
NEAR EAST UNIVERSITY

Faculty of Engineering

•

Department of Electrical and Electronic
Engineering

PATTERN RECOGNITION USING NEURAL
NETWORKS

Graduation Project
EE-400

Student: Suleiman Al-derhalli (20010988)

Supervisor: Assoc. Prof. Dr. Ad nan Khashman

Nicosia - 2005

ACKNOWLEDGMENTS

First and Foremost I would like to thank almighty ALLAH for giving me the strength and

sincereness during this Project.

I would like to express my deep gratitude to my Supervisor Assoc.Prof Dr. AD NAN

KHASHMAN, for his great advices. And also, for his many constructive inputs and invaluable

help.

I also wish to thank Mr. ALPER AKANSER, for his valuable and illuminated advices, and his

full support and encouragement during the semester.

And finally, I would like to thank my family especially my father OTHMAN ALDERHALLI,

for giving me the chance to complete my academic study and support me during the

preparation of this project.

I

ABSTRACT

"Artificial neural networks" is a frequently used expression in everyday language,

particularly among computer scientists. When you ask some people who are working in

this area what they are really doing, you sometimes get the short answer: "We are
simulating the brain".

In this project, I intend to demonstrate a general idea about character recognition and go

in details toward Arabic character recognition. A back-propagation neural network with

one hidden layer was used to create an adaptive Arabic character recognition system. The

system was trained and evaluated with input vectors, as well as other different forms of
noisy input vectors.

The objective of this project is to demonstrate a framework for giving good recognition

accura/ to Arabic ~~!~~r ,.WJ»J;51 yppp Jff Pfl))/)!)J] JCC!l/l/C}1 .mCMJ' /}Jtl/ /}Jc J'.f'J'lt'JJJ w}JJ

scale well for inputs, classify efficiently, and have the potential to be robust in the

presence of noisy data input.

II

TABLE OF CONTENTS

--~OWLEDGEMENT I
ABSTRACT II
TABLE OF CONTENTS III
uRODUCTION 1

CHAPTER ONE: NEURAL NETWORKS 3

3
·- What is a Neural Network? 3
. .., Why are Artificial Neural Networks worth studying? 4
.. Benefits of Neural Networks 5
.5 What are Artificial Neural Networks used for? 6
.6 Brains versus Computers: Some numbers 6

1.7 The Biological Neuron 7
1.8 A Model of a Neuron 9
1.9 Medium Independence 11
1.10 Basic Structure 14
.11 Leaming and Training 16

1.11.1 Supervised 17
1.11.2 Unsupervised 20

1.12 Backpropagation 21
1.13 Historical Overview 23
.14 Summary 25

CHAPTER TWO: PATTERN RECOGNITION AND ARABIC
CHARACTER 26

_ .1 Overview 26
__ 2 What is a Pattern? 26
__ 3 Pattern Recognition 27
2.4 Character Recognition 28
.... 5 Arabic Characters 28

2.5.1 Overview of Arabic Characters 28
2.5.2 Arabic Alphabet 29

2.6 Motivation for ANN Approach 30
2.7 Pattern Recognition and Neural Networks 33
2.8 Summary 37

III

CHAPTER THREE: ARABIC CHARACTER RECOGNITION 38

3 .1 Overview
3.2 Problem Statement
3.3 Neural Network

38
38
40
40
42
42
43
43
44
44
47
47

3 .3 .1 Architecture
3.3.2 Initialization

3.4 Training
3 .4.1 Training without Noise
3.4.2 Training with Noise
3.4.3 Training without Noise Again

3.5 System Performance
3.6 Neural Network Training Parameters
3.7 Summary

CONCLUSION
REFERENCES
APPENDIX A

48
49
51

IV

INTRODUCTION

The human brain is organized as a huge network of numerous very simple computational

units, called neurons. During the past half century, the study of artificial neural networks,

modeled after those "natural prototypes" has become more and more popular. Particularly

after the advent of VLSI technology, as computers became more powerful and running

simulations of large artificial networks therefore became easier and faster, the field of

connectionism (which is another name for the area of artificial neural networks) began to

gain importance. The past decade has been the probably most significant one in the

development of connectionist models.

In this project, I want to talk about this development in general and proceeds all the way to

discuss in details one of its applications in a particular case. I chose this topic because of

mainly two reasons. First of all, it is at the heart of present-day research, it represents a

relatively young and progressive field, which makes it extremely interesting. Second, the

connectionist approach is directly applicable to problems of the real world, a very

impressive property for such a recent development in computer science.

Artificial neural networks might make it possible to solve interesting problems that could

not be solved without them (at least not with an acceptable overhead). This refers to

problems that are extremely hard to solve in the usual way with conventional computer

programs, but very easy for the human brain, for instance tasks related to pattern or speech

recognition, where in this project I intend to discuss a very related field under pattern

recognition, where the recognition of Arabic characters using neural network implemented

by the aid of Matlab is going to be our main topic underlying the main concept of pattern

recognition. Furthermore, artificial neural networks allow the development of a totally new

kind of algorithms, algorithms with a highly parallel structure.

1

A back-propagation neural network with one hidden layer was used to create an adaptive

Arabic character recognition system. The system was trained and evaluated with input

vectors, as well as other different forms of noisy input vectors. Experiments tested (1) the

effect on recognition accuracy without noise, and (2) the effect on recognition accuracy

with a Gaussian distributed noise added to the input vector. Results showed reduced

accuracy in recognizing characters when training without noise and it illuminated the fact

that a better performance and more accuracy of the system is achieved by training with

noise, since noise is an unavoidable problem in the real world!!.

I start the actual project with a description of theoretical foundations of neural network in

the first chapter, including a discussion of training an artificial neural network and an

explanation of the basic concepts of the biological equivalent. Besides, I try to give a fair

summary of the historical issue of the field.

Chapter two describes the formal introduction of the pattern recognition. Where it mainly

concerns about character recognition in general and gives details about Arabic characters in

particular. It also points to some desirable patterns, by presenting a bunch of interesting

practical problems of pattern recognition.

Chapter three, discusses how Arabic character recognition can be done with a supervised

learning backpropagation neural network. It determines the architecture of the neural network,

and also examines the mechanism of training the neural network with noise free Arabic characters

and enhances its performance by training it again with noisy inputs, and it ends up by showing the

general performance for both types of training.

The aims of the work presented within this project are:

• To understand and to have a good insight of Neural Network in general.

• To investigate Pattern Recognition.

• To introduce the reader with some types of patterns in general and Arabic alphabet in

particular.

• To Simulate a working Neural Network that is able to recognize Arabic alphabet.

• To be familiar with the Neural Network toolbox in MATLAB.

2

CHAPTER ONE

NEURAL NETWORKS

1.1 Overview

This chapter present Neural Networks in general, and tends to help the reader to understand

what artificial Neural Networks are, how they work, including a discussion of training an

artificial neural network and an explanation of the basic concepts of the biological

equivalent in general.

1.2 What is a Neural Network?

Neural Networks have a large appeal to many researchers due to their great closeness to the

structure of the brain, a characteristic not shared by more traditional system.

In an analogy to the brain, an entity made up of interconnected neurons, neural networks

are made up of interconnected processing elements called units. Which respond in parallel

to a set of input signals given to each. The unit is the equivalent of its brain counterpart, the

neurons.

There are many definitions for a Neural Network:

1-Neural network: is a massively parallel-distributed processor that has a natural propensity

for experiential knowledge and making it available for use.

2-Neural network: is machine that is designed to model the way in which the brain

performs a particular task or function of interest, the network is usually implemented using

electronic components or simulated in software on digital computers.

3

3-Neural networks: are also referred to in the literature as neurocomputers, connectionist

network, parallel-distributed processors, etc.

4-Neural networks: are different paradigms for computing:

A- Von Neumann machines are based on the processing/memory abstraction of

human information processing.

B- Neural networks are based on the parallel architecture of animal brains.

5-Neural networks: are forms of multiprocessor computer system, with

A- Simple processing elements.

B- A high degree of interconnection.

C- Simple scalar messages.

D- Adaptive interaction between elements.

6-Neural network: a mathematical model composed of a large number of processing

elements organization in to layers.

1.3 Why are Artificial Neural Networks worth studying?

1. They are extremely powerful computational devices (Turing equivalent, universal

computers).

2. Massive parallelism makes them very efficient.

3. They can learn and generalize from training data - so there is no need for enormous

feats of programming.

4. They are particularly fault tolerant - this is equivalent to the "graceful degradation"

found in biological systems.

4

5. They are very noise tolerant - so they can cope with situations where normal

symbolic systems would have difficulty.

6. In principle, they can do anything a symbolic/logic/rule based system can do, and

more. (Though, in practice, getting them to do it can be rather difficult.)

1.4 Benefits of Neural Networks

The use of neural networks offers the following useful properties and capabilities:

I-Nonlinearity: a neuron is basically a nonlinear device. Consequently, a neural network,

made up of an interconnection of neurons is itself nonlinear.

2-Input - output mapping: popular paradigm of learning called supervised learning involves

the modification of the synaptic weights of a neural network by applying a set of labeled

training samples or task examples.

3-Adaptively: neural networks have a built-in capability to adapt their synaptic weights to

changes in the surrounding environment.

4-Evidential response: in the context of pattern classification, a neural network can be

designed to provide information may be used to reject ambiguous patterns, should they

arise, and thereby improve the classification performance of the network.

5-Contextual information: knowledge is represented by the very structure and activation

state of a neural network.

5

1.5 What are Artificial Neural Networks used for?

As with the field of AI in general, there are two basic goals for neural network research:

Brain modeling: The scientific goal of building models of how real brains work. This can

potentially help us understand the nature of human intelligence, formulate better teaching

trategies, or better remedial actions for brain damaged patients.

Artificial System Building: The engineering goal of building efficient systems for real

world applications. This may make machines more powerful, relieve humans of tedious

tasks, and may even improve upon human performance. These should not be thought of as

competing goals. We often use exactly the same networks and techniques for both.

Frequently progress is made when the two approaches are allowed to feed into each other.

There are fundamental differences though, e.g. the need for biological plausibility in brain

modeling, and the need for computational efficiency in artificial system building.

1.6 Brains versus Computers: Some numbers

There are approximately 10 billion neurons in the human cortex, compared with 10 of

thousands of processors in the most powerful parallel computers. Each biological neuron is

connected to several thousands of other neurons, similar to the connectivity in powerful

parallel computers [1].

Lack of processing units can be compensated by speed. The typical operating speeds of

biological neurons is measured in milliseconds (10-3 s), while a silicon chip can operate in

nanoseconds (10-9 s).

The human brain (figure 1.1) is extremely energy efficient, using approximately 10-16

joules per operation per second, whereas the best computers today use around 10-6 joules

per operation per second. Brains have been evolving for tens of millions of years;

computers have been evolving for tens of decades.

6

Partetaf Lobe
(touch, pressurl"t.
lemperatt..1te i!nd pafn)

Occlpaal Lobe
{'\!is.ion)

(re&s.0ni1"19. ptannlng.1·· '\. '\ ~
part of spea<:h and movcniient. . ~ ·
"""'"""' and l>f°'>•am-"°"ving) ' ~ CEREBELLUM

Tempo..-at Lobe BRAIN STEM
{hearing e11d\ roornory)

Figure 1.1 Layout of a Biological Neural Network (11

1.7 The Biological Neuron

The brain is a collection of about 10 billion interconnected neurons. Each neuron is a cell

(figure 1.2) that uses biochemical reactions to receive process, and transmit information.

Figure 1.2 Schematic of biological neuron [2]

7

A neuron's dendritic tree is connected to a thousand neighboring neurons. When one of

those neurons fire, a positive or negative charge is received by one of the dendrites. The

strengths of all the received charges are added together through the processes of spatial and

temporal summation. Spatial summation occurs when several weak signals are converted

into a single large one, while temporal summation converts a rapid series of weak pulses

from one source into one large signal. The aggregate input is then passed to the soma (cell

body). The soma and the enclosed nucleus don't play a significant role in the processing of

incoming and outgoing data. Their primary function is to perform the continuous

maintenance required to keep the neuron functional. The part of the soma that does concern

itself with the signal is the axon hillock. If the aggregate input is greater than the axon

hillock's threshold value, then the neuronfires, and an output signal is transmitted down the

axon. The strength of the output is constant, regardless of whether the input was just above

the threshold, or a hundred times as great. The output strength is unaffected by the many

divisions in the axon; it reaches each terminal button with the same intensity it had at the

axon hillock. This uniformity is critical in an analogue device such as a brain where small

errors can snowball, and where error correction is more difficult than in a digital system.

Figure 1.3 The synapse [2]

8

Each terminal button is connected to other neurons across a small gap called a synapse

(figure 1.3). The physical and neurochemical characteristics of each synapse determine the

strength and polarity of the new input signal. This is where the brain is the most flexible,

and the most vulnerable. Changing the constitution of various neuro-transmitter chemicals

can increase or decrease the amount of stimulation that the firing axon imparts on the

neighboring dendrite. Altering the neurotransmitters can also change whether the

stimulation is excitatory or inhibitory. Many drugs such as alcohol and LSD have dramatic

effects on the production or destruction of these critical chemicals. The infamous nerve gas

sarin can kill because it neutralizes a chemical (acetylcholinesterase) that is normally

responsible for the destruction of a neurotransmitter (acetylcholine). This means that once a

neuron fires, it keeps on triggering all the neurons in the vicinity. One no longer has control

over muscles, and suffocation ensues [2].

1.8 A Model of a Neuron

As complicated as the biological neuron is, it may be simulated by a very simple model

(figure 1.4(a)). The inputs each have a weight that they contribute to the neuron, if the input

is active. The neuron can have any number of inputs; neurons in the brain can have as many

as a thousand inputs. Each neuron also has a threshold value. If the sum of all the weights

of all active inputs is greater than the threshold, then the neuron is active. For example,

consider the case where both inputs are active. The sum of the input's weights is 0. Since 0

is smaller than 0.5, the neuron is off. The only condition which would activate this neuron

is if the top input were active and bottom one were inactive. This single neuron and its

input weighting performs the logical expression A and not B.

9

(a) (b)

(c)

Figure 1.4 A model of the neuron

There is a variation on this model that sets the threshold to O on all neurons, and adds an

extra input that is always active. The extra input is weighted to account for the missing

threshold (figure 1.4(b)). The two models are mathematically identical. The advantage of

the second version is that it simplifies the math involved in automatic learning and

implementation, since there is only one type of variable to keep track of. Both of these

simple models accurately simulate the most important aspects of the biological neuron,

though they do leave out some features such as temporal summation. A more complicated

model could easily account for these, but for most requirements the simple models suffice.

10

The previous examples showed that A and not B was solvable with a single neuron. This is

a fairly obscure logical construct, and it leads to the question of what else a single neuron is

capable of. The easiest way to find out is to play with a neural network computer program.

A programming language such as BrainBox program [3] is a Windows application that

allows one to watch and modify neural networks as they execute. It doesn't take long to find

that of the 16 two-input logical functions, 14 of them can be constructed with a single

neuron (XOR and XNOR both require two neurons). Since neurons are functionally

complete, this means that in addition to logic, they are also capable of storing and retrieving

data from 'memory'. A neural network can store data in two formats. Permanent data (long

term memory) may be designed into the weightings of each neuron. An example of this is

the self-teaching network. Temporary data (short term memory) can be actively circulated

in a loop, until it is needed again (figure 1.4(c)). In this example, activating the top input
\

briefly will activate the neuron. Since the output of the neuron feeds back to itself, there is a

self-sustaining loop that keeps the neuron firing even when the top input is no longer

active. Activating the lower input suppresses the looped input, and the node stops firing.

The stored binary bit is continuously accessible by looking at the output. This configuration

is called a latch. While it works perfectly in this model, a biological neuron would not

behave quite this way. After firing, a biological neuron has to rest for a thousandth of a

second before it can fire again. Thus one would have to link several neurons together in a

duty-cycle chain to achieve the same result.

1.9 Medium Independence

The neuron models are medium independent. They may be built out of organic materials,

electrical components, lenses and mirrors, hydraulics or dominoes. The electronic

implementation of a neuron (figure 1.5) is based on an operational amplifier (op-amp

comparator).

These versatile components can determine which of two voltages is larger. They are

accurate to about 0.001 volts. The three potentiometers (variable resistors) are used to set

the neural weightings in this implementation. If one is set midway, then the associated

11

input would have no effect on the system because the voltage would be evenly applied

between the two op-amp inputs, resulting in a weighting of 0.

Set the potentiometers towards the top, and the op-amp is positively biased. Since op-amps

have a natural threshold of O volts difference, an extra bias input is required. Any number

of additional inputs and potentiometers may be inserted. It is ironic that the lowly

operational amplifier that was developed for the long-obsolete analog computers, is making

a come-back as dedicated computer systems start to use neural networks instead of (or in

addition to) conventional microprocessors.

To create a large neural network, one could either construct thousands of op-amp circuits in

parallel, or one could merely simulate them using a program executing on a conventional

serial processor. From a theoretical stance, the solutions are equivalent since a neuron's

medium does not affect its operation. By simulating the neural behavior, one has created a

virtual machine that is functionally identical to a machine that would have been

prohibitively complex and expensive to build. A computer's flexibility makes the creation

of one hundred neurons as easy as the creation of one neuron. The drawback is that the

simulated machine is slower by many orders of magnitude than a real neural network since

the simulation is being done in a serial manner by the CPU.

12

LD

>I r-- ~ ' set- Ill• ITT /+ I'-._
+ '

IJl IJl
ISi E IS) E
ISIL

r-HI•
ISIL

(.00 c.oo
-

L ro
(LI
C ::x::•

LD_I
~
IJl
ro•
OJ > ITT +

L ro
(LI
C ::x::•

LD_I

? u
+-'
J ~ I Q__
C
H

> ITT L + ro
(LI
C ::x::•

LD_I

~

i~r OJ
+-'
J ~ I Q__
C
H

> ITT +

a:
+-'
J
Q__
C
H

8 _J

N

+-'
J
0

IJl
+-'
(LI
..::(u
0
IJl

:YIU rn L 0
C (LI ro +-' >
C+-'LD ro ro .•....•
_(I _(I

(LI >
LITT > m LD

:YI
+-' ...I) L
J 0
Q.. "U <:+--­
+-' (LI
::IL "U
0 (LI (LI

3+-' -u o ro
C Q. L ro

+-' +-'
IJl .•...•.•...•

IJl +-'JJ
(LI J u u
+-' O..LL
0 C·-<·-<
Z HUU

Figure 1.5 Electronic implementation of a neuron [2]

13

1.10 Basic Structure

Like in the natural model, artificial neural networks also consist of a number of simple

computational units (neurons or sometimes also nodes), connected with each other.

Associated with each connection is a so-called weight which corresponds to a synapse in

the biological model. Those weights might be positive (excitatory) or negative (inhibitory).

Except for the so-called input units (whose values are set to the input to the network), each

of these artificial neurons has several connections feeding into it.

These connections carry output values of "earlier" neurons. The unit multiplies each of its

input values with the corresponding weight and sums the resulting products. This sum is

then mapped (by a function f) to an output value which serves as input to "later" neurons

(except for the so-called output units whose output values represent the output of the entire

network).

Theoretically spoken, if i.; i2 , , in are the inputs of unit j. And w11' w12, w13 , , w1" are

the weights associated with these inputs, then the output o 1 of this unit is determined by

(1)

where f is the so-called activation function.

The outputs of artificial neurons are usually restricted to the range between O and 1, and the

activation function has to assure this property, so in this case, f can be the sigmoidal

"squashing" function (depicted in figure 1.6) or a thresholded piecewise linear function. In

some applications, f is just the identity function, in which case the units are called linear

and its output is just the weighted sum of its inputs. Binary units have only two discrete

possible output values, 0 or 1. The activation function is in this case a step function, like the

signum function.

14

y
1

0

Figure 1.6 The sigmoidal "squashing" function

The nodes in an artificial neural network are usually grouped in layers, each consisting of

one or more artificial neurons. There exist several types of topologies that determine how

the interconnection networks look like. Common to all those network topologies is that

there is one input layer and one output layer. The units of the input layer do not perform

any computation; the values at their outputs are just set equal to their input values.

The simplest type of artificial neural network is a so-called perceptron which consists

merely of an input layer, an output layer, and weighted connections in between (see for

instance [4]).The perceptron is also the oldest type of artificial neural network. It can solve

a bunch of interesting problems, but unfortunately, it is not applicable to many other

problems. For many tasks, it is necessary that there are several (at least one) layers, called

hidden layers, between the inputs and the outputs.

The probably most popular and most frequently used type of topology is represented by so­

called feed-forward networks, where the units of each layer are connected only to units of

"later" layers. In recurrent networks, there are also feedback connections to units in

"earlier" layers or even within one layer. Figure 1.7 depicts a typical representative for each

of the network types mentioned above.

There are some artificial models that differ from the network types presented in this

subsection, such as the Hopfield nets or Boltzmann machines. For consistency reasons, in

order to avoid confusion, I decided not to talk about them in detail. For further information,

please see, for example, [5], [6], or [7].

15

,~~
---)-----------~
J

/ ~~

Input layer
perceptron feed-forward net recurrent .network

Figure 1.7 Different network topologies (all connections are weighted) [5]

In the remainder of this paper, biological neural networks are of minor interest. Therefore, I

can get rid of the adjective "artificial". Whenever I use the notion "neural network" from

this point on, I mean artificial ones. When I want to specifically mention the natural model,

I will explicitly say so.

1.11 Learning and Training

One way to look at a neural net is to see it as a special kind of computer memory. Unlike

the structure of conventional memory, there are no such things as memory cells that contain

a bunch of binary bits and that can be accessed via some fixed address. "Neural memories"

(i.e. memories realized by means of a neural net) are different in that they associate input

patterns with certain output patterns. Thus, neural nets are often referred to as associative

memories. In this sense, the inputs stand for an "address" and the corresponding outputs

stand for the information stored at this address.

16

To "store" information, one has to adjust the weights in a neural net. The weights

determine, from layer to layer, which units of a "later" layer are to be activated depending

on the activation of units in "earlier" layers. So in total, the weights are responsible for the

mapping from input to output patterns. Therefore, adjusting the weights, adapting them to

react to certain input patterns appropriately, needs to be done before one can try to use the

net to perform anything useful.

Therefore, the usage of a neural net is in most cases divided into two parts. First, a so­

called training or learning phase, and second, the actual application phase. The training

phase serves as an initialization step. The information to be stored gets coded into the

weights. The adaptation of the weights is done by confronting the net over and over again

with the patterns to be stored. In this sense, the network learns in a trial-and-error fashion

by adjusting its weights.

Many neural networks continue adapting their weights during the application phase based

on recently "learned" concepts in order to improve their performance. But in general,

during the application phase, neural nets make use of the information stored in the weights

in some way or another.

I now want to talk about the two basic methods used in the training phase: supervised and

unsupervised learning.

1.11.1 Supervised

There are two kinds of supervised learning. The most popular and most widely used

technique for training a neural net is called learning by error correction. The other branch

of supervised learning is entitled reinforcement learning.

Learning by Error Correction If a network is trained using the method of error

correction, the net is considered to learn certain mapping from inputs to outputs. The net is

presented with a set of input patterns, which are entered at the input layer and "shuffled"

through the net all the way up to the output layer.

17

A teacher (e.g. a human operator) compares the resulting output pattern with a desired or

target output pattern. According to the current error (the deviation of the two patterns or

vectors from each other), the weights in the neural network are adapted using one of several

learning algorithms in order to reduce (or correct) the error.

One of the first learning algorithms is given by the delta rule (see [8]):

(2)

(3)

Here, w jk is the synaptic weight from input neuron k to output neuron j , t j is the target

output of neuron j , o j its actual output, ik its actual output, k and 1J a positive factor of

proportionality called learning rate. The rule tells us that we get the new value of a weight

by adding a certain, weight-specific "delta".

In other words, the change of a weight feeding into an output unit is the bigger the more the

actual output deviates from the target output. Besides it is proportionate to the value

coming from input unit k . These both make sense. If the difference between actual and

target output is zero, no changes need to be made to this weight. Secondly, the bigger the

"flow" through this connection is (the bigger ik), the bigger is the contribution of this

weight to the error in o j • That means for example, if i k is zero, there is no justification for

changing the weight w jk , because this weight cannot be responsible for the error in o j •

This rule works well for single-layer networks (i.e. perceptrons), but cannot be applied to

general feed-forward nets, since there is no information concerning "targets" for hidden

units, so the delta rule does not tell us how to change the weights feeding into these units.

On the other hand, we cannot limit ourselves to networks without hidden units, since it has

been proved that they are necessary for some tasks (see [8,10]).

18

To build general networks that are able to implement arbitrary types of mappings from

input patterns to output patterns, there is no way to get around hidden units. However, the

human operator does not know in advance how the net will implement the task at hand.

Weights feeding into hidden layers correspond to internal representations which are

important for the net, but not for the environment.

Rumelhart and his research group introduced in 1986 a generalization of the delta rule that

works also for hidden units [8]. Their algorithm is called backpropagation, and it represents

the state-of-the-art learning algorithm for multilayer feed-forward nets. As far as I know,

there is almost no recent paper on artificial neural networks that does not mention

backpropagation in some way or another. That is why I decided to dedicate the following

subsection entirely to this algorithm.

Backpropagation does not only work for feed-forward nets, it can also be applied to

recurrent networks, as Rumelhart shows in his original paper [8].

Genetic Algorithms In addition to the method of adapting the weights according to a

certain learning rule, a more evolutionary approach can be used. Genetic Algorithms

involve creating a "generation" of "individuals" (e.g. a set of neural networks with

different topologies and/or different weights) and "producing" new generations which are

hopefully "better" or "fitter". This is done by having the individuals mutate their features

(e.g. change some of the weights in the network) or reproduce themselves and by allowing

crossovers between two individuals, all this according to stochastic rules.

It is then determined which individuals of the new generation may survive and which of

them have to die by means of evaluating a fitness function, which measures the quality of

an individual (e.g. the conformity of the actual output of a neural net to the desired output)«.

The whole process is then repeated generation by generation (and always the "fittest" are

most likely to survive) until finally an "optimal" individual is founds. This "trial-and-error"

approach imitates the "natural" evolution process to some extent.

Evaluating the fitness function is somewhat similar to calculating the deviation between

actual and desired outputs, so Genetic Algorithms are related to learning by error

correction in some sense. Genetic Algorithms represent a very interesting subject, but

19

unfortunately, it would exceed the range of this paper, if I discussed it in full detail. Hence,

I have to refer the reader to the literature (e.g. [6, 7]).

Reinforcement Learning In reinforcement learning, there is no teacher telling the net how

good its output is and how it has to be corrected. The only exterior feedback to the net is a

signal given by a critic, telling if the current output is good or bad, right or wrong, desired

or not. That means the net is only provided with scalar information, a single bit saying yes

orno.

If the signal from the critic indicates that the current output is incorrect, the net does

therefore not know what is wrong or how far its answer deviates from the desired one. The

solution to this problem involves generating a teacher's signal from the critic's response

and then using methods similar to those described above when talking about learning by

error correction [4].

The major drawback of the reinforcement learning paradigm is that it is somewhat

unrealistic in the sense that critics often provide more than just a scalar yes/no information

(see [4]). The situation of a child trying to learn to ride a bike, for example, does definitely

not belong to error correction learning, since the child is not told in detail which muscles to

use or which movements to make. Rather, it is part of reinforcement learning, since the

child notices what happens if certain movements are made in a certain order. This exterior

information can be interpreted as the signal of a critic, and it is not at all scalar. The child

not only learns whether or not it does the right things, it also learns how well it does.

1.11.2 Unsupervised

When there is no signal whatsoever providing the net with information about the quality of

the current output, neither a teacher indicating a desired output nor a critic deciding

whether or not the net works correctly, the learning is said to be unsupervised.

20

In this case, learning no longer means memorizing or storing input/output mappings, but

discovering regularities in the input data. Thus, unsupervised learning cannot take place

without those regularities. Here, the net can be really said to "program itself', it "acts"

complete! y independent! y.

Some researchers think that unsupervised learning is the only biologically sound learning

paradigm (see [10]), but on the other hand, supervised techniques are in widespread use and

yield excellent results concerning technological problems.

Finally, I want to add that one approach to apply unsupervised learning involves, like in

reinforcement learning, generating a target output in a certain way and thus providing the

net with a teacher signal [4]. Then the adaptation of weights can again be done using

"supervised" procedures like backpropagation.

1.12 Backpropagation

The most important and most popular learning algorithm was introduced by Rumelhart and

his colleagues in 1986 [8, 9]. The algorithm works with a generalization of the delta rule to

multi-layer feed-forward networks, that means in particular to networks with hidden units.

The algorithm is called backpropagation, and it is based on the mathematical method of

gradient descent. Rumelhart begins his original paper by presenting a derivation of the

delta rule that shows that the delta rule also implements gradient descent.

The idea is to define an error function

(4)

Where j varies over all output units and all input/output patterns. This function is assumed

to be a function of the weights, and the ultimate goal is to minimize this function (i.e.

minimize the error) by adjusting the weights. There is no formula for the error function; the

only known pieces of information are the current point in weight space and the current

output, or its deviation from the desired output, respectively.

21

The great breakthrough now was to show that it is somehow possible to calculate the

gradient of the error function, i.e. the partial derivatives of the error function with respect to

each of the weights. The derivation of this result involves the one-dimensional and higher­

dimensional chain rules, and I do not want to go into details (see [8]). What I only want to

say is that in a backpropagation net, one first performs a forward pass, shuffling the input

data through the network, and then a backward pass, computing, with the help of a

recursive formula8, certain error signals, which are then used to calculate the partial

derivatives. The backward pass with the error propagation provided the name of the

algorithm.

To implement gradient descent, one has to move the weight vector in the direction of the

steepest descent which is the direction of the negative gradient. And this is exactly the

adaptation rule for backpropagation. The size of the step in this direction is determined by

the learning rate which serves (like in the delta rule) as a factor of proportionality.

Moving the weight vector in the direction of the negative gradient means moving it towards

a (local) minimum of the error function. However, to be mathematically precise, the step

size should be infinitely small, but this would take infinitely long. So, backpropagation uses

a bigger step size, thus only approximating gradient descent and risking to "jump over" the

minimum in one step. To illustrate this, let me assume the one-dimensional case, where E

is a function of only one independent variable w . Suppose, for simplicity that E is the

parabola depicted in figure 1.8.

E ,;
I
! I ' ·, i

' f il l
\ I
\ /
\ /
\ I
\ I

\.'-_/
'-------,----,;,- w

Minium1n

Figure 1.8 A one-dimensional error function

22

This special error function has a single local and global minimum. If the current value for

w is too far left, the derivative dE is negative, and moving in the direction of the negative
dw

derivative means really marching right, i.e. adding a positive value, which takes w closer

to the minimum (if the step size is small enough, so that w does not jump over the

minimum). If w is too big, it is the same: moving towards the negative derivative means

marching towards the minimum.

This adaptation method is applied iteratively, again and again for the input/output patterns

to be learned, until the deviation of the actual output from the desired output is satisfyingly

small, or until the weight vector converges to a local minimum. Although it may take very

long until the process converges or until the "optimal" learning rate is found, and despite

the problem with the local minima, the backpropagation algorithm often yields very good

results, particularly since it can be applied very easily (and for all weights of one layer in

parallel).

There are numerous learning algorithms that are based on backpropagation. Many of them

just try to eliminate disadvantages, like for example adaptive backpropagation, where each

weight has its own individual learning rate, and these learning rates are adapted during

learning. Others seem to point in a to tally different direction, like the scaled conjugate

gradient algorithm [11) or the cascade-correlation algorithm [12, 13).

But I claim that also these new developments would not have been possible without the

invention of and inspiration by the backpropagation algorithm.

1.13 Historical Overview

One of the first points in history associated with the development of artificial neural

networks is the year 1943, where McCulloch and Pitts introduced their M-P neuron (see

[10)).These neurons receive a number of inputs and produce one single binary output

depending on whether or not a certain threshold is reached or exceeded by the weighted

sum of the inputs. The weights can only take on one of two values: + 1 or -1.

23

An interesting application of this model is to use one single neuron as a perceptron to

implement logic gates as mentioned before. For example, if there are m inputs, all of the

weights are + 1, and the threshold is set to m , then the output turns out to be the AND of
the inputs. If the threshold is set to 1 with the same setting as far as weights are concerned,

the output returns the logical OR of the inputs. Finally, if there is only one (binary) input

whose weight is set to -1, and the threshold is set to 0, then the output represents the NOT

of the input.
Hebb postulated in 1949 that an important property of the strengths of the connections in

the biological neural network of the human brain is changing in time as the organism

learns. Hebb's proposal triggered a lot of research effort in the field of adaptive neural

networks, and a preliminary climax was reached when, in 1958, Rosenblatt showed how to

train a network consisting of M-P neurons. In 1960, Widrow and Hoff proposed a variant of

the perceptron: the adaline (an acronym for ADAptive LINear Element). They also

introduced the now famous delta rule, which I already mentioned in the section about

supervised learning.
Let me return to the idea of implementing logical functions with neural networks. Minsky

and Papert proved in 1969 that it is not possible for elementary perceptrons to learn the

XOR (exclusive or) function. They showed that one single M-P neuron is not enough and

that hidden units are necessary to implement really all kinds of mappings. So the focus in

the neural network community changed from elementary perceptrons to multi-layer feed-

forward nets.
The problem with multi-layer networks is that there are no "target values" for hidden units.

Therefore, the delta rule, which adjusts the weights feeding into a neuron proportionately to

the deviation of its output from the target output, is not applicable. Thus, it was extremely

difficult to train these networks for a relatively long period of time, because one simply was

not sure how. In 1986, as already mentioned several times, a group around Rumelhart

introduced a learning algorithm that generalizes the delta rule to general feed-forward

networks. This algorithm, which is called backpropagation (for a description see the

section on this learning method), has been since then the standard technique for training,

neural nets (see [10] for more details).

24

1.14 Summary

This chapter showed that biological neurons, where it is mainly formed of a cell body,

axons, dendrites and synapses, are able to process and transmit neural activation. And the

threshold Logic Unit is a crude approximation to real neurons that performs a simple

summation and thresholding function on activation levels.

Appropriate mathematical notation facilitates the specification and programming of

artificial neurons and networks of artificial neurons.

Also, explained the structure of the neural networks, and then learning processes was

determined by different laws and was subdivided into the two basic methods used in the

training phase: supervised and unsupervised learning.

25

CHAPTER TWO

PATTERN RECOGNITION AND ARABIC CHARACTERS

2.1 Overview

This chapter presents an overall overview of patterns, pattern recognition, and character

recognition and goes all the way to give a general sight to the reader about Arabic

characters, and also, stresses the aim of using neural networks in recognizing patterns

and its motivation.
Also, in this chapter a discussion of a wide range of methods for pattern recognition by

neural networks is provided.

2.2 What is a Pattern?

What is a pattern? A pattern is essentially an arrangement or an ordering in which some

organization of underlying structure can be said to exist. We can view the world as

made up of patterns. Watanabe (1985) [14] defines a pattern as an entity, vaguely

defined, that could be given a name.

A pattern can be referred to as a quantitative or structural description of an object or

some other item of interest. A set of patterns that share some common properties can be

regarded as a pattern class. The subject matter of pattern recognition by machine deals

with techniques for assigning patterns to their respective classes, automatically and with

as little human intervention as possible. For example, the machine for automatically

sorting mail based on 5-digit zip code at the post office is required to recognize

numerals. In this case there are ten pattern classes, one for each of the 10 digits. The

function of the zip code recognition machine is to identify geometric patterns (each

representing an input digit) as being a member of one of the available pattern classes.

26

A pattern can be represented by a vector composed of measured stimuli or attributes

derived from' measured stimuli and their interrelationships. Often a pattern is

characterized by the order of elements of which it is made, rather than the intrinsic

nature of these elements. Broadly speaking, pattern recognition involves the partitioning

or assignment of measurements, stimuli, or input patterns into meaningful categories. It

naturally involves extraction of significant attributes of the data from the background of

irrelevant details. Speech recognition maps a waveform into words. In character

recognition a matrix of pixels (or strokes) is mapped into characters and words. Other

examples of pattern recognition include: signature verification, recognition of faces

from a pixel map, and friend-or-foe identification. Likewise, a system that would accept

sonar data to determine whether the input was a submarine or a fish would be a pattern

recognition system.

2.3 Pattern Recognition

Pattern recognition is the ability to categorize and identify images. When input enters

one's eyes, one's brain instantly sorts and makes sense of a vast amount of visual data,

allowing one to recognize a tall brown and green object as a tree. This is an amazingly

complex operation requiring hundreds of thousands of neurons and a lifetime of

experiences. For computer scientists, replicating this function has turned out to be

overwhelmingly difficult.

One of the major features of modem computers (which will soon be revealed as a

weakness) is their ability to execute sequential programs the same way each time. Each

step is an exact instruction. Shown two identical photos of a tree, a computer can match

them much faster than the brain by comparing the pixels in the image one by one.

However, the simple true or false comparisons of the computer fail miserably when

shown two photos of the same tree from two different angles. Any difference, no matter

how slight, makes two images unequal. Obviously, no two images encountered in the

real world will be exactly the same, but the human brain seems to effortlessly deal with

this complication.

A pre-programmed algorithm fails for pattern recognition, so computer scientists have

had to use different techniques. Fuzzy logic has been applied in this field, but by far the

27

most successful method has been neural networking. The brain has evolved over

millions of years towards this purpose, so why not use it as a model? The reason that

neural networks work so-well is because of their parallel nature. Even if two patterns are

not identical, if they have enough features in common, a neural network will be able to

categorize them.

2.4 Character Recognition

It is often useful to have a machine perform pattern recognition. In particular, machines

that can read symbols are very cost effective. A machine that reads banking checks can

process many more checks than a human being in the same time. This kind of

application saves time and money, and eliminates the requirement that a human perform

such a repetitive task.

2.5 Arabic Characters

2.5.1 Overview of Arabic Characters

Arabic is a language spoken by Arabs in over 20 countries, and roughly associated with

the geographic region of the Middle East and North Africa, but is also spoken as a

second language by several Asian countries in which Islam is the principle religion (e.g.

Indonesia). However, non-Semitic languages such as Farsi, Urdu, Malay, and some

West African languages such as Hausa have adopted the Arabic alphabet for writing

[15]. Due to the cursive nature of the script, there are several characteristics that make

recognition of Arabic distinct from the recognition of Latin scripts or Chinese (see

Figure 2.1) [16]. The following section summarizes the nature of these differences.

28

• r .,.
~

~ ,,,.
~ ~' ' ~ ..;... •

Xcc,' lrcc' Jii111 Th!aa' Toa' Dec' 'Atif

~ ~ ..r ~ J •
j ~ ~

~-d lihiir1 1iiin Zaa!,! Raa' Thaal Oaa\

M • ~

t 4J -.J t j; ~ JP
Qacf Fae' {ihctJO 'Ayr1 Th: cc' led' Q.aad

.s J "" ~ r i ,,,
-...J ••• - Yaa' \!laaw Haa' Nuun lMiim Laa111 Kaai

Figure 2.1 Letters of the Isolated Arabic Alphabet

2.5.2 Arabic Alphabet

Arabic has 28 letters in the alphabet. It is based on 18 distinct shapes that vary

according to their connection to preceding or following letters. Using a combination of

dots and symbols above and below these shapes, the full complement of 28 consonants

can be constructed.
Arabic is a cursive language. There are no capital letters and some letters are not

connected to the letters that follow them (letters in blue in Figure 2).Thus, words cannot

be segmented based on pen-up/pen-down information or space between letters. Block or

hand printed letters do not exist in Arabic. Moreover, the cursive nature of the language

makes recognition more difficult. In summary,

Many researchers have been working on cursive script recognition for

more than three decades. Nevertheless, the field remains one of the most

challenging problems in pattern recognition and all the existing systems

are still limited to restricted applications [17 J.

Arabic is written from right to left. Since the proposed application area provides letters

in an isolated form, segmentation is assumed and direction of writing is not an issue.

29

However, if our system automatically segmented words for recognition, knowledge of

, the direction of writing would assist in segmentation and recognition.

Arabic has four forms for each letter depending on the position of the letter in each

word. These are initial, medial, final and isolated (see Figure 2.2) [18). A more

generalized system would need to train 60 separate classes rather than 15 classes (for

isolated letters) to accommodate all four forms for each letter.

l.tl#er
Nank!

bit1lr:i1ed Pina{ Ale11lal lnllft1J
.Fot1'li' f'crm Form Fann

Atef
Ba
Ta
T\\;..· nil

Jeem
Ha
Kha
Dal

l
i.-J

""-' •••• ., . "' ..
~ ...:.. - ..

.f;, j

~
.,. • ••

""""' .Ii, .I

[,. l! •• ;II,. .
c e •• '- .. . , . .
C C .,. --
J ,l

Figure 2.2 Samples of Various Arabic Letter Forms

A key difference between Latin scripts and Arabic is the fact that many letters only

differ by a dot(s) but the primary stroke is exactly the same. Out of the 15 classes for

isolated letters, 10 classes have 2 or more letters that vary by only a dot(s) or symbol.

This highlights the need for a good feature extractor/classifier for the secondary

stroke(s). The system detailed in this work addresses the recognition of primary strokes,

and makes recommendations regarding the recognition of secondary strokes.

2.6 Motivation for ANN Approach

The development of a computer as something more than a calculating machine marked

the birth of the field of pattern recognition. We have witnessed increased interest in

research involving use of machines for performing intelligent tasks normally associated

30

with human behavior. Pattern recognition techniques are among the most important

tools used in the field of machine intelligence. Recognition after all can be regarded as a

basic attribute of living organisms. The study of pattern recognition capabilities of

biological systems (including human beings) falls in the domain of such disciplines as

psychology, physiology, biology, and neuroscience. The development of practical

techniques for machine implementation of a given recognition task and the necessary

mathematical framework for designing such systems lies within the domain of

engineering, computer science, and applied mathematics. With the advent of neural

network technology a common ground between engineers and students of living

systems (psychologists, physiologists, linguists, etc.) was established. We would like to

point out that mathematical operations used in theories on pattern recognition and

neural networks are often formally similar and identical. Thus, there is good

mathematical justification for teaching the two areas together.

Recognizing patterns (and taking action on the basis of the recognition) is the principal

activity that all living systems share. Living systems, in general, and human beings, in

particular, are the most flexible, efficient, and versatile pattern recognizers known; and

their behavior provides ample data for studying the pattern recognition problem. For

example, we are able to recognize handwritten characters in a robust manner, despite

distortions, omissions, and major variations. The same capabilities can be observed in

the context of speech recognition. Humans also have the ability to retrieve information,

when only a part of the pattern is presented, based on associated cues. Take, for

example, the cocktail party phenomena. At a party you can pick up your name being

mentioned in a conversation all the way across the hall even when most of the

conversation is inaudible due to a clutter of noise. Similarly, you can recognize a friend

in the crowd at a distance even when most of the image is occluded.

Decision-making processes of a human being are often related to the recognition of

regularity (patterns). Humans are good at looking for correlations and extracting

regularities based on them. Such observations allow humans to act based on anticipation

which cuts down the response time and gives an edge over reactionary behavior.

Machines are often designed to perform based on reaction to the occurrence of certain

events which slows them down in applications such as control.

31

The nature of patterns to be recognized could be either sensory recognition or

conceptual recognition. The first type involves recognition of concrete entities using

sensory information, for example, visual or auditory stimulus. Recognition of physical

objects, characters, music, speech, signature, etc. can be regarded as examples of this

type of act. On the other hand, conceptual recognition involves acts such as recognition

of a solution to a problem or an old argument. It involves recognition of abstract entities

and there is no need to resort to an external stimulus in this case.

The real problem of pattern recognition, however, is to generate a theory that specifies

the nature of objects in such a way that a machine will be able to robustly identify them.

A study of the way living systems operate provides great insight into addressing this

problem.

One strong objective of the engineering and the artificial intelligence community has

been the creation of "intelligent" systems which can exhibit human-like behavior. Such

intelligent behavior would enable humans/machine interactions to occur in some

fashion that is more natural for the human being. That is, we would like to provide

perceptual and cognitive capabilities enabling computers to communicate with us in a

fashion that is natural and intuitive to us. One of the goals is to design machines with

decision-making capabilities. To accomplish this it is essential that such machines

achieve the same pattern information processing capabilities that human beings possess.

Some of the early work in building pattern recognition systems was indeed biologically

motivated. The most common historical references are to the devices called perceptron

and adaptive linear combiner (ADALINE), respectively. The objective of these studies

was to develop a recognition system whose structure and strategy followed the one

utilized by humans. Subsequently, with the advent of other, more powerful neural

techniques, the field of neural network research is again vigorous. The current serious

activity in the area of artificial neural networks and connectionist paradigms is

reminiscent of the early period when neurocomputing research flourished.

32

2.7 Pattern Recognition and Neural Networks

As useful as back-propagation is, there are often easy ways to train a network. For

specific-purpose networks, such as pattern recognition, the operation of the network and

the training method are relatively easy to observe even though the networks might have

hundreds of neurons. In its simplest form, pattern recognition uses one analog neuron

for each pattern to be recognized. All the neurons share the entire input space. Assume

that the two neuron network (figure 2.3) has been trained to recognize light and dark.

The 2x2 grid of pixels forms the input layer. If answer #1 is the 'light' output, then all of

its dendrites would be excitatory (if a pixel is on, then increase the neuron's score,

otherwise do nothing). By the same token, all of answer #2's dendrites would be

inhibitory (if a pixel is off then increase the neuron's score, otherwise do nothing). This

simply boils down to a count of how many pixels are on and how many are off. To

determine if it is light or dark, pick the answer neuron with the highest score.

Figure 2.3 Two neuron network to recognize light and dark [2].

This example is a complete waste of a neural net, but it does demonstrate the principle.

The output neurons of this type of network do not require thresholds because what

matters is highest output. A more useful example which our system is going to

thoroughly discuss in the next chapter of this paper would be a 7x9 grid of Boolean

values that could recognize Arabic letters (figure 2.4).

33

Q O ~ u
& -

·1···· ~ ~ -~, •·•···• •·•···• L~ -~

·0· --0

~ I} } l

~·~
~

... _ll_.
···~·

~:ffll
~I

. Q

·A·
L
')l u

·A·
L

. '.'' ii·. .
I

I
~ . . . • . ' i

-~~

··g··
. . : . . .
.

Figure 2.4 A grid configuration for the 28 Arabic alphabets.

34

One could have 28 neurons that all share the same 63 Boolean values input space. Each

neuron would compute the probability of the inputs matching its character. The grid

(figure 2.5) is configured to output the probability that the input is the letter 'Alef. Each

tile in the grid and those are not shown in the grid, being hidden from view, represents a

link to the 'Alef neuron.

Figure 2.5 A 7 by 9 grid of Boolean value for the letter 'Alef

Training these pattern recognition networks is simple. Draw the desired pattern and

select the neuron that should learn that pattern. For each active pixel, add one to the

weight of the link between the pixel and the neuron in training. Add zero to the weight

of each link between an inactive pixel and the neuron in training. To avoid ingraining a

pattern beyond all hope of modification, it is wise to set a limit on the absolute weights.

35

Another example is the network in (figure 2.6) was created by Recog [19] to recognize

the digits from 0-9, and as it is clear we need 10 target neurons and the inputs depends

upon the system identifier.

Figure 2.6 neural networks that is to recognize the digits from 0-9

A more sophisticated method of pattern recognition would involve several neural nets

working in parallel, each looking for a particular feature such as "horizontal line at the

top", or "enclosed space near the bottom". The results of these feature detectors would

then be fed into another net that would match the best pattern. This is closer to the way

humans recognize patterns. The drawback is the complexity of the learning scheme. The

average child takes a year to learn the alpha-numeric system to competence.

36

2.8 Summary

The chapter, discussed the main topics underlying pattern recognition, including an

overview of Arabic characters and how it can be shaped.

Different methods and pattern shapes for pattern recognition in line with neural network

were also presented.

37

CHAPTER THREE

ARABIC CHARACTER RECOGNITION

3.1 Overview

This chapter demonstrates how Arabic character recognition can be done with a

backpropagation network. The Purpose of the Neural Network, its architecture, and the

training of this network with both noisy and noise free input vectors are going to be

discussed.

Also, in this chapter, the performance of both training with and without noise is to be

examined.

3.2 Problem Statement

A network is to be designed and trained to recognize the 28 letters of the Arabic

alphabet. Assuming that our system segments the given words for recognition, and also

an imaging system that digitizes each letter centered in the system's field of vision is

available. The result is that each letter is represented as a 7 by 9 grid of Boolean values.

For example, here is the letter "Alef" is depicted in figure 3.1. in the figure each grid

stands for a binary bit, where the hidden (invisible) grids represent the availability of

binary bit 'O' in the input array of the Neural Network, and those can be seen as a

crossed square (visible) represent a binary bit '1'.

38

Figure 3.1 A noise free letter 'Alef

However, the imaging system is not perfect and the letters may suffer from noise (figure

3.2).

181 -~ [81

~ ~ . . ~ ['gJ

0 0
~~

0 0 ['gJ ~ " cg]
C8J C8J 00 ISi lz:J

['gJ 0 I X I 0 [2;] ~

~ " CxJ ~ ' ~

0 lz:J ~ ['gJ ~

181 . " I X I ['gJ ['gJ 0

Figure 3.2 A noisy letter 'Alef

39

Perfect classification of ideal input vectors is required and reasonably accurate

classification of noisy vectors.

The twenty-eight 63-element input vectors are defined in the function prprob63 (see

Appendix A (A.1)) as a matrix of input vectors called alphabet. The target vectors are

also defined in this file with a variable called targets. Each target vector is a 28-element

vector with a 1 in the position of the letter it represents, and O's everywhere else. For

example, the letter "Alef" is to be represented by a 1 in the first element (as "Alef" is the

first letter of the alphabet), and O's in elements two through twenty-eight.

3.3 Neural Network

The network receives the 63 Boolean values as a 63-element input vector. It is then

required to identify the letter by responding with a 28-element output vector. The 28

elements of the output vector each represent a letter. To operate correctly, the network

should respond with a 1 in the position of the letter being presented to the network. All

other values in the output vector should be 0.

In addition, the network should be able to handle noise. In practice, the network does

not receive a perfect Boolean vector as input. Specifically, the network should make as

few mistakes as possible when classifying vectors with noise of mean O and standard

deviation of 0.2 or less.

3.3.1 Architecture

The neural network needs 63 inputs and 28 neurons in its output layer to identify the

letters. The network is a two-layer log-sigmoid/log-sigmoid network (15] (figure 3.3).

The log-sigmoid transfer function was picked because its output range (0 to 1) is perfect

for learning to output Boolean values.

40

Input Hidden layer Output layer

(\
- a'= Y --

a1 I 28xl

~11 !Ox! LW2,1 1 !Ox63 I ri ..,. 28x10

1-GJ ~
!Ox! 28xl L_

63 10 28

~

a1 = logsig (IWu p 1 + b) a2= logsig (LW2,1 ar + b2)

Figure 3.3 Architecture of the Neural Network

Where, IW: Input Weight Matrix, LW: Layer Weight Matrix.

The hidden (first) layer has 10 neurons. This number was picked by guesswork and

experience. If the network has trouble learning, then neurons can be added to this layer.

The network is trained to output a 1 in the correct position of the output vector and to

fill the rest of the output vector with O's. However, noisy input vectors may result in the

network not creating perfect 1 's and O's. After the network is trained the output is passed

through the competitive transfer function 'compet' (MATLAB command) [15]. This

makes sure that the output corresponding to the letter most like the noisy input vector

takes on a value of 1, and all others have a value of 0. The result of this post-processing

is the output that is actually used.

41

3.3.2 Initialization

The two-layer network is created with 'newff (MATLAB command) [15].

Sl = 10;
[R,Q] = size(alphabet);

[S2,Q] = size(targets);

P = alphabet;
net= newff(minmax(P),[Sl S2],{'logsig' 'logsig'},'traingdx');

3.4 Training

To create a network that can handle noisy input vectors it is best to train the network on

both ideal and noisy vectors. To do this, the network is first trained on ideal vectors

until it has a low sum-squared error.

Then, the network is trained on 10 sets of ideal and noisy vectors. The network is

trained on two copies of the noise-free alphabet at the same time as it is trained on noisy

vectors. The two copies of the noise-free alphabet are used to maintain the network's

ability to classify ideal input vectors.

Unfortunately, after the training described above the network may have learned to

classify some difficult noisy vectors at the expense of properly classifying a noise-free

vector. Therefore, the network is again trained on just ideal vectors. This ensures that

the network responds perfectly when presented with an ideal letter. All training is done

using backpropagation with both adaptive learning rate and momentum with the

function trainbpx.

42

3.4.1 Training without Noise

The network is initially trained without noise for a maximum of 10000 epochs or until

the network sum-squared error falls beneath 0.05.

P = alphabet;

T = targets;

net.performFcn = 'sse';
net.trainParam.goal = 0.05;

net.trainParam.show = 20;

net.trainParam.epochs = 10000;

net.trainParam.mc = 0.95;

[net,tr] = train(net,P,T);

3.4.2 Training with Noise

To obtain a network not sensitive to noise, we trained with two ideal copies and two

noisy copies of the vectors in alphabet. The target vectors consist of four copies of the

vectors in target. The noisy vectors have noise of mean 0.1 and 0.2 added to them. This

forces the neuron to learn how to properly identify noisy letters, while requiring that it

can still respond well to ideal vectors.

To train with noise, the maximum number of epochs is reduced to 3000 and the error

goal is increased to 0.1, reflecting that higher error is expected because more vectors

(including some with noise), are being presented.

netn = net;

netn.trainParam.goal = 0.1;

netn.trainParam.epochs = 3000;

T = [targets targets targets targets];

for pass= 1:10

43

P = [alphabet, alphabet, ...
(alphabet+ randn(R,Q)*0.1), ...

(alphabet+ randn(R,Q)*0.2)];

[netn,tr] = train(netn,P,T);
end

3.4.3 Training without Noise Again

Once the network is trained with noise, it makes sense to train it without noise once

more to ensure that ideal input vectors are always classified correctly. Therefore, the

network is again trained with code identical to the Training Without Noise section.

3.5 System Performance

The reliability of the neural network pattern recognition system is measured by testing

the network with hundreds of input vectors with varying quantities of noise. The script

file appcr2 (MATLAB script) [15] tests the network at various noise levels, and then

graphs the percentage of network errors versus noise. Noise with a mean of O and a

standard deviation from O to 0.5 is added to input vectors. At each noise level, 100

presentations of different noisy versions of each letter are made and the network's

output is calculated. The output is then passed through the competitive transfer function

so that only one of the 28 outputs (representing the letters of the Arabic Alphabet), has a

value of 1.

The number of erroneous classifications is then added and percentages are obtained.

The script appcr2 (see Appendix A (A.2)) demonstrates how Arabic character

recognition can be done with a backpropagation network.

44

50

45

40

35
N
-c
~ 30
ai z

25

-c 20
0 :s:
ai 15 z

10

5

0
0

Percentage of Recognition Errors

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Noise Level

Figure 3.4 Reliability of the network to classify noisy vectors.

The solid line on the graph (figure 3.4) shows the reliability for the network trained with

and without noise. The reliability of the same network when it had only been trained

without noise is shown with a dashed line. Thus, training the network on noisy input

vectors greatly reduces its errors when it has to classify noisy vectors. The network did

not make any errors for vectors with noise of mean 0.00 or 0.05. When noise of mean

0.2 was added to the vectors both networks began making errors. If a higher accuracy is

needed, the network can be trained for a longer time or retrained with more neurons in

its hidden layer. Also, the resolution of the input vectors can be increased to a lOx 14

grid. Finally, the network could be trained on input vectors with greater amounts of

noise if greater reliability were needed for higher levels of noise. To test the system, a

letter with noise can be created and presented to the network.

45

noisySeeN = alphabet(:,12)+randn(63,1) * 0.2;
plotchar63(noisySeeN);

A2 = sim(net,noisySeeN);

A2 = compet(A2);

answer= find(compet(A2) == 1);

plotchar63(alphabet(: ,answer));

Here is the noisy letter and the letter the network picked (correctly) are shown in figure

3.5.

" ' " ~.

.• 0 0 I 0 [gJ

~
. 0

~

~~

" [2J

t2J ~ [El [2J ~

[El {8l {8l [gJ 0 [2J

Figure 3.5 A noisy letter 'seen' (left) and the letter the network picked (correctly)

(right).

46

3.6 Neural Network Training Parameters

After experiencing the network with different values for each of the learning rate,

momentum rate, sum-squared error (for both training with and without noise) and the

number of epochs required for fair and good results (also, for both training with and

without noise) and after checking its performance, the last achieved values were

tabulated below (table 3.1). Note that we have the values of both input and output

neurons depending on the number of input vectors and output targets, and the number of

neurons in the hidden layer was obtained mainly by guesswork and long working

experience as mentioned earlier in this chapter.

Number of neurons in the input layer 63

Number of neurons in the hidden layer 10

Number of neurons in the output layer 28

Target sum-squared error Training with noise 0.05

Training without noise 0.1

Maximum number of epochs Training with noise 3000

Training without noise 10000

Learning Rate 0.01

Momentum Rate 0.95

Table 3.1 The last achieved values for a better performance of the neural network

training.

3.7 Summary

This chapter demonstrates how a simple pattern recognition system can be designed.

Note that the training process did not consist of a single call to a training function.

Instead, the network was trained several times on various input vectors. In this case,

training a network on different sets of noisy vectors forced the network to learn how to

deal with noise, a common problem in the real world.

47

CONCLUSION

Today, neural networks can solve problems of economic importance that could not be

approached previously in any practical way. One of the recent neural network applications is

discussed in this project.

It is often useful to have a machine perform pattern recognition. In particular, machines that

can read symbols are very cost effective. A machine that reads banking checks can process

many more checks than a human being in the same time. This kind of application saves time

and money, and eliminates the requirement that a human perform such a repetitive task.

In this project we designed a scheme able to recognize Arabic alphabet. We used a supervised

neural network that we trained using the Backpropagation algorithm.

A back-propagation neural network with one hidden layer was used to create an adaptive

Arabic character recognition system. The system was trained and evaluated with input

vectors, as well as other different forms of noisy input vectors. Experiments tested (1) the

effect on recognition accuracy without noise, and (2) the effect on recognition accuracy with a

Gaussian distributed noise added to the input vector. Results showed reduced accuracy in

recognizing characters when training without noise and it illuminated the fact that a better

performance and more accuracy of the system is achieved by training with noise, since noise

is an unavoidable problem in the real world!.

Note that the training process did not consist of a single call to a training function. Instead, the

network was trained several times on various input vectors. In this case, training a network on

different sets of noisy vectors forced the network to learn how to deal with noise.

And far from the training process and the achieved results the main objectives of this project

were to introduce the reader with general definitions of Neural Network and its practical

applications, to investigate pattern recognition, and to acquire a good command of Arabic

characters. Also, in this project we aimed to simulate a working neural network that

recognizes Arabic alphabet in which we tried to make use of MATLAB Neural Network

toolbox as well.

48

REFERENCES

[1] HA YKIN, S., Neural Networks, 2nd edition 1999.

[2] HTTP://vv .carleton.ca/e-neil/neural/neuron.

[3] HTTP://vv.carleton.ca/-neil/neural/brainbox.html.

[4] WEIGEND, A. S., Review of the Book Introduction to the Theory of Neural

Computation by HERTZ, J. A., KROGH, A. S., & PALMER, R. G., Elsevier,

Artificial Intelligence 62 (1993) pp. 93 - 111, Elsevier Science Publishers B. V.,

1993

[5] LIPPMANN, R. P., An Introduction to Computing with Neural Nets, in: LAU, C. G.

Y. (Ed.), Neural Networks: Theoretical Foundations and Analysis, pp. 5 - 23,

IEEE Press, New York, 1992

[6] LIPPMANN, R. P., MOODY, J. E., TOURETZKY, D. S. (Eds.), Advances in

Neural Information Processing Systems 3, Morgan Kaufmann Publishers, San

Mateo, CA, 1991

[7] SANCHEZ-SINENCIO, E., LAU, C. G. Y. (Eds.), Artificial Neural Networks:

Paradigms, Applications, and Hardware Implementations, IEEE Press, New

York, 1992

[8] RUMELHART, D. E., HINTON, G. E., WILLIAMS, R. J., Learning Internal

Representations by Error Propagation, ICS Report 8506, Sept. 1985, Institute for

Cognitive Science, University of California, San Diego, published in: Parallel

Distributed Processing: Explorations in the Microstructures of Cognition, Vol. I,

RUMELHART, D. E., MCCLELLAND, J. L. (Eds.), Cambridge, MA, MIT Press,

pp. 318 - 362, 1986

49

r/,.,..._ ·~ .. ~
~:'' . "..

(: . _.·J
• j)

> ' ' I . -··
[9] RIDIELHART, D. E., HINTON, G. E., WILLIAMS, R. \\ .• ~ ~~aming / -~~

-~ o'n t Representations by Backpropagating Errors, Nature 323: pp. 533 - 536~J986. ,.,0<?-.~ ,"1 '" '--1:::Fh. ~,,# -~
[10] VEMURI, V., Artificial Neural Networks: An Introduction, in: VEMURI, V. (ed.),

Artificial Neural Networks: Theoretical Concepts, Computer Society Press, pp. 1

- 12, 1988

[11] M0LLER, M. F., A Scaled Conjugate Gradient Algorithm for Fast Supervised

Learning, Computer Science Department, University of Aarhus, Denmark,

Preprint 11/13/1990

[12] FAHLMAN, S. E., LEBIERE, C., The Cascade-Correlation Learning

Architecture, Technical Report # CMU-CS-90-100, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA, 1990

[13] YANG, J., HONAV AR, V., Experiments with the Cascade-Correlation Algorithm,

Technical Report # 91-16, Department of Computer Science, Iowa State

University, Ames, Iowa, July 1991

[14] CHEN, C.H., Statistical Pattern Recognition, Hayden, Washington, D.C., 1973.

[15] MATLAB version 6.5.0.180913a Release 13, Neural Networks Toolbox.

50

APPENDIX A

A.1 The twenty-eight 63-element input vectors can be defined in the Matlab m.file

prprob63 as follows:

function [alphabet,targets] = prprob63()

%prprob63 Arabic Character recognition problem definition

% [ALHABET,T AR GETS] = prprob63()

% Returns:

% ALPHABET - 63x28 matrix of 7x9 bit maps for each letter.

% TAR GETS - 28x28 target vectors.

letterAlif = [O O O 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 10000 0 0 1000 0 0 0 100 O]';

letterBaa = [O 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 O]';

letterTaa = [O O O O O O O O O O O O O O O O 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 10 1 1 1 1

1 0 O]';

letterTh!aa = [O O O O O O O O O O 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1

1 1 0 O]';

letterJiim = [O O O O O O O O O O O O O O O 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 O]';

letterHaa= [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 O]';

letterXaa = [O O O 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0

0 00 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 O]';

letterDaal = [O O O O O O O O O O O O O O O O 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O]';

leuer'Ihaal = [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

·~ ~ 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O]';

=~ = LU u O O O O O O O O O O O O O O O O O 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O]';

--000000010000001000001000001

-~ ~ 0 0 0 0 0 0 0 0 0 0 0]';

--000000000001010101101111110100

·~· ·~ 0 0 0 0 0 0 0 0 0 0 0 0 0 O]';

-0000001000001010000000010101011011

0 100 0 0 1 1 100 0 0 0 0 0 0 0 0 O]';

- ~woooooooooooooooooooo1010110101100110111

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O]';

errerDaad = [O O O O O O O O O O O O 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O]';

Ietter'[aa = [O O O O O O O O O 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 O]';

letterThcaa = [O O O O O O O O O 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1

0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 O]';

letterAyn= [O O O O O O O O O O O O O O O O O O 1 1 0 0 0 0 100 0 0 0 1 1 1 100 100

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 O]';

letterGhayn = [O O O O O 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 O 1 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 O]';

letterFaa = [O O O O O 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0

0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 O]';

letterQaaf = [O O O O 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 O O 0

001010001000111000000000]';

letterKaaf= [O O O O O O O O O O O O O 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0

0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 O]';

letterLaam = [O O O O O O O O O O O O 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 O]';

lenerMiim = [O O O O O O O O O O O 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 100 0 0 0 0 1000 0 0 0 0 0 0 0 0 _O]';

= [O O O O O O O O O O O O O O O O O 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

111110 00000000000000]';

err~ 1.uoo o o o o o o o o o o o o o 1 1 1 1 o o o o o o o 1 o o 1 1 1 o 1 o o 1 o 1

0 0 0 0 0 0 0 0 0 0 0 0 0 O]';

01100001001000100100001110000

0 0 0 0 0 0 0 0 O]';

letterYaa = [O O O O O O O O O O O O 1 1 0 0 0 0 100 1 0 0 0 0 1 0 100000 1 100 0 0

0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0]';

alphabet = [lerrer.Alif. letterBaa, letterTaa, letterTh!aa, letterJiim, letterHaa, letterXaa,
leuerDaal, letterThaal, letterRaa, letterZaay, letterSiin, letterShiin,

letter~aad, letterDaad, letteriaa, letterThcaa, letterAyn, letterGhayn,

letterFaa, letterQaaf, letterKaaf, letterLaam, letterMiim, letterNuun,

letterHaa, letterWaaw, letterYaa];

targets= eye(28);

A.2 Arabic character recognition can be done with a backpropagation network by the

Matlab script appcr2 as follows:

%APPCR2 Character recognition.

elf;

figure(gcf)

echo on
% NEWFF - Inititializes feed-forward networks.

% TRAINGDX - Trains a feed-forward network with faster backpropagation.

% SIM - Simulates feed-forward networks.

% CHARACTER RECOGNITION:

% Using the above functions a feed-forward network is trained

to recognize character bit maps, in the presence of noise.

-- c.;. Strike any key to continue ...

-G THE MODEL PROBLEM

OB63 defines a matrix ALPHABET

- -~ the 28 letters of the

GET~ ror

cev to define the network ...

-G THE l\TETWORK

~ The character recognition network will have 25 T ANSIG

c.::. neurons in its hidden layer.

Sl = 10;
net= newff(minmax(alphabet),[Sl S2],{'logsig' 'logsig'},'traingdx');

net.LW{2,1} = net.LW{2,1 }*0.01;

net.b{2} = net.b{2}*0.01;

pause% Strike any key to train the network ...

% TRAINING THE NETWORK WITHOUT NOISE

% ==================================

net.perforrnFcn = 'sse'; % Sum-Squared Error performance function

net.trainParam.goal = 0.05; % Sum-squared error goal.

net.trainParam.show = 20; % Frequency of progress displays (in epochs).

net.trainParam.epochs = 10000; % Maximum number of epochs to train.

net.trainParam.mc = 0.95; % Momentum constant.

% Training begins ... please wait...

P = alphabet;

T = targets;

[net.tr] = train(net,P,T);

d finally finishes.

ike anv key to train the network with noise ...

-G THE NETWORK WITH NOISE

~rr will now be made. This copy will

les of letters of the alphabet.

=
ed. error goal.

netn. trainParam.epochs = 3000; % Maximum number of epochs to train.

% The network will be trained on 10 sets of noisy data.

pause % Strike any key to begin training ...

% Training begins ... please wait...

T = [targets targets targets targets];

for pass= 1:10

fprintf('Pass = %.Of\n',pass);

P = [alphabet, alphabet, ...

(alphabet+ randn(R,Q)*O.l), ...

(alphabet+ randn(R,Q)*0.2)];

[netn,tr] = train(netn,P,T);

echo off

end

echo on

% ... and finally finishes.

pause % Strike any key to finish training the network ...

% TRAINING THE SECOND NETWORK WITHOUT NOISE

% ===

% The second network is now retrained without noise to

% insure that it correctly categorizes non-noizy letters.

netn.trainParam.goal = 0.1; % Mean-squared error goal.

netn.trainParam.epochs = 500; % Maximum number of epochs to train.

ettrainParam.show = 5; % Frequency of progress displays (in epochs).

Training begins ... please wait.. .

. T):

e networks ...

-r with noise level of %.2f.\n',noiselevel);

for i=l:max_test

P =alphabet+ randn(63,28)*noiselevel;

% TEST NETWORK 1

A= sim(net,P);

AA = compet(A);

errorsl = errorsl + sum(sum(abs(AA-T)))/2;

% TEST NETWORK 2

An= sim(netn,P);

AAn = compet(An);

errors2 = errors2 + sum(sum(abs(AAn-T)))/2;

echo off

end

% AVERAGE ERRORS FOR 100 SETS OF 28 TARGET VECTORS.

networkl = [networkl errorsl/28/100];

network2 = [network2 errors2/28/100];

end

echo on

e % Strike any key to display the test results ...

c,;. DISPLAY RESULTS

ere IS a plot showing the percentage of errors for

erworks for varying levels of noise.

_,.. ~ .::.-.;,.uct work 1*100, '- - ',noise _range,network2 * 100);

xognition Errors');

·ork 2 ---');

-~?11 without noise, has more errors due

Network 2, which was trained with noise.

_ _,.2 of APPCR2').

