visual Basic assigns it a default name. For exan -le, the

first TextBox control that you place on the [m is named Text], the secorı one ıs

named Text2, and so forth. Similarly, the first Label control is named Labell, nd the

first CommandButton control is named Command]. This default naming scheı e frees

you from having to invent a new, unique name each time you create a control Notice

that the Caption property of Label and CommandButton controls, as well as ıe Text

property of TextBox controls, initially reflect the-control's Name property, but he two

properties are independent of each other. In fact, you have just modified the 'aption

9

Text properties of the controls in the Rectangle Demo tilJI without affect g their

'ame properties.

Because the Name property identifies the control in code, it's a good habit ton .dify it

-- that it conveys the meaning of the control itself This is as important ?,S : lecting

eaningful names for your variables. In a sense, most controls on a rm an .pecial

rariables whose contents are entered directly by the user.

Microsoft suggests that you always use the same three-letter prefix for all the .ıntrols

of a given class. The control classes and their recommended prefixes are show ın

Table 1-1.Table 1-1. Standard three-letter prefixes for [B and all i trinsic

controls.

Control Class II Prefıx II Control Class II Pre/ıx J
CommandButton II cmd II Data II~ J
TextBox II txt II HScrollBar I~~ J
Label II lb! II VScrollBar IE=]

PictureBox II pie II DriveListBox I~~ J
OptionButton II opt II DirListBox ıı~=]

II chk il FileListBox \~~]

=Comb=oBox==ıı cbo il Line \[ı::==]

ListBox \[ısı il Shape · \[£ J
Timer il tmr II OLE ıı~=]

JI fra ii• -: J

CheckBox

Frame

For instance, you should prefix the name of a TextBox control with txt, then, 1e of a

Label control with lbl, and the name of a CommandButton control with cmo -

10

ld also follow this convention, and the name of a • should be prefi: d with

frm string. This convention makes a lot of sense because it lets you dedı e both

control's type ana meaning from its name. This book sticks to this ıaming

nvention, especially for more comp-lex examples when code readability is at take.

our example, we will rename the Textl through Text4 controls as ü Width,

ct:Height, txtPerimeter, and txtArea respectively. The Command! control vill be

enamed cmdEvaluate, and the four Label 1 through Label4 controls will be ı named

lWidth, lblHeight, lblPerimeter, and lblArea, respectively. However, ple: e note

at Label controls are seldom referred to in code, so in most cases you can le, e their

1.7.Adding Code

Up to this point, you have created and refined the user interface of your prog ım and

created an application that in principle can be run. (Press FS and run it to c nvınce

yourself that it indeed works.) But you don't have a useful application yet. 'o turn

your pretty but useless program into your first working application, you nee, to add

some code. More precisely, you have to add some code in the Click even of the

mdEvaluate control. This event fires when the user clicks on the Evaluate b uorı or

presses its associated hot key (the Alt+E key combination, in this case).

To write code within the Click event, you just select the cmdEvaluate control; ıd then

press the F7 key, or right-click on it and then invoke the View Code comma j from

the pop-up-menu. Or you simply double-click on the control using the lef mouse

utton. In all cases, the code editor window appears, with the flashing cursoı ocated

etween the following two lines of code:

?rivate Sub cmdEvaluate Click()

='....-ıd Sub

Visual Basic has prepared the template of the Click event procedure for you, ıd you

have to add one or more lines of code between the Sub and End Sub staten nts. In

this simple program, you need to extract the values stored in the txtWi th and

11

reWidth = CDbl(txtWidth.Text)

reHeight = CDbl(txtHeiqht.Text)

iiXIHeightcontrols, use them to compute the rectangle's perimeter and area, an assıgn

results to the txtPerimeter and txtArea controls respectively:

~·::.:..vate Sub cmdEvaluate Click ()

' Declare two floating point variables.

Dim reWidth As Double, reHeight As Double

' Extract values from input TextBox controls.

' Evaluate results and assign to output text boxes.

txtP·erimeter. Text = CStr ((reWidth + reHeight) * 2)

txtArea.Text = CStr(reWidth * reHeight)

.::.."1d Sub

1.8.Running and Debug--ging-theProgram

You're finally ready to run this sample program. Yeu can start its execution ir .everal

ways: By invoking the Start command from the Run menu, by click ıg the

orresponding icon on the toolbar, or by pressing the FS key. In all cases, y ı'll see

the 11111 designer disappear arrd be replaced (but not necessarily in the same .isition

on the screen) by the real 11111. You can enter any value in the leftmost · .xtlsox

ontrols and then click on the Evaluate button (or press the Alt+E key combin ion) to

see the calculated perimeter and area in the rightmost controls. When you're 1 ıished,

end the program by closing its main (and only) rm.

CAUTION
--· .• ,n ,,,,.,,,,,,,,_,,,,,.,,.•,•.•.•.•.•.•.•,•,•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.v.•.•.•.•.•.•.•.• •·•,•.•.•.•.•,•,•,•.••. •.•.•.•.•.•.•.. •.•.•.•.•.•.•.•.•.•.•.•.•.•,•.•.•.•.•,•.•.. •.•.n •.•.•.•.. ,, •.. -. ,,........ · ·

You can also stop any Visual Basic program running in the environment b­

· voking the End command from the Run menu, but in general this isn't ;

good approach because it prevents a few 11111-related events-namely' th,

12

QueryUnload and the Unload events-from firing. In some cases, these even

rocedures contain the so-called clean-up code, for example, statements tha
.•. .

close a database or delete a temporary file. If you abruptly stop the executioı

of a program, you're actually preventing the execution of this code. As ,

general rule, use the End command only if strictly necessary.This program i:

so simple that you hardly need to test and debug it. Of course, this wouldn't b.

true for any real-world application. Virtually all programs need to betested an:

debugged, which is probably the most delicate (and often tedious) part of,

programmer's job. Visual Basic can't save you from this nuisance, but at leas

it offers so many tools that you can often complete it very quickly. To se:

some Visual Basic debugging tools in action, place a breakpoint on the firs

line of the Click event procedure while the program is in design mode. Yoı

an set a breakpoint by moving the text cursor to the appropriate line and theı

invoking the

Toggle Breakpoint command from the Debug menu or pressing the F9 short .ıt key.

You can also set and delete breakpoints by left-clicking on the gray vertical ~ ip that

runs near the left border of the code editor window. In all cases, the line on w ich the

breakpoint is set will be highlighted in red.

After setting the breakpoint at the-beginning of the Click event procedure, pre , FS to

run the program once again, enter some values in the Width and Height fie ls, and

then click on the Evaluate button. You'll see the Visual Basic environment ent · break

mode, and you are free to perform several actions that let you better understan what's

actually going on:

• Press F8 to execute the program one statement at a time. The Visu Basic

instruction that's going to be executed next-that is, the current statem nt -is

highlighted in yellow.

• Show the value of an expression by highlighting it in the code wine ,w and

then pressing F9 (or selecting the Quick Watch command from the Debug

menu). You can also add the selected expression to the list of values d played

in the Watch window, as you can see in Figure 1-10.

13

• An alternative way to show the value of a variable or a property is to n ıve the

mouse cursor over it in the code window; after a couple of seconds, , yellow

data tip containihg the corresponding value appears.

• Evaluate any expression by clicking on the Immediate window and typ ıg ? or

Print followed by the expression. This is necessary when you need to /aluate

the value of-an -expressiorı that doesn't appear in the code window.

• You can view the values of all the local variables (but not express; ns) by

selecting the Locals command from the View menu. This comı and is

particularly useful when you need to monitor the value of many local , riables

and you don't want to set up a watching expression for each one.

• You can affect the execution flow by placing the text cursor on the sı tement

that you want to execute next and then selecting the Set Next Sı tement

command from the Debug menu. Or you can press the Ctrl+ 9 key

combination. You need this technique to skip over a piece of code · at you

don't want to execute or to reexecute a given block of lines without n tarting

the program.

Figure 1-10. The Rectangle Demo program in break mode, with severa debug

tools activated.

14

first Visual Basic project, Rectangle.vbp, is just a sample program, but ti s ıs no

use not to refine it and turn it into a complete and robust, albeit trivial, appl .ation.

1.9.Refıning the Sample Program

The first type of refinement is very simple. Because the txtPerimeter and sctArea

ontrols are used to show the results of the computation, it doesn't make .nse to

ake their contents editable by the user. You can make them read-only f lds by

setting their Locked property to True. (A suggestion: select the two controls, I ess F4,

and modify the property just once.) Some programmers prefer to use Label co rols to

. play result values on a m, but using read-only TextBox controls ıas an

advantage: The end user can copy their contents to the clipboard and pas those

contents into another application.

A second refinement is geared toward increasing the application's consiste :y and

usability. Let's suppose that your user uses the Rectangle program to deten ne the

erimeter and area of a rectangle, takes note of the results, and then enter a new

ridth or a-new.height (or both). Unfortunately, an instant before your user c cks on

e Evaluate button the phone rings, engaging the user in a long conversatioı When

e or she hangs up, the !m shows a plausible, though incorrect, result. How an you

sure that those values won't be mistaken for good ones? The solution is .imple,

indeed: as soon as the user modifies either the txtWidth or the txtHeight · -xtfsox

controls, the result fields must be cleared. In Visual Basic, you can accomp sh this

ask by trapping each source control's Change event and writing a cc ple of

statements in the corresponding event procedure. Since Change is the defaı event

or TextBox controls-just as the Click event is for CommandButtons contrc :-you

nly have to double-click the txtWidth and txtHeight controls on them desi ner to

have Visual Basic create-the template for the corresponding event procedures This is

e code that you have to add to the procedures:

?rivate Sub txtW-rdt-h_Change ()

txtPerimeter.Text ""
txtArea.Text 1111

~--ıd Sub

15

?=~vate Sub txtHeight_Change()

txtPerimeter.Text

txtArea. Text = JI LI

~:i Sub

Note that you don't have to retype the statements in the txtHeight's Chan; event

ocedure: just double-click the control to create the Sub ... End Sub temp] e, and

en copy and paste the code from the txtWidth_Click procedure. Wheı you're

- · shed, press FS to run the program to check that it now behaves as expected

The purpose of the next refinement that I am proposing is to increase the pı gram's

bustness. To see what I mean, run the Rectangle project and press the l -aluate

tton without entering width or height values: the program raises a Type 1V .match

error when trying to extract a numeric value from the txtWidth control. If thi were a

eal-world, compiled application, such an untrapped error would cause the apj ication

end abruptly, which is, of course, unacceptable. All errors should be trap ed and

ealt with in a convenient way. For example, you should show the user w .re the

rob lem is and how to fix it. The easiest way to achieve this is by setting ,up 11 error

ndler in the cmdEvaluate_Click procedure, as follows. (The lines you would ıdd are

boldface.)

==ivate Sub cmdEvaluate Click()

' Declare two floating point variables.

Dim reWidth As Double, reHeight As Double

On Error GoTo WrongValues

' Extract values from input textbox controls.

reWidth = CDbl(txtWidth.Text)

reHeight = CDbl(txtHeight.Text)

Ensure that they are positive values.

If reWidth <= O Or reHeight <= O Then GoTo WrongValues

' Evaluate results and assign to output text boxes.

txtPerimeter.Text = CStr((reWidth + reHeight) * 2)

txtArea.Text = CStr(reWidth * reHeight)

Exit Sub

rongValues:

MsgBox "Please enter valid Width and Height values",

vbExclamation

16

5:.:.b

that we have to add an Exit Sub statement to prevent the M.sgBox-statemı ıt from

_ erroneously exeeuted during the normal execution flow. To see how he On

statement works, set a breakpoint on the first line of this procedure, un the

ication, and press the F8 key to see what happens when either of the - .xtlsox

ols contains an empty or invalid string.

IO.Ready, Compile, Run!

al Basic is a very productive programming language because it allow: you to

ild and test your applications in a controlled environment, without first pro, ıcıng a

mpiled executable program. This is possible because Visual Basic conve s your

rce code into p-eode and then interprets it. P-code is a sort of inteı ıediate

guage, which, because it's not executed directly by the CPU, is slower t m real

ively compiled code. On the other hand, the conversion from source code tı p-code

res only a fraction of the time needed to deliver a compiled application. 'l us ıs a

eat productivity bonus unknown to many other languages. Another bene of p­

de is that you can execute it step-by-step while the program is runnin: in the

environment, investigate the values of the variables, and-to some exter -even

odify the code itself. This is a capability that many other languages don't ave or

.ve acquired only recently; for example, the latest version of Microsoft Vis ıl C++

s it. By comparison, Visual Basic has always offered this feature which

undoubtedly contributed to making it a successful language.At some time du ng the

rogram development, you might want to create an executable (EXE) prograr There

are several reasons to do this: compiled programs are often (much) fas r than

interpreted ones, users don't need to install Visual Basic to run your applicat .n, and

rou usually don't want to let other people peek at your source code. Visu Basic

makes the compilation process a breeze: when you're sure that your appli: tion is

ompleted, you just have to run the Make projectname command from the File nenu.

It takes a few seconds to create the Rectangle.exe file. This executable file is

independent of the Visual Basic environment and can be executed in the samı vay as

any otlier Windows application-. for example, from the Run command of 1 ~ Start

menu. But this doesn't mean that you can pass this EXE file to another ı er and

17

ect that it works. All Visual Basic programs, in fact, depend on a nu ber of

illary files-most notably the MSVBVM60.DLL file, a part of the Visu Basic

time-and won't execute accurately unless all such files are correctly inst led on

e target system.,

For this reason, you should never assume that a Visual Basic program will ex, .ute on

every Windows system because it's working on your computer or on other co ıputers

· your office. (If your business-is software development, it's highly probable hat the

Visual Basic environment is installed on all the computers around you.) ıstead,

repare a standard installation using the Package and Deployment Wizard, .nd try

running your application on a clean system. If you develop software profes: .ınally,

you should always have such a clean system at hand, if possible with ıst the

perating system installed. If you're an independent developer, you probably· on't be

· clined to buy a complete system just to test your software. I found a very sin .le and

relatively inexpensive solution to this dilemma: I use one computer with reı ovable

hard disks, so I can easily test my applications under different system configı ations.

And since a clean system requires only hundreds of megabytes of disk spac . I can

recycle all of my old hard disks that aren't large enough for any other use.

Before I conclude this chapter, you should be aware of one more det. 1. The

compilation process doesn't necessarily mean that you aren't using p-code In the

Visual Basic jargon, compiling merely means creating an executablefile. In J ct, you

an compile to p-code, even if this sounds like an oxymoron to a developer omıng

from another language. (See Figure 1-11.) In this case, Visual Basic creates an ~XE

file that embeds the same p-code that was used inside the development envir nment.

That's why you can often hear Visual Basic developers talking about p-c le and

native-code compilations to better specify which type of compilation they're ı ferring

O.

18

Figure 1-11. You can opt to compile to p-code or native code in the Com ile tab

of the Project Properties dialog.

In general, such p-code-compiled programs run at the same speed as int preted

programs within the IDE, so you're missing one of the biggest benefit: of the

compilation.process. But here are a few reasons why you might decide to en te a p­

code executable:

• P-code-compiled executables are often smaller than programs com led to

native code. This point can be important if you're going to distribı e your

application over the Internet or when you're creating ActiveX controls hat are

embedded in an HTML page.

• P-code compilation is often faster than native code compilation, so ye might

prefer to stick to p-code when you compile the program in the test pl ıse. (A

few types of applications can't be tested within the IDE, most ıotably

multithreaded components.)

• If your application spends most of its time accessing databases or re rawıng

windows, compilation to native code doesn't significantly impı ve its

19

performance because the time spent executing Visual Basic code i: only a

fraction of the total execution time.... ~

"e've come to the end ofthis tour de force in the Visual Basic IDE. -In this hapter,

·e illustrated the basics of Visual Basic development, and I hope I've give you a

e of how productive this language can be. Now you're ready to move to ıe next

pters, where you can learn more about - and controls and about how ı make

best of their properties, methods, and events.

20

.How to develop a database application

-CHAPTER2

DATABASE AND ACCESS

. Jlıy is the computer Anecessary in our life
Computer software has become a driving force; it is a powerful force that s< Decision­

. g and serves as a basis for modern investigation and problem solving.Corr .uters have

me a key -factor that gives products and services that modern look ,its e ıbedded in

ems of all kinds;medical,industrial,military,entertainment,even office-based pr ducts.

Computer system in a service management record can promise better speed and

· ency with almost-HG-Ghange-of_effors.

steps involved in database application development any relational data base ıpplication

e are always the same basic steps to follow.Microsoft Access is a relation, data base

~emenLs:y:stem_he.cau.s.e all data is stored in an Access data base in the fon of simple

s.Another name-for-atable is relation.

steps of Access database design like this

• Database design

• Tables design

• Forms design

• Query design

Report design

• Macro design

Modüles design

.Relational database
DBMS has established themselves as one of the primary means for data .torage for

iıııixmation based systems ranging from large business applications to simpl pc based

s.However a relational database management system (RDBMS) is the sys em used to

with data management operations more than 15 years,and still improvir ,providing

sophisticated storage,retriaval systems.Relational database manageme t systems

21

ides organisations with ability to handle huge ammount of data and chan ing it into

· ngful informatiou. •- ..

.The facilities of access
crosoft Access is relational DBMS(Database Management System) with all ıe features

essary to develop and use a data base application.The facilities it offers can I ~ found on

st modern relational DBMSs and all versions of Access.

• Tables are where all the data is stored. They are usually linked by relati. ıships.

• Queries are the way you extraet data from the database

• Forms are the method used for input and display of database data.

• Reports are used to display nicely formatted data on paper.

• Maeres are sets of simple commands that execute sequences , · database

operations.

• Modules are used to stare general-purpose VB database program code .

.Visual basic and Access

Microsoft Acess is the DBMS(Database Management System) VB and Access in

.eloping data base applications is that for non-trivial. database applications, VB ,ffers more

ibility to the developper then the VB comes with Access.Access database using VB

.., am code and setting properties.

first method of linking VB forms to Access databases called the data contı ,\.The data

ol is a simple VB control that you drag on to a VB form to link it to y< tr choosen

ase.The data can be displayed and updated using tiedtext boxes,list b xes.cornbo

es.and grids.

22

.1.DAO(Data Access objects)
The D-AQ--af)f)FeaGh to database programming often requires more code .bı like SQL

pared to the Quıy-Besign View,offers greater control to the database progr. nmer over

r's going on his/her application.
Data Access Objects are things like databases,recoı:dsets,table and query defi itions, and

ds,Rather than tying a recor set to a data control when we use DAO we sha allow our

grams to create and manipulate recordsets.

~.2.ADO(Active X Data Objects)
The ADO programming is in principle very similar to DAO programming b t cointains

e new commands.ADO is Microsoft's new approach to database programı ing which

to give the programmer a more consistent way of connecting to a bro; l range of

erent types of data source.

23

.The application of Access

Access is begin used as the development tool,and the application is going to b. a single

application,which means its going to be installed on one machine,this applica on

.ever may be used by more than one user on many computers sharing the same ables by

g simple-advancements.

a new database,afterha-V-ing specified the database name and path as above.yoı will be

onted with the following window.

Figurel.1. The window of database

~ window shows that there are notables in database yet.Click new button.

Figure 1.2. The window is type of table design

24

ect the Design View by clicking on the listbox and then the OK button.Design liew gives

~ more control over the design of our database than either the Table Wizard or tr Datasheet

iew.Import Table is... used to bring in data from an existing database and Li ;z Table is

abase to an external table.

-.6.1. Tables Design
my project's table designing with primary key. Guide Lines for making

oject.

e database consists of one tables;

ablel

database

Please pay attention on the naming conventions of objects, you are requ ed to use

propriate names using these conventions for your objects.

eTable one have got eleven fields one-is its unique name

I ~ı~~~)~,trt;1;~'.~ı/t~~ rg~;~!:~;;:i "
n~ıı1~.. J~tirı
expi,::ırısltltın •• tııetır~ ..
pie,.¢ . . . {\'\etin
a_ıten:ı ·• Metin

··~1!~~10 -.- ·.·.·.··•·ı:~;s:~t_···
price .. •· tli¢t~-:,
UtL ... ··············::::·:::::: }~tr!..
f_t}~~ . . . ·.· Ulbt!P ·.·.·.·.·.·
R:_,,ıttt _ _ J,:¥t1ı'Ş1~L ...
P~t);J?!<:ın~tiı?ı\ . . .•• ı:~tjı~ __

Fi_gure 1.3 The Tablet

25

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

STOCK CONTROL MANAGAMENT

Graduation Project
COM-400

Student: Menderes BOZKURT

Supervisor: Ümit İLHAN

Nicossia - 2004

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

CONTENTS

INTRODUCTION

1

11

111

İV

CHAPTER 1

VİSUAL BASİC PROGRAM

1.1 VB advantages

1.2 Very First Visual Basic Program

1.3 The Form Object

1.4 Adding Controls to a Form

1. 5 Setting Properties of Controls

1.6 Naming Controls

1. 7 Adding Code

1.8 Running and Debugging the Program

1.9 Refınning the Sample Program

1. 1 O Ready, Compile, Run;

CHAPTER2

DATABASE AND ACCESS

3

3

3

4

5

7

9

11

12

15

17

2. 1 Why is the computer necessary in our life

2.2 How to develop a database application

2.3 Relational database

2.4 The facilities of access

2.5 Visual Basic and Access-

2.5. 1 DAO (Data Access objects)

2.5.2 ADO (Active X Data Objects)

2.6 The Application Of Access

2.6.1 Tables Design

CHAPTER3

MAİN PROGRAM

3. 1 MA.İN :MENU

21

21

21

22

22

23

23

24

25

26

26

BALANCES

CONCLUSSION

RE FE RANCES

53

54

55

3.2 THE PASSWORD SCREEN 29

3.;3 UNIT EXPIRE DATE 31

3.4 UNIT RECORD OF MADICINE 33

3 .5 UNIT RECORDE 35

3 .6 UNITE ACCOMPANIMENT 42

3. 7 UNIT CALCULATOR 46

3.8 UNIT SALLING 49

3 .9 UNIT REPORT 51

3 .1 O UNIT DATA ENVIRONMENT 52

AC-KNOWLDGMENTS

First of all I would like to thank Mr. UMIT lLHAN for his endless id untiring

support and help-and his persistence, in the course of the preparation of this oject.

Under his guidance, I have overcome many difficulties that I face during the

various stages of the preparation of this project.

Finally, I would like to thank my family, especially my father who na te is Mr

HASAN BOZKURT and my brothers who name is Mr MURAT BOZKUR1 MUSA

BOZKURT, IBRAHIM BOZKURT and ALİi BOZKURT, .Their love and .uidance

saw me through doubtul times. Their never-ending belief in me and their

encouragement has been a crucial and a very strong pillar that has held me t< .ether

ABSTRACT

As the information age has effected every aspect of om life, tl need for

computer-iz-ing-manyinformation systems has raised.
Once oft-he important branches that are effected by information revc ıtion is the

computer programming languages.
This project is concerned about using compueter program iı Pharmacy

management system . It is written using Visual Basic 6.0 programming le guage and

used Microsoft Access Database language for databases. Visual Basic is on of the best

and easy programming languages.
This project is accomlete Pharmacy management program, tha covers all

services needed in most Pharmacy, such as computer related irıforrnatk .madicine,

goods and many other Pharmacy management related services.
Before coming to this point, this project has gone through some imp: tant steps;

• First one was the requirements definition for which I r d to go to

some Pharmacy and study their systems.

• The second steps were designing the system and sof ıre that ıs

intended to serve an integrated Pharmacy management sysı ın.

• The final steps was the implementation of the design on t : computer

using Visual Basic Language.

INTRODUCTION

Visual Basic is a Microsoft Windows programming Language. Visu Basic

programs are created in an Integrated Development Environment (IDE) . 1 ıe IDE

allows the programmer to create, run and debug Visual Basic programs corıv: .iently.

IDEs allow a programmer to create working programs in a fraction of the tin that it

would normally take to code programs without using IDEs. The process oJ apidly

creating an application is typically referred to as Rapid Application Deve .pment

(RAD). Visual Basic is the world's most widely used RAD language.

Visual Basic is derived from the BASIC programming language. Visu Basic

is a distinctly different language providing powerfull features such as graphi al user

interfaces, even handling, access to the Win32 API, object-oriented featur. , error

handling, structured programming, and much more.

The Visual Basic IDE allows Windows programs to be created witı .ut the

need for the programmer to be a Windows programming export.
r

Microsoft provides several version of Visual Basic, namely the 1 arnıng

Edition , the Professional Edition and the Enterprice Edition. The Learning .dition

provides fundemantal programming capabilities than the Learning Edition an is the

choice of many programmers- to write Visual Basic applications. The Eı erprıce

Edition is used for developing large-scale computing systems that meet the ı .eds of

substandial organizations.

Visual Basic is an interpreted language. However , the professio al and

Enterprice Edition allows Visual Basic code to be compiled to native code.

Visual Basic evolved from BASIC(Beginner's All purpose S nbolic

Instruction Code). Basic was developed in the mid 1960's by· Professoı John

Kemeny and Thomas Kurtz of Darthmouth College as a language for writin: simple

programs. BASIC's primary purpose was to help people learn how to progran

The widespread use of BASIC with various types of computers (so etimes

called hardware platforms) led to many enhancements to the language. \ ith the

development of the Microsoft windows graphical user interface (GUI) in 1e late

1

1980s and the early 1990s, the natural evolution of BASIC was Visual Basit which

was created by Microsoft Corporation in 1991.

Until Visual Basic appeared, develoing Microsoft Windov -based

applications was a diffucult and cumbersome process. Visual Basic greatly si ıplifies

Windows application development. Since 1991 six versions have been releas i, with

the latest-Visual Basic 6-appearing in september 1998.

After a brief explanation about the Visual Basic 6.0 and the de, loping

layers, I hope that you will find the necessary information that you need , about

the Visual Basic even if you are a text based programmer.

2

CHAPTER!

Visual Basic Program

1.1.VB Advantages

So what makes VB a great programming language? The answer is simply that 'B

provides more of the actual code for a programmer than any other non-visual

programming language.

If you've ever programmed in theolder BASIC or other command line prograı .nıng

language, then you'll remember that the programmer had to write the code for ıe

entire user interface. Todays windows, buttons, lists, and other application feaı res

such as menus were not built-in to the BASIC programming language. Prograı ıners

had to create the code for these features on their own!

As much as 80% of a programmer's time was spent writing code to create the ı er

interface to his applications (the visual interface). To eliminate this huge dı:ain ,n a

programmer's time, Microsoft has provided Visual Basic with the built-in c: ability

to create the user interface using nothing more than a mouse!

This built-in interface creation capability has had the further benefit of stand dizing

on the user interface to Windows applications. Today, users can move fr m one

Windows program to another and see the same basic interface tools to wor with -

allowing them to concentrate solely on the unique capabilities of the applicatic

The bottom line is that you can create an entire application shell (the user iı erface)

very quickly and then spend most of your time working on the feature which

differentiate you application from its competition.

1.2.Very First Visual Basic Program

Visual Basic lets you build a complete and functional Windows applier on by

dropping a bunch of controls on a rm and writing some code that execut . when

something happens to those controls or to the Im itself For instance, you c ı write

code that executes when a [fll loads or unloads or when the user resizes it. L ewıse,

you can write code that executes when the user clicks on a control or types v rile the

control has the input focus.

3

This programming paradigm is also known as event-driven programming ecause

your application is made-up of several event procedures executed in an ord ,· that's

dependent on what happens at run time. The order of execution can't, in geı ral, be

foreseen when the program is under construction. This programming model t ntrasts

with the procedural approach, which was dominant in the old days.

This section offers a quick review of the event-driven model and uses a .ample

application as a context for introducing Visual Basie's intrinsic controls, w h their

properties, methods, and events. This sample application, a very simple one, ıuerres

the user for the lengths of the two sides of a rectangle, evaluates its perim er and

area, and displays the results to the user. Like all lengthy code examples and p .grams

illustrated in this book, this application is included on the companion CD.

1.3.The [m Object

After this long introductory description of properties, methods, and events ıat are

common to most Visual Basic objects, it's time to see the particular features :' all of

them individually. The most important visible object is undoubtedly the rm object

because you can't display any control without a parent [Zil. Conversely, nı can

write some moderately useful applications using only [i!III that have no car ·ols on

them. In this section, I'll show a number of examples that are centered oı forms'

singular features.

You create a new [m at design time using the Add [imi command from the)roject

menu or by clicking on the corresponding icon on the standard toolbar. ' ıu can

create rımm from scratch, or you can take advantage of the many rm tt ıplates

provided by Visual Basic 6. If you don't see the dialog box shown in Fig ·e 2-7,

invoke the Options command from the Tools menu, click the Environm~nt b, and

select the topmost check box on the. right.

Feel free to create new [m templates when you need them. A rm template Ioesn't

necessarily have to be a complexJim with many controls on it. Even an emj y.
with a group of properties carefully set can save you some precious ti, e. For

4

example, see the Dialog m template provided by Visual Basic. To prodı e your

·"".UStOm. templates, you just have to create a rm, add any necessary com ıls and

ode, and then save it in the \Template\fflffl directory. (The complete path o Visual

Basie's template directory can be read and modified in the Environment ta of the

Options dialog box.)

:~'t t!~wffl l~<)ı.ıt: Qi~~~ W~b 6:ı'·Wf}!:t Ci~~.

tı .tl

1.4.Adding Controls to a B
We're-ready to get practical. Launch the Visual Basic IDE, and select a Stand, d EXE

project. You should have a blank __ near the center of the work are More

accurately, you have am designer, which you use to define the appearanı of the

main window of your application. You can also create otherm, if you ne< them,

and you can create other objects as well, using different designers (the Useı .ontrol

and UserDocument designers, for example). Other chapters of this book are evoted

to such designers.

5

········•·•···············•···

One of the greatest strengths of the Visual Basic language is that programn .rs can

design an application and-then test it without leaving the environment. But yoı should

be aware that designing and testing a program are two completely different t .ks. At

design time, you create your ri'm!I and other visible objects, set their proper ıs, and

write code in their event procedures. Conversely, at run time you monitor th effects

of your programming efforts: What you see on your screen is, more or less, w tt your

end users will see. At run time, you can't invoke the ri:1Jm designer, and you h: e only

a limited ability to modify the code you have written at design time. For insta, :e, you

can modify existing statements and add new ones, but you can't add new pro .dures,

rmml, or controls. On the other hand, at run time you can use some diagnos c tools

that aren't available at design time because they would make no sense in that .ontext

(for example, the Locals, the Watches, and the Call Stack windows).

To create one or more controls on a form's surface, you select the control t)e that

you want from the Toolbox window, click on the mJm, and drag the mous cursor

until the control has the size and shape you want. (Not all controls ar~ rı izable.

Some, such as the Timer control, will allow you to drag but will return) their

original size and shape when you release the mouse button.) Alternatively,)U can

place a control on the form's surface by double-clicking its icon in the Toon .x: this

action creates a control in the center of the rm. Regardless of the metl .d you

follow, you can then move and resize the control on the [m using the mouse

TIP

If you need to create multiple controls of the same type, you can follov

this three-step procedure: First, click on the control's icon on the Tooİbo:

window while you keep the Ctrl key pressed Next, draw multiple controls b~

clicking the left button on the form's surface and then dragging the cursor

Finally, when you're finished creating controls, press the Escape key or clicl

the Pointer icon in the upper left corner of the Toolbox.

6

To complete our Rectangle sample application, we need four TextBox centre :-two

or entering the rectangle's width and height and two for showing the ı suiting

perimeter and area, as shown in Figure 1-8. Even if they aren't strictly requir 1 from

an operational point of view, we also need four Label controls for clarif ng the

purpose of each TextBox control. Finally we add a CommandButton contro named

Evaluate that starts the computation and shows the results.

Place these controls on the [m, and then move and resize them as depicted i Figure

1-8. Don't worry too much if the controls aren't perfectly aligned because)U can

later move and resize them using the mouse or using the commands in the 7ormat

menu.

Figure 1-8 The Rectangle Demo [:ml! at design time, soon after the place ıent of

its controls.

1.5.SettingProperties of Controls

Each control is characterized by a set of properties that define its beha- Jr and

appearance. For instance, Label controls expose a Caption property that con sponds

to the character string displayed on the control itself, and a BorderStyle prop ty that

affects the app.earance of a border around the label. The TextBox contra ; most

important property is Text, which corresponds to the string of characters that ppears

within the control itself and that can be edited by the user.

In all cases, you can modify one or more properties of a control by selec ng the

control -in the----designer and then pressing F4 to show the Properties wind. v. You

7

scroll through the contents of the Properties window until the propert you're

erested in becomes visible. You can then select it and enter a new value.

.sing this procedure, you can modify the Caption property of all four Label .ıntrols

&Width, &Height, &Perimeter, and &Area, respectively. You win note ıat the

ampersand character doesn't appear on the control and that its effect is to u Ierline

e character that follows it. This operation actually creates a hot key and assr iates it

.ith the control. When a control is associated with a hot key, the user can [uickly

move the focus to the control by pressing an Alt+x key combination, as your rmally

o within most Windows applications. Notice that only controls exposing a 'aption

roperty can be associated with a hot key. Such controls include the Label -rame,

CommandButton, OptionButton, and CheckBox.

A quick way to select all the controls on a m is to click anywhere Ol

the rill and press the Ctr!+ A key combination. After selecting all controls

you can deselect a few of them by clicking on them while pressing the Shift o

Ctr! key. Note that this shortcut doesn't selectcontrols that are contained iı

other controls.When you select a group of controls and then press the F4 key

the Properties windowdisplays only the properties that are common to all th,

selected controls. The onlyproperties that are exposed by any control are Leji

Top, Width, and Height. If youselect a group of controls that display a string o

haracters, such as the TextBox,Label, and CommandButton controls in ou

Rectangle example, the Font property isalso available and can therefore b.

selected. When you double-click on the Font item in the Properties window,;

Font dialog box appears. Let's select a Tahoma font and set its size to 1

points.

8

Figure 1-9. The Rectangle Demo [Im! at design time, after setting the c ntrols'

properties.

T-IP

"·····"·"·······""··""""·"···································---·,•.•.•.•.•.•.•.•.•,•.•,•,•,•,•.•.•.•.•.•.•,•.•,•.•.•.•.•.•.•.•.•,•,•.•,•,•.•.•.•.•.•,•,•,•,··•·•·•·•······•·•·•·•·····················

When a control is created from the Toolbox, its Font property reflect

he font of the parent tmll. For this reason, you can often avoi:

individual font settings by changing the form's Font property befor

placing any controls on the tmll itself

1.6.Naming Controls

One property that every control has and that's very important to Visu: Basic

programmers is the Name property. This is the string of characters that ident ies the

control in code. This property can't be an empty string, and you can't have two or

more controls on a mJm with the same name. The special nature of this prr erty is

indirectly confirmed by the fact that it appears as (Name) in the Properties , ındow,

where the initial parenthesis serves to move it to the beginning of the property st.

When you create a control, Visual Basic assigns it a default name. For exan -le, the

first TextBox control that you place on the [m is named Text], the secorı one ıs

named Text2, and so forth. Similarly, the first Label control is named Labell, nd the

first CommandButton control is named Command]. This default naming scheı e frees

you from having to invent a new, unique name each time you create a control Notice

that the Caption property of Label and CommandButton controls, as well as ıe Text

property of TextBox controls, initially reflect the-control's Name property, but he two

properties are independent of each other. In fact, you have just modified the 'aption

9

Text properties of the controls in the Rectangle Demo tilJI without affect g their

'ame properties.

Because the Name property identifies the control in code, it's a good habit ton .dify it

-- that it conveys the meaning of the control itself This is as important ?,S : lecting

eaningful names for your variables. In a sense, most controls on a rm an .pecial

rariables whose contents are entered directly by the user.

Microsoft suggests that you always use the same three-letter prefix for all the .ıntrols

of a given class. The control classes and their recommended prefixes are show ın

Table 1-1.Table 1-1. Standard three-letter prefixes for [B and all i trinsic

controls.

Control Class II Prefıx II Control Class II Pre/ıx J
CommandButton II cmd II Data II~ J
TextBox II txt II HScrollBar I~~ J
Label II lb! II VScrollBar IE=]

PictureBox II pie II DriveListBox I~~ J
OptionButton II opt II DirListBox ıı~=]

II chk il FileListBox \~~]

=Comb=oBox==ıı cbo il Line \[ı::==]

ListBox \[ısı il Shape · \[£ J
Timer il tmr II OLE ıı~=]

JI fra ii• -: J

CheckBox

Frame

For instance, you should prefix the name of a TextBox control with txt, then, 1e of a

Label control with lbl, and the name of a CommandButton control with cmo -

10

ld also follow this convention, and the name of a • should be prefi: d with

frm string. This convention makes a lot of sense because it lets you dedı e both

control's type ana meaning from its name. This book sticks to this ıaming

nvention, especially for more comp-lex examples when code readability is at take.

our example, we will rename the Textl through Text4 controls as ü Width,

ct:Height, txtPerimeter, and txtArea respectively. The Command! control vill be

enamed cmdEvaluate, and the four Label 1 through Label4 controls will be ı named

lWidth, lblHeight, lblPerimeter, and lblArea, respectively. However, ple: e note

at Label controls are seldom referred to in code, so in most cases you can le, e their

1.7.Adding Code

Up to this point, you have created and refined the user interface of your prog ım and

created an application that in principle can be run. (Press FS and run it to c nvınce

yourself that it indeed works.) But you don't have a useful application yet. 'o turn

your pretty but useless program into your first working application, you nee, to add

some code. More precisely, you have to add some code in the Click even of the

mdEvaluate control. This event fires when the user clicks on the Evaluate b uorı or

presses its associated hot key (the Alt+E key combination, in this case).

To write code within the Click event, you just select the cmdEvaluate control; ıd then

press the F7 key, or right-click on it and then invoke the View Code comma j from

the pop-up-menu. Or you simply double-click on the control using the lef mouse

utton. In all cases, the code editor window appears, with the flashing cursoı ocated

etween the following two lines of code:

?rivate Sub cmdEvaluate Click()

='....-ıd Sub

Visual Basic has prepared the template of the Click event procedure for you, ıd you

have to add one or more lines of code between the Sub and End Sub staten nts. In

this simple program, you need to extract the values stored in the txtWi th and

11

reWidth = CDbl(txtWidth.Text)

reHeight = CDbl(txtHeiqht.Text)

iiXIHeightcontrols, use them to compute the rectangle's perimeter and area, an assıgn

results to the txtPerimeter and txtArea controls respectively:

~·::.:..vate Sub cmdEvaluate Click ()

' Declare two floating point variables.

Dim reWidth As Double, reHeight As Double

' Extract values from input TextBox controls.

' Evaluate results and assign to output text boxes.

txtP·erimeter. Text = CStr ((reWidth + reHeight) * 2)

txtArea.Text = CStr(reWidth * reHeight)

.::.."1d Sub

1.8.Running and Debug--ging-theProgram

You're finally ready to run this sample program. Yeu can start its execution ir .everal

ways: By invoking the Start command from the Run menu, by click ıg the

orresponding icon on the toolbar, or by pressing the FS key. In all cases, y ı'll see

the 11111 designer disappear arrd be replaced (but not necessarily in the same .isition

on the screen) by the real 11111. You can enter any value in the leftmost · .xtlsox

ontrols and then click on the Evaluate button (or press the Alt+E key combin ion) to

see the calculated perimeter and area in the rightmost controls. When you're 1 ıished,

end the program by closing its main (and only) rm.

CAUTION
--· .• ,n ,,,,.,,,,,,,,_,,,,,.,,.•,•.•.•.•.•.•.•,•,•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.v.•.•.•.•.•.•.•.• •·•,•.•.•.•.•,•,•,•.••. •.•.•.•.•.•.•.. •.•.•.•.•.•.•.•.•.•.•.•.•.•,•.•.•.•.•,•.•.. •.•.n •.•.•.•.. ,, •.. -. ,,........ · ·

You can also stop any Visual Basic program running in the environment b­

· voking the End command from the Run menu, but in general this isn't ;

good approach because it prevents a few 11111-related events-namely' th,

12

QueryUnload and the Unload events-from firing. In some cases, these even

rocedures contain the so-called clean-up code, for example, statements tha
.•. .

close a database or delete a temporary file. If you abruptly stop the executioı

of a program, you're actually preventing the execution of this code. As ,

general rule, use the End command only if strictly necessary.This program i:

so simple that you hardly need to test and debug it. Of course, this wouldn't b.

true for any real-world application. Virtually all programs need to betested an:

debugged, which is probably the most delicate (and often tedious) part of,

programmer's job. Visual Basic can't save you from this nuisance, but at leas

it offers so many tools that you can often complete it very quickly. To se:

some Visual Basic debugging tools in action, place a breakpoint on the firs

line of the Click event procedure while the program is in design mode. Yoı

an set a breakpoint by moving the text cursor to the appropriate line and theı

invoking the

Toggle Breakpoint command from the Debug menu or pressing the F9 short .ıt key.

You can also set and delete breakpoints by left-clicking on the gray vertical ~ ip that

runs near the left border of the code editor window. In all cases, the line on w ich the

breakpoint is set will be highlighted in red.

After setting the breakpoint at the-beginning of the Click event procedure, pre , FS to

run the program once again, enter some values in the Width and Height fie ls, and

then click on the Evaluate button. You'll see the Visual Basic environment ent · break

mode, and you are free to perform several actions that let you better understan what's

actually going on:

• Press F8 to execute the program one statement at a time. The Visu Basic

instruction that's going to be executed next-that is, the current statem nt -is

highlighted in yellow.

• Show the value of an expression by highlighting it in the code wine ,w and

then pressing F9 (or selecting the Quick Watch command from the Debug

menu). You can also add the selected expression to the list of values d played

in the Watch window, as you can see in Figure 1-10.

13

• An alternative way to show the value of a variable or a property is to n ıve the

mouse cursor over it in the code window; after a couple of seconds, , yellow

data tip containihg the corresponding value appears.

• Evaluate any expression by clicking on the Immediate window and typ ıg ? or

Print followed by the expression. This is necessary when you need to /aluate

the value of-an -expressiorı that doesn't appear in the code window.

• You can view the values of all the local variables (but not express; ns) by

selecting the Locals command from the View menu. This comı and is

particularly useful when you need to monitor the value of many local , riables

and you don't want to set up a watching expression for each one.

• You can affect the execution flow by placing the text cursor on the sı tement

that you want to execute next and then selecting the Set Next Sı tement

command from the Debug menu. Or you can press the Ctrl+ 9 key

combination. You need this technique to skip over a piece of code · at you

don't want to execute or to reexecute a given block of lines without n tarting

the program.

Figure 1-10. The Rectangle Demo program in break mode, with severa debug

tools activated.

14

first Visual Basic project, Rectangle.vbp, is just a sample program, but ti s ıs no

use not to refine it and turn it into a complete and robust, albeit trivial, appl .ation.

1.9.Refıning the Sample Program

The first type of refinement is very simple. Because the txtPerimeter and sctArea

ontrols are used to show the results of the computation, it doesn't make .nse to

ake their contents editable by the user. You can make them read-only f lds by

setting their Locked property to True. (A suggestion: select the two controls, I ess F4,

and modify the property just once.) Some programmers prefer to use Label co rols to

. play result values on a m, but using read-only TextBox controls ıas an

advantage: The end user can copy their contents to the clipboard and pas those

contents into another application.

A second refinement is geared toward increasing the application's consiste :y and

usability. Let's suppose that your user uses the Rectangle program to deten ne the

erimeter and area of a rectangle, takes note of the results, and then enter a new

ridth or a-new.height (or both). Unfortunately, an instant before your user c cks on

e Evaluate button the phone rings, engaging the user in a long conversatioı When

e or she hangs up, the !m shows a plausible, though incorrect, result. How an you

sure that those values won't be mistaken for good ones? The solution is .imple,

indeed: as soon as the user modifies either the txtWidth or the txtHeight · -xtfsox

controls, the result fields must be cleared. In Visual Basic, you can accomp sh this

ask by trapping each source control's Change event and writing a cc ple of

statements in the corresponding event procedure. Since Change is the defaı event

or TextBox controls-just as the Click event is for CommandButtons contrc :-you

nly have to double-click the txtWidth and txtHeight controls on them desi ner to

have Visual Basic create-the template for the corresponding event procedures This is

e code that you have to add to the procedures:

?rivate Sub txtW-rdt-h_Change ()

txtPerimeter.Text ""
txtArea.Text 1111

~--ıd Sub

15

?=~vate Sub txtHeight_Change()

txtPerimeter.Text

txtArea. Text = JI LI

~:i Sub

Note that you don't have to retype the statements in the txtHeight's Chan; event

ocedure: just double-click the control to create the Sub ... End Sub temp] e, and

en copy and paste the code from the txtWidth_Click procedure. Wheı you're

- · shed, press FS to run the program to check that it now behaves as expected

The purpose of the next refinement that I am proposing is to increase the pı gram's

bustness. To see what I mean, run the Rectangle project and press the l -aluate

tton without entering width or height values: the program raises a Type 1V .match

error when trying to extract a numeric value from the txtWidth control. If thi were a

eal-world, compiled application, such an untrapped error would cause the apj ication

end abruptly, which is, of course, unacceptable. All errors should be trap ed and

ealt with in a convenient way. For example, you should show the user w .re the

rob lem is and how to fix it. The easiest way to achieve this is by setting ,up 11 error

ndler in the cmdEvaluate_Click procedure, as follows. (The lines you would ıdd are

boldface.)

==ivate Sub cmdEvaluate Click()

' Declare two floating point variables.

Dim reWidth As Double, reHeight As Double

On Error GoTo WrongValues

' Extract values from input textbox controls.

reWidth = CDbl(txtWidth.Text)

reHeight = CDbl(txtHeight.Text)

Ensure that they are positive values.

If reWidth <= O Or reHeight <= O Then GoTo WrongValues

' Evaluate results and assign to output text boxes.

txtPerimeter.Text = CStr((reWidth + reHeight) * 2)

txtArea.Text = CStr(reWidth * reHeight)

Exit Sub

rongValues:

MsgBox "Please enter valid Width and Height values",

vbExclamation

16

5:.:.b

that we have to add an Exit Sub statement to prevent the M.sgBox-statemı ıt from

_ erroneously exeeuted during the normal execution flow. To see how he On

statement works, set a breakpoint on the first line of this procedure, un the

ication, and press the F8 key to see what happens when either of the - .xtlsox

ols contains an empty or invalid string.

IO.Ready, Compile, Run!

al Basic is a very productive programming language because it allow: you to

ild and test your applications in a controlled environment, without first pro, ıcıng a

mpiled executable program. This is possible because Visual Basic conve s your

rce code into p-eode and then interprets it. P-code is a sort of inteı ıediate

guage, which, because it's not executed directly by the CPU, is slower t m real

ively compiled code. On the other hand, the conversion from source code tı p-code

res only a fraction of the time needed to deliver a compiled application. 'l us ıs a

eat productivity bonus unknown to many other languages. Another bene of p­

de is that you can execute it step-by-step while the program is runnin: in the

environment, investigate the values of the variables, and-to some exter -even

odify the code itself. This is a capability that many other languages don't ave or

.ve acquired only recently; for example, the latest version of Microsoft Vis ıl C++

s it. By comparison, Visual Basic has always offered this feature which

undoubtedly contributed to making it a successful language.At some time du ng the

rogram development, you might want to create an executable (EXE) prograr There

are several reasons to do this: compiled programs are often (much) fas r than

interpreted ones, users don't need to install Visual Basic to run your applicat .n, and

rou usually don't want to let other people peek at your source code. Visu Basic

makes the compilation process a breeze: when you're sure that your appli: tion is

ompleted, you just have to run the Make projectname command from the File nenu.

It takes a few seconds to create the Rectangle.exe file. This executable file is

independent of the Visual Basic environment and can be executed in the samı vay as

any otlier Windows application-. for example, from the Run command of 1 ~ Start

menu. But this doesn't mean that you can pass this EXE file to another ı er and

17

ect that it works. All Visual Basic programs, in fact, depend on a nu ber of

illary files-most notably the MSVBVM60.DLL file, a part of the Visu Basic

time-and won't execute accurately unless all such files are correctly inst led on

e target system.,

For this reason, you should never assume that a Visual Basic program will ex, .ute on

every Windows system because it's working on your computer or on other co ıputers

· your office. (If your business-is software development, it's highly probable hat the

Visual Basic environment is installed on all the computers around you.) ıstead,

repare a standard installation using the Package and Deployment Wizard, .nd try

running your application on a clean system. If you develop software profes: .ınally,

you should always have such a clean system at hand, if possible with ıst the

perating system installed. If you're an independent developer, you probably· on't be

· clined to buy a complete system just to test your software. I found a very sin .le and

relatively inexpensive solution to this dilemma: I use one computer with reı ovable

hard disks, so I can easily test my applications under different system configı ations.

And since a clean system requires only hundreds of megabytes of disk spac . I can

recycle all of my old hard disks that aren't large enough for any other use.

Before I conclude this chapter, you should be aware of one more det. 1. The

compilation process doesn't necessarily mean that you aren't using p-code In the

Visual Basic jargon, compiling merely means creating an executablefile. In J ct, you

an compile to p-code, even if this sounds like an oxymoron to a developer omıng

from another language. (See Figure 1-11.) In this case, Visual Basic creates an ~XE

file that embeds the same p-code that was used inside the development envir nment.

That's why you can often hear Visual Basic developers talking about p-c le and

native-code compilations to better specify which type of compilation they're ı ferring

O.

18

Figure 1-11. You can opt to compile to p-code or native code in the Com ile tab

of the Project Properties dialog.

In general, such p-code-compiled programs run at the same speed as int preted

programs within the IDE, so you're missing one of the biggest benefit: of the

compilation.process. But here are a few reasons why you might decide to en te a p­

code executable:

• P-code-compiled executables are often smaller than programs com led to

native code. This point can be important if you're going to distribı e your

application over the Internet or when you're creating ActiveX controls hat are

embedded in an HTML page.

• P-code compilation is often faster than native code compilation, so ye might

prefer to stick to p-code when you compile the program in the test pl ıse. (A

few types of applications can't be tested within the IDE, most ıotably

multithreaded components.)

• If your application spends most of its time accessing databases or re rawıng

windows, compilation to native code doesn't significantly impı ve its

19

performance because the time spent executing Visual Basic code i: only a

fraction of the total execution time.... ~

"e've come to the end ofthis tour de force in the Visual Basic IDE. -In this hapter,

·e illustrated the basics of Visual Basic development, and I hope I've give you a

e of how productive this language can be. Now you're ready to move to ıe next

pters, where you can learn more about - and controls and about how ı make

best of their properties, methods, and events.

20

.How to develop a database application

-CHAPTER2

DATABASE AND ACCESS

. Jlıy is the computer Anecessary in our life
Computer software has become a driving force; it is a powerful force that s< Decision­

. g and serves as a basis for modern investigation and problem solving.Corr .uters have

me a key -factor that gives products and services that modern look ,its e ıbedded in

ems of all kinds;medical,industrial,military,entertainment,even office-based pr ducts.

Computer system in a service management record can promise better speed and

· ency with almost-HG-Ghange-of_effors.

steps involved in database application development any relational data base ıpplication

e are always the same basic steps to follow.Microsoft Access is a relation, data base

~emenLs:y:stem_he.cau.s.e all data is stored in an Access data base in the fon of simple

s.Another name-for-atable is relation.

steps of Access database design like this

• Database design

• Tables design

• Forms design

• Query design

Report design

• Macro design

Modüles design

.Relational database
DBMS has established themselves as one of the primary means for data .torage for

iıııixmation based systems ranging from large business applications to simpl pc based

s.However a relational database management system (RDBMS) is the sys em used to

with data management operations more than 15 years,and still improvir ,providing

sophisticated storage,retriaval systems.Relational database manageme t systems

21

ides organisations with ability to handle huge ammount of data and chan ing it into

· ngful informatiou. •- ..

.The facilities of access
crosoft Access is relational DBMS(Database Management System) with all ıe features

essary to develop and use a data base application.The facilities it offers can I ~ found on

st modern relational DBMSs and all versions of Access.

• Tables are where all the data is stored. They are usually linked by relati. ıships.

• Queries are the way you extraet data from the database

• Forms are the method used for input and display of database data.

• Reports are used to display nicely formatted data on paper.

• Maeres are sets of simple commands that execute sequences , · database

operations.

• Modules are used to stare general-purpose VB database program code .

.Visual basic and Access

Microsoft Acess is the DBMS(Database Management System) VB and Access in

.eloping data base applications is that for non-trivial. database applications, VB ,ffers more

ibility to the developper then the VB comes with Access.Access database using VB

.., am code and setting properties.

first method of linking VB forms to Access databases called the data contı ,\.The data

ol is a simple VB control that you drag on to a VB form to link it to y< tr choosen

ase.The data can be displayed and updated using tiedtext boxes,list b xes.cornbo

es.and grids.

22

.1.DAO(Data Access objects)
The D-AQ--af)f)FeaGh to database programming often requires more code .bı like SQL

pared to the Quıy-Besign View,offers greater control to the database progr. nmer over

r's going on his/her application.
Data Access Objects are things like databases,recoı:dsets,table and query defi itions, and

ds,Rather than tying a recor set to a data control when we use DAO we sha allow our

grams to create and manipulate recordsets.

~.2.ADO(Active X Data Objects)
The ADO programming is in principle very similar to DAO programming b t cointains

e new commands.ADO is Microsoft's new approach to database programı ing which

to give the programmer a more consistent way of connecting to a bro; l range of

erent types of data source.

23

.The application of Access

Access is begin used as the development tool,and the application is going to b. a single

application,which means its going to be installed on one machine,this applica on

.ever may be used by more than one user on many computers sharing the same ables by

g simple-advancements.

a new database,afterha-V-ing specified the database name and path as above.yoı will be

onted with the following window.

Figurel.1. The window of database

~ window shows that there are notables in database yet.Click new button.

Figure 1.2. The window is type of table design

24

ect the Design View by clicking on the listbox and then the OK button.Design liew gives

~ more control over the design of our database than either the Table Wizard or tr Datasheet

iew.Import Table is... used to bring in data from an existing database and Li ;z Table is

abase to an external table.

-.6.1. Tables Design
my project's table designing with primary key. Guide Lines for making

oject.

e database consists of one tables;

ablel

database

Please pay attention on the naming conventions of objects, you are requ ed to use

propriate names using these conventions for your objects.

eTable one have got eleven fields one-is its unique name

I ~ı~~~)~,trt;1;~'.~ı/t~~ rg~;~!:~;;:i "
n~ıı1~.. J~tirı
expi,::ırısltltın •• tııetır~ ..
pie,.¢ . . . {\'\etin
a_ıten:ı ·• Metin

··~1!~~10 -.- ·.·.·.··•·ı:~;s:~t_···
price .. •· tli¢t~-:,
UtL ... ··············::::·:::::: }~tr!..
f_t}~~ . . . ·.· Ulbt!P ·.·.·.·.·.·
R:_,,ıttt _ _ J,:¥t1ı'Ş1~L ...
P~t);J?!<:ın~tiı?ı\ . . .•• ı:~tjı~ __

Fi_gure 1.3 The Tablet

25

CHAPTER3

M-A-I-N PRO-GRAM

3. 1. MAIN MENU

This is the main menu of the program. There is also some sub menus on ti · top of the

main menu. From the main menu we can go sub programs by using this sub menu There are

also some buttons. They are used to go to the sub programs. They are providing ıcilities for

users of the program. We can see all sub programs on the main menu.
Record button is used to go record part of the program. In the part we ent r madicine

rrecord information.
Information button is used to go to Iformation part. Here we make rapor ı · stock and

son in the stock .
Seel button is used to show information such as number of madicine , d piece of

madicine and code of madicine
Esdeger button is used te keep information about the madicine and their

accompaniment .
The form and codes of the main menu is following down.

Figure 3.1. Main Menu

Private Sub Command1 _Click()

Load Form2

26

Form2.Show

End Sub

Private Sub Command2 _Click()

Load Form4

Porm-l.Show

Forml.Visible = False

End Sub

Private Sub Command3 _Click()

Load Form3

Form3.Show

End Sub

Private Sub Command4 _Click()

DataReportl. Show

Forml.Visible = True

End Sub

Private Sub Commandf .=GlickQndex As Integer)

End

End Sub

Private Sub Command6 _Clickt)

Load Forms

Forrnô.Show

Forml.Visible = False

End Sub

Private Sub Form_Initialize()

Form8.Show

Form9.Visible = True

Forml.Visible = False

Load Form8

Form8.Show

End Sub

Private Sub Form_Load()

Picture l .Align = center

End Sub

Private Sub Label l _Click()

27

Labell.Caption = Nowt)

End Sub

Private Sub Timerl_Timer()
Forml.Caption = Right(Forml.Caption, (Len(Forml.Caption) - 1)) + Left(Forml. aption, 1)

Label1.Caption = Nowt)

End Sub

28

,.2. THE PASSWORD-SE€R-E-EN
built In this secreen Who can enter the program. The progaram user have a pswo I and user

tame. With pasword and user name the user can use the program. The pasword se- een is on

ıctive when- the-program· start to run.

Figure 3.2 Pasword Writing

Private Sub Command 1 _Click()

Form9.Visible = False

Forml.Visible = True

End Sub

Private Sub Command2 _Click()

End

End Sub

Private Sub T-extl_Change()

IfTextl.Text <> 1111 And Textl.Text = "yasin" And Text2.Text <>
1111

Then

Command 1.Enabled = True

Command 1. SetFocus

End If

End Sub

Private-S-ub-T-ext2_Changer)
IfTextl.Text<> 1111 And 'Fext2.Text<> 1111 And Textl.Text=

1199126711
Then

29

Commandl.Enabled = True

Command 1. SetF ocus

End If

End Sub

Private Sub Timer 1 _Tirrrerr)

Label3.Caption = Nowt)
Form9.Caption = Right(Form9.Caption, (Len(Form9.Caption) - 1)) + Left(Form9 aption, 1)

End Sub

30

3.3. UNIT EXPIRE DATE
The secreen About Product which is expire-date. When main program run expire d te secreen

will be on active
directly. Al the information about madicine are provided with this form and there; e 90 day

Figure 3.2. Product Selection

Private Sub Form_Initialize()

Dim db As Database

Dim tb As Recordset
Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl.mdb")

Set tb = db.OpenRecordset(1'tablol")

While Not tb.EOF

x = tb.Fields("l_date")

ml= Val(Month(x))

m2 = Val(Month(Date))

Yl = Val(Year(x))

Y2 = Val(Y ear(Date))

31

IfYl = Y2 And ml>= m2 Then

m = (ml - m2) * 31

Ifm < 90 Then

Listl.Addltem Str(tb.Fields(11l_ date'ü) + 11

List2.Addltem tb.Fields(11piece11) + 11

End If.

End If

tb .MoveN ext

Wend

End Sub

Private Sub ta_Click()

End Sub

Private Sub Timerl _'I'imert)
Form8.Caption = Right(Form8.Caption, (Len(Forın8.Caption) - 1)) + Left(Form8 aption, 1)

" + tb.Fields(11name11)

11 + tb.Fields(11shelf_no11)

ta.Caption= Right(ta.Caption, (Len(ta.Caption) - l)~ + Left(ta.Caption, 1)

End Sub

32

t4. UNIT RECORD OF MADICINE
;ection of showing the type of record.You can select to type of record with using ı cord of

nadicine secreen :the type of record are searching, deleting, adding, finding, editi ıng and

ılso you can see the report of stock with this screen.

Figure 3.4. Record-0f--M.adicine

Private Sub Commandl_Click(Index As Integer)

Load Form6

Form6.Show

Form2.Visible = False

End Sub

Private Sub Command2 _Click()

Load Form6

Form6.Show

Form2.Visible = False

End Sub

Private Sub Command3 _Click()

LoadForm6

Form6.Show

Form2.Visible = False

End Sub

Private Sub Command4 _Click()

33

LoadForm6

Form6.Show

Form2.Visible = False

End Sub
Private Sub Command5_Click()

DataReport 1. Show

End Sub
Private Sub Command6_Click()

Form2.Visible = False

Forml.Visible = True

Forml.Show

End Sub

Private Sub Form_Load()

Forml.Visible = False

End Sub

Private Sub RE_Click()

End Sub
Private Sub Timerl_Timer()
Formz.Capticn = RightÇEorm2-rCaption,(Len(Form2.Caption) - I))+ Left(Form2.• aption, 1)

End Sub

34

.s, UNITE RECORDE
'he recording will accour with code. If oyu want to write data to database You mu t enter the

.ode of product. May be you forget-to-ent@rproduct code the software will situmul te to user

vith message box. Also when you record some data to database some of the recor: ng name

s vary important. Forexample code and expire date this are vary important object, tthe

)rogram. Because ofse_ar_chingaccoure with code and expire date. Also the name (

ıccompaniment is vary important because of if the product there is not on the stocl the

accompaniment will came to screen. That is the reson you must enter the accompa :ment of

Figure 3-.5. Record

Private Sub Command l _Click()

Dim db As Database

Dim tb As Recordset

Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl .mdb")

Set tb = db~Qpeı.ıRecor.dset("tablo l ")

yasın:

35

MsgBox "YOU MUST ENTER ALL COMPONENT"
a= MsgBox("DO YOU WANT TO RECORD", vbYesNoCancel, "READ CREFl .ı.Y")

If a= 6 Then GoTo kayit

If a= 7 Then GoTo fin

If a= 2 Then GoTo fın2

kayit:

tb.AddNew

If Text5.Text =""Then GoTo yasin

tb.Fields("no") = Textl.Text

tb.Fields('1explanation") = Text2.Text

tb.Fields('1piece11) = Text3.Text

tb.Fields(11a_item11) = Text4.Text

tb.Fields("l_date11) = Text5.Text

tb.Fields("shelf _no")= Text6.Text

tb.Fields("p_explenation") = Textl I.Text

tb.Fields("name") = Text12~Text

tb.Fields(11f _tel")= Text8.Text

tb.Fields("f_name") = Text9.Text

tb.Fields("b_date") = TextlO.Text

tb.Fields("price") = Text7.Text

Move Last

If Textl.Text = 1111 Then GoTo yasin

tb.Update

tb.Close

db.Close

fin:

GoTo son

fin2:

Textl.Text = ""

Text2.Text = 1111

Text3.Text = ""

Text4.Text = ""

Text5.Text = ""

Text6.Text = ""

36

Text7.Text = 1111

Text8.Text = 1111

Text9.Text = 1111

Textlü.Text = 1111

Textl I.Text= 1111

Textl2.Text = 1111

son:

End Sub

Private Sub-Commandz _Glick()

Dim db As Database

Dim tb As Recordset

Dims As String

Dim c As Integer

Set db= OpenDatabase(11C:\WINDOWS\Desktop\vtl.mdb11)

Set tb = db.Openkecordsetf'fablo 111)

s = Textl.Text

tb.Index = "primarykey"

tb.Seek 11=11, s

While Not th.EOF

Ifs= tb.Fieldsıno") Then

a= Msglsoxr'do you want to delate", vbYesNo, "delate screen")

If a= vbYes Then GoTo sil

If a = vbN o Then GoTo.atla

sil:

tb.Delete

Text 1. Text= 1111

Text2.Text = 1111

Text3.Text = 1111

Text4.Text = 1111

TextS.Text = 1111

Text6.Text = 1111

Text7.Text = 1111

Text8.Text = 1111

Text9.Text = 1111

37

~extlü.Text = ""

rext 1 1. Text = 1111

rext12.Text = ""
; = C + 1

ıtla:

End If

tb.MoveNext

Wend

Ifc <> O Then

MsgBox "ıs deleted by you"

End If

End Sub

Private Sub Command3 _Clickı)

Form6.Visible = False

Form2.Visible = True

Form2.Show

End Sub

Private Sub Command4_Click()

Textl.Text = ""

Text2.Text = 1111

Text3.Text = ""

Text4.Text = 1111

Text5.Text = 1111

Text6.Text = 1111

Text7.Text = 1111

Text8.Text = 1111

Text9.Text = 1111

Textlü.Text = 1111

Textl 1.Text = ""
Text12.Text = ""
End Sub

Private Sub Commandô , Click()

Dim db As Database

Dim tb As Reeordset

38

Dim s As String

Dim c As Integer

Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl .mdb")

Set tb = db.OpenRecordset("tablo 1 ")

s = Textl.Text

tb.Index = "primarykey"

th.Seek"=", s

While Not tb.EOF

Ifs= tb.Fields("no") Then

a= Msgfıoxf'trs.ıt thıs record", vbYesNo, "search screen")

If a= vbYes Then GoTo sil

If a= vbNo Then GoTo atla

sil:

Text I.Text= tb.Fields("no")

Text2.Text = tb.Fields("explanation")

1'ext3 .Text= tb.Fieldsj'piece")

Text4.Text = tb.Fields~a=:item")

Text5.Text = tb.Fields("l_date")

Text6.Text = tb.Fields("shelf_no")

Text 11. Text = tb.Fieldsı" p_:expI-enation-'')

Text12.Text = tb.Fields("name")

TextS.Text = tb.Fields("f_tel")

Text9.Text = tb.Fields("f_name")

Textlü.Text = tb.Fields("b_date")

Text7.Text = tb.Fields("price")

c=c+l

atla:

End If

tb.MoveNext

Wend

If c <> O Then

MsgBox "ıs found by searcher"

End If

End Sub

39

I

Private Sub Command6 _Click()

Dim db As Database

Dim tb As Recordset - ~,

Dim s As String

Dim c As Integer

Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl.mdb")

Set tb = db.OpenRecordset("tablol ")

s = Text I .Text

tb.Index = "primarykey"

tb.Seek "=", s

While Not tb.EOF

Ifs= tb.Fields("no") Then

a= MsgBox("do you want to change", vbYesNo, "changıng screen")

If a= vbYes Then GoTo sil

If a= vbNo Then GoTo atla

sil:

tb.Edit

tb.Fields("no") = Textl.Text

tb.Fields("explanation") = Text2.Text

tb.Fields("piece") = Text3.Text

tb.Fields("a_item") = Text4.Text

tb.Fields("l_date") = Text5.Text

tb.Fields("shelf_no") = Text6.Text

tb.Fields("p_exp-lenation") = Text I I.Text

tb.Fields("name") = Text12.Text

tb.Fields("f_tel") = Text8.Text

tb.Fields("f_name") = Text9.Text

tb.Fields("b_date") = TextlO.Text

tb.Fields("price") = Text7.Text

tb.Update

c=c+l

atla:

End If

tb.MoveNext

40

end

; <> O Then

,gBox "ıs changed by you"

d If

d Sub

vate Suh Forrn_Load()

d Sub

41

3.6. UNITE ACCOMPANIMENT

In this screen you can learn any madicine that you want thay are name, shelf no,

accompaniment, how many piece so on. If your madicine is there the softwarewil stimulate

to you like there is your searching madicine in the database with message box. İf th re is not

any pruduct that you want also the soft ware will stimulate to you like, there is not ny item

like aspirin.please.bııy .on.the list. Alm the madicine on the list are the same madic ıe that you

want but just the company.name is different. İf you interest the chamical line the p ıduct are

the same product on list and you want.

Figure 3.6. Equvalence

Private Sub Command l _Click()

Form3.Visible = False

Forml.Visible = True

Forml.Show

End Sub

e.rivate Sub Command2 _Click()

)im db As Database

)im tb As Recordset

)im s, sd, al, a2, a3, a4, a5 As String

)im all, a21, a3 l, a41, a~l As String

)im c As Integer

;et db= OpenDatabase("C:\WINDOWS\Desktop\vtl.mdb")

;et tb = db.OpenRecordset("Tablo l ")

42

s = Textl.Text

While Not tb.EOF

Ifs= tb.Fieldsf'tname") Then

a5 = tb.Fieldstvno")

a3 = tb.Fields/vpiece")

a4 = tb.Fieldsf'ta jtem")

al == tb.Fieldsf'tname")

a2 = tb.Fieldsf'tprice")

take= a4

Listl.Addltem tb.Fieldsf'lname") + 11 11 + 11 11 + a2 + 11 "+ a3 + 11 11 + a4 + 11 " • a5

c=c+l

End If

tb.MoveNext

Wend

IfVal(a3) > O Then GoTo atla

List I.Clear

MsgBox "THERE IS NOT " + s

tb.MoveFirst

While Not tb.EOF

If take= tb.Fields(11a_item11) Then

Ifs= tb.Fieldsr'trıame") Then GoTo unwrite

a51 = tb.Fields("no")

a31 = tb.Fields("piece")

a41 = tb.Fieldstva jtem")

al 1 = tb.Fieldsr'tname")

a21 = tb.Ficldsrvprice")

Listl.Addltem tb.Fieldsf'trıame") + 11 11 + a21 +" 11 + a31 +" 11 + a41 + 11 "+ 51

unwrite:

End If

.b.MoveNext

Wend

ıtla:

f c = O Then MsgBox "aaaaaaa"

~nd Sub

43

Private Sub Command3 _Click()

List 1. Clear

Textl.SetFocus

Textl.Text = ""

Text2.Text = ""

End Sub

Private Sub Form_ Loadı)

Forml.Visible = False

End Sub

Private Sub Commandl_Click()

Form3.Visible = False

Forml.Visible = True

Forml.Show

End Sub

Private Sub Command2 _Click()

Dim db As Database

Dim tb As Recordset

Dims, sd, al, a2, a3-, a4, aS As String

Dim all, a21, a31, a41, as 1 As String

Dim c As Integer

Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl .mdb")

Set tb = db.OpenRecordset("Tablo 111)

s = Textl .Text

While Not-tb.EOF

Ifs= tb.Fields("name") Then

as = tb.Fieldsr'lno")

a3 = tb.Fieldsf'lpiece'')

a4 = tb.Fieldsr'ta jtem")

al = tb.Fields("name")

a2 = tb.Fieldsf'tprice")

take= a4

Listl.Addltem tb.Fieldsf'lname") + 11
" + 11 11 + a2 + 11

" + a3 + 11
" + a4 + ·11 ' +- aS

c=c+l

End If

44

.b ..MoveNext

Wend

[fVal(a3) > O Then GoTo atla

List1. Clear

\1sgBox "THERE IS NOT " + s

h.MoveFirst

While Not tb.E8F

[f take= tb.Fields("a_item") Then

Ifs= tb.Fields('1name") Then GoTo unwrite

a51 = tb.Fields("no")

a31 = tb.Fields("piece")

a41 = tb.Fields("a_item")

al 1 = tb.Fields("name")

a21 = tb.Fieldsf'tprice")

Listl.Addltem tb.Fields("name") +" 11 + a21 +" "+ a31 +" "+ a41 +" "+ 51

ınwrite:

~nd If

:b.MoveNext

Wend

ıtla:

[f c = O Then MsgBox "aaaaaaa"

~nd Sub

Jrivate Sub Command3 _Clickt)

ListI.Clear

I'ext l .SetFocus

I'ext lText = ıllı

rext2.T-ext = ıllı

~nd Sub

Jrivate Sub Form_Load()

~orml.Visible = False

~nd Sub

45

3.7. UNIT tALCULATOR

In this screen there is clasic calculator and sciectifıc calculator. I made a map fors entifıc

calculator to windows.

Dim a As Integer

Dim c As Integer

Private Sub Command 1 _Click()

c=l

a= Val(Textl.Text)

Textl.Text = 1111

Text 1. SetFocus

End Sub

Private Sub Command2 _Click()

c=2

1 = Val(Textl.Text)

Text l.Text = 1111

fextl.SetFocus

End Sub

46

Textl.Text = 1111

End Sub

Private Sub Timerl_Timer()

Formô.Caption = Right(Form5.Caption, (Len(Form5.Caption) - 1)) + Left(Form5.· aption, 1)

End Sub

48

3.8. UNIT SALLING

I think this screen is so important screen because of you sale your madicine from J -ur stock.

Esy to use this seren. After salling the madicine the madicine will dicrease from th stock.

Figure 3.8. salling

Private Sub Command I_Click()

Form4.Visible = False

Forml.Visible = True

Form I.Show

End Sub

Private Sub Command2 _Click()

Dim db As Database

Dim tb As Recordset

Dim s As String

Dim c As Integer

Set db= OpenDatabase("·C:\WINDOWS\Desktop\vtl.mdb")

Set th= dh.OpenRecordset("tablol 11)

s = Text I.Text

tb.Index = "primarykey"

tb.Seek ">", s

If Val(th.Fields("piece"))- = O Or Val(th.Fields("piece")) < Val(Text2.Text) Then C ıTo atla

While Not th.EOF

Ifs= tb.Fields("no") Then

49

k = Int(tb.Fields("piece'')) - Int(Text2.Text)

a= MsgBox("did you sell", vbYesNo, "changıng screen")

If a= vbYes Then GoTo sil

If a= vbNo Then GoTo atla

sil:

th.Edit

tb.Fields("piece") = Str$(k)

tb.Update

c=c+l

End If

tb.MoveNext

Wend

If c <> O Then

MsgBox "It is salled "

Else

atla:

MsgBox "DEMAND IS GRATER THEN STOCK "

MsgBox "THERE ARE"+""+ tb.Fields("piece")

Text3.Text = tb.Fields("shelf_no")

End If

End Sub

Private Sub Command3 _Clickt)

Textl.Text = ""

Text2.Text = ""

Text3.Text = ""

End Sub

Private Sub Form__Loadt)

Forml.Visible = False

End Sub

Private Sub Timer L'Timerf)

Form4.Caption = Right(Form4.Caption, (Len(Form4.Caption) - 1)) + Left(Form4.' aption, 1)

End Sub

50

3.9. UNIT REPORT

The report of all stock in the firm. We can-get any extra information obout madiciı

·.·.-..ı:

tın .. ! .. NAME 'SHELF NO.
•••¥ P&tMtf@i#.fW. : t / f t•• >•• >••••••••••·•··········
r;;; fCl.lıri~&l~ct1 in~ı; ıcı:~ıtrı~<ft~ıı-~~& :ı ctsit~ ı,;0ı:nın~rfrq • pı~~; ı6ı:ıırı;ı,;41I •

*~~-~,-; i fııW[r%!wr ıııw r Q nıl rnı;ım ~8!0 ii+]:>/ :1 fff:t1flwl

Figure 3.8. Information of Stock

51

3.10. UNIT DATA ENVIRONMENT

Also we use data environment for creating the report

no:
rs{jm~­
f:~~·:pk~k1th.n1
p:e<.~9.'

tJ ~-i\em

i fıJ ;;!:ıtno
'· fil P'"-'"'

·0U9.'l
·tJ Cname

. {il b_,.i:es~e
' .. ftl ı.:~w,:pfonaüon

Figure 3.9. Data environment

52

BALANCES

In this part I prepared code balances accompaniment balances and xpire date

balance. In the balances there are three section.

First section is search criteria. Here we can search code and madicine tl Lt we want

to find it. We search madicine by use the mad, no ,m_name , balance, and balan ~ type. We

search madicine by use the code, accompaniment, and .expire date

Second section is sort criteria section .we sort madicine by code, accompa iment, and

balance.

In the final section there is a table which we can see all balance inforrnati. ı about the

madicine.

53

CONCLUSSION

Visual Basic is an easy program to grasp. This cause is why I have decide to use this

program.

Visual Basic is a Microsoft Windows programming Language. Visual Basic is a

distinctly different language providing powerfull features such as graphical use interfaces,

even handling, access to the Win32 API, object-oriented features, error handlin; structured

programming, and much more.

In this- project I built madicine database program. It is easy to use and 11 can be use

most kind of drugstore. I used Visual Basic for write this program and I used Microsoft

Access database for keep all my databases.

In this study our.main aim to put accross is that this program can be perated by

some one who has never used it before.

In this program there is also menus to make your writting much simpler, l containing

windows menus and also afacility to prepare reports.

f

54

REFERANCES

1-) Ihsan Karagülle , Zeydirı Pala(1999). Microsoft Visual Basic 6 Istanbul.
Türkmen press.

2-) Prof Dr. Mithat Uysal (1999). Development Of The Software with x sual Basic
6.0. Istanbul. Beta Press.

3-) Ihsan Karagülle ; Zeydin Pala (1999). Microsoft Visual Basic
6.0 Pro. Istanbul. Türkmen Press.

4-) Hilal Drugstore, Girne

5-) Macit Pharmacy, Lefkosa

55

- ~

