
NEAR EAST UNIVERSITY 

Department of Computer Engineering 

SOFTWARE DEVELOPMENT FOR CUSTOM 
OPE-RATJONS USING DELPHI PORGRAtylMIN1G 

Graduation Project 
COM-400 

tudent: Ahmad Deeb Khaled (992065) 

upervisor: As-soc. Prof. Dr Rahib ABIYEV 

• 

Nicosia - 200'3 



ACKNOWLEDGMENT

"First, I would like andforemost to thank Allah whom its accomplishment would not
have beenpossible.

'Second, I would like also to thank my supervisor Assoc. Prof Dr RAHIB ABIYEVfor
his invaluable advice and belief in my work and myselfover the course of this

· Graduation Project.

Third, I am deeply indebted to my parents for their love and financial support. They

have always encouraged me topursue my interests and ambitions throughout life.

Especially myfather: Al Haj Deeb Khaleıi. my uncle: Al Haj Nemer Khaled,
And my Family

Forth, I thank myfamily for their constant encouragement and support during the
preparation of thisproject.

Last but not least I would also like to thank all of myfriends especially Ahmad Allan,
Ali Almassri, and Ms. Gonul Gokdemir, they were always availablefor my assistance
throughout thisproject. "

••



ABSTRACT

The purpose of this project is the development of custom department system.

The main problems which we have come across in custom department information

system have been analyzed. The algorithms for holder's registration, cars registration,

and calculations of custom cost are described. The main structures and elements of

database system for these problems are clarified. The operation principles of each
blocks of the information system are modeled in Delphi programming language. The

developed system allows to make registration of holders and cars, calculation of tax's

and gross price easily and decreasing time response of the system. Over the past

decades people have change form special to the public in maintaining records through

paper and pen, and now we are evolving into-the technology aria.

Thiş project has taken a lot of time and effort to send out a very clear and simple

program in Delphi concerning any university.

This system has been designed in a way that it would work more speedy than the

normal record keeping system.

••

il



TABEL OF CONTENTS

AC~OWLEDGMENI_ i
ABSTRACET ii
TABEL OF CONTENTS iii
LIST OF TABLES V

LIST OF FJCURES vi
INTRODUCTION 1
CHAPTER ONE: COMPUTER:Q.ELIZATIONOF DATABASE 2

1.1. Introduction 2
1.2. Dtatabase Structure 3
1.3. Choosing a Relationshiplöatahase 4
1.4. Nonproft Developed Database Products 4
1.5. Hosted Database Application Services 5
1.6. Primary and Foreign Keys 7

1.6.1. Define Primary Key Attribute 7
1.6.2. Çomposite Key 8
1.6.3. Artificial Keys 9
1.6.4. Primary Key Migration 9
1.6.5. Define Key Attribute 9
1.6-.6. Validate Keys and Relationships 10

1.7. Foreign Key 10
1.7.1. Identifying Foreign Keys 10
l. 7.2. Foreign Key Ownership 11
1.7.3. Diagramming Foreign Keys 11

1.8. Introduction to Relationship Database Design 11
1.9. Goals of Relational Database Design 11
1 . 1 O. Rules of Relational Database Design 12

1. 10.1. The Rul¢s of Tables 12
1. 10.2. The Rules of Uniqueness and Keys 12

1.11. Foreign Keys and Domains 13
1.12. Normalization and Normal Forms 13I ,

1.12.1. FirstNonnalForm 14
1112.2. Second Normal Form 14
1.12.3. Third Normal Fann 14

1.13. Demoralization Purposely Violating the Rules 15
1.14. Integrity Rules " 15
1 .15. Overall Rules 15

,' .,,ı
1.16. Database Specıfic Rules , 16
1. 17. Examining the Type of Relationships • • 16

1.17 .1. One to Many 16
1.17.2. One to One 17
1.17.3. Many to Many 18

CHAPTER TWO: STRJJCTUREOF THE rROGRAM 19
2.1. Program Structure 19

2.1.1.' Explanation of the Block Diagram 19
2.2. Program Flow .Chart 20

2.2. 1. Explanation of Add New Holder Flow-Chart 20
2.2.2. Explanation of Records Flow-Chart 20

111



2.2.3. Explanation ofCaculations Total Cost Flow .•Chart
2.2.4. Explanation of the Search Flow-Chart
2.2;5. Explanation of the Cost Report Flow-Chart

CHAPTER THREE: DEVELOPMENT OF CUSTOM
INFORMATION SYSTEM

3. 1. Determine the Purpose of Database
3.2. Determine the Field You Need in the Database
3.3. Determine the Table You Need in the Database
3.4. Determine Which Table Each Field Belongs to
3.5. Idenify the Field or Fields with Unique Valuein Each Record
3.6. Determine the Relationships Between Tables
3. 7. Refming Design
3.8. Designing Project Database Structure
3.9. Define Relationships Between Tables
3 .1 O. Layout ofthe Application

3.1 O. 1. Main Menu Screen
3.10.2. Cars Information Screen
3.10.3. Order Payments and Options Screen

3.11. Buttons Function

CONCLUSION
APPINDEX
REFERENCES

iv

•

21
21
21

52 
52
52
53
53
54
54
54
55
57
58
58
62 
62 
64

65
66 
95



1.1
2.1
2.2
2.3
2A
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
3.1
3.2
3,3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

Entıtres wıth key Attrıbutes 9
Structure of the Program 18
Mam Menu Flow Chart 21
Enter Mam Menu Flow Chart 22
Add New Holders ın Publıc or Special Cars Flow Chart 23
Add New Car Information Publıc or Special Flow Chart 44
Calculate Caröptıons Pubhc or Special Cars Flow Chart 25
Report Publıc and Special Cars lnfonriatıon Flow Chart 26
Add New Holders ın Tounsm, Transportation .and Others Flow Chart 'P 
Add New Car Information in Tourism, Trasportation and Others Flow Chart 28
Calculate Car Options Tourism, Trasportation and Others Flow Chart 29
Report for Tourism, Trasportation and Others Information Flow Chart 30
Change Entry From Special to Public Flow Chart 31
Tax to Change Entry From Special to Public Flow Chart 32
Option Menu Flow Chart 33
Change Password Flow Chart 34
Set Option Menu Flow Chart 35
Şet Options for Public Car Flow Chart 36
Set Options for Special Cars Flow Chart 37
Set Options for Tourism, Transportation and Others Cars Flow Chart 38
Report for Public and Special Cars Information Flow Chart 39
Report for Tourism, Transportation and Others Cars Flow Chart 40
Search Options Rate Menu Folw Chart 41
Search Rate Option for Public Cars Flow Chart 42
Searcli Rate Option For Special Cars Flow Chart 43
Search Rate Option For Others Cars Flow Chart 44
Report Main Menu Flow Chart
Display All Public Cars with Holders Flow Chart
Display All Special Cars with Holders Flow Chart
Display All Others Cars with Holders Flow Chart
Display All was Changed with Holders
Display All Public, Speeial and Other Cars Options with Holders
Relationships
Main Menu
Holder Information Screen
Change Password
Set Rate Options and Cars Model
Rate ofOptions
Show All Holders Was Registered with Car Details for Each Entry
Show All Cars Options in All Entries
Car Information
Çalculate Custom Cost
Options

LIST OF FIGURES

Figure

•

Vl

45
46·
47
48
49
50
57 
57 
~8
58
59
59
60 
60 
61
62
62



LIST OF TABLES

Table

1.1 Example of Composite Key Work 8

3.1 Option for All Cars 54 

3.2 Holder Information 55 

3.3 Rate Option for All Car 55 

3.4 Car Option 56

•

V



İNTRODUCTION

The aim of the project is the development of custom department' infonnation

system using Delphi programming. The intended audience for this project includes
the follow:

( 1) Codes - any codes that are responsible for creating and maintaining the data

elements and file description specified in this project.

(2)-Screens - those individuals v,rho wish to view the data co\lected and processed as
part of the Development.

In this project, I use the one of the programming language that we are learned in

our university - Delphi programming language. In this language there are many

things that we can use to create any kind of project. But in this project I use some

standard components and database components to create this project. In this language

there is special procedure called Database Desktop, to create some tables that used in

the project, We will see this later, regarding this program, which basically divided,

into tow main sections: Registration and Calculation of custom cost. The section for

Registration, which consist of holder's information, cars information. Another section

is the Calculation, which includes calculation of custom cost and some tax cost of

change. Each member has been assigned ~ special form in this program. These forms

are updated consistently depending on his working hours. Another important think

about this project is to searching by holder name or file number in this project we are

called other Hır by tourism, transportation, and the car using in construction ...Etc

•

1



CHAPTER ONE

COMPUTER ~EALIZATION OF DATABAS~

Delphi inchıd1s a number of specialty applications designed to help you work

ently. The following Iinkş provide easy access to the Help systems for these

Delphi Enterprise edition includes all of the tools described below. Delphi

llıııılemıonaı does not offer ,SQL Builder, SQL Monitor, or Team Source. Delphi

lodes only the Image Editör. The Image Editor lets you create, open, and

- cursors, and bitmaps for use in your applications. Insight provides

i; ER auag information about window classes, windows, and messages. You can use

examine how any application creates classes abd endows, and monitor how

- I+M send and receive messages. (Available in the enterprise and Professional

_·.)Borland Database Engine (B,DE) is the 32-bit Windows-based core

gine and connectivity software behind Borland products, as' well as Paradox

~ and usual dlsase for Windows. This Help file offers a reference to the

es and language elements. (Available in the Enterprise and Professional

J.) The BDE Administrator lets you configure the Borland Database Engine

gure numerous database drivers, create and delete OBDC drivers, and

maintain database aliases. (Available iı1 the Enterprise and Professional

_.·.) Borland SQL Links for Windows (32-bit version) is a set of BDE-hosted

ections to database servers. By creating queries, SQL Links emulates full
'! I 1-ı capabilities, enabling users to access and manipulate data in SQL databases

..- onvenient features in Berland applications. (Available in the Enterprise and

'I: 5 ısiı:Joal editions only.) Local SQL (online reference). Local SQL is the subset of

-:,.::. specification used to access dBase, Baradox, and FoxPrô tables. Oµ

7 ·sag local SQL statements from front-end applications, the Borland Database

BDE) translates the statements into BDE API functions. (Available in the

S ; ise and Professional editions only.). Data Pump lets you move data (both

[p R schema and content) between databases. (Available in the Enterprise and

D 5 ++••al editions only.) Database Explorer is a hierarchical database browser with

'¥ 5 · f capabilities, letting you browse and edit database server-specific schema

2



luding tables, fields, stored procedure definitions, triggers, and indexes.

I 1 I I m the Enterprise and Professional editions only.)

Builder lets you visually and interactively create and execute SQL queries,

as a tool for SQL. (Available in the Enterprise edition only.) SQL Monitor

tatement calls made through SQL Links to a remote server or through the

et to an ODBC data source. (Available in the Enterprise edition only.),

Team Source workflow management tool uses a parallel model of source

lp with the management and coordination of work in a shared development

h - ıeot Note: The Team Source tool, available only in the Enterprise edition, is a

net and requires a separate installation

thing as we know Delphi's support for database applications is one of the

lıcıılııers of the programming environment, Many programmers spend most of their

wuıng data-access code, which needs to be the most robust portion of a database

Bi anı. You can create very complex database applications, starting from a plank

generated by Delphi's Database form wizard. On a coı;nputer, permanent

• • tnding database data is always stored in files. There are several techniques you

accomplish this storage. Delphi can use both approaches; or more precisely,

om approach that works well with both underlying structures. You always

database with its name or an alias, which is a sort of a nickname of-a database,

erence can be to a database file or to a directory containing files with tables.

approach used by Delphi depends on the database format you are using:

!'llııııdox and dlsase tables define databases as directories and each table as a separate

actually multiple-files if you include indexes.

Arccss. interBase, and most SQL server use a single.huge file containing the entire
h 7 se, with all tables and indexes.

3



1.3 Cboosi~,g, Relationsh:ipDatabase

One of the most challenging technology problems that any nonprofit

organization faces is how to manage its relationship-database, It's a particular challenge

for grassroots group's who are lucky to have a development director, let alone a

database administrator! The Time, having a database system that works well with a

minimum of fuss can spell the difference between a sustainable base of
membership/major donor •/ıncome and chronic financial cnsıs.
This article provides an overview of four options for developing an effective

membership database system. We're not going to strongly advocate for any one of them;

each one has pros and cons, and each one might be arı appropriate choice for a particular

organization. The four options are.Commercial off-the-shelf solutions such as

Paradigm, Raiser's Edge, and others; Nonprofit products such as ebase and ODB;

Hosted database application services such as Donorl.inkl'I' and e-Tapestry;

"Homebrewed'' databases, typically in FileMaker Pro or Microsoft Access.

1.4 Nqnprofıt-Developed Database Products

In 1998, Desktop Assistance (now Techkocks ), a nonprofit technology

assistance provider from Helena, MT, released ebase, a membership database solution

aimed at grassroots nonprofits. In March 2001, TechRocks released ebase 2.0, which is

a from-the-ground-up rewrite of ebase, and includes many welcome improvements.

Ebase costs nothing to download and get running, but to use it for anything more than

simple testing requires that you purchase FileMaker Pro, about $170. To support more

than a couple of simultaneous users, you may require FileMaker Pro Server (-$900),

FileMaker does have a software donation program, now nın through Gifts-in-Kind that

will allow you receive additiçnal licenses of FileMaker Pro after you purchase one

licensed copy at retail. Expect to pay a $125/rear Gifts-In-Kind membership fee, plus

about $15/copy for FileMaker products. File ~aker goosefoot donate File Maker

Server.Because ebase is based in FileMaker Pro, it runs on both Macs and PCs. Ebase

was designed by and for grassroots nonprofits, and thus incorporates a great deal of

good thinking about the typical business processes and tasks of small nonprofit

advocacy groups. In addition, ebase can be customized quite extensively-the entire

program can be modified by skilled FileMaker users. Its low cost, high power and

nonprofit-friendliness have made ebase very popular .in the North West conservation

4



movement. Ebase does have some downsides, though. Because ebase is developed by a

nonprofit, and not by a professional software development fırın, its user interface is a bit

cluttered, and it can be a bit confusing to novice users. Although ebase includes a very

powerful "import" routine, migrating existing data into ebase often requires assistance

from a skilled consultant. And unfortunately, the community of skilled ebase

consultants is still extremely small. This is primarily because FileMaker has far fewer

users than competing products such as Microsoft Access. However, ebase does have an

enthusiastic and increasingly knowledgeable peer-user community that is supported by

the knowledgeable folk skate Tech Rocks. The bottom line is that ebase, despite its low

up-front cost, isn't free. Like all database products, there can be a significant need for

skilled database consultants to help withstartup and customization, and to troubleshoot

if things go awry. Ebase is a good choice for organizations with relatively high internal

technology skill levels that don't want to spend much cash upfront on a database. Ebase

is also a good choice if your organization has the need=and the expertise-to extensively
customize your membership database For a more in-depth comparison of the differences

I 

between ebase I.O and ebase 2.0, along With advice for woups currently using ebase

1 .0,see"Comparinge base vl and ebasehv2"

A simpler nonprofit-developed relationship management database is ODB

developed by the folks at Organizers' Collaborative It runs on Windows only, andI 

offers a simple, configµrable database tool that is less customizable ,thıµı ebase, but

considerably easier toggeth"upkandjrunning"kon.

1.5 Hosted Database Application Services

This is the, newest •.-and perhaps the most intriguing--type of database product.

"Hosted" databases are database programs that reside. entirely on the servers of an

"Application Service Provider" (ASP) company. There are several nonprofit-oriented

donor/member database services that have started up in the past year. The two with

which we're l most familiar are Donor Link IT and e-Tapestry. YoÜ purchase ASP

based databases as a service rather than as a product. There's no software to purchase or

install on your machines-call you need is a Web browser and an Internet connection

(56k works fine, although obviously a high-speed connection is better).While ASP

databases caı) be customized quite a bit; the fundamental workflow can't be modified as

extensively as ebase can pertnit. However, because these are hosted applications, they

5



are upgraded often, and upgrades are automatically and seamlessly

rolledjoutktokalljusers. Hosted databases have several advantages: Hosted databases can

be easily accessed by multiple users in multiple locations. This is extremely difficult
with most other database solutions.

Hosted databases can include features that allow your members to interact with

you through your database. For example, Donorl.inkl'T allows you to create and

distribute surveys to your members, and for responses to be incorporated directly into

your database for immediate use. e-Tapestry has a module that çan allow donors to lo~

in and view their donation history with your organization. Hosted databases can

integrate directly with ecommerce software, allowing easy integration of online giving
with your membership database.

Hosted databases make it easy to send out bulk email such 11s an email

newsletter to yow members. Power users can even customize the content of the emails

so that users receive content that is customized based on information in your database.

Hosted databases take care of al) the software installation, maintenance for you.

Even better, they also take care of backups. And because there's no data stored on your

machines, you never have to worry about how to recover your data if your machines

crash. The cost of these hosted database services generally depends on the number of

records in your database. E-Tapestry has a FREE Ievel of service for groups with

databases with 500 records or less, and only $30/month for groups with 501-1000

records. Donorl.ink has base pricing of $99/ı:nonth for databases with up to 5000

records. Both offer additional services suchas e-commerce integration. You should also

anticipate spending some time and money to import your existing data into the new
' . I

hosted database product, and to customize your new database to your organization's
business processes,

There are several downsides to. hosted database solutions:

••One downside is the relatively high' ongoing cost. Most grassroots

environmental groups should anticipate spending $100-200/month for a hosted database

solution. This is quite a bit more than the upfront cost of abase, but it is quite a bit

cheaper than most ordinary commercial software, and quite a bit cheaper than paying a
consultant to write a custom database,

6



Hosted database solutions are not as highly customizable as ebase or a

homebrewed database. But theycan be customized enough to meet many organizations'

needs. Most hosted database providers roll out software upgrades every three to six

months, and upgrades are automatically delivered to all users at no additional cost.

Hosted databases are not as fast as databases that reside on your machine or your

network. This is generally not a huge problem, but it can slow down large data entry

projects. And if you don't have reliable "always-on" Internet access, you may find it

frustrating to work with an online database tool.

Both e-Tapestry and DonorLink are relatively new products, but we've been

very impressed by what we've seen. e-Tapestry is particularly attractive to smaller

groups groups with <l 000 members, as it's free for small groups. Donorl.inkl'I' is

notable for its powerful email distribution and Web-based surveying and response
mechanisms.

The ongoing cost of hosted database solutions is significant, but that cost has to

be weighed against the time and expense of developing your own system or even that of

customizing a low-upfront cost system such as ebase. If you don't need the total

customizability of ebase or a custom solution, and would rather spend some cash than

your precious time, then a hosted database solution might be worth investigating.

1.6 Primary and Foreign Keys

Primary and foreign keys are the most basic components on which relational

theory is based. Primary keys enforce entity integrity by uniquely identifying entity

instances. Foreign keys enforce referential integrity by completing an association

between two entities. The next step in building the basic data model to

l. identify and define the primary key attributrS for each entity

2. validate primary keys and relationships

3. migrate the primary keys to establish foreign kers •

ı.s.ı Define Primary Key Attributes

The primary key is an attribute or a set of attributes that uniquely identify a

specific instance of an entity. Every entity in the data model must haye a primary key

whose values uniquely identify instances of the entity.

7



To qualify as a primary key (or an entity, an attribute must have the following
properties:

it must have a non-null value for each instance of the entity

the value must be unique for each instance of an entity

the values must not change or become null during the life of each entity instance

In some instances, an entity will have more than one attribute that can serve as a

primary key. Any key or minimum set of keys that could be a primary key is called a

candidate key. Once candidate keys are identified, choose one, and only one, primary

key for each entity. Choose the identifier most commonly used by the user as lo.pg as it

conforms to the properties listed above. Candidate keys which an; not chosen as the

primary key are known as alt,ernatekeys.

An example of an entity that could have several possible primary keys is

Employee. Let's assume that for each employee in an organization there are three

candidate keys: Employee ID, Social Security Number, and Name.

Name is the least desirable candidate. While it might work for a small

department where it would he unlikely that two people would have exactly the same

name, it would not work for a large organization that had hundreds or thousands of

employees. Moreover, there is the possibility that an employee's name could change

because,of marriage. Employee ID would be a good candidate as long as each employee

was assigned a unique identifier at the time of hire. Social Security would work best

since every employee i~ required to have one before being hired.

i.6.l Composite Keys

Sometimes it requires more than one attribute to uniquely identify an entity. A

primary key that made up of more than one· attribute is known as a composite key.

Table! .l shows an example of a composite key. Each instance of the enlity Work can be

uniquely identified only by a composite key composed of Employee ID and Project ID.

8



Employee ID Project ID Hours Worked
01 Ol 200 

Ol 02 120 

02 01 50 

02 P3 120 

03 03 100 

03 04 200 

Table 1. 1 Example of Composite Key Work

1.6.3 Artificial Keys

An artificial key's one that has no meaning to the business or organization.

Artificial keys are permitted when no attribute has all the primary key properties, or the
primary key is large and complex.

1.6.4 Primary Key Migration

Dependent entities, entities that depend on the existence of another entity for

their identification, inherit the entire primary key from the parent entity. Every entity

within a generalization hierarchy inherits the primary key of the root generic entity.

1.6.5. Define Key Attributes

Once the keys have been identified for the model, it is time to name and define

the attributes that have been used as keys. There is n6 standard method for representing

primary keys in ER diagrams. For this document, the name of the primary key followed

by the notation (PK) is written inside the entity box, An example. ••

9



Figure 1.1: Entities with Key Attributes

1,6.6 Validate Keys and Relationships

Basic rules governing the identification and migration of primary keys are:

• Every entity in the data model shall have a primary key whose values uniquely
identify entity instances.

• The primary key attribute cannot be optional (i.e., have null values).

• The primary key cannot have repeating values. That is, the attribute may not

have more than one value..at..BJ:in:ıeJ~y....eo~_insta1.1~olıibj~ıJ~
_,,,.u as the No Repeat Rule.

Eııeieics with compound primary keys cannot be split into multiple entities with

· ies may not have identical primary keys with the exception of entities

primary key must migrate from parent entities to child entities-and

type, generic entities, to subtypes, category entities.

bcign key is an attribute that completes a relationship by identifying the

• Foreign keys provide a method for-maintaining integrity in the data

lı:4ımia.J. integrity) and for navigating between different instances.of an entity.

7 wtsln:p in the model must be supported by a foreign key.

ndent and category (subtype) entity in the model must have a foreign

ionship in which it participates. Foreign keys are formed in dependent

ıo



and subtype entities by migrating the entire primary key from the parent or generic

entity. If the primary key is composite, it may not be split.

1.7.2 Foreign Key Ownership

foreign key attributes are not considered to b.e owned by the entities to which

they migrate, because they are reflections of attributes in the parent entities. Thus, each

attribute in an entity is either owned by that entity or belongs to a foreign key in that
entity.

If the primary key of a child entity contains all the attributes in a foreign key, the

child entity is said to be "identifier dependent" on the parent entity, and the relationship

is called an "identifying relationship." If any attributes in a foreign·key do not belong to

the child's primary key, the child is not identifier dependent on the parent, and the

relationship is called "non identifying."

1.7.3 Diagrammlng Fore,ign Keys

Foreign keys attributes are indicated by the notation (FK) beside them. An

example is shown in Figure 2 (b) above.

1.8 Introduction to Relational Database Design

Many people believe that Access iş such a simple product to use, that database

design is something they don't need to WOffY about. I couldn't disagree more! Just as a

house without a foundation will fall over, a database with poorly designed tables and

relationships will fail to meet the needs of the users.

" 1.9 Goals of Relational Database Design

The number one goal of relational database design is to, as clqsely as possible;
•

develop a database that models some real-world system. This involves breaking the

real-world system into tables and fields, and determining how the tables relate to each

other. Although, on the surface, this might appear to be a trivial task, it can be an

extremely cumbersome process to translate a real-world system into tables and fields. A

properly designed database has many benefits. The process of adding, editing, deleting,

11



and retrieving table data is greatly facilitated by a properly designed database. Reports

are easy to build. Most importantly, the database becomes easy to modify and maintain.

1.10 Rules öf Relational Database Design

To adhere to the relational model, certain rules must be followed. These rules

determine what is stored in a table, and h~w the tables are related.

1.10.İ The Rules of Tables

Each table in a system must store data about a single entity. An entity usually

represents a real-life object or event. Examples of objects are customers, employees,

and inventory items. Examples of events include orders, appointments, and doctor
visits.

1.10.2 The Rules of Uniqueness and Keys
I ( 'Tables are composed of rows and columns. To adhere to the relational model,

each table must contain a unique identifier. Without a unique identifier, it becomes

programmatically impossible to uniquely address a row. You guarantee uniqueness in a

table by designating a primary key, which is a single column or a set of columns that

uniquely identifies a row in a table. Each column or set of columns in a table that

contains unique values is considered a candidate key. One candidate key becomes the

primary key. The remaining candidate keys become alternate keys. A primary key made

up of one column is considered a simple key. A primary key comprised of multiple

columns is considered a-composite key. It is generally a good idea to pick a primary key

that is Minimal' (has as few columns as possible) Stable (rarely changes) Simple
I

(familiar to the user) Following these rules greatly improves the performance and
"'maintainability of your database application, particularly if you are dealing with large

volumes of data.

•
Consider the example of an employee table. An employee table is generally

composed of employee-related fields such as social security number, first name, last

name, hire date, salary, and so on, The combination of the first name and the last name

fields could be considered a primary key. This choice might work, until the company

hires two. employees with the same name. Although the first and last names could be

Combined with additional fields to constitute-uniqueness (for example, hire date), this

•

12



would violate the rule of keeping the primary key minimal. Furthermore, an employee

might get married and her last name might change.

Using a name as the primary key violates the principle of stability. The social

security number might be a valid choice, but a foreign employee might not have a social

security mımoer. ibis is a case where a c\eri.vec\, rather th.an a natural, -primary ke)' is

appropriate. A derived key iş an artificial key that you create. A natural key is one that

is already part of the database.

I would suggest adding Employeell) as an AutoNumber field. Although the field

would/violate the rule of simplicity (because an employee number is meaningless to the

user), it is both small and stable. Because it is numeric, it is also efficient to process. In

fact, I use AutoNumber fields (an identity field in SQL Server) as primary keys for most

of the tables that I build.

1.11 Foreign Keys and Domains

A foreign key in a table is the field that relates to the primary key in a second

table. For example, the CustomerID is the primary key in the Customers table, It is the

foreign key in the Orders table. A domain is a pool of values from which coluınns are

drawn. A simple example öf a domain is the specific data, range of.employee hire dates.

In the case of the Order table, the domain of the Customerll) column is the range of

values for the CustomerID in the-Customers table,

1.12 Normalization and Normal Forms

One of the most difficult decisions that you face as a developer is what tables to

create, and what fields to place in each table, as well as how to relate the tables that you

create. Normalization is the process of applying a series of rules to ensure that your

database achieves optimal stnicture. Normal forms are a progression of these rules.

Each successive normal form achieves a better database design than the previous form

did. Although there are several levels of notınal fomıs, it is generally sılfficient to apply

only the first three levels of normal forms. They are described in the following sections.

1.12~1 First Normal Form

To achieve first normal form, all columns in a table must be atomic. This means,

for example, that you cannot store first name and last name in the same field. The

13



reason for this rule is that data becomes veıy difficult to manipulate and retrieve if

multiple values are stored in a single field. Using the full name as an example, it would

become impossible to sort by first name er last name independently if both values are

stored in the same field. Furlhermore, extra work must be döne to extract just the first

name or the last name from the field. Another requirement for first normal/form is that

the table must not contain repeating values. Atı. example of repeating values is a

scenario in which Iteml, Quantity l, ltemz, Quantity2, Itemô, and Quantity3 fields are

all found within the Orders table. This design introduces several problems. What if the

user wants td add a fourth item to the order? Furthermore, finding the total ordered for a

product requires searching several columns. In fact, all numeric and statistical

calculations on the table become extremely cumbersome. The alternative, chieves first

normal form. Notice that eaçh item ordered is located in a separate row.

1.12.2 Second Normal Form

To achieve second normal form, all non-key columns must be fully dependent

on the primary key. In other words, each table must store data about only one subject

Notice the table includes information about the order (Orderll), Customerll.i, and

Orderl.ıate) and informatioıi .about the items being ordered (Item and Quantity). To

achieve second normal form, this data must be broken into two tables, an order table

and an order detail table. The process of breaking the data into two tables is called

decomposition. It is considered to be non-loss decomposition because no data is lost

during the decomposition process. Once the data is broken into two tables, you can

easily bring the data back together by joining the two tables in .a queıy. These two

tables achieve second normal form.

1.12.3 Third Normal Fo~m

To attain third normal form, a table must meet all the requirements for first and

second normal form, and all non-key columns must be mutually independent. This•
means that you 'must eliminate any calculations, and you must break out data into

lookup tables.

An example of a calculation stored i'1, a table is the product of priee multiplied

by quantity. Rather than storing the result of this calculation in the table, instead you

14



would generate the calculation in a queıy, or in the control source of a control on a form

ör a report.

1.13 Demoralization Purposely Violating the Rules 

Although the developer's goal is normalization, there are many times when it

makes sense to deviate from normal forms. This process is referred to as

demoralization. The primaıy reason for applying demoralization is to enhance

performance. An example of when demoralization might be the preferred tact could

involve an open invoices table and a summarized accounting table. It might be

impractical to calculate süı:nmarizedaccounting information for a customer when it is

needed. The suınmaıy calculations are maintained in a summarized accounting table so

that they are easily retrieved as needed. Although the upside of this scenario is

improved performance, the downside is that the summaıy table must be updated.

whenever changes are made to the open invoices. This imposes a definite trade-off

between performance and maintainability. You must decide whether the trade-off is

worth it.

If you decide to demoralize, document your decision. Make sure that you make

the necessaıy application adjustments to ensure that the deıhoralized fields are properly

maintained. Finally, test to ensure that performance is actually improved by the

demoralization process.

1.14 Integrity Rules 

Although integrity rules are not part of normal forms, they are defi,nitelypart of

the database design process. Integrity rules are broken into two categories. They include. I

overall integrity rules and database-specific integrity rules.

1.15 Overall Rules 

The two types of overall integrity rules are referential integrity rules and entity
•• ••

integrity rules. Referential integrity rules dictate that a database does not contain any

orphan foreign ker values. This means tbat Child rows cannot be added for parent rows

that do not exist. In other words, an order cannot be added for a nonexistent customer.A

primaıy key value cannot be modified if the value is used as a foreign key in a child

table. This means that a CustornerID cannot be changed if the orders table contains rows

with that CustomerID.

15



A parent row cannot be deleted if child rows are found with that foreign key

value. For example, a customer cannot be deleted if the customer has orders in the order

table.Entity integrity dictates that the primary key value cannot be Null. This rule

applies not only to single-column primary keys, but also to rnulti-çohımn primary keys.

In fact, in a multi-column primary key, no field in the primaty key can be Null. This

makes sense because, if any part of the primary, key can be Null, the primary key can no

longer act as a unique identifier for the row. Fortunately, Access does not allow a field

in a primary key to be Null.

1.16 Database Specific Rules 

The other set of rules applied to a database are not applicable to all databases,

but am, instead, dictated by business rules that apply to a specific application. Database

specific rules are as important as overall integrity rules. They ensure that only valid data

is entered into a database. An example of a database-specific integrity rule is that the

delivery date for an order must fall after the order date.

1.17 Examining the Types of Relationships 

Three types of relationships can exist between tables in a database: one-to-many,

one-to-one, and man:y-to-many. Setting up the proper type of relationship between two

tables in your database is imperative. The right type of relationship between two tables

ensures Data integrity optimal performance Ease of use in designing system objects the

reasons behind these benefits are covered throughout this chapter. Before you can

understand the benefits of relationships, though, you must understand the types of

relationships available.

1.17.1 One-to-Many 

A one-to-many relationship is by far the :ı;nost common type of relationship. In a
'

one-to-many relationship, a record in one table can have many related records in
J • • 

another table. A common example is a relationship, set up between a Customers table

and an Orders table. For each customer in the Customers table, you want to have more

than one order in the Orders table. On the other hand, each order in the Orders table can

belong to only one customer. The Customers table is on the one side of the relationship,

and the Orders table is oil the many side. In order for this relationship to be

16



implemented, the field joining the two tables on the one side of the relationship must be

unıque.

In the Customers and Orders tables' example, the CustomerID field that joins the

two tables must be unique within the Customers table. If more than one customer in the

Customers table has the same customer ID, it is not clear which customer belongs to an

order in the Orders table. For this reason, the field that joins the two tables on the one

side of the one-to-many relationship must be a primary key or have a unique index. In

almost all cases, the field relating the two tables is the primary key of the table on the

one side of the relationship. The field relating th~ two tables on the many side of the

relationship is called a foreign key.

1.17.2 One-to-One 
In a one-to-due relationship, each record in the table on the ene side of the

relationship can have only one matching record in the table on the many side of the

relationship. This relationship is not common and is used only in special circumstances.

Usually, if you have set up a -one-to-one relationship, you should have combined the

fields from both tables into one table. The following are the most common reasons why

you should create a one-to-one relationship: The amount of fields required for a tableI

exteeds the number of fields allowed in an Access table. Certain fields that ate included

in a table need to be much more secure than other fields included in the same table.

Several fields in a table are required for only a subset of records in the table.

The maximum number of fields allowed in an Access table is 255. There are

very few reasons why a table should ever have more than 255 fields. In fact, before you

even get close to 255 fields, you should take a close look at the design of your system.

On the rare occasion when having more than 255 fields is appropriate, you can simulate

a single table by moving some t)f the fields to a second table and creating a one-to-one

relationship between the two tables. "

The second reason to separate into two tables data that logically would belong in

the same table involves security. An example is a table containing employee

information. Certain information, such as employee name, address, city, state, ZIP

Code, home phone, and office extension, might need to be accessed by many users of

the system. Other fields, including the hire date, salary, birth date, and salary level,

might be highly confidential. Field-level security ts not available in Access. You can

17 



simulate field-level security by using a special attribute of queries called Run with

Owner's permissions. "Advanced Queıy Techniques."

The alternative to this method is to place all the fields that can be accessed by all

users in one table and the highly confidential fields in another. Only a special Admin

user (a user with special security privileges, not one actually named Admin) is given

access to the table çontaining the confidential fields. ActiveX Data Objects (ADO) code

is used to display the fields in the highly confidential table when needed. This is done

using a queıy with Run with Owner's permissions, based on the special Admin user's

permission to the highly secured table. "Advanced Security Techniques."

If your application utilizes data stored in a SQL Server database, you can use

views to easily accomplish the task of implementing field-level security. In such an

environment, the process of splitting the data into two tables is unnecessary. The last

situation in which you would want to- define one-to-one relationships is when certain

fields in a table are going to be used for only a relatively small subset of records. An

example is an Employee table and a Vesting table. Certain fields .are required only for

employees who are vested. If only a small percentage of a company'.s employees are

vested, it is not efficient, in terms of performance or disk space, to place all the fields

containing information about vesting in the Employee table. This is especially true if the

vesting inforınation requires a large volume of fields. By breaking the information into

two tables and creating a one-to-one relationship between them, you can reduce disk

space requirements and improve performance. This improvement is particularly
pronounced if the Employee table is large.

i.17.3 Many-to-Ma;ny 

In a many-to-many relationship, records in both tables have matching records in
"'the other table. A many-to-many relationship cannot be directly defined in Access; you.•

must develop this type of relationship by adding a table called a junctipn table. The
•junction table is related to each of the two tables in one-to-many relationships. An

example is an Orders table and a Products table. Each order probably will contain

multiple products, and each product is found on many different orders. The solution is

to create a third table called Order Details. The Order Details table is related to the

Orders table in a one-to-many relationship based on the OrderID field. It is related to

the Products table in a one-to-many relationship based on the ProductlD field.

18



CHAPTER TWO 

STRUCTURE OF THE PROGRAM 

2.1 Program Structure 

The program includes the following blocks figure 2.1

New Car

Registration

Cars

Options Rate
Records

Database Constant
Others Cars with
lnformation

J_ 

Payment for
Each car Report

ı

Public car with
Information

Special Cars with
Information

Cars was Changed

Search
Other Cars Available

Figure 2.1 Structure of the Program

•
2.1.1 Explanation of the Blo~k Diagram 

• R~stration Block: In this block we enter the holder's information. It is realized by

choosing the new car block.

19



• Records Block: In this block we enter the information for the car by choosing the

modes.

• Search Block: We use this block to search cars information and we use it to search

for file number of the car. We use it also to search for whole car of holders with all

information. For this task the program gets data from the user compares it with the data

which in database, if the program finds it, then the rest of the data information will

appear on the monitor. And also we can appear the whole car with details and .

• Report Block: In this block the holder's information and cars information that same

file number with the total cost of custom in the any selected file number is printed,

Constant Block: In this block we display the model car of the year (the model allowed

to enter to the country) and the cost of the options rate for each entrance type in each

year that depends on the country policy on orders available.

2.2 Program Flow Chart: 

2.2.1 Explanation of Add New Holder Flow-Chart: 
Firstly we open the data base and display the information to register the holders

details, after that we save these details, the file number of the holder (A) that entered is

not equal to the number in the data base then the program generate the file number

according to some operation of number data type, and we know this procedure is no tow

cars ıııt the same file number. After that we save these details. We want to register car

details (A), at the same file nuıpber this doing on deferent form, the procedure repeat it

self for each different entry type for the new car, as shown the flow chart for each

process (figure 2 .4) below. ••

2.2.2 Explanation of Records Flow-Chart: 
At the beginning the user should enter the information about the holder, and the

form number is given by the each car has form number that is manufacturing company

20



pot it according their system, the file number impossible to find tow number the same it
impossible to save these tow number.

2.2.~ Explauation of Calculates Total Cost Flow-Chart

At the beginning as we know the formula to get the total cost of the car, each

manufacturing make-some option in their product and available technical, some country

take money for these options if found it in the entry car, each option has different

custom value to another (possible more than one option at same custom value), for each

car has product cost they was put it up to type of development technical. For the option

rate from the car cost, the result is what the car have option multiply the cost of car,

suppose total car cost is 200$ and has one option rate of it 20% that's mean.
Total Custom Cost= (20 * 200 I 100) and so on,

We can see it in (figure 2.6), and the same procedure will used when we calculate the
for all option available,

• I 2.2.4 Explanation of the Search Flow Chart 

The required data, which is entered to the program to search, will be checked to

whether the data is matched or not according to the database. If'the data is not matched
I

then alert message will occurs otherwise the program continue the process that shows
the rest information. We can see it in (figure 2.21) below.

2.2~;; Explanation of the Cost Report Flow Chart 

some times the country put some tax's for each entry car like open file cost and

whatever these also entered on the total added to what we have after calculate the car

options, At the beginning the user should enter the tax's for the procedure; and net cost
for the car we see it in (figure 2.7). "

•

21



START

I-Enter Menu

2-0ptions Menu

3-Report Menu

4-Exit

Select 1 to 4

N

y 8

y o
y G
y

Figure 2.2 Main menus Flow Chart

22

••



I

I-Public car I Special car
2-Tuorism I Transportation,
Othe~s
3- Change Public to Special
4- Exit.

N

y

• y G
y~ 

~ ~

y~ 
'> ~ 

Figure 2.3 Enter Menus F1owChart

23



Open data base and index it

Select Entry Type

Display information to
register

Enter holder info.

Generate file number

File number= form number - 100

No 
y

1-1-a

•••
Figure 2.4 Add New Holders in Public or-Special Cars Flow Chart

-Create file number.

-Ternıinator 1 refers to main menu flow chart.

-Terminator 1-1-a refer to continue operation.

24



Open data base and index it

Display information to
register

Enter car info.

Set car model =M

Enter car model=E

N

Save on: data base

1-1-b

Figure 2.5 Add new car information Public or Special Cars Flow Chart

-Comparing car model operation

-Save infôrmation in database

-Terminator I-I-b refer to continue operation

25



Display information to '
register

Set car Option

Calculate Custom Cost

Cost= what options have * net cost I 100 + tax's

Display cost and
holder information

1-1-c

Figure 2.6 Calculate Car Options Public or Special Cars Flow Chart

-Calculate car option refer the what options car have

-Print repom for holder information and total costs

-Terminator l-I-c continue operations

•

26 



Select Entry Type
,File Number

y

Enter File Number OR
Enter Holder Name

Display Car information
and holder information

Figure 2.7 Report for Public and Special Cars Information Flow Chart

-Select entry type.

-Search by file number or holder name.

,,_ If not found either file number or holder name show not found message.

-Print information's report.

•

27



Open data base and index it

Display information to
register

Enter holder info.

Generate file number

File number= form number - 50

"'Figure 2.8 Add New Holders in Tourism and Transportation and Others Cars
Flow Chart

-Create file number

-Ternıinator 1 refer to main menu flow chart

-Terminator 1-2-a refer to continue operation

28



Open data base and index it

Display information to
register

Enter car info.

Save on data base

1-2-b

Figure 2.9 Add New Car Information Tourism and Transportation and Others Cars Flow
Chart

-Save information in database

-Terminator 1-2-b refer to continue operation

••

29



Display information to
register

Set tar Option

Calculate Custom Cost

Cost = what options have * net cosf I 100 + tax's

Display cost and
holder information

1-2-c

Figure 2.1 O Calculate Car Options Tourism and Transportation and Others Cars Flow
Chart

-Calculate car option refer the what options car have
-Print report for holder information and total costs
-Terminator 1-2-c continue operafions

••

30



Eı:ıt7r File Number
Enter holder Name

Enter File Number OR
Enter holder Name

y

Display Car information
and holder information

Figure 2.11 Report for Tourism and Transportation and Others Cars Information
Flow Chart

-Search by file number OR holder name.

-If not found either file number or holder name show not found message.
-Print information's report.

••

31



File Number
Holder Name

Enter File Number OR
Enter holder Name

Figure 2.12 Change Entries from Special to Public Flow Chart

-Search by the file number OR holder name.

-If searching not found show message not found

-Terminator 1 refers to main menu.

-Terminator 1-3-a continue operation.

32



Open data base and index it

Display information to
register

Enter holder info.

Generate file number

File number= form number - 100

Save on data base

Display cost and
holder information

1

Figure 2.13 Taxes to Change Entry from Special to Public Flow
Çhart

33



2

I -Change Password
2-Se't option
3'-Rep'ort
4-Search Set up Option Rate

Select 1 to 4

y G 

~ @)

N y~ 

~

•
Figure 2._14 Option MeJ1u Flow Chart

34



Old password= O

Enter Old password == K

N

y

Enter New Password= N

Repeat the Password =M

N

Figure 2.15 Change Password Flow Chart

-Show message after operations wrong filling

35 



1-Set Public Option

2-Set Special Option

3-Set Other Option

Select 1 to 3

N

y ·~)

y ~

y ~

Figure 2 .16 Set Option Menu Flow Chart
~

36

•



Open data base and index it

Display information to
register

Enter Options Rates.

Save on data base

Ex.it

Figure 2 .17 Set Options for Public Car Flow Chart

-Filling the blank rates
-Saving .the rates

37

••



Open data base and index it

Display information to
register

Enter Options Rates.

Save on data base

Exit

Figure 2.18 Set Options for Special Car Flow Chart

-Filling the blank rates

-Saving the rates

38

••



Open pata base and index it

Display information to
register

Enter Options Rates.

Save on data base

Exit

Figure 2.19 Set Options for Tourism, Transportation and Others Cars Flow Chart

-Filling the blank rates

-Saving the rates

•

39



Select Entry Type

Enter File Number OR
Enter Holder Name

y

Display Car information
and holder information

Figure 2.20 Report for Public and Special Cars information Flow Chart

-Select entry type .

. -Search by file number OR holder name.

-Ifnot found either file number or holder name show not found message.

-Print information's report.

40



Enter File Number
Enter holder Name

'I
Enter File Number OR
Enter holder Name

y

Display Car information
and holder information

Main Menu

IFigure 2.21 Report for Tourism, Transportation and Others Cars Information Flow

Chart

-Search by file number OR holder name.

-If not found either file number or holder name show not found message.
-Print information's report.

41



1-Seareh for Rate Option
Public Car info
2- Search for Rate Option
Special Car info
3- Search for' Rate Qption
Other Car info

Select 1 to 3

N

y

y

y

Figure 2.22 Search Options Rate Menu Flow Chart

42

•



Open data base and index it

\

Searching Reg. Date

Enter Reg. Date

y

Display all
studenttinfo.

Exit

Figure 2.23 Search Rate Option for Pu9lic Cars

-Searching by registration date.

-Showwrong message if not found date

43

•



Open data base and index it

Searching Reg. Date

Enter Reg. Date

N

Display all
student info.

Exit

Figure 2.24 Search Rate Option for Special Cars.

-Searching by registration date.

-Show wrong message if not found date

44

•



Open data base and index it

Searching Reg. Date

Enter Reg. Date

N

y

Display all
student info.

l
G

Figure 2.25 Search Rate Option for Other Cars.

-Searching by registration date.

-Show wrong message if not found date

45

••



l-Public Car
2-Special Car
3-0ther Car
4-Chnge
5-0ptions Cars

I'

Select l to 5

N

Figure 2.26 Report Main Menu

46 



Open data base and index it

Enter file number
Enter holder name

Enter file riumber OR
Enter holder name

y

Display all Holder
and car info.

Exit

Figure 2.27 Display all Public Cars with Holders

-Search by file number OR holder name

-Show wrong message if not fôund date

47 

••



Open data base and index it

Enter file number
Enter holder name

Enter file n'umber OR
Enter holder name

y

Display all Holder
and car info.

Exit

Figure 2.28 Display all Special Cars with Holders

Search by file number OR holder name

Show wrong message if not foünd date

48



Open data base and index it

Enter file number
Enter holder name

Enter file number OR
Enter holder name

y

Display all Holder
and car info.

Exit

Figure 2.29 Display all Other Cars with Holders

-Search by file number OR-holder name

-Show wrong message if not found date

49 

•



Open data base and index it

Enter file number
Enter holder name

Enter file number OR
Enter holder name

y

Display all Holder
and car info.

Exit

Figure 2.30 Display all was Changed Cars with Holders

-Search by file number OR holder name

-Show wrong message if not found date

50



Open data base and index it

Enter file number
Enter holder name

Enter file number OR
Enter holder name

y

Display all Holder
and.car info.

Exit

Figure 2.31 Display all Public, Special and Other Cars with Holders

-Search by file number OR holder name

-Show wrong message if not founı;! date

•

51



CHAPTER THREE

DEVELOPMENT OF CUSTOM INFO~ TION SYSTEM

3.1 Determine the Purpose Database

The first step in designing a database is to determine its purpose and how it's to be used:

• Talk to people who will use the database. Brainstorm about the questions you
and they would like the database to answer.

• Sketch out the reports you'd like the database to produce.

• Gather the forms you, currently use to record your data.

As you determine the purpose of your database, a list of information you want from the

database will begin to emerge. From that, you can determine what facts you need to

store in the database and what subject each fact belongs to. These facts correspond to

the fields (columns) in your database, and the subjects that those facts belong to
correspond to the tables.

3.2 Determine the Field You Need in the Database

Each field is a fact about a particular subject. For example, you might need to

store the following facts about your customers: company name, address, city, state, and

phone number. You need to create a separate field for each of these facts. When

determining which fields you need, keep these design principles in mind:

,I

• Include all of the information you will need.

• Store information in the smallest logical parts. For example, employee names
•

are often split into two fields, FirstNapıe and LastName, so that it's easy to sort
data by LastName.

• Don't create fields for data that consists of lists öf ı:µultiPxle items. For example,

in a Suppliers table, if you create a Products field that contains a comma

separated list of each product you receive from the supplier, it will be more

difficult to find only the suppliers that provide a particular product.

52



• Don't include derived or calculated data (data that is the result of an

expression (expression: Any combination of mathematical or logical operators,

constants, functions, and names of fields, controls, and properties that evaluates

to a single value. Expressions can perforriı calculations, manipulate characters,

or test data.)). For example, if you have a UnitPrice field and a Quantity field,

don't create an additional field that multiplies the values in these two fields.

• Don't create fields that are şimilar to each other. For example, in a Suppliers

table, if you create the fields Productl , Productz, and Product3, it will be more

difficult to find all suppliers who provide a particular product. Also, you will

have to change the design of your database if a supplier provides more than

three products. You need only one field for products if you put that field in the

Products table instead of in the Suppliers table.

3.3 Determine the Tables You Need in the Database

Each table should contain information about one subject. Your list of fields will

provide clues to the tables you need. For example, if you have a HireDate field, its

subject is an employee, so it belongs in the Employees table. You might have a table for

Customers, a table for Products, and a table for Orders.

3.4 Determine Which Table each Field Belongs to

When you decide which table each field belongs to, keep these design principles

in mind:

• Add the field to only one table.

• Don't add the field to a ~abie if it will result in the same information appearing in

multiple records in that table. If you determine that a field in a table will contain

a lot of duplicate information, that field is probably in the wrong table. For•
example, if you put the field containing the address of a customer in the Orders

table, that information will probably be repeated in more than one record,

because the customer will probably place more than one order. However, if you

put the address field in the Customers table, it will appear only once. In this

respect, a table in differs from a table in a flat file database such as a

spreadsheet. When each piece of' information is stored only once, you update it

53 



in one place. This is mbre efficient, and it also eliminates the possibility of

duplicate entries that contain different information.

3.5 Identify the Field or Fields with Unique Value in Each Record

In order for Microsoft Access to connect information stored iı:ı separate

tables for example, to connect a customer with all the customer's orders each table in

your database must include a field or set of fields that uniquely identifies each

individual record in the table. Such a field or set of fields is called a primary

key (primary key: One or more fields (columns) whose value or values uniquely

identify each record in a table. A primary key cannot allow Null values and must always

have a unique index. A primary key is used to relate a table to foreign keys in other

tables.).

3.6 Determine the Relationships Between Tables

Now that you've divided your information into tables and identified primary

key (primary key: One or more fields (columns) whose value or values uniquely

identify each record in a table. A primary key cannot allow Null values and must always

have a unique index. A primary key is used to relate a table to foreign keys in other

tables.) Fields, you need a way to tell Microsoft Access how to bring related

information back together again in. meaningful ways. To do this, you define

relationships (relationship: An association established between common fields

(columns) in two tables. A relationship can be one-to-one, one-to-many, or many-to

many.) Between tables. You may find it useful to view the relationships in an existing

well-designed database such as the North wind sample database.

3. 7 Reflning Design

After you have designed the tables, fields, and relationships (relationship: An

association established between common fields (columns) in two tables. A relationship

can be one-to-one, one-to-many, or many-to-many.) You need, it's time to study the

design and detect any flaws that might remain. It is easier to change your database

design now than it will be after you have filled the tables with data. When you are

satisfied that the table structures meet the design principles described here, then it's time

54



to go ahead and add all your existing data to the tables. You can then create other

database objects

3.8 Deslgning Project Database Structure
Good database design ensures that your database is easy to maintain. You store

data iri. tables and each table contains data about only one subject, such as customers.

Therefore, you update a .particular piece of data, such as an address, in just one place

and that change automatically appears throughout the database.

A well-designed database -usually contains different types of queries that show

the information you need. A query might show a subset of data, such as all customers in

London, or combinations of data from different tables, such as order information

combined with customer information. The results you want from ycur database the

forms and data access pages (data access page: A Web page, published from Access that

has a-connection to a database. In a data access page, you can view, add to, edit, end

manipulate the data stored in the database. A page can also include data from other

sources, such as Microsoft Excel. And Access ) You want to use, and the reports you
I 

want to print don't necessarily provide clues about how you should structure·the tables

in your database, because you often base förıns, reports, and data access pages on

queries instead of tables.

Field Name Data Type Fıeld Size Description

Audio_system Alpha 2 Audio system

Elec mirror Alpha 2 Electrical Mirror

Air condition Alpha 2

Elec windows Alpha 2 Electrical Windows
-Center lock Alpha 2 Center Lock

Au,o_gear Alpha 2 Automatic Gear
--------

Alert_tone Alpha 2 Alert Tone • -
Power_streeing Alpha 2 Power Steering

'
Injection Alpha 2

Air_bag Alpha 2 Air Bag

Roof Alpha 2 Roof has Slash
.,

Open roof Alpha 2 With outRoof

Table 3.1 Option for All Cars

55



Field Name Data Type Fiefd Size [Description

File number Number File for car (*)
''Name Alpha 20 Holder Name

Suranrne Alpha 15 Holder Surname

ID_Nö Number ID Holder Number

Address Alpha 20 Address of Holder

DOB Date Date of Birth

Nationality Alpha ıö Nationality of Holder

Tele Number Holder Available Telephone

Orig Alpha 10 Original of Car

Form No Number Car Form Number

Entry_date Date Entry Car Date

CompName Alpha zo Company whose Bring The Car

Resid no Number Residence Number for Foreign Holders

Issue Date Issue Date for Residence

Expiry Date Expiry Date for Residence

Table 3,2 Holder Informatıon

Field Name Data Type !Field Size Description

Audio_system Number Audio system

Elec mirror Number Electrical Mirror

Air_condition Number Air Condition

Elec windows Number Electrical Windows
'Center lock Number Center Lock

Auto__gear Number Automatic Gear

Alert tone Number Alert Tone

Power_streeing Number Power Steering
"'Injection Number

Air_bag Number Air Bag
I "'Roof Number has Slash •.

Open_roof Number With out Roof

Emp_name/number Alpha 20 · Emplöyee Name and Number

Date Date Date of Set option Rate

Order No Number Set Order Option Rate

I

''

Table 3,3 Rate Option for All Cars

56



Field Name Data Type Field Size [Description
\ ..~,.,,,

File number Number File for car (*) \\ - V
\\ \.
\' •t,,

Kind Alpha 10 Kind of Car ~' 33 -· .--:::
Type Alpha 10 Type of Car

Car Model Number Model of Car

Type_of_foul Alpha 10 Car Foul (Benzene, Solar) /

Date Date Registration Date

Nationality Alpha 10 Nationality of Holder

Persons · Number How Many Persons?

Car_weight Numb.er Weight of Car

Remark Alpha 20 Any Remark Available

Car color Alpha 10 Car Color

Loading Number Loading (kg}

Auditor_Name Alpha 20 Auditor Name
/

Auditor: number Number Auditor Number
;

Motor number Number Motor Car Number

Body, number Number Body Number for Car

Doors number Number How Many Door in the car?

Table 3.4 Car Information

3.9 Define Relationships Between Tables
When we create a relationship, the related fields don't have the same names

However, related fields must have the same data type unless the primary key field is an

AutoNumber field. We can match an AutoNumber field with a number field only if the

fieldsize property of both of the matching fields is the same. For examples, we can match

an AutoNumber field and a field number field if the fieldSize property of both fields is
"Long Integer. Even when both matching fields are Number fields, they must have the

same fieldxize property setting. We can see bellow the relationships between the tables of
•this project:

57



Ho1<ı'er Inf. Car Inf.
1 O')

File number I

File Number

Name Kind Option

Form NumberSurname Type
00

ID No Date ................
;;

Address Car color .............

DOB Loading. 1
Form Nor ..__ Car model

............ . ................
I 

Figure 3.1 Relationships

3.1 O Layout of the Application:

3.10.1 Main Menu Screen:
It consists of seven Buttons, each button has a specific mission, and these

missions will be explaining as follow'.

Figure 3.2 Main Menu

1- Enter Button: we can use this button to decided entry car like Public, Special

and Other entry, and change from special to pub~c and close the program as

shown in figure 3.3. at first select entry type toy want, generate button generate

file number for the holder but next 'button go to next screen car details, back

button return to main menu, same type for the others cars (tourism,

transportation and other).

58



Figure 3.3 Holder Information Screen

NOTE: if the holder was foreign the entry date of issue and date of expiry data for 

passport

2- Option Button: this,button contain change password figure 3.4, option and setup

option for the cars (Options Rate), Report for the holder and car details, search

option rate for cars as shown in figure 3.5

Figure 3.4 Change Password

59



Figure 3.5 S¢t Rate Options and Cars Moder

In this option button had anther feature for the user to easy to used search rate of the

option was in that period time this option show of the user rate of the option after

tiıne how much it was, shown in figure 3.6

Figure 3.6 Rates of Options

60 



3- Report Button: the usage of this button is to find a certain data that we entered for

the holder information and the car that same file number for each entıy car shown

below in figure 3.7, and show every car what have options in the same form

number shown in figure 3.8 in each entry type.

O! ortakoy ! 11 /11/80 i lobanot\ian '
- ···-···-·T·:- .._\-------·---------···· ··-······- . ··--·-·---·~--- ······--·-········ ·- : ---- ·-·--·--·--•+····
! 256396jgonyli j11/11/75 ;cyp

TI~EE- J~t) ii~{~ · lili~i1E~M'-
120:khaledwaleed .eemer ı 236594;1e1\<.osa 111/11/62 :C'YP

- -- -,.. .. . : oöCı:ı?c..ıi·:..:41;~ -- ... - --J?5/o_5/7Ô - .

Figure 3.7 Show all Holders was Registered with Car Details for each Entry

Figure 3.8 Show All Cars Options in Ali Entries

61



3.t0.2 Cars Information Screen
In this screen the user ~ust fill the data blank, and should be care for the

model car mugt ~eater or eQu~l w~~ ~ettirıq in fi~@ )J, lf lC\\ thfill tnlll tnC
program show message "Invalid Car Model" the fıgure3.9 shown bellow refer to car

information. in the type blank data type for car 'Number of the Kind' and in the

remark filled type of car.

Figure 3.9 Car Information
NOTE: holder name, surname, ID number are taken automatically from holder

information screen in figure 3.3, ıtms feature also available in each car information

entries

3.10.J Order Payments and Options Screen: •
This screen allow us to enter costs such as; government tax's and other tax

and the user must fill the net price fot the car (Estimating Cost) for calculate the

Gross Price figure 3.10. With setting car options in figure 3. 11 after that getting

report for holder information with total cost. Using print report button.

62 



NOTE: holder name, surname, ID number and file number are taken automatically

from holder information

~s'r,").,',El:.

Figure 3.10 Calculate Custom Cost

In.the top show red label that is mean type of entry, and custom price not allowed in
special entry car that is mean not include in gross calculation price.

FigureLl l Options

This screen attached to database each one was checked input in database "Y", else

"N" as shown in figure 3.8 dependent to form number.

63



NOTE: After finish filling the operation for each different entry the user should

have print a report for some information that required to traffic department, in the

end of report appear type of entry and date year, month and day are separated by

'>>'and'<<'.

3.11 Buttons Function
There are many buttons are using in the program that refers to specific

function. Dependent from each other button. Each button has caption what it job

easy to knew function of the button there are some buttons are bellow.

Delete: delete record when the pointer is stopped in the database·

First: address of pointer on the first record in the database.

Last: address of pointer on the last record in the database.

Next: move pointer to the next record.

Back: move pointer to previous record (in database), show previous careen.

Search: allocate the pointer on record by enter file number or hold name

Next: show next screen

Ok: operation acceptation

Cancel: ignore operation.

Exit: exit the program

Calculate: calculate the gross price.

Set option: show the option screen

Generate: Generate file number

Main menu: show the main menu screen

Print: print report.

Print Preview: preview report before print action

If there are any button not on the above list that mean common use by caption .

•

64



CONCLUSION

In this project I learned a lot of thing that in the first time and even though not

all of things I wanted to do in this project but this is mainly because of the lack of time

and knowledge in programming with Delphi Programming. But we can say the Delphi

database support is very extensive and complete. I have very high hopes on expanding

the capability of this program in near future and from there I will take off in mastering

Delphi to design any project. I will try to take a lot of experience which is very

important tool that I will need to take any obstacles being faced in the future.

In the graduation project the description of course, holder's registrations, gross

price calculation are given. The structure of holder information system is presented. Its

main database modules are developed. The algorithms for car, holder registration, and

gross price calculation are presented. Toe implementation of course, holder registration,

gross price calculation problem in Delphi programming language is carried out.

Developed program allow automating.

65



APPENDIX

In this section available to show some codes for some operations refer to

procedures custom carrying out of operation using user effort to appear the correct

output, this codes some operation about public and special process as they generating in

Delphi compiler accepted.

1. Password Screen Code

unit com400;

interface

uses

Windows, Messages, SysUtils, Variants, Çlasses, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls, DB, DBTables, Menus, ActnList;

type

TForml = class(TForm)

Buttonl: TButton;

Edit1: TEdit;

Button2: TButton;

Labell: TLabel;

Panell : TPanel;

Pane12:TPanel;

Dataôourcel: TDataSource;

Tablet: TTable;

Imagel: Tlmage; ••
MainMenul: TMainMenu;

Aboutl: TMenultem;

Auther l: TMenultem;

procedure FormCreate(Sender: TObject);

procedure Button2Click(Sender: TObject);

66 



procedure Buttonl Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Forml: TFornıl;

implementation

uses Unit2, Unit4, Unit7;

{$R *.dfm}

procedure Tf'onnl .Forrnf'reatefxender: TObject);

begin

editl .clear ;

BUTTON I .Tabürder:=1;

end;

procedure TFonn l .Button1Click(Sender: TObjectt
begin

close;

end;

procedure TFornıl.ButtonlClick(Se;ıder: TObject);

var

Xcode.mteger;

67 

•



ch:string;

begin

val(editl.Text,x, code);

STR(X,CH);

if (CH=table lField'Valuesl'pass'[) then

begin

forın4.show;

forınl .Visible:=false;

editl.Clear ;

end

else

begin

showmessage (' Enter the Password Carefully ');

editl . clear;

end;

end;

end.

2. Holder Information Screen Code

unit Unit2;

interface

use's •

Windows, Messages, SysUtilş, Variants, Classes, Graphics, Controls, Forms,

Dialogs; StdCtrls, ExtCtrls, DB, DBTables, ADODB, Mask;

type

TForm2 = classff'Form)

68 



Buttonl: TButton;

Button2: TButton;

Panel2: T'Panel;

Editl: TEdit;

Edit2: TEdit;

Edit3: TEdit;

Edit4: TEdit;

Edit6: TEdit;

Edit8: TEdit;

Edit7: TEdit;

Edit9: TEdit;

EditlO: TEdit;

Editl 1 : TEdit;

Panell: TPanel;

Panel3: TPanel;

Panel4: TPanel;

Labell: Tl.abel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Labels: TLabel;

Labe16: TLabel; ••

Label": TLabel;

Label9: TLabel;

Panels: TPanel;

Label8: TLabel;

69



Labell O: TLabel;

Labell 1: TLabel;

Label12: TLabel;

Labell 4: TLa'.bel;

Editl3: TEdit;

Editl 4: TEdit;

Button3: TButton;

Panel6: TPanel;

Labell 5: TLabel;

DataSource 1: TDataSource;

Tablel: TTable;

MaskEditl: TMaskEdit;
'\

Mas.kEdit2:-TMaskEdit;

MaskEdit:3-: TMaskEdit;

MaskEdit4: TMaskEdit;

Label16: TLabel;

Label17: TLabel;

RadioGroup 1: TRadioGroup;

RadioButtonl: TRadioButton;

RadioButton2: TRadioButton;

DataSource2: TDataSource;

Table2-:TTable;

procedure FonnCreate(Sender: TObject);

procedure ButtonlCHck(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button3Click(Sender: Tübject);

o

•



private

{ Private declarations }

public

{ Public declarations }

end;

var

Fonn2: TFonn2;

implementation

uses com400, Unit4, Unit5, Unit12, UnitlO;

{$R *.dfrn}

procedure TFonn2.FormCreate(Sender: TObject);

begin

II .EDIT14.Text:=EDIT14.Text;

editl .Clear;

edit2.Clear;

edit3.Clear;

editd.Clear;

maskedir 1.Clear;

edit6.CLEAR;

edit7 .CLEAR;

edit8.CLEAR;

edit9.CLEAR;

.editl O.CLEAR;
••

maskeditz, CLEAR;

editl 1.CLEAR;

edit13.CLEAR;

71



end;

procedure TForm2.ButtonlClick(Sender: Tübject);

begin

form4.show;

formz.Visible=false;

end;

procedure TFoım~.Button2Click(Sender: 'I'Object);

begin

if radiobutton1.Checked then

bygin

with Tablel do begin

Insert;

fieldbynamee'file_number'). value:=r4it 14.TEXT;

fieldbynaıne('NM1E'). value:=edit 1.TEXT;

fielclbynanıe('SURNAME').value:=edit2.Text;

fieldbynameı'id _no').value:=edit3. Text;

fieldbyname('address'). value=edit-l. Text;

fieldbyname(' dob').value=maskeditz. Text;
••

fieldbynamet'Nationality'). value:=edit6. Text; ,

fieldbynimıe('pasp_no').value.=editj. Text;

fieldbynaıne('risda_no').value:=edit8.Text;

fieldbynaıne('Issue'). value:=maskedit3. Text;

fieldbynamet'Expiry'). value=maskedit-ı. Text;

fieldbynamei'tele'). value :=edit9.Text;

72

•



fieldbyname('orig').value:=editlü.Text;

fieldbynamef'form _number'). value:=editl 1. Text;

fieldbyname('entry _date'). value=maskeditl . Text;

fieldbyname(' comp_ name'). value=edit 13.Text;

Post;

Refresh;

end;

showmessage('Save the Data in Document in Public Cars.... ');

formô. show;

fonn2. visible=false;

formf .Editl. Text:=editl. Text;

fonn5.Edit2.Text:=edit2.Text;

forms .Edit3.Text:=edit3.Text;

fonn5.Editl0.Text:=editl4.Text;

form 12.Edit8.Text:=editl. Text;

form12.Edit9.Text:=edit2.Text;

form12.Editl O.Text:=edit3.Text;

fonn12.Editl lText=editl a.Text;

edit4.Clear;

maskedit2. Clear;

edit6.Clear;

formô.show;
I

form2.Close; end

else

if rapiobutton2. Checked then

begin

73 

•



with Table2 do begin

Insert;

fıeld\)yname('file _number').value:=editl 4 .TEXT;

fieldbyname('NAME'). value:=editl .TEXT;

fieldbyname('SU~AME').value:=eqit2.Text;

fieldbynameı'id _no'). value:=edit3. Text;

fieldbyname('address').value:=edit4.Text;

fielçbynaıne('dob').value:=nıaskedit2.T~xt;

fieldbyname('Nationality'). value:=edit6. Text;

fieldbyname('pasp _no'). value:=edit7. Text;

fieldbyname('risda _no'). value:=edit8. Text;

fieldbynaıne('Issue').value:=maskedit3.Text;

fieldbynaıne('Expiry'). value:=nıaskedit4. Text;

fieldbynameı'tele'). value :=edit9. Text;

fieldbyname('orig').value:=editlO.Text;

fieldbynaıne('form _Iiumber').value=editl 1.Text;

fieldbynaıne('entry_date').value:=nıaskeditl. Text;

fieldbynaıne(' comp :name').value=edit 13.Text;

Post;

Refresh;

end;

showmessaget'Save-the Data in Document ip. Special Cars .... ');

formô.show;

form2.visible:=false;

form5.Editl. Text:=editl. Text;

foqıı5.Edit2.Text:=edit2.Text;

74

•



fonn5'.Edit3. Text:=edit3. Text;

fonn5.Editl0.Text=edit14.Text;

fonn12.Edit8.Text:=editl .Text;

form 12 .Edit9. Text:=edit2. Text;

fonnl2.Edit10.Text:=edit3.Text;

fonn12.Editl 1.Text:=edit14.Text;

editd.Clear;

maskedit2. Clear;

edit6. Clear;

form5.show;

formz.Close; end;

end;

procedure TForrn2.Button3Click(Sender: TObject);

var

x,y,çodeJnteger;

xh;string;

begin

val (editl l.Text,x,code );

y:=x-100;

str (y.xh);

editl 4.Text:=xh;

end;

end.

75



3. Car Information Code

unit Unit5;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics.Controls, Forms,

Dialogs, Menus, StdCtrls, Extf'trls, Mask, DBCtrlsı, DB, Dô'I'ables;

type

TForın5 = classf'IForm)

Enıt5: TEdit;

Panell: TPanel;

lpbell : TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: '(Label;

Label5: TLabel;

Label6: TLabel;

Label": TLabel;

Lab,el8: TLabel;

Panel3: TPanel;

Edit7: TEdit;

Edit8: TEdit;

Label9: TLabel;'
I

•

LabelW: TLabel;

Editl 5: TEdit;

Labell 3: TLabel;

Labell 4: TLabel;

76



Label15: Tl.abel;

Label16: TLabel;

CoınboBoxl: TCombofsox;

CoınboBox3: TComboBox;

Labell 7: TLabel;

Labell 1: TLabel;

Panel2: TPanel;

Edit9: TEdit;

Labell 2: 1Label;

Panel4: TPanel;

Editl: TEdit;

Edit2: TEdit;

Edit3: TEdit;

Labell 8: TLabel;

Editl 1 : TEdit;

Labell 9: TLabel;

Edit12: TEdit;

Editl 4: TEdit;

Editl 7: TEdit;

Label20: TLabel;

MaskEditl: TMaskEdit;

Tablel: TTable;

DataSource 1 : TDataSource;

Editl O: TEdit;

Label21: TLabel;

Label22: TLabel;

77

•



Labe123: 1Label;

Label24: 1Label;

DataSource2: TDataSource;

Table2: TTable;

Butlonz: TButton;

Labe125:TLabel;

Memol: TMemp;

Memo2: TMemo;

Memo3: TMemo;

Memo4: TMemo;

//procedure SetüptionlClick(Sender: TObject);

procedure ButtpnlClick(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

//procedure FormCreate(Sender: TObject);

//procedure Option2Click(Sender: TObject);

I /procedure Button2Click(Sender: TObject );

//procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form5: TForm5;

78 



implementation

uses Unit7, Unit9, Unitll, Unit12, Unit2, Unit14, UnitlO;

{$R *.dfm}

procedure TForm5 .Buttonl Click(Sender: TObject );

var

code,x,y:integer;

begin

val (formlO.spineditl.text,y,code);//form set optiton 10

val (editö.Text.x.code) )/from 5

if (x >= y) then {begin

{if form2.radiobuttonl .checked then begin

with Tablel do begin

Insert;

fieldbyname('date').vah;ıe:=maskeditl. Text;

fieldbyname('kind'). value:=combobox3. TEXT;

fieldbyname('type').value:=edit4.TEXT;

fieldbyname(' car_model').value:=edit5. Text;

.fieldbyname('motor_number').value:=edit6. Text;

fieldbynaıneı' doors_number'j.value=editjz.Text;
••

fieldbyname('type _of_foul').value:=comboboxl. Text;

fieldbyname('body _number').value=editl 3.Text;

fieldbynaıneı'persons'). value=editl 4.Text;

fieldbyname('Car _wieght'),value=editl 5.Text;

fieldbyname('remark'). value:=editl 6.Text;

/ fieldbyname('Motor _capacity'j.value=editl 7 .Text;

79 

•



fieldbyname('car_color').value:=edit8.Text;

fieldbyname('1oading'). value=editl 7. Text;

fieldbyname('Auditor _name'). value=edits. Text;

fieldbyname(' Auditor _:number'). value: =editl 1. Text;

fieldbyname('File_number').value:=editlO.Text;

Post;

Refresh;

form.12.sbow;

fonn5.close;

end;

~nd

else if fonn2.radiobutton2.checked then

begin

with Table2 do begin

Insert;

fieldbyname(' date'). value:=ınıaskeditl. Text;

fieldbyname('kind'). value=comboboxô. TEXT;

fieldbyname('type'). yalue:=edit4. TEXT;
I 

fieldbynameı' car_model').value :=edit5.Text;

fieldbynameı'motor : number').value.=edilô. Text;
" 

fieldbynamef doors_number'). value=edit 12.Text;

fieldbyname('type_of_föul').v~lue:=comboboxl.Text;

fieldbynameı'body _number'). value=editl 3.Text;

fieldbynamet'persons'). value=editl 4.Text;

fieldbyname('Car _wieght').value=edit 15.Text;

fieldbyname('remark').value:=editl6.Text;

80 



fieldbynameı'Motor _capacity'). value:=editl 7.Text;

fieldbynaıne('car_color').value:=~dit8.Text;

fieldbyname('loacling'). value:=edit 17.Text;

fieldbynameı'Auditor _name'). value:=edit9. Text;

fiel'dbyname(' Auditor_ number'). value=editl 1 .Text;

fieldbynaıne('File_number').valu'e:=editlO.Text;

Post;

Refresh;

fonnl2.show;

formô.close;

end;

end else }

pane14.Visible:=true;
I

end;

procedure TForm5.Button2Click(Sender: TObject);

var

code,x,y: integer;

begin

val (formlO.spineditl.text,y,code);//form set optiton 10
~

val (editô.Text.x.code) ;//from 5

if (x >= y) then begin

if form2.radiobuttonl.checked then begin

with Tablel do begin

Insert;

field bynamef date'). value:=maskeditl. Text;

81



fieldbyname('kind'). value:=combobox3. TEXT;

fieldbyname('type'). value:=memo l .TEXT;

fieldbyname('car _mode\l).value:=editS .Text;

fieldbyname('motor _number'). value:=memo2. Text;

fieldbyname(' doors_ number'). value:=editl 2. Text;

fieldbyname('type _of_ foul'). value:=coıriboboxl. Text;

fieldbyııameı'body _number'). value:=memo3. Text;

fieldbynameı'persons'). value:=editl 4.Text;

fieldbyname('Car _wieght'). value:=editl 5. Text;

fieldbyname('remark'). value:=memo4. Text;

fieldbyname('Motor _capacity'). value:=editl 7.Text;

fieldbynameı'car _color'). value:=edit8. Text;

fieldbynameı'loading'). value=editl 7. Text;

fieldbyname(' Auditor_ name'). value:=edit9. Text;

fieldbynameı'Aııditor _..._number').value:=editl 1 .Text;

fieldbynamç('File_number').valtıe:=editlO.Text;

Post;

Refresh;

forml2.show;

form5.close;

end;

end

.else if form2.radiobutton2.checked then

begin

with Table2 do begin

lıisert;

•



fieldbyname(' date'). value:=maskeditl . Text;

fieldbyname('kind').value:=combobox3.TEXT;

fieldbyname('type'). value:=memo l .TEXT;

fieldbyname(' car_ model'). value:=edit5. Text;

fieldbynamef'motor _number').value:=merno2. Text;

fieldbyname(' doors_ number'). value:=edit 12. Text;

fieldbyname('type _of_foul'). value=comboboxl .Text;

fieldbyname('body _nurnber').valu~:=memo3. Text;

fieldbynarne('persons'). value:=editl 4.Text;

fieldbyname('Car _wieght'). value:=editl 5 .Text;

fieldbynarne('rernark'). value:=memo4. Text;

fieldbyname('Motor _capacity').value:=editl 7 .Text;

fieldbyname('car _color'). value:=edit8. Text;

fieldbyname('loading'). value:=editl 7.Text;

fieldbynameı' Auditor_ name'). value:=edit9. Text;

fieldbynameı' Auditor_ number'). value:=editl 1.Text;

fieldbyname('File _number'). value:=editl O.Text;

Post;

Refresh;

end;

forrn12.show;

forrn5 .close;

end;

end;

panel4.Visible:=true;

end;

83

•



procedure TFomıS.FomıCreate(Sender: TObject);

begin

memo 1. Clear;

memoz.Clear;

meıno3. Clear;

memo-l.Clear;

if forın2 .RadioButtonl. Checked then

labe123.Visible:=true

else

ifforın2.RadioBütton2.Checked thetı

lal,)el24.V isible=true;

end·
' '

end.

4. Calculate Payments Screen Code

unit Unitl 2;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Fomıs,

Dialogs, StdCtrls, ExtCtrls, Menus;
"' 

type

TForm12 = class(TFonn)

Buttonl : TButton;

Editl: TEdit;

Edit2: TEdit;

Edit4: TEdit;

,84

•



Edit5: T];:dit;

Edit6: TEdit;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Labelô: TLabel;

Panell: TPanel;

Edit7 '. TEdit;

Panels: TPanel;

Label7: TLabel;

Labe18:TLabel;

Button2: TButton;
I 

Edit3: TEdit;

Edit8: TEd~t;

Edit9: TEdit;

Editl O: TEdit;

Label6: TLabel;

Label9: Tl.abel;

Labell O: TLabel;

Pane12:TPanel;

1vlain1v1enul:Tiv1ain1v1enu;

Optionl: TMenultem;

Setüptionl: TMenultem;

Button3: Tlsutton;

Edttı 1 : TEdit;

85 



form 12.Enabled:=false:
I 

end;

procedure TForml2.Button2Click(Sender: TObject);

var

code,CUSTOM,a,b,c,d,e,f,al O,blO,clO,dlO,elO,flO,glO,hlO,ilOjl O,kl0,110,nettax:inte
ger;

net:real;

aa,bb;cc,dd,ee,ff,aalü,bblü,cclü,ddlü,eelü,fflü,gglü,hhlü,iilüjjlO,kklü,lllO,grosspri
ce:string;

begin

if formz.Radiofnıtronl.Checked then begin

net:=0.0;

val (edit6.Text,a,code);

val (edit4.Text,f,code);

val (editl.Text,b,code);

val (edit2.Text,c,code);

val (edit5.Text,d,code);

val (edit7 .Text,e,code);

val (edit12.Text,CUS-TOM,code);

val (forml O.Editl .Text,alO,code );

val (forml0.Edit2.Text,bl0,coqe);

val (forml0.Edit3.Text,c10,code);

val (forml O.Edit4.Text,dl O,code);

val (form10.Edit5.Text,e10,code);

val (forml0.Edit6.Text,fl0,code);

val (forml O.Edit7.Text,gl O,code);

87 



val (form I O .Editl 2.Text,h 1 O .code);

val (forml0.Edit8.Text,i10,code);

val (forml0.Edit13.Textjl0,code);

val (form10.Edit16.Text,k10,code);

val (form10.Edit15.Text,ııb,code);

str (a,aa);

str (b.bb);

str (c,cc);

str (d,dd);

str (e,ee);

str (f,ft);

str (alO,aalO);

str (blü,bblüt

str (c1Q,cc10)';

str (dlO,ddlO);

str (elO,eelO);

sır (flO,fflO);

str (glO,gglO);

str (hlO,hhIO);

str (ilO,iilO);

str Ulüjjlü);

str (klO,kklO);

str (110,lllO);

nettax:=b+c+d+e+f; //totı,.l tax

begin

ifforın9.checkboxl.checked then //auto gear

•

88 



net:=net+a*al Oil 00: II net price for option

iffotm9.checkbox2.checked then //center luck

net=net+a *b 10 /10()-

ifforrn.9.checkbox3.checked then // elec winc,lows

net:=net+a*cl O il 00;

if form9.checkbox4.checked then //air condutionI 

net:=net+a*dlO 1100; 

if forın9.checkbox5.checked then I/power stiring

net:=net+a*elO /100;

if form9,checkbox6.checked then //ingection

net=net+a*flO /100;

ifform9.checkbox7.checked then //airbag

net:=net+a*glO /100;

if forın9.checkbox8.checked then //elec mirror

net=net+a*h10/100;

ifform9.radiobu~onl.checked then //Roof

net=net+a=it O /100;

if form9.radiobutton2.checked then //Open roof

net=net+a= jlO I 100;

ifform9.cheekboxl0.checked then //audio system
\il

net:=net+a *k10/100;

if formv.checkboxt Lchecked then //al,erttone

net:=net+a *110/100;

end;

net:=net+nettax+a+CUSTOM;

str (net:5:5,grossprice);

89



edit3. text:=grossprice; end

else

if fonn2.radiobutton2.checked then begin

ıiet:=0.0;

val (edit6.Text,ı,.,code);

val (,edit4.Text,f,cod~);

val (editl.Text,b,code);

val (edit2.T.ext,c,code);

val (edit5.Text,d,cof.ie);

val (edit7.Text,e,code);

val (editl2. Text,CUSTOM,code};

val (fornıl9-.Editl.Text,a10,code);

val (forrri19.Edit2.Te~,l:HO,code);

val (fonnl 9.Edit3. Text,cl O,code );

val (fomıl9.Edit4.Text,dl0,code);

val (fonn19.Edit5.Text,e10,code);

val (fornıl9.Edit6.Text,fl0,code);

val (fonn19.Edit7.Text,gl0,code);

val (fonnl9.Edit12.Text,hl0,code);

val (fonnl9.Edit8.Text,il0,code);

val (fonn19.Eqit13.Textj10,code);

val (fonn19.Editl 4.Text,kl 0,code );

val (form 19.Editl 5. Text,11 O .çode );

str (a,aa);

str (b.bb);

str (c.cc);

90

•



str (d,dd);

str (e,ee);

str (f,ff); 

str (alO,aalO);

str (blO,bblO);

str (cl O,cc~O);

str (dlO,ddlO);

str (el ü.eelO);

str (fl0,fflO);

str (glO,gglO);

str (hlQ,hhlO);

str (il O,iilü);

str (jlOjjlO);

str (klO,kklO);

str (11 O,lllO);

nettax,:=b+c+d+e+f; //total tax

begin

if forın9.checkboxl.checked then //auto gear

net:=net+a*al Q/100; // net price for option

if fonn9.checkbo:x2.checked then //center luck

net:=net+a*,b10 /100;

iffonn9.checkbox3.checkedthen // elec windows

net:=net+a*clO /100;

if fonn9.ch~kbox4.checkedthen //air condution

net:=net+a*dlO /100;

if fonn9. checkbox5.checked then //power stiring

91

•



net:=net+a*elO /100;

if fomı9.checkbox6.checked then //ingeıı:tion

net:=net+a*fl O /100;

if fomı9.checkbox7.checked then //air bag

net:=net+a*glü /100;

if fomı9.checkbox8.ı;:hecked then //elec mirror

net:=net+a *hl 0/100;

if fomı9.radiobuttonl.checked then //Roof

net:=net+a*ilO /100;

if fömı9.radiobutton2.checked then //Open roof

net:=net+a*jlO I 100;

if fomı9.clıeckboxl0.checked then //audio system

net:=net+a *kl 0/100;

if fonn9.cheçkbox1 I.checked then //alert t'one

net:=net+a *110/100;

end;

net:=net+nettax+a+CUSTOM;

str (net:5: 5 .grossprice);

edjtJ. text·=g.rosspnc.e,: 

end;

end;

procedure TForrnl2.FomıCreate(Sender: TObject);

begin

edit8.text:=fomı2.editl .text ;

edit9.text:=fornı2.edit2.text;

92 



edit10.text:=fonn2.edit3,.text;

edit12.text:=fo:rın2.editl4.text;

if forın2 .Radio Button 1. Checked then begin

labell l.Visible:=true;

.editl? .Visible:=true;

labell3.Visible:=true; end

else

if fönn2.RadioBtıtton2. Checked then

labe112.Visible:=true;

end;

procedure TFonnl2.Setüptionl Click(Stınder: Tübject);

begin

if ronn2.radiobuttonl.checked then begin

fonnl O.show;

fomı12.Enabled:=false;

end,

else

if fonn2.radiobutton2.checked then

form19.Show;

form12 .Enabled=Ialse;

end;

procedure TFonn12.Button3Click(Sender: TObject);

begin

fonn22.show;

93

••



end;

procedure TForm 12 .Button4Click(Sencfer: TObject );

begin

if form2.RadioButtonl.Checked then

form26.show

else

if form2.RadioButton2. Checked then

form27.show;

end;

end.

NOTE: This codes for public and special operations.

94

•



REFERENCES 

[1] Delphi Development Guide: Inprise press 1999.

[2] Delphi Development Guide: Xavier Pacheco, Steve Teixeira. SAMS.I 999.
[3] Mastering Delphi 5: Marco Cantu. SYBEX. 1999.

[4] Mastering Delphi 5: Marco Cantu. SYBEX. 1998.

[5] Delphi HandBook: Marco Cantu. SYBEX. 1997.
[6] WWW.Raize.com

95


