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ABSTRACT 

People likes perfection; perfection in communication systems is to get use out of all 

the power used to transmit information, which means that when we transmit a block of data 

that requires a certain power to be transmitted, the data is going to be received without 

errors. 

In real life this is impossible because of noise, so we have to increase the power of 

the signal that we are transmitting in order to overcome the noise power. Scientists and 

engineers introduced a lot of efficient methods. Like increasing the antenna power, or 

increasing the channel capacity by introducing different successful modulation types, but 

still high error rates remains. In the early 90's digital communication systems were getting 

more popular and started to replace most of the analog communication systems. With a lot 

of its special signal processing techniques, digital communication systems are much 

efficient than analog systems, so if we compare a terrestrial (analog) T.V. channels that is 

transmitted in UHF or VHF band or an old analog satellite channels (like channels on Arab­ 

Sat which is still in duty) with a new digital T.V. satellite channels like (Nile-sat or DIGI­ 

Turk) we will find that the analog channels get effected by weather conditions much more 

than digital channels. The reason behind that is the coding technique used in digital 

communication systems. Because as we know additive noise affects all signals either it's 

digital or not. However receivers in analog communication systems can not correct errors 

caused by noise, while in digital communication systems, because of coding the receiver 

has the ability to detect errors that occurred in the communication channel, and make a 

decision about what information has been transmitted. What makes the coding techniques 

very successful is increasing the signal to noise ratio, and therefore getting more efficient 

communication systems. 

This report describes digital communication systems, types of codes used in digital 

communications systems, and gives details about linear block codes and cyclic codes, and 

their application to digital images. Comparison on communication systems will be made on 

models for systems that transmit images. 
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INTRODUCTION 

Because of channel coding in our present time we have very efficient digital 

communication systems, that is capable of transmitting and receiving data blocks with 

negligible bit error rates no matter what type of noise exists in the channel. A lot of good 

code designs have been presented, and different codes have different properties that can be 

associated with different types of channels. 

The idea of channel coding came out with Shannon's noisy channel coding theorem 

that states, 'with every channel we can associate a "channel capacity" C. There exists error 

control codes such that information can be transmitted across the channel at rates less than 

C with arbitrarily low bit error rate'. 

Our goal in this report is to explain the popular types of codes, with their different 

properties of error detection and correction, concentrating on linear block codes and cyclic 

codes for these codes are so efficient and simple at the same time. We show how coding 

can give amazing results in overcoming the noise that occurs in the communication 

channels. 

Chapter 1 starts by describing the digital communications systems and their 

elements, and then we explain the encoder and the decoder part of the system, Then we 

mention a few types of coding techniques and some of the error correcting codes briefly. 

Chapter 2 explains linear block codes, the development and use of these codes, 

taking in consideration the properties of these codes and why they are different. Then we go 

through the cyclic codes, which are a very important branch of linear block codes, and very 

powerful type of codes, explaining the difference between them and linear block codes. 

Chapter 3 includes some brief information about images, and the processes that can 

be applied on them. Digital image processing is a very huge and important disciplinary of 

digital communication. Applying coding on digital images successfully means that we can 

apply these codes on any type of digital data, like digital video, digital audio, and other 

types of digital information. 

Chapter 4 models two different digital communication systems, one using cyclic 

codes and another system without coding. It shows the difference in the received 

information, and the effect of the same noise on both. 
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Conclusion presents the superiority of systems with channel coding over analog 

systems and systems with no coding techniques, and gives examples from real daily life, 

and suggestions that might be useful for future life. 



CHAPTER ONE 

DIGITAL COMMUNICATION SYSTEMS 

1.1. Digital Communication systems 

A digital communication system is a means of transporting information from one 

party to another. The system is digital in that it uses a sequence of symbols from a finite 

alphabet to represent the information. The transmission of data in digital form allows for 

the use of a number of powerful signal processing techniques that would otherwise be 

unavailable [ 1]. 

Transmitter 
power supply 

J 
data -, Modulator Transmitter ,, source 

'-/ 

Physical I Noiser channel 

data Demodulator f----- Reciever I/ r 
\ sink 

Figure 1.1 Basic elements of digital communication systems [ 1]. 

The data source block may represent any source of information like for example in 

digital cellular mobile telephone the data source consist of a microphone and a digital-to 

analog converter, in general the data source provides a stream of symbols at some average 

rate R 5 symbols per second that is passed along to the modulator. 

The modulator maps the information symbols onto signals that can be efficiently 

transmitted over the communication channel [I]. Therefore the selection of modulation 



method depends on a Jot of considerations like available power or bandwidth. Modulated 

information is transmitted through the physical channel that has an additive noise. 

The received signal is demodulated and because of the noise in the physical channel 

the demodulated signal might not be the same as the original signal that we got at the 

information source [I]. 

1.2. Noise Effect on Digital Communication Systems 

1.2.1. What is noise? 

During transmission in communication channels if noise power is high, it might 

cause changes in transmitted information that ends up at the information sink as different 

information than the ones supposed to be received. For example if a binary sequence is 

being sent through the physical channel, it will be received in the following way: 

If F(t) 2 O; then transmitted symbol is A 

If F(t) < O; then transmitted symbol is B 

Here if we Jet F(t) = -0.3 then the transmitted symbol is B but what happens if we have 

noise added to that signal is that if n(t) = 0.4 the resultant will be n(t)+ F(t) = 0.1 which 

gives us another symbol of the alphabet which is A. In order for this to happen the noise 

power should be high enough to effect the transmitted information so we have a choice of 

transmitting with a high power. We also have filtering but that wouldn't be so efficient for 

some types of noise. 

The term noise is used customarily to designate unwanted waves that tend to disturb 

the transmission and processing of signals in communication systems. As we know we 

have different types of noise sources like atmospheric noise, galactic noise or man-made 

noise those ones are external noise types but we also have another type that is the internal 

type of noise that arises from spontaneous fluctuations of current or voltage in electrical 

circuits. This type of noise represents a basic limitation on the transmission or detection of 

signals in communication systems involving the use of electronic devices. The two most 

common examples of spontaneous fluctuations in electrical circuits are shot noise and 

thermal noise [3]. 
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1.2.2. Shot Noise 

Shot noise arises in electronic devices such as diodes and transistors because of the 

discrete nature of the current flow in the devices for example in a photo detector circuit a 

current pulse is generated every time an electron is emitted by the cathode due to incident 

light from a source of a constant intensity, the electrons are naturally emitted at random 

times denoted by t K as - 00< r K < co, It is assumed that the random emissions of electrons 

have been going on for a Jong time. Thus the total current flowing through the photo 

detector may be modeled as an infinite sum of current pulses [3). 

1.2.3. Thermal Noise 

Thermal noise is the name given to the electrical noise arising from the random 

motions of electrons in the conductor. It is also known that the thermal noise is Gaussian 

distributed with zero mean [3). 

1.2.4. White Noise 

The noise analysis of communication systems is customarily based on an idealized 

form of noise called white noise, the power spectral density of which is independent of the 

operating frequency. The adjective white is used in the sense that white light contains equal 

amounts of all frequencies within the visible band of electromagnetic radiation. We express 

the power spectral density of white noise, with a simple function denoted by OJ (t), as 

Sw (f) = N012. The parameter N0 (the dimensions of N0 are in watts per hertz), is usually 

referred to the input stage of the receiver of a communication system, and may be 

expressed as NO = k Te, where k is Boltzmann's constant and Te is the equivalent noise 

temperature of the receiver. The white Gaussian noise represents the ultimate in 

randomness; it has a infinite average power and not physically realizable [3). 



1.3. Channel Coding 

1.3.1. What is Channe] Coding? 

When the errors introduced by the information channel are unacceptable, then 

coding is necessary to reduce the error rate and improve the reliability of the transmission. 

Channel coding is one of the most important signal processing techniques used in digital 

communication systems for the reason it is maybe the most efficient way to minimize the 

errors without the need to use much more power. In other words coding helps us make 

more efficient use of power and increases the Signal-to-Noise value in a digital 

communication system [ 1] [3]. 

The idea of coding was based on Shannon's noisy channel coding theorem that 

stated " With every channel we can associate a 'channel capacity' C. there exist error 

control codes such that information can be transmitted across the channel at rates less than 

C with arbitrarily low bit error rate". But Shannon didn't tell us how to achieve these codes 

he just stated that we can associate a code that minimize the errors under the condition that 

data transmission rate shouldn't exceed the channel capacity [ 1]. 

1.3.2. Fundamenta]s of Channel Coding 

The main idea behind channel coding is adding extra digits to our digital message 

words at the channel encoder to have our code words that is going to be transmitted, These 

extra digits are called redundancy digits and will be discarded after decoding as they are 

only used to detect or correct errors that occurred in the physical channel during 

transmission of the information. 

Figure 1.2 shows the main parts of a digital communication system including the 

decoder and the encoder [ 1]. As we see in Figure 1.2 that the channel input and output must 

be in a binary format being transmitted in blocks. The source generates analog information 

signals that are converted by the source encoder into a digital form (message words) of 

length L (number of bits). The channel encoder adds redundancy to the messages to form 

the codewords of length N that gets modulated and transmitted through the digital channel. 
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Figure 1.2 Block diagram of a digital communication systems [3]. 

Noise is added to the information while it goes through channel, resulting in a 

difference between the received and the transmitted data. The channel decoder based on the 

received codewords decides which codeword was transmitted. The decoder detects 

occurring errors, and corrects it by deciding which codeword is been transmitted. 

1.3.3. Hamming Distance 

Hamming distance between two binary codewords is the number of different digits 

between them so if we assume two codewords D 1 =(IO 110011) and the codeword 

D2=(10110110) then the hamming distance between both codewords is: 

d(D l ,D2) = 2, since the first and the third bits are different we have two different bits 

between them which means the Hamming distance between them is two [ 1]. 

1.3.4. Hamming Distance Decoding Rule 

In Hamming distance decoding rule the decoder will check the Hamming distance 

between the received codeword and all the original codewords of the code. The original 

codeword that has the minimum hamming distance with the received codeword will be 

chosen by the decoder to be the transmitted codeword. 
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For example, if we have the following codewords Dl(OOO) and D2(11 l), and 

received codeword has one error in the second bit R(OIO) then d(R,Dl) = 1, d(R,D2) = 2. 

Therefore, the receiver will choose DI to be the transmitted codeword [3]. 

1.3.5. Minimum Distance of a Code 

The minimum distance of a code, is the minimum hamming distance between the 

codewords of a code. 

Assume we have a code consisting of four codewords, which are: 

DI = (001) 

D2=(010) 

D3 = (100) 

D4 = (1 I 1) 

The Hamming distances for the code is as follows 

d(Dl,D2) = 2, d(Dl,D3) = 2, d(Dl,D4) = 2, d(D2,D3) = 2, d(D2,D4) = 2, d(D3,D4) = 2, 

Here we find the minimum distance of the code d . = 2. min 

1.3.6. Code Capability of Error Detection and Correction 

If we assume that a received codeword has t number of errors, then for the decoder 

to be able to detect it, the minimum distance of the code should be more than the number of 

errors t. 

<;> t ( 1.1) 

In order to correct a number of occurring errors, the minimum distance of the code should 

be more than twice of the number of errors that occurred. 

( 1.2) 

Lets say that we have a code with a d . = 2, and a received codeword has only one error, 
111111 

then the decoder will be able to detect the error (see equation 1.1), but not to correct it (see 

equation 1.2). We can use the code mentioned in section 1.3.3 as an example that has a 

<: = 2, If we have Dl(OOl) transmitted and we got only one error in the first bit, 

becoming R(Ol l), the decoder is going to realize that an error occurred but won't be able to 

make the right decision about the transmitted one. This is because d(R,D I) = 1, and 
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d(R,D2) = 1. If we assume that we have two errors in the received codeword that makes it 

R(l 11) and we find here that the error won't be detected because the received distorted 

version of DJ is one of the original codewords, D4, so the decoder will assume that it is a 

right codeword [3]. 

1.3.7. Minimum Weight of a Code 

The weight {J) of a codeword is the number of ones within it so if we have the code 

word ( 110110) the weight of this codeword OJ (110110) = 4. ln order to find the minimum 

weight of a code we find the weights of all the codewords. We choose the weight of the 

codeword that has the minimum weight in the code to be the minimum weight of the code. 

This codeword shouldn't be the zero code word. For example, if we have a code with the 

following codewords 

Dl(OOOO), D2(001 l), D3(] l 10), D4(] l l l), 

cu (Dl) = 0 

cu (D2) = 2 

cu(D3) = 3 

cu (D4) = 4 

The minimum weight here is not the weight of Dl because it is the zero codeword, the 

minimum weight OJ min= 2, which is the weight of D2. 

1.3.8. Maximum Likelihood Decoding Rule 

The decoder will receive a codeword R, then it will calculate the probability of 

receiving R if each of the original codewords is transmitted, and will choose the codeword 

that has the maximum probability to be transmitted [1][3]. 

1.3.9. Minimum Error Decoding Rule 

The decoder has stored information about the probability of transmitting each of the 

codewords, when the decoder receives a codeword R; it calculates the probability of 

transmitting the codeword if each of the original codewords is transmitted, and then will 
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multiply each of the found probabilities with the probability of transmitting the 

corresponding codeword [1][3]. 

Example: Assume we have three codewords Dl, D2, D3, with the following transmission 

probabilities p(Dl) = 0.2, p(D2) = 0.1, p(D3) = 0.7, and the decoder has received the 
codeword R and calculated the following probabilities p(RfDl) = 0.1, p(RfD2) = 0.6, 

p(RfD3) = 0.3. For the maximum likelihood decoding rule D2 is going to be picked by the 

decoder as the transmitted codeword because it maximize the value of p(RfDn) but for 

minimum error decoding rule the probabilities p(R[Dn) will be multiplied by p(Dn) and the 

decoder will choose the codeword that maximize p(RfDn).p(Dn) which means in our 

example D3 is going to be picked by the decoder. 

1.4. Error Correcting Systems 

1.4.1. Automatic Repeat Request 

When the codeword is received without a detectable error the channel decoder sends 

an ACK (acknowledgment symbol l)to the channel encoder through the feedback channel 

which means codeword is received without detectable error. When the channel decoder 

detects an error it sends a bit O to the channel encoder through the feedback channel. This 

symbol O is called NAK (non acknowledgment). The channel encoder transmits the 

codeword again until it get an acknowledgment (ACK bit 1) from the channel decoder, 

which means the codeword is received without a detectable error. 

1.4.2. Forward Error Correction 

In forward error correction receiver isn't responsible only of detecting errors, 

because in this system the feedback channel is not present ( e.g. in satellite TV broadcasting, 

computer storage devices, etc .... ), so the ability of sending an ACK or NAK is impossible. 

The receiver should manage to correct the errors by itself, (make an acceptable decision 

about the transmitted codeword, based on the received one and the coding algorithm of the 

decoder). 
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1.4.3. Hybrid ARQ 

Hybrid ARQ combines both techniques of forward error correction and automatic 

repeat request. There are two types of hybrid ARQ systems. The first type of hybrid ARQ 

is the one where the receiver receives a full codeword with all parity bits for detection and 

correction; if it fails to decide which codeword is transmitted it requests retransmission of 

data. In the second type the receiver receives the codeword with the parity bits for error 

detection, if it detects an error within the codeword it requests the correcting parity bits and 

attempts to correct. If it fails to correct it request the whole code word from the transmitter 

to be retransmitted. 

1.5. Error Correcting Code Types 

There are a Jot of error correcting codes types, like turbo codes, which are a 

combination of two convolutional codes working in parallel, Reed-Muller codes, Reed­ 

Solomon codes. We will only study briefly some basic codes and coding techniques. 

1.5.1. Repetition Codes 

Repetition codes repeat the message itself certain number of times. The repeated 

message is the redundancy in the code word. Assuming we have two messages to be 

transmitted that are: 0 and 1, codewords are 000 and 111. 

codeword 

000 

111 

The encoder here repeats the message word two times resulting a Hamming 

distance d(000,111) = 3, between the two codewords which makes the decoder capable of 

Message 

0 

detecting two errors and choosing the codeword in case of only one error occurred. 

1.5.2. Odd/Even Parity Check Codes 

The even parity check code checks the number of ones within the message word. If 

it's even it adds the bit O to the end of the message word to keep the number of ones even in 
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the codeword and if it's odd it adds the bit 1 to the end of the message word so we get a 

codeword with an even number of ones within. 

The odd parity check codes does the same job except that they add O bit to the 

message words with odd number of l's within so the generated codewords has odd number 

of ones. They add 1 bit to the code words with even number of l's within so number of l's 

in the codewords will be odd. 

Message possibilities even check parity codes odd check parity codes 

OO(even) OOO(even) 001 (odd) 

Ol(odd) OJ ](even) 01 O(odd) 

10( odd) JOJ(even) 1 OO(odd) 

ll(even) llO(even) 111 ( odd) 

1.5.3. Linear Block Codes 

A code is said to be linear if any two codewords in the code can be added on 

modulo-2 arithmetic to produce a third codeword in the code. Lets assume the following 

code with the following codewords, Dl (0000), D2(001 J ), D3(1100), D4(1 l l l ), 

If we add on modulo-2 any of the codewords to another codeword in the code the result 

must be another codeword of the code. 

Example: 

Dl(OOOO) + D2(001 l) = D2(001 l) 
Dl(l 111) + D2(001 l) = D3(1100) 
D2(0011) + D3(1100) = D4(1 l l 1) 

D2(0011) + D2(0011) = D1(0000) 
and so on, in order to generate a linear block code we should multiply the message word by 

a generator matrix. The result of the multiplication is our codeword that is going to be 

transmitted. 

1.5.4. Cyclic Codes 

Cyclic codes, [ 1] are a subclass of linear block codes. Actually the most important 

linear block codes discovered until today are either cyclic codes or closely related to it [ 1]. 

10 
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The advantage of cyclic codes over most other types of codes is that they are easy to 

encode. A binary code is said to be a cyclic code if it exhibits two fundamental properties: 

1. Linearity property: the sum of any two codewords in the code is also a codeword. 

2. Cyclic property: any cyclic shift of a codeword in the code is also a codeword. 

1.5.5. Convolutional Codes 

Convolutional codes [ 1 J are different from linear block codes. In convolutional 

coding the encoder converts the entire data stream regardless of its length, into a single 

codeword. This means that a convolutional encoder doesn't generate codewords block by 

block like in linear block codes. ln convolutional codes the message bits enter the encoder 

serially rather than in big blocks. A convolutional encoder operates on the incoming 

message sequence continuously in a serial manner. 

1.6. Decoding and Performance of Linear Block Codes 

The main purpose of using coding in communication systems is to increase the 

Euclidean distance between the transmitted signals and, hence, to reduce error probability 

at a given transmitted power. We see that this goal is achieved by choosing the code words 

to be as far apart on the vertices of the cube as possible. This means that a good measure for 

comparing the performance of two codes is the Hamming distance between the codewords. 

Keeping track of all distances between any two codewords is difficult and in many cases 

impossible. Therefore, the comparison between various codes is usually done based on the 

minimum distance of the code, which for linear codes is equal to the minimum weight of 

the code. As we mentioned before the code with higher minimum distance is more capable 

of error detection and correction. 

1.6.1. Soft Decision Vs. Hard Decision 

Each detected element r, of the received vector r can be described as a quantized­ 

amplitude. [6] The decision may simply answer the question "Is the amplitude greater or 

less than zero?" yielding a binary decision of I or 0. Such a decision is a called a hard 
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decision because the detector firmly selects one of two levels. Sometimes the detector's 

decision may answer multiple questions such as "Is the amplitude or Jess than zero, and is 

greater or Jess than some reference level?". For binary signaling such multipart decisions 

are called soft decisions; they offer the decoder side information about the SNR of the 

corrupted analog waveform. 

A soft decision might tell the decoder, "This signal has a positive amplitude, but it 

is not very far from the zero amplitude." or" this signal has a positive amplitude, and it's 

quite far from the zero amplitude." The most popular soft-decision format entails eight­ 

level signal quantization, which can be interpreted as a hard decision plus a measure of 

confidence. The figure-of-merit of the error performance of a digital communication system 

is usually expressed as a normalized SNR, known as the ratio of bit energy to noise power 

spectral density, Eb I N0. The coding gain or benefit provided by an error-correcting code 

to a system can be defined as the "relief" or reduction in required Eb I N0 that can be 

realized due to the code [3][6]. 

1.6.2. Soft Decision Decoding 

We know that the optimum signal-detection scheme is based on minimizing the 

Euclidean distance between the transmitted signal and the received signal. This means that 

after receiving the output of the channel and passing it through the matched filters, we 

choose one of the message signals that are closest to the received signal in the Euclidean 

distance sense [7]. 

1.6.3. Hard Decision Decoding 

A simpler and more frequently used decoding scheme is to make hard binary 

decisions on the components of the received signal vector (received codeword), and then to 

find the codeword that is closest to it in the Hamming distance sense [7]. 

12 
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1.6.4. Bit Error Vs. Block Error 

If we assume an 8-bit data block (codeword) being transmitted over a noisy 

channel, and if we assume 64 blocks transmitted over the channel (512 bits divided into 

blocks), the number of bits having an error over the number of all transmitted bits is the bit 

error rate, while the number of blocks containing errors over the number of all transmitted 

blocks is the block error rate. 

Bit Error rate= error received bits I all transmitted bits 

Block Error rate= blocks received with errors I all transmitted blocks 

To understand the relation between bit error and block error rates, lets assume that a 

digital communication system transmitted the following codewords over an additive white 

Gaussian channel in the following sequence (0011, I 001, 1100, 1111 ). The receiver received 

the following corresponding codewords respectively (000 I, I 00 I, 1110, 1111 ). In this 

sequence of information, we have two blocks with errors caused by two error bits, one in 

each of the error blocks, (3rd bit in the 151 block, and 3rd bit in the 3rd block), resulting in: 

Bit Error = 2 (number of error bits) I l 6 (number of all transmitted bits) = l_ bit error rate, 
8 

which means I bit received with error for each 8 transmitted bits, and 

Block Error = 2 (number of block received with error) I 4 (number of transmitted blocks) 

_ l_ block error rate, which means in each two transmitted blocks one is received with 
2 

errors. On the other hand let us assume for the same transmitted codes we received the 

following codewords: (0011,1111,1100,l l l l). Here we have the same bit error rate, but 

both bit errors occurred in one block (2nd block, 2°d & 3rd bits). The block error rate is l_. 
4 

This would look better than if errors occurred in two different blocks. Now, lets assume 

that the code here has a minimum distance of 2, which means the decoder is capable of 

detecting I error in each code word. Then the errors occurring in our first case are 

detectable errors, while in the second case the block error is not detectable. It is obvious 

that the 2°d received codeword, although not the one transmitted, still one of the codewords 

of the code. 
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CHAPTER TWO 

LINEAR BLOCK CODES 

2.1. Basics of Linear Block Codes 

A binary code is a linear code if and only if the sum of two codewords is also a 

codeword. The minimum distance of a linear code is the minimum of the weights of the 

non-zero codewords. 

To get the codewords of a code we multiply all the possible message words by a 

matrix called the generator matrix. A generator matrix for a linear block code is a binary 

matrix whose rows are the codewords belonging to some basis of the code. Basis for a code 

are the codewords that can be linearly combined to give all the codewords. 

Example: {0000,0001,1000,1001} isalinearcode, {0001,1000} isabasisforthecode. 

Possible message inputs are { 00,01, 10, 11 } 

I 
o o o 1 I So the generator matrix becomes G = , 
1 0 0 0 

0 0 

1 0 
W= I 

0 
And the input matrix is 

The generated codewords are 

S=W.G (2.1) 

0 0 0 0 
1 0 0 0 s = I 
0 0 0 

0 0 

' Encoder 
(G matrix) 

codeword 
'-.. 

messages 

1 X 2 
/ 

1 X 4 
2x4 

Figure 2.1 Processing of a message input of an encoder. 
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Figure 2.1 shows how a single message word of length 2 gets encoded, to become a 

codeword of length 4. The encoder for this generator matrix adds two redundancy bits to 

the two bits input message words. 

2.2. Generator Matrix 

We know that two codes with the same minimum distance have the same properties. 

Since two codes that can be obtained from each other and have the same minimum distance 

are said to be equivalent, the generator matrices of equivalent codes can be obtained of each 

other by applying elementary row operations and columns interchanging. 

2.3. Canonical Form of Linear Block Codes 

The generator matrix G is said to be in canonical form if it is in the form 

G = I I : A I, where I is a K x K identity matrix and A is an arbitrary (k x (n - k)) 

Binary matrix. The codewords obtained from a generator matrix that is in canonical form 

are said to be in systematic form. If we have the generator matrix G and the message words 

W of length k then our codewords S are the multiplication of the message words W and the 

canonical generator matrix G. 

(2.2) 

If the first k-bits of the codewords are the same as the bits of W then they are called 

systematic. 

Example: if we have the following generator matrix 

I 
O O I 1 I 

G= 1 1 0 0' 

We interchange the first and the third columns to get the canonical form of this generator 

matrix. 

Ge= I~ o l o 11 10 11 11 01 1 , where A = and, J = , 1:10 10 01 
If we assume that the input message words are 
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0 0 
1 0 

W = I I , then the codewords are 0 . 

S=WG = 
C 

0 o:o 0 
I 

1 0 : 0 l 
I 

0 l ! 1 0 

Jt is obvious that the first two bits of the codewords are the same bits of the message 

words. The code generated by the canonical form of G is equivalent to the code word 

generated by G. This means both have the same properties of error detection and correction 

and have the same minimum distance. 

2.4. Parity Check Matrix 

The parity check matrix [ 1 J of a linear code with (k x n) generator matrix G is 

the ((n - k) x n) matrix H satisfying 

G .HT= 0 (2.3) 

where HT is the transpose of the parity check matrix H. and O denotes a ((n - k) x n) zero 

matrix. If Gisin the canonical form G = I I : A I then H = I AT : I I, where I is the (n-k) 
x (n-k) identity matrix. If G is not in the canonical form we can find H by reducing G to the 

canonical form, then find the canonical form of H then reversing the column operations 

used to convert G to canonical form in order to convert the canonical form of H into the 

parity check matrix of G. 

Example: if G is a generator matrix of a linear code 

0 0 0 0 

G =IO 0 , the linear code generated by this matrix is 

{00000,00001,00110,00111,11000,l lOOl,11110,l l l l l}. 

By the following operations: 

1. Replace the third row by the sum of the second and the third row. 

2. Replace the second row by the sum of the first and the second row. 

16 



3. Interchange between the first and the fifth columns. 

4. Interchange the second and the third columns. 

We find the canonical form of G to be 

1 0 

Ge= I O 1 
0 0 

o:o 0 
I 

0 : 1 0 
I 

] : 0 

0 0 

As we know Ge= I I : A I and He= I AT : I I. Here we have the matrix A= \ 1 0 
0 

AT=I ~ 
] 

~ I · Therefore our canonical form of H is 
0 

H =I 0 
] 0: I 

~I· 
I 

C 0 0 1 : 0 

Then to get the parity check matrix of the original generator matrix we apply column 

operations used to reduce our generator matrix to it's canonical form in reversed order: 

1. Interchange the second and the third columns. 

2. Interchange the first and the fifth columns. 

1
0 0 I 1 01 So we find that H = , 
1 1 0 0 0 

If we multiply G with the transpose of H we should get a zero matrix. 

0 1 
0 0 0 0 I 0 1 0 0 

G.HT = 0, I 0 0 I I I 1 0 = 0 0 
1 0 0 0 
0 0 

If we take the equation S = WG and we multiply both sides with the transpose of the parity 

check matrix HT we will have S HT = WG HT. We know that G.Hr = 0 (from equation 

2.3), therefore we get S HT= 0. 

If this relationship is true then S is a codeword that is resulted from G, if not then S is not 

resulted by the generator matrix G and does not belong to the codewords resulted by G. 
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2.5. Syndrome Decoding 

Assume the codeword S is corrupted by noise e giving X = S + e. Then the syndrome of X 

is given by: 

i5=X+e (2.4) 

To decode the received codeword X and be able to pick up a codeword of the 

code as the transmitted codeword we should create a syndrome table showing the codeword 

of the minimum weight and the syndrome. When a word that is not a codeword is received 

we compute its syndrome and we add it to the codeword of the minimum weight to recover 

the uncorrupted codeword. We know from previous section (2.4.) that SH7= O,and if this 

statement is not true for a word then it does not belong to the code of G and its 

corresponding H 7 . 

Example: Assume we have the following generator matrix G. 

0 

I

Q O 1 11 TO 1 G = , and its corresponding H = 
1 1 0 0 1 0 

0 

This G matrix generates the following codes: 

{ 0000,0011, 1100, 1111} 

If we multiply the matrix X (all possibilities of received words) by the transpose of the 

parity check matrix we get the syndrome matrix with the syndrome corresponding to each 

codeword, as only words with the syndrome zero are codewords of the code generated by 

the generator matrix G (S H7 = 0). 

0 0 0 0 0 1 0 0 
0 0 1 1 0 1 0 0 

SH7= I = 
0 0 1 0 0 0 

0 0 0 

We find here that the multiplication of the code words with the transpose of the parity 

check matrix gives a zero matrix, which means that the syndrome for all the codewords is 

zero. If we multiply all the possibilities of received codeword X, we will get the syndrome 

for each received codeword. 
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XHT= 

0 0 0 0 0 
0 0 0 I 

0 0 I 0 I 

0 0 I J 0 
0 I 0 0 0 
0 I 0 I 

0 I I 0 0 l I 

0 I I I 0 l 0 
= 

0 0 0 I 0 0 
0 0 I I 0 
0 I 0 I 

0 I I 0 
0 0 0 
0 I 

0 I 

0 

Now we construct the syndrome table as follows: 

Syndrome Code Words : wmin 
I 

: Word 
00 0000 0011 1100 1111 : 0000 

I 

10 0001 0010 1101 1110 : 0001 
I 

01 0100 0111 1000 1011 : 0100 
I 

11 0110 0101 1010 1001 I 0101 

0 
0 
0 
0 

l 

0 
0 
0 
0 

If a syndrome value has two codewords of the minimum weight then we choose one of 

them randomly to be added to the decoded received words. 

The process of decoding works as follows: 

1. The syndrome for the received codeword is calculated. 

2. The received codeword is added to the code of the minimum weight of the same 

syndrome. 

3. The resultant codeword is the correction of the received codeword (the decision 

made by the decoder). 

If we have the code word (0011) to be transmitted by the system and a corruption has 

occurred that it became (0111) we add the received codeword to the ~nin word of the same 

syndrome to find the corrected codeword. The syndrome of (OJ J J) is (01) so we add it to 

the codeword (0100) to get the correction for this corruption. i.e. (0111) + (0100) = (0011) 
so the codeword (0011) is picked by the decoder to be the transmitted codeword. 
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When we have two codewords of the minimum weight for the same syndrome the 

decoder might choose the wrong codeword to be the transmitted one. Assume that (0011) is 

transmitted and a corruption has occurred so that the received codeword became to be 

(0001) that has the syndrome (10) in the syndrome table. We add the received code word to 

the codeword that has minimum weight at the same syndrome level in the syndrome table 

as follows :(0001) + (0001) = (0000) [which is a wrong decision]. 
If we receive a codeword without corruptions (that means the received codeword 

has a syndrome of [00]), we add it the minimum weight codeword of the syndrome [00], 

which is (0000). For example if we receive (0011) which is a codeword and we add it to 

(0000) we get the same codeword. 

2.6. Length of the Codeword 

Assume we have a message source that generates -l-bits/sec, and we want to encode 

these messages and add one redundancy bit for each message. In other words we want to 

have a code rate of 5/4 (5 is number of bit in code word, and 4 is number of bits in message 

words.) which is better, to encode every 4 bits and get codewords of 5 bits, or encode every 

8 bits at once and get codewords of the length 1 O? 

Lets assume that we have a system encoding four bits messages at once, adding one 

redundancy bit to each, then transmitting them sequentially through a noisy channel. Also, 

lets assume the code used here has the capability to correct one error, and the transmitter 

sent two blocks of information that were received with two bit errors. 

The possible scenarios at the receiver here would be: 

1- One error has been received in each block; here then we have no problem because 

the code is capable of correcting one bit error. 

2- Bit errors occurred in one block, while the other block was free of errors. Here we 

have a problem; we have one clean block and another uncorrected block error. 

What if we combine each two message words together? In order to have eight bit message 

words we add two redundancy bits, so our code rate will be 10/8 which is equal to 5/4. 

Here we did not change the code rate we just combined every two messages together. 

Because of more redundancy our code is able to fix two errors. Wherever those errors 

occur, we do not care in this case, because the decoder is able to fix it. 
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2.7. Linear Cyclic Codes 

As we mentioned before cyclic codes are branch of linear block codes [1], except 

that they have a special property. Cyclic codes are preferred because they require a minimal 

amount of hardware, and their effectiveness in detecting errors is greater than 99.9% [5]. 

For a linear block code to be a cyclic code, any cyclic shift in a codeword of the 

code, must give another codeword [I] [ 5]. Because of these codes properties, we use the 

generator polynomial of the code instead of the generator matrix. We can also derive the 

parity check polynomial from the generator polynomial. If we assume that g(x) is the 

generator polynomial, m(x) is the message polynomial, c(x) is the code, then from g(x) we 

can find the parity check polynomial h(x) such that if we have a code of length n, then 

g(x).h(x) = (X" - I), And c(x).h(x) = 0, as m(x).g(x) = c(x). 

Example: Assume we want to design a cyclic code of length 7 that encodes a sequence of 

messages of length 3. We need to obtain a generator polynomial that is a factor of X7 -1 

in GF(2)[x]. (GF(2): binary Galois field (consists of two elements) [l].). Let a be a root of 

the primitive polynomial X3 + X + 1 = 0. The conjugacy of the powers of a with respect to 

GF(2) and their associated minimal polynomials are as follows: 

{l} ~ X+l 

{a+a2+a4} ~ X3+X+l 

{a3 +a6 +as}~ X3 +X2 +1 

The generator polynomials for binary cyclic code of length 7 must have one or more 

of the above polynomials as factors. Consider the case g(x) = ( X3 + X + 1 ).( X + 1 ). The 

generator polynomial in this case is g(x) = X4 + X3 + X2 + 1, the corresponding parity 

polynomial is h(x) = ( X7 + 1 )/g(x) = X3 + X2 + 1 . The message polynomials consist of all 

binary polynomials of degree less than or equal to 2. The corresponding code is thus a (7,3) 

code with the following eight code words [ 1]. 

m(x).g(x) Factorization Code polynomial c(x) Code Word 

O.g(x) 0 (0000000) 

I .g(x) 

X .g(x) 

l+X2 +X3 +X4 

X +X3 +X4 +XS 

(1011100) 

(0101110) 
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X2 .g(x) x2 + x4 + xs + x6 (0010111) 

(X2 + 1 ).g(x) 1+X3 +X5 +X6 (1001011) 

(X2 + X + 1 ).g(x) 1+X+X4+X6 (110010 I) 

(X+l).g(x) 1+X+X2+X5 (1110010) 

( x2 + x ).g(x) X +X2 +X3 +X6 (0111001) 

In the previous example it is obvious that any cyclic shift in any of the codewords will give 

another codeword from the same code [I]. 

2.8. Generator Matrix for cyclic codes 

If we have the following generator polynomial for a code of length n 

g(x)= gn.X11 +gn-1.xn-i +···+g1.X+go (2.5) 

and a generator polynomial of degree k as k = (n-r): 

h(x) = hk .x' + hk_1.xk-i + · · · + h; .X + h0 (2.6) 

Then the generator matrix G and the parity check matrix H is as follows: 

go gl s, 0 

go gl e, 
G= I I; and 

go gl s. 
0 go gl gn 

hk hi ho 0 

hk hi ho 
H= 

I 
hk hi ho 

0 hk hi ho 

Example: The generator matrix, the parity check matrix for the generator polynomial and 

parity check polynomial in the previous example are as follows: 

g(x)= X4 +X3 +X2 +1,h(x)= X3 +X2 +I, 

0 

G =IO I 
0 0 

0 0 
0 I I 

0 1 
o I, and 
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1 1 0 1 0 0 0 
0 1 1 0 1 0 0 

H= I 
0 0 1 1 0 1 0 

0 0 0 1 1 0 

This generator matrix can be used to generate the cyclic code in the previous 

example, and this parity check matrix can be used to create the syndrome decoder for this 

code. There are also another encoding and decoding techniques for cyclic codes, like the 

systematic encoding algorithms and systematic decoding algorithms, and shift register 

encoders and decoders [ 1][5]. 
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CHAPTER THREE 

DIGITAL IMAGES 

3.1. What is an Image? 

An image is a representation of a real scene, either in black and white or in color, 

and either in print form or in a digital form, printed images may have been reproduced 

either by multiple colors and grayscale or by a single ink source [2]. 

3.2. What is Digital Image? 

Digital images is consisted of pixels, each pixel carries the information of colors at 

the point it is located at, pixels all together forms the digital image that our eyes can see on 

the screen of a digital imaging system like a digital camera, computer, or even a digital TV 

receiver which converts this pixels into analogue waves to be shown on the TV screen [2]. 

3.3. Classification of Images 

3.3.1. RGB Images 

In colored images each pixel has three color vectors one for green, one for red, and 

one for blue, each of those color vectors has a value between O and 255 representing the 

concentration of the color within the pixel. Those three-color vectors within the pixel are 

mixed to give different colors that human eyes can see like (white, red, black, violet, 

brown, etc.). We can control the brightness of a colored image by controlling the value of 

the color vectors of the image pixels, if we decrease all the pixel values together the colors 

in the image are going to be decreased which means that the image will become darker 

while if we increase the color vectors of the pixels of an image the image will become 

brighter. We can also control the contrast, which is the degree of color mixing between the 

pixels of an image. 
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Figure 3.1 Pixels in an image 

Figure 3 .1 shows how color vectors in each pixel are represented. The squares are pixels, 

all together forming the digital image that a human eye can see. This 64 pixels image (8x8 

pixels) is a simple digital image while in reality digital images consist of much more than 

this number of pixels. For example in mobile cellular phone cameras number of pixels 

might reach 3 mega pixels and even more. As mentioned before each color vector in the 

pixel of a colored image has a value between O and 255. That means we have 256 possible 

values and each color vector can be represented in 8-bit binary form data. In order to 

represent one pixel of a colored image we need 24 bits to represent the three color vectors 

of the image. 

To understand more how colored image is displayed we can imagine three images: 

red scale image, blue scale image, and a green scale image, placed on each other to perform 

a color mixing, giving the RGB-image. 

3.3.2. Grey Level Images 

Gray scale images has only one color vector. The value of this color vector 

represents the level of the gray color in the pixel that varies between O for very dark gray 

(black) and 255 which is very bright gray (white). 
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As long as we have only one color vector represented with 8-bits of data in each 

pixel then we can represent each pixel with an 8-bits data representing the gray color value 

in it. We can increase the brightness of a grayscale image by increasing all the pixel values 

together, which will increase the color level in all the pixels uniformly. Increasing the 

contrast of a grayscale image will increase the color mixing between the pixels [2]. 

3.3.3. Black and White Images 

Black and white images, also called binary images, are the first digital images 

found. Each pixel is formed of pure black color or pure white color. The pixel value 0 

represents pure black and 1 represents pure white. Each pixel in the black and white image 

can have two color possibilities, black or white, 0 or 1. Therefore we only need l -bit data to 

represent a pixel in a black and white image. 

white pixel black pixel 
\ / I 

1 o· I 

Figure 3.2 Black and white image pixels. 

3.4. Edges and Noise in Digital Images 

Consider sequentially plotting the gray values of the pixels of an image on the (y­ 

axis) against pixel locations on the (x-axis) as the image is scanned. The result will be a 

discrete time plot of varying amplitudes showing the intensity of light at each pixel. Lets 

say that we are at the sixth row and looking at pixels from 81 to 96 at a 256 pixels image 

(16 x 16). The intensities of the pixels number 82 and 88 are so different from pixels 

around them and may be considered to be noise. 
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In general, noise is information that does not belong to the surrounding 

environment. The intensities of pixels 86 and 90 are also different from the neighborhood 

pixels and may indicate a transition between the object and the background; thus these 

pixels can be constructed as representing the edges of the object (see figure 3.3) [2]. 

3.5. Image Filtering and Noise Reduction 

Although we are discussing a discrete signal, this signal may be transformed into a 

large number of sines and cosines with different amplitudes and frequencies that if added 

together, will construct a signal. Slowly changing signals (such as small changes between 

succeeding pixel gray values) will require few sines and cosines in order to be constructed, 

and thus have low frequency content. On the other hand quickly varying signals (such as 

large differences between pixel gray levels) will require many more frequencies to be 

reconstructed, and thus have high frequency content. Both noises and edges are instances in 

which one pixel value is very different from the neighboring ones, thus noises and edges 

create the larger frequencies of a typical frequency spectrum [2]. 

Intensity 

1 jl I I I I I I I I,, I I I I I I I 11~ 
/possible noise 

100~ I 

( > ~ I ~ P?ssible edge 

50 I I I I ;· 

256 J »<: ~1 I , I 11111111, I I I ) 
Pixel# 96 

Figure 3.3 Noise and edge information in an intensity diagram of an image 

3.5.1. Image through Low-Pass Filter 

If a large frequency is passed through a low-pass filter (a filter that allows lower 

frequencies to go through without much attenuation in amplitude, but that severely 
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attenuates the amplitudes of the higher frequencies in the signal) the filter will reduce the 

influence of all high frequencies, including the noises and edges. This means that, although 

a low pass filter will reduce noise, it will also reduce the clarity of an image by attenuating 

the edges, thus softening the image throughout. 

3.5.2. Image Through High-Pass Filter 

A high-pass filter will increase the apparent effect of higher frequencies by severely 

attenuating the low-frequency amplitudes. In such cases, noises and edges will be left 

alone, but slowly changing areas will disappear from the image. 

3.5.3. Neighborhood Averaging 

Neighborhood averaging can be used to reduce noise in an image, but it also 

reduces the sharpness of the image. Consider the (3 x 3) mask shown in the Figure 3.4 

together with its corresponding values, as well as a portion of an imaginary image with its 

gray levels indicated. As it can be seen, all the pixels but one are at gray value of 20. The 

pixel with a gray level of 100 may be considered to be noise, since it is different from the 

pixels around it. Applying the mask over the comer of the image with a normalizing value 

of 9 (the sum of all values in the mask), yields: 

X = (20 x 1 + 20 x 1 + 20 x 1+20xI+100 x I+ 20 x l + 20 x 1 + 20 x I+ 20 x 1) I 9 = 29 

20 20 20 20 

20 100 20 20 

20 20 20 20 

1 1 1 

1 1 1 

1 1 1 

Figure 3.4 Neighborhood averaging mask. 
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Figure 3.5 (5 x 5) and (3 x 3) Gaussian averaging filters. 

As a result of applying the mask on the indicated comer, the pixel with the value 

100 changes to 29 and the large difference between the noisy pixels and the surrounding 

pixels (100 vs. 20) becomes much smaller (29 vs. 20), thus reducing the noise. With this 

characteristic, the mask acts as a low pass filter. This averaging low-pass filter will also 

reduce the sharpness of edges, making the resulting image softer and less focused. We can 

also use (5 x 5) filters, which give better results, but require a bit more processing. 

There are other averaging filters, such as the Gaussian averaging filter (also called 

the mild isotropic low-pass filter), which is shown in Figure 3.5. This filter will similarly 

improve an image, but with slightly different results. 

3.5.4. Frequency Domain 

When the Fornier transform of an image is calculated, the frequency spectrum 

might show a clear frequency for the noise, which in many cases can be selective 

eliminated by proper filtering. 

3.5.5. Median Filters 

One of the main problems in using neighborhood averaging is that, along with 

removing noises, the filter will blur edges [2]. A variation of this technique is to use a 
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median filter, in which the value of the pixel is replaced by the median of the values of the 

pixels in a mask around the given pixel, stored in ascending order. A median is the value 

such that half of the values in the set are below and half are above the median. Since, unlike 

an average, the median is independent of the value of any single pixel in the set, the median 

filter will be much stronger in eliminating spike-like noises without burring the object or 

decreasing the overall sharpness of the image. Consider the image in Figure 3.6 (a). The 

gray values, in ascending order, are 1, 2, 3, 4, 5, 6, 7, 8, and 9. The middle value is 5, 

resulting in the image (b) in Figure 3.6. Observe that the image has become grainy because 

the pixel sets with similar values appear longer (as in 5 and 5) [2]. 

2 1 3 

8 8 4 

7 5 6 

2 1 3 

8 5 4 

7 5 6 

(a) (b) 

Figure 3.6 Application of a median filter. 

(a) (b) (c) (d) 

Figure 3.7 (a) original image. (b) the image corrupted with a random Gaussian noise. (c) 
the image improved b a (3 x 3) median filter. ( d) the same image improved by a (7 x 7) 
median filter. 
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In Figure 3.7 we can see how that the effect of a (7 x 7) filter on a corrupted image is better 

than the effect of a (3 x 3) filter mask, but as we mentioned before the bigger the mask we 

use the more processing we need. 

3.6. Image Sampling and Resolution 

Sampling an image [2] is representing an image in a digital form (pixels), as each 

pixel of the image represents a part of it. As we mentioned before the pixel is the smallest 

piece of a digital image. 

The resolution of an image is the number of samples forming it. lf we sample an 

image of an object at a rate of 64-kilo pixels (having 65536 pixels forming the image), and 

we sample an image of the same object at a rate of 256 pixels (256 pixels forming the 

image), the image sampled at 64-kilo pixel resolution is going to be more clear than the one 

sampled at 256 pixels resolution. 

(a) (b) (c) (d) 

Figure 3.8 Effect of different sampling rates on an image. At (a) 432 x 576 pixels, at (b) 
108 x 144 pixels, at ( c) 54 x 72 pixels, at ( d) 27 x 36 pixels. As the resolution decreases, the 
clarity of the image diminishes accordingly. 

3. 7. Storage of Digital Images 

After the image is converted to its digital form by any imaging device (scanner, 

digital camera, etc.) [ 4] The image can be stored in a hard disk or any other storage device 

in different formats each has different properties and advantages, the reason behind that are 

the different compression methods used for each. Some compression methods discard too 

much information in order to have a small file size. This type of compression causes a Jot 

of information loss, so when we attend to view the image again, we are not going to have 

31 

1111 ------ - --- - -- - 

- -- - 



an image with the same quality of the original. Since loss less compression does not discard 

much information, we are not going to have much reduction in the image size, but at the 

same time we will keep the quality of the image. Some image file formats do not do any 

kind of compression, like .raw files (uncooked images), They just discard some information 

related to the printer and some other applications. 

Storage of computer files on the hard disk also includes some coding techniques. 

This includes image files and also the communication of data between CD drives, random 

access memory, and other devices within the computer, etc. The reason behind using 

coding within the computer is to overcome the magnetic interference, which cannot be 

eliminated by isolating the main board layers. 

3.8. Image Restoration 

Image restoration methods are used to improve the appearance of an image by 

application of restoration process that uses a mathematical model for image degradation. 

The modeling of the degradation process differentiates restoration from enhancement where 

no such model is required [ 4). 

Examples of the types of degradation considered include blurring caused by motion 

or atmospheric disturbance, geometric distortion caused by imperfect lenses, superimposed 

interference patterns caused by mechanical systems, and noise from electronic sources. It is 

assumed that the degradation model is known, or can be estimated, the degradation process 

is modeled and its inverse is applied to restore the original image. 

3.9. Image Enhancement 

Image enhancement techniques are employed to emphasize, sharpen, and/or smooth 

image features for display and analysis. Image enhancement is the process of applying 

these techniques to facilitate the development of a solution to a computer imaging problem, 

Consequently, the enhancement methods are application specific and are often developed 

empirically. Enhancement methods operate in the spatial domain manipulating the pixel 

data, or in the frequency domain by modifying the spectral components, some enhancement 

algorithms use both [ 4]. 
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The type of technique include point operations, where each pixel is modified 

according to a particular equation that is not dependent on other pixel values, mask 

operations where each pixel is modified according to the values in a small neighborhood 

(sub image), or global operations where all the pixel values in the image are taken into 

consideration. Spatial domain processes include all three types, but frequency domain 

operations, by nature of the frequency (and sequence) transforms are global operations, and 

can become mask operations by performing the transform on small image blocks instead of 

the entire image. 

Examples of image enhancement techniques include edge detection, modifying the 

brightness and/or the sharpness of the image, increasing or decreasing the image contrast 

and many other possible processes [4]. 
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CHAPTER FOUR 

RESULTS 

4.1. A System Without Coding 

We took a 256 by 256 pixels image (figure 4.1) and converted it into binary blocks. 

Each block is of 16 bits length. We transmitted it through a noisy channel that adds a 

random binary noise pattern to the 16 bits binary data blocks. The receiver will receive the 

message and reform the image back. In this model we are not using any type of coding 

technique. We will just try to filter the received noisy image using a median filter. 

Figure 4.1 Original image 
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Figure 4.2 Noisy form of the image 

In Figure 4.2 we can see the effect of adding random binary noise pattern to our original 

image. Subtracting the noisy image from the original image will give us the noise pattern 

image. Figure 4.3 shows the noise pattern added to the image. If we filter the received noisy 

image with a median filter we are going to have very good results. Figure 4.4, shows the 

same received noisy image after filtering it with a median filter. The only problem is that 

the median filter we are using is going to blur the edges, which might be obvious in the 

image. 
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Figure 4.3 Noise pattern 

36 



Figure 4.4 Image filtered with Median filter 

Figure 4.5 shows the remaining noise pattern in the filtered image. It is obvious that 

the median filter has filtered most of the noise, but some losses in the edges have occurred. 

Because of the way the median masks operates, pixel values are going to be averaged and 

therefore, our image is not going to be exactly the same of our original image. However, 

differences are not going to be recognized by the human eye. The median filter as we 

discussed before causes the edges to be blurred (see section 3.5.5.). 

37 



256X256 
pixels image 

Figure 4.5 Noise Pattern after filtering 
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Figure 4.6 Block diagram of the system in section 4.1 
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4.2. A System With Channel Coding 

If we encode the 16 bit messages using cyclic coding technique by adding 2 

redundancy bits, we will get 18 bit codewords. After adding noise to the transmitted 

information in the channel, the receiver will receive the information, decode it and try to 

correct the occurring errors in the channel. The result is shown in Figure 4.6. 

Figure 4.7 Image received by a decoder of a system using 2-redundency bits 

As we can see, not many errors are corrected when only 2 redundancy bits are added to the 

message words. We can get better results by adding more redundancy. Lets try adding 5 

bits of redundancy to get 2 I bit codewords. The received image when using 5 bits of 

redundancy is totally free of errors (figure 4.7). 
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Figure 4.8 Image Received by the decoder of a 5-redundency bits system 

\ 

Figure 4.9 Black image ( empty noise pattern) 
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In Figure 4.8 we can see the empty noise pattern, when we used a 5 bit redundancy. 

As we mentioned before, the noise pattern we are taking here is the received image 

subtracted from the original image. Here we can see that we do not have noise at all in our 

received image. 

Of course it differs from person to another when it comes to design a system. Some 

engineers for some applications prefer low redundancy accepting the errors that is going to 

occur. Some of them prefer not to have errors at all so they use more redundancy. There are 

also a Jot of code types that are so powerful like turbo codes that are able to correct more 

errors with the same amount of redundancy. Still a lot of research and experiments are 

being done in order to correct as many errors as possible of errors with the least amount of 

redundancy bits. 

256X256 
pixels image 

combine 2 pixels 
to get 16 bit 
messages 

encoder adds 5 
redundency bits 

noisy channel flips 
bits randomly decoder restoring the 

image 
256X256 pixels 
image 

16-bit 
message 
words 

Figure 4.10 Block diagram for the system in section 4.2 

21-bit 
codewords 

21-bit noisy 
version ofthe 
codewords 

16-bit 
message 
words 
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CONCLUSION 

Digital revolution has introduced a lot of efficient signal processing techniques that 

can not be performed in analog systems. These techniques, like applying masks on images, 

require that the image is in spatial domain and can not be applied on continuous 

waveforms. A very important of these techniques is coding. 

Coding technique is used in communication systems, computer storage, and also a 

lot of other applications like the communication between a digital camera and a computer, 

and a Jot of similar devices. 

In computer storage whenever we want to store information on the hard disk, the 

computer divides the information into blocks of data, adds the redundancy bits and stores it. 

When we open the file that contains the information stored, a decoder will decode this data 

so we can use it. The coding technique has helped a lot in keeping the information resistant 

against losses, especially given that hard disks are very sensitive devices and their sectors 

can get damaged easily. Even if the hard disk does not have any damages in its sectors, the 

electromagnetic interferences between the main board layers, and the parts of the computer, 

is enough to result in a lot of errors while storing the data to the hard disk. Therefore, 

coding was very necessary for computer storage. 

To apply coding in a digital communication system, we need to set an encoder at 

the transmitting part, arid a decoder at the receiving part. An encoder generates codewords 

depending on the message words entering the input side. The codewords generated by the 

encoder usually have some extra bits in order for the decoder to be capable of detecting and 

correcting errors. Even though decoders make wrong decisions some times about what 

codeword has been transmitted, still the coding technique is so efficient and these situations 

do not occur very frequently. 

Linear block codes, and cyclic codes encode each block of data (message word) 

separately by multiplying the data block by the generator matrix. The result of this 

multiplication is the codeword corresponding to the message word. 

The longer the codewords generated by a certain code, the better error detection and 

correction capabilities it has, and the more channel capacity it requires, since there is more 

information to be transmitted. 
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If an image is transmitted through a noisy channel, the receiver can apply filtering 

techniques that would reduce the noise and blur the edges within the image. The can be 

encoded and transmitted through the noisy channel, which would decrease the number of 

occurring errors within the received image. 

The more redundancy bits used to encode the message words, the better results we 

get, but the more channel capacity required. Therefore, to design a code the channel 

capacity available must be concerned. 
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APPENDIX A 

A matlab program that model a communication system transmitting an image. It adds noise 
in the channel, receives it, and applies the median filtering technique to clean the noise 
within. It displays the original image, received noisy image, noise pattern of received 
image, filtered image, noise pattern of filtered image: 

clc 
clear 
M = lmread('elaine.256.tif); 
W = zeros(256,256); 
for i = 1 :256 
for j = 1 :256 

c = M(i,j); 
W(ij) = c;% changing the image array to a double array 

end 
end 
A = de2bi(W);%convert the double array into pixel sequence of 8 bits 
msg = zeros(32768, l 6);%create msg matrix 
X =]; 

for i = 1 :32768 
for j = 1 :8 

c = A(x,j); 
msg(i,j)=c; 

end 
for j = 9:16 

c = A(x+ l ,j-8); 
msg(i,j)=c; 

end 
x = x + 2;%fill msg matrix to become info sequene of 16 bits 

end 
%encoder side 
%decoder side 
errval = randerr(32768,16,[0 1]);%noise values 
noisycode=rem((msg+errval),2);%adding noise 
rseq=noisycode; 
rmsg=zeros(65536,8); 
I= l; 
t = 2; 
for i = 1 :32768 
for j = 1 :8 

y=rseq(i,j); 
rmsg(l,j)=y; 

end 
1=1+2; 
for j = 9:16 
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y=rseq(i,j); 
rmsg(t,j-8)=y; 

end 
t=t+2; 

end 
Q=bi2de(rmsg); 
recim=zeros(256,256); 
x=l ; 
for i = 1 :256 

for j = 1 :256 
y = Q(x,1); 
recim(j,i)=y; 
x=x+ 1; 

end 
end 
recimag = uint8(recim);%we got our image back as a uint8 matrix 
figure(]), 
imshow(M); 
figure(2), 
imshow(recimag); 
NP=imsubtract(M,recimag); 
figure(3), 
imshow(NP); 
MFimage=medfilt2(recimag,[3,3]);%filtering the image with a median filter 
figure( 4), 
imshow(MFimage ); 
MP=imsubtract(M,MFimage ); 
figure(5), 
imshow(MP); 

46 



APPENDIX B 

Matlab program modeling a communication system that encodes an image using cyclic 
codes with 2 redundan~y bits, transmits it, adds noise to the codewords being transmitted, 
receives and decodes the image, Displays the original image, relieved image, noise pattern: 

clear 
clc 
M = Imread('elaine.256.tif); 
W = zeros(256,256); 
for i = 1 :256 
for j = 1 :256 

c = M(i,j); 
W(ij) = c;% changing the image array to a double array 

end 
end 
A = de2bi(W);%convert the double array into pixel sequence of 8 bits 
msg = zeros(32768, 16);%create msg matrix 
X = 1; 
for i = 1 :32768 
for j = 1 :8 

c = A(x,j); 
msg(i,j)=c; 

end 
for j = 9:16 

c = A(x+ l ,j-8); 
msg(i,j)=c; 

end 
x = x + 2;%fill msg matrix to become info sequene of 16 bits 

end 
%encoder side 
code= encode(msg, 18, 16,'cyclic/binary');o/oadding 2 bit redundency, 
errval = randerr(32768,18,[0 l]); 
noisycode=rem( ( code+errval),2); 
%decoder side 
newmsg = decode(noisycode, 18, 16,'cyclic'); 
rseq=newmsg; 
%to image form 
rmsg=zeros(65536,8); 
l = l; 
t = 2; 
for i = 1 :32768 
for j = 1 :8 

y=rseq(i,j); 
rmsg(l,j)=y; 

end 

47 



1=1+2; 
for j = 9: 16 

y=rseq(i,j); 
rmsg(t,j-8)=y; 

end 
t=t+2; 

end 
Q=bi2de(rmsg); 
recim=zeros(256,256); 
x=l; 
for i = 1 :256 

for j = 1 :256 
y=Q(x,l); 
recim(j,i)=y; 
x=x+ 1; 

end 
end 
recimag = uint8(recim);%we get our image back as a uint8 matrix 
figure(]), 
imshow(M); 
figure(2), 
imshow( recimag); 
NP=imsu btract( recimag,M); 
figure(3), 
imshow(NP); 
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APPENDIX C 

Matlab program modeling a communication system that encodes an image using cyclic 
codes with 2 redundancy bits, transmits it, adds noise to the codewords being transmitted, 
receives and decodes the image, displays the original image, received image, noise pattern: 

clear 
ck 
M = lmread('elaine.256.tif); 
W = zeros(256,256); 
fori=J:256 
for j = 1 :256 

C = M(i,j); 
W(i,j) = c;% changing the image array to a double array 

end 
end 
A= de2bi(W);%convert the double array into pixel sequence of 8 bits 
msg = zeros(32768, 16);%create msg matrix 
X = J; 
for i = 1 :32768 
for j = 1 :8 

c = A(x,j); 
msg(i,j)=c; 

end 
for j = 9: 16 

c = A(x+ l ,j-8); 
msg(i,j)=c; 

end 
x = x + 2;%fill msg matrix to become info sequene of 16 bits 

end 
%encoder side 
code= encode(msg,21, 16,'cyclic/binary');o/oadding 5 bit redundency, 
errval = randerr(32768,2 J ,[O 1 ]); 
noisycode=rem( ( code+errval),2); 
%decoder side 
newmsg = decode(noisycode,21, 16,'cyclic'); 
rseq=newmsg; 
%to image form 
rmsg=zeros(65536,8); 
l = l; 
t = 2; 
for i = 1 :32768 
for j = 1 :8 

y=rseq(i,j); 
rmsg(l,j)=y; 

end 
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1=1+2; 
for j = 9:16 

y=rseq(i,j); 
rmsg(t,j-8)=y; 

end 
t=t+2; 

end 
Q=bi2de(rmsg); 
recim=zeros(256,256); 
x=l; 
for i = 1 :256 

for j = 1 :256 
y=Q(x,1); 
recim(j ,i)=y; 
x=x+ 1; 

end 
end 
recimag = uint8(recim);%we get our image back as a uint8 matrix 
figure(}), 
imshow(M); 
figure(2), 
imshow(recimag); 
NP=imsubtract(recimag,M); 
figure(3), 
imshow(NP); 
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