NEAR EAST UNIVERSITY

FACULITY OF ENGINEERING

Department of Electrical and Electronic
Engineering

AC MOTOR FORWARD CONTROLLING

Gradu~ti<>11 Project
EE-400

Student: ‘Hisham Mahmud Tarig (981326)

Supervisor:

Nicosia ' 2004

ACKNOWLEDGEMENTS

In the name of Allah whose the most gracious and most merciful.

First of all I would like to thank my supervisor Mr. Ozgur Cemal Ozerdem
,without his invaluable advise, inspiration and help this project would never have come
to fruition .I thank Mr. Ozgur Cemal Ozerdem for his consistently sfrpportand guiding
to me during the course ofthis project.

Second, I would like to express my feeling and gratitude to Near East University
for letting me be a part of it. If it was not for my study in Near East University this
project probably would have not materialized.

Third, I thank my father and mother for there for believing in me and sharing in
 both the good times and the bad. Mom and dad, without your special love and support, |
_never would have become who I ani today.

Further, I thank Malik Osama Nazar for his outstanding efforts in the making of
this project .Also I want to thank Salman Sultan who helped me in ali the way he could
and could not.

| Finally, I would also like to thank Badr-ud-Duja and Muhammad Awais Janjua
for believing in me and commending me when I was right on, and gently letting me

now when I have gone off track.

ABSTRACT

The increasing use of motors in all fields ofindustries has made things easier for
many people, but this has also increased the competition and ever growing demand of
the berter and new technologies to control them. Motor controlling is one of the main
areas of industrial automation development and it is also improving day by day.

The main aim of this project is to develop a program to control an AC motor
using a programmable logic controller. in this project we have been able to put our
consideration towards the behavior of programmable logic controllers and we have been
able to program a Siemens Simatic S7-200 programmable logic controller with CPU
212 to control an AC motor.

The basic structure, functions and methods to program the programmable logic

controllers is also discussed in the project.

INTRODUCTION

Motor Controlling is one of the most important aspects of industrial automation.
Now a days we can use many different methods other than programmable logic
‘controllers but as the programmable logic controllers are manufactured for motor
controlling that's why they are berter than other systems in many ways. So I took this
project to programa Siemens Simatic S7-200 programmable controller to control an AC
motor over time.

This project begins by providing an introduction to the programmable
controllers and their history in the first chapter.

Second chapter explains the internal strength of the programmable controllers to
| perform a task and theory of the operation that how it controls the inputs, outputs and
the actual program of the programmable controllers.

Third chapter explains about process carried to replace relays by programmable
controllers, the very basic instructions to write a ladder program used to operate the
programmable controllers to control motors.

Fourth chapterexplains them.ain instructions used to write any type of programs
for programmable ControllersW:fo control motors and the parts used in the programmable
canttroller like the different types oO[Jitiiers; O.iffete:nftypes<of .cotiritets,.aiid shift
‘:megisters and after that the. tiiethodof" gettin.g arid 1:ndviiig data from' source to
destination.

Fifth chapter explains the mathematical instructions carried out inside the
programmable controller and the numbers and number systems like binary, decimal,
octal, hexadecimal and Boolean algebraic systems used inside it.

Sixth chapter explains about the methods of making connection of the
@mmgrammable controllers to a system like connected to DC inputs or AC inputs and the
utputs of relays and transistor accordingly.

Seventh chapter explains the detailed process ofthe ways to communicate with a
rogrammable controller like the "RS-232" communications method.

’ Eighth chapter is about the designing and implementation of a program to

mperate a programmable controller to control an AC motoragainst specified conditions

il

TABLE OF CONTENTS

ACKNOWLEDGMENT
“ABSTRACT
INTRODUCTION
1 INTRODUCTION AND HISTORY OF PLC
1.1 INTRODUCTION TO PLC
1.2 PLC History
2 THEORY OF OPERTATION OF PLC
2.1 The Guts inside
2.2 FUNCTION OF EACH PART
2.3 PLC OPERATION
2.3.1 Step 1-CHECKINPUT STATUS
2.3.2 Step 2-EXECUTE PROGRAM
2.3.3 Step 3..,UPDATEOUTPUT STATUS
2.4 RESPONSETIME
24.1 INPUT
2.4.2 EXECUTION
24.3 OUTPUT
2.5 EFFECTS OF RESPONSE TIME
2.5.1 Pulse stretch function
2.5.2 Interrupt :function
3 CREATIws PROGRAMS
' 31 Relays
3.2 Replacing Relays
3.2.1 First step
3.2.2 Second step
3.2.3 Final step
3.3 Basic Instructions
3.3.1 Load
3.3.2 Load Bar
3.3.3 Out

111

—_—

- O O O oo o0 A B~ BN

11

11

12
12
13
13
14
14

3.3.4 Out bar
3.4 A Simple Example
3.5 PLC Registers
3.6 A Level Application
3.7 The Program Scan
4 MAIN INTSTRUCTIONS SET
4.1 Latch Instructions
4.2 Counters
4.3 Timers
4.3.1 On-Delay timer
4.3.2 Off-Delay timer
4.3.3 Retentive or Accumulating timer
4.4 Timer Accuracy
4.5 One-shots
4.5.1 Next Scan
4.6 Master Controls
4.6.1 Manufacturer X
4.6.2 Manufacturer Y
4.7 Shift Registers
4.8 Getting and MovirigDa.ta.
5 NUMBERS AND NUMBER SYSTEMS
5.1 Matl Instructions
5.2 Number Systems
5.2.1 Decimal
5.2.2 Binary
5.2.3 Octal
5.2.4 Hexadecimal
5.3 Boolean Math
5.3.1 AND Gate
5.3.2 OR Gate
5.3.3 EXCLUSIVE OR Gate
& WIRING OFPLC
6.1 DC Inputs
6.2 AC Inputs
6.3 Relay Outputs

15

15

16
18

20

23
23
24
27
28
28
28
31

33
35
36
37
37
39
44
48
48
51

52
52
53
55
57
57
57
58
61

61

63
65

6.4 Transistor Outputs
7 COMMUNICATIONS WITH PLC
7.1 Coimnmunications History
7.2 RS-232 Comnmunications (hardware)
7.3 RS-232 Communications (software)
7.4 Using RS-232 with Ladder Logic
8 Programming Siemens Simatic S7-200
8.1 Ladder Program
8.2 Statement Line Program
8.3 Functions of All Networks
CONCLUSION
REFRENCES
APENDIX

vi

67
70
10
71
74
78
81
81
83
85
86
87
88

Chapter 1
INTRODUCTION AND HISTORY OF PLC

1.1 INTRODUCTION TO PLC

APLC (Prograinmable Logic Controller) is a device that was invented.to replace the
‘necessary sequential relay circuits for machine control. The PLC works by.looking at its
inputs and depending upon their state, turning on/off its outputs. The user enters a

program, usually via software, that gives the desired results.

PLCs are used in rnany "real world" applications. Ifthere is industry present, chances
are good that there is a plc present. If you are involved in rnachining, packaging,
material handling, autornated assernbly or countless other industries you are probably
already using thern. If you are not, you are wasting rnoney and time. Alrnost any

apiplicationthat needs some type-of electrical control hasa need fora plc.

~ For example, 1et’s assume that When a switch turns on we want to turn a solenoid on

for 5 seconds and then turn it off regardless of how long the switch is on for. We can do

this with a simple external timer. But khat 1f the process mcluded 10 switches and
solenoids? We would need 10 external timers. What if the process also needed to count

how many tirnes the switches individually turned on? We need a lot of external

Figure 1.1 A siernens sirnatic s7-200 PLC device

As you can see the bigger the process the more ofa need we have for a PLC. We can

simply program the PLC to count its inputs and turn the solenoids on for the specified

time.

We will take a look at what is considered to be the "top 20" plc instructions. It can
be safely estimated that with a firin understanding of these instructions one can solve
more than 80% of the applications in existence. That's right, more than 80% Of course
we'll learn more than just these instructions to help you solve almost ALL your potential

plc applications.
1.2 PLC History

In the late 1960's PLCs were first introduced. The primary reason for designing such
a device was eliminating the large cost involved in replacing the complicated relay
based machine control systems. Bedford Associates (Bedford, MA) proposed something
called a Modular Digital Controller (Modicon) to a major US car manufacturer. Other
_6omPaies. at the timc nrégosed computer based schemes, one of which was based upon

the PDP-8. The Modlcon084 bréught the world's first PLC into commercial production.

When production reqlﬁremeﬁté changedso did the control system. This becomes
very expensive when the change is frequent. Since relays are mechanical devices they
also have a limited lifetime which required strict adhesion to maintenance schedules.
- foubleshooting was also quite tedious when so many relays are involved. Now picture
machine control panel that included many, possibly hundreds or thousands, of
mdividual relays. The size could be mind boggling. How about the complicated initial
diring of so many individual devices! These relays would be individually wired

together in a manner that would yield the desired outcome. Were there problems? You

These "new controllers" also had to be easily programmed by maintenance and plant
engineers. The lifetime had to be long and programming changes easily performed.
£y also had to survive the harsh industrial environment. That's a lot to ask! The
Wers were to use a programming technique most people were already familiar with

. replace mechanical parts with solid-state ones.

In the mid70's the dominant PLC technologies were sequencer state-machines and

the bit-slice based CPU. The AMD 2901 and 2903 were quite popular in Modicon and
A-B PLCs. Conventional microprocessors lacked the power to quickly solve PLC logic
in all but the smallest PLCs. As conventional microprocessors evolved, larger and larger
PLCs were being based upon them. However, even today some are still based upon the
2903.(ref A-B's PLC-3) Modicon has yet to build a faster PLC than their 984A/B/X

" which was based upon the 2901.

Communications abilities began to appear in approximately 1973. The first such
system was Modicon's Modbus. The PLC could now talk to other PLCs and they could
be far away from the actual machine they were controlling. They could also now be
used to send and receive varying voltages to allow them to enter the analog world.
Unfortunately, the lack of standardization coupled with continually changing
technology has made PLC communications a nightmare of incompatible protocols and

physical networks. Still, it was a great decade for the PLC!

The 80's saw an attempt to standardize communications with General Motor's

manufacturing automatlon protocol (MAP) It was also a t1me for reducing the size of
the PLC and makmg them isoftwa;re programmable through symbmhc programming on

personal computers instead of dedlcated programmmg terminals or handheld

_ programmers. Today the world's smallest PLC is abéut the size of a single control relay!

The 90's have seen a gradual reduction in the introduction of new protocols, and the
. modemization of the physical layers of some of the more popular protocols that
survived the 1980's. The latest standard (IEC 1131-3) has tried to merge plc
Programming languages under one intemational standard. We now have PLCs that are
Programmable in function block diagrams, instruction lists, C and structured text all at
the same time! PC's are also being used to replace PLCs in some applications. The
original company who commissioned the Modicon 084 has actually switched to a PC

based control system.

Chapter2
THEORY OFOPERTATION OF PLC

2.1 The Guts inside

- The PLC mainly consists ofa CPU, memory areas, and appropriate circuits to receive
input/output <lata. We can actually consider the PLC to be a box full of hundreds or
thousands of separate relays, counters, timers and <lata storage locations. Do these
counters, timers, ete. really exist? No, they don't "physically" exist but rather they are
simulated and can be corisidered software counters, timers, ete. These internal relays are

simulated through bitJocations in registers. (more on that later)

Input Qutput
Relays Counters Re
tj|lty a‘I;B Date.
‘ Storage

Figure 2.1 internal structure of PLC
.2 FUNCTION OF EACH PART

« INPUT RELAYS-(contacts) These are connected to the outside world. They
physically exist and receive signals from switches, sensors, ete. Typically they
are not relays but rather they are transistors.

 INTERNAL UTILITY RELAYS-(contacts) These do not receive signals from
the outside world nor do they physically exist. They are simulated relays and are
what enables a PLC to eliminate external relays. There are also some special
relays that are dedicated to perferming only one task. Some are always on while
some are always off. Some are on only once during power-on and are typically
used for initializing data that was stored.

* COUNTERS-These again do not physically exist. They are simulated counters

and they can be programmed to count pulses. Typically these counters can count

up, down or both up and down. Since they are simulated they are limited in their
counting speed. Some manufacturers also include high-speed counters that are
hardware based. We can think: of these as physically existing. Most times these
counters can count up, down or up and down.

TIMERS-These also do not physically exist. They come in many varieties and
increrrients. The most common type is an on-delay type. Others include off-
delay and both retentive and non-retentive types. Increments vary from Ims
through Is.

OUTPUT RELAYS-(coils): These are connected to the outside world. They
physically exist and send on/off signals to solenoids, lights, ete. They can be
transistors, relays, ortraces depending upon the model chosen.

DATA STORAGE-Typically there are registers assigned to simply store <lata.
They are usually used as temporary storage for matli ordata manipulation. They
can also typically be used to store <lata when power is removed from the PLC.
Upon power-up they will still have the same contents as before power was

removed. Very-coriveriieritandnecessary!!

2.3 PLC OPERATION

A PLC works by continually scanning a program. We can think of this scan cycle as

consisting of 3 important steps. There are typiéall'y* more than 3 but we can focus on the

important parts and not worry about the others. Typically the others are checking the

system and updating the current intemal counter and timer values.

CHECKINPUT STATUS

EXECUTE PROGRAM

UPDATE OUTPUT STATUS

Figure 2.2 Scanning steps of PLC programs

2.3.1 Step 1-CHECK INPUT STATUS First the PLC takes a look at each
input to determine if it is on or off. in other words, is the sensor connected to the first
input on? How about the second input? How about the third... it records this <lata into

its memory to be used during the next step.

- 2.3.2 Step 2-EXECUTE PROGRAM Next the PLC executes your program

one instruction at a time. Maybe your program said that if the first input was on then it
should turn on the first.output. Since it already knows which inputs are on/offfrom the
- previous step it will be able to decide whether the firstoutput should be turned on based

on the state of'the first input. it will store the execution results for use later during the

next step.

2.3.3 Step 3-UPDATE OUTPUT STATUS Finally the PLC updates the status

‘ofthe outputs. it updates the outputs based on which inputs were on during the first step
and the results of executing your.program during the second step. Based on the example
4n step 2 it would now turn.on thesfirst output because the first input was on and your

program said to turn on the first output when this condition is true.

After the third step the PLC goes back to step one and repeats the steps continuously.

One scan time is defined as the time it ktiak,es‘:to execute the 3 steps listed above.
4 RESPONSE TiME

The total response time ofthe PLC is a fact we have to consider when shopping for a
C. Just like our brains, the PLC takes a certain amount of time to react to changes. in

my applications speed is not a concem, in others though...

If you take a moment to look away from this text you might see a picture on the wall.
our eyes actually see the picture before your brain says "Oh, there's a picture on the
yaﬂ”, in this example your eyes can be considered the sensor. The eyes are connected
+the input circuit of your brain. The inpiit citciiit of your brain takes a certain amount
" time to realize that your eyes saw something. (If you have been drinking alcohol this
ut response time would be longer!) Eventually your brain realizes .thatthe eyes have

=n something and it processes the data. it then sends an output signal .to your mouth.

Your mouth receives this <lata and begins to respond to it. Eventually your mouth utters

the words "Gee, that's a really ugly picture!"

Notice in this example we had to respond to 3 things:

2.4.1 INPUT- it took a certain amount of time for the brain to notice the input signal

trom the eyes.

2.4.2 EXECUTION- it took a certain amount of time to process the information

received from the eyes. Consider the program to be: If the eyes see an ugly picture then

output appropriate words to the mouth .

*4.3 OUTPUT- The mouth receives a signal from the brain and eventually spits (no

Pun intended) out the words "Gee, that's a really ugly picture

IHPUT RESPONSE TIME

PROGRAM E*EC“T'OH TIME —| = TOoTAL RESPONSE TiME
B b

OUTPUT RESPONSE TIME ——

Figure 2.3 Response ofPLC to fhé execution steps and overall
SEFFECTS OF RESPONSE TIME =~

Now that we know about response time, here's what it really means to the
PPdicatiom .The PLC can only see an input.tum on/off when it's looking. in other

1rds, it only looks at its inputs during the chedk .input status part of the scan.

[N et T
| 1 ' , i
on || | LI !3,’ 2 Lo
¢ B 1]
ot T L LI
| PROG | L PROG) I
OUT 1 exec PUT M) exec oUTIH DR out
b T A Eoo
I) 1 1 H] i 1
!]
é SCAN1 E SCAN2 SCANJ

Figure 2.4 Time scan,

In the diagram, input 1. is not seen until scan 2. This is because when input | turned
on, scan | had already finished looking at the inputs.

Input 2 is not seen until scan 3. This is also because when the input turned on scan 2
had already finished looking at the inputs.

Input 3 is never seen. This is because when scan 3 was looking at the inputs, signal 3
was not on yet. it turns off before scan 4 looks at the inputs. Therefore signal 3 is never

seen by the plc.

1

. PROG . .
OuT.m/ | EXEC l:oUT; itJ:
1 1 1

1 1I~PUT+ 1 SCAt~

Figure 2.5 Time scan.

To avoid this we say that the input should be on for at least | input delay time+ one

scan time.

But what if it was not po‘ssﬂk‘)‘léa for themput :t,"(')’: :bc'oyzr;;'thisx long’r’ Then the plc doesn't

see the input turn on. Therefore it becomes a papér weight! Not true... of course there

.mustbe a way to get around this. Actually there are 2 ways.

2.5.1 Pulse streteh function. This function extends the length ofthe input signal

yuin.til the plc looks at the inputs during the next scan. (i.e. it stretches the duration ofthe
Qi}lse.)

' SCAI\,
!
| " E N
‘ . n LI
I I 1
ouTiin | FBEE routin
o

1 1 |

LTT

Pi.iLSE STIRIEICH

Figure 2.6 Pulse stretch function.

2.5.2 Interrupt function. This function interrupts the scan to process a special
routine that you have written. i.e. As soon as the input turns on, regardless of where the
scan currently is, the plc immediately stops what its doing and executes an interrupt
routine. (A routine can be thought of asa mini program outside ofthe main program.)
After it's done executing the interrupt routine, it goes back to the point it left off at and

continues on with the normal scan process.

HTERBUPT

jouTi jH! FRER | 10u1'
|
fl SC. AN 1

Figure 2.7 Interrupt function

Now let's consider the ltmgesttlme foran output to actually tum on. Let's assume
that when a switch turns on we need to turu on a load connected to the plc output.
The diagram below shows the longest delay (worst case because the input is not seen
until scan 2) for the output to turn on after the input has turned on.

The maximum delay is thus 2 scan cycles- | input delay time.

| i ¥ ; 1 !
i : i '

' | 1 I
{

OH i
i ¥
OFF.-J—I-I g MT{I @%?@MT__{
\ pp_ , g PROG 1 PROG !
lour 4, expe I?"Uf';“"!:' EXEC (OUTIM| gxec 50'"3
; ; 1 ' : : ! !
P ! ! : v
SCAM 4 SCAH 2 g

Figure 2.8Time seans

Chapter3
CREATIN6 PROGRAMS

3.1 Relays

Now that we understand how the)PLC -iprocesses inputs, outptits, and -the actual
program we are almost ready to start writin.ga program. But first lets see how arelay

actually works. After all, the mainpurpdse ofaplc is to replace "real-world" relays.

We can think ofa relay as au electromagnetic switch. Apply a voltage to the coil and
a magnetic field is generate<l.j)Thisnagnetic field sucks the contacts of the relay in,
causing them to make a coimection. These contacts can be considered to be a switch.

They allow current to flowbetween 2 points thereby closing the circuit.

Let's consider the following ¢xampl> Here we simply tum on a bell (Lunch time!)
whenever a switch is closed. We have 3 real-world parts. A switch, a relay and a bell.

Whenever the saxiteh closes we apply a current to a bell causing it to sound.

COMTACT
00

RELAYY

SWITCH

Figure 3.1 Aisifiiple DC circuit

Notice in the picture that we have 2 separate circuits. The bottom indicates the DC

part. The top indicates the AC part.

Here we are using a de relay to control ait AC circuit, That's the fun ofrelays! When
the switch is open no current can flow through the coil of the relay. As soon as the

switch is closed, however, current runs through the coil causing a magnetic field to

10

build up. This magnetic field causes the contacts ofthe relay to close. Now AC current

flows through the bell and we hear it. Lunch time!

Figute 3.2 A typical industrial relay
3.2 Replacing Relays

Next, let's use a PLC inﬁ;lia‘-‘ycenof the relay. (Note that this might not be very cost
~ effective for this sppaliaet’ ~ but it does demonstrate the basics we need.) The first thing
that's necessary is to create what's called a ladder diagram. After seeing a few ofthese it
will become obvious why it’S’délﬁlullckd,a ladder diagram. We have to create one of these
because, unfortunately, a ple dOé\S:lfl;ﬁ~11!;il1derstand a schematic diagram. It only recognizes
code. Fortunately most PLCs have software which converts ladder diagrams into code.
This shields us from actually learr:ﬁ’rklg,the plc's code.

3.2.1 First step- We have to tfahélafe‘all ofthe items we're using into symbols the plc
- understands. The plc doesn't undeffStaﬁd"terms like switch, relay, bell, ete. It prefers
input, output, coil, contact, ete. It dGéSii'tCare what the actual input or output device

actually is. It only cares that it's an inputdér anoutput.

First we replace the battery with a synibdl. This symbol is common to all ladder
diagrams. We draw what are called bus bars. These simply look like two' vertical ba.fs.
tine on each side of'the diagram. Think oftheleff o6ne as being + volta.gean.d the .right
eme as being ground. Further think ofthe curretit (logic) flow as being froru:i left to right.

we give the inputs a symbol. In this basic example we have one real world input.
the switch) We give the input that the switch will be connected to, to the symbol

shown below. This symbol can also be used as the contact ofa relay.

"

1

Figure 3.3 A contact symbol

Next we give the outputs a symbol. in this example we use.oneoutput.(ie. the bell).
We give the output that the bell will be physically connected tocthecsymbol shown

below. This symbol is used as the coil ofa relay.

Figure 3.4 A coil symbol

The AC supply is an extemal supply so we don't put it in our ladder. The plc only

cares about which output jt.tums on and not what's physically connected to it.

+ 3.2.2 Second step- We must tell the plc where everything is located. In other words
we have to give all the dev1ces an address. Where is the switch going to be physically
connected to the plc? How about the bell? We start with a blank road map in the PLCs
town and give each item an addsess. Could you find your friends if you didn't know
their address? You know they live in the samet\\111 but which house? The plc town has

lot of houses (inputs and outputs) but we have to :figure out who lives where (what
‘device is connected where). We'll get further into the addressing scheme later. The plc
manufacturers each do ita different way! For now let's say that our input will be called

000". The output will be called "500".

3.2.3 Final step- We have to convert the schematic into a logical sequence of events.
This is much easier than it sounds. The program we're going to write tells the plc what
to do when certain events take place. Inour exani.plewe have to tell the plc what.to do
when the operator tums on the switch. Obviously we want the bell to sound but the plc

pesn't know that.

12

0000 0500

END

Figure 3.5 Ladder replacement ofrelay to PLC program

The picture above is the final converted diagram. Notice that we eliminated the real

world relay from needing a symbol. It's actually "inferred" from the diagram.

3.3 Basic Instructions

Now let's examine some of the basic instructions is greater detail to see more about

what each one does.
- 3.3.1 Load

The load (LD) instruction .is @ normally open contact. It is sometimes also called
~examine if on. (XIQ)(asin examin.ethe .inpt to see if its physically on) The symbol for

- a load instruction is shown below.

Figure 3.6 A Load (contact) symbol

- This is used when an input signal is needed to be present for the symbol to turn on.
~ When the physical input is on we can say that the instruction is True. We examine the
input for an on signal. If the input is physically on then the symbol is on. An on

 conditi~ is also referred to as logic | state.

This symbol normally can be used for internal inputs, external inputs and external
output contacts. Remember that internal relays don't physically exist. They are

simylated (software) relays.

13

3.3.2 Load Bar

The Load Bar instruction is a normally closed contact. It is sometimes also called Load
Not or examine if closed. (XIC) (as in examine the input to see if its physically closed)

The symbol for a load bar instruction is shown below.

Y1

Figure 3.7 A Load Not (normally closed contact) symbol

This is used when an input signal does not need to be present for the symbol to tum
on. When the physical input is off we can say that the instruction is True. We examine
the input for an off signal. If the input is physically off then the symbol is on. An off

condition is also referred to as alogic O state.

This symbol normally can be used for intemal inputs, extemal inputs and sometimes,
extemal output contacts., ltelll.ember .again that intemal relays don't physically exist.

They are simulated(s6ftware)rela.ys.Itisthe exact opposite ofthe Load instruction.

L(’)‘gic"Stilté:: | Load ,and}Bar

0 T Faise | Tmwe
| True False
Taole 3.1

3.3.3 Out

The Out instruction is sometimes also called an Output Energize instruction. The

_output instruction is like a relay coil. Its sym.bol looks as shown below.

Figure 3.8 An OUT (coil) symbol

When there is a patli of True instructions preceding this on the ladder rung, it will

aiso be True. When the instruction is True it is physically On. We can think of this

14

instruction as a normally open output. This instruction can be used for intemal coils and

extemal outputs.

3.3.4 Out bar

The Out bar instruction is sometimes also called an Out Not instruction. Some
vendors don't have this instruction. The out bar instruction is like a normally closed

relay coil. Its symbol looks like that showlibelow.

@

Figure 3.9 An OUT Bar (normally closed coil) symbol

When there is a patli ofFalse instnictionspreceding this on the ladder rung, it will be
True. When the instruction is True it is physically On. We can think ofthis instruction
as a normally closed output. This instruction can be used for internal coils and extemal

outputs. It is the exact opposite ofthe Out instruction.

Logic State - Out - Out Bar
0o | False ’ True
1 | True | = False
Table 3.2

3.4 A Simple Example

let's compare a simple ladder diagram with its real world extemal physically

connectecirelay circuit and see the differences.

Swl o 5w

BATTERY

Figure 3.10 A simple coil and battery circuit

15

In the above circuit, the coil will be energized when there is a closed loop between
the + and - terminals of the battery. We can simulate this same circuit with a ladder
diagram. A ladder diagram consists of individual rungs just like ona real ladder. Each
rung must contain one or more inputs and one orinqr~.outputs. The first instruction ona
rung must always be an input instruction and the JastInstruction on a rung should
always be an output (or its equivalent).

I"JPUTS OUTPUT
S\v1 S\1/2 COIL

Figure 3.11 A ladder replacement of the circuit in figure 3.10

Notice in this simple one‘rlmg ladder diagram we have recreated the extemal circuit
above with a ladder diagram;xHer‘e we used the Load and Out instructions. Some

manufacturers require that every,‘;lé'cilder diagram include an END instruction on the last

rung. Some PLCs also require an ENDH instruction on the rung after the END rung.

3.5 PLC Registers

We'll now take the previous lg,xﬁmplf; and Change switch 2 (SW2) to a normally
closed symb()] (]()ad bar 1nstruct10n)SW1 will be physically OFF and SW2 will be
physically ON initially. The ladder c‘ﬁagr;n,néw looks like this:

MPLTE QUTRUT
poog ¢ poet oo 0s00

Figure 3.12Alad.dyr diagram

Notice also that we now gave each symbol (or instruction) an address. This address

sets aside a certain storage area in the PLCs data files so tha.t the status of'the instruction

16

(i.e. true/false) can be stored. Many PLCs use 16 slot or bit storage locations. In the

example above we are using two different storage locations or registers.

REGISTEROO ‘

15114 13 112111009 [08107:06105 04 03102101 00

: L i i ! L :
REGISTEROS

1571411312 11 10 10910807106 1050403 02 01 |00/
w0 L M
Table 3.3

~ In the tables above we can see that in register 00, bit 00 (i.e. input 0000) was a logic

0 and bit 01 (i.e. input 0001) was a logic 1. Register 05 shows that bit 00 (i.e. output
- 0500) was a logic 0. The logic 0 6rl indicates whether an instruction is False or True.
* Although most of the items i:ni""th’é\régi‘ster tables above are empty, they should each

- contain a 0. They were left blank toempha51ze the locations we were concerned with.

LOGICAL CONDITION OF SYMBOL _

LOGIC BITS TIb | IbB | OUT |
Logic 0 w_ False True | False
Logic | ”_ - True False True |

Table 3.4

The plc will only energize an output when all conditions on the rung are true. So,
looking at the table above, we see that in the previous example SWI has to be logic |
~and SW2 must be logic 0. Then and only then will the coil be true (i.e. energized). If
“any of the instructions on the rung before the output (coil) are false then the output
i(coil) will be false (not energized). Let's now look at a truth table of our previous
program to further illustrate this important point. Our truth table will show ali possible

Combinations ofthe status ofthe two inputs.

17

Inputs Outputs Register Logic Bits

SWI(LD) SW2(LDB) COIL(OUT) SWI(LD) | COIL(OUT)
False True False 0 0
False False False 0 1 0
True True True 1 0 1
True False False f] 1 ; 0
Table 3.5

Notice from the chart that as the inputs change their states over time, so will the
output. The output is only true (energized) when all preceding instructions on the rung

are true.
3.6 A Level Application

Now that we've seen how registers work, let's process a program like PLCs do to

enhance our understanding ofhow the program gets scanned.

Let's consider the followmg apphcatlon.
We are controlling 1uh‘ﬁr'"'ﬁ'ﬁffg oil belng dlspensed from a tank ThlS is p0331ble by
using two sensors. We put one near the bottom and one near the top, as shown in the

picture below.

high fevel il
low level --1.1--

fil motor---,1-

PLC
Drain

Figure 3.13 Dispensing oil from the tank

18

Here, we want the fill motor to pump lubricating oil into the tank until the high level
sensor turns on. At that point we want to turn off the motor until the level falls below

the low level sensor. Then we should turn on the fill motor and repeat the process.

Here we have a need for 3 1/0 (i.e. Inputs/Outputs). 2 are inputs (the sensors) and |
is an output (the fill motor). Both of our inputs will be normally closed fiber-optic level
sensors. When they are not immersed in liquid they will be ON. When they are

immersed in liquid they will be OFF.

We will. give each input and output device an address. This lets the plc know where

they are physically connected. The addresses are shown in the following tables:

Inputs Address || Output| Address | Internal Utility Relay
Low 0000 || Motor 0500 i 1000
High 0001 ‘
\
Table 3.6

Below is what the ladderdiagrairiwilLacfua.llyJook like. Notice that we are using an
intemal utility relay in this exairiple. Y6uca:rilisethe coritacts 6fthese relays as many
times as required. Here they are used twice fo sirriulate a relay with2 sets of contacts.
Remember, these relays do not physically exist in the plc but-raiher they are bits in a

register that you can use to simulate a relay.

0000 0001 1000

000y <

1000 0500

END

Figure 3.14 Ladder program to control the dispensing oil

We should always remember that the most common reason for using PLCs in our

‘avbncations is for replacing real-world relays. The intemal utility relays make this

19

action possible. It's impossible to indicate how many internal relays are included with
each brand of plc. Some include 100's while other includes 1000's while still others
include 10's of I000's! Typically, plc size (not physical size but rather 1/0 size) is the
deciding factor. If we are using a micro-plc with a few 1/0 we don't need many internal
relays. If however, we are using a large plc with 100's or 1000's of 1/0 we'll certainly
need many more internal relays. If ever there is a question as to whether or not the
manufacturer supplies enough internal relays, consult their specification sheets. in all

but the largest of large applications, the supplied amount should be more than enough.
3.7 The Program Scan

Let's watch what happens in this program scan by scan.

0o01 1000

-3

Figure 3.15 Ladder diagram ofthe program

Initially the tank is empty. Therefore, input 0000 is TRUE and input 0001 is also TRUE.

Fue True True True Trua True
- ,,[Of Truer
True True True True
| —(
END
Scan | Scan 2-100

Figure 3.16 Time seans ofthe program

20

Gradually the tank fills because 500(fill motor) is on.

After 100 seans the oil level rises above the low level sensor and it becomes open.

(i.e. FALSE)

_jalse True Tr%e

nie~ ~

rue Trus

TS

Figure 3.17 Scan 101-1000

Notice that even when the .low level sensor is false there is stil! a patli of true logic
from left to right. This is .whY we used an intemal relay. Relay 1000 is latching the
output (500) on. It will sray)tfiis>'"Wayuntil there is no true logic patli from left to
right.(i.e. when 0001 becomesfalse)

After 1000 seans the oil level rises above the high level sensor at it also becomes

open (i.e. false)

—Talae Falzse False T!Ee False Falze
—C- —&-
Trus jaize
jFrlse Fglze Falza Falze
)
END :'— END :—-
Scan 1001 Scan 1002

Figure 3.18 Time seans ofthe program

Since there is no more true logic patli, output 500 is no longer energized (true)

and therefore the motor tums off.

21

After 1050 seans the oil level falls below the high level sensor and it will beeome true

again.

i

Figure 3.19 Sean 1050

Notiee that even thotigh>/the high level sensor beeame true there still is Ni

eontinuous true logie pathandtherefore eoil 1000 remains false!

After 2000 seans the oil le,\v_el, falls below the low level sensor and it will also beeome
true again. At this point the logic will appear the same as SCAN | above and the logic

will repeat as illustrated above.

22

Chapter 4
MAIN INTSTRUCTIONS SET

4.1 Latch Instructions

Now that we understand ~ow inputs and outputs are processed by the plc, let's look
at a variation of our regular outputs. Regiilar output coils are of course an essential part
of our programs but we must remember that they are only TRUE when ALL
INSTRUCTIONS before them on the rung are also TRUE. What happens if they are

not? Then of course, the output will become false. (Turn off)

Think back to the lunch bell example we did a few chapters ago. What would've
happened ifwe couldn't find a "push on/push off" switch? Then we would've had to
keep pressing the button for as long as we wanted the bell to sound. The latching
instructions let us use momentary switches and program the plc so that when we push

one the output turns on and when we push another the output turns off.

Maybe now you're saying to yourself "What the heck is he talking about?" So let's do
a real world example. Picture the remote control for your TV. it hasa button for ON and
another for OFF. (mine does, anyway) When I push the ON button the TV turns on.
When I push the OFF button the TV turns off. I don't have to keep pushing the ON

button to keep the TV on. This would be the function ofa latching instruction.

The latch instruction is often called a SET or OTL (output latch). The unlatch
instruction is often called a RES (reset), OUT (output unlatch) or RST (reset). The

diagram below shows how to use them in a program.

0000 0500

&

0001 0500

e

END

Figure 4.1 A ladder program

23

Here we are using 2 momentary push button switches. iine is physically connected
to input 0000 while the other is physically connected to input 0001. When the operator
pushes switch 0000 the instruction "set 0500" will become true and output 0500
physically turns on. Even after the operator stops pushing the switch, the output (0500)
will remain on. It is latched on. The only way to turu off output 0500 is turu on input
0001. This will cause the instruction "res 0500" to become true thereby unlatching or

resetting output 050Q.
4.2 Counters

A counter is a simple device intended to do one simple thing - count. Using them,
however, can sometimes be a challenge because every manufacturer (for whatever
reason) seems to use them a different way. Rest assured that the following information

will let you siinply and easily program anybody's counters.

What kinds of counters are there? Well, there are up-counters (they only count up 1,
2, 3...). These are called CTU, (count up) CNT, C, or CTR. There are down counters
(they only count down 9, 8, 7...). These are typically called CTD (count down) when
they are a separate instruction. There are also up-down counters (they count up and/or
down 1,2,3,4,3,2,3,4,5,...) These are typically called UDC(up-down counter) when they

are separate instructions.

Many manufacturers have only one or two types of counters but they can be used to
count up, down or both. Confused yet? Can you say "no standardization"? Don't worry;
the theory is all the same regardless of what the manufacturers call them. A counter is a

counter is a counter...

Tofurther confuse the issue, most manufacturers also include a limited number of
high-speed counters. These are commonly called HSC (high-speed counter), CTH
(Counter High-speed?) or whatever. Typically a high-speed counter is a "hardware"
device. The normal counters listed above are typically "software" counters. In other
words they don't physically exist in the plc but rather they are simulated in software.

Hardware counters do exist in the plc and they are not dependent on scan time.

24

A good rule of thuinb is simply to always use the normal (software) counters unless
the pulses you are counting will arrive faster than 2X the scan time. (i.e. if the scan time
is 2ms and pulses will be arriving for counting every 4ms or longer then use a software
counter. If they arrive faster than every 4ms (3ms for example) then use the hardware

(high-speed) counters. (2xscan time = 2x2ms= 4ms)

To use them we must know Jthings:

1. Where the pulses thatwe want to count are coming :from. Typically this is from
one of'the inputs.(a sensor connected to input 0000 for example)

2. How many pulses we want to count before we react. Let's count 5 widgets
before we boxthe:rn, for example.

3. When/how we wilTieset the counter so it can count again. After we count 5

widgets lets resei(Jiecounter, for exemple.

When the programis running on the plc the program typically displays the current or

"accumulated" value for us so we can see the current count value.

Typically counters can count from Oto 9999, -32,768 to +32,767 or Oto 65535. Why
the weird nuinbers? Because most PLCs have 16-bit counters. We'll get into what this
means in a later chapter but for now suffice it to say that 0-9999 is 16-bit BCD (binary
coded decimal) and that -32,768 to 32767 and Oto 65535 is 16-bit binary.

Here are some of the instruction symbols we will encounter (depending on which
manufacturer we choose) and how to use them. Remember that while they may look
different they are all used basically the same way. If we can setup one we can setup any

ofthem.
RESET | Co»>>:

VWAV

Figure 4.2 Count up counter

25

In this counter we need 2 inputs. line goes before the reset line. When this input turns
on the current (accumulated) count value will return to zero. The second input is the

address where the pulses we are counting are coming from.

For example, ifwe are counting how many widgets pass in front ofthe sensor that is
physically connected to input 0001 then we would put normally open contacts with the

address 0001 in front of the pulse line.

Cxxx is the name ofthe counter. If we wantto call it counter 000 then we would put

"COO0" here.

yyyyy is the number of pulses -W~ '*ant to count before doing something. If we want to
count 5 widgets before turning()J.1aphysical output to box them we would put 5 here. If
we wanted to count 100 wid.g~t§thenwe would put 100 here, ete. When the counter is
finished (i.e. we counted yyyyy "*idgets) it will turn on a separate set of contacts that we

also label Cxxx.

Note that the counter acciimulated value ONLY changes at the off to on transition of

the pulse input.

0002

couu
0001 1100
C000 0500

Figure 4.3 A ladder diagram ofthe program using count up counter

Here's the symbol on a ladder showing how we set up a counter (we'll name it
counter 000) to count 100 widgets from input 0001 before turning on output 500. Sensor

0002 resets the counter.

Below is one symbol we may encounter foran up-down counter. We'll use the same

abbreviation as we did for the example above.(i.e. UDCxxx and yyyyy)

26

UP

HIOCY,,
DOWN | -,

RESET

Figure4.4Countup-down counters

In this up-down counter we need to assign 3 inputs. The reset input has the same
function as above. However, imit:cid of having only one input for the pulse counting we
now have 2. iine is for wduta'i’kg up and the other is for counting down. In this example
we will call the wowazi, UDC000 and we will give ita preset value of 1000. (we'll count
1000 total pulses) For inputs we'll use a sensor which will turn on input 0001 when it
sees a target and another; semsw at input 0003 will also turn on when it sees a target.
When input 0001 turnsonwecount up and when input 0003 turns on we count down.
When we reach 1000 pulses we will turn on output 500. Again note that the counter
accumulated value ONI:Ya“'i",:_",‘u?i‘_ﬁ 5 at the off to on transition of the pulse input. The

ladder diagram is shown below.

0001
0003 JticlJUU
1000
0002
— |
€000 0500
LR
—C

Figure 4.4 Ladder diagra.ri:1.0fgprogram using count up-down counter
43 Timers

Let's now see how a timer works. What'is a'timer? Its exactly what the word says... it
is an instruction that waits a set amount oftime before doing something. Sounds simple

doesn't it.

27

When we look at the different kinds of timers available the fun begins. As always,
different types of timers are available with different manufacturers. Here are most of

them:
4.3.1 On-Delay timer

This type of timer simply "delays turning on". In other words, after our sensor
(input) tums on we wait x-seconds before activating a solenoid valve (output). This is
the most common timer. It is oftencalled TON (timer on-delay), TIM (timer) or TMR

(timer).
4.3.2 Off-Delay timer

This type of timer isthe>opposite of the on-delay timer listed above. This timer
simply "delays turning off". After our sensor (input) sees a target we turn on a solenoid
(output). When the sensor no longer sees the target we hold the solenoid on for x-
seconds before turningit off It is called a TOF (timer off-delay) and is less common

than the on-delay type listed above. (i.e. few manufacturers include this type oftimer)
4.3.3 Retentive or ~ccumulating timer

This type of timer needS 2 inputs. {ine input starts the timing event (i.e. the clock
starts ticking) and the other resets it. The on/off delay timers above would be reset if'the
input sensor wasn't on/offfor the complete timer duration. This timer however holds or
retains the current elapsed time when the sensor turns off in mid-stream. For example,
we want to know how long a sensor is on for during a | hour period. If we use one of
the above timers they will keep resetting when the sensor tums off/on. This timer
however, will give us a total or accumulated time. It is often called an RTO (retentive

timer) or TMRA (accumulating timer).
Let's now see how to use them. We typically need to know 2 things:

1. What will enable the timer? Typically this is one ofthe inputs.(a sensor
connected to input 0000 for example)
2. How long we want to delay before we react. Let's wait 5 seconds before we turn

on a solenoid, for example.

28

When the instructions before the timer symbol are true the timer starts "ticking'.
When the time elapses the timer will automatically close its contacts. When the program
is running on the plc the program typically displays the elapsed or "accumulated" time
for us so we can see the current value. Typically timers can tick from 0 to 9999 or 0 to

65535 times.

Why the weird numbers? Again its because most PLCs have 16-bit timers. We'll get
into what this means in a later chapter but for now suffice it to say that 0-9999 is 16-bit

BCD (binary coded decimal) and that Oto 65535 is 16-bit binary. Each tick ofthe clock

is equal to x-seconds.

Typically each manu.fach..irer offers several different ticks. Most manufacturers offer
10 and 100 ms increments(tickso6fthe clock). An "ms" is a milli-second or 1/1000th of

~ | A

a second. Several manufactu.ferfalso offer Ims as well as | second increments. These
same as above but sometimes they have different

different increment timers "
names to show their time base.Some are TMH (high speed timer), TMS (super high
speed timer) or TMRAF (accLIlll.u.la.ting fast timer)

Shown below is a typical tiir1.ebinsttu.ctionsymbol we will encounter (depending on
which manufacturer we choose) and>ndWtol.Iseit. Remember that while they may look

different they are all used basically the saitie"\Vay. If we can setup one we can setup any

ofthem.

ENIABLE' Txxx
yyyyy

Figure 4.5 A typical timer instruction symbol

This timer is the on-delay type and is named Txxx. When the enable inpunis on the
" timer starts to tick. When it ticks yyyyy (the preset value) times, it will rurn on .its
contacts that we will use later in the program. Remember that the duration ofa tick
S (increment) varies with the vendor and the time base used. (i.e. a tick might be Ims or |

“ second or...).Below is the symbol shown ona ladder diagram

29

0001 ¢+ TOOO
100

TO0O 0500

Figure 4.6 A ladder diagram ofprogram using timer

In this diagram we wait for .input 0001 to turn on. When it does, timer TOOO (a
100msincrement timer) starts tick.ing. It will tick 100 times. Each tick (increment) is
1OOms so the timer will be a 10000ms (i.e. 10 second) timer. 10O0ticks X 100ms =
10,000ms. When 10 secorids fiit:ve elapsed, the TOOO contacts close and 500 turns on.
When input 0001 turns 6ff(false)the timer TOOO will reset back to 0 causing its contacts
to turn off(become false) the:rebymaking output 500 turn back off. An accumulating

timer would look similartothefi.gbelow.

ENABLEI Txxx
RESET | YYYYY

Figure 4.7 An accumulating timer

This timer is named Txxx. Whe:rithe enable input is on the timer starts to tick. When
it ticks yyyyy (the preset vah.ie)tiri:1.esit will turn on its contacts that we will use later in
the program. Remember that the diiration ofa tick (increment) varies with the vendor
and the time base used. (i.e. a tickilllight be Ims or | second or...) If however, the
enable input turns offbefore the tilnethas completed, the current value will be retained.
When the input turns back on, the timer will continue from where it left off. The only
way to force the timer back to its preset value .to start again is to turn on the reset input.

The symbol is shown in the ladder diagram below.

30

0002

TO0O
0001 100
TO0O 0500

Figure 4.8 An accilinulating timer connected in program

In this diagram we wait for input 0002 to turn on. When it does timer TO0O (a 10ms
increment timer) starts ta'ivg It will tick 100 times. Each tick (increment) is 10ms so
the timer will be a | 000ms (i.e. 1 second) timer. 100ticksX 10ms = 1,000ms. When 1
second has elapsed, the TOOO“.'oéhmcts close and 500 turns on. If input 0002 turns back
off the current elapsed time"ﬁWﬂl-be retained. When 0002 turns back on the timer will
continue where it left off. When input 0001 turns on (true) the timer TOOO will reset
back to 0 causing its &@afacts to turn off (become false) thereby making output 500 turn
back.

4.4 Timer Accura‘cy;

eré are created and used, f;Fs learn a little about their

Now that we've Seeh‘ﬁd\;ﬁt‘
precision. When we are crfatimg a timer that lasts a few seconds, or more, we can
typically not be very concei‘héd about their precision because it's usually insignificant.
However, when we're crreiangiJimers that have duration in the millisecond (Ims=

1/1000 second) range we MUST be concemed about their precision.

There are general two when using a timer. The first is called an input
error. The other is called The total error is the sum ofboth the input and

output errors.

* Input error- An error occuts dependingupon when the timer input turns on
during the scan cycle. When the input turns on immediately after the plc looks at
the status ofthe inputs during the scan cycle, the input error will be at its largest.
(i.e. more than 1 full scan time!). This is because, as you will recall, (see scan

time chapter) the inputs are looked at once during a scan. If it wasn't on when

31

the plc looked and turns on later in the scan we obviously have an error. Further
we have to wait until the timer instruction is executed during the program
execution part of the scan. If the timer instruction is the last instruction on the
rung it could be quite a big error!

Output error- An another error occurs depending upon when in the ladder the
timer actually "times out", (expires) and when the plc finishes executing the
program to get to the part of the scan when it updates the outputs. (again,see
scan time chapter) This is because the timer finishes during the program
execution but the pl(_:;Ihl;St first finish executing the remainder of the program

before it can turn on the appropiatic output.

Below is a diagram 111ustrat1ng the worst possible input error. You will note from it
that the worst possible mput error would be | complete scan time *+ | program
execution time Remember that a program execution time varies from program to

program. (Depends how many instructions are in the program!)

‘Ir-qm_ EXEC DUTPUT INPUT| £

T
' TI‘.'l."l.EF:f

Figure 4.9 illustration ofthe worst possible input error

Shown below is a diagramilfiistfating the worst possible output error. You can see

from it that the worst possibledutputerror would be | complete scan time.

.u.l".II e

AUTPUT TURK

Figure 4.1 0 illustration ofthe worst possible output error

Based upon the above inforrnation we can now see that the total worst possible timer

error would be equal to

32

| scan time + 1 program execution time + 1 scan time

=2 scan times t+ 1 program execution time.

What does this really mean? It means that even though most manufacturers currently
have timers with lms increments they really shouldn't be used for durations lessthana

few milliseconds. This assumes that your scan time is 1ms. If your scan time is Sms you

had better not use a timer with duration less than about 1Sms. The point is however, just
o that we will know what errors we can expect. If we know what error to expect, we
can then think about whether this amount of error is acceptable for our application. In
most applications this error is insignificant but in some high speed or very precise

applications this error can be very significant.

We should also note that the above errors are only the "software errors". There is

also a hardware input error as well as a hardware output error.

The hardware 1nput error is caused by the time it takes for the plc to actually realize
that the input is O when it scans its mputs Typlcally this duratlon 1s about 10ms This
is because many PLCs requlre that an mput “should be phy51ca11y on for a few scans

before it determines it's physically on. (1'0 elilllirate noise or "bouncmg 1nputs)

The hardware output error is caused by the time it takes from when the plc tells its
output to physically turn on until the moment it actually does. Typically a transistor

takes about O.Sms whereas a mechanical relay takes about 10ms.

The error keeps on growing doesn't it! If it becomes too big for the application

consider using an extemal "hardware" timer.
4.5 One-shots

A one-shot is an interesting and invalual;>le programming tool. At first glance it
might be difficult to figure out why such an instruction is needed. After we understand

what this instruction does and how to use it, however, the necessity will become clear

33

A one-shot is used to make something happen for only 1 scan. Most manufacturers
have one-shots that react to an off to on transition and a different type that reacts to an
on to off transition. Some names forthe instructions could be difu/difu (differentiate
up/down), sotu/sotd (single output up/down), osr (one-shot rising) and others. They all,

however, end up with the same result regardless of the name.
~DIFU~

Figure 4.11 One-shot Instruction

Above is the Svmbol for a difu (one-shot) instruction. A difu looks the same but
inside the symbol it says "dlfu" Some of'the manufacturers have it in the shape ofa box

but, regardless of the Symbol they all function the same way. For those manufacturers

that don't include a d1f1"u~t11?0€ down instruction, you can get the same effect by

putting a NC (normally plgs~§) instruction before it instead of a NO (normally open)

instruction. (Le. reverse th.eJogicbefore the difu instruction)

Let's now setup an application to see how this instruction actually functions in a
ladder. This instruction is I‘no‘syt“Often used with some of the advanced instructions where
we do some things that must happen only once. However, since we haven't gotten that
far yet, let's set up 8 ﬂlp/ﬂop Clrcult In simple terms, a flip/flop turns something around
each time an action happens. Heréaywe'll use a single pushbutton switch. The first time
the operator pushes it we want anoutput toturn on. it will remain "latched" on until the

next time the operator pushes the button. When he does, the output tums off. Here's the

ladder diagram that does just that.

0000 1000

[000~1

00PV
1001 %0)—_‘

Figure 4.12 a ladder diagram ofa flip/flop

34

Now this looks confusing! Actually it's not ifwe take it one step ata time.

Rung 1-When Nii (nornally open) input 0000 becomes true DIFU 1000
becomes true.
Rung 2- Ni 1000 is true, Nii 1001 remains false, NC 1001 remains true, NC
1000 turns false. Since we have a true patli, (Nii 1000 & NC 1001) OUT 1001
becomes true.

Rung 3- Ni 1001.is t"ly therefore OUT 500 turns true.

4.5.1 Next Scan

Rung 1- NO ()()0()’ remams true. DIFU 1000 now becomes false. This is because
the DIFU instmaidrzlxig only true for one scan. (i.e. the rising edge of the logic

before it on the I’lmg) o
Rung 2- NO 1000 1Sfa1 ‘,. NO 1001 remains true, NC 1001 is false, NC 1000
turns true. Since We‘: “STILL‘;haVe a true patly, (Ni 1001 & NC 1000) OUT 1001

remains true.

- Rung 3-Nii 1001 is true therefore OUT 500 remains true.

After 100 seans, Nii 0000 turns. off(beccmes false). The logic remains in tlie same
state as "next scan'" shown above. (leudoesn'treact thierefore the 'logic stays tlie same

on rungs 2 and 3)

On scan 101 Nii 0000 tumsbaiCkf-‘on.‘ (Becomes true)

Rung 1-When Nii (norinally open) becomes true DIFU 1000
becomes true.

Rung 2- Nii 1000 is true, Nii 1001 remains true, NC 1001 becomes false, NC
1000 also becomes false. Since we no longer have a true patli, OUT 1001

becomes false.

Rung 3-Nii 1001 is false thierefore OUT 500 becomes false.

Executing the program | instruction at a time makes this and any program easy to
follow. Actually a larger program tliat jumps around might be difficult to follow but a

pencil drawing of the registers sure does help!

35

4.6 Master Controls

Let's now look at what are called master controls. Master controls can be thought of
as "emergency stop switches". An emergency stop switch typically is a big red button
ona machine that will shut it off in cases of emergency. Next time you're at the local
gas station look near the door on the outside to see an example of an e-stop.
*IMPORTANT- We're not implying that this instruction is a substitute for a "hard
wired" e-stop switch. There is no substitute for such a switch! Rather it's just an easy

way to get to understand them.

The master control instruction typically is used in pairs with a master control reset.
However this varies by manufacturer. Some use MCR in pairs instead ofteaming it with
another symbol. It is commonlyal:>breviatedas MC/MCR (master control/master control
reset), MCS/MCR (master coutro[set/master control reset) or just simply MCR (master

control reset). Here is one exainple.iofhow a master control symbol looks.

Figure 4.13 A master control symbol

Below is an example ofa master control reset.

-~ MCR

Figure 4.14 A master control reset symbol

To make things interesting, many manufacturers make them act differently. Let's

now take a look at how it's used in a ladder diagram. Consider the following example.

36

0000
Mme]
ooot G500
N
ooz o3
H/
Ne.CR \—~

Figure 4.15 A ladder program using MC and MCR
Here's how different PLCs will run this program:

4.6.1 Manufacturer X- In this example, rungs 2 and 3 are only executed when
input 0000 is on (true). If input 0000 is not true the plc pretends that the logic between
the mc and mcr instructions does not exist. It would therefore bypass this block of

instructions and immediately go to the rung after the mer instruction.

Conversely, ifinput 0000 is true, the plc would execute rungs 2 and 3 and update the

status of outputs 0500 and 0501 accordingly. So, if input 0000 is true, program

execution goes to rung-z:e.elfiriput)000-1----is.- -true0500>Vil-1--he.truandhenc.e.it'wi.11.turn.on
when the plc updates the outputs. If input 0002is true(i.e. physically off) 0501 will be

true and therefore it will turu on when the plc updates the dutputs.
MCRjust tells the plc "that's the end ofthe me/mcer block".

In this plc, scan time is not extended when the mc/mcr block is not executed because
the plc pretends the logic in the block doesn't exist. In other words, the instructions

inside the block aren't seen by the plc and therefore it doesn't execute them.

4.6.2 Manufacturer Y- In this example, rungs 2 and 3 are always ex.ecuted

regardless of the status of input 0000. If input 0000 is not true the plc executesthe MC
instruction. (i.e. MC becomes true) It then forces all the input instructions inside the

blockto be off. If input 0000 is true the MC instruction is made to be false.

Then, if input 0000 is true, program execution goes to rung 2. If input 0001 is true

0500 will be true and hence it will turu on when the plc updates the outputs. If input

37

0002 is true (i.e. physically off) 0501 will be true and therefore it will turn on when the
plc updates the outputs. MCR just tells the plc "that's the end of the mc/mcr block".
When input 0000 is false, inputs 0001 and 0002 are forced off regardless if they're

physically on or off. Therefore, outputs 0500 and 0501 will be false.

The difference between manufacturers X and Y above is that in the Y scheme the
scan time will be the same (well close to the same) regardless if the block is on or off.

This is because the plc sees each instruction whether the block is on or off.

Most allmartu.facturers will make a previously latched instruction (one that's inside

the mc/merb'lock) retain its previous condition.

If it was tru.e before, it will remain true.

If it was fii.Isebefore, it will remain false.

Timers sliduld not be used inside the mc/mecr block because some manufacturers will
reset them.t6)z:ero when the block is false whereas other manufacturers will have them

retain the curterit time state.
Counters typically retain their current counted value.

Here's the parrto note most of all. When the mc/mcr block is off, (i.e. input 0000
would be false intheladder example shown previously) an OUTB (Out Bar or Out Not)

instruction would notbe physically on. It is forced physically off.
Figure 4.16 Out Bar instruction

In summary, BE CAREFUL! Most manufacturers use the manufacturer Y execution
scheme shown above. When in doubt, however, read the manufacturers instruction

manual. Betler yet, just ask them.

38

4.7 Shift Registers

In many applications it is necessary to store the status of an event that has previously
happened. As we've seen in. past chapters this is a simple process. But what do we do if

we must store many previous events and act upon them later.
Answer: we call upon the shift register instruction.

We use a register or group of registers to form a train of bits (cars) to store the
previous on/off status, Each new change in status gets stored in the first bit and the

remaining bits get shifted down the train. Huh? Read on.

The shift'register goes by many names. SFT (Shift), BSL (Bit Shift Left), SFR (Shift
Forward Register) are some of the common names. These registers shift the bits to the
left. BSR(Bit Shift Right) and SFRN (Shift Forward Register Not) are some examples
of instructions that shift bits to the right. We should note that not all manufacturers have

shift registers that shift <lata to the right but most all do have left shifting registers.

0000
_| DATA SFT
" 1000
= |000N CLOCK
1003
0002
RE SET

Figure 4.17.t\ladder representation of shift

A typical shift register instruction has a symbol like that shown above. Notice that the
symbol needs 3 inputs and has some data inside the symbol. The reasons for each input

are as follows:

» Data- The <lata input gathers the true/false statuses that will be shifted down the
train. When the <lata input is true the first bit (car) in theregister (train) will be a
1. This data is only entered into the register (train) on the rising edge ofthe
clock input.

* Clock- The clock input tells the shift register to "do its thing". On the rising

edge ofthis input, the shift register shifts the <lata one location over inside the

39

register and enters the status of the data input into the first bit. On each rising
edge of this input the process will repeat.
* Reset- The reset input does just what it says. it clears ali the bits inside the

register we're using to 0.

The 1000 inside the shift register symbol is the location of the first bit of our shift
register. If we think of the shift register as a train then this bit is the locomotive. The
1003 inside the symbol above is the last bit of our shift register. it is the caboose.
Therefore, we can say that 1001 and 1002 are cars in between the locomotive and the

caboose. They are intermediate bits, So, this shift register has 4 bits. (i.e. 1000, 1001,
1002, 1003)

Figure 4.18 A chow-chow train

Let's examine an application to see whylhoWW¢ ca.LiL1use theshiff.register. Imagine
an ice-cream cone machine. We have 4 steps. First we -verify the/coneis not broken.
Next we put ice cream inside the cone.(turn on output 500) Next we add peanuts.rturn
on output 501) And finally we add sprinkles.(turn on output 502) If the cone is broken
we obviously don't want to add ice cream and the other items. Therefore we have to
track the bad cone down our process line so that we can tell the machine not to add each
item. We use a sensor to look at the bottom of'the cone. (Input 0000) Ifit's on then the
cone is perfect and if'it's off then the cone is broken. An encoder tracks the cone going
down the conveyor. (Input 0001) A push button on the machine will clear the register;

(Input 0002).

40

Here's what the ladder would look like

0000 DATA
SFT

001 CLOCKI 1000
—T 1003

. ——
- —

5003 REST

1001 0500

1002 0501

.

1003 0502

;

Figure 4.19 A ladder program

Let's now fouowkthéshjﬂ register as the operation takes place. Here's what the 1000

series register (the register we're shifting) looks like initially:

10xx Register

Table 4.1

A good cone comes-intfront of the sensor (input 0000). The sensor (<lata input) turns
on. 1000 will not turn on until the rising edge of the encoder (input 0001). Finally the
encoder now generates a pulse and the status of the <lata input (cone sensor input 0000)

is transferred to bit 1000. The register now looks like.

10xx Register

15 14 13 12 11 1 09 08107:06 05 04 03 0201 00
0O 0 0 1

Table 4.2

41

As the conveying system moves on, another cone comes in front of the sensor. This
time it's a broken cone and the sensor remains off. Now the encoder generates another
pulse. The old status of bit 1000 is transferred to bit 1001. The old status of 1001 shifts
to 1002. The old status of 1002 shifts to 1003. And the new status of the <lata input

(cone sensor) is transferred to bit 1000. The register now looks like.

10xx Register
1514713112 11 1009 0810706 05 0403|0201 |00
I — . : z :
Table 4.3

Siripe the register shows that 1001 is now on, the ladder says that output 0500

will turn or1.ajldice cream is put in the cone.

As the coriveying system continues to move on, another cone comes in front of the
sensor. Tlistirizie it's a good cone and the sensor turns on. Now the encoder generates
another pulsetThe old status of bit 1000 is transferred to bit 1001. The old status of
1001 shiftst61002. The old status of 1002 shiftsto 1003. And the new status ofthe <lata

input (cone seri.sor) is transferred to bit 1000. The register now looks like:

, 10xx Register

108 07106 05 0410310201 00

T 0 1 0 I
Table 4.4

Since the register shows that 1002 is now on the ladder says that output 0501 will
tum on and peanuts are put on the cone. Since 1001 now holds the status of a broken
cone, 500 remains off in the ladder above and no ice-cream is inserted into this cone. As
the conveying system continues to move on, another cone comes in front of the sensor.
This time it's also a good cone and the sensor tums on. Now the encoder generates
another pulse. The old status of bit 1000 is transferred to bit 1001. The old status of
1001 shifts to 1002. The old status of 1002 shifts to 1003. And the new status ofthe <lata

input (cone sensor) is transferred to bit 1000. The register now looks like:

42

B L . R

10:xx Reglster
15 14113 12 11 10 09 08 07 06 05 04 03 02 01 ‘00
[0 I 1
Table 4.5

Since the register shows that 1003 is now on the ladder says that output 0502 will
turn on and sprinkles are put on the cone. Since 1002 now holds the status ofa broken
cone, 501 remains Off iri the ladder above and no peanuts are put onto this cone. Since
the register sliowsthatlOOI is now on the ladder says that output 0500 will turn on and

ice crearriispufin that cone.

As the ‘fk'co\‘t“li'eying system continues to move on, another cone comes in front of the
SEnSsor. ThlS tlme it's another broken cone and the sensor turns off. Now the encoder
generates another pulse. The old status of bit 1000 is transferred to bit 1001. The old
status of 1001 shifts to 1002. The old status of 1002 shifts to 1003. And the new status

of thedatamput (cone sensor) is transferred to bit 1000. The register now looks like:

10xx Register
12 11 10 090807 06 04 03 02 01 00
0T 10
T Table 4.6

Notid~ tli.at the status of our first cone has disappeared. in reality its sitting in
locati6l1T004 but it's useless for us to draw an application with 16 processes here.
Suffice 1ft0 say that after the bit is shifted all the way to the left it disappears and is
never seeri again. in other words, it has.been shifted out of the register and is erased
from mym.pry. Although it's not drawn, the operation above would continue on with

each bit shiijing on the rising edge of the encoder signal.

The shiffregister is most commonly used in conveyor systems, labeling or bottling
applications, ete. Sometimes it's also conveniently used when the operation must be
delayed in a fast moving bottling line. For example, a solenoid can't immediately kick
out a bad can of beer when the sensor says its bad. By the time the solenoid would react

the can would have already passed by. So typically the solenoid is located further down

43

the conveyor line and a shift register tracks the can to be kicked out later when it's more

convenient.
4.8 Getting and Moving Data

Let's now start working with some <lata. This is what can be considered to be getting

into the "advanced" functions ofa plc. This is also the point where we'll see some

marked differences between many of the manufacturer's functionality and
implementation. O1the lines that follow we'll explore two ofthe most popular ways to

get and manipulate <lata.

Why dowe want to get or acquire <lata? The answer is simple. Let's say that we are
using one Qf the manufacturer's optional modules. Perhaps it's an A/D module. This
modulea.cquires Analog signals from the outside world (a varying voltage or current)
and con.vertsthe signal to something the plc can understand (a digital signal i.e. |'s and
O's). Manu:filicturers automatically store this <lata into memory locations for us.
However/We have to getthe <lata out ofthere and move it some place else otherwise the
next ana.logsample willTeplace the one we just took. In other words, move it or lose it!
Something else we rn.ighfwant to do is store a constant (i.e. fancy word for a number),
get some binary <lata 6ff'the 'input terminals (maybe a thumbwheel switch is connected

there, for example). do §0me foath and store the result in a different location, ete...

As was stated before th~r~are typically 2 common instruction "sets" to accomplish
this. Some manufacturers us~c1.:singleinstruction to do the entire operation while others
use two separate instructionsf mP-~\two are used together to accomplish the final result.

Let's now look briefly at eachiiistnfotion.

The single msiruction is com.niori.ly called N0V (move). Some vendors also include
a MOVN (move not). It has the sa'lle function of MOV but it transfers the data in

7 tvpically looks like tha

N

elow,

-
o
o
-
(—:31
-
&
o~

Joeart

L_‘l_{}\ﬁ\’,‘ 31

=
ad

inverted form.

¢

MOV

XXXX
Y'Y

Figure 4.20 MOV instruction symbol

The paired instrucrion typically is called LDA (Load Accumulator) and STA (Stere
Accumulator). The accumulator is simply a register inside the CPU where the plc storcs
data temporarily while it's working, The LDA instruction typically looks like that

shown below. while the STA instruction looks like that shown below to the right.

f!u:w\ |--|sm|-—

Figure 4.21 Symbols ofLDA and STA

Regardless of wirsthe. we use the one symbol or two symbol instruction set (we have no

choice as i‘kt‘k‘dep\eﬂds on whose plc we use) they work the same way.

Let's see théSingle instruction first. The MOV instruction needs to know 2 things from

us.

+ Semree txxxxJ - This is where the data we want to move is located. We could

erte a constant here (2222 for exarnple). This would mean our source data is

t;ge% number 2222, \Ve could also write a location or address of where the data we
wantrtd“mcve is located. If we wrote DMI 00 this would move the data that is
located in data memorv 100.

+ Destination (vyvyy) - This is the locatior1 where the data will be moved to. We
write an addrcfss here. For example if we write DM201 here the data would be
moved into data memory 201. We could also write 0500 here. This would mean
that the data would be moved to the physical outputs. 0500 would have the least
significant bit, 0501 would have the next bit.. 0515 would have the most
significant bit. This would be useful if we had a binary display connected to the

A

outputs and we warixi to display the value inside a counter for the machine

operator at all times (for example).

0000 1000
HDIFU
1000 1 MOV
DM200

Figure 4.22 A ladder program to move data

45

The ladder diagram to do this would look similar to that shown above.

Notice that we are also using a "difi1" instruction here. The reason is simply because
if we didn't the data would be moved during each and every scan. Sometimes this is a
good thing (for example if we are acquiring data from an A/D module) but other times

it's not (for example an extemal display would be unreadable because the data changes

too much).

The ladder shows that each time real world input 0000 becomes true. difi1 will
become true for only one scan. At this time Load 1000 will be true and the plc will
move the <lata from data memory 200 and put it into data memory 201
Simple but effective. If. instead of DM200, we had written 2222 in the symbol we

would have moved (Wntten\ the number (constarit) 2222 into DM20L

The two Symbol i_;' tmctlon works in the same method but looks different. To use

them we must also Supply two things, one for each instruction:

o LDA- this instruction is similar to the source of a I'.1QV instruction, This is

where the daia we want ta move is located. \\'e could write a ccnstant here

(2222 for example) This would mean our source data is the number 2222. We
could also Wﬁ ¢ 2 locaticn or address of where the data we want to nl0Ye is

located. If \;Ve‘,;\\'rote Drv1100 this would move the data that is located in data
memory 10&

o STA- this ms‘in tion is similar to the destination of a i\.10\T instruction. V.e
write an address here. For example if we write DI\'1201 here the dara would be
moved into data memory 201. We could also write 0500 here. This would mean
that the data would be moved to the physical outnuts. 0500 would have the least
significant bit, would have the next bit.. 0515 would have the most
significant bit. This would be useful if we had a binary display connected to the
outputs and we wanred to display the value inside a counter for the machine

operator at all times (for example).

46

0000 1000

HDIFU
1000 #2222
LDA.
DM200
STA.

Figure4.23 A ladder program using LDA and STA

The ladder diagram to do this would look similar to that shown above. Here again we
notice that we are using a one-shot so that the move only occurs once for each time
input 0000 becomes true. In this ladder we are moving the constant 2222 into data
memory 200. The "#" is used by some manufactures to symbolize a decimal number. If
we just. usecf2222 this plc would think it meant address 2222. PLCs are all the same...

but they ateTalldifferent.

We can think of this instruction as the gateway to advanced instructions. I'm sure
you'll find it useful and invaluable as we'll see in future. Many advanced functions are

impossible witha™ this instruction.

47

Chapter 5
NUMBERS AND NUMBER SYSTEMS

5.1 Math Instructions

Let's now look at using some basic math functions on our data. Many times in our
applications we must execute some type ofmathematicalformula on our data. It's a rare

occurrence when our dara is actually exactly what we needed.

As an example, let's say we are manufacturing widgets. We don't want to display the
total number we've made tdday, but rather we want to display how many more we need
to make today to meet outJquota. Let's say our quota for today is 1000 pieces. We'll say
X is our current productiorri'Therefore, we can figure that 1000-X=widgets left to make.

To implement this formulawe Obviously need some matli capability.

In general, PLCs almost always include these matli functions:

. Addition- The capability to add one "p_iéc‘e of data to another. It is commonly
called ADD. o

+ Subtraction- The capability to Subtract one piece of data from another. It is
commonly called SUB.

* Multiplication- The capahility to multiply one piece of<lata hy another. It is
commonly called MUL.

+ Division- The capability to divide one piece of data from another. It is

commonly called DIV.

As we saw with the MOV instruction there are generally twocommon methods used
by the majority of plc makers. The first method includes a single instruction that asks us

for a few key pieces of infonn.ation. This method typically requires:

* Source A- This is the address of the first piece of data we will use in our
formula. In other words it's the location in memory of where the first "number"

1s that we use in the formula.

48

* Source B- This is the address of the second piece of <lata we will use in our
formula. In other words it's the location in memory of where the second
"number" is that we use in the formula. -NOTE:.typically we can only work with
2 pieces of <lata ata time. In other words we can't work directly with a formula
like 1+2+3. We would have to break it up into pieces, Dike 1+2=X then X+3=
our result.

* Destination- This 1s theaddress where the result oidutforititila will be put.
For example, if |+2=3, (I hope it still does!), the 3 would automatically be put

into this destination memory location.

DM100
DN1.101

DM102

Figure 5.1 ADD symbol

The instructions above typically have a symbol that looks like that shown above. Of
course, the word ADD would be replaced by SUB, MUL, DIV, ete. In this symbol, The
source A is DMIO(kthe source B is DMI Ol and the destinatioitisDMI102. .Therefore,

the formula is simplyy;ywhat‘ever value is inDMIOO * whatever value is inDMIOI. The

result is automatically stored into DM102.
0000 1000
| —1 }——-lDIFU
1000 [T
DMIOO
DNi101
DMI02

Figure 5.2 Aladder !d‘iagram of matli functions

Shown above is how to use math functions on a ladder diagram. Please note that
once again we are using a one-shot instructiori. As we've seen before, this is because if
we didn't use it we would execute the formiila on every scan. Odds are good that we'd
only want to execute the function one time when input 0000 becomes true. If we had
previously put the number 100 into DM100 and 200 into DM101, the number 300
would be stored in DM102.(i.e. 100+200=300, right??)

49

|

Figure 5.3 ADD symbol (dual method)

The dual instruction method would use a symbol similar to that shown above. in this
method, we give this symbol only the Source B location. The Source A location is given

by the LDA il lstruction. The Destination would be included in the STA instruction.

0000 1000
HDIFU
1000 DN1l0OO

LDA
DAA101

D."'."'. 1 02
STA }

- Figure 5.4 A ladder program using DIFU, LDA, ADD and STA
Shown above is a ladder diagram showing what we mean.
The results are the same as the single instruction method shown above.

What would happen if We had a result that was greater than the value that could be

stored in a memory location?

Typically the mﬁ&t"‘"k}k"ﬂ:ﬂfgﬁ\{iﬁ‘ﬁf are 16-bit locations. (More about number types in a

)

later chapter) In plain WOI‘dS“ftlliS EIT that if the number is greater than 65535

(2\16=65536) it is too big to fit. Then we get what's called an overflow. Typically the
plc tums on an intemal relay thattellsus an overflow has happened. Depending on the
plc. we would have different data in the destination location. (DM102 from example)

Most PLCs put the remainder here.

Some use 32-bit mathh which solves the problem. (Except for really big numbers) If
we're doing division. for example. and we divide by zero (illegal) thc ovcrflow bit

+)pically turns on as well, Suffice . w say. check the oy, flg;,. bit bn wowo 12dder e i

it's true, plan appropriately. Many PLCs also include otlier math :fpahmhjijﬂ
/

thiese functions could include:

* Square roots
* Scaling

e Absolute value

* Sine
+ Cosine
* Tangent

* Natura! logarithm
* Base 10 logarithm
+ XAY (Xto the power of'Y)
* Arcsine (tan, cos)

 And moreclieck with the manufacturer to be sure.

SomeiPL.t®s>can use floating point matli as well. Floating point math is simply using
decimalpdirits:111.6ther words, we could say that 10 divided by 3 is 3.333333 (floating
point). Or we.icolild say that 10 divided by 3 is 3 with a remainder of |(long division).
Many micro/mifii J>LCs don't include floating point matli. Most of larger systems

typically do.
5.2 Number Systems

Before we get too/far ahead of ourselves, let's take a look at the various number
systems used by PLCs.<Many number systems are used by PLCs. Binary and Binary

Coded Decimal are populariwhile octal and liexadecimal systems are also common.

Let's Jook at each:

As we do, consider tlie followirt.gformula (Math again!):

Nbase= Ddigit*R/A\unit +.... DIRAT + DORANO

Wlhere D=the value of'tlie digit and R= # of digit symbols used in thie given number
system.
The "*" means multiplication. (5 *10= 50)

The "A" means "to the power of'.

51

Where D=the value ofthe digit and R= # of digit symbols used in the given number
system.

The W means multiplication. (5 * 10 = 50)

The " means "to the power of'.

As you'll recall any number raised to the power of 0 is 1. IQAI=IO, 1Q/A2 is 10x10=100,

10/A3 is 10x10x10=1000, 1Q/\4 is 10x10x10x10=10000...

This lets us convert frorr.i.aily number system back into decimal.

5.2.1 Decimal

This is the numbering system we use in everyday life. (well most ofus do anyway!)
We can think ofthis as base 10 counting. it can be called as base 10 because each digit
can have 10 different states. (i.e. 0-9) Since this is not easy to implement in an
electronic system it is seldom, if ever, used. Ifwe use the formula above we can find out
what the number 456 is. From the formula:

Nbase=Ddigit" RAunit +.... DIRA1 + DORAO.

We have (since we're doing base 10, R=10)

NIO= D410/A2 + D510/A1 + D610AO
=4*100 + 5*10 + 6*
=400 +50+ 6
=456.

5.2.2 Binary

This is the numbering system computers and PLCs use. It was far easier to design a
system in which only 2 numbers (O and 1) are manipulated (i.e. used). The binary system
uses the same basic principles as the decimal system. In decimal we had 10 digits. (0-9)
in binary we only have 2 digits (O and 1). In decimal we count: 0,1,2,3,4,5,6,7,8,9, and
instead of going back to zero, we start a new digit and then start from O in the original
digit location. In other words, we start by placing a | in 'the .second digit location and
begin counting again in the original location like this 10,11,12,13, ... When again we hit
9, we increment the second digit and start counting from O again in the original digit

location. Like 20,21,22,23 of course this keeps repeating. And when we run out of

-52 -

digits in the second digit location we create a third digit and again start from scratch.
(i.e. 99, 100, 101, 102...). Binary works the same way. We start with O then 1. Since
there is no 2 in binary we must create a new digit. Therefore we have O, 1, 10, and 11
and again we run out of room. Then we create another digit like 100, 101, 110, and 111.

Again we ran out of room so weadd another digit... Do you get the idea? The general

conversion formula may clear things up:

Nbase=Ddigit * Rounit+.... DIR"1 + DOR"O.

Since we're now doirigbinary or base 2, R=2. Let's try to convert the binary number

1101 back into decimal,

NIO= DI * 2"3 +DO* 2"1 + DI * 2"0
= 1*8+
=13
(Ifyou don't see 2, and | came from, refer to the table below).

Now we can see thaf\binatyJ1Ol is the same as decimal 13. Try translating binary

111. You should get debirnal/7.Try binary 10111.You should get decimal 23.

Here's a simple binaty<cfi.art/foreference. The top row shows powers of 2 while the

bottom row shows their eqtiivalent decimal value.

: <!~~ry Number Conversions

- 2"fs12AT4-12"13 2"121211112" 10 79 12"s 2”112"612”5 12"412"3 2"2h" :2"01
: VR R Rl o ™ J=i

32768116384 8192'4096)2Q4~J1024)512)256]128] 64132‘ 168 14 | 2 | j

- |

Table 5.1

5.2.3 Octal

The binary number system requires a ton of digits to represent a large number.
Consider that binary 11111111 is only decimal 257. A decimal number like 1,000,000
("1 million") would need a lot of binary digits! Plus it's also hard for humans to

manipulate such numbers without making mistakes.

-53 -

So we count like 0.1,2.3.4.5.6. 7.10.11.12 .. 17.2021.22 .27 .30 ...

Using the formula again. wc can convert an octal number to decimal quite
easily.

Nbase= Ddigit * RAunit +... DIRAI + DORAO

So octal 654 would be: (rcmember that here R=8)

NIO= D6 * 8/2 +DS * 8\l + D4 * /0
6*64 + 5*84-4%]

384 +40-+4

—428

(If you don't see where the white 64, 8 and | came from, refer to the table below).

Now we can see that octal 321 is the same as decimal 209. Try translating octal 76.

Y ou should get decimal 62T1’:¢OC’€&110() You should get decimal 64.

Here's a simple octal chart for your refcrence. The top row shows powers of 8 while

©

the bottom row shows their equivalent decimal value.

Octal Number Conversions

- T R TR R T 80
2097152 262144 32768 . 4096 | § 1
Table 5.2

Lastly. the octal system is a convenient way for us to express or write binary
numbers in plc systems, A binary number with a large number of digits can be

convenientty written in mu octal form with fewcr digits, s 15 Mecause 1 octa1 digit

actually represents 3 binary digits,

Believe me that ,vht!Il\'Ve start working with rcgister dara or address locations in the
advanced chapters it bccomes a grcat way of cxpressing <lata. The following chart

shows what wc're reterring to:

Binary Number with its Octal Equivalent
TETE | : 01 0 1 0

3 4 5

t+1 1 0 0 1

Table 5.3

From the chart we can see that binary 1110010011100101 is octal 162345. (Decimal
58597) As we can see, when we think ofregisters, it's easier to think in octal than in

binary. As you'll soon seethough, hexadecimal is the best way to think.

5.2.4 Hexadecimal

The binary numb:efsystem requires a ton of digits to represent a large number.
The octal system imptovesiipor:i.this. The hexadecimal system is the best solution
however, because it allows<~~0j0'J::: even less digits. it is therefore the most popular
number system used with computersand PLCs. (we should learn each one though)
The hexadecimal system is also re NN:tt sas base 16 or just simply hex. As the name
base 16 implies, it has 16 digits. The fiigits are
0,1,2,3,4,5,6, 7,8,9,A,B,C,.D,E,F.
So we count like
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E)F,10,11, 12,13, ...
1A,1B,IC,ID,IE,IF,20,21... 2A, 2B, 2C, 2D, 2E, 2F,
Using the formula again, we can convert a hex number to decimal quite easily.
Nbase= Ddigit * RAunit +.... DIRAI + DORAO
So hex 6A4 would be:(remember here that R=16)

NIO= D6 * 16/\2 +DA* 16\l + D4 * 160
= 6%256 + A(A=decimal10)*16 + 4*1

1536 +160 +4

1700

(if you don't see where the 256, 16 and | came from, refer to the table below)

Now we can see that hex FFF is the same as decimal 4095. Try translating hex 76.

You should get decimal 118. Try hex 100. You should get decimal 256.

55

Here's a simple hex chart for reference. The top row shows powers of 16 while the
bottom row shows their equivalent decimal value. Notice that the numbers get large

rather quickly.

Hex Number Conversions

16/\8 16/\7 166 T geRs 16/\4 11673116°2 161 1670,
4294967296 268435456 | 16777216 | 1048576 65536 §4096§256§ 16 1 1

Table 5.4

Finally, the hex system is perhaps the most convenient way for us to express or write

binary numbers in plc systems. A binary number with a large number of digits can be
conveniently written in hex form with fewer digits than octal. This is because 1 hex

digit actnally represents 4 binary digits.

Believe me that when we start working with register <lata or address locations in the

advanced chapters it becomes the best way of expressing data. The following chart

shows what we're referring to:

Binary Number with its Hex Equivalent
0 f o 1.0 0o 1 0 o 0o 1t 0

Table 5.5

From the chart we can see that binary 0111010010100101 is hex 74AS5. (Decimal

29861) As we can see, when we think of registers, it's far easier to think in hex than in

binary or octal.

56

5.3 Boolean Math

Let's now take a look at some simple "Boolean matli". Boolean math lets us do some
vary basic functions witli the bits in our registers. These basic functions typically

include AND, OR and XOR functions. Eacliis described below.

5.3.1 AND Gate

This function enables us to use the truthi table below. Here, we can see that the
AND function is very much related to multiplication. We see this because the only time
the Result is true (i.e. 1) is when botli operators A AND B are true (i.e. 1). The AND
instruction is useful wlien your plc doesn't have a masking function. Oh yeah, a masking
function enables a bit in a register to be "left alone" wlien working on a bit level. Tlis is
simply because any bit that is ANDed with itself will remain the value it currently is.
For example, .if you wanted to clear (make them 0) only 12 bits in a 16 bit register you
might AND<theregister with O's everywhere except in the 4 bits you wanted to maintain

the status
See the truth table below to figure out what we mean. (1 AND | =1, 0 AND 0= 0)

Result = A AND B

A Result |
0 0 0
1 0 0
0 1 0
1 1
Table 5.6
5.3.2 OR Gate

This function based upon the truth table below. Here; we can .see that the OR
function is very much related to addition. We see this because the only time the Result
is true (i.e. 1) is when operator A OR B is true (i.e. 1). Obviously, when they are both
true the result is true. (If A OR B is true...)

-57-

Result =A OR B

e B Result
5 “ 0
o 1 |
1 s 1 |

Table 5.7

5.3.3 EXCLUSIVE ORGate

This function enables us to use the truth table below. Here, we can see that the
EXOR (XOR) function is not related to anything I can think of | An easy way to
remember the results of this function is to think that A and B must be one or the other
case, exclusively. Huh? In other words, they must be opposites of each other. When
they are both the same (i.e. A=B) the result is false (i.e. 0). This is sometimes useful
when you want to compare bits in 2 registers and highlight which bits are different. It's
also needed when we calculate some checksums. A checksum is commonly used as

error checking in some communications protocols.

Result =A XOR B

A Result
0 0 ?
: (. | “ |
1 1 w 0

5.8

The ladder logic instructions are comriionlycalled AND, ANDA, ANDW, OR, ORA,
ORW, XOR, EORA XORW.

As we saw with the MOV instruction there are generally two common methods used
by the majority of plc makers. The first method includes a single instruction that asks us

fora few key pieces of information. This method typically requires:

58

* Source A- This is the address of the first piece of data we will use. In other
words its the location in memory of where the A is.

* Source B- This is the address of the second piece of data we will use. In other
words its the location in memory of where the B is.

* Destination- This is the address where the result will be put. For example, if A
AND B = 0 the result (0) would automatically be put into this destination

memory location.

At.JD
DN110O
DN1101

DN1102

Figure 5.5 AND symbol

The instructions above typically have a symbol that looks like that shown here. Of
course, the word AND would befeplaced by OR or XOR. In this symbol, The source A
is DMI 00, the source B is DMIOt~~ciJ~e destination is DMI 02. Therefore, we have
simply created the equation DMI100.<.A.ND DM101 = DMI102. The result is
automatically stored into DM102. The Bodlean fullctions on a ladder diagram are

shown below.

0000 1000
HDIFU
1000 rANDb

DNilOO
DN1101

DN1102

Figure 5.6 A ladder program using AND

Please note that once again we are using a one-shot instruction. As we've seen
before, this is because if we didn't use it, we would execute the instruction: on every
scan. Odds are good that we'd only want to execute the function 0lle time when input

0000 becomes true,

59

-|ANDt:

Figure 5.7 AND symbol (dual instruction method)

The dual instruction method would use a symbol similar to that shown above. In this
method, we give this symbol only the Source B location. The Source A location is given
by the LDA instruction. The Destination would I:,~jl1cludedjn the STA instruction.

Below is a ladder diagram showing what is meant.

0000 1000
HDIFU
1000 DM100

LDA]
DMI101
AtIf)
DM102
STA

Figure 5.8 A ladder program using DIFU, LDA, AND and STA

The results are the same as the single instruction method shown above. It should be
noted that although the symbol and ladder diagram above show the AND instruction,
OR or EXOR can be used as well. Simply substitute the word "AND" within the
instruction to be either "OR" or "EXOR". The results will be the same as shown in their

respective truth tables.

We should always remember that the theory is most imnportant. If we can understand
the theory of why things happen as they do, we can use anybody's plc. Ifwe refer to the
manufacturers documentation we can find out the details for the particular plc we are
using. Try to find the theory in that documentation and you might come up short. The

details are insignificant while the theory is very significant.

- 60 -

Chapter 6
WIRING OF PLC

6.1 DC Inputs

Let's now take a look at how the input circuits of a plc work. This will give us a

betler understanding ofhow we should wire them up.

Typically, de input modules are available that will work with 5, 12, 24, and 48 volts.
Be sure to purchase the one that fits your needs based upon the input devices you will

use.

We'll first look at how the de inputs work. DC input modules allow us to connect
either PNP (sourcing) or NPN (sinking) transistor type devices to them. If we are using
a regular switch (i.e. toggle or pushbutton, ete.) we typically don't have to worry about
whether we wire it as NPN or PNP. We should note that most PLCs won't Jet us mix
NPN and PNP devices on the same module. When we are using a sensor (photo-eye,
prox, ete.) we do, however, haveto "\VQrryalJoutitsoutput configuration. Always verify

whether it's PNP or NPN. (Check with the manufacturer when unsure)

The difference between the two'types is whether the load (iynyyour‘ case, the ole is the
load) is switched to ground or positive voltage. An NPN type sensor has the load
switched to ground whereas a PNP device has the Joad switched to positive voltage.

Below is what the outputs look like for NPN and PNP sensors.

NPN (SINKING) SENSOR
1'0 PJ,CINI-UT

SENSOR
GLUTPUT
CIRCUTT

s
ed

GROERD 10Y)

Figure 6.1 NPN sensor

On the NPN sensor we connect one output to the PLCs input and the other output to

the power supply ground. Ifthe sensor is not powered from the same supply as the plc,

- 6] -

we should connect both grounds together. NPN sensors are most commonly used in

North America.

Many engineers will say that PNP is berter (i.e. safer) because the load is switched to

ground, but whatever works for you is best. Just remember toplan for the worst.

On the PNP sensor we connect &ne output to positive voltage and the other output to
the PLCs input. If the sensor is not powered from the same supply as the plc, we should

connect both V+'s together. PNP sensors are most commonly used in Europe.

PNL (SOUItCING) SENSOU
1'0 POSI11VE(V+)

1 |
SENSOIt
JUL 'P[%
CIICUTf: |-
'
'm0 i"LC ~:i:PUT
Figure 6.2 PNP sensor

inside the sensor, the transistor is just acting as a switch. The sensors intemal circuit
tells the output transistor to turn on When a target is present. The transistor then closes

the circuit between the 2 connections shown above. (V+ and plc input).

CO)DION INPUT 0000
l] —»
[
=

L;J iy

PROPSCOUTLER
[i]

IN'T"EIINI\L CIItCUIT

Figure 6.3 internal circuit ofa sensor

=62 -

OMMON
The only things accessible to the user are the termmals 1abeled C

0000, INPUT 0001, INPUTXXXX... The common termmal elther gets cormected to ‘V+ or

usin an' -
ground. Where it's connectedrl~abemity: upon the type of sensor used. When g

to V+. When using a PNP sensor this terminal is
NPN sensor this iefuuuen 1S conneaed

connected to OV (groun.d).

A common switch(i.e. limit switch, pushbutton, toggle, ete.) would be connected to

theinputs jpJ1 sirri.ilaffasbion. line side of the switch would be connected directly to
v+. The ~:;,rm,~nti~es to the p]c input terminal. This assumesthe common terminal is
connecte~~?9;'.(ground). If the common is connected to V+ then simply connect one

end oftheswitch to OV (ground) and the other end to the plc input terminal.

Théphéto couplers are used to isolate the PLCs intemal circuit from the inputs. This
elintinatesthe chance of any electrical noise entering the intemal circuitry. They work
b)'cortverting the electricaliriplitsigrial to light and then by converting the light back to

anelectrical signal to be processed b)'theintemal circuit.
6.2 AC Inputs

Now that we understand how de inputs work,ilet's take .a close look at ac inputs. An
ac voltage is nott-polarized. Put simply, this means thatthere is no positive or neganve

to "worry about". However, ac voltage can be quite dangerous to work with if we are

careless. (Remember when you stuck the knife in the toaster got a shock? Be
careful) typically, ac input modules are available that will work with 24, 48, 110, and
220 volts. Be sure to purchase the one that fits your needs based upon the input devices

(voltage) you will use.

AC input modules are less common these days than de input modules. The reason
being that today's sensors typically have transistor outputs. A transistor will not work
with an ac voltage. Most commoiily, the ac voltage is being switched through a limit
switch or other switch type. Ifyour application is using a sensor it probably is operating

on a de voltage.

-63 -

.l
2

= L

n
~ J I
Z o
$ o
i

it i
e n

I'L.C

111

[R RO

Figure 6.4 shows the connecting ofa PLC

We typically conneet an ac device to our input rnodule as shown above. Cornrnonly
the ac "hot" wire is ccnnected to the switch while the "neutral”" goes to the plc cornrnon.
The ac ground (3rd wire where applicable) should be connected to the frarne ground
terminal of the plc.(not shown) As is true with de, ac connections are typically color
coded so that the individual.wiring the device knows which wire is which. This coding
varies frorn country to country but in the US is cornrnonly white (neutral), black (hot)
and green (3rd wire ground when applicable). Outside the US it's cornrmonly coded as
brown (hot), blue (neutral) and green with a yellow stripe (3rd wire ground where

applicable).

The PLCs ac.input module circuit typically looks like this.

COMMON INPUT 0000

| OTHER INPUTS
— >
e
Ly
ST |PLIOIOCOUPLEI
[—

IN'fEIINAL CIRCUI'T

Figure 6.5 PLCs ac input rnodule circuit

The only things accessible to the user are theterminals la.beledCOMMON, INPUT

0000, INPUTxxxx... The cornrnon terminal gets connected to' the neutral wire. A

- 64-

common switch (i.e. limit switch, pushbutton, toggle, ete.) would be connected to the
input terminals directly. iline side of the switch would be connected directly to INPUT
XXX. The other end goes to the ac hot wire. This assumes the common terminal is
connected to neutral. Always check the manufacturer's specifications before wiring, to

be sure AND SAFE.

The photo couplers are used to isolate the PLCs intemal circuit from the inputs. This
eliminates the chance of any electrical noise entering the intemal circuitty. They work
by converting the electrical input signal to light and then by converting the light back to

an electrical signal to be processed by the intemal circuit.

ine last note, typically an ac input takes Jonger than a de input for the plc to see. In
most cases it doesn't matter to.the programmer because an ac input device is typically a
mechanical switch and mechanical devices are slow. It's quite common for a plc to
require that the input be on for 25 or more milliseconds before it's seen. This detay is
required because of the filtering which is needed by the plc intemal circuit. Remember

that.the plc intemal circuit typically works with 5 or less volts de.

6.3 Relay Outputs

Bynowwe should have a good understanding of how the inputs are used. Next up is

the output circuits.

ine of the most common types of outputs available is the relay output. A relay can
be used with both AC and DC loads. A load is simply a fancy word for whatever is
connected to our outputs. We call it a load because we are "loading the output" with
something. 1f we connected no load to the output (i.e. just connect it directly to a power
supply) we would certainly damage the outputs. This would be similar to replacing the
light bulb in the lamp you're using to read this with a piece of wire. If you did this, the
lamp would draw a tremendous amount of current from the outlet and certainly pop

your circuit breaker or blow your fuse or your brains.

Some common forms ofa load are a solenoid, lamp, motor, ete. These "loads" come
in all sizes. Electrical sizes, that is. Always check the specifications of yourrload before

connecting it to the plc output. You always want to make sure that the maximum current

- 65 -

it will consume is within the specifications of the plc output. If it is not within the
specifications (i.e. draws too much current) it will probably damage the output. When in
doubt, double check with the manufacturer to see if it can be connected without

potential damage.

Some types of loads are very deceiving. These deceiving loads are called "inductive
loads". These have a tendency to deliver a "back current" when they turn on. This back

current is like a voltage spike coming through the system.

A good example of an inductive load that most of us see about 6 months per year is
an air conditioning unit. Perhaps in your home you have an air conditioner. (Unless you
live in the arctic you probably do!) Have you ever noticed that when the air conditioner
"kicks on" the lights 'dim for a second or two. Then they return to their normal
brightness. This is because when the air conditioner turns on it tries to draw a lot of
current through your wiring system. After this initial "kick" it requires less current and
the lights go back to normal. This could be dangerous to your PLCs output relays. It can
be estimated that this kick is about 30 times the rated current of the load. Typically a
diode, varistor, or-other "snubber" circuit should be used to help combat any damage to

the relay. Enough said. Let's see how we can use these outputs in the "real plc world".

Al
J

Al

)
@
®

els{ele]

©0= ION
ol

PL.C
Figure 6.6 PLC connected to AC source

Shown above is a typical method of connecting our outputs to the plc relays.
Although our diagram shows the output connected to an AC supply, DC caribe iised as
well. A relay is non-polarized and typically it can switch either AC 6r DC. Here the
common is connected to one end of our power supply and the other end 6fthe supply is
connected to the load. The other half of our load gets connected fothe actual plc output

you have designated within your ladder program.

- 66 -

Internal Clrcuit

o | [|| ey

e rET rET

coritact contas: contact

COM 0500 0501 COM outputs

Figure 6.7 Relay as in PLC

The relay is internal to the plc. Its circuit diagram typically looks like that shown
above. When our ladder diagram tells the output to turn on, the plc will internally apply
a voltage to.therelay coil. This voltage will allow the proper contact to close. When the
contactcloses, an external current is allowed to flow through our external circuit. When
the ladde[diagram telis the plc to turn off the output, it will simply remove the voltage
from theiflierrial circuit thereby enabling the output contact to release. Our load will

than have atiop~ti?circuit and will therefore be off.

6.4 Transistor Outputs

The next type of outpli{M'~ shoulcl leam about is our transistor type outputs. it is
important to note that a transistof/carionly switch a de current. For this reason it cannot

be used with an AC voltage.

We can think ofa transistor asa solid-stat~sM'itch.)Or more simply put, an electrical
switch. A small current applied to the transistors\"ba.self (Le. input) lets'us switch a
much larger current through its output. The plc applies a sfoallcurrent to the rransistor
base and the transistor output "closes". When it's closed,thecl~viceCorinectedtothe plc
output will be turned on. The above is a very simple explaria.tionidfatransistor. There
are, of course, more details involved but we don't need to geftéoideep. We should also
keep in mind that as we saw before with the input circuits,there a.regenerally more than

one type of transistor available. Typically a plc will have either NPN or PNP type

- 67 -

outputs. The "physical" type of transistor used also varies from manufacturer to
manufacturer. Some ofthe common types available are BJT and MUSFET. A BJT type
(Bipolar Junction Transistor) often has less switching capacity (i.e. it can switch less
current) than a MiiS-FET (Metal iixide Semiconductor- Field Effect Transistor) type.
The BIJT also has a slightly faster switching time. iince again, please check the output
specifications of the particular plc you are going to use. Never exceed the

manufacturer' s maximum switching current.

g
LOAD
[d e o]

FO:

COMMON
oz

PILC
Figui:¢6.8 PLC connected to NPN type transistor

Shown above is how we typically connect our output device to the transistor output.
Please note that this is an NPN type transistor. If it were a PNP type, the common
terminal would most likely be connected to V+ and V- would connect to one end of our
load. Note that since this is a DC type output we must always observe proper polarity

for the output. iine end ofthe load is comiected directly to V+ as shown above.

Let's take a moment and see what happens inside the output circuit.Shown below is a

typical output circuit diagram for an NPN type output.

loco

—1 0500

Ph

spler

Wk

Irserriat Circ

e o COM

Figure 6.9 Circuit diagram for an NPN type output

- 68 -

Notice that as we saw with the transistor type inputs, there is a photo coupler
isolating the "real world" from the intemal circuit. When the ladder diagram calls for it,
the intemal circuit tums on the photo coupler by applying a small voltage to the LED
side of the photo coupler. This makes the LED emit light and the receiving part of the
photo coupler will see it and allow current to flow. This small current will tum on the
base ofthe output transistor connected to output 0500. Therefore, whatever is connected
between COM ancl ()500 will turn on. When the ladder tells 0500 to tum off, the LED
will stop emitting light and hence the output transistor connected between 0500 and

COM will tum off.

iine Other 'important thing to note is that a transistor typically canriot switch as large
a load dSd relay. Check the manufacturer's specifications to find the largest load it can
safely switch. If the load current you need to switch exceeds the specification of the
output, you can corin~ctteplc output to an extemal relay. Then conriect the relay to the
large load. You may by thinkipg, "why not just use a relay in the first place"? The
answer is because a relayisi0~f

0 the correct choice for every output. A transistor
1

gives you the opportunity to usy y:%%slalrelays when and only when necessary.

in summary, a transistor is fast, switches a small current, has a long lifetime and
works with de only. Whereas a relay is slow, can switch a large current, has a shorter
lifetime and works with ac or de. Select the appropriate one based upon your actual

application needs.

- 69 -

Chapter 7

COMMUNICATIONS WITH PLC

7.1 Communications History

By far, the most popular method of cornrnunicating with extemal devices is by using
the "RS-232" communications rnethod. Cornrnunication with extemal devices is viewed
by rany plc prograrnrners to be difficult ifnot "all but impossible" to understand. This

is far frorn true! It's not "black art", "witchcraft" or "weird science". Read on...

All plc cornrnunication systerns have their roots in the old telegraph we rnay have
seen in the old movies. (Remember the guy working at the train station with the arin
band and plastic visor?) Early attempts to communicate electronically over long
distances began as early as the late 1700's. in 1810 a German man (von Soemmering)
was using a device with 26 wires (1 for each letter of the alphabet) attached to the
bottom of an aquariurn. When current passed through the wires, electrolytic action
produced small bubbles. By choosing the appropriate wires to energize, he was able to
send encoded messages "via bubbles", (It's true...really) This then caught the attention

of'the rnilitary and the race to find a systern was on.

in 1839, 2 Englishmen, Cooke and Wheatstone, had a 13 milejtelegraph in use by a
British railroad. Their device had 5 wires powering small electromagnets which
deflected low-mass needles. By applying current to different combinations of 2 wires at
a time the needles were deflected so that they pointed to Jetters of the alphabet arranged
in a matrix. This "2 of 51" code only allowed 20 combinations so the letters "z, v, u, q,j
and c" were omitted. This telegraph was a big step for the time, but the code was 1ot

binary (on/off) but rather it was binary (the needle moved left, right, or not at'alf):

The biggest problerns with these devices was the fact that they .were parallel
(required multiple wires). Cooke and Wheatstone eventually made a<tw9 wire .device
but the first practical fully serial binary system generally gets creditedto S.F.B. Morse.

in Morse code, characters are symbolized by dots and dashes (binary- 1's and O's).

-70 -

Morse's first system isn't like we see .today.In .the movies. (It's on display at the
Smithsonian in DC if you want to see it) It actually had a needle contacting a rotating
drum of paper that made a w¥uuauer . mark By energlzmg an electromagnet the needle

would "bounce" away from the] paper creatmg a space. Very soon telegraph operators

noticed that they didn't have to look at the paper to read the code but they could

related to them. The rest is history... extinct, but hlStory a .

Incideritally, the tennsMARK and SPACE (we'll see 1l m
Morse's otiginal device. When the needle contacted the paper we called ’hlS a;k
and wher1 the needle bounced it was called a SPACE. His deVlce only produced

UPPERCASE letters which wasn't a big problem though. Further, the Tltamc;’ mk'ng

"standardized" the code of "SOS" which means "Save Our Ship" or if you Were ever‘ in ‘
the US military you might know it berter as "S*%$ Ona Shingle" which was chlppedsw‘,

beef on bread.

7.2 RS-232 Communications (hardware)

RS-232 communications is the most popular method of plc to external device
communications. Let's tackle it piece by piece to see how simple it can be when

understand it.

RS-232 is an asynchronous (a marching band must be "in sync" with each other so
that when one steps they all step. They are asynchronous in that they follow the band
leader to keep their timing) communications method. We use a binary systein(I'sari.d
0's) to transmit our <lata in the ASCII format. (American Standard Code for Inforinatione
Interchange- pronounced ASS-KEY) This code translates human readable / .code
(letters/numbers) into "computer readable" code (1's and O's). Our plcs seriafportiis
used for transmission/reception of the data. It works by sending/receiving a\loltage. A

positive voltage is called a MARK and a negative voltage is called aSPACEY Typically,

-7 -

the plc works with +/- 15volts. The voltage between +/- 3 volts is generally not used and

1s considered noise.

There are 2 types of RS-232 devices.The first is called a DTE device. This means
Data Terminal Equipment and a colllllléflex#inple)s a computer. The other type is
called a DCE device. DCE means Data C6111ml.rlications Equipment and a common
example is a modem. Your plc may be either#t1:>m~<9rDCE device. Check your

documentation. e e

The ple serial port works by tuming some pins on While t;l\mingrother off. These pins
each are dedicated to a specific purpose. The serial port comes 1n2 flavors-- a 25-pin
type and a 9-pin type. The pins and their purposes are Sh(n)Wh” below E(This “chart

assumes your plc is a DTE device)

>1 “ 1 ',frame ground
2 3 —— data (RD)
3 - ' ”02 T transmit data (TD) ,
e 4 ‘ 26 data termmal ready (DTR) |

5 | 7 1s1gna1 ground

b ! 6 Idata set ready (DSR)

7 4 'requestto send (RTS)

| 8" | | »~5~ ‘ clear to send (CTS)
9 . i N 22 Av ;rmg lndlcator (RI) *only for modems*
Table 7.1

Each pins purpose in detail:

 Frame ground- This pin should be intemally connected to the Chassisr‘()f the
device.
* Receive data- This pin is where the data from the external device enters the plc

serial port.

-72-

* Transmit data- This pin is where the data from the plc serial port leaves the plc
enroute to the extemal device.

» Data terminal ready- This pin is a master control for the external device. When
this pin is | the extemal device will not transmit or receive data.

» Signal ground- Since data is sentas +or - voltage, this pin is the ground that is
referenced.

» Data set ready- Usually external devices have this pin asa permanent O and the
plc basically uses it to determine thatthe extemaldevice is powered up and
ready.

* Request to send- This is part of hardware handshakirig. When the plc wants to
send data to the extemal device it sets this pin to a 0. lifother words, it sets the
pin to a 0 and basically says "l want to send you <lata. Is it ok?" The' extemal
device says it's OK to send data by setting its clear to send pitito 0. The plc then
sends the da.ta.

* Clear to serid2 This is.the othel' half of hardware handshaking. As noted above,
the external device setsthis pirJifo {Owhenitis ready to receive <lata from the plc.

* Ring indicator- only used wherifii~iplcfiiscoruiected to a modem.

What happens when your plc and extemal device are either DTE (or both DCE)
devices? They can't talk to each other, that's what happens. The picture below shows

why 2 same type devices can't communicate with each other.

DTE device D'TE rievice
2 recelve data * 2 reeelve data
3 transme data ¢ 3 transrmt oata

Figure 7.1 DIE devices

Notice that in the picture above, the receive <lata line (pin2) of the first device is
connected to the receive data line ofthe second device. And the transmit data !ine (pin3)
ofthe first device is connected to the transmitdata ofthe second device. .It's like jalking
through a phone with the wires reversed. (i.e. your mouth piece is connected directly to
the other parties mouthpiece and your ear piece is connected directly to the other parties

earpiece.) Obviously, this won't work well!

- 73 -

The solution is to use a null-modem connection as shown below. This is typically

done by using a reverse (null-modem) cable to connect the devices.

DTE device D'TE device

2 receive data
3 transnit data

2 receive data
3 transmit data.

Figure 7.2 A typical communications session

To summarize everything, here's a typical communications semBoth deViCéS are

powered up. The plc is DTE and the external device is DCE.

The external device turns on DSR which tells the plc that's jt's poweréd fup,and
"there". The PLC turns on RTS which is like asking the external device "are\ykou‘ feady
to receive 'seme data?" The external device responds by turning on it's CTS wnrcn says
it's ok to for the plc to send data. The plc sends the data on its TD terminal and the
external device receives it on its RD terminal. Some data is sent and received. After a
while, the external device can't process the data quick enough. So, it turns off its CTS
terminal and the PLC pauses sending data. The external device catches up and then
turns its CTS terminal back on. The plc again starts sending data on its TD terminal and
the external device receives it on its RD terminal. The]>le 'ruris 6tit of data to send and

turns offits RTS terminal. The external device sits and waitsforinoreedata.
7.3 RS-232 Communications (software)

Now that we understand the hardware part of the picture, let's dive right into the
software part. We'll take a look at each part of the puzzle by defining a few of the
common terms. Ever wondered what phrases like 9600-8-N-I meant? Do you use
software-handshaking or hardware-handshaking at forma! parties for a greeting? If

you're not sure, read on!

* ASCII is a human-readable to computer-readable translation' code. (Le, each
letter/numberis translated to I's and O's) It's a 7-bit (a bit is a | ora 0) code, so
we can translate 128 characters. (2"7 is 128)Character setsthatuse the 8th bit
do exist but they are not true ASCII.Below. is an ASCil.chart showing its

"human-readable" representation. We typically refer to .the characters by using

- 74-

hexadecimal terminology. "O" is 30h, "5" is 35h, "E" is 45h, ete. (the "h" simple

means hexadecimal)

most significant bits
! o0 1 516 17
. j !
; o : n P
; i { ! e i I
j Pl i XON | ! ; ia |q
| STX : 2 b |r

2 1 N
3| ETX | XOFF | # |3

s NAK | % s

6 ACK | T &

Least : : ;

zl o v ow ool o w o> @ «f

Nl < x| €l < al 3] v ®m o v u
4 @
=

bits g | TS ‘ Th ol x
! ; i

’ﬁMUGUU>\‘oNMA

Table 7.2

« Start bit- In RS-232 the first thing we send is called a start bit. This startrbit
("invented" during WWJ by Klein Schmidt) is a synchronizing bitiadde:djust
before each character we are sending, .This is considered a SPA.CE on negative
voltage ora 0.

» Stop bit- The !ast thing we send is called a stop bit. This stop bit.telis us tharthe
last character was just sent. Think of it as an end-of -character bit. This is

considered a MARK or positive voltage or a 1. The start and stop bits are

=75 -

commonly called framing bits because they surround the character we are
sending.

Parity bit- Since most PLCs/extemal equipments are byte-oriented (8
bits=lbyte) it seems natura] to handle data asa byte. Although ASCII is a 7-bit
code it is rarely transmitted that way.yypically, the 8th bit is used as a parity bit
for error checking. This method of errorichecking gets its name from the math
idea of parity. (Rernember the ddd-ey~:fliipfpp~i"tyf integers? I didn't think so.)
in simple terins, parity means that all characters \\'ili e:itherhave an odd number
of 1's or an even riumber of 1's.Commcii' fotms Of pa:rityafeNone:, Bven, and
Odd. (Mark and Space aren't very common sd Fwonrf'discuss'thein) .. Consider
these examples: send "E" (45h or 1000101 (binary))I:frparity6fNone,theparity
bit is always 0 so we send 10001010.In parity of eveilwe,ffiusf.have>an Even
number of |'s in our total character so the original characte:1<currentlyhas3 il 's
(1000101) therefore our parity bitwewill add must be a L(10001011)néw vve
have an even number of |'s. In Odd parity we need an odd number of {'s. Since
our original character already has an odd number of 1's (3 is an odd number,
right?) our parity bit will be a 0. (10001010). During transmission, the sender
calculates the parity bit and sends it. The receiver calculates parity for the 7-bit
character and compares theresult tothe: parity bit received. Ifthe calculated and
real parity bits don't match, an error occurred an we act appropriately.
It's strange that this parity method is so popular. The reason because it's only
effective halfthe time. That is, parity checking can only find errors that affect an
odd number of bits. Ifthe error affected 2 or 4 or 6 bits the method is useless.
Typically, errors are caused by noise which comes in bursts and rarely affects
bit. Block redundancy checks are used in other communication methods to
prevent this.

Baud rate- I'll perpetuate the incorrect meaning since its most commonly used
incorrectly. Think of baud rate as referring to the number of bits per second that
are being transmitted. So 1200 means 1200 bits per second are being sentand
9600 means 9600 bits are being transmitted every second. Coinll19nvalues
(speeds) are 1200, 2400, 4800, 9600,19200, and}84()0.

RS232 data format- (baud Ti:tte-data(t>itp1:1rity-Stpppits)i'T'fis\isithe way the
data format is typically specified. For' example, 9600-8-N-1 means a baud rate of
9600, 8 data bits, parity of none, and 1 stop bit.

- 76 -

The picture below shows how <lata leaves the serial port for the character "E" (45h 100

0101b) and even parity.

- = lli~+~loiojijoj,-+-Ill

N

SPAMCE
Figure 7.3 Flow control

Another important thing that is sometimes used is called spftware bandshaking (flow
control). Like the hardware handshaking we saw in the previous 'chapter, software
handshaking is used to make sure both devices are ready tosend/receivedata. The most
popular "character flow control" is called XON!XOFF. It's verysimpleto understand.
Simply put, the receiver sends the XOFF character when it wants -the transmitter to
pause sendirig <lata. >Whenit's -readyto receive <lata again, it sends .the transmitter .the

XON character. wwrr 15 someumes IP.oPn, to as the hold off character and XON as

Awa Sl .

the release character.

The last thing we should kn‘o‘\,‘iv‘,ab"c‘)’ut*‘is:dglimiter‘s. A delimiter is simply added to the
end of a message to teli the neceiver 't'o‘ pi'OCéss fhe data it has received. The most
common is the CR or the CR and LF pair. The CR f‘(carriagegfﬂreturn‘), is like the old
typewriters. When you reached the end ofa line while typing, a bell would sound. You
would then grab the handle and move the carriage back t6thestart.In*6ther words, you
retumed the carriage to the beginning. (This is thesame as what a Clfdeliniter will do
ifyou view it ona computer screen.) The plc/external device reCeives this and knows to
take the <lata from its buffer. (Where 'the data is stored temporarily before being
processed) An LF (line feed) is also sometimes sent with the CR character. 1fviewed on
a computer screen this would look like what happens on the typewriter when the
carriage is returned and the page moves down a line so you don't type over what you

just typed?

Sometimes an STX and ETX pair is used for transmissiofi/recepfiofi' as well. STX is
"start of text" and ETX is "end of text". The STX is sent before the data arid telis fiie
external device that <lata is coming. After ali the da.ta has beeii'seni, dll ETX 6haracter is

sent.

=77 -

Finally, we might also come across an ACK/NAK pair. This is rarely used but it
should be noted as well. Essentially, the transmitter sends its data. If the receiver gets it
without error, it sends back an ACK character. If there was an error, the receiver sends

back a NAK character and the transmitter resends the data.

7.4 Using RS-232 with Ladder Logic
Now that we understand what RS-232 is/means let's see how fo use it with our plc.

We should start out as always, remembering that a plc is d pk is a plc... Ir1. other
words, understand the theory first and then figure out how our" marufacfurer of choice
"makes it work". Some manufacturers include RS-232 communication capability in the
main processor. Some use the "programming port" for this. Others require you to
purchase (i.e. spend extra $'s) a module to "talk RS-232" with an extemal device.
What is an extemal device, you maybe asking? The answer is difficult because there are
so many extemal devices. It may be an operator interface, an extemal computer, a motor

controller, a robot, a vision system, a ... get the point??

To communicate via RS-232 we have to setup a few things. Ask yourselfthe following

questions:

* Where, in <lata memory, will we stere the data to be Sent? Essentially we have to
store the data we will send... somewhere. Where else but in our data memory !

* Where, in data memory, will we put the data we .receive from the extemal
device?

* How will we tell the plc when it's time to send our data (the data we stored in
data memory) out the serial port?

 How will we know when we have received <lata from our extemal device?

If you know the above, then the rest is easy. Ifyou don't knowtheabcive,.then make
something up and now the rest is easy. Huh??? Simple, pick a.memory area to .work
with and figure out if we can choose the intemal relays .to use.to send and receive dara

or ifthe plc has ones that are dedicated to this purpose,

- 78 -

Before we do it, let's get some more technical terms out of the way so we're on the

same playing field.

Buffer- A buffer is a fancy technical word that means a plastic bag. In other
words, it's a temporary storage Jocation where the plc or extemal device stores
data it has received (or is waiting.t,0 selld) via RS-232. When 1 go to the
supermarket to buy my favorite TV dilIners,Tqur.rry.them home in a plastic bag.
The plastic bag is' not.a permanent place for Y foed (are TV dinners really
food??) but rather a temporary storage place f6l"thern until I get home. When I
get home, | take them out of the bag and cook theni. The supermarket was the
extemal device where I got the data (TV dinners) from.ahd my microwave is the
plc. The plastic bag was the buffer (temporary storage place) that was holding
my data (TV dinner) uiitil I took them out to use (i.e. cook).

String- A string is a cool way of saying "a bunch of characters". The word
"hello" is a. string. Jt's a bunch of characters (i.e. h-e-1-1-0) that are connected
(strung) togethertcrni~ansdniethirig useful. "43770" is also a string. Although it
makes no sense to us,if~~y'.~e}~/01nething valuable to your plc or extemal
device. It could be a command thattells your robot to send out its current
coordinates. (or it could simplyhe:th~/\V()td"hell6'f.upside down)

Concatenate- This word is a mouthful.Sinipl)'’put, it mearis to combine 2
strings together to make one string. An example is conibining the 2 strings

"laser" and "jet" together to make one string... "LaserJet".

With the mumbo-jumbo out of the way Jet's see it in action. .Again, the memory

locations and relays vary by manufacturer but the theory is universal.

L.

We assign memory locations DMIOO through DM102 to be where we'll put our
data before we send it out the serial port. Note- Many PLCs have dedicated areas
of memory for this and only this purpose.

We'll assign intemal relay 1000 to be our send relay. In other words, when we
turn on 1000 the plc will send the data in DM100-DM102 out theserial port to
our external device. Note again- Many PLCs have dedicated relays (special
utility relays) for this and only this purpose. It's great when the manufacturer

makes our life easy!

-79-

We'll send the string "alr" out the plc serial port to an operator interface when our
temp sensor input turns on. This means our oven has become too hot. When the operator
interface receives this string it will displayed an alarm message for the operator to see.
Look back on the ASCII chart and yori'llseethat "alr" is hexadecimal 61, 6C, 72. (a=61,
1=6C, r=72) We'll write these ASCII characters (in hexadecimal form) into the
individual data memory locations. We'll use DMI00-102. How? Remember the LDA or

MOV instruction? We'll turn on our send relay (1000) when our temperature sensor

(0000) turns on. The ladder is shown below.

0eeo 6]
temp | p v nat

STA

sensor

send deta |

Figure 7.4 Ladder diagram

Some PLCs may not have dedicated internal relaysthatsend out dur data through the
RS-232 port. We may have to assign them manually. Further, some PLCs will have a
special instruction to tell us where the data is stored and when to send the data. This
instruction is commonly called AWT (ASCII Write) or RS. The theory is always the
same though. Put the data in a memory location and then turn on a relay to send the

data.

- 80 -

Chapter 8

Programming Siemens Simatic S7-200

8.1 Ladder Program

100r101 o

Network 2 m]—u% T imér:tofkéép the motor ON

T33 Q0.0 T32
1| | 14000~ mw,
Network 3 ~~;~ Timer to keep the motor OFF
T32 T33
] et TN o
+12000<4 BT

81

Network 4 ~~;' Timer and Counter dependent functioning of motor and lamp

0w 'v o
/ l l l ' ‘ o LA
NN
T32 QuUO J) A HH\“,QO-Z
Network 5 ~~;' Counter counting the process
co
Qo1 4 lcu ~ ctu
Network 6 E;—i:’% Timer
CD T34
IN Iow

+12000- PT

82

Network 7 Cntrolling the motor for 2 minutes

co T34 . SMO0.5 Q0.4

fil C oS

)

Network.8 Enci of program

—(E~o)

8.2 Statement Line Program

11AC motor controlling

NETWORK | /IONIOFF button

il
I/NETWORK COMMENTS
il

LD 100

0 Q00

AN 101

Q0.0

NETWORK 2 /ITimer to keep the motor ON

83

LDN T33
A Q00
TON T32,424000

NETWORK 3 //Timer to keep the motor OFF
LD T32
TON T33, +12000

NETWORK 4 //Timer and counter dependent fine inmine ofmotor and lamp
LDN T32 o

A Q00

AN CO

- QoI

= Q02

NETWORK 5 //Counter counting the process
LD QO.

LD 100

CTU Co0,+3

NETWORK 6 //Timer
LD CO
TON T34, +12000

NETWORK 7//Controlling the motor for 2 minutes
LD CO
AN T34
A SMO.5
Q0.4
= Q0.5

NETWORK 8 //End of program
MEND

&4

8.3 Functions of AH Networks

The functions of all the networks .used in the program are explained below:

* NETWORK-1 In network-1 we have created an ON/OFF button circuit that
controls the whole system. -

* NETWORK-2 In network-2 we have created a timercircuitthat will control the
motor and keep it in ON state for four minutes.

* NETWORK-3 In network-3 again we have created atimer circuit that will also
control the motor but in opposite way like it will keep it in OFF state for two
minutes.

* NETWORK-4 In network-4 we have created the circuit that shows how the
motor is being controlled by the two timers and.the counter.

» NETWORK-5 In network-5 we have created the counter circuit that will repeat
the processes designedin above networks for three times and after that it will
shift to the process designed in next network.

* NETWORK-6 In network-6 we have created another timer that will operate
when the counter will stop repeating the above process and it will work for two
minutes.

* NETWORK- 7 In network- 7 we have created the circuittha.t will operate the
motor for the time set on the timer of network 6 and will operate 'the motor in
such a way that the motor will change its states in every 0.5 seconds from ON to
OFF and back.

« NETWORK-8 This network-8 declares the end to the program.

&5

CONCLUSION

The project of AC motor controlling using a Siemens Simatic S7-200
programmable logic controller with processor CPU-212was concluded to be successful.
[was capable to program the programmable logic<controller to control in the way
required without facing problems, so I conclude thatJf.is.J. good, flexible and easy
method ofcontrolling motors.

Electrical motors are the basic pillars of industries aiid.ifistiecessary to control
them according to the require~~nts and conditions in orde~ .'.;~i;:;to~ate.the systems.
The systems used for motor controlling are improving day by Qly. JJI~ prQgrammable
logic controllers are the latesttechnologies of this field and these are the bestaiid long
lasting systems.

Progrannnable IOgIC controllers are the best for motor controlling and sequential
processing of the processes camed out m industries. The biggest advantage of
programmable loglc controllers is thelr freedom from the need of frequent human
involvements and their remote programmlng and fvxsual display capabilities. They are
preferred in industries because of their’ modulanty, scalablhty flexibility, .reliability,

environmental resistivity and service and spare parts avallablhty

86

APENDIX

sp.iciairMmiory Blts

SMO.O At,.,.ays on SM1.0 Resuitot opsratlon= o
SMO.1 First scan SM" overrioworlllegaivalus
SM0.2 Retentilie ciata iost SM1.2 Negatiin?resuit
SMO.~ Powerup SM1 olvision b~' 0
SM0.4 ~s01T/30son smt4 Taoerul
SM0.5 os § 0l'10.5 son SMin | Table empty
SMO.6 olr 1 sean ron 1 scen SM1.6 BCo fo 1:1naiy conversioni?rror
SMO0.7 switcti In RUN posnon SM1.7 .ASCII to hexx converst:in srror
E\l~mNuinber | Interru pt Descripti on lig?[n))[,jp
8 Port 0: Re::ei,e charooler
9 | :GifO: Transuifcornpler~
23 Port 0: Recei,e message corrpleta Comrrunicaticfis 0
Porl I Re::eile message colll)lele (M;tiesl)
25 Port 1: Re::eile charooter
26 Porl I: Transnit complen | |
1_9 | P g aveegion - i 0FUGH - 0
20 I-PTO A complete intesupt I
0 Rising ed3e, 10.0 2
2 Rising ed3e, 10.1 |_
4 Rising edJe, 102 4
Rising~e. 103 _5
Falliig ecg;:. 10.0
| Fallhg ecl;F-, 10.1
5 Falliig ecl;F-, 10.2
1 Fallilg ecl;F-, 103
12 | HSCO CV=Pi/ (curreni ~-alue = prssel \alue:, 10
21 1 HSCO dire,,"lion dial)Jed 1
28 HSC1) extemal resel 12
13 | HSC1 CV=P¢/ (currenl ,-alue = preset *alue) 13
14 { HSC ! direction input ctaiged 14
15 [HSC1 exiemal reset 15
16 | HsC2 cv:p~ 16
17 | HSC2 direrzlion dial)Jed 17
18 [HSC2 exiemal resel 18
32 [HSC3 C\<:P'// (curreni ,"Slue = prese! -,'alue) 19
29 [HSC4 CV=PI/ (eorrent value = prese! \'alue) 20
30 | HSC4 dire,"lion dial)Jed Al
31 | HSC4 exiemal reset 2
33 | HSC5 CV=P+/ (currentv::ilue = prese! \'alue) 2_3
. 10 | Timed interrupl 0 0
11 { Timed interrupt 1 TimEj Oves) _ f
21 { TimerT32 CT=PT iiterrupl
22 { Timer T96 CT=PT itterrupl I

88

Accozsibih a% ...

R'ng* Limit
Do.cripticn CPU 221 CPU 222 CPU 224 cPU 23 Bit | Byl | W 9;@'::
u b
A Kneipdd 4 Kwordk:
2.5 Kerds 2.5 Kwards
Pricer:s,inn;,1,, into | 11010 11&7 | UBte 1157 a1y nowHsT
regi~''1" o P ;
Pri:cer:e,ini,;le | C1.01001.S.7 100.010015.7 0.0 BT QI 5.7
otilpulregolor R P
Ambg iipuls 1- 1 AT 1e AIA'3) | AWt AINGE L ATGD o AIVWER
(reit:! Lntr')1 : G
firiel1,g tuputer (writ,. , - ACH\L, A0 W3
on~~1 N::Nv/30 AR BXAGY ;
~1i, 1 :fome, ir1::r1e V00.010 30,0 'ull0.01a *BJBto W AR YR Ve
(vl Vn-20-17;7 \1132047.7 "Letl61112.7 \iB5119.7 [5 I
Local remsary (L7 L9].010 L0O0.Ce10 LEI0.O 1;, LOO0.0to Loy L LBt | Lo | LD
L1363.7 L983.7 LO0J.7 L00&7 R i ’
Bil e B MO0 WY IMI.Ow 11317 [MO.O10r.131.1 1 rtrowo 1,131.1 Wy] W« NIRRT
Specich Womory. | SMOC IO SHELO I suot:i, SMJ.0to Slbey | SHEX | S | SHOK
Sy SMITR7 f o SU179.7 SMml.1
TEHDGI eI SHU0 K SMJ.O 10
| Fevsd oty Isiper |mmar sumr SM29.7
Twars e RIRE e .] 286 25 Tx
o Pty [0 Tmes | 0TSy |10 T55
Rel codsby s JTOUTSE 0 1T0.TM 110, Ted o, Ted
Rl ondebyy 10me [T1 T, T T11e T4, Tia T4,
TN TR TE«E‘\I@‘TE{‘ | TES e TEE TS0 TGY
Ret.ondefy 100ms | TRo T, 18T, 0 [1510721, TR TS,
TE9 10 T95 TRt TS L TES o TER P TER10 185
Onezzfficizlor) 1w | T32,T95 TELTHE S TR, e TR TeE
onzfrrlbr 10™ 1 T33t0TIB TRHHTIS, I TEeT [TI510T,
A EOr A0 TW T w00 | TarweTI0 |rEeTion
OnOl tl,by 100 ms T.371e 163, T TR, T TR, PTA e 163, e
T101 10T255 T 4s T2E5 [TI0 b TRS5] TI0 e 1205 B o
Caurtar.;; 1~ S0 CIE5 G CESG O 2B
Higli~d ccunr | HO), Hid. HCi.LHC3, HCOIHES [Hon R be -
Hc4. H::6 HC4,1IC5 e
So,quertial o::muiol &:1.0108S1.7 | sor1108J1.7 S0.010831.7 S8 10 83T
- ; S v
Accumnbliir ACOt.0AC3 ACOio1,1:33 SC0 b SIS BCASH
regiSire;.;
Junp~'L1,be,I<. 010255 0b2C5 Die 256 (M1 2138
Cull.'Sul:wutine 010€3 0b03 0106) 01:,63
Intaruf-"] re<L:">" 010127 Ob 127 On, 121 01 127
PQb<:IF" O10'l 01,1 Oro7 0la 7
Part Part 0 Porto Pr:oriO Pt Q, Pan: 1

iAl. 'V n~nct)' ci.nl.

*L930b:1 LB63al!>r'-

'C'd *b perrn,:in~nl:ntttn-.ct)-
"fl:t{STEP

LGt 'IN 32, miim 3.¢) t< Lor.

89

HSCO HSC3 HSC4 HSC5
Mocte
10.0 10.1 w.2 10.1 Q.3 104 10.5 104
0 1 Clk Clk Clk Clk
CIK Reset Clk Reset
v 2,
3 Clk olrection Clk orrec:lh:n
4 Clk olrection | Reset Clk orrec:ticit | Resel
5
ti Clk Clk Up CIK-DC:Nin
7 cX up CIK Dd,fo I'Reset
PhaseA Phase B
10 PhaseA Phase B | Reset
1
HSC1 fis
Mode IToe 10.7 110 1.1 12 i 11.4
0 Clk Clk
| Clk Reset Clk Reset
2 CIK Resel start Clk Resel Start
3 CIK tnrscnon Clk oirecticn
4 CIK orrection | Reset CIK orrecticn || Reset
5 Clk oirection | Reset start CKK olrectim Resel strl
6 CIKUp CIkDCM'n Clk Up CIK DClirn
7 Clk Up Clk Del,..n | Reset GIK Up CIK oown | Reset
8 CIK Up CIK ocl.vn | Reset Start CIK Up ClI(Deivn | Reset Start
9 PhaseA | =nass B PhaseA | Phas,, B
10 PhaseA | Pnase B | Resel PhaseA | =nasa B | Resel
11 PhaseA | Phase B | Ruset siart PhaseA | Phase B | Resel Start

90

aoolean 1 structions /? .J lalh;Inc:remen:t;.and:Decoomentins1111clions
LD N Lo,ud q INL,0UT Add b OAw] erR
N L.~ Imedi,1" Mo 141,0UT Neonour
LDN N L=d tio1 R IN1,0UT
L,,..~ l'ler hunled;)
;DNl i) g e N Ei’gtg Sul:!m<i Irtiesgor; O'\'orel, er Re,I
t~ - . ,
Al N AL-O ... jiule R INI,CeLIT OLIT-INI=CUT
i\N N ALI-DN,1 MJL INL,0UT Lkilipl~ hragur 1'1il'le.,,.3,) ot R<,1l
i\NI N A0 Net hnnicdi,le 'R IN1..OLIT LUlAuiplf~~¢"f ~ Diibh Inb,g>r
0 t4 OR '0,'1 INi,o6ii IN1 + OUT= cor
ol t4 ORImmedel" Dfil 1t41.0UT CM:I" Inu,g.r (16/16-"212"1ur R"11
ON N ORNot R INLOUT C:.1ei:!<1.[n.~ror.Ikiul:folrto,;1<t
ONI N OII N1 Irnmodalio D, I IN1,0UT | 1fIIOUT:iiQUT
LOlh HIN:: Ll,,dresllt ol Byte C:ompt. 3 SORT _1t4,0UT Signares Rl
o, i, ety 1y Cfl) N T
1) u~ IN,OLIT tuniirofL<ijuritfin
AB; HINZ TATOterul of I~et,, T
NI (<, """'-:0:,:0,:00) N2 >
OElx IIL.N2 1Ol ,.,un d 8~l:e CanF"fe SIN INOUT I Sinu
(<, o), " ") N2 0. IN,OLIT
LDWx NIL112 { Low.! 1!" Utchard Curnpure TAN IN,OUT -1r~ng, 111
e Nl(xiesen,)'=, >>-") taz .
PO T T D resul of Pond Crrmpare INC8 ~ OLIT
: . Ml e R, v INC1'" OUl hicremed 13)1<, Werd cr Cfi\'enl
DG NN DR m'ull l:fWard Cnmp:lrc INCO olIrr
L NTpen DECi! OUI
LODx . H1H2 DEC'l'' OUT D,.t;r,n.,ul BYli>, '1''«d, cir O'li'orcl
Oseet oul |
1, ultls AD Tabk. lop | FilLaop
00.: HUI~. TR resull cf D‘de Ccnmp«e 1 imer and Countar Instructions
t~1)es, = i §HE |ToHE T PT OnDelay Timese
LORi: N1,H2 Li:0~ w.o~ il il" C<m’(Jre | Tow T ONDebsy Timer
NI (™) 2000 ™) 1 1 it TDHR Tox, PT | Retentive On-Delny Tmer
\Rx 1IN:1 AlVr=.lal~I :,;IC?éPIITj:t'lll ;m’: C&xx, T ’CF?M 5
OR+ H1. H2 OR rc,;ull d Real Ciimpi.-10 cm : F‘V - Dwnl Dcum
NI fxzes, 1as, 1) =12 GTHD - Gy, Pl.' D bt Lo'Dowi
0 Sleckt~1i:11 “IRC‘M hme:'ﬁl'
Su titeclin al Rryug Eizy., TR T :
ED Dole:tiz1 ol Finling Ed" TN T .
N 1,...1g,V,luo R Ploqram Contt Lt
=1 N I~g-1 V\~ue hinieciat~ END Corxdticha En:l o Fmgmm
R S.SIT N SetWRange SliJf~ | Trausition IQ‘SICP Mo -
Si $ BiT,N ReY.T bil R"il" ',lIR WalchDog Reest T30)
RI S BIL N Set. titRung> himd-~e It i Jmnpl<id<;lin.~l.<1oc~
Re<e! bl lla,n;r., In'fl!!di:1le La H Dufi,.,," L.l 10 Limplo
G.LL IIINt..) Qull » &tirruine IN1, ... up10 1G
opit..:ml pi,imielor.,
CRET C«>:IH:n il Rdi.tu Framsr.ll<
FOR ItOXINIT.
FNAL For,Nei<I Loop
NDCT
ksCR H | LL.>:LIr.,imlir.o,,iudEnd
SCRT N §mmmmlea 1roiR<11a,
SCRE ogn,;ut

91

lobve., Shift;Rotafo, and Filllnstruotions Table.Find,and C..mversion Instructions
MOV13 1tL.CUT IABLE 1!, TA Ad:! dta, ki lable
'A' IABLE,OATA
t'm{lA . cur Ltr:,..,Bytt,, 'l'en:1, O'l'ord, Real LIFO ’ Gel dali, hiz:ni1,ble
tio\n attorr Lti:,.eByte himed,te R.,.;l FIFC TABLE;OATA
LLI0R iN, CUT Lti:,;e B>ite Inmedole Wrile FND- SRC.PATRN.
GIR ILCUT NDX
mw_iti CLT | FHLSREPATRH
BUEl IN.CUTN | NOX: fiu di,1.,"" it loble imi
BM1\' m, CUT.N Bb:k Lb,.., Brek:, 'livid, 1J;Vorrl . F~CutsRd~TRN, m:nche ‘a:rnpiirisco
mm il CUT,N : “E;mN
o S i
S/1P N S*."f>Biies FHD s'ilfm N P
SLAll BATA,SJIT Shli Rejisla M BOOL - 20T G BCD 1o Inlegar
IBCD - ~QUT i G’rﬁmffl Iﬂbgar‘léw"D
s UL CIEL TByeta I
SR't' OUTN Shli Right Ely:, roirl. D AL Crrver Byteda Inleger
ITB M, OUT Ccrm:fl |m:gu {0 Bw
SuD _ CUT.N
[Iro N, CuT G Irlagef B Double
SLB CUTN inlegsr
SL'm" OOT,\N Shfl Lullui>fte,'"No~, Cfiifd mi fLCUT Cotrnrl B:mbldriogef lt:lrlcgv:f ;
SLD OUTN DIR filOUT Covveer! Tivordto Rasl ,
s OOT.N TRUIC N,CUT Corvert Real ioDitord
RR'l' CUTN Rotie Rigll. Bit<i, Yibrd, Cli'a:l R:JuO N, OLT Corvieel Rﬁal‘h Coublc Iniager.
o CUTN
m TN ATH N. CUT, LEN Crirnar [>.SCllto Hee.
;?-’N OOT’N HTA 11LOUTLEN Cem,rl 1+.x fo ASu:ll
b CIJT’N A N, OUT,EMT | Cun,,,-1 Irtegert: A.<iCll
- . — DiA~ NOUTFM Curo,:rl Doul:ik Irtega lo A"JCII
FILL 111,0.ILN Filiriio.:t)e.,op,uoeir.th) 1l 1 Crm.1 Rexl i ASCII
L()gicpperations RIA N,OUT,FM
ALO And fot.eontirdi:im CECO 1l CU1 D«ode
oLD Or fa- cootumiions rzer N, eXIT Enecde
LPS Logic Puh (st!1::t.0z:1mro~ Srn N.ONT Geli~le 1.~gmeinpeuem
LRD Logic Reud (,:t,1cl contiol) nterrupt
LFP Logic Pr:t>(*lad: oomre:1J a.[Cl1 Cmtilicn:uf~hirh-fr6-,-ri-Irt.
LDS Load Siack (ol.:,,cket:nln:il) NI En:1bleli1>0nur:1e
At~ Au~tN') DISI 0.-,<1bl:, lulariple
V.0ll 1UL.CUT ATCH NL t>ENT Art,ch Irt>0rrur:'roulin., 10 """
NUW H1.Cll Lo9ic,ll An:! d 9yl,., Waid. and .
> e 1/, ‘erd ATCW 1vin Dot"""lm..,ul
Al'UD 1111,00T c o
OR8 HLCUT XIH TABLE;,PCK On’rnl'l'l:'l'caluon' SO
ORN' INLiXJT LogioLIC,. el i}iie. 'Lbrd, ard ORI [T~ rar, 1isot:ut
’ \{ IABLt,1>:::R Fregx:irt:recd.(! ~~
CuD 1111.CUT Ch\'ad RCV 1 r reqx:irt:recdr.’(
TEIR N\BLE,PCRT Netwoil< Re<>:l
XORs INLOOT , t+ETW 1ABLEFCRI' | Netwurk'l~in,
XDR(' IH1,GUT Lr.,.,1" XCl- el ett,,, *Ncird, and GPA__ 1.)00,PORI sraiAda, ;e
XORD Il1l,eur SPA ADCE.!,PORI Ser Pat Ad::I=
luvi\'" CUT m"'~B}1c, 1\birl and DWerd -'IHJQWEPEEE[|n5t[llcttnlls
It~\ID - cer (1 S c.omplemcu:i mEF HSC,l,bde DdineH,~li-Spoed Coon>0rm,de
HSC N Activole,Hi.;ih-Speed Ct'Ali,er
PLS X Puloewlpin

92

REFRENCES

[1] Alan J. Crispin, Programmable .Logic Controllers and their.Engineering
Applications, McGraw-Hill Inc., New York NY, 1996.

[2] lan G. Wamock, Programmable Controllers Operation and Application, Prentice- |
Hall Inc., Englewood Cliffs NJ., 1996. .

[3] http://www.ad.siemens.de/s7-200/index 76.htm

[4] http://www.plcs.net/contents.shtml
[5] http://www.plcopen.org

[6] http://www.contech.com.au -
[7] http://www.cbiss.com/process/plc _systems/plc _swmens_.mamhtm
[8] http://www.engineeringtalk.com/news/sie/sie126.html o

[9] http://www.themanmachines.com/p40-11806-siemens-200-cpu2 1 6—plc—wow.htfnl -

93

	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1
	Image 2

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Titles
	1.1 INTRODUCTION TO PLC
	Chapter 1
	1

	Images
	Image 1
	Image 2

	Page 9
	Titles
	1.2 PLC History

	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	Chapter2
	THEORY OFOPERTATION OF PLC
	2.1 The Guts inside
	ı~arB~
	Ri,~ . . . Storage
	.2 FUNCTION OF EACH PART

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	PLC

	Images
	Image 1
	Image 2

	Page 13
	Titles
	4 RESPONSE TiME

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 15
	Titles
	: , n:::
	j

	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	ıour ıt4 !

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 17
	Titles
	Chapter3
	3.1 Relays

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 18
	Titles
	3.2 Replacing Relays

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Titles
	-0-
	· 3.2.2 Second

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 20
	Titles
	3.3 Basic Instructions
	3.3.1 Load

	Images
	Image 1
	Image 2

	Page 21
	Titles
	3.3.2 Load Bar
	-0-

	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Titles
	3.3.4 Out bar
	3.4 A Simple Example

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 23
	Titles
	H
	3.5 PLC Registers

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 24
	Titles
	---~--- : : J /_ j i j ; j ; i L. _:_ .. j_ 0_ i

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 25
	Titles
	3.6 A Level Application

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 26
	Titles
	1000r

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 27
	Titles
	3.7 The Program Scan

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 28
	Titles
	Gradually the tank fılls because 500(fıll motor) is on.

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 29
	Titles
	FF:l,:~-r Fals,

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 30
	Titles
	Chapter 4
	MAiN INTSTRUCTIONS SET
	4.1 Latch Instructions

	Images
	Image 1
	Image 2

	Page 31
	Titles
	4.2 Counters

	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Titles
	couu
	cooo 0500

	Images
	Image 1

	Page 34
	Titles
	43 Timers

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 35
	Titles
	4.3.1 On-Delay timer
	4.3.2 Off-Delay timer
	4.3.3 Retentive or ~cçumulating timer

	Images
	Image 1

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1
	Image 2

	Page 38
	Titles
	4.4 Timer

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 39
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 40
	Titles
	4.5 One-shots

	Images
	Image 1
	Image 2

	Page 41
	Titles
	~DIFUI 1
	1000~)'1 1001
	100PV

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 42
	Titles
	•
	•
	4.5.1 Next Scan

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 43
	Titles
	4.6 Master Controls

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 44
	Images
	Image 1
	Image 2

	Page 45
	Titles
	-0-

	Images
	Image 1

	Page 46
	Titles
	4. 7 Shift Registers

	Images
	Image 1

	Tables
	Table 1

	Page 47
	Images
	Image 1
	Image 2

	Page 48
	Titles
	o : o o
	O O O 1

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 49
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 50
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 51
	Titles
	4.8 Getting and Moving Data

	Images
	Image 1
	Image 2

	Page 52
	Titles
	•
	•

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12
	Image 13

	Page 53
	Titles
	- ,
	o LDA-
	o STA- this
	46

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11

	Page 54
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 55
	Titles
	•
	Chapter 5
	NUMBERS AND NUMBER SYSTEMS
	5.1 Math Instructions

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 56
	Titles
	•

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 57
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 58
	Titles
	5.2 Number Systems

	Images
	Image 1
	Image 2

	Page 59
	Titles
	5.2.1 Decimal
	5.2.2 Binary

	Images
	Image 1

	Page 60
	Titles
	... ~· _: .. :_ ~LY i • .L- ı _ J_: __ ı .[; • i J~I
	5.2.3 Octal

	Images
	Image 1

	Page 61
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 62
	Titles
	1
	o ! o
	1
	1
	5.2.4 Hexadecimal

	Images
	Image 1
	Image 2
	Image 3

	Page 63
	Titles
	1
	o
	1
	o
	o
	65536
	J6A5
	1
	16/\8
	o
	4294967296 268435456
	56

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 64
	Titles
	5.3.1 AND Gate
	5.3 Boolean Matlı

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 65
	Titles
	o
	1
	o
	1
	1
	1
	o
	1
	1
	o
	o
	1
	o
	5.3.3 EXCLUSIVE ORGate

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 66
	Images
	Image 1
	Image 2

	Page 67
	Titles
	-IANDt-

	Images
	Image 1

	Page 68
	Titles
	- 6] -
	Chapter 6
	6.1 DC Inputs
	WIRING OF PLC

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 69
	Titles
	- 62 -

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 70
	Titles
	6.2 AC Inputs

	Images
	Image 1
	Image 2
	Image 3

	Page 71
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 72
	Images
	Image 1
	Image 2
	Image 3

	Page 73
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 74
	Titles
	- 67 -
	6.4 Transistor Outputs

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 75
	Titles
	g

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 76
	Images
	Image 1

	Page 77
	Titles
	Chapter 7
	COMMUNICATIONS WITH PLC
	7.1 Communications History

	Images
	Image 1

	Page 78
	Titles
	- 71 -
	7.2 RS-232 Communications (hardware)

	Images
	Image 1
	Image 2
	Image 3

	Page 79
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 80
	Images
	Image 1

	Page 81
	Titles
	7.3 RS-232 Communications (software)

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 82
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 83
	Images
	Image 1
	Image 2

	Page 84
	Titles
	.~.,ılı~+~loiojijoj,-+-IİI

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 85
	Titles
	7.4 Using RS-232 with Ladder Logic

	Images
	Image 1
	Image 2

	Page 86
	Images
	Image 1

	Page 87
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 88
	Titles
	Chapter 8
	Programming Siemens Simatic S7-200
	ı 1 1 1 +2400J'-~-r __ m_w_,,
	10.0rl0.1
	()
	J
	8.1 Ladder Program

	Images
	Image 1
	Image 2
	Image 3

	Page 89
	Titles
	82
	ço • .. Q0.1
	T32 QUO j")'.' .•........ • .•.. ı ·.•.•.·.·.•·· ; ·· ·)•
	/ 1 1 1 • . ·• .•.
	Q0.2
 ·· .)
	f
	co
	Qo.1 lcu ctu
	1

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 90
	Titles
	fıl 1 , .•••...•. ,)···.· .. • .. ·········.•·)
)
	co
	1
	8.2 Statement Line Program

	Images
	Image 1
	Image 2

	Page 91
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 92
	Titles
	8.3 Functions of AH Networks

	Images
	Image 1

	Page 93
	Titles
	CONCLUSION

	Images
	Image 1
	Image 2

	Page 94
	Titles
	88
	o
	oıvısıon b~' o
	overrıow orlllegaı valus
	BC o fo 1:ıınaıy conversıon ı?rror
	Taoıe ruıı
	Negatıııı? resuıt
	Resuıt ot opsratlon = o
	.ASCII to he:x conversı:ın srror
	sp.ıcıaırMmıory Blts
	~s01T/30son
	oır 1 sean ron 1 scen
	swıtctı ın RUN posnon
	Powerup
	Retentıııe cıata ıost
	At,.,.ays on
	Fırst scan
	o
	ı
	APENDIX
	-

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 95
	Titles
	89
	suoı:ıı,
	ACfı\lJı,
	VOO.Oıo

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 96
	Titles
	90

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 97
	Titles
	91

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 98
	Titles
	92

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 99
	Titles
	REFRENCES

	Images
	Image 1
	Image 2
	Image 3

