
NEAR EAST UNIVERSITY

FACULITY OF ENGINEERING

Department of Electrical and Electronic
Engineering

AC MOTOR FORWARD CONTROLLING

Gradu~ti<>ıı Project
EE-400

Student: Hisham Mahmud Tariq (981326)

Supervisor: Mr. Ozgur

Nicosia •. 2004

ACKNOWLEDGEMENTS

In the name ofAllah whose the most gracious and most merciful.

First of all I would like to thank my supervisor Mr. Ozgur Cemal Ozerdem

,without his invaluable advise, inspiration and help this project wôuld never have come

to fruition .I thank Mr. Ozgur Cemal Ozerdem for his consistently sfrpport and guiding

to me during the course ofthis project.
Second, I would like to express my feeling and gratitude to Near East University

for letting me be a part of it. lf it was not for my study in Near East University this

project probably would have not materialized.
Third, I thank my father and mother for there for believing in me and sharing in

the good times and the bad. Mom and dad, without your special love and support, I

would have become who I anı today.
Further, I thank Malik Osama Nazar for his outstanding efforts in the making of

project .Also I want to thank Salman Sultan who helped me in ali the way he could

Finally, I would also like to thank Badr-ud-Duja and Muhammad Awais Janjua

,r believing in me and commending me when I was right on, and gently letting me

ow when I have gone off track.

1

ABSTRACT

The increasing use ofmotors in all fıelds of industries has made things easier for

many people, but this has also increased the competition and ever growing demand of

the berter and new technologies to control them. Motor controlling is one of the main

areas of industrial automation development and it is also improving day by day.

The main aim of this project is to develop a program to control an AC motor

using a programmable logic controller. in this project we have been able to put our

consideration towards the behavior of programmable logic controllers and we have been

able to program a Siemens Simatic S7-200 programmable logic controller with CPU

212 to control an AC motor.
The basic structure, functions and methods to program the programmable logic

is also discussed in the project.

11

INTRODUCTION

Motor Controlling is one of the most important aspects of industrial automation.

Now a days we can use many different methods other than programmable logic

controllers but as the programmable logic controllers are manufactured for motor

controlling that' s why they are berter than other systems in many ways. So I took this

project to programa Siemens Simatic S7-200 programmable controller to control an AC

This project begins by providing an introduction to the programmable

controllers and their history in the fırst chapter.
Second chapter explains the internal strength of the programmable controllers to

perform a task and theory of the operation that how it controls the inputs, outputs and

the actual program of the programmable controllers.

Third chapter explains about process carried to replace relays by programmable

controllers, the very basic instructions to write a ladder program used to operate the

programmable controllers to control motors.

Fourth chapterexplains them.ain instructions used to write any type of programs

r programmable CôntrôllersW:fö control motors and the parts used in the programmable

rıtroller like the different types ô[Jitıiers; ô.iffete:nftypes<of .côtırıtets,.aıid shift

after that the .. tıiethod •• of" ğettin.ğ arid ı:nôviıig data from • source to

Fifth chapter explains the mathematical instructions carried out inside the

grammable controller and the numbers and number systems like binary, decimal,

, hexadecimal and Boolean algebraic systems used inside it.

Sixth chapter explains about the methods of making connection of the

grammable controllers to a system like connected to DC inputs or AC inputs and the

uts of relays and transistor accordingly.

Seventh chapter explains the detailed process of the ways to communicate with a

grammable controller like the "RS-232" communications method.

Eighth chapter is about the designing and implementation of a program to

:rate a programmable controller to control an AC motoragainst specifıed conditions

iii

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

INTRODUCTION

1 INTRODUCTION AND HISTORY OF PLC

1.1 INTRODUCTION TO PLC

1.2 PLC History
2 THEORY OF OPERTATION OF PLC

2.1 The Guts inside
2.2 FUNCTION OF EACH PART
2.3 PLC OPERATION

2.3.1 Step 1-CHECK INPUT STATUS
2.3.2 Step 2-EXECUTE PROGRAM
2.3.3 Step 3..,UPDATEOUTPUT STATUS

2.4 RESPONSETIME
2.4.1 INPUT
2.4.2 EXECUTION
2.4.3 OUTPUT

2.5 EFFECTS OF RESPONSE TIME
2.5.1 Pulse stretch function
2.5.2 Interrupt :function
ur< PROGRAMS

3.1 Relays
3 .2 Replacing Relays

3.2.1 First step

3.2.2 Second step
3 .2.3 Final step

3.3 Basic Instructions
3.3.1 Load
3.3.2 Load Bar
3.3.3 Out

iv

1

11

111

1

1
2

4
4
4
5

6

6

6

6
7

7
7
8
9
10
10
11
11
12

12
13
13
14
14

3 .3 .4 Out bar

3 .4 A Simple Example

3 .5 PLC Registers

3 .6 A Level Application

3.7 The Program Scan

4 MAiN INTSTRUCTIONS SET
4.1 Latch Instructions
4.2 Counters
4.3 Timers

4.3.1 On-Delay timer
4.3.2 Off-Delay timer
4.3.3 Retentive or Accumulating timer

4.4 Timer Accuracy
4.5 One-shots

4.5.1 Next Scan
4.6 Master Controls

4.6.1 Manufacturer X
4.6.2 Manufacturer Y

4.7 Shift Reğisters
4.8 Getting and MovirigDa.ta.

NUMBERS AND NUMBER SYSTEMS
5 .1 Matlı lnstructions
5.2 Number Systems

5.2.1 Decimal
5.2.2 Binary
5.2.3 Octal
5.2.4 Hexadecimal

5.3 Boolean Matlı
5.3.1 AND Gate
5.3.2 OR Gate
5.3.3 EXCLUSIVE OR Gate

OFPLC
6.1 DC lnputs
6.2 AC lnputs
6.3 Relay Outputs

V

15
15
16
18
20

23
23
24
27
28
28
28
31
33
35
36
37
37
39
44
48
48
51
52
52
53
55
57
57
57
58
61
61
63
651

6.4 Transistor Outputs

7 COMMUNICATIONSWITH PLC
7.1 Coınmunications History
7.2 RS-232 Coınmunications (hardware)
7.3 RS-232 Coınmunications (software)
7.4 Using RS-232 with Ladder Logic

8 Programming Siemens Simatic S7-200
8.1 Ladder Program
8.2 Statement Line Program
8.3 Functions ofAll Networks

CONCLUSION
REFRENCES
APENDIX

vi

67
70

70

71
74
78
81
81
83
85
86
87
88

Chapter 1

INTRODUCTION AND HISTORY OF PLC

1.1 INTRODUCTION TO PLC

APLC (Prograınmable Logic Controller) is a device that was invented.to replace the

sequential relay circuits for machine control. The PLC works by.looking at its

and depending upon their state, turning on/off its outputs. The user enters a

usually via software, that gives the desired results.

PLCs are used in rnany "real world" applications. If there is industry present, chances

good that there is a plc present. If you are involved in rnachining, packaging,

aterial handling, autornated assernbly or countless other industries you are probably

eady using thern. If you are not, you are wasting rnoney and time. Alrnost any

ıplicationthat needs some type-of electrical control hasa need fora plc.

solenoid on

,w rnany tirnes . the switches external

Figure 1.1 A siernens sirnatic s7-200 PLC device

1

As you can see the bigger the process the more ofa need we have for a PLC. We can

simply program the PLC to count its inputs and turn the solenoids on for the specifıed

time.

We will take a look at what is considered to be the "top 20" plc instructions. It can

be safely estimated that with a fırın understanding of these instructions one can solve

more than 80% of the applications in existence. That's right, more than 80% Of course

we'll learn more than just these instructions to help you solve almost ALL your potential

plc applications.

1.2 PLC History

In the late 1960's PLCs were fırst introduced. The primary reason for designing such

device was eliminating the large cost involved in replacing the complicated relay

machine control systems. Bedford Associates (Bedford, MA) proposed something

a Modular Digital Controller (Modicon) to a major US car manufacturer. Other

eomnarries at the time nrööosed comnuter based schemes, one of which was based upon

fırst PLC into commercial production.

o have a limited lifetime which required strict adhesion to maintenance schedules.

roubleshooting was also quite tedious when so many relays are involved. Now picture

machine control panel that included many, possibly hundreds or thousands, of

ividual relays. The size could be mind boggling. How about the complicated initial

g of so many individual devices! These relays would be individually wired

ther in a manner that would yield the desired outcome. Were there problems? You

"new controllers" also had to be easily programmed by maintenance and plant

eers. The lifetime had to be long and programming changes easily performed.

also had to survive the harsh industrial environment. That's a lot to ask! The

ers were to use a programming technique most people were already familiar with

replace mechanical parts with solid-state ones.

2

In the mid70's the dominant PLC technologies were sequencer state-machines and

the bit-slice based CPU. The AMD 2901 and 2903 were quite popular in Modicon and

A-B PLCs. Conventional microprocessors lacked the power to quickly solve PLC logic

in all but the smallest PLCs. As conventional microprocessors evolved, larger and larger

PLCs were being based upon them. However, even today some are still based upon the

2903.(ref A-B's PLC-3) Modicon has yet to build a faster PLC than their 984A/B/X

which was based upon the 2901.

Communications abilities began to appear in approximately 1973. The fırst such

system was Modicon's Modbus. The PLC could now talk to other PLCs and they could

be far away from the actual machine they were controlling. They could also now be

used to send and receive varying voltages to allow them to enter the analog world.

Unfortunately, the lack of standardization coupled with continually changing

technology has made PLC communications a nightmare of incompatible protocols and

physical networks. Still, it was a great decade for the PLC!

The 80's standardize communications with General Motor's

reducing the size of

ım.ıvııv programmıng on

The 90's have seen a gradual reduction in the introduction of new protocols, and the

modemization of the physical layers of some of the more popular protocols that

The latest standard (IEC 1131-3) has tried to merge plc

ogramming languages under one intemational standard. We now have PLCs that are

ogrammable in function block diagrams, instruction lists, C and structured text all at

e same time! PC's are also being used to replace PLCs in some applications. The

iginal company who commissioned the Modicon 084 has actually switched to a PC

ed control system.

3

Chapter2

THEORY OFOPERTATION OF PLC

2.1 The Guts inside

The PLC mainly consists ofa CPU, memory areas, and appropriate circuits to receive

input/output <lata. We can actually consider the PLC to be a box full of hundreds or

thousands of separate relays, counters, timers and <lata storage locations. Do these

counters, timers, ete. really exist? No, they don't "physically" exist but rather they are

simulated and can be corısidered software counters, timers, ete. These internal relays are

simulated through bitJoçations in registers. (more on that later)

ı~arB~U. tjlit.y Timers Date.
Ri,~ . . . Storage

.2 FUNCTION OF EACH PART

• INPUT RELAYS-(contacts) These are connected to the outside world. They

physically exist and receive signals from switches, sensors, ete. Typically they

are not relays but rather they are transistors.

• INTERNAL UTILITY RELAYS-(contacts) These do not receive signals from

the outside world nor do they physically exist. They are simulated relays and are

what enables a PLC to eliminate external · relays. There are also some special

relays that are dedicated to perferming only one task. Some are always on while

some are always off. Some are on only once during power-on and are typically

used for initializing data that was stored.

• COUNTERS-These again do not physically exist. They are simulated counters

and they can be programmed to count pulses. Typically these counters can count

4

up, down or both up and down. Since they are simulated they are limited in their

counting speed. Some manufacturers also include high-speed counters that are

hardware based. We can think: of these as physically existing. Most times these

counters can count up, down or up and down.

• TIMERS-These also do not physically exist. They come in many varieties and

increrrients. The most common type is an on-delay type. Others include off

delay and both retentive and non-retentive types. Increments vary from lms

through Is.

• OUTPUT RELAYS-(coils): These are connected to the outside world. They

physically exist and send on/off signals to solenoids, lights, ete. They can be

transistors, relays, or traces depending upon the model chosen.

• DATA STORAGE-Typically there are registers assigned to simply store <lata.

They are usually used as temporary storage for matlı ordata manipulation. They

can also typically be used to store <lata when power is removed from the PLC.

Upon power-up they · will still have the same contents as before power was

removed. Very·corıverıieritandnecessary! !

PLC

as

onsisting of 3 important steps.

portant parts and not worry about the others. Typically the others are checking the

stem and updating the current intemal counter and timer values.

CHECKINPUT STATUS

EXECUTE PROGRAM

UPDATE OUTPUT STATUS

Figure 2.2 Scanning steps of PLC programs

5

2.3.1 Step 1-CHECK INPUT STATUS First the PLC takes a look at each

input to determine if it is on or off. in other words, is the sensor connected to the fırst

input on? How about the second input? How about the third ... it records this <lata into

its memory to be used during the next step.

2.3.2 Step 2-EXECUTE PROGRAM Next the PLC executes your program

one instruction at a time. Maybe your program said that if the fırst input was on then it

should turn on the first.output. Since it already knows which inputs are on/offfrom the

previous step it will be able to decide whether the firstoutput should be turned on based

on the state of the fırst input. it will store the execution results for use later during the

2.3.3 Step 3-UPDATE OUTPUT STATUS Finally the PLC updates the status

ofthe outputs. it updates the outputs based on which inputs were on during the fırst step

and the results of executing your.program during the second step. Based on the example

}n step 2 it would now turn ..on thesfirst output because the fırst input was on and your
condition is true.

4 RESPONSE TiME

The total response time of the PLC is a fact we have to consider when shopping for a

C. Just like our brains, the PLC takes a certain amount of time to react to changes. in

y applications speed is not a concem, in others though...

take a moment to look away from this text you might see a picture on the wall.

eyes actually see the picture before your brain says "Oh, there's a picture on the

I". in this example your eyes can be considered the sensor. The eyes are connected

input circuit of your brain. The inpüt citcüit of your brain takes a certain amount

to realize that your eyes saw something. (If you have been drinking alcohol this

response time would be longer!) Eventually your brain realizes .that the eyes have

something and it processes the data. it then sends an output signal .to your mouth.

6

Your mouth receives this <lata and begins to respond to it. Eventually your mouth utters

the words "Gee, that's a really ugly picture!"

Notice in this example we had to respond to 3 things:

2.4.1 INPUT- it took a certain amount of time for the brain to notice the input signal

2.4.2 EXECUTION- it took a certain amount of time to process the information

received from the eyes. Consider the program to be: If the eyes see an ugly picture then

output appropriate words to the mouth .

•4.3 OUTPUT- The mouth receives a signal from the brain and eventually spits (no

un intended) out the words "Gee, that's a really ugly picture

= TOTAL RESPONSE TiME

Now that we know about response time, here's what it really means to the

dicatiom .The PLC can only see an input.tum on/off when it's looking. in other

ırds, it only looks at its inputs during the cheök .input status part of the scan.

SCAN1 SCAN2 SCANJ

Figure 2.4 Time scan,

7

In the diagram, input 1. is not seen until scan 2. This is because when input 1 turned

on, scan 1 had already fınished looking at the inputs.

Input 2 is not seen until scan 3. This is also because when the input turned on scan 2

had already fınished looking at the inputs.

Input 3 is never seen. This is because when scan 3 was looking at the inputs, signal 3

was not on yet. it turns off before scan 4 looks at the inputs. Therefore signal 3 is never

seen by the plc.

1
1

: PROG
OUT1.m/ ı EXEC
1 1 1
1 1 1

1 ':oUT; itJ:
1

1
1 !~PUT+ 1 SCAt~

Figure 2.5 Time scan.

To avoid this we say that the input should be on for at least 1 input delay time+ one

scan time.

But what if it was

see the input turn on.

.mustbe a way to get around this. Actually there are 2 ways.

2.5.1 Pulse streteh function. This function extends the length ofthe input signal

· .til the plc looks at the inputs during the next scan. (i.e. it stretches the duration ofthe

' SCAI\ '1
1: , n:::

i i ı I
1 ı I PROG 1 ' 1
OUTı i!ıl ı EXEC ıout1 iiıi ı
1 1 1 1 1
1 1 1 ! : 1

' 1

j
Pi.iLSE STIRIElCH

Figure 2.6 Pulse stretch function.

8

2.5.2 Interrupt function. This function interrupts the scan to process a special

routine that you have written. i.e. As soon as the input turns on, regardless of where the

scan currently is, the plc immediately stops what its doing and executes an interrupt

routine. (A routine can be thought of asa mini program outside of the main program.)

After it's done executing the interrupt routine, it goes back to the point it left off at and

continues on with the normal scan process.

•···• ı I PROG 1 ' 1
ıOUTı jH I EXEC ıouı: m 1
: I I : 1 :

ffl SC.AN 1

2.7 Interrupt function

Now let's consider the ıf"\nri,,."+

that when a switch turns

The diagram below shows

until scan 2) for the output

The maximum delay is thus

foran output to actually tum on. Let's assume

turu on a load connected to the plc output.

(worst case because the input is not seen

the input has turned on.

- 1 input delay time.

OFF.

ıour ıt4 !

Figure 2.8Time seans

9

Chapter3

CREATIN6 PROGRAMS

3.1 Relays

Now that we understand how the)PLC ·iprocesses inputs, outptıts, and -the actual

program we are almost ready to start writin.ga program. But fırst lets see höw a relay

actually works. After all, the mainpurpôse ofaplc is to replace "real-world" relays.

We can think ofa relay as aıı electromagnetic switch. Apply a voltage to the coil and

a magnetic fıeld is generate<l.j)Thismagnetic fıeld sucks the contacts of the relay in,

causing them to make a côımection. These contacts can be considered to be a switch.

They allow current to flowbetween 2 points thereby closing the circuit.

whenever a
Whenever the <nxnt~h

..,au..ıupn,. Here we simply tum on a bell (Lunch time!)

3 real-world parts. A switch, a relay and a bell.

a current to a bell causing it to sound.

RELA.Y

Figure 3.1 Aisifüple DC circuit

Notice in the picture that we have 2 separate circuits. The bottom indicates the DC

part. The top indicates the AC part.

Here we are using a de relay to control aıı AC circuit, That's the fun of relays! When

the switch is open no current can flow through the coil of the relay. As soon as the

switch is closed, however, current runs through the coil causing a magnetic fıeld to

10

build up. This magnetic fıeld causes the contacts of the relay to close. Now AC current

flows through the bell and we hear it. Lunch time!

Figute 3 .2 A typical industrial relay

3.2 Replacing Relays

Next, let's use a PLC

effective for this apprn,auvu

that's necessary is to create

will become obvious why

because, unfortunately, a

of the relay. (Note that this might not be very cost

demonstrate the basics we need.) The fırst thing

a ladder diagram. After seeing a few of these it

diagram. We have to create one of these

a schematic diagram. It only recognizes

which converts ladder diagrams into code.

3.2.1 First step-We have

understands. The plc doesn't

of the items we're using into symbols the plc

like switch, relay, bell, ete. It prefers

input, output, coil, contact, ete. It dôesıi'tcare what the actual input or output device

actually is. It only cares that it's an inputör anoutput.

First we replace the battery with a synıbôl. This symbol is common to all ladder

diagrams. We draw what are called bus bars. These simply look like two' vertical ba.fs.

üne on each side of the diagram. Think oftheleff ône as being + volta.gea.n.d the .right

eme as being ground. Further think of the curreıit (logic) flow as being frôrı:i left to right.

we give the inputs a symbol. In this basic example we have one real world input.

the switch) We give the input that the switch will be connected to, to the symbol

below. This symbol can also be used as the contact ofa relay.

11

Figure 3.3 A contact symbol

Next we give the outputs a symbol. in this example we use.oneoutput.(i.e. the bell).

We give the output that the bell will be physically connected tocthecsymbol shown

below. This symbol is used as the coil ofa relay.

-0-
Figure 3.4 A coil symbol

The AC supply is an extemal supply so we don't put it in our ladder. The plc only

cares about which output jt.tums on and not what's physically connected to it.

· 3.2.2 Second where everything is located. In other words

we have to give

connected to the plc?
town and give each item an MnrP<:!

their address? You know they live in the same tô\\111 but which house? The plc town has

lot of houses (inputs and outputs) but we have to :figure out who lives where (what

device is connected where). We'll get further into the addressing scheme later. The plc

anufacturers each do ita different way! For now let's say that our input will be called

000". The output will be called "500".

.2.3 Final step-We have to convert the schematic into a logical sequence of events.

· s is much easier than it sounds. The program we're going to write tells the plc what

do when certain events take place. Inour exanı.plewe have to tel1 the plc what.to do

en the operator tums on the switch. Obviously we want the bell to sound but the plc

sn't know that.

12

0000 0500

Figure 3.5 Ladder replacement ofrelay to PLC program

The picture above is the final converted diagram. Notice that we eliminated the real

world relay from needing a symbol. It's actually "inferred" from the diagram.

3.3Basic Instructions

Now let's examine some of the basic instructions is greater detail to see more about
what each one does.

3.3.1 Load

The load (LD) instruction .is >a normally open contact. It is sometimes also called

examine if on. (XIO)(asin examin.ethe .inmıt to see if its physically on) The symbol for

Figure 3.6 A Load (contact) symbol

This is used when an input signal is needed to be present for the symbol to turn on.

the physical input is on we can say that the instruction is True. We examine the

for an on signal. If the input is physically on then the symbol is on. An on

••.•vuuuıvu is also referred to as logic 1 state.

This symbol normally can be used for internal inputs, external inputs and external

contacts. Remember that internal relays don't physically exist. They are
ulated (software) relays.

13

3.3.2 Load Bar

The Load Bar instruction is a normally closed contact. It is sometimes also called Load

Not or examine if closed. (XIC) (as in examine the input to see if its physically closed)

The symbol for a load bar instruction is shown below.

Figure 3.7 A Load Not (normally closed contact) symbol

This is used when an input signal does not need to be present for the symbol to tum

on. When the physical input is off we can say that the instruction is True. We examine

the input for an off signal. If the input is physically off then the symbol is on. An off

condition is also referred to as a logic O state.

This symbol normally can be used for intemal inputs, extemal inputs and sometimes,

extemal output contacts., ltelll.ember .again • that intemal relays don't physically exist.

They are simulated(sôftware)rela.ys.Itisthe exact opposite ofthe Load instruction.

1

Taole 3.1

The Out instruction is sometimes also called an Outpııt Energize instruction. The

output instruction is like a relay coil. Its sym.bol looks as shown below.

-0-
Figure 3.8 An OUT (coil) symbol

When there is a patlı of True instructions preceding this on the ladder rung, it will

so be True. When the instruction is True it is physically On. We can think of this

14

instruction as a normally open output. This instruction can be used for intemal coils and

extemal outputs.

3.3.4 Out bar

The Out bar instruction is sometimes also called an Out Not instruction. Some

vendors don't have this instruction. The out bar instruction is like a normally closed

relay coil. Its symbol looks like that showİıbelow.

Figure 3.9 An OUT Bar (normally closed coil) symbol

When there is a patlı ofFalse instnıctionspreceding this on the ladder rung, it will be

True. When the instruction is True it is physically On. We can think ofthis instruction

as a normally closed output. This instruction can be used for internal coils and extemal

outputs. It is the exact opposite of the Out instruction.

Table 3.2

3.4 A Simple Example

let's compare a simple ladder diagram with its real world extemal physically

connectecırelay circuit and see the differences.

Figure 3.10 A simple coil and battery circuit

15

In the above circuit, the coil will be energized when there is a closed loop between

the + and - terminals of the battery. We can simulate this same circuit with a ladder

diagram. A ladder diagram consists of individual rungs just like ona real ladder. Each

rung must contain one or more inputs and one orınqr~.outputs. The fırst instruction ona

rung must always be an input instruction and the JastJnstruction on a rung should
always be an output (or its equivalent).

ll"JPUTS OUTPUT
S\.ı/1 S\.ı/2 CO I L

H
END

Figure 3.11

rung. Some PLCs also

diagram we have recreated the extemal circuit

used the Load and Out instructions. Some

ı..ı.ıa0.taıu include an END instruction on the last

on the rung after the END rung.

Notice in this simple

above with a ladder

3.5 PLC Registers

We'll now take the previous ı;:;aaıı:ıı.ı,ı....,

closed symbol (load bar
physically ON initially. The ladder ctıagr~

change switch 2 (SW2) to a normally

be physically OFF and SW2 will be

looks like this:

Figure 3.12Alad.dyr diagram

Notice also that we now gave each symbol (or instruction) an address. This address

sets aside a certain storage area in the PLCs data files so tha.t the status of the instruction

16

(i.e. true/false) can be stored. Many PLCs use 16 slot or bit storage locations. In the

example above we are using two different storage locations or registers.

REGISTEROO

15 i 14 09 i 08 i 07 : 06 i 05 : 04 03 I 02 ! O 1 00

1 l O

REGISTER05

15 j 14 113 j 12 / 11 1 10 109 / 08 j 07 i 06 j 05 i 04 j 03 J 02 / 01 i 00 i
---~--- : : J /_ j i j ; j ; i L. _:_.. j_ 0_ i

Table 3.3

In the tables above we can see that in register 00, bit 00 (i.e. input 0000) was a logic

O and bit 01 (i.e. input 0001) was a logic 1. Register 05 shows that bit 00 (i.e. output

0500) was a logic O. The logic O örl indicates whether an instruction is False or True.

*Although most of the items

contain a O. They were left
the register tables above are empty, they should each

locations we were concerned with.

LOGIC BITS

Logic O False

Logic 1 True False True

Table 3.4

The plc will only energize an output when all conditions on the rung are true. So,

looking at the table above, we see that in the previous example SWI has to be logic 1

and SW2 must be logic O. Then and only then will the coil be true (i.e. energized). If

any of the instructions on the rung before the output (coil) are false then the output

(coil) will be false (not energized). Let's now look at a truth table of our previous

program to further illustrate this important point. Our truth table will show ali possible

ombinations ofthe status ofthe two inputs.

17

---··~----·------------
Inputs Outputs Register Logic Bits

SWI(LD) SW2(LDB) COIL(OUT) SWI(LD) ! COIL(OUT)
False True False o o
False False False o 1 o
True True True 1 o 1

True False False 1 1 o

Table 3.5

Notice from the chart that as the inputs change their states over time, so will the

output. The output is only true (energized) when all preceding instructions on the rung
are true.

3.6 A Level Application

Now that we've seen how registers work, let's process a program like PLCs do to

enhance our understanding ofhow the program gets scanned.

Let's consider the

We are controlling ıuuııı..;atııııt,

using two sensors. We put one near the

picture below.

high level j l
low level --ı.ı--

fiil motor---,ı-
PLC

Drain

Figure 3.13 Dispensing oil from the tank

18

Here, we want the fıll motor to pump lubricating oil into the tank until the high level

sensor turns on. At that point we want to turn off the motor until the level falls below

the low level sensor. Then we should turn on the fıll motor and repeat the process.

Here we have a need for 3 I/0 (i.e. Inputs/Outputs). 2 are inputs (the sensors) and 1

is an output (the fıll motor). Both of our inputs will be normally closed fıber-optic level

sensors. When they are not immersed in liquid they will be ON. When they are

immersed in liquid they will be OFF.

We will. give each input and output device an address. This lets the plc know where

they are physically connected. The addresses are shown in the following tables:

Inputs Address i Output Address ! Internal Utility Relay l
'

Low 0000 ! Motor 0500 i 1000 !
'

High 0001 i

1l i

Table 3.6

Below is what the ladderdiağraırıwilLacfua.llyJook like. Notice that we are using an

intemal utility relay in this exaırıple.Yôuca:rılisethe corıtacts öfthese relays as many

times as required. Here they are used twice fo sirriulatea relay with2 sets of contacts.

Remember, these relays do not physically exist in the plc but-raiher they are bits in a

register that you can use to simulate a relay.

0000 0001 1000

1000r
1000 0500

END

Figure 3.14 Ladder program to control the dispensing oil

We should always remember that the most common reason for using PLCs in our

aooncatıons is for replacing real-world relays. The intemal utility relays make this

19

action possible. It's impossible to indicate how many internal relays are included with

each brand of plc. Some include 1 OO's while other includes 1 OOO's while still others

include IO's of IOOO's! Typically, plc size (not physical size but rather 1/0 size) is the

deciding factor. lf we are using a micro-plc with a few 1/0 we don't need many internal

relays. If however, we are using a large plc with 1 OO's or 1 OOO's of 1/0 we'll certainly

need many more internal relays. If ever there is a question as to whether or not the

manufacturer supplies enough internal relays, consult their specifıcation sheets. in all

but the largest of large applications, the supplied amount should be more than enough.

3.7 The Program Scan

Let's watch what happens in this program scan by scan.

Figure 3.15 Ladder diagram ofthe program

Initially the tank is empty. Therefore, input 0000 is TRUE and input 0001 is also TRUE.

True True True True Trua TrueF,[or Truer' '~• ·-' -·

True True True

1 C
END

Scan 1 Scan 2-100

Figure 3.16 Time seans ofthe program

20

Gradually the tank fılls because 500(fıll motor) is on.

After 100 seans the oil level rises above the low level sensor and it becomes open.

(i.e. FALSE)

False True True

Tnıe~ ~

True ____, Trus

END

Figure 3.17 Scan 101-1000

Notice that even when the .low level sensor is false there is stil! a patlı of true logic

from left to right. This is .whY we • used an intemal relay. Relay 1000 is latching the

output (500) on. It will sray)tfüs>'Wayuntil there is no true logic patlı from left to

right.(i.e. when 0001 becomesfalse)

After 1000 seans the oil level rises above the high level sensor at it also becomes

open (i.e. false)

END END

Scan 1001 Scan 1002

Figure 3.18 Time seans ofthe program

Since there is no more true logic patlı, output 500 is no longer energized (true)

therefore the motor tums off.

21

After 1050 seans the oil level falls below the high level sensor and it will beeome true

again.

FF:l,:~-r Fals,
d~·~

END

Figure 3.19 Sean 1050

Notiee that even thotıgh>/the high level sensor beeame true there still is Nü

eontinuous true logie pathandtherefore eoil 1000 remains false!

After 2000 seans

true again. At this

will repeat as

below the low level sensor and it will also beeome

the same as SCAN 1 above and the logic

22

Chapter 4

MAiN INTSTRUCTIONS SET

4.1 Latch Instructions

Now that we understand ~ow inputs and outputs are processed by the plc, let's look

at a variation of our regular outputs. Regiılar output · coils are of course an essential part

of our programs but we must remember that they are only TRUE when ALL

INSTRUCTIONS before them on the rung are also TRUE. What happens if they are

not? Then of course, the output will become false. (Turn off)

Think back to the lunch bell example we did a few chapters ago. What would've

happened ifwe couldn't fınd a "push on/push off" switch? Then we would've had to

keep pressing the button for as long as we wanted the bell to sound. The latching

instructions let us use momentary switches and program the plc so that when we push

one the output turns on and when we push another the output turns off.

Maybe now you're saying to yourself "What the heck is he talking about?" So let's do

a real world example. Picture the remote control for your TV. it hasa button for ON and

another for OFF. (mine does, anyway) When I push the ON button the TV turns on.

When I push the OFF button the TV turns off. I don't have to keep pushing the ON

button to keep the TV on. This would be the function ofa latching instruction.

The latch instruction is often called a SET or OTL (output latch). The unlatch

instruction is often called a RES (reset), OUT (output unlatch) or RST (reset). The

diagram below shows how to use them in a program.

0000 0500

Figure 4. 1 A ladder program

23

Here we are using 2 momentary push button switches. üne is physically connected

to input 0000 while the other is physically connected to input 0001. When the operator

pushes switch 0000 the instruction "set 0500" will become true and output 0500

physically turns on. Even after the operator stops pushing the switch, the output (0500)

will remain on. It is latched on. The only way to turu off output 0500 is turu on input

0001. This will cause the instruction "res 0500" to become true thereby unlatching or

resetting output 050Q.

4.2 Counters

A counter is a simple device intended to do one simple thing - count. Using them,

however, can sometimes be a challenge because every manufacturer (for whatever

reason) seems to use them a different way. Rest assured that the following information

will let you siinply and easily program anybody's counters.

What kinds of counters are there? Well, there are up-counters (they only count up 1,

2, 3 ...). These are called CTU, (count up) CNT, C, or CTR. There are down counters

(they only count down 9, 8, 7 ...). These are typically called CTD (count down) when

they are a separate instruction. There are also up-down counters (they count up and/or

down 1,2,3,4,3,2,3,4,5,...) These are typically called UDC(up-down counter) when they

are separate instructions.

Many manufacturers have only one or two types of counters but they can be used to

count up, down or both. Confused yet? Can you say "no standardization"? Don't worry;

the theory is all the same regardless of what the manufacturers call them. A counter is a

counter is a counter...

Tofurther confuse the issue, most manufacturers also include a limited number of

high-speed counters. These are commonly called HSC (high-speed counter), CTH

(Counter High-speed?) or whatever. Typically a high-speed counter is a "hardware"

device. The normal counters listed above are typically "software" counters. In other

words they don't physically exist in the plc but rather they are simulated in software.

Hardware counters do exist in the plc and they are not dependent on scan time.

24

A good rule of thuınb is simply to always use the normal (software) counters unless

the pulses you are counting will arrive faster than 2X the scan time. (i.e. if the scan time

is 2ms and pulses will be arriving for counting every 4ms or longer then use a software

counter. If they arrive faster than every 4ms (3ms for example) then use the hardware

(high-speed) counters. (2xscan time = 2x2ms= 4ms)

To use them we must know Jthings:

1. Where the pulses thatwe want to count are coming :from. Typically this is from

one of the inputs.(a sensor connected to input 0000 for example)

2. How many pulses we want to count before we react. Let's count 5 widgets

before we boxthe:rn, for example.

3. When/how we wilTieset the counter so it can count again. After we count 5
widgets lets resei(Jıecounter, for exemple.

When the programis running on the plc the program typically displays the current or

"accumulated" value for us so we can see the current count value.

Typically counters can count from Oto 9999, -32,768 to +32,767 or Oto 65535. Why

the weird nuınbers? Because most PLCs have 16-bit counters. We'll get into what this

means in a later chapter but for now suffıce it to say that 0-9999 is 16-bit BCD (binary

coded decimal) and that -32,768 to 32767 and Oto 65535 is 16-bit binary.

Here are some of the instruction symbols we will encounter (depending on which

manufacturer we choose) and how to use them. Remember that while they may look

different they are all used basically the same way. If we can setup one we can setup any

ofthem.

RESET I C>:>>:
\ı'\/\•''v'\··',' ,' ,' ,' ,'

Figure 4.2 Count up counter

25

In this counter we need 2 inputs. üne goes before the reset line. When this input turns

on the current (accumulated) count value will return to zero. The second input is the

address where the pulses we are counting are coming from.

For example, ifwe are counting how many widgets pass in front ofthe sensor that is

physically connected to input 0001 then we would put normally open contacts with the

address 0001 in front of the pulse line.

Cxxx is the name of the counter. If we wantto call it counter 000 then we would put

"COOO" here.

yyyyy is the number of pulses -w~. '*ant to count before doing something. lf we want to

count 5 widgets before turning()J.1aphysical output to box them we would put 5 here. If

we wanted to count 100 wid.g~t§thenwe would put 100 here, ete. When the counter is

fınished (i.e. we counted yyyyy '*idgets) it will turn on a separate set of contacts that we

also label Cxxx.

Note that the counter acciimulated value ONLY changes at the off to on transition of

the pulse input.

0002

couu
0001 1 100

cooo 0500

Figure 4.3 A ladder diagram ofthe program using count up counter

Here's the symbol on a ladder showing how we set up a counter (we'll name it

counter 000) to count 100 widgets from input 0001 before turning on output 500. Sensor

0002 resets the counter.

Below is one symbol we may encounter foran up-down counter. We'll use the same

abbreviation as we did for the example above.(i.e. UDCxxx and yyyyy)

26

UP
ı J()Cv·,.. ,,,..

DOWN 1 - ..,....,....;:..::.:.'''
I ,• ,' ,' l

RESET

Figure4.4Countup-down counters

In this up-down counter

function as above.
now have 2. üne is for ,.,.,,,,•..+, •.•
we will call the l'r.nntı:>1"

1000 total pulses) For

sees a target and another; cı:'>ric:iKr

When input 0001

When we reach 1

accumulated value

to assign 3 inputs. The reset input has the same

ımm:;cıu of having only one input for the pulse counting we

and the other is for counting down. In this example

we will give ita preset value of 1000. (we'll count

use a sensor which will turn on input 0001 when it

input 0003 will also turn on when it sees a target.

up and when input 0003 turns on we count down.

turn on output 500. Again note that the counter

ı..,ua.ııb•...o at the off to on transition of the pulse input. The
ladder diagram is

IJt.ıclJUU
1000

Figure 4.4 Ladder diagra.rı:ı.ofaprogram using count up-down counter

43 Timers

Let's now see how a timer works. What'is a'timer? Its exactly what the word says... it

is an instruction that waits a set amount of time before doing something. Sounds simple
doesn't it.

27

When we look at the different kinds of timers available the fun begins. As always,

different types of timers are available with diff erent manufacturers. Here are most of

them:

4.3.1 On-Delay timer

This type of timer simply "delays turning on". In other words, after our sensor

(input) tums on we wait x-seconds before activating a solenoid valve (output). This is

the most common timer. It is oftencalled TON (timer on-delay), TIM (timer) or TMR

(timer).

4.3.2 Off-Delay timer

This type of timer isthe>opposite of the on-delay timer listed above. This timer

simply "delays turning off".. After our sensor (input) sees a target we turn on a solenoid

(output). When the sensor no longer sees the target we hold the solenoid on for x

seconds before turningit off It is called a TOF (timer off-delay) and is less common

than the on-delay type listed above. (i.e. few manufacturers include this type oftimer)

4.3.3 Retentive or ~cçumulating timer

This type of timer needS 2 inputs. üne input starts the timing event (i.e. the clock

. starts ticking) and the other resets it. The on/off delay timers above would be reset if the

input sensor wasn't on/offfor the complete timer duration. This timer however holds or

retains the current elapsed time when the sensor turns off in mid-stream. For example,

we want to know how long a sensor is on for during a 1 hour period. If we use one of

the above timers they will keep resetting when the sensor tums off/on. This timer

however, will give us a total or accumulated time. It is often called an RTO (retentive

timer) or TMRA (accumulating timer).

Let's now see how to use them. We typically need to know 2 things:

1. What will enable the timer? Typically this is one ofthe inputs.(a sensor

connected to input 0000 for example)

2. How long we want to delay before we react. Let's wait 5 seconds before we turn

on a solenoid, for example.

28

When the instructions before the timer symbol are true the timer starts "ticking".

When the time elapses the timer will automatically close its contacts. When the program

is running on the plc the program typically displays the elapsed or "accumulated" time

for us so we can see the current value. Typically timers can tick from O to 9999 or O to

65535 times.

Why the weird numbers? Again its because most PLCs have 16-bit timers. We'll get

into what this means in a later chapter but for now suffice it to say that 0-9999 is 16-bit

BCD (binary coded decimal) and that Oto 65535 is 16-bit binary. Each tick ofthe clock

is equal to x-seconds.

Typically each manu.fach.:ırer offers several different ticks. Most manufacturers offer

ıo and 100 ms increments(ticksôfthe clock). An "ms" is a milli-second or 1/lOOOth of

a second. Several manufactu.fersalso offer lms as well as 1 second increments. These

different increment timers ~~Jf~~ • same as above but sometimes they have different
names to show their time base.Some are TMH (high speed timer), TMS (super high

speed timer) or TMRAF (accl.lIIl.u.la.ting fast timer)

Shown below is a typical tiırı.ebinsttu.ctionsymbol we will encounter (depending on

which manufacturer we choose) and>nôWtol.lseit. Remember that while they may look

different they are all used basically the sa.ıtı.e"\Va.y. If we can setup one we can setup any

ofthem.

Et\lABLE' Txxx
yyyyy

Figure 4.5 A typical timer instruction symbol

This timer is the on-delay type and is named Txxx. When the enable inpunis on the

timer starts to tick. When it ticks yyyyy (the preset value) times, it will rurn on .its

contacts that we will use later in the program. Remember that the duration ofa tick

(increment) varies with the vendor and the time base used. (i.e. a tick might be lms or 1

· second or...).Below is the symbol shown ona ladder diagram

29

0001 1 TOOO
100

TOOO 0500

Figure 4.6 A ladder diagram ofprogram using timer

In this diagram we wait for .input 0001 to turn on. When it does, timer TOOO (a

lOOmsincrement timer) starts tick.ing. It will tick 100 times. Each tick (increment) is

1 OOms so the timer will be a lOOOOms (i.e. 1 O second) timer. 1 OOticks X 1 OOms =

10,000ms. When 1 O secoıids füı:ve elapsed, the TOOO contacts close and 500 turns on.

When input 0001 turns öff(false)the timer TOOO will reset back to O causing its contacts

to turn off(become false) the:rebymaking output 500 turn back off. An accumulating

timer would look similartôthefi.ğbelow.

ENABLEI Txxx

RESET I YYYYY

An accumulating timer

This timer is named Txxx. Whe:ritheenable input is on the timer starts to tick. When

it ticks yyyyy (the preset vah.ıe)tiri:ı.es,it will turn on its contacts that we will use later in

the program. Remember that the düration ofa tick (increment) varies with the vendor

and the time base used. (i.e. a tickilllight be lms or 1 second or...) If however, the

enable input turns offbefore the tiınefhas completed, the current value will be retained.

When the input turns back on, the tiıner will continue from where it left off. The only

way to force the timer back to its preset value .to start again is to turn on the reset input.

The symbol is shown in the ladder diagram below.

30

0002

TOOO
0001 1 100

TOOO 0500

Figure 4.8 An accilinulating timer connected in program

0002 to turn on. When it does timer TOOO (a 1 Oms

tick 100 times. Each tick (increment) is lOms so

timer. lOOticksX lOms = l,OOOms. When 1

cö11tacts close and 500 turns on. If input 0002 turns back

retained. When 0002 turns back on the timer will

0001 turns on (true) the timer TOOO will reset

off (become false) thereby making output 500 turn

In this diagram we wait

increment timer) starts uu,.m~.

the timer will be a 1

second has elapsed, the

off the current elapsed

continue where it left

back to o causing its wmav

back.

4.4 Timer

Now that we've created and used, f;Fs learn a little about their

r>rP~tino a timer that lasts a few seconds, or more, we can

their precision because it's usually insignifıcant.

ı;;cı.uııgiJımers that have duration in the millisecond (lms=

concemed about their precision.
However, when we're

1/1000 second) range we

There are general two when using a timer. The fırst is called an input

error. The other is called The total error is the sum ofboth the input and

output errors.

• Input error- An error occuts · dependingupon when the timer input turns on

during the scan cycle. When the input turns on immediately after the plc looks at

the status of the inputs during the scan cycle, the input error will be at its largest.

(i.e. more than 1 full scan time!). This is because, as you will recall, (see scan

time chapter) the inputs are looked at once during a scan. If it wasn't on when

31

-··--···~·-

the plc looked and turns on later in the scan we obviously have an error. Further

we have to wait until the timer instruction is executed during the program

execution part of the scan. If the timer instruction is the last instruction on the

rung it could be quite a big error!
• Output error- An another error occurs depending upon when in the ladder the

timer actually "times out'', (expires) and when the plc fınishes executing the

program to get to the part of the scan when it updates the outputs. (again,see
is because the timer fınishes during the program

fırst fınish executing the remainder of the program

,.,,..,.,.••,atı:> output.

scan time

execution but the

before it can

that the worst

execution time.

program. (Depends

worst possible input error. You will note from it

would be 1 complete scan time + 1 program

program execution time varies from program to

uctions are in the program!)

Figure 4.9 illustration of the worst possible input error

Shown below is a diagramilfüstfating the worst possible output error. You can see

from it that the worst possibleöutputerror would be 1 complete scan time.

Figure 4.1 O illustration of the worst possible output error

Based upon the above inforrnation we can now see that the total worst possible timer

error would be equal to

32

1 scan time + 1 program execution time + 1 scan time

= 2 scan times + 1 program execution time.

What does this really mean? It means that even though most manufacturers currently

have timers with lms increments they really shouldn't be used for durations lessthana

few milliseconds. This assumes that your scan time is 1 ms. If your scan time is Sms you

had better not use a timer with duration less than about l Sms. The point is however, just

so that we will know what errors we can expect. If we know what error to expect, we

can then think about whether this amount of error is acceptable for our application. In

most applications this error is insignifıcant but in some high speed or very precise

applications this error can be very signifıcant.

We should also note that the above errors are only the "software errors". There is

also a hardware input error as well as a hardware output error.

The

that the input is

is because many
before it determines it's physically on. (1'0 eli111irıate

the plc to actually realize

The hardware output error is caused by the time it takes from when the plc tells its

output to physically turn on until the moment it actually does. Typically a transistor

takes about O.Sms whereas a mechanical relay takes about lOms.

The error keeps on growing doesn't it! If it becomes too big for the application,

consider using an extemal "hardware" timer.

4.5 One-shots

A one-shot is an interesting and invalual;>le programming tool. At fırst glance it

might be diffıcult to fıgure out why such an instruction is needed. After we understand

what this instruction does and how to use it, however, the necessity will become clear.

33

A one-shot is used to make something happen for only 1 scan. Most manufacturers

have one-shots that react to an off to on transition and a different type that reacts to an

on to off transition. Some names forthe instructions could be difu/difu (differentiate

up/down), sotu/sotd (single output up/down), osr (one-shot rising) and others. They all,

however, end up with the same result regardless of the name.

~DIFU~

Fiğure 4.11 One-shot Instruction

(one-shot) instruction. A difu looks the same but

of the manufacturers have it in the shape ofa box

all function the same way. For those manufacturers

that don't include a difTu~t11?0je down instruction, you can get the same effect by

putting a NC (normally plgs~§) instruction before it instead of a NO (normally open)

instruction. (Le. reverse th.eJôğicbefore the difu instruction)

Above is the

inside the symbol it

ladder. This

see how this instruction actually functions in a

used with some of the advanced instructions where

only once. However, since we haven't gotten that

simple terms, a flip/flop turns something around

use a single pushbutton switch. The fırst time

turn on. it will remain "latched" on until the

When he does, the output tums off. Here's the

far yet, let's set up a

the operator pushes it we

next time the operator pushes

ladder diagram that does just that.

0000 1000

~DIFUI 11000~)'1 1001
100PV

1001 0500

Figure 4. 12 a ladder diagram ofa flip/flop

34

Now tlıis looks confusing! Actually it's not ifwe take it one step ata time.

• Rung l-When Nü (norınally open) input 0000 becomes true DIFU 1000

becomes true.
• Rung 2- Nü 1000 is true, Nü 1001 remains false, NC 1001 remains true, NC

1000 turns false. Since we have a true patlı, (Nü 1000 & NC 1001) OUT 1001

becomes true.

• Rung 3- Nü 1001. is tı:"lıy tlıerefore OUT 500 turns true.

4.5.1 Next Scan

•
tlıe DIFU

DIFU 1000 now becomes false. This is because

true for one scan. (i.e. the rising edge of the logic

• 1001 remains true, NC 1001 is false, NC 1000

a true patlı, (Nü 1001& NC 1000) OUT 1001turns true.

remains true.

• Rung 3- Nü 1001 is 500 remains true.

After 100 seans, Nü

state as "next scan" shown above.

The logic remains in tlıe same

tlıerefore tlıe 'logic stays tlıe same

on rungs 2 and 3)

On scan 101 Nü 0000

true DIFU 1000• Rung l-When Nü (norınally open)

becomes true.
• Rung 2- Nü 1000 is true, Nü 1001 remains true, NC 1001 becomes false, NC

1000 also becomes false. Since we no longer have a true patlı, OUT 1001

becomes false.
• Rung 3- Nü 1001 is false tlıerefore OUT 500 becomes false.

Executing the program 1 instruction at a time makes this and any program easy to

follow. Actually a larger program tlıat jumps around might be difficult to follow but a

pencil drawing of the registers sure does help!

35

4.6 Master Controls

Let's now look at what are called master controls. Master controls can be thought of

as "emergency stop switches". An emergency stop switch typically is a big red button

ona machine that will shut it off in cases of emergency. Next time you're at the local

gas station look near the door on the outside to see an example of an e-stop.

*IMPORTANT- We're not implying that this instruction is a substitute for a "hard

wired" e-stop switch. There is no substitute for such a switch! Rather it's just an easy

way to get to understand them.

The master control instruction typically is used in pairs with a master control reset.

However this varies by manufacturer. Some use MCR in pairs instead ofteaming it with

another symbol. It is commonlyal:>breviatedas MC/MCR (master control/master control

reset), MCS/MCR (master coııtrô[set/master control reset) or just simply MCR (master

control reset). Here is one exaınple.iofhow a master control symbol looks.

Below is an example ofa master control reset.

Figure 4.14 A master control reset symbol

To make things interesting, many manufacturers make them act differently. Let's

now take a look at how it's used in a ladder diagram. Consider the following example.

36

N•.CR

Figure 4.15 A ladder program using MC and MCR

Here's how different PLCs will run this program:

4.6.1 Manufacturer X- In this example, rungs 2 and 3 are only executed when

input 0000 is on (true). If input 0000 is not true the plc pretends that the logic between

the mc and mcr instructions does not exist. It would therefore bypass this block of

instructions and immediately go to the rung after the mcr instruction.

Conversely, if input 0000 is true, the plc would execute rungs 2 and 3 and update the

status of outputs 0500 and 0501 accordingly. So, if input 0000 is true, program

execution goes to rung·z:•.••lfiriput)000·1····is.··true0500>Vil·l··he.trueandhenc.e.it ••wi.11.turn .on
when the plc updates the outputs. If input 0002is true(i.e. physically off) 0501 will be

true and therefore it will turu on when the plc updates the ôutputs.

MCRjust tells the plc "that's the end ofthe mc/mcr block".

In this plc, scan time is not extended when the mc/mcr block is not executed because

the plc pretends the logic in the block doesn't exist. In other words, the instructions

inside the block aren't seen by the plc and therefore it doesn't execute them.

4.6.2 Manufacturer Y- In this example, rungs 2 and 3 are always ex.ecuted

regardless of the status of input 0000. If input 0000 is not true the plc executesthe MC

instruction. (i.e. MC becomes true) It then forces all the input instructions inside the

blockto be off. If input 0000 is true the MC instruction is made to be false.

Then, if input 0000 is true, program execution goes to rung 2. If input 0001 is true

0500 will be true and hence it will turu on when the plc updates the outputs. If input

37

0002 is true (i.e. physically off) 0501 will be true and therefore it will turn on when the

plc updates the outputs. MCR just tells the plc "that's the end of the mc/mcr block".

When input 0000 is false, inputs 0001 and 0002 are forced off regardless if they're

physically on or off. Therefore, outputs 0500 and 0501 will be false.

The difference between manufacturers X and Y above is that in the Y scheme the

scan time will be the same (well close to the same) regardless if the block is on or off.

This is because the plc sees each instruction whether the block is on or off.

Most allmartu.facturers will make a previously latched instruction (one that's inside

the mc/mcrb'lôck) retain its previous condition.

If it was tı:u.e before, it will remain true.

If it was fü.Isebefore, it will remain false.

Timers sliôuld not be used inside the mc/mcr block because some manufacturers will

reset them.tô)z:ero when the block is false whereas other manufacturers will have them

retain the curterit time state.

Counters typically retain their current counted value.

Here's the parrto note most of all. When the mc/mcr block is off, (i.e. input 0000

would be false intheladder example shown previously) an OUTB (Out Bar or Out Not)

instruction would notbe physically on. It is forced physically off.

-0-
Figure 4.16 Out Bar instruction

In summary, BE CAREFUL! Most manufacturers use the manufacturer Y execution

scheme shown above. When in doubt, however, read the manufacturers instruction

manual. Betler yet, just ask them.

38

4.7 Shift Registers

In many applications it is necessary to store the status of an event that has previously

happened. As we've seen in. past chapters this is a simple process. But what do we do if

we must store many previous events and act upon them later.

Answer: we call upon the shift register instruction.

We use a register or group of registers to form a train of bits (cars) to store the

previous on/off status, Each new change in status gets stored in the first bit and the

remaining bits get shifted down the train. Huh? Read on.

The shift'register goes by many names. SFT (Shift), BSL (Bit Shift Left), SFR (Shift

Forward Register) are some of the common names. These registers shift the bits to the

left. BSR(Bit Shift Right) and SFRN (Shift Forward Register Not) are some examples

of instructiôns that shift bits to the right. We should note that not all manufacturers have

shift registers that shift <lata to the right but most all do have left shifting registers.

0000

-i 1 DATA 1 SFT

000~ 1000-i CLOCK
1003

0002
RE SET

Figure 4.17.t\ladder representation of shift

A typical shift register instruction has a symbôl like that shown above. Notice that the

symbol needs 3 inputs and has some data inside the symbol. The reasons for each input

are as follows:

• Data- The <lata input gathers the true/false statuses that will be shifted down the

train. When the <lata input is true the first bit (car) in theregister (train) will be a

1. This data is only entered into the register (train) on the rising edge of the

clock input.

• Clock- The clock input tells the shift register to "do its thing". On the rising

edge of this input, the shift register shifts the <lata one location over inside the

39

register and enters the status of the data input into the fırst bit. On each rising

edge of this input the process will repeat.

• Reset- The reset input does just what it says. it clears ali the bits inside the

register we're using to O.

The 1000 inside the shift register symbol is the location of the fırst bit of our shift

register. If we think of the shift register as a train then this bit is the locomotive. The

1003 inside the symbol above is the last bit of our shift register. it is the caboose.

Therefore, we can say that 1001 · and 1002 are cars in between the locomotive and the

caboose. They are intermediate bits, So, this shift register has 4 bits. (i.e. 1000, 1001,

1002, 1003)

Figure 4.18 A chow-chow train

Let's examine an application to see whylhôWwe ca.ı:ı.iuse theshiff.register.. Imagine

an ice-cream cone machine. We have 4 steps. First we ·verify the/coneis not broken.

Next we put ice cream inside the cone.(turn on output 500) Next we · add peanuts.rturn

on output 501) And fınally we add sprinkles.(turn on output 502) If the cone is broken

we obviously don't want to add ice cream and the other items. Therefore we have to

track the bad cone down our process line so that we can tel1 the machine not to add each

item. We use a sensor to look at the bottom of the cone. (Input 0000) If it' s on then the

cone is perfect and if it' s off then the cone is broken. An encoder tracks the cone going

down the conveyor. (Input 0001) A push button on the machine will clear the register;

(Input 0002).

40

Here's what the ladder would look like

0000 DATA ı
SFT

0001 CLOCKI 1000

1003
1

0002 RESET
---L_

0500

Figure 4.19 A ladder program

register as the operation takes place. Here's what the 1000

shifting) looks like initially:
Let's now

series register

lOxx Register

15 i 14 11 ! 1 O 09 08 07 , 06 02 Ol : 00

o : o o

Table 4.1

A good cone comes-intfront of the sensor (input 0000). The sensor (<lata input) turns

on. 1000 will not turn on until the rising edge of the encoder (input 0001). Finally the

encoder now generates a pulse and the status of the <lata input (cone sensor input 0000)

is transferred to bit 1000. The register now looks like.

~----~----~---···---·------ ·----·--·-----·--------- -
lOxx Register

15 14 13 12 11 1 09 08 i 07 : 06 05 04 03 02 ! 01 00
'

O O O 1

Table 4.2

41

As the conveying system moves on, another cone comes in front of the sensor. This

time it's a broken cone and the sensor remains off. Now the encoder generates another

pulse. The old status of bit 1000 is transferred to bit 1001. The old status of 1001 shifts

to 1002. The old status of 1002 shifts to 1003. And the new status of the <lata input

(cone sensor) is transferred to bit 1000. The register now looks like.

1Oxx Register

: 15 08 i 07 ! 06 1 05 ! 04 t 03 ! 02 i 01 ! 0012 11 1

Table 4.3

Sirıpe the register shows that 1001 is now on, the ladder says that output 0500

will turn orı.ajld ice cream is put in the cone.

As the côrıveying system continues to move on, another cone comes in front of the

sensor. Tl:ı.i.stiri:ıe it's a good cone and the sensor turns on. Now the encoder generates

another pulsetThe old status of bit 1000 is transferred to bit 1001. The old status of

1001 shiftstô1002. The old status of 1002 shiftsto 1003. And the new status ofthe <lata

input (cone seri.sor) is transferred to bit 1000. The register now looks like:

15

1Oxx Register

12 . 11 10 09 07 i 06 05 04 ! 03 i 02 : 01 00

O 1 · O 1

Table 4.4

Since the register shôws that 1002 is now on the ladder says that output 0501 will

tum on and peanuts are put on the cone. Since 1001 now holds the status of a broken

cone, 500 remains off in the ladder above and no ice-cream is inserted into this cone. As

the conveying system continues to move on, another cone comes in front of the sensor.

This time it's also a good cone and the sensor tums on. Now the encoder generates

another pulse. The old status of bit 1000 is transferred to bit 1001. The old status of

1001 shifts to 1002. The old status of 1002 shifts to 1003. And the new status ofthe <lata

input (cone sensor) is transferred to bit 1000. The register now looks like:

42

··--·h-··-···--·-·---···---·--·--------h·---. --- . ·--~---------·------··--·-------- ,.
10:xx Register

15 14 ! 13 12 11 10 09 08 07 06 05 04 03 02 : 01 ! 00
' ı i

1 O 1 1

Table 4.5

Since the register shows · that 1003 is now on the ladder says that output 0502 will

turn on and sprinkles are put on the cone. Since 1002 now holds the status ofa broken

cone, 501 remains ôff iri the ladder above and no peanuts are put onto this cone. Since

the register sliôwsthatlOOI is now on the ladder says that output 0500 will turn on and

ice crearriispufiıı that cone.

As system continues to move on, another cone comes in front of the

it's another broken cone and the sensor turns off. Now the encoder

pulse. The old status of bit 1000 is transferred to bit 1001. The old

shifts to 1002. The old status of 1002 shifts to 1003. And the new status

(cone sensor) is transferred to bit 1000. The register now looks like:

lOxx Register

1

13 12 11 1 O 09 : 08 f 07 06 01

Table 4.6

Notıd~ tlı.at the status of our fırst cone has disappeared. in reality its sitting in

locati6I1T004 but it's useless for us to draw an application with 16 processes here.

Suffıce iftô say that after the bit is shifted all the way to the left it disappears and is

never . seeri again. in other words, it has.been shifted out of the register and is erased

from myın.pry. Although it's not drawn, the operation above would continue on with

each bit shiijiııg on the rising edge of the encoder signal.

The shiffreğister is most commonly used in conveyor systems, labeling or bottling

applications, ete. Sometimes it's also conveniently used when the operation must be

delayed in a fast moving bottling line. For example, a solenoid can't immediately kick

out a bad can of beer when the sensor says its bad. By the time the solenoid would react

the can would have already passed by. So typically the solenoid is located further down

43

the conveyor line and a shift register tracks the can to be kicked out later when it's more

convenient.

4.8 Getting and Moving Data

Let's now start working with some <lata. This is what can be considered to be getting

into the "advanced" functions ofa plc. This is also the point where we'll see some

marked differences between many of the manufacturer's functionality and

implementation. Oııthe Iines that follow we'll explore two of the most popular ways to

get and manipulate <lata.

Why dôwe want to get or acquire <lata? The answer is simple. Let's say that we are

using one Qf the manufacturer' s optional modules. Perhaps it's an A/D module. This

modulea.cquires Analog signals from the outside world (a varying voltage or current)

and con.vertsthe signal to something the plc can understand (a digital signal i.e. 1 's and

O's). Manu:fücturers automatically store this <lata into memory locations for us.

However/We have to getthe <lata out of there and move it some place else otherwise the

next ana.loğsample willTeplace the one we just took. In other words, move it or lose it!

Something else we rn.iğhfwant to do is store a constant (i.e. fancy word for a number),

get some binary <lata ôff'the 'input terminals (maybe a thumbwheel switch is connected

there, for example). do §ôme foath and store the result in a different location, ete...

As was stated before th~r~are typically 2 common instruction "sets" to accomplish

this. Some manufacturers us~cı.:singleinstruction to do the entire operation while others

use two separate instructiônsf mP-~\two are used together to accomplish the final result.

Let's now look briefly at eachiiıstnfötion.

The single msıruction is com.niori.ly called I\10V (move). Some vendors also include

a MOVN (move not). It has the saı'11e function of MOV but it transfers the data in

MOV

xxxx
Y'{'/Y

Figure 4.20 MOV instruction symbol

The paired instrucrion typically is called LDA (Load Accumulator) and STA (Stere

Accumulator). The accumulator is simply a register inside the CPU where the plc storcs

data temporarily while it's working, The LDA instruction typically looks like that

shown below. while the STA instruction looks like that shown below to the right.

Figure 4.21 Symbols ofLDA and STA

choice

whPthi>r we use the one symbol or two symbol instruction set (we have no

whose plc we use) they work the same way.

Let's instruction first. The MOV instruction needs to know 2 things from

us.

•

\Ve could also write a location or address of where the data we

'"11••"'" txxxxJ - This is where the data we want to move is located. We could

here (2222 for exarnple). This would mean our source data is

is located. If we wrote DMl 00 this would move the data that is

100.

• - This is the locatiorı where the data will be moved to. We

For example if we write DM201 here the data would be

201. We could also write 0500 here. This would mean

moved to the physical outputs. 0500 would have the least

would have the next bit ... 0515 would have the most

be useful if we had a binary display connected to the

vvct.ı.mAı to display the value inside a counter for the machine

example).

that the

significant

significant

outputs and

operatör at all

0000 1000

HDIFU
1000 1 MOV

DM200

Figure 4.22 A ladder program to move data

45

The ladder diagram to do this would look similar to that shown above.

Notice that we are also using a "difı.ı" instruction here. The reason is simply because

if we didn't the data would be moved during each and every scan. Sometimes this is a

good thing (for example if we are acquiring data from an A/D module) but other times

it's not (for example an extemal display would be unreadable because the data changes

too much).

The ladder shows

become true for

move the <lata

Simple but

would have moved

The two

them we must also

o LDA-

(2222 for

located. If
memory

o STA- this

moved into

that the data

significant bit,

time real world input 0000 becomes true. difı.ı will

At this time Load 1000 will be true and the plc will

memory 200 and put it into data memory 201.

of DM200, we had written 2222 in the symbol we

number (constarıt) 2222 into DM20L

works in the same method but looks different. To use

things, one for each instruction:

ıs similar to the source of a l',.1QV instruction, This is

want ta move is located. \\'e could write a ccnstant here

This would mean our source data is the number 2222. We

locaticn or address of where the data we want to n10Ye is

Drv1100 this would move the data that is located in data

is similar to the destination of a i\.10\T instruction. V./e

For example if we write DI\·1201 here the dara would be

201. We could also write 0500 here. This would mean

moved to the physical outnuts. 0500 would have the least- ,

would have the next bit.. 0515 would have the most

significant bit. This would be useful if we had a binary display connected to the

outputs and we wanred to display the value inside a counter for the machine

operatör at all times (for example).

46

0000 1000

HDIFU
1000 #2222

~

LD.A.
DM200
ST.A.

Figure4.23 A ladder program using LDA and STA

The ladder diagram to do this would look similar to that shown above. Here again we

notice that we are using a one-shot so that the move only occurs once for each time

input 0000 becômes true. In this ladder we are moving the constant 2222 into data

memory 200. The "#" is used by some manufactures to symbolize a decimal number. If

we just. usecf2222 this plc would think it meant address 2222. PLCs are all the same ...

but they ateTalldifferent.

We

you'll

of this instruction as the gateway to advanced instructions. I'm sure

and invaluable as we'll see in future. Many advanced functions are

vvuuvm this instruction.

47

Chapter 5

NUMBERS AND NUMBER SYSTEMS

5.1 Math Instructions

Let's now look at using some basic matlı functions on our data. Many times in our

applications we must execute some type ofmathematicalformula on our data. It's a rare

occurrence when our dara is actually exactly what we needed.

As an example, let's say we are manufacturing widgets. We don't want to display the

total number we've made töday, but rather we want to display how many more we need

to make today to meet outJquota. Let's say our quota for today is 1000 pieces. We'll say

X is our current productiörri'I'herefore, we can fıgure that 1000-X=widgets left to make.

To implement this formulawe ôbviously need some matlı capability.

In general, PLCs almost matlı functions:

• is commonly

called ADD.

• Subtraction- The capability to

commonly called SUB.

• Multiplication- The capahility to multiply one piece of <lata hy another. It is

commonly called MUL.

• Division- The capability to divide one piece of data from another. It is

commonly called DIV.

As we saw with the MOV instruction there are generally twocommon methods used

by the majority of plc makers. The first method includes a single instruction that asks us

for a few key pieces of infonn.ation.This method typically requires:

• Source A- This is the address of the fırst piece of data we will use in our

formula. In other words it's the location in memory of where the fırst "number"

is that we use in the formula.

48

• Source B- This is the address of the second piece of <lata we will use in our

formula. In other words it's the location in memory of where the second

"number" is that we use in the formula. -NOTE:.typically we can only work with

2 pieces of <lata ata time. In other words we can't work directly with a formula

like 1 +2+3. We would have to break it up into pieces, Dike 1 +2=X then X+3=

our result.
-· '

Destination- This is theaddress where the result oiöutfôrititıla will be put.

For example, if 1 +2=3, (I hope it still does!), the 3 would automatically be put

•

into this destination memory location.

DM100
DNı.101

DM102

Figure 5.1 ADD symbol

The instructions above typically have a symbol that looks like that shown above. Of

course, the word ADD would be replaced by SUB, MUL, DIV, ete. In this symbol, The

source A is DMlO(kthe source B is DMI Ol and the destinatioıtisDMl02. .Therefore,

inDMIOO + whatever value is inDMlOl. The

DMlOO
DNı101

DM102

Figure of matlı functions

Shown above is how to use on a ladder diagram. Please note that
once again we are using a one-shot instructiorı. As we've seen before, this is because if

we didn't use it we would execute the formüla on every scan. Odds are good that we'd

only want to execute the function one time when input 0000 becomes true. If we had

previously put the number 100 into DM100 and 200 into DM1O 1, the number 300

would be stored in DM102.(i.e. 100+200=300,right??)

49

Figure 5.3 ADD symbol (dual method)

The dual instruction method would use a symbol similar to that shown above. in this

method, we give this symbol only the Source B location. The Source A location is given

by the LDA i11ştruction. The Destination would be included in the STA instruction.

0000 1000

HDIFU
1000 DNılOO

1 1
LDA

5.4 A ladder program using DIFU, LDA, ADD and STA

Shown diagram showing what we mean.

as the single instruction method shown above.

had a result that was greater than the value that could be

Typically the HlvHlVL

later chapter) In plain

(2/\16=65536) it is too

ıuı.;mıum, are 16-bit locations. (More about number types in a

mva.u-, that if the number is greater than 65535

we get what's called an overflow. Typically the

us an overflow has happened. Depending on theplc tums on an intemal relay

plc. we would have different data in the destination location. (DM102 from example)

Most PLCs put the remainder here.

Some use 32-bit matlı which solves the problem. (Except for really big numbers) lf

we're doing division. for example. and we divide by zero (illegal) thc ovcrflow bit
-t- ,-: allv .•.. ~- A n "' ıı Suff ;-,. TA ., chcck th , A flo: , bit i ,, , ladd ~ n ,.:J :.ı:,) pıca ı.v turns on as wc ı , .:)L ıcc ll l\.l say. \.,ll\,.,\., C OVı.,f.L \.)VV ,ı ın .YÜLÜ lCl er Cl.LlU ı ı

• Square roots

• Scaling

• Absolute value

it's true, plan appropriately. Many PLCs also include otlıer matlı ~ı:ıµauııtpı::;s.

tlıese functions could include:

• Sine

• Cosine

• Tangent

• Natura! logarithm

• Base 1 O logarithm

• XAY (X to the power of Y)

• Arcsine (tan, cos)

• And moreclıeck with the manufacturer to be sure.

SomeiPI.t®s>can use floating point matlı as well. Floating point matlı is simply using

decimalpöirits:111.ôtlıer words, we could say tlıat 10 divided by 3 is 3.333333 (floating

point). Or we.icoüld say tlıat 1 O divided by 3 is 3 with a remainder of 1 (long division).

Many micro/mifıi J>LCs don't include floating point matlı. Most of larger systems

typically do.

5.2 Number Systems

Before we get too/far ahead of ourselves, let's take a look at the various number

systems used by PLCs.<Many number systems are used by PLCs. Binary and Binary

Coded Decimal are populariwlıile octal and lıexadecimal systems are also common.

Let's Jook at each:

As we do, consider tlıe followirı.ğformula (Matlı again!):

Nbase= Ddigit*R/\unit +.... DlR/\1 + DOR/\0

Wlıere D=the value of tlıe digit and R= # of digit symbols used in tlıe given number

system.

The "*" means multiplication. (5 * 1 O= 50)

The "A" means "to the power of'.

51

Where D=the value ofthe digit and R= # of digit symbols used in the given number

system.

The 11*" means multiplication. (5 * 10 = 50)

The 11/\11 means "to the power of'.

As you'll recall any number raised to the power of O is 1. lQAI=lO, lQ/\2 is 10x10=100,

10/\3 is lOxlOxlO=lOOO, lQ/\4 is lOxlOxlOxlO=lOOOO...

This lets us convert frorr.i.aı:ıy number system back into decimal.

5.2.1 Decimal

This is the numbering system we use in everyday life. (well most ofus do anyway!)

We can think of this as base 1 O counting. it can be called as base 1 O because each digit

can have 1 O different states. (i.e. 0-9) Since this is not easy to implement in an

electronic system it is seldom, if ever, used. Ifwe use the formula above we can fınd out

what the number 456 is. From the formula:

Nbase=Ddigit" RAunit +.... D1RA1 + DORAO.

We have (since we're doing base 10, R=lO)

NlO= D410/\2 + D510/\1 + D610AO

= 4*100 + 5*10 + 6*

=400 + 50 + 6

=456.

5.2.2 Binary

This is the numbering system computers and PLCs use. It was far easier to design a

system in which only 2 numbers (O and 1) are manipulated (i.e. used). The binary system

uses the same basic principles as the decimal system. In decimal we had 1 O digits. (0-9)

in binary we only have 2 digits (O and 1). In decimal we count: 0,1,2,3,4,5,6,7,8,9, and

instead of going back to zero, we start a new digit and then start from O in the original

digit location. In other words, we start by placing a 1 in 'the .second digit location and

begin counting again in the original location like this 10,11,12,13, ... When again we hit

9, we increment the second digit and start counting from O again in the original digit

location. Like 20,21,22,23 of course this keeps repeating. And when we run out of

- 52 -

digits in the second digit location we create a third digit and again start from scratch.

(i.e. 99, 100, 101, 102...). Binary works the same way. We start with O then 1. Since

there is no 2 in binary we must create a new digit. Therefore we have O, 1, 10, and 11

and again we run out of room. Then we create another digit like 100, 1 O 1, 11 O, and 111.

Again we ran out of room so weadd another digit... Do you get the idea? The general

conversion formula may clear things up:

Nbase=Ddigit * Rounit +.... DlR"l + DOR"O.

Since we're now doirigbiııary or base 2, R=2. Let's try to convert the binary number

11 O 1 back into decimal,

NlO= Dl * 2"3 +DO* 2"1 + Dl * 2"0

= 1*8 +

= 13
(Ifyou don't see 2, and 1 came from, refer to the table below).

Now we can see thaf\binatyJlOl is the same as decimal 13. Try translating binary

111.You should get debirnal/7.Try binary 10111.You should get decimal 23.

Here's a simple binaty<cfı.art/förreference. The top row shows powers of 2 while the

bottom row shows their eqtiivalent decimal value.

B. <.!~~.ry Number Conversions :.
:··:.'·:·.::,.'...:.:.:: .. ::···. ı

·-·2"fsr2AT4-r2"13 12"121211112"10 f"27'9 ı2"s 12"112"6ı2"s ı2"412"3:2"2h"1 :2"oı
... ~· _: .. :_ ~LY i • .L- ı _ J_: __ ı .[; • i J~I
32768l16384;8192!4096)2Q4~J1024)512j256j128j 64 j 32 ! 16 j 8 1 4 i 2 ! 1 j

Table 5.1

5.2.3 Octal

The binary number system requires a ton of digits to represent a large number.

Consider that binary 11111111 is only decimal 257. A decimal number like 1,000,000

("1 million") would need a lot of binary digits! Plus it's also hard for humans to

manipulate such numbers without making mistakes.

- 53 -

So we count like 0.1,2.3.4.5.6. 7. l 0.11.12 ... 17.20.21.22 .. .27 .30

U sing the formula again. wc can convcrt an octal number to decimal quite

easily.

Nbase= Ddigit * RAunit +.... D 1 R/\ 1 + DORAO

So octal 654 would be: (rcmember that here R=8)

NlO= D6 * 8/\2 +DS * 8/\1 + D4 * 81'0

= 6*64 + 5*84-4*1

= 384 +40+4

=428

(lf you don't see 64, 8 and 1 came from, refer to the table below).

Now we can see

The top row shows powers of 8 while

same as dccimal 209. Try translating octal 76.

You should get decimal 00. You should gct decimal 64.

Here's a simple octal chart

the bottom row shows their

8/\7

1

8/\0

2097152 262144 8

Table 5.2

Lastly. the octal system is a convenient way for us to express or write binary

numbers in plc systems, A binary number with a large number of digits can be
• 1 • • 1 " • - 4-• ..ı· - Th" . h - 1 ...convenıentıy wrıtten ın mı octaı torm wıtn rewcr dıgıts, L .11s ıs ı. ecausc ı octa dıgıt

actually represents 3 binary digits,

Believe me that ,vht!Il11\·Vc start working with rcgister dara or address locations in the

advanced chaptcrs it bccomcs a grcat way of cxprcssing <lata. The following chart

shows what wc'rc rcterrıng to:

Binary Number with its Octal Equivalent

1 1 O O 1 1 1 1 o ! o 1 O : 1

1 6 2 3 4 5

Table 5.3

From the chart we can see that binary 1110010011100101 is octal 162345. (Decimal

58597) As we can see, when we think ofregisters, it's easier to think in octal than in

binary. As you'll soon seethough, hexadecimal is the best way to think.

5.2.4 Hexadecimal

The binary numb:efsystem requires a ton of digits to represent a large number.

The octal system iınptôvesıipôr:i.this. The hexadecimal system is the best solution

however, because it allows<~~0jô'J::: even less digits. it is therefore the most popular

number system used with computersand PLCs. (we should learn each one though)

The hexadecimal system is also ret~~:tt •as base 16 or just simply hex. As the name

base 16 implies, it has 16 digits. The fügits are

O, 1 ,2,3,4,5,6, 7,8,9,A,B,C,D,E,F.

So we count like

O, 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11, 12,13, ...

IA,lB,lC,lD,lE,lF,20,21... 2A, 2B, 2C, 2D, 2E, 2F,

Using the form ula again, we can convert a hex number to deciınal quite easily.

Nbase= Ddigit * RAunit +.... D1RAI + DORAO

So hex 6A4 would be:(remember here that R=l6)

NlO= D6 * 16/\2 +DA* 16/\1 + D4 * 16/\0

= 6*256 + A(A=decima110)*16 + 4*1

= 1536 +160 +4

= 1700

(if you don't see where the 256, 16 and 1 came from, refer to the table below)

Now we can see that hex FFF is the same as decimal 4095. Try translating hex 76.

You should get decimal 118. Try hex 100. You should get decimal 256.

55

Here's a simple hex chart for reference. The top row shows powers of 16 while the

bottom row shows their equivalent decimal value. Notice that the numbers get large

rather quickly.

Hex Number Conversions
16/\8

65536

16/\7 16/\6 J6A5 16/\4

4294967296 268435456

Table 5.4

Finally, the hex system is perhaps the most convenient way for us to express or write

binary numbers in plc systems. A binary number with a large number of digits can be

conveniently written in hex form with fewer digits than octal. This is because 1 hex

digit actnally represents 4 binary digits.

Believe ıne that when we start working with register <lata or address locations in the

advanced chapters it becomes the best way of expressing data. The following chart

shows what we're referring to:

Binary Number with its Hex Equivalent

o 1 O 1O 1 O1 1 o oo 1

7 A 5

Table 5.5

From the chart we can see that binary 0111010010100101 is hex 74A5. (Decimal

29861) As we can see, when we think of registers, it's far easier to think in hex than in

binary or octal.

56

5.3 Boolean Matlı

Let's now take a look at some simple "Boolean matlı". Boolean matlı lets us do some

vary basic functions witlı the bits in our registers. These basic functions typically

include AND, OR and XOR functions. Eaclı is described below.

5.3.1 AND Gate

This function enables us to use the trutlı table below. Here, we can see that the

AND function is very much related to multiplication. We see this because the only time

the Result is true (i.e. 1) is when botlı operators A AND B are true (i.e. 1). The AND

instruction is useful wlıen your plc doesn't have a masking function. Oh yeah, a masking

function enables a bit in a register to be "left alone" wlıen working on a bit level. Tlıis is

simply because any bit that is ANDed with itself will remain the value it currently is.

For example, .if you wanted to clear (make them O) only 12 bits in a 16 bit register you

might AND<theregister with O's everywhere except in the 4 bits you wanted to maintain

the status

See the truth figure out what we mean. (1 AND 1 = 1, O AND O= O)

Result = A AND B

A Result

o o o
1 o o
o 1 o
1 1

Table 5.6

5.3.2 OR Gate

This function based upon the truth table below. Here; we can .see that the OR

function is very much related to addition. We see this because the only time the Result

is true (i.e. 1) is when operator A OR B is true (i.e. 1). Obviously, when they are both

true the result is true. (If A OR B is true...)

- 57 -

Result =A OR B

Result

o
1

1

1

Table 5.7

5.3.3 EXCLUSIVE ORGate

This function enables us to use the truth table below. Here, we can see that the

EXOR (XOR) function is not related to anything I can think of ! An easy way to

remember the results of this function is to think that A and B must be one or the other

case, exclusively. Huh? In other words, they must be opposites of each other. When

they are both the same (i.e. A=B) the result is false (i.e. O). This is sometimes useful

when you want to compare bits in 2 registers and highlight which bits are different. It's

also needed when we calculate some checksums. A checksum is commonly used as

error checking in some communications protocols.

Result =A XOR B

A Result

oo
1 o 1

1o 1

1 1 o

5.8

The ladder logic instructions are comrıionlycalled AND, ANDA, ANDW, OR, ORA,

ORW, XOR, EORA XORW.

As we saw with the MOV instruction there are generally two common methods used

by the majority of plc makers. The first method includes a single instruction that asks us

fora few key pieces of information. This method typically requires:

58

• Source A- This is the address of the first piece of data we will use. In other

words its the location in memory of where the A is.

• Source B- This is the address of the second piece of data we will use. In other

words its the location in memory of where the B is.

• Destination- This is the address where the result will be put. For example, if A

AND B = O the result (O.) would automatically be put into this destination

memory location.

At..JD
DNılOO
DNı101

DNı102

Figure 5.5 AND symbol

The instructions above typically have a symbol that looks like that shown here. Of

course, the word AND would befeplaced by OR or XOR. In this symbol, The source A

is DMl 00, the source B is DMlOt~~ciJ~e destination is DMl 02. Therefore, we have

simply created the equation DM100.<.A..ND DM101 = DM102. The result is

automatically stored into DM102. The Bôôlean fu11ctions on a ladder diagram are

shown below.

0000 1000

HDIFU

1000 rANb
DNılOO
DNı101

DNı102

Figure 5.6 A ladder program using AND

Please note that once again we are using a one-shot instruction. As we've seen

before, this is because if we didn't use it, we would execute the instruction: on every

scan. Odds are good that we'd only want to execute the function 011e time when input

0000 becomes true,

59

-IANDt-
Figure 5.7 AND symbol (dual instruction method)

The dual instruction method would use a symbol similar to that shown above. In this

method, we give this symbol only the Source B location. The Source A location is given

by the LDA instruction. The Destination would l:,~j11cludedjn the STA instruction.

Below is a ladder diagram showing what is meant.

0000 1000

HDIFU
1000 DM100
1 1 1

LDA
1

DM101
At·lf)

1

DM102
1

STA

Figure 5.8 A ladder program using DIFU, LDA, AND and STA

The results are the same as the single instruction method shown above. It should be

noted that although the symbol and ladder diagram above show the AND instruction,

OR or EXOR can be used as well. Simply substitute the word "AND" within the

instruction to be either "OR" or "EXOR". The results will be the same as shown in their

respective truth tables.

We should always remember that the theory is most iınportant. If we can understand

the theory of why things happen as they do, we can use anybody's plc. Ifwe refer to the

manufacturers documentation we can fınd out the details for the particular plc we are

using. Try to fınd the theory in that documentation and you might come up short. The

details are insignifıcant while the theory is very signifıcant.

- 60 -

Chapter 6

WIRING OF PLC

6.1 DC Inputs

Let's now take a look at how the input circuits of a plc work. This will give us a

betler understanding of how we should wire them up.

Typically, de input modules are available that will work with 5, 12, 24, and 48 volts.

Be sure to purchase the one that fıts your needs based upon the input devices you will

use.

We'll first look at how the de inputs work. DC input modules allow us to connect

either PNP (sourcing) or NPN (sinking) transistor type devices to them. If we are using

a regular switch (i.e. toggle or pushbutton, ete.) we typically don't have to worry about

whether we wire it as NPN or PNP. We should note that most PLCs won't Jet us mix

NPN and PNP devices on the same module. When we are using a sensor (photo-eye,

prox, ete.) we do, however, haveto '\VQrryalJoutitsoutput confıguration. Always verify

The difference between the two types is whether the load (in our case, the ole is the

load) is switched to ground or positive voltage. An NPN type sensor has the load

switched to ground whereas a PNP device has the Joad

Below is what the outputs look Iike for NPN and PNP sensors.

to positive voltage.

NPN (SINKING) SENSOR
1'0 PJ,C INl•UT

Figure 6.1 NPN sensor

On the NPN sensor we connect one output to the PLCs input and the other output to

the power supply ground. If the sensor is not powered from the same supply as the plc,

- 6] -

we should connect both grounds together. NPN sensors are most commonly used in

North America.

Many engineers will say that PNP is berter (i.e. safer) because the load is switched to

ground, but whatever works for you is best. Just remember toplan for the worst.

On the PNP sensor we connect öne output to positive voltage and the other output to

the PLCs input. If the sensor is not powered from the same supply as the plc, we should

connect both V+'s together. PNP sensors are most commonly used in Europe.

PNlı (SOUltCING) SENSOU
1'0 POSl11\'E(V+)

SENSOlt -K
.
C. JU1. 'PUT
ClllCUJ'f· ı-ı

4'·
'ın'O i"'LC ~:iı:PUT

sensor

CO)DION

The sensors intemal circuitinside the sensor, the transistor

tells the output transistor to turn on

the circuit between the 2 connections

IN'l'.EllN1\L ClltCUI'I'

Figure 6.3 internal circuit ofa sensor

- 62 -

The only

0000, INPUT 0001,
ground. Where it's connectedrl~rıP:rıilı;:

NPN sensor this ıeruuueu

connected to OV (groun.d).

the type of sensor
to V+. When using a PNP sensor this terminal is

A common switch(i.e. limit switch, pushbutton, toggle, ete.) would be connected to

theinputs jpJı sirrı.ilaffasbion. üne side of the switch would be connected directly to

v+. The ~:,rm,~ntı~es to tlıe p]c input terminal.This assumesthe common terminal is
connecte~~?9;'.(ground). If the common is connected to V+ then simply connect one

end oftheswitch to OV (ground) and the other end to the plc input terminal.

Th6phôto couplers are used to isolate the PLCs intemal circuit from the inputs. This

elinıinatesthe chance of any electrical noise entering the intemal circuitry. They work

b)'côrıverting the electricalirıplitsigrıal to light and then by converting the light back to

anelectrical signal to be processed b)'theintemal circuit.

6.2 AC Inputs

Now that we understand how de inputs wôrk,ilet's take .a close look at ac inputs. An

ac voltage is nott-polarized. Put simply, this means thatthere is no positive or neganve

to "worry about". However, ac voltage can be quite dangerous to work with if we are

careless. (Remember when you stuck the knife in the toaster got a shock? Be

careful) typically, ac input modules are available that will work with 24, 48, 11 O, and

220 volts. Be sure to purchase the one that fits your needs based upon the input devices

(voltage) you will use.

AC input modules are less common these days than de input modules. The reason

being that today's sensors typically have transistor outputs. A transistor will not work

with an ac voltage. Most commoııly, the ac voltage is being switched through a limit

switch or other switch type. Ifyour application is using a sensor it probably is operating

on a de voltage.

- 63 -

= ıe,_r)~ ji
z c:, ...•: $...~ ;;,ı- :;. :ı..~ ii": il!';;o,:- ı•ı..c

Figure 6.4 shows the connecting ofa PLC

We typically conneet an ac device to our input rnodule as shown above. Cornrnonly

the ac "hot" wire is ccnnected to the switch while the "neutral" goes to the plc cornrnon.

The ac ground (3rd wire where applicable) should be connected to the frarne ground

terminal of the plc.(not shown) As is true with de, ac connections are typically color

coded so that the individual.wiring the device knows which wire is which. This coding

varies frorn country to country but in the US is cornrnonly white (neutral), black (hot)

and green (3rd wire ground when applicable). Outside the US it's cornrnonly coded as

brown (hot), blue (neutral) and green with a yellow stripe (3rd wire ground where

applicable).

The PLCs ac.input module circuit typically looks like this.

PII01'0COUPLEll

IN'fEllNAL CIRCUl'l'

Figure 6.5 PLCs ac input rnodule circuit

The only things accessible to the user are theterminals la.beledCOMMON, INPUT

0000, INPUTxxxx... The cornrnon terminal gets connected to' the neutral wire. A

- 64-

common switch (i.e. limit switch, pushbutton, toggle, ete.) would be connected to the

input terminals directly. üne side of the switch would be connected directly to INPUT

XXX. The other end goes to the ac hot wire. This assumes the common terminal is

connected to neutral. Always check the manufacturer's specifications before wiring, to

be sure AND SAFE.

The photo couplers are used to isolate the PLCs intemal circuit from the inputs. This

eliminates the chance of any electrical noise entering the intemal circuitıy. They work

by converting the electrical input signal to light and then by converting the light back to

an electrical signal to be processed by the intemal circuit.

üne last note, typically an ac input takes Jonger than a de input for the plc to see. ln

most cases it doesn't matter to. the programmer because an ac input device is typically a

mechanical switch and mechanical devices are slow. lt's quite common for a plc to

require that the input be on for 25 or more milliseconds before it's seen. This detay is

required because of the filtering which is needed by the plc intemal circuit. Remember

that.the plc intemal circuit typically works with 5 or less volts de.

are used. Next up isBynowwe

the output circuits.

üne of the most common types of outputs available is the relay output. A relay can

be used with both AC and DC loads. A load is simply a fancy word for whatever is

connected to our outputs. We call it a load because we are "loading the output" with

something. lf we connected no load to the output (i.e. just connect it directly to a power

supply) we would certainly damage the outputs. This would be similar to replacing the

light bulb in the lamp you're using to read this with a piece of wire. lf you did this, the

lamp would draw a tremendous amount of current from the outlet and certainly pop

your circuit breaker or blow your fuse or your brains.

Some common forms ofa load are a solenoid, lamp, motor, ete. These "lôads" come
in all sizes. Electrical sizes, that is. Always check the specifications of yourrload before

connecting it to the plc output. You always want to make sure that the maximum current

- 65 -

it will consume is within the specifıcations of the plc output. If it is not within the

specifıcations (i.e. draws too much current) it will probably damage the output. When in

doubt, double check with the manufacturer to see if it can be connected without

potential damage.

Some types of loads are very deceiving. These deceiving loads are called "inductive

loads". These have a tendency to deliver a "back current" when they turn on. This back

current is like a voltage spike coming through the system.

A good example of an inductive load that most of us see about 6 months per year is

an air conditioning unit. Perhaps in your home you have an air conditioner. (Unless you

live in the arctic you probably do!) Have you ever noticed that when the air conditioner

"kicks on" the lights • dim for a second or two. Then they return to their normal

brightness. This is because when the air conditioner turns on it tries to draw a lot of

current through your wiring system. After this initial "kick" it requires less current and

the lights go back to normal. This could be dangerous to your PLCs output relays. It can

be estimated that this kick is about 30 times the rated current of the load. Typically a

diode,

the

"snubber" circuit should be used to help combat any damage to

use these outputs in the "real plc world".

z o
~o o~ '°:a: o o

o
0

PI..C

Figure 6.6 PLC connected to AC source

Shown above is a typical method of connecting our outputs to the plc relays.

Although our diagram shows the output connected to an AC supply, DC cari be iised as

well. A relay is non-polarized and typically it can switch either AC ôr DC. · Here the

common is connected to one end of our power supply and the other end ôfthe supply is

connected to the load. The other half of our load gets connected fothe actual plc output

you have designated within your ladder program.

- 66 -

lnternal Clrcuit

corıtact contact

le

COM 0500 0501 COM outputs

Figure 6. 7 Relay as in PLC

The relay is internal to the plc. Its circuit diagram typically looks like that shown

above. When our ladder diagram tells the output to turn on, the plc will internally apply

a voltage to .the relay coil. This voltage will allow the proper contact to close. When the

contactcloses, an external current is allowed to flow through our external circuit. When

the ladde[diagram telis the plc to turn off the output, it will simply remove the voltage

from theifüerrıal circuit thereby enabling the output contact to release. Our load will

than have atiöp~ti?circuit and will therefore be off.

6.4 Transistor Outputs

The next type of outpli{M'~ shoulcl leam about is our transistor type outputs. it is

important to note that a transistôf/carionly switch a de current. For this reason it cannot

be used with an AC voltage.

We can think ofa transistor asa solid-stat~sM'itch.)Or more simply put, an electrical

switch. A small current applied to the transistôrs\''ba.self (Le. input) lets 'us switch a

much larger current through its output. The plc applies a sföallcurrent to the rransistor

base and the transistor output "closes". When it's closed,thecI~viceCörinectedtothe plc

output will be turned on. The above is a very simple explaria.tioniöfatransistor. There

are, of course, more details involved but we don't need to geftöoideep. We should also

keep in mind that as we saw before with the input circuits,there a.regenerally more than

one type of transistor available. Typically a plc will have either NPN or PNP type

- 67 -

outputs. The "physical" type of transistor used also varies from manufacturer to

manufacturer. Some ofthe common types available are BJT and MüSFET. A BJT type

(Bipolar Junction Transistor) often has less switching capacity (i.e. it can switch less

current) than a MüS-FET (Metal üxide Semiconductor- Field Effect Transistor) type.

The BJT also has a slightly faster switching time. ünce again, please check the output

specifications of the particular plc you are going to use. Never exceed the

manufacturer' s maximum switching current.

og

öıı,
o

Figuı:e6.8 PLC connected to NPN type transistor

Shown above is how we typically connect our output device to the transistor output.

Please note that this is an NPN type transistor. If it were a PNP type, the common

terminal would most likely be connected to V+ and V- would connect to one end of our

load. Note that since this is a DC type output we must always observe proper polarity

for the output. üne end ofthe load is comiected directly to V+ as shown above.

Let's take a moment and see what happens inside the output circuit.Shown below is a

typical output circuit diagram for an NPN type output.

'-------o COM

Figure 6.9 Circuit diagram for an NPN type output

- 68 -

Notice that as we saw with the transistor type inputs, there is a photo coupler

isolating the "real world" from the intemal circuit. When the ladder diagram calls for it,

the intemal circuit tums on the photo coupler by applying a small voltage to the LED

side of the photo coupler. This makes the LED emit light and the receiving part of the

photo coupler will see it and allow current to flow. This small current will tum on the

base of the output transistor connected tooutput 0500. Therefore, whatever is connected

between COM ancl ()500 will turn on. When the ladder tells 0500 to tum off, the LED

will stop emitting Iight and hence the output transistor connected between 0500 and

COM will tum off.

üne öther 'important thing to note is that a transistor typically canrıot switch as large

a load asa relay. Check the manufacturer's specifıcations to fınd the largest load it can

safely switch. If the load current you need to switch exceeds the specifıcation of the

output, you can corın~ctteplc output to an extemal relay. Then conrıect the relay to the

large load. You may by thinking, "why not just use a relay in the first place"? The

answer is because a relayisi0~f0ıways
the correct choice for every output. A transistor

gives you the opportunity to usy y:xtemalrelays when and only when necessary.

in summary, a transistor is fast, switches a small current, has a long lifetime and

works with de only. Whereas a relay is slow, can switch a large current, has a shorter

lifetime and works with ac or de. Select the appropriate one based upon your actual

application needs.

- 69 -

Chapter 7

COMMUNICATIONS WITH PLC

7.1 Communications History

By far, the rnost popular rnethod of cornrnunicating with extemal devices is by using

the "RS-232" communications rnethod. Cornrnunication with extemal devices is viewed

by rnany plc prograrnrners to be difficult if not "all but impossible" to understand. This

is far frorn true! It's not "black art", "witchcraft" or "weird science". Read on...

All plc cornrnunication systerns have their roots in the old telegraph we rnay have

seen in the old movies. (Remember the guy working at the train station with the arın

band and plastic visor?) Early attempts to communicate electronically over long

distances began as early as the late 1700's. in 1810 a German man (von Soemmering)

was using a device with 26 wires (1 for each letter of the alphabet) attached to the

bottom of an aquariurn. When current passed through the wires, electrolytic action

produced small bubbles. By choosing the appropriate wires to energize, he was able to

send encoded messages "via bubbles", (It's true ...really) This then caught the attention

of the rnilitary and the race to find a systern was on.

in 1839, 2 Englishmen, Cooke and Wheatstone, had a 13 milejtelegraph in use by a

British railroad. Their device had 5 wires powering small electromagnets which

deflected low-mass needles. By applying current to different combinations of 2 wires at

a time the needles were deflected so that they pointed to Jetters of the alphabet arranged

in a matrix. This "2 of 51' code only allowed 20 combinations so the letters "z, v, u, q,j

and c" were omitted. This telegraph was a big step for the time, but the code was ıföt

binary (on/off) but rather it was binary (the needle moved left, right, or not at'alf):

The biggest problerns with these devices was the fact that they .were parallel

(required multiple wires). Cooke and Wheatstone eventually made a<tw9 wire .device
but the first practical fully serial binary system generally gets creditedto S.F.B. Morse.

in Morse code, characters are symbolized by dots and dashes (binary- l 's and O's).

- 70 -

Morse's fırst system isn't like we see .today.In .the movies. (It's on display at the

Smithsonian in DC if you want to see it) It actually had a needle contacting a rotating

drum of paper that made a """füııınıı<ı

would "bounce" away from

noticed that they didn't have

interpret the code by the sound the uı.,ı.,uıı.,

device was replaced by a sounder that produced

Teleprinters came later, and today's serial

related to them. The rest is history ... extinct, but

an electromagnet the needle

operators

Incideritally, the tenns·MARK and SPACE (we'll

Morse's otiginal device. When the needle contacted the

and wherı the needle bounced it was called a SPACE.

UPPERCASE letters which wasn't a big problem though.

"standardized" the code of "SOS" which means "Save Our Ship" or

the US military you might know it berter as "S*%$ Ona Shingle" which

beef on bread.

7.2RS-232 Communications (hardware)

RS-232 communications is the most popular method of plc to external

communications. Let's tackle it piece by piece to see how simple it can be when

understand it.

RS-232 is an asynchronous (a marching band must be "in sync" with each other so

that when one steps they all step. They are asynchronous in that they follow the band

leader to keep their timing) communications method. We use a binary systeın(l'sarı.d

O's) to transmit our <lata in the ASCII format. (American Standard Code for Inforınation•

Interchange- pronounced ASS-KEY) This code translates human readable / .code

(letters/numbers) into "computer readable" code (1 's and O's). Our plcs seriafpôrtiis

used for transmission/reception of the data. It works by sending/receiving a\lôltage. A

positive voltage is called a MARK and a negative voltage is called aSPACEYTypically,

- 71 -

the plc works with +/- 15volts. The voltage between +/- 3 volts is generally not used and

is considered noise.

There are 2 types of RS-232 devices.The fırst is called a DTE device. This means

Data Terminal Equipment and a co111111öfle:x#ınple)s a computer. The other type is

called a DCE device. DCE means Data C6111m1.ır1ications Equipment and a common

example is a modem. Your plc may be either#tı:>m~<9rDCE device. Check your

documentation.

The plc serial port works by tuming some pins on

each are dedicated to a specifıc purpose. The serial

type and a 9-pin type. The pins and their purposes are

assumes your plc is a DTE device)

5 7

6

isignal ground

6 i ldata set ready (DSR)

7 i 4 !request to send (RTS) ·

Table 7.1

Each pins purpose in detail:

• Frame ground- This pin should be intemally connected

device.

• Receive data- This pin is where the data from the external device enters the plc

serial port.

- 72-

• Transmit data- This pin is where the data from the plc serial port leaves the plc

enroute to the extemal device.

• Data terminal ready- This pin is a master control for the external device. When

this pin is I the extemal device will not transmit or receive data.

• Signal ground- Since data is sent as +or - voltage, this pin is the ground that is

referenced.

• Data set ready- Usually external devices have this pin asa permanent O and the

plc basically uses it to determine thatthe extemaldevice is powered up and

ready.

• Request to send- This is part of hardware handshakirıg. When the plc wants to

send data to the extemal device it sets this pin to a O. Iıfother words, it sets the

pin to a O and basically says "I want to send you <lata. Is it ok?" The' extemal

device says it's OK to send data by setting its clear to send piıito O. The plc then

sends the da.ta.

• Clear to serıd2 This is.the ôthel' half of hardware handshaking. As noted above,

the external device setsthis pirJifô{Owhenit is ready to receive <lata from the plc.

• Ring indicator- only used wheıifü~iplcfiiscôrııiected to a modem.

What happens when your plc and extemal device are either DTE (or both DCE)

devices? They can't talk to each other, that's what happens. The picture below shows

why 2 same type devices can't communicate with each other.

DTE devıce D'TE rıevıce

• 2 reeelve data
• 3 transrmt oata

2 recelve data
3 transme data

Figure 7.1 DİE devices

Notice that in the picture above, the receive <lata line (pin2) of the fırst device is

connected to the receive data line ofthe second device. And the transmit data !ine (pin3)

ofthe fırst device is connected to the transmitdata ofthe second device. .It's Iike jalking

through a phone with the wires reversed. (i.e. your mouth piece is connected directly to

the other parties mouthpiece and your ear piece is connected directly to the other parties

earpiece.) Obviously, this won't work well!

- 73 -

The solution is to use a null-modem connection as shown below. This is typically

done by using a reverse (null-modem) cable to connect the devices.

DTE devıce D'TE devıce
2 receive data
3 transmit data.

Figure 7.2

To summarize everything, here's a typical communıcatıons sesşıon.

powered up. The plc is DTE and the external device is DCE.

The external device turns on DSR which tells the plc that's

"there". The PLC turns on RTS which is like asking the external device

to receive 'seme data?" The external device responds by turning on it's CTS wnıcn says

it's ok to for the plc to send data. The plc sends the data on its TD terminal and the

external device receives it on its RD terminal. Some data is sent and received. After a

while, the external device can't process the data quick enough. So, it turns off its CTS

terminal and the PLC pauses sending data. The external device catches up and then

turns its CTS terminal back on. The plc again starts sending data on its TD terminal and

the external device receives it on its RD terminal. The]:>le 'rurıs ôtıt of data to send and

turns offits RTS terminal. The external device sits and waitsforınôre•data.

7.3 RS-232 Communications (software)

Now that we understand the hardware part of the picture, let's dive right into the

software part. We'II take a look at each part of the puzzle by defıning a few of the

common terms. Ever wondered what phrases like 9600-8-N-l meant? Do you use

software-handshaking or hardware-handshaking at forma! parties for a greeting? If
you're not sure, read on!

• ASCII is a human-readable to computer-readable translation' code. (Le, each

letter/numberis translated to l 's and O's) It's a 7-bit (a bit is a 1 ora O) code, so

we can translate 128 characters. (2"7 is 128)Character setsthatuse the 8th bit

do exist but they are not true ASCII.Below. is an ASCil.chart showing its

"human-readable" representation. We typically refer to .the characters by using

- 74-

hexadecimal terminology. "O" is 30h, "5" is 35h, "E" is 45h, ete. (the "h" simple

means hexadecimal)

Least

sig.

bits

Table 7.2

• Start bit- In RS-232 the fırst thing we send is called a start bit. This startrbit

("invented" during WWJ by Klein Schmidt) is a synchronizing bitiadde:djust

before each character we are sending, .This is considered a SPA.CE on negative

voltage ora O.

• Stop bit- The !ast thing we send is called a stop bit. This stop bit.telis us tharthe

last character was just sent. Think of it as an end-of -character bit. This is

considered a MARK or positive voltage or a 1. The start and stop bits are

- 75 -

commonly called framing bits because they surround the character we are

sending.

• Parity bit- Since most PLCs/extemal equipments are byte-oriented (8

bits=lbyte) it seems natura] to handle data asa byte. Although ASCII is a 7-bit

code it is rarely transmitted that way.yypically, the 8th bit is used as a parity bit

for error checking. This method of errorichecking gets its name from the math

idea of parity. (Rernember the ödd-ey~:füipfpp~i"tyof integers? I didn't think so.)

in simple terıns, parity means that all characters \\'ili e:itherhave an odd number

of 1 's · or an even rıumber of 1 's.Commcü' fotms ôf pa:rityafeNone:, Bven, and

Odd. (Mark and Space aren't very common sö Fwônrf'discuss'theın) .. Consider
these examples: send "E" (45h or 1000101 (binary))I:frparityôfNône,theparity

bit is always O so we send 10001O 1 O.In parity of eveilwe,ffiusf.have>an Even

number of l 's in our total character so the original characte:ı<currentlyhas3 il 's

(1000101) therefore our parity bitwewill add must be a L(l000101l)nöw vve

have an even number of 1 's. In Odd parity we need an odd number of 1 's. Since

our original character already has an odd number of l 's (3 is an odd number,

right?) our parity bit will be a O. (10001010). During transmission, the sender

calculates the parity bit and sends it. The receiver calculates parity for the 7-bit

character and compares theresult tothe: parity bit received. Ifthe calculated and

real parity bits don't match, an errôr occurred an we act appropriately.

It's strange that this parity method is so popular. The reason because it's only

effective half the time. That is, parity checking can only find errors that affect an

odd number of bits. If the error affected 2 or 4 or 6 bits the method is useless.

Typically, errors are caused by noise which comes in bursts and rarely affects 1

bit. Block redundancy checks are used in other communication methods to

prevent this.

• Baud rate- I'II perpetuate the incorrect meaning since its most commonly used

incorrectly. Think of baud rate as referring to the number of bits per second that

are being transmitted. So 1200 means 1200 bits per second are being sentand

9600 means 9600 bits are being transmitted every . second. Çoı.n1119n values

(speeds) are 1200, 2400, 4800, 9600,19200, and}84()0.

• RS232 data format- (baud Tı:tte-data(t>its..pı:ırity-5tpppits)i'I'füs\isithe way the

data format is typically specifıed. For' example, 9600-8-N-1 means a baud rate of

9600, 8 data bits, parity of none, and 1 stop bit.

- 76 -

The picture below shows how <lata leaves the serial port for the character "E" (45h 100

0101b) and even parity.

.~.,ılı~+~loiojijoj,-+-IİIr,,~ .--, .--,

Figure 7.3 Flow control

Another important thing that is sometimes used is called spftware bandshaking (flow

control). Like the hardware handshaking we saw in the previous • chapter, software

handshaking is used to make sure both devices are ready tosend/receivedata. The most

popular "character flow control" is called XON!XOFF. lt's veıysiınpleto understand.

Simply put, the receiver sends the XOFF character when it wants -rhe transmitter to

pause sendirıg <lata. >When it's -ready to receive <lata again, it sends .the transmitter .the
vr,;r,,-, , ... c.c,cL •., rf'fP.rrPn to as the hold off character and XON as

The last thing

end of a message to teli the rPP.P.ıvPr

common is the CR or the CR and

typewriters. When you reached the end ofa

would then grab the handle and move the carriage back t6thestart.In•öther words, you

retumed the carriage to the beginning. (This is thesame a.s what a Clfdeliıniter will do

is simply added to the

has received. The most

if you view it ona computer screen.) The plc/external device reCeives this and knows to

take the <lata from its buffer. (Where 'the data is stored temporarily before being

processed) An LF (line feed) is also sometimes sent with the CR character. lfviewed on

a computer screen this would look like what happens on the typewriter when the

carriage is returned and the page moves down a line so you don't type over what you

just typed?

Sometimes an STX and ETX pair is used for transmissiofı/recepfiofi' as well. STX is

"start of text" and ETX is "end of text". The STX is sent before the data a.riô telis füe

external device that <lata is coming. After ali the da.ta has beeii' seni, an ETX 6haracter is

sent.

- 77 -

Finally, we might also come across an ACK/NAK pair. This is rarely used but it

should be noted as well. Essentially, the transmitter sends its data. If the receiver gets it

without error, it sends back an ACK character. If there was an error, the receiver sends

back a NAK character and the transmitter resends the data.

7.4 Using RS-232 with Ladder Logic

Now that we understand what RS-232 is/means let's see it with our plc.

We should start out as always, remembering that a plc is a pk is a plc... iri .. other

words, understand the theory fırst and then figure out how our"marıufacfurer of choice

"makes it work". Some manufacturers include RS-232 communication capability in the

main processor. Some use the "programming port" for this. Others require you to

purchase (i.e. spend extra $'s) a module to "talk RS-232" with an extemal device.

What is an extemal device, you maybe asking? The answer is difficult because there are

so many extemal devices. It may be an operator interface, an extemal computer, a motor
controller, a robot, a vision system, a ... get the point??

To communicate via RS-232 we have to setup a few things. Ask yourselfthe following
questions:

• Where, in <lata memory, will we stere the data to be Sent?Essentially we have to

store the data we will send... somewhere. Where else but in our data memory !

• Where, in data memory, will we put the data we .receive from the extemal
device?

• How will we tel1 the plc when it's time to send our data (the data we stored in
data memory) out the serial port?

• How will we know when we have received <lata from our extemal device?

If you know the above, then the rest is easy. Ifyou don't knowtheabcıve,.then make

something up and now the rest is easy. Huh??? Simple, pick a .rnemory area to .work

with and fıgure out if we can choose the intemal relays .to use .to send and receive dara

or ifthe plc has ones that are dedicated to this purpose,

- 78 -

Before we do it, let's get some more technical terms out of the way so we're on the

same playing fıeld.

• Buffer- A buffer is a fancy technical word that means a plastic bag. In other

words, it's a temporary storage Jocation where the plc or extemal device stores

data it has received (or is waiting.t,o se11d) via RS-232. When I go to the

supermarket to buy my favorite TV di11ners,Tqı:ı.rry.them home in a plastic bag.

The plastic bag is' not . a permanent place for nıY foed (are TV dinners really

food??) but rather a temporary storage place föl"thern until I get home. When I

get home, I take them out of the bag and cook thenı. The supermarket was the

extemal device where I got the data (TV dinners) from.ahd rny microwave is the

plc. The plastic bag was the buffer (temporary storage place) that was holding

my data (TV dinner) uiıtil I took them out to use (i.e. cook).

• String- A string is a cool way of saying "a bunch of characters". The word

"hello" is a. string. Jt's a bunch · of characters (i.e. h-e-1-1-o) that are connected

(strung) toğethertcrnı~aıısônıethirig useful. "43770" is also a string. Although it

makes no sense to us,if~~y'.~e}~/0ınething valuable to your plc or extemal
device. It could be a command thattells your robot to send out its current

coordinates. (or it could simplyhe:th~/'\V()td''hellô'f.upside down)

• Concatenate- This word is a mouthful.Sinıpl)'put, it mearıs to combine 2

strings together to make one string. · An exaınple is conıbiııing the · · 2 strings

"laser" and "jet" together to make one string... "LaserJet".

With the mumbo-jumbo out of the way Jet's see it in action. .Again, the memory

locations and relays vary by manufacturer but the theory is universal.

1. We assign memory locations DMIOO through DM102 to be where we'll put our

data before we send it out the serial port. Note- Many PLCs have dedicated areas

of memory for this and only this purpose.

2. We'll assign intemal relay 1000 to be our send relay. In other words, when we

turn on 1000 the plc will send the data in DM100-DM102 out theserial port to

our external device. Note again- Many PLCs have dedicated relays (special

utility relays) for this and only this purpose. It's great when the manufacturer

makes our life easy!

- 79 -

We'll send the string "alr" out the plc serial port to an operator interface when our

temp sensor input turns on. This means our oven has become too hot. When the operator

interface receives this string it will displayed an alarm message for the operator to see.

Look back on the ASCII chart and yoıi'llseethat "alr" is hexadecimal 61, 6C, 72. (a=61,

1=6C, r=72) We'll write these ASCII characters (in hexadecimal form) into the

individual data memory locations. We'll use DMI00-102. How? Remember the LDA or

MOV instruction? We'll turn on our send relay (1000) when our temperature sensor
(0000) turns on. The ladder is shown below.

oeeo 61LDA~Jtemp j prvl100 "a"sensor
STA

6C

LDA~JDM1D·1 'T'

STA

'• 1 J "('

Figure 7.4 Ladder diagram

Some PLCs may not have dedicated internal relaysthatsend out ôur data through the

RS-232 port. We may have to assign them manually. Further, some PLCs will have a

special instruction to tel1 us where the data is stored and when to send the data. This

instruction is commonly called AWT (ASCII Write) or RS. The theory is always the

same though. Put the data in a memory location and then turn on a relay to send the
data.

- 80 -

Chapter 8

Programming Siemens Simatic S7-200

8.1 Ladder Program

Network 1 ~~;~ ON/OFFbutton

10.0rl0.1J I QO.O()

QO.O

Network 2

T33 QO.O T32

ı 1 1 1 +2400J'-~-r __m_w_,,

Network 3 ~~;~ Timer to keep the motor OFF

T32

J
T33

81

Network 4 ~~;' Timer and Counter dependent functioning of motor and lamp

ço • .. Q0.1

T32 QUO j")'.' .•........ •.•..ı ·.•.•.·.·.•·· ; ·· ·)•/ 1 1 1 • . ·• .•.
Q0.2........ ·· .)

Network 5 ~~;' Counter counting the process

co
Qo.1 lcu ctu1

Network 6

CD

f
T34

82

Network 7 Cntrolling the motor for 2 minutes

co
1

T34 . SM0.5 Q0.4

fıl 1 , .•••...•.,)···.·..• ..·········.•·)Q0.5
)

Network.8 Enci of program

8.2 StatementLine Program

11AC motor controlling

NETWORK 1 IIONIOFF button

il

1/NETWORK COMMENTS

il

LD IO.O

O QO.O

AN IO.l

QO.O

NETWORK 2 IITimer to keep the motor ON

83

LDN T33

A QO.O

TON T32,,+24000

NETWORK 3 //Timer to keep

LD T32

TON T33, + 12000

NETWORK 4 //Timer and counter dependent .ı.uı,,vu,Juu.ı.ı,;

LDN T32

A QO.O

AN co
= QO.l
= Q0.2

NETWORK 5 //Counter counting the process

LD QO.l

LD IO.O

CTU C0,+3

NETWORK 6 //Timer

LD CO

TON T34, +12000

NETWORK 7//Controlling the motor for 2 minutes
LD CO

AN T34

A SM0.5

Q0.4

= Q0.5

NETWORK 8 //End of program

MEND

84

8.3 Functions of AH Networks

The functions of all the networks .used in the program are explained below:

• NETWORK-1 In network-1 we have created an ON/OFF button circuit that

controls the whole system. ·

• NETWORK-2 In network-2 we have created a timercircuitthat will control the

motor and keep it in ON state for four minutes.

• NETWORK-3 In network-3 again we have created a timer circuit that will also

control the motor but in opposite way like it will keep it in OFF state for two

minutes.

• NETWORK-4 In network-4 we have created the circuit that shows how the

motor is being controlled by the two timers and. the counter.

• NETWORK-5 In network-5 we have created the counter circuit that will repeat

the processes designedin above networks for three times and after that it will

shift to the process designed in next network.

• NETWORK-6 In network-6 we have created another timer that will operate

when the counter will stop repeating the above process and it will work for two

minutes.

• NETWORK- 7 In network- 7 we have created the circuittha.t will operate the

motor for the time set on the timer of network 6 and will operate 'the motor in

such a way that the motor will change its states in every 0.5 seconds from ON to

OFF and back.

• NETWORK-8 This network-8 declares the end to the program.

85

CONCLUSION

The project of AC motor controlling using a Siemens Simatic S7-200

programmable logic controller with processor CPU-212was concluded to be successful.

I was capable to program the programmable logic<controller to control in the way

required without facing problems, so I conclude thatJf.is .. Jı. good, flexible and easy

method ofcontrolling motors.

Electrical motors are the basic pillars of industries aiid.ifisıiecessary to control

them according to the require~~nts and conditions in orde~ .'.;~i;:;to~ate.the systems.
The systems used for motor controlling are improving day by QJıy. J.Jı~ prQgrammable

logic controllers are the latesttechnologies of this fıeld and these are the bestaiid long

lasting systems.

involvements and

preferred in industries because

environmental resistivity and service and

best for motor controlling and sequential

The biggest advantage of

the need of frequent human

display capabilities. They are

flexibility, .reliability,

86

APENDIX

sp.ıcıaırMmıory Blts
SMO.O At,.,.ays on SM1.0 Resuıt ot opsratlon= o
SM0.1 Fırst scan SM'1 overrıoworlllegaıvalus
SM0.2 Retentıııe cıata ıost SM1.2 Negatıııı? resuıt

SMO.~ SM1 oıvısıon b~' oPowerup
SM0.4 ~s01T/30son SM1.4 Taoıe ruıı
SM0.5 o.s s 011' ıo.5 son SM1.!ı

SM0.6 oır 1 sean ron 1 scen SM1.6 BCo fo 1:ıınaıy conversıonı?rror

SM0.7 swıtctı ın RUN posnon SM1.7 .ASCII to he:x conversı:ın srror

E\l~mtNuınber I lnterru pt Descripti on
Priority
inGrl:)Up

8 1 Port O: Re::ei,•e charooıer
9 I ı:GifO: Transııifcornpleı~

o23 Port O: Recei,•e message corrpleta Comrrunicaticfıs
(M;tıesl)Porl 1: Re::eiJe message colll)lele

25
26-19

Port 1: Re::eiJe charooter

ı Porl 1: Transnit compleııı ı ı 1
"'""" n ~~~ıete in1erruo1

33 1 HSC5 CV=P•/ (currentv::ılue = prese! \'alue)

o
1
2

ı-4
5-

10
11

12
13

14

15

16

17

18

19

20
21
22
23-o
1

TimE,j O.oweıst) ~
ı

20
o Rising ed3e, 10.0
2 Rising ed3e, I0.1
4 Rising edJe, 10.2

Rising ~e. 10.3
Falliıg ecğ;:. 10.0

ı Fallhg ecl;F-, 10.1

5 Falliıg ecl;F-, 10.2
1 1 Fallilg ecl;F-, 10.3
12 1 HSCO CV=Pı/ (currenı ~-alue = prssel \'alue:,

21 1 HSCO dire,,"1ion dıal)Jed

28 1 HSCı) extemal resel

13 1 HSC 1 CV=P•/ (currenl ,-alue = preset •,'alue)

14 1 HSC 1 direction input ctaıged

15 1 HSC1 exıemal reset
16 1 HSC2 CV:P~'
17 1 HSC2 direı::lion dıal)Jed

18 1 HSC2 exiemal resel
32 1 HSC3 C\<:P'ı/ (currenı ,"Slue = prese! ·,'alue)
29 1 HSC4 CV=Pı/ (eorrent value = prese! \'alue)
30 1 HSC4 dire,,"1ion dıal)Jed

31 1 HSC4 exıemal reset

1 O I Tımed interrupl O
11 1 Tımed interrupt 1
21 1 TımerT32 CT=PT iıterrupl
22 1 Tımer T96 CT=PT iıterrupl

88

Do.cripl:icn

R"ng• Liınit

CPU 221 CPU 222 CPU 224 CPU 22:3

Prı:ceı:•,inn;,ı,, iııı:o ı ı:ı.o ıo 11 &7 I IJB te 115.7
regi~l'-'1'
Prı:ceı:•,inıı,;ıe I Cı:l.Oıo01.S.7 100.010015.7
oı.ılpııl rcgolor
Ambg iıpul• 1 - 1 AIIIIJ ıe Al'A'3J
(reıt:! ı:ntı',ı
fırı.•l:ı,g tupuıeı (wriı.,. , -
on~~ı

ACfı\lJı,
N::Nı/30

~ri,1:fome,ırı::rı•
('vı1

VOO.Oıo
Vn-20-17;7

\ıl30.0 '"
\1132047.7

'ııllO.Oıa
'ı.•tl6111?.7

\•BJBto
\ıB5119.7

L9J.Oıo
Ll363.7

LOO.C•ıo
L9S3.7

LE!O.O ı:,
LOOJ.7

LOO.Oto
L00&7

MJ.Oıo 1.131.7 1 MO.O ıor.131.1 1 r.t:ı.oıo 1,131.1
suoı:ıı,
SU179.7

SMJ.Oto
SMml.1
SMJ.O ı.o
SM29.7

Onı::::ffı:i:,lor)'
Onı::::ff ı:1:,br 1 o ""' 1 T33 to TJB,

rn,ıoTW)
On Ol ı:l:,by 100 ıns T.37 ıe 163,

T101 ıoT255
Caurtar.;; 1~
Higlı~d ccu,ı,,r I HO), H:::3. HCi.l,HC3,

HC4. H:::6 HC4,llC5
So,querıial o::mııol &:l.Oıo ssı .7 soı:ı ıoSJ1.7
'""""' ı:s:ı
Accumııblı:ır ACOt.oAC3 ACOıoı,ı:;3
regi5lre;.;

Junp~'Lı,be,I<. 010255 Ob2C5

Cııll.'Sul:wutiııe oıoe3 Ob03

lnı.ıruf-"I rc<I:"°"' 010127 Ob 127

PQb<:ıF" Oıo'l o ı,1
Part Part o Porto

SO.OıoS31.7

(!l:ı 213,S

0106) 01:,63

Oıı, 12l 01:ı 127

Oro7 01:ı 7

Pı:orıO

iAl. 'V n~ınct)' ci.n L:..:, ı,:ısı'C'd ·b perrn,:ııı~ııl:llt!tn-.:t)'·
•L930b:ı LB63al!>r'-"'""'"'fl:t{STEP ,.t,ii:;r"'lı'IN 32,.,,..,mi:rn 3.•) t< L-;,or.

89

HSCO HSC3 HSC4 HSC5
Mocte

10.0 10.1 10.1 IQ.3 10.4W.2 10.5 10.4
o 1 Clk Clk Clk Clk

CIK Reset Clk Reset
..... ., ... 2 .

3 Clk oırectıon Clk oırec:lh:n

4 Clk oırectıon Reset Clk oırec:tıciı I Resel
5
ti Clk Clk Up CIK·DC:Ni'n

7 cx up CIK Dd,fo • · 1 •Reset
8

9 PhaseA Phase B

10 PhaseA Phase B 1 Reset

11

HSC1 fis
Mode ro.e 10.7 11.1 1.2 ii -

11.411.0

o Clk Clk 1

1 Clk Reset Clk
--

Reset

2 CIK Resel start Clk 1 Resel Start

3 CIK tnrscnon Clk oırectıcn 1 ..

4 CIK oırectıon Reset CIK oırectıcn 1 Reset
5 Clk oırectıon Reset start CIK oırectım Resel st:ırl
6 CIKUp ClkDCM'n Clk Up CIK DCliı'n

7 Clk Up Clk Dcı,...n Reset GIK Up CIK oown Reset

8 CIK Up CIK ocı.vn Reset Start CIK Up CII(Dcı,vn Reset Start
9 PhaseA =nass B PhaseA Phas,,ı B

10 PhaseA Pnase B Resel PhaseA =nasa B Resel

11 PhaseA Phase B Rııset sıart PhaseA Phase B Resel Start

90

aooıean ııı structions /? ' · .•J,lalh;lnc:remen:t;.and:Decooınentiııs1111c1ions
LD N Lo,ıd q IN1,0UT

1 Add hbgor. Ü'A'wJ cr R....ı
LDI N L,,..~ lmnıedi,1"' "'' lt41,0UT IN1•-0LIT=OUT
LDN N L=d tıoı •R IN1,0UT
LDNI 14 L,,..~ l'lcı· hınledıııe ,ı IN1,0LIT Sul:!rn<i lrtıeıgor; O'ı\'orcl, er Reı,I
A t~ Al-O .o IN1,0LIT OLIT-IN1=CUT
Al N Al-O lırn.,...iiııle .R IN1,C•LIT
i\N N AI-DN,ı MJL IN1,0UT l,kilipl~ hr.ıgı:r 1'.1il' 1c•..,,.3,') ot R<,,ıl
i\NI N A/,0 Net hnnıcdi,lc 'R IN1 ..0LIT l,llAıiplf.~~g"f ~ Diıbh lnb,g>r
o t4 OR '0,'I INi,öüi IN1 • OUT= cor
Ol t4 ORlmmed•I" Dfıl lt41.0UT CM:I" lnıı,g.r (16/16-"2ı2'.l ıır R"'11
ON N ORNot ,R IN1,0UT C:.ı•i:!<ı.[nı.~ror.lkıııl:folrto,;ı<t
ONI N Oll N,ı lrnmodalıo D,,I IN1,0UT lfllIOUT:iiOUT
LOlh H1,N:i: Lı,,dresıJt ol Byıe C:ompı.-e SORT lt4,0UT

N1 (x:•:, •::::;::, ::-::., :.-, .c'fl) N2 u~ IN,OLIT l tııııürofL<ijııriıfııı
AB,; H1,NZ 1 Al-O rerul ol ll~•le ı;:;.,lrf"l""

N1 (x:<, "'""'·:•:,:o, •O•) N2 EXP IN,OUT Hıııur.ıl Expcmıııkıl

OE!.x ll1.N2 1 Oll ,.,.uıı d 8~1:e CaııF"'fe SIN IN,OUT 1 Sinıı
t41 (x:<, ,:::,:,),:, "· '-"): N2 O,,,,""\S IN,OLIT

LDWx N1,112 1 Low.! 11!".Utcf Ward Cıırnpııre TAN IN,OUT -1r~ııg,,111
.Nl(x:•:,•::,,'=, >:,>,'-") t.ız

INC8 OLIT
1 hıcremcd 13)1<>, Wcrd cr Cfı\'crılINC'ı\' OUl

INCO oırr
DECi! OUl
DEC'lı' OUT ı D,.ı;rı,n.,,ııl B'/lı>, 'ı'ı'«d, cır O'lı'orcl

l<Nl ..I:ıt:.::~~:~;_;~.:{7\~•::~"'JiJ',Le; 1 1 Oısccı OU.lıın, tı1,t1:ı

00.: HUI~'.
t~1-ı)c<, •:·~.:,;:--::;:.,:ı,ı,:.c,.

l.ORıı: N1,H2 Lı:0~ w.,o~l ı::I' il"'°' C<ırr@re
N1 (.:.:, ,,,,;=, :>o,:•, "''~) • 142

i\Rx 111,N:1 AIV r=.ıl al ~I Carpım,
N1 (x:.;,•:::::;:::,:.:-:::,;ı.,ıc".,..J-t'ılı

OR• H1. H2 OR rc,;ull d Real C:ımpı.-ıo
N1 fx:•.;, .•:::'.,-::,:ı.::,:a•,,ı::r-J t-!2

r~;:,r Sl•ckt~ıi:ııı
su t:ı,ıecli:n al Rr;iııg Eızy.,
ED Do!e:ti:.ı ol Fırıliııg Ed"°

N ı,...ıg,\/,luo
=I N l~g-ı V\~ue hınıeciat~
R s.srr N SetWRaııge SliJf~
Si $_BiT, N ReY.'I bil R""il" 'i',IJR
RI S_Bll. N Set. t:iı R.ııııg<> hıımd~e Jl,tP ti Jmnpl<id<;liıı.~l.<ıoc~

Re<e! bl lla,n;r., ln'ffl!!di:ıle La H Dı,fı,.,," L..ı..l ıo J.ımplo
G.ı\LL IIINt...J Qıll • &tırruine IN1, ... up ıo 1G

opiı.:ml pı,ımıelor.,]
CRET C«>:lH:n,ılRdi.tıı Fraın sr.ll<
FOR lt•OXINIT.

FNAL 1 For,Neı<I Loop
NDCT
i:sCR H 1 Ll:.'>:l,lr.,ımlir.o,,ıııdEnd
SCRT N s'"'"'"'""ea,ıroıR<ııa,·
SCRE Sogn,;ııt

91

lobve., Shift;.,Rotafo, and Fılllnstruotions Table.Find, and C.:ıııversioıı lnstructions
M0\'13 ltl.CUT lABLE.ll!ı,TA Ad:! d,ta, kı lable
t.10\ı'A' ıN. cıır l,tı:,..,Bytı,, 'lı'cn:1, O'lı'ord, Rc:ıl LIFO 1ABLE,OATA Gel dalı, hı::nı ı.,blet.ıo\,n ıtt oır l,tı:,,eByıe hımed,te R.,.,;l FIFC TABLE;.OATA
1,10'\ıR iN, CUT l,tı:,;eB>ıte lnmedolc Wrile FND• SRC.PATRN.
GIR ltl,C:IJT NDX
mw iti. CIJT
BlılEl IN.CUT,N

1
1 NOX: I f i.ııd dı,ı., '"''"" iıı loble imi

BM'i\' m. C:IJT. N Bb:k l,b,.., Bı•k:, 'li\:ı«I, IJ;\'oırl . F~CutsRd~TRN, m:ııche a:rnpı1risco
raı.m 111. CIJT, N
S'/'1\P iN s•."f>Bıie•
Sl.flll DATA,S_rılT. Shli Re,;.i•la mN
sı;s CIJT,N
SR'tı' OIJT,N Shli Right El>µ:, 'lı'oırl. D'lı\:ı«I
Sı.D CIJT, N
SLB CIJT,N ı ıro N, C!JT

SL'lıı' OOT,N Shfl Lı:llı:i>fte, 'ı\'o~, Cfıi'i'ı:,rd mı fıl.CUT
SLD OIJT,N DTR fıl.OUT
ı;ı:ııı OOT.N TRU1C N,CUT
RR'lı' CUT,N Roı.ıe Rig11. Bıt<ı, Yıbrd, Cl/ı'«ı:1 R:ıJtıO N, Ol.iT
ı;ı:ıo CIJT,N ATH N. C!JT, LEN Cı::rnaı l>.SCll to H •.•.
~-B CUT,N HTA 111,0UT,LEN Cı:m,,rl ı+..x fo ASı:::11
R!N OOT,N iTA N, OIJT, FMT
~-D CIJT, N DlA N,OUT.FM

.. Cı:rn,,,-ı lrtegertı A..<ı.CII
Cı:ro,:rl Doul:ık lrtega 1o A.':JCII

FILL 111,0..ILN Fılırıi:ıô.:t)•.,op,ııoeıı.ilhJ"lll"rıı Cı:rn.,,-1 Re:ıl ı:ı ASCII
L()gıcpperatıoııs · RlA N,OUT,FM

:•

Al.O And fot.eontirdi:ım CECO fıl. C:IJT D«:ode

OLD Or fa· coot.ımıioıı• ı:;ı~:::cı N, ı:X.IT Enecde

LPS Logic Pu•h (•t!ı::t. o:::ı,ıııro~ srn N.OIJT Geıı~le 1..~gmeıııpeuem

LRD Logic Re:ıd (,:t,ıclı conııol) nterrupt
I.FP Logic Pı:t> (•lad: ooııırı:IJ a:ıcrı Cm:iıicn:ııf~hirlı-fr6-,-ri-lrt.

LDS Load Sıack (ol.:,,c:kcı:nln:ıl) tNI En:1blelı1>0nuı:ı•
Aı;t~'.) Aıı~t;N'.) DISI 0.-,<ıbl:,lıılaıı.ıpl•
,V,Oll 1U1.CUT ATCH Nl. t;\>ENT Aı:t,ch lrt>0ıruı:' rouliııı., ıo "''""'
N,UW ltl1,C!J1 Lo9ic,ılAn:! d 9y1,., Waıd. and

Dot"""1m..,ııl11/,'crd OTCH ı:;vı;ın
Al•UD 1111,00T
ORB IH1.CUT Communicaıion

OR'ı\' IN1,ıXJT Logioı,IC,. el i}ıie. 'l.brd, arıd XIH TABLt;,PCRr Fr«"P"'~.lrarı,ıı'isoi:ııı

Cıı.D 1111.CIJT Clı\'ad RCV lABLt,ı:>:::Rr Frcqx:ırt:recdı.'(! ~~
t,ETR lı\BLE,PCRI' Nctwoıl< Re<>:l

XOR8 IN1,00T t-ETW 1ABLE.FCRI' Netwı:ırk'lı~iı,,
XDR'(ı' 1H 1, GUT l:r.,.,:ı' xcı- el eıt,,, •Ncırd, and GPA ılJ.)00,PORl .;;,,ıraıAdaı,,;•
XORD 1111, eur SPA ADCf.!,PORl Seı Pat Ad::I=
ltılv'ı\' CUT im"'~ B}1c, 'ı\bırl and DWcrd
lt~\ID cer (1 S c.oınplemcııı:ı 1 mEF HSC,l,bde DdiııeH,~lı-Spoed Coon>0rm,de

HSC N Activolc,Hi.;ılı-SpeedCt'Ali,er
PLS X Puloewlpııı

92

REFRENCES

[1] Alan J. Crispin, Programmable .Logic Controllers and their .Engineering

Applications, McGraw-Hill Inc., New York NY, 1996.

[2] lan G. Wamock, Programmable Controllers Operatıon andApplication, Prentice-

Hall Inc., Englewood Cliffs NJ., 1996.

[3] http://www.ad.siemens.de/s7-200/index_76.htm

[4] http://www.plcs.net/contents.shtml

[5] http://www.plcopen.org

[6] http://www.contech.com.au -

[7] http://www.cbiss.com/process/plc _systems/plc _siem

[8] http://www.engineeringtalk.com/news/sie/sie126.html

[9] http://www.themanmachines.com/p40-11806-siemens-200-cpu216-plc-wow.html

93

	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1
	Image 2

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Titles
	1.1 INTRODUCTION TO PLC
	Chapter 1
	1

	Images
	Image 1
	Image 2

	Page 9
	Titles
	1.2 PLC History

	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	Chapter2
	THEORY OFOPERTATION OF PLC
	2.1 The Guts inside
	ı~arB~
	Ri,~ . . . Storage
	.2 FUNCTION OF EACH PART

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	PLC

	Images
	Image 1
	Image 2

	Page 13
	Titles
	4 RESPONSE TiME

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 15
	Titles
	: , n:::
	j

	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	ıour ıt4 !

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 17
	Titles
	Chapter3
	3.1 Relays

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 18
	Titles
	3.2 Replacing Relays

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Titles
	-0-
	· 3.2.2 Second

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 20
	Titles
	3.3 Basic Instructions
	3.3.1 Load

	Images
	Image 1
	Image 2

	Page 21
	Titles
	3.3.2 Load Bar
	-0-

	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Titles
	3.3.4 Out bar
	3.4 A Simple Example

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 23
	Titles
	H
	3.5 PLC Registers

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 24
	Titles
	---~--- : : J /_ j i j ; j ; i L. _:_ .. j_ 0_ i

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 25
	Titles
	3.6 A Level Application

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 26
	Titles
	1000r

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 27
	Titles
	3.7 The Program Scan

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 28
	Titles
	Gradually the tank fılls because 500(fıll motor) is on.

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 29
	Titles
	FF:l,:~-r Fals,

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 30
	Titles
	Chapter 4
	MAiN INTSTRUCTIONS SET
	4.1 Latch Instructions

	Images
	Image 1
	Image 2

	Page 31
	Titles
	4.2 Counters

	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Titles
	couu
	cooo 0500

	Images
	Image 1

	Page 34
	Titles
	43 Timers

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 35
	Titles
	4.3.1 On-Delay timer
	4.3.2 Off-Delay timer
	4.3.3 Retentive or ~cçumulating timer

	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1
	Image 2

	Page 38
	Titles
	4.4 Timer

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 39
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 40
	Titles
	4.5 One-shots

	Images
	Image 1
	Image 2

	Page 41
	Titles
	~DIFUI 1
	1000~)'1 1001
	100PV

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 42
	Titles
	•
	•
	4.5.1 Next Scan

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 43
	Titles
	4.6 Master Controls

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 44
	Images
	Image 1
	Image 2

	Page 45
	Titles
	-0-

	Images
	Image 1

	Page 46
	Titles
	4. 7 Shift Registers

	Images
	Image 1

	Tables
	Table 1

	Page 47
	Images
	Image 1
	Image 2

	Page 48
	Titles
	o : o o
	O O O 1

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 49
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 50
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 51
	Titles
	4.8 Getting and Moving Data

	Images
	Image 1
	Image 2

	Page 52
	Titles
	•
	•

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12
	Image 13

	Page 53
	Titles
	- ,
	o LDA-
	o STA- this
	46

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11

	Page 54
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 55
	Titles
	•
	Chapter 5
	NUMBERS AND NUMBER SYSTEMS
	5.1 Math Instructions

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 56
	Titles
	•

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 57
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 58
	Titles
	5.2 Number Systems

	Images
	Image 1
	Image 2

	Page 59
	Titles
	5.2.1 Decimal
	5.2.2 Binary

	Images
	Image 1

	Page 60
	Titles
	... ~· _: .. :_ ~LY i • .L- ı _ J_: __ ı .[; • i J~I
	5.2.3 Octal

	Images
	Image 1

	Page 61
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 62
	Titles
	1
	o ! o
	1
	1
	5.2.4 Hexadecimal

	Images
	Image 1
	Image 2
	Image 3

	Page 63
	Titles
	1
	o
	1
	o
	o
	65536
	J6A5
	1
	16/\8
	o
	4294967296 268435456
	56

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 64
	Titles
	5.3.1 AND Gate
	5.3 Boolean Matlı

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 65
	Titles
	o
	1
	o
	1
	1
	1
	o
	1
	1
	o
	o
	1
	o
	5.3.3 EXCLUSIVE ORGate

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 66
	Images
	Image 1
	Image 2

	Page 67
	Titles
	-IANDt-

	Images
	Image 1

	Page 68
	Titles
	- 6] -
	Chapter 6
	6.1 DC Inputs
	WIRING OF PLC

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 69
	Titles
	- 62 -

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 70
	Titles
	6.2 AC Inputs

	Images
	Image 1
	Image 2
	Image 3

	Page 71
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 72
	Images
	Image 1
	Image 2
	Image 3

	Page 73
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 74
	Titles
	- 67 -
	6.4 Transistor Outputs

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 75
	Titles
	g

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 76
	Images
	Image 1

	Page 77
	Titles
	Chapter 7
	COMMUNICATIONS WITH PLC
	7.1 Communications History

	Images
	Image 1

	Page 78
	Titles
	- 71 -
	7.2 RS-232 Communications (hardware)

	Images
	Image 1
	Image 2
	Image 3

	Page 79
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 80
	Images
	Image 1

	Page 81
	Titles
	7.3 RS-232 Communications (software)

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 82
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 83
	Images
	Image 1
	Image 2

	Page 84
	Titles
	.~.,ılı~+~loiojijoj,-+-IİI

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 85
	Titles
	7.4 Using RS-232 with Ladder Logic

	Images
	Image 1
	Image 2

	Page 86
	Images
	Image 1

	Page 87
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 88
	Titles
	Chapter 8
	Programming Siemens Simatic S7-200
	ı 1 1 1 +2400J'-~-r __ m_w_,,
	10.0rl0.1
	()
	J
	8.1 Ladder Program

	Images
	Image 1
	Image 2
	Image 3

	Page 89
	Titles
	82
	ço • .. Q0.1
	T32 QUO j")'.' .•........ • .•.. ı ·.•.•.·.·.•·· ; ·· ·)•
	/ 1 1 1 • . ·• .•.
	Q0.2
 ·· .)
	f
	co
	Qo.1 lcu ctu
	1

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 90
	Titles
	fıl 1 , .•••...•. ,)···.· .. • .. ·········.•·)
)
	co
	1
	8.2 Statement Line Program

	Images
	Image 1
	Image 2

	Page 91
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 92
	Titles
	8.3 Functions of AH Networks

	Images
	Image 1

	Page 93
	Titles
	CONCLUSION

	Images
	Image 1
	Image 2

	Page 94
	Titles
	88
	o
	oıvısıon b~' o
	overrıow orlllegaı valus
	BC o fo 1:ıınaıy conversıon ı?rror
	Taoıe ruıı
	Negatıııı? resuıt
	Resuıt ot opsratlon = o
	.ASCII to he:x conversı:ın srror
	sp.ıcıaırMmıory Blts
	~s01T/30son
	oır 1 sean ron 1 scen
	swıtctı ın RUN posnon
	Powerup
	Retentıııe cıata ıost
	At,.,.ays on
	Fırst scan
	o
	ı
	APENDIX
	-

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 95
	Titles
	89
	suoı:ıı,
	ACfı\lJı,
	VOO.Oıo

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 96
	Titles
	90

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 97
	Titles
	91

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 98
	Titles
	92

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 99
	Titles
	REFRENCES

	Images
	Image 1
	Image 2
	Image 3

