
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer
Engineering

Design and Programming in Java to Develop
Security Measures on DBMS Integrated to

Internet Platform

Graduation Project
COM 400

Students: Cem Uludağ (980482)

Supervisor: Halil Adahan

Lefkoşa - 2004

Acknowledgements

First of all, I would like to thank my supervisor Mr. Halil Adahan. Under his guidance, I

successfully overcome many difficulties and learn a lot about Java Programming and Oracle

Database and Graduation Project. When I faced problems in these fields, he always helped me.

I wish to thank my parents because of their endless support and encouragement and also my

friends Hakan and Turgut Tuna brothers and my house friend Tunç Samurkaş for their help to

develop myself by discussing technological subjects and computer science and also for their

friendships.

It is my pleasure to take this opportunity to express my greatest gratitude to many individuals

who have given me a lot of supports during my four-year Undergraduate program in the Near

East University. Without them, my Graduation Project would not have been successfully

completed on time may be never.

Abstract

Database management has evolved from a specialized computer application to a central

component of a modern computing environment. As such, database systems have become an

essential part of computer science education. The basic components of database management

systems are; collecting data and information, managing data storage, data retrieval and data

update including insertion, modification and deletion. Database management systems require

some automated tools for design, query and application development. Database applications and

database users also have to be considered. Database users are seperated into four basic branches;

database administrators, database designers, end users and application programmers. We can

consider the 50's as the starting time of database management systems with the file systems.

Then the evolution of DBMS is continued by hierarchical & network systems at 60's and 70's

followed by relational systems at 80's and finally the object orinted systems are introduced at late

80' s. With all of the steps in the evolution we have more advantages. The most well knowns are

reduced data redundancy, data integrity, data independence, data sharing and data security.

The introduction of Java applets has taken theWorldWide Web by storm. Information servers can

customize the presentation of their content with server-supplied code which executes inside the

Web browser. We examine the Java language and both the HotJava and Netscape browsers which

support it, and find a significant number of flaws which compromise their security. These flaws

arise for several reasons, including implementation- errors, unintended interactions between

browser features, differences between the Java language and bytecode semantics, and

weaknesses in the design of the language and the bytecode format. On a deeper level, these flaws

arise because of weaknesses in the design methodology used in creating Java and the browsers. In

addition to the flaws, we discuss the underlying tension between the openness desired by Web

application writers and the security needs of their users,

and it is suggested how both might be accommodated.

11

Introduction

A database management system (DBMS) consists of a collection of interrelated data and a set of

programs to access that data. The collection of data, usually refered to as the database, contains

information about one particular enterprise. The primary goal of a DBMS is to provide an

environment that is both convenient and efficient. To use in retrieving and storing

database information.

Database systems are designed to manage large bodies of information. The management of data

involves both the definition of structures for the storage of information and the provision of

mechanisms for the manipulation of information. In addition, the database system must provide

for the safety of the information stored, despite system crashes or attempts a_! unauthorized

access. If the data is to be shared among several users, the system must avoid

possible anomalous results.

The importance of information in most organizations, and hence the value of the database, has led

to the development of a large body of concepts and techniques for the efficient

management of data .

•

lll

Table of Contents

Acnowledgements
Abstract
Introduction
CHAPTERl
1.1 A Word About the Java Platform
1.1.1 Writing a Program

1.1.2 Compiling the Program
1.1.3 Interpreting and Running the Program

1.2 Database Access
1.2.1 The JDBC
1.2.2 The JDBC Structure
1.2.3 ODBC's Part In The JDBC
1.2.4 Using JDBC Drivers
1.2.5 JDBC URL And The Connection
1.2.6 Using ODBC Drivers
1.2.7 Bridge Requirements
1.2.8 The ODBC URL

1.3 Oracle Database
1.3.1 Oracle Files

1.3.1.1 Database Files
1.3.1.2 Control Files
1.3.1.3 Redo Logs

1.3.1.3.1 Online Redo Logs
1.3.1.3.2 Offiine/Archived Redo Logs
1.3.1.4 Other Supporting Files

1.3.2 Oracle Memory
1.3.2.1 System Global Area (SGA)

1.3.2.1.1 Database Buffer Cache
1.3.2.1.2 Redo Cache
1.3.2.1.3 Shared Pool Area
1.3.2.1.4 SQL Area
1.3.2.1.5 Dictionary Cache
1.3.2.2 Process Global Area

1.3.3 Oracle Access with JDBC
1.3.3.1.1 OCI8 driver
1.3.3.1.2 The DriverManager Class
1.3.3.1.3 The Driver Class
1.3.3.1.4 The Connection Class
1.3.3.1.5 The Statement Class
1.3.3.1.6 The ResultSet Class

1.3.3.2 Basic Translation Steps and Runtime Processing
1.3.3.2.1 Translation Steps
1.3.3.2.2 Runtime Processing

Page
i

ii
iii
2
2
3
3
3
3
3
4
6
7
7
8
9
9

10
10
10
11
11
11
11
12
12
12
12
13
13
13
14
14
15
15
16
16
16
17
17
17
17
18

IV

Database
1.4.1 Introduction
1.4.2 Data Abstraction Mechanism
1.4.3 Data Modeling
1.4.4 Instances and Schemes

1.4.4.1 Data Dependence
1.4.5 Data Definition Language
1.4.6 Data Manipulation Language
1.4.7 Database Manager

CHAPTER2
1 Application Structure and Elements

2.2 Program Modules in Java
2.2.1 Method Declarations
2.2.2 Constructor Declarations
2.2.3 Statements

2.2.3.1 Empty Statement
2.2.3.2 Block Statement
2.2.3.3 Method Invocation
2.2.3.4 Allocation Statements
2.2.3.5 Statement Labels
2.2.3.6 The break Statement
2.2.3.7 The Continue Statement
2.2.3.8 The synchronized Statement
2.2.3.9 The try Statement
2.2.3.10 The return Statement

2.3 Application to Applets
2.3.1 The Basic Structure of an Applet
2.3.2 How Applets Work
2.3.3 The Relationship Between HTML and Applets
2.3.4 Applets and Interactive Web Pages
2.3.5 The Execution of an Applet

2.4 Class Declarations
2.4.1 Extending a Class
2.4.2 Behavior

2.4.2.1 The init Method:
2.4.2.2 The start Method:
2.4.2.3 The Stop and Destroy Methods:

2.5 Packages
2.5.1 The package Statement
2.5.2 The import Statement

2.6 Action Listening
2.7 Event Handling
2.8 Main Method
2.9 File Access by Applications and Applets

2.9.1 File Access by Applications

19
19
20
21
23
23
24
24
25

26
26
28
29
30
32
32
32
32
32
32
33
33
33
33
34
34
34
35
36
37
37
38
39
40
40
40
41
41
41
41
42
42
42
43
43

V

2.9.2 Exception Handling
2.9.3 File Access by Applets

10 Java and Oracle Security Platform
2.10.1 Java Security Features

2.10.1.1 Language Security Features
2.10.1.2 Compiler Security Features
2.10.1.3 Runtime Security Mechanisms
2.10.1.4 Class Loader Security Checks
2.10.1.5 The Bytecode Verifier
2.10.1.6 Memory Management and Control
2.10.1. 7 Security Manager Checks

CHAPTER3
3.1 Introduction to Net8

3.1.1 Advantages of Net8
3.1.1.1 Network Transparency
3.1.1.2 Protocol Independence
3.1.1.3 Mediaff opology Independence
3.1.1.4 Heterogeneous Networking
3.1.1.5 Large Scale Scalability

3.2 Net8 Features
3.2.1 Scalability Features
3.2.2 Manageability Features

3.2.2.1 Host Naming
3.2.2.2 Oracle Net8 Assistant

3.2.3 Multiprotocol Support Using Oracle Connection Manager
3.2.4 Oracle Trace Assistant
3.2.5 Native Naming Adapters

3.3 Net8 Operations
3.3.1 Connect Operations

3.3.1.1 Connecting to Servers
3.3.1.2 Establishing Connections with the Network Listener

3.3.1.2.1 Bequeathed Sessions to Dedicated Server Processes
3.3.1.2.2 Redirected Sessions to Existing Server Processes

3.3.1.2.2.1 Prespawned Dedicated Server Processes
3.3.1.2.2.2 Dispatcher Server Processes

3.3.1.2.3 Refused Sessions
3.3.2 Data Operations
3.3.3 Exception Operations

3.4 Net8 and the Transparent Network Substrate (TNS)
3.5 Net8 Architecture

3.5.1 Distributed Processing
3.5.2 Stack Communications
3.5.3 Stack Communications in an Oracle networking environment

3.5.3.1 Client-Server Interaction
3.6 Distributed Computing Using Java

44
46
46
46
46
47
47
48
48
48
49

51
51
51
51
51
52
52
52
52
52
53
53
53
53
54
54
54
54
54
55
55
56
56
57
58
58
59
59
60
60
60
62
62
63

VI

3.6.1 Distributed Object Applications
3.6.2 RMI Interfaces and Classes

3.6.2.1 The java.rmi.Remote Interface
3.6.3 Parameter Passing in Remote Method Invocation

3.6.3.1 Passing Non-remote Objects
3.6.3.2 Passing Remote Objects
3.6.3.3 Referential Integrity
3.6.3.4 Class Annotation
3.6.3.5 Parameter Transmission

3.6.4 Locating Remote Objects
3.6.5 Stubs and Skeletons
3.6.6 Thread Usage in Remote Method Invocations
3.6. 7 Garbage Collection of Remote Objects
3.6.8 Dynamic Class Loading
3.6.9 RMI Through Firewalls Via Proxies

3.6.9.1 How an RMI Call is Packaged within the HTTP Protocol
3.6.9.2 The Default Socket Factory
3.6.9.3 Configuring the Client
3.6.9.4 Configuring the Server
3.6.9.5 Performance Issues and Limitations

ummary and Conclusion
Rererences

ppendices
Appendix A: Program

"

64
66
66
67
67
67
67
67
68
69
69
70
70
71
72
72
72
73
73
73
74
75
77

Vll

· t of Figures
ıgure 1.1.1 : The Java Platform

re 1.2.2.1 : The architecture of the JDBC
~1.2.3.1 : ODBC in the JDBC model.

re 2.1.1: Simple Class
ıgure 2.1.2 : Simple Class with Constructor

re 2.1.3: A Class with Three Instances
re 2.3.1.1 : Verification of Applet's Byte-Code
re 2.3.2.1: How a Java Applet Works
re 2.4.1.1 : Extending a Class

J'igure 2.9.2.1 : Exception Handling
J'igure 3.3.1.2.1 : Network Listener In a Typical Net8 Connection
J'igure 3.3.1.2.1.1: Bequeathed Connection To a Dedicated Server Process
igure 3.3.1.2.2.1.1 : Redirected Connection To

a Prespawned Dedicated Server Process
ıgure 3.3.1.2.2.2.1 : Redirected Connection To a Dispatcher Server Process
igure 3.5.2.1 : OSI Communications Stack
igure 3.5.3.1.1 : Typical Communications Stack in an Oracle environment
'igure 3.6.1.1 : The Distributed and Nondistributed Models Contrasted
igure 3.6.2.1 : RMI Interfaces and Classes

Page
2
5
6

26
27
27
35
36
39
44
55
56

57
58
61
63
65
66

vııı

Chapter I: Introduction

1.1 Java Platform

The Java platform consists of the Java application programming interfaces (A"Pls) anc\ the

Java virtual machine (JVM).

JAVA PROGRAM

JAVA APls

JAVA VIRUAL MACHINE

YOUR COMPUTER SYSTEM

Figure 1.1. 1 : The Java Platform

Java APis are libraries of compiled code that we can use in your programs. They let you add

ready-made and customizable functionality to save you programming time.

Java programs are run (or interpreted) by another program called the Java VM. Rather than

running directly on the native operating system, the'program is interpreted by the Java VM for

the native operating system. This means that any computer system with the Java VM installed

can run Java programs regardless of the computer system on which the applications were

originally developed.

2

1.1.1 Writing a Program

The easiest way to write a simple program is with a text editor. So, using any text editor we

can create a text file, and make the extension of the text file to .java. Java programs are case

sensitive.

1.1.2 Compiling the Program
A program has to be converted to a form the Java VM can understand so any computer with a

Java VM can interpret and run the program. Compiling a Java program means taking fhe

programmer-readable text and converting it to bytecodes, which are platform-independent

instructions for the Java VM.

1.1.3 Interpreting and Running the Program

After the source code succesfully compiled into Java bytecodes, we can interpret and run

applications on any Java VM, or interpret and run applets in any Web browser with a Java

VM built in such as Netscape or Internet Explorer. Interpreting and running a Java program

means invoking the Java VM byte code interpreter, which converts the Java byte codes to

platform-dependent machine codes so any computer can-understand and run the program.

1.2 Database Access
1.2.1 The JDBC
JDBC stands for Java Database Connectivity.It refers to several things, depending on context:

1. It's a specification for using data sources in Java applets and applications.

2. It's an API for using low-level JDBC drivers.

3 It's an API for creating the low-level JDBC drivers, which do the actual

connecting/transacting with data sources..
4. It's based on the X/Open SQL Call Level Interface (CLI) that defines how

"client/server interactions are implemented for database systems.

The JDBC defines every aspect of making data-aware Java applications and applets. The low-'

level JDBC drivers perform the database-specific translation to the high-level JDBC interface.
c-

This interface is used by the developer so we don't need to worry about the database-specific

syntax when connecting to and querying different databases. The JDBC is a package, much

like other Java packages such as java.awt. It's not currently a part of the standard Java

Developer's Kit (JDK) distribution, but it is slated to be included as a standard part of the

3

general Java API as the java.sql package. The drivers necessary for connection to their

respective databases do not require any pre-installation on the clients: A JDBC driver can be

downloaded along with an applet.

1.2.2 The JDBC Structure
The JDBC is two-dimensional. The reasoning for the split is to separate the low-level

programming from the high-level application interface. The low-level programming is the

JDBC driver. The idea is that database vendors and third-party software vendors will supply

pre-built drivers for connecting to different databases. JDBC drivers are quite flexible: They

can be local data sources or remote database servers. The implementation of the actual

connection to the data source/database is left entirely to the JDBC driver.

The structure of the JDBC includes these key concepts:

1. The goal of the JDBC is a DBMS independent interface, a "generic SQL

database access framework," and a uniform interface to different data sources.

2. The programmer writes only one database interface; using JDBC, the program

can access any data source without recoding.

4

JAVA APPLICATIONS

I
JDBCAPI

I
JDBC DRIVER MANAGER

_JDBC DRIVER JDBC DRIVER l

I')

DBMS DBMS .

füi

' '"'" . ;;,. ' ., WW', -se .,d .· '

Figure 1.2.2.1 : The architecture of the JDBC

Figure 1 .2.2 shows the architecture of the JDBC. The DriverManager class is used to open a

connection to a database via a JDBC driver, which must register with the DriverManager

before the connection can be formed. When a connection is attempted, the DriverManager

chooses from a given list of available drivers to suit the explict type of database connection.

After a connection is formed, the calls to query and fetch results are made directly with the

JDBC driver. The JDBC driver must implement the classes to process these functions for the

specific database, but the rigid specification of the JDBC ensures that the drivers will perform

as expected. Essentially, the developer who has JDBC drivers for a certain database does not

need to worry about changing the code for the Java program if a different type of database is

used (assuming that the JDBC driver for the other database is available). This is especially

useful in the scenario of distributed databases.

The JDBC uses a URL syntax for specifying a database. For example, a connection to a

mSQL database:

.ıdbc. -msq!//mydatabase.server. com.-/ I I 2/testdb

5

This statement specifies the transport to use (idbc), the database type (msql), the server name,

the port (1112), and the database to connect to (testdb).

The data types in SQL are mapped into native Java types whenever possible. When a native

type is not present in Java, a class is available for retrieving data of that type. The JDBC also

includes support for binary large objects, or BLOB data types; we can retreive and store

images, sound, documents, and other binary data in a database with the JDBC.

1.2.3 ODBC's Part In The JDBC

The JDBC and ODBC share a common parent: Both are based on the same X/OPEN call level

interface for SQL. Though there are JDBC drivers emerging for many databases, we can write

database-aware Java programs using existing ODBC drivers. Figure 1 .2 shows the place of

the JDBC-ODBC Bridge in the overall architecture of the JDBC. However, the JDBC-ODBC

Bridge requires pre-installation on the client, or wherever the Java program is actually

running, because the Bridge must make native method calls to do the translation from ODBC

to JDBC. This pre-installation issue is also true for JDBC drivers that use native methods.

Only 100 percent Java JDBC drivers can be downloaded across a network with a Java applet,

thus requiring no pre-installation of the driver.

[JAVA APPLICATIONS }

[
. 1-------------···-

JDBC API

JDBC DRIVER MANAGER

--······--··-··---,
JDBC/ODBC BRIDGE j

JDBC DRIVERS JDBC DRIVERS

ODBC DRIVER

DBMS
/

Figure 1.2.3.1 : ODBC in the JDBC model.

6

ODBC drivers function in the same manner as "true" JDBC drivers; in fact, the JDBC-ODBC

bridge is actually a sophisticated JDBC driver that does low-level translation to and from

ODBC. When the JDBC driver for a certain database becomes available, you can easily

switch from the ODBC driver to the new JDBC driver with few, if any, changes to the code of
' .

the Java program.

1.2.4 Using_JDBC Drivers

The first things we need to understand is how to use JDBC drivers and the JDBC API to

connect to a data source.

There are no drivers packaged with the JDBC API so we must get them ourself from software

vendors. If we want to use ODBC, we'll need ODBC drivers, as well. If we don't have a

database server, but we want to use JDBC,we can use the ODBC drivers packaged with

Microsoft Access. Using the JDBC-ODBC Bridge, we can write Java applications that can

interact with an Access database.

1.2.5 JDBC URL And The Connection

The format for specifying a data source is an extended Universal Resource Locator (URL).

The JDBC URL structure is broadly defined as follows;

/dbc.·<subprotocol>.·<subname>

whereJdbcis the standard base, subprotocolis the particular data source type, and subnameis

an additional specification that can be used by the subprotocol. The subname is based solely

on the subprotocol. The subprotocol (which can be "odbc," "oracle," etc.) is used by the

JDBC drivers to identify themselves and then to connect to that specific subprotocol. The
~·

subprotocol is also used by the DriverManager to match· the proper driver to a specific
"subprotocol. The subname can contain additional information used by the satisfying

subprotocol (i.e. driver), such as the location of the data source, as well as a port number or

catalog. Again, this is dependent on the subprotocol's JDBC driver. JavaSoft suggests that a

network name follow the URL syntax:

Jdbc. · <subprotocol>.-//hostname:port/.subsubname

7

The mSQL JDBC driver follows this syntax :

/dbc. ·msq! //mycom_puter. com.-/ I I 2/databasename

The DriverManager.getConnection method in the JDBC API uses this URL when

attempting to start a connection. A valid driver must be registered with the JDBC

Driver Manager before attempting to create this connection The

DriverManager.getConnection method can be passed in a Property object where the keys

"user," "password," and even "server" are set accordingly. The direct way of using the

getConnection method involves passing these attributes in the constructor. The following is

an example of how to create a Connection object from the DriverManager.getConnection

method. This method returns a Connection object which is to be assigned to an instantiated

Connection class:

String ur!= ')dbc. ·msq!//mydatabaseserver. com.-/ I I 2/databasename ':·

.Name= 'pratik';·

password= 111:·

Connection con:

con = .DriverManager.getConnection(url, .Name,_passwon(), ·

// remember to register the driver before doing this/

1.2.6 Using ODBC Drivers
In an effort to close the gap between existing ODBC drivers for data sources and the

emerging pure Java JDBC drivers, JavaSoft and Intersolv released the JDBC-ODBC Bridge.

Note that there is a Java interface (hidden as a JDBC driver called JdbcOdbcDriver and found

in the jdbc/odbc/ directory) that does the necJssary JDBC to ODBC translation with the

native method library that is part of the JDBC-ODBC bridge package. Once the Bridge is set
"

up, the JDBC handles access to the ODBC data sources just like access to normal JDBC

drivers; in essence, we can use the same Java code with either JDBC drivers or ODBC drivers

that use the Bridge-all we have to do is change the JDBC URL to reflect a different driver.

8

1.2. 7 Bridge Requirements

JDBC-ODBC Bridge contains a very thin layer of native code. This library's sole purpose is

o accept an ODBC call from Java, execute that call, and return any results back to the driver.

All processing, including memory management, is contained within the Java side of the

Bridge. Instead of being able to download Java class files and execute we must first install

and configure additional software in order to use the Bridge. Required components are:

1. The Java Developer's Kit

2. The JDBC Interface classes (java.sql,*)

3. The JDBC-ODBC Bridge classes (jdbc.odbc,* or sun.jdbc.odbc.* for JDBC

version 1. 1 and higher)
4. An ODBC Driver Manager (such as the one provided by Microsoft for Win95/NT);

do not confuse this with the JDBC DriverManager class

5. Any ODBC drivers to be used from the Bridge (from vendors such as Intersolv,

Microsoft, and Visigenic)

1.2.8 The ODBC URL

To make a connection to a JDBC driver, we must supply a URL. The general structure of the

JDBC URL is

/dbc. · <subprotocol>. ·<subııame>

where subprotocol is the kind of database connectivity being requested, and subııame

provides additional information for the subprotocol. For the Bridge, the specific URL

structure is:

/dbc. ·odbc.-<O.DllC datasource name> f,·attribute-ııame=attnöute-valuej. ..

The Bridge can only provide services for URLs that have a subprotocol of odbc. If a different

subprotocol is given, the Bridge will simply tell the JDBC DriverManager that it has no idea

what the URL means, and that it can't support it. The subname specifies the ODBC data

source name to use, followed by any additional connection string attributes.

9

1.3 Oracle Database

Physically, an Oracle database is nothing more than a set of files somewhere on disk. The

physical location of these files is irrelevant to the function of the database. The files are

binary files that we can only access using the Oracle kernel software. Querying data in the

database files is typically done with one of the Oracle tools using the Structured Query

Language.

Logically, the database is divided into a set of Oracle user accounts, each of which is

identified by a username and password unique to that database. Tables and other objects are

owned by one of these Oracle users, and access to the data is only available by logging in to

the database using an Oracle username and password. Without a valid username and password

for the database, you are denied access to anything on the database. The Oracle username and

password is different from the operating system usemame and password.

In addition to physical files, Oracle processes and memory structures must also be present

before we can use the database.

1.3.1 Oracle Files
In this part, I discuss the different types of files that Oracle uses on the hard disk drive of any

machine.

1.3.1.1 Database Files
The database files hold the actual data and are typically the largest in size, from a few

megabytes to many gigabytes. The other files support the rest of the architecture. Depending

on their sizes, the tables and other objects for all the user accounts can obviously go in one

database file, but that's not an ideal situation because it does not make the database structure

very flexible for controlling access to storage for different Oracle users, putting the database
"

on different disk drives, or backing up and restoring just part of the database.

We must have at least one database file, but usually, we have many more than one. In terms

of accessing and using the data in the tables and other objects, the number or location of the

files is immaterial. The database files are fixed in size and never grow bigger than the size at

which they were created.

10

1.2 Control Files

_.- database must have at least one control file, although we typically have more than one to

d against loss. The control file records the name of the database, the date and time it was

ed, the location of the database and redo logs, and the synchronization information to

ensure that all three sets of files are always in step. Every time we add a new database or redo

g file to the database, the information is recorded in the control files.

1.3.1.3 Redo Logs

Any database must have at least two redo logs. These are the journals for the database, the

redo logs record all changes to the user objects or system objects. If any type of failure

occurs, such as loss of one or more database files, we can use the changes recorded in the redo

logs to bring the database to a consistent state without losing any committed transactions. In

the case of non-data loss failure, such as a machine crash, Oracle can apply the information in

the redo logs automatically without intervention from the database administrator. The SMON

background process automatically reapplies the committed changes in the redo logs to the

database files.

Like the other files used by Oracle, the redo log files are fixed in size and never grow

dynamically from the size at which they were created.

1.3.1.3.1 Online Redo Logs

The online redo logs are the two or more redo log files that are always in use while the Oracle

instance is up and running. Changes we make are recorded to each of the redo logs in tum.

When one is full, the other is written to, when that becomes full, the first is overwritten, and

the cycle continues.

1.3.1.3.2 Offl.ine/Archived Redo Logs

The offline or archived redo logs are exact copies of the online redo logs that have been filled,

it is optional whether we ask Oracle to create these. Oracle only creates them when the

database is running in ARCHIVELOG mode. If the database is running in ARCHIVELOG

mode, the ARCH background process wakes up and copies the online redo log to the offline

destination once it becomes full. While this copying is in progress, Oracle uses the other

online redo log. If we have a complete set of offline redo logs since the database was last

backed up, we have a complete record of changes that have been made.

11

e could then use this record to reapply the changes to the backup copy of the database files

one or more online database files are lost.

.1.4 Other Supporting Files
,nen we start an Oracle instance, the instance parameter file determines the sizes and modes

f the database. This parameter file is known as the !NIT.ORA file. This is an ordinary text

e containing parameters for which we can override the default settings. The DBA is

responsible for creating and modifying the contents of this parameter file.

On some Oracle platforms, a SGAPAD file is also created, which contains the starting

memory address of the Oracle SGA.

1.3.2 Oracle Memory
In this part, I discuss how Oracle uses the machine's memory. Generally, the greater the real

memory available to Oracle, the quicker the system runs.

1.3.2.1 System Global Area (SGA)
The system global area, sometimes known as the shared global area, is for data and control

structures in memory that can be shared by all the Oracle background and user processes

running on that instance. Each Oracle instance has its own SGA. In fact, the SGA and

background processes is what defines an instance. The SGA memory area is allocated when

the instance is started, and it's flushed and deallocated when the instance is shut down.

The contents of the SGA are divided into three main areas, the database buffer cache, the

shared pool area, and the redo. cache. The size of each of these areas is controlled by

parameters in the !NIT.ORA file. The bigger you can make the SGA and the more of it that

can fit into the machine's real memory as opposed to virtual memory, the quicker your
"

instance will run.

1.3.2.1.1 Database Buffer Cache
The database buffer cache of the SGA holds Oracle blocks that have been read in from the

database files. When one process reads the blocksfor a table into memory, all the processes

for that instance can access those blocks.

12

If a process needs to access some data, Oracle checks to see if the block is already in this

cache. If the Oracle block is not in the buffer, it must be read from the database files into the

buffer cache. The buffer cache must have a free block available before the data block can be

read from the database files.

The Oracle blocks in the database buffer cache in memory are arranged with the most recently

used at one end and the least recently used at the other. This list is constantly changing as the

database is used. If data must be read from the database files into memory, the blocks at the

least recently used end are written back to the database files first. The DBWR process is the

only process that writes the blocks from the database buffer cache to the database files. The

more database blocks you can hold in real memory, the quicker your instance will run.

1.3.2.1.2 Redo Cache

The online redo log files record all the changes made to user objects and system objects.

Before the changes are written out to the redo logs, Oracle stores them in the redo cache

memory area. For example, the entries in the redo log cache are written down to the online

redo logs when the cache becomes full or when a transaction issues a commit. The entries for

more than one transaction can be included together in the same disk write to the redo log files.

The LGWR background process is the only process that writes out entries from this redo

cache to the online redo log files.

1.3.2.1.3 Shared Pool Area

The shared pool area of the SGA has two main components, the SQL area and the dictionary

cache. You can alter the size of these two components only by changing the size of the entire

shared pool area.

1.3.2.1.4 SQL Area

A SQL statement sent for execution to the database server must be parsed before it can

execute. The SQL area of the SGA contains the binding information, run-time buffers, parse

tree, and execution plan for all the SQL statements sent to the database server. Because the

shared pool area is a fixed size, you might not see the entire set of statements that have been

executed since the instance first came up, Oracle might have flushed out some statements to

make room for others.

13

If a user executes a SQL statement, that statement takes up memory in the SQL area. If

another user executes exactly the same statement on the same objects, Oracle doesn't need to
' - .

'~
reparse the second statement because the parse tree and execution plan is already in the SQL

area. This part of the architecture saves on reparsing overhead. The SQL area is also used to

hold the parsed, compiled form of PL/SQL blocks, which can also be shared between user

processes on the same instance.

1.3.2.1.5 Dictionary Cache
The dictionary cache in the shared pool area holds entries retrieved fr~m the Oracle system

tables, otherwise known as the Oracle data dictionary. The data dictionary is a set of tables

located in the database files, and because Oracle accesses these files often, it sets aside a

separate area of memory to avoid disk VO.

The cache itself holds a subset of the data from the data dictionary. It is loaded with an initial

set of entries when the instance is first started and then populated from the database data

dictionary as further information is required. The cache holds information about all the users,

the tables and other objects, the structure, security, storage, and so on.

The data dictionary cache grows to occupy a larger proportion of memory within the shared

pool area as needed, but the size of the shared pool area remains fixed.

1.3.2.2 Process Global Area
The process global area, sometimes called the program global area or PGA, contains data and

control structures for one user or server process. There is one PGA for each user process to

the database.

The actual contents of the PGA depend on whether the multi-threaded server configuration is

implemented, but it typically contains memory to hold the session's variables, arrays, some

rows results, and other information. If you're using the multi-threaded server, some of the

information that is usually held in the PGA is instead held in the common SGA.

The size of the PGA depends on the operating system used to run the Oracle instance, and

once allocated, it remains the same. Memory used in the PGA does not increase according to

the amount of processing performed in the user process. The database administrator can

control the size of the PGA by modifying some of the parameters in the instance parameter

file !NIT.ORA.

14

Oracle Access with JDBC

ava is designed to be platform independent. A pure Java program written for a Windows

machine will run without recompilation on a Solaris Spare, an Apple Macintosh, or any

latform with the appropriate Java virtual machine.

JDBC extends this to databases. If we write a Java program with JDBC, given the appropriate

database driver, that program will run against any database without having to recompile the

Java code. Without JDBC, our Java code would need to run platform specific native database

code, thus violating the Java motto, Write Once, Run Anywhere.

JDBC allows us to write Java code, and leave the platform specific code to the driver. In the

event we change databases, we simply change the driver used by our Java code and we are

immediately ready to run against the new database.

JDBC is a rich set of classes that give us transparent access to a database with a single

application programming interface, or APL This access is done with plug-in platform-specific

modules, or drivers. Using these -drivers and the JD!3C classes, our programs will be able to

access consistently any database that supports JDBC, giving us total freedom to concentrate

on our applications and not to worry about the underlying database.

/

All access to JDBC data sources is done through SQL. Sun has concentrated on JDBC issuing

SQL commands and retrieving their results in a consistent manner. Though we gain so much

ease by using this SQL interface, we do not have the raw database access that we might be

used to. With the classes we can open a connection to a database, execute SQL statements,

and do what we will with the results.

1.3.3.1.1 OCI8 Driver
The OCI8 driver is known as a Type II driver. It uses platform native code to call the

database. Because.it uses a native API, it can connect to and access a database faster than the

thin driver. For the same reason, the Type II driver cannot be used where the program does

not have access to the native APL This usually applies to applets and other client programs

which may be deployed on any arbitrary platform.

15

.3.1.2 The DriverManager Class

e cornerstone of the JDBC package is the DriverManager class. This class keeps track of

the different available database drivers. We won't usually see the DriverManager's work,

ough. This class mostly works behind the scenes to ensure that everything is cool for our

onnections.

The DriverManager maintains a Vector that holds information about all the drivers that it

knows about. The elements in the Vector contain information about the driver such as the

class name of the Driver object, a copy of the actual Driver object, and the Driver security

context.

The DriverManager, while not a static class, maintains all static instance variables with static

access methods for registering and unregistering drivers. This allows the DriverManager

never to need instantiation. Its data always exists as part of the Java runtime. The drivers

managed by the DriverManager class are represented by the Driver class.

1.3.3.1.3 The Driver Class
If the cornerstone of JDBC is the DriverManager, then the Driver class is most certainly the

bricks that build the JDBC. The Driver is the software wedge that communicates with the

platform-dependent database, either directly or using another piece of software. How it

communicates really depends on the database, the platform, and the implementation.

It is the Driver's responsibility to register with the DriverManager and connect with the

database. Database connections are represented by the Connection class.

..
1.3.3.1.4 The Connection Class
The Connection class encapsulates the actual database connection into an easy-to-use

package. Sticking with our foundation building analogy here, the Connection class is the

mortar that binds the JDBC together. It is created by the DriverManager when its

getConnection() method is called. This method accepts a database connection URL and

returns a database Connection to the caller.

When we call the getConnection() method, the DriverManager asks each driver that has

registered with it whether the database connection URL is valid. If one driver responds

16

itively, the DriverManager assumes a match. If no driver responds positively, an

LException is thrown. The DriverManager returns the error "no suitable driver," which

s that of all the drivers that the DriverManager knows about, not one of them could

e out the URL you passed to it.

suming that the URL was good and a Driver loaded, then the DriverManager will return a

Connection object to us. What can we do with a Connection object? Not much. This class is

nothing more than an encapsulation of our database connection. It is a factory and manager

object, and is responsible for creating and managing Statement objects.

1.3.3.1.5 The Statement Class
Picture the Connection as an open pipeline to our database. Database transactions travel back

and forth between our program and the database through this pipeline. The Statement class

represents these transactions.

The Statement class encapsulates SQL queries to our database. Using several methods, these

calls return objects that contain the results of our SQL query. When we execute an SQL

query, the data that is returned to us is commonly called the result set.

1.3.3.1.6 The ResultSet Class

As we've probably guessed, the ResultSet class encapsulates the results returned from an SQL

query. Normally, those results are in the form of rows of data. Each row contains one or more

columns. The ResultSet class acts as a cursor, pointing to one record at a time, enabling us to

pick out the data we need.

1.3.3.2 Basic Translation Steps and Runtime Processing
"

1.3.3.2.1 Translation Steps

The following sequence of events occurs, presuming each step completes without fatal error.

1. The JVM invokes the SQLJ translator.

2. The translator parses the source code in the .sqlj file, checking for proper SQLJ syntax

and looking for type mismatches between our declared SQL datatypes and

corresponding Java host variables.

17

3. The translator invokes the semantics-checker, which checks the semantics of

embedded SQL statements.

4. The developer can use online or offline checking, according to SQLJ option settings.

If online checking is performed, then SQLJ will connect to the database to verify that

the database supports all the database tables, stored procedures, and SQL syntax that

the application uses, and that the host variable types in the SQLJ application are

compatible with datatypes of corresponding database columns.

5. The translator processes our SQLJ source code, converts SQL operations to SQLJ

runtime calls, and generates Java output code and one or more SQLJ profiles. A

separate profile is generated for each connection context class in our source code,

where a different connection context class is typically used for each interrelated set of

SQL entities that we use in our database operations.

6. The JVM invokes the Java compiler, which is usually, but not necessarily, the

standard javac provided with the Sun Microsystems JDK.

7. The comı:ıJier compiles the Java source file generated in step 4 and produces Java

.class files as appropriate. This will include a .class file for each class we defined, a

.class file for each of our SQLJ declarations, and a .class file for the profile-keys class.

8. The JVM invokes the Oracle SQLJ customizer or other specified customizer.

9. The customizer customizes the profiles generated in step 4.

1.3.3.2.2 Runtime Processing
When a user runs the application, the SQLJ runtime reads the profiles and creates "connected

profiles", which incorporate database connections. Then the following occurs each time the

application must access the database.

1. SQLJ-generated application code uses methods in a SQLJ-generated profile-keys class·•
to access the connected profile and read the relevant SQL operations. There is

mapping between SQLJ executable statements in the application and SQL operations

in the profile.

2. The SQLJ-generated application code calls the SQLJ runtime, which reads the SQL

operations from the profile.

3. The SQLJ runtime calls the JDBC driver and passes the SQL operations to the driver.

18

4. The SQLJ runtime passes any input parameters to the JDBC driver.

5. The JDBC driver executes the SQL operations.

6. If any data is to be returned, the database sends it to the JDBC driver, which sends it to

the SQLJ runtime for use by our application .

.4 Database
1.4.1 Introduction

A database management system (DBMS) consists of a collection of interrelated data and a set

of programs to access that data. The collection of data , usually refered to as the database ,

contains information about one particular enterprise. The primary goal of a PBMS is to

provide an environment that is both convenient and efficient. To use in retrieving and storing

database information.

Database systems are designed to manage large bodies of information. The management of

data involves both the definition of structures for the storage of information and the provision

of mechanisms for the manipulation of information. In addition , the database system must

provide for the safety of the information stored , despite system crashes or attempts at

unauthorized access. If the data is to be shared among several users , the system must avoid

possible unexpected results.

The importance of information in most organizations , and hence the value of the database ,

has led to the development of a large body of concepts and techniques for the efficient

management of data.

In atypical file processing system , permanent records are stored in various files , and a
"number of different application programsa re written to extract records from and add records

to the appropriate file. This scheme has a number of major disadvantages.

1. Data Redundancy and Inconsistency : Since the files and application programs are

created by different programmers over a long period of time , the files are likely to

have different formats and the programs may be written in several programming

languages. Moerover , the same piece of information , may be duplicated in several

files.

19

2. Difficulty in Accessing Data : Conventional file-processing environments do not allow

data to be retrieved in a convenient and effiicient manner. Beter data retrieval systems

must be developed for general use and applications.

3. Data Isolation : Since data is scattered in various files ,and files may be in different

formats , it is difficult to write new application programs to retrieve the appropriate

data.

4. Concurrent Access Anomalies : In order to improve the overall performance of the

system and obtain a faster redponse time , many systems allow multiple users to

update the data simultaneously. In such an environment , interaction of concurrent

updates may result in consistent data. So a supervision must be maintained in the

system. Since the data may be accessed by many different application programs which

have noot been previously coordinated , supervision is very difficult to provide.

5. Security Problems: Not every user of the database system should be able to access all

the data. Since application programs are added to the system in an ad hoc manner , it

is difficult to enforce such security constraints.

6. · Integrity problems : The data values stored in the database must satisfy certain types

of consistency constraints. These constraints are enforced in the system by adding

appropriate code in the various application programs. However , when new constraints

are added , it is difficult to change the programs to enforce them. The problem is

compounded when constraints involve several data items from different files.

1.4.2 Data Abstraction Mechanism

A DBMS is a collection of interrelated files and a set of programs that allows users to access

and modify these files. A major purpose of database system is to provide usres with an

abstract view of the data. That is, the system hides certain details of how the data is stored

and maintained. However , in order for the system to be usable , data must be retrieved

efficiently. This concern has lead to the design of complex data structures for the

represantation of data in the database.

1. Physical Level: The lowest level of abstraction describe show the data are actually

tored. (More information)

2. Conceptual Level: The next higher-level of abstraction describes what data are

actually stored in database , and the relationships that exists among data. This level is

20

used by database administrators who must decide what information to be kept in the

database.

3. View Level: The highest level of abstraction describes only the part of the entire

database. Many usres of the database system will not be concerned with all of this

information. Instead, such usres need only a part of the database. To simplify their

interaction with the system , the view level of abstraction is defined.

1.4.3 Data Modeling

Underlying the structure of a database is the concept of a data model, a collection of

conceptual tools for describing data, data relationships, data semantics, and consistency

constraints. The various data models that have been proposed fall into three groups ; object­

based logical models , record-based logical models , and physical data models.

1. Object-based logical models : These models are used in describing data at the

conceptual and view levels. They are characterized by the fact they provide fairly

flexible structuring capabilities and allow data constraints to be specified explicitly.

There are many different models and more are likely to come.

• The entity-relationship model:This model is based on perception of a real

world which consists of a collection of basic objects called entities , and

relationships among these objects. An entity is an object that ıs

distinguishable from other objects by a specific set of attributes. A

relationship is an association among several entities.

• The object-oriented model:This model also is based on a collection of

objects. An object contains values stored in instance variables within the

object. Those values are then;ıselves objects. Thus , objects can contain

objects to an arbitrarely deep leyel of nesting. An object also contains

bodies of code that operate on the object. These bodies are called methods.

Objects that contain the same types of values and the same methods are

grouped together into classes. A class may be viewed as a type definition

for objects.

21

• The binary model:

• The semantic data model.:

• The infological model:

• The functional data model:

2. Record-based Logical Models : These are used in describing data at the conceptual

and view levels. They are used both to specify the overall logical structure of the

database and to provide a higher-level description of the implementation. Record­

based models are so named because the database is structured in fixed-format records

of several types. Each record type defines a fixed number of fields , or attributes , and

each file is usually of a fixed length.

Record-based models do not include a mechanism for the direct representation of code

in the database. Instead , there are seperate languages that are associated within the

model to express database queries and updates.

The three most widely accepted data models are the relational , network and

hierarchical models.

• Relational Model : This represents data and relationships among data

by a collection of tables , each of which has a number of columns with

unique names.

• Network Model : Data in the network model are represented by

collections of records and relationships among data are represented by

links, which can be viewed as pointers.

• Hierarchical Model : This model is similar to the network model in the

sense that data and relationships among data are represented by records

and links , respectively. It differs from network model in that the

records are organized as collections of trees rather than orbitrary

graphs.

22

3. Physical Data Models : Physical data models are used to describe data at the lowest

level. In contrast to logical data models , there are very few physical data models in

use. Two of widely known ones are :

• Unifying Model

• Frame Model

.4 Instances and Schemes
Databases change over time as information is inserted and deleted. The collection of

information stored in the database at a particular moment in time is called an instance of the

database. The overall design of the database is called the database scheme. Schemes are

hanged infrequently.

The concept of a database scheme correspondes to the programming language notion of type

definition. A variable of a given type has a particular value at a given instant in time. Thus

this concept of the value of a given variable in programming language correspondes to the

concept of an instance of a database scheme.

Database systems have several schemes , partitioned according to the levels of abstraction. At

the lowest level is physical scheme ; at the intermediate level , the concetual scheme ; at the

highest level , a subscheme. In general database systems support one physical scheme , one

conceptual scheme, and several subschemes.

1.4.4.1 Data Dependence
The ability to modify a scheme definitionin one,level without affecting a scheme definition in

the next higher-level is called data independence. '(here are two levels:

1. Physical Data Independence : This is the the ability to modify the physical scheme

without causing application programs to be rewritten. Modifications at the physical

level are occasionally necessary in order to improve performance.

2. Logical Data Independence : This is the ability to modify the conceptual scheme

without causing application programs to be rewritten. Modifications at the conceptual

level are necessary whenever the logical structure of the database is altered.

23

· cal data independence is more difficult to achieve than physical data independence since

lication programs are heavily dependent on the logical structure of the data they access.

concept of data independence is similar in many repects to the concept of abstract data

s in modem programming languages. Both hide implementation details from the users .

.5 Data Defınition Language
database scheme is specified by a setof definitons which are expressed by a special

guage called a data definiton language (DDL). The result of compilation of DDL

statements is a set of tables which are stored in a special file called dictionary. A data

directory is a file that contains metadata; that is "data about data".

The storage structure and access methods used by the database system are specified by a set

of definitions in a special type of DDL called a data storage and definition language. The

result of compilation of these definitions is a set of instructions to specify the implementation

details of the database schemes which are usually hidden from the users.

1.4.6 Data Manipulation Language

By data manipulation these are meant:

1. The retrieval of information stored in the database .

2. The insertion of information stored in the database.

3. The deletion of information from the database.

4. The modification of data ştored in the database.

A data manipulation language (DML) is a language that enables users to access or
•·

manipulate data as organizedby the appropriate data model. There are basically two types :

1. Procedural DMLs require a user to specify what data is needed and how to get it.

2. Nonprocedural DMLs require a user to specify what data is needed without specifying

how to get it.

24

rocedural DMLs are usully easier to learn and use than procedural DMLs. However ,

a user does not have to specify how to get the data , these languages may generate code

ich is not as efficient as that produced by procedural languages.

statement requesting the retrieval of information. The portion of a DML that

·olves information retrieval is called a query language. Although technically incorrect, it is

on practise to use the terms query language and data manipulation language

ynonymously .

.7 Database Manager

Databases typically require a large amount of storage space , may be terrabytes of data. Since

the main memory of computers cannot store this information , it is stored in disks. Data is

moved between disk storage and main memry as needed. Since , the movement of data to and

from disk is slow relative to the speed of the CPU , it is imperative that the database system

structure the data so as to minimize the need to move data between disk and main memory.

The goal of a database system is to simplify and facilitate access to data. A database manager

is program module which provides the interface between the low level data stored in the

database and the application programs and queries submitted to the system. The database

manager is responsible for the following tasks:

25

apter II: Oracle and Java
Application Structure and Elements

application is created from classes. It stores related data infle!df, where the fields can be

erent types. So we can store a text string in one field, an integer in another field, and a

ting point in a third field. A class also defines the methodsto work on the data.

very simple class might store a string of text and define one method to set the string and

another method to get the string and print it to the console. Methods that work on the data are

called accessormethods.

- STRING FIELD
'~

···········--···---·· . ·······--········.. ··

SET DATA METHOD

- ~ GET DATA METHOD
..

Simple Class

Figure 2. 1. 1: Simple Class

Every application needs one class with a main method. This class is the entry point for the

program, and is the class name passed to the j av a interpreter command to run the

application.
~·

The code in the main method executes first when the program starts, and is the control point

from which the controller class accessor methods are called to work on the data.

It has no fields or accessor methods, but because it is the only class in the program, it has a

Main method.

26

STRING FIELD

CONSTRUCTOR

SET DAT A METHOD

GET DATA METHOD

MAIN METHOD

Simple Class

Figure 2.1.2 : Simple Class with Constructor

The public static void keywords mean the Java virtual machine (JVM) interpreter

can call the program's main method to start the program (public) without creating an instance

of the class (static), and the program does not return data to the Java VM interpreter (void)

when it ends.

ExampleProgram
class

-~

(;econd~
ı -------ı lnstan/

Figure 2.1.3 : A Class with Three Instances

An instance of a class is an executable copy of the class. While the class describes the data

and behavior, we need a class instance to acquire and work on data. The diagram at the top

27

ws three instances of the ExampleProgram class by the names

ondlnstance and Thirdinstance.

F irstlnstance,

main method is static to give the Java VM interpreter a way to start the class without

ting an instance of the control class first. Instances of the control class are created in the

· method after the program starts.

The main method for the simple example does not create an instance of the ExampleProgram

lass because none is needed. The ExampleProgram class has no other methods or fields, so

no class instance is needed to access them from the main method. The Java platform lets us to

execute a class without creating an instance of that class as long as its static methods do not

call any non-static methods or fields.

The ExampleProgram class just calls println, which is a static method in the System class.

The java.lang.System class, among other things, provides functionality to send text to the

terminal window where the program was started. It has all static fields and methods.

The static fields and methods of a class can be called by another program without creating an

instance of the class. So, just as the Java VM interpreter command could call the static main

method in the ExampleProgram class without creating an instance of the ExampleProgram

class, the ExampleProgram class can call the static printliı method in the System class,

without creating an instance of the System class.

However, a program must create an instance of a class to access its non-static fields and

methods

2.2 Program Modules in Java
There are two kinds of modules in Java - methods and classes. Java programs are written by

combining new methods and classes available in the Java Application Programming Interface

(Java API or Java class library) and various other class libraries. The Java API provides a rich

collection of classes that contain methods for performing common mathematical calculations,

character manipulations, input/output operations, error checking and many other useful

operations. This set of classes makes writing programs easier.

28

The Java API classes are part of the Java 2 Software Development Kit (J2SDK) which contais

ousands of prepacaged classes.

Methods allow the programmer to modularize a program by separeting its tasks into self­

ontaned units are somrtimes referred to as programmer-declared methods. The actual

statements implementing the methods are written only once anda re hidden from other

methods.

There are several motivations for modularizing a program by means of methods. One

motivation is that of the divide-and-conquer approach makes program development more

m.ama.'6ea.ble. Another is software reuseability-using existing methods as building blocks to
create new programs. Often we can create programs from standardized methods rather than

building rdized methods rather than building cutomized code. A third motivation is to avoid

repeating code within the program. Packaging code as a method allows a program to execute

that code from several locations in a program simply by calling the methods. Also, methods

make programs easier to debug and maintain.

A method is invoked or called by a method call. The mehtod call specifies the name of the

method and provides information (as arguments) that the called method requires to perform

its task. When the method call completes, the method either returns a result to the calling

method (or caller) or simply returns control to the calling method. An analogy to this program

structure is the hierarchical form of management. A boss (caller) asks a worker (the called

method) to perform a task and report back (i.e., return) the result after completing the task.

The boss method does not know how the worker method performs its designated tasks. The

worker may also call other worker methods, unbeknowst to the boss. This "hiding" of
"

implementation details promotes good software engineering.

2.2.1 Method Declarations

the first line of method declaration is called the method header. Follwing the method header,

declarations and statements in braces form the method boc(y, which is a block. Variables can

be declared in any block, and blocks can be nested. A method cannot be declared inside

another method.

29

basic format of a method declaration is :

turn-value-type method-name(parameterl,parameter2, ... ,parameterN)

declaration and statements

The method-name is any valid identifier. The return-value-type is the type of the result

turned by the-method to the caller. The return-value-typevoid indicates that a method does

not return a value. Methods can return at most one value.

The paramerer« are declared in a comma-separated list in parenthesis that declares each

parametre's type and name. There must be one argument in the method call for each

parameter in the method declaration. Also, each argument must be compatible with the type

of the corresponding parameter. For example, a parameter of type double can receive values

7.35,22 or -0,03456 , but not "hello" because a string cannot be implicitly converted to a

double variable. If a method does not accept any arguments, the parameter list is empty.

There are three ways to return control to the statement that calls a method. If the method does

not return a result, control returns when the program flow reaches the method ending right

brace or when the staement return; is executed. If the method returns a result, the staement

return expression/ evaluates the expression, then returns the resulting value to the caller.

When a return statement executes, control returns immediately to the statement thet called

the method.

2.2.2 Constructor Declarations
Constructors are methods that are used to initialize newly created objects of a class. They are

declared as follows:
constructorMod!Jlers constructorHameAndParameters throwsC!ause constructor.Body

The constructor modifiers are public, protected, and private. They control access to

the constructor and are used in the same manner as they are for variables.

The constructor name is the same as the class name in which it is declared. It is followed by a

parameter list, written as follows:

(parameterDec.l arat.ions)

30

parameter list consists of an opening parenthesis followed by zero or more parameter

larations followed by a closing parenthesis. The parameter declarations are separated by

aımmas. Parameter declarations are written as follows:

h parameter declaration consists of a type followed by a parameter name. A parameter

e may be followed by sets of matched brackets ([]) to indicate that it is an array.

The throws clause identifies all uncaught exceptions that are thrown within the constructor.

is written as follows:

t.hr ows uncaug/JtExcept.ions

The exceptions are separated by whitespace characters.

The body of a constructor specifies the manner in which an object of the constructor's class is

to be initialized. It is written as follows:

{ constructorCailStatement b.lockBody}

The constructorCa.l.lStatement and b.lockBodyare optional, but the opening and

closing braces must be supplied.

The constructor call statement allows another constructor of the class or its superclass to be

invoked before the constructor's block body. It is written as follows:

this(argumentList);

super(argumentList);

The first form results in a constructor for the current class being invoked with the specified

arguments. The second form results in the constructor of the class's superclass being invoked.

The argument list consists of expressions that evaluate to the allowed values of a particular

constructor.

If no constructor call statement is specified, a default super () constructor is invoked before

the constructor block body.

31

Statements

1 Empty Statement

empty statement performs no processing. It consists of a single semicolon (;) .

.2 Block Statement
block statement consists of a sequence of statements and local'variable declarations that are

ed as a single statement block. The statements are enclosed within braces ({ and }) .

.3.3 Method Invocation
method invocation invokes a method for an object or a class. Method invocations may be

used within an expression or as a separate statement. To be used as a separate statement, the

method being invoked must be declared with a void return value. Method invocation

statements take the following forms:
objectName.methodName(argumentList);

className.methodName(argumentList);

The argumentList consists ofa comma-separated list of zero or more expressions that are

consistent with the method's parameters.

2.2.3.4 Allocation Statements

When an object is allocated, it is typically assigned to a variable. However, it is not required

to be assigned when it is allocated. An allocation statement is of the following form:

new constructor(arqumentList) ;

The new operator is used to allocate an object 'Of the class specified by the constructor. The

constructor is then invoked to initialize the object using the arguments specified in the

argument list.

2.2.3.5 Statement Labels
A statement can be !abeledby prefixing an identifier to the statement as follows:

.labe.l: statement:

The .1 abe .1 can be a name or an integer.

32

The break Statement

~~ea k statement is used to transfer control to a labeled statement or out-of-statement

It takes the following forms:

first form transfers control to the first statement following the current statement block.

second form transfers control to the statement with the identified label.

.3.7 The Continue Statement

e continue statement is used to continue execution of a loop (for, do, or while)

rithout completing execution of the iterated statement. The continue statement may take

an optional label. It is written as follows:
ontinue .labe.l;

If a label is supplied, the loop continues at the labeled loop.

2.2.3.8 The synchronized Statement

The synchronized statement is used to execute a statement after acquiring a lock on an

object. It is written as follows:
synchronized (express.ion) statement

The expression yields the object for which the lock must be acquired.

2.2.3.9 The try Statement

The try statement executes a block of statem~nts while setting up exception handlers. If an

exception occurs the appropriate handler, if any, is executed to handle the exception. A
"

finally clause may also be specified to perform absolutely required processing. The try

statement is written as follows:
try b.lock catclıC.lauses f..ina.l.lyC.lause

At least one catch clause or af inally clause must be provided.

33

format of the catch clause is as follows:

t.ch (except.ionDec.larat.ion) b.lock

an exception is thrown within the block executed by the try statement and it can be

igned to the type of exception declared in the catch clause, the block of the catch

e finally clause, if it is provided, is always executed regardless of whether an exception

.3.10 The return Statement·

The return statement is used to return an object or a value as the result of a method's

invocation. It is written as follows:

return express.ion;

the expression must match the return value identified in the method's

.3 Application to Applets

.3.1 The Basic Structure of an Applet

e Java API Applet class provides what is needed to design the appearance and manage the

havior of an applet. This class provides a graphical user interface (GUI) component called a

el and a number of methods. To create an applet, we extend (or subclass) the Applet class

implement the appearance and behavior.

applet's appearance is created by drawing onto the Panel or by attaching other GUI

ponents such as push buttons, scrollbars, or text areas to the Panel. The applet's behavior

fined by implementing the methods.

¥7/etis simply part of a Web page, like an image or a line of text. Just as a browser takes

f displaying an image referenced in an HTML document, a Java-enabled browser

sand runs an applet. When-a Java-capable Web browser loads the HTML document, the

pplet is also loaded and executed. It doesn't matter whether or not the applet is currently

le on hard drive. If necessary, the Web browser automatically downloads the applet

34

's a client/server relationship between a browser that wants to display an applet and the

em that can supply the applet. The client is a computer that requires services from another

em; the server is the computer that provides those services. In the case of a Java applet,

client is the computer that's trying to display an HTML document that contains a reference

an applet. The server is the computer system that uploads the applet to the client, thereby

owing the client to use the applet.

DVerification
ooo J ~ I ooo ı

I ~ Applet's I .=I
byte-code Client Server

Figure 2.3.1. 1 : Verification of Applet' s Byte-Code

Java applets are a secure way to transmit programs on the Internet. This is because the Java

interpreter will not allow an applet to run until the interpreter has confirmed that the applet's

byte-code has not been corrupted or changed in some way (Fig. 2.3.1). Moreover, the

interpreter determines whether the byte-code representation of the applet sticks to all of Java's

rules. For example, a Java applet can never use a pointer to gain access to portions of

computer memory for which it doesn't have access. The bottom line is that, not only are Java

applets secure, they are virtually guaranteed not to crash the system.

2.3.2 How Applets Work
Applet technology is the driving force behind the intensity of the Java revolution. Applets are

standard Java programs with a few special hooks into the Web browser's environment. The

capability of applets to take advantage of the resources provided by a Web browser's

environment is what allows them to be easily and powerfully integrated within Web pages.

HTML DOCUMENT

LOADER

Figure 2.3.2.1 : How a Java Applet Works

As the figure shows, the browser makes a request to the loader to fetch the applet specified in

the document's HTML. After the applet has been fetched, the applet begins to execute. The

applet is executed by the Java runtime interpreter attached to the browser. The browser acts as

a conduit between the Java Virtual Machine inside the interpreter and the outside user

interface.

The Applet class provides an application framework and tools to access the facilities

provided by the browser. Via the browser, the applet has access to graphics, sound, and

network capabilities. The App1 et class can be viewed as merely a wrapper around the

capabilities provided by the browser.

2.3.3 The Relationship Between HT~ and Applets
An applet is like a child application of the browser. The browser launches the applet in a

~
predefined environment inside the browser. In tum, the browser obtains the information

"
pertaining to the applet's environment from the current document's HTML. In this sense, the

relationship between HTML and an applet is that of a command line executing a program.

From within HTML, the syntax to specify the execution of an applet is provided by the applet

and parameter tags.

36

applet tag provides all the information needed to launch the applet. Everything from the

directory to command-line parameters can be specified from within this tag. Here's an

ple:

<:-_ead>

<1head>

<body>
<applet code=HelloWeb width=300 height=200></applet>

</body>

</html>

From this HTML command line, the browser is told how to launch the HelloWeb. class

file. The HTML merely specifies a command line of sorts to the browser.

2.3.4 Applets and Interactive Web Pages
An applet is a Java program designed to run in the environment provided by a Web browser.

Inside the browser, an application has the capability to display images, play audio files, and

access the Internet. The App 1 et class provides methods to tap these resources provided by

the Web browser.

Because of applets are executed locally on our machine, we are able to interact with the applet

as part of the Web page's display. Remote processing approach also suffers from the

difficulties involved in maintaining information about the state of the applications it supports.

The Java model of local execution is able to support a high degree of interactivity. All state

information is maintained within the local browser environment and is not distributed

between the browser and Web server.

2.3.5 The Execution of an Applet
When the browser comes across the applet tag, it begins gathering the information needed to

launch the applet. After the HTML document has been completely interpreted and displayed,

the Java runtime interpreter is requested to execute the applet.

When the interpreter receives the request to execute the applet, it executes a loader

mechanism to fetch the binary file. After the file is successfully transferred onto the local

37

hine, it undergoes a number of tests to verify its security and stability. If all is well, the

ıterpreter begins execution of the applet.

Execution continues until the applet terminates or the current browser document is dismissed.

This can occur in a couple of different ways: The user might jump to another URL or the

owser might terminate. In either case, the applet is terminated.

1.4 Class Declarations
Class declarations allow new classes to be defined for use in Java programs. Classes are

declared as follows:

classModifiers class className extendsClause implementsClause

class Body

The class modifiers, extends clause, and implements clause are optional. The class

modifiers are abstract, public, and final. An abstract class provides an abstract

class declaration that cannot be instantiated. Abstract classes are used as building blocks

for the declaration of subclasses. A class that is declared as public can be referenced

outside its package. If a class is not declared as public, it can be referenced only within its

package. A final class cannot be subclassed. A class cannot be declared as both final

and abstract.

The extends clause is used to identify the immediate superclass of a class and thereby

position the class within the overall class hierarchy. It is written as follows:

extends .immed.iateSuperc_iass

The implements clause identifies the interfaces that are implemented by a class. It ıs

written as follows:

implements .interfaceNames

..inter faceNames consists of one or more interface names separated by commas.

38

lass body declares the variables, constructors, and access methods of a class. It is written

fJeldDeclarat.ions

e.ldDec.larat.ions consists of zero or more variable, constructor, or access method

.1 Extending a Class

Object

Container

Panel

Applet

Figure 2.4.1. 1 : Extending a Class

Most classes of any complexity extend other classes. To extend another class means to write a

new class that can use the fields and methods defined in the class being extended. The class

being extended is the parent class, and the class doing the extending is the child class.

Another way to say this is the child class inherits the fields and methods of its parent or chain

of parents. Child classes either call or override inherited methods. This is called single~
inheritance. The SimpleApplet class extends Applet class, which extends the Panel class,

, ~
which extends the Container class. The Container class extends Object, which is the parent of

all Java API classes.

The Applet class provides the init, start, stop, destroy, and paint methods. The SimpleApplet

class overrides these methods to do what the SimpleApplet class needs them to do. The

Applet class provides no functionality for these methods.

39

wever, the Applet class does provide functionality for the setBackground method,which is

ed in the, init method. The call to setBackground is an example of calling a method

erited from a parent class in contrast to overriding a method inherited from a parent class.

Na language provides methods without implementations. It is to provide conventions for

reryone to use for consistency across Java APls. If everyone wrote their own method to start

applet, for example, but gave it a different name such as begin or go, the applet code would

t be interoperable with other programs and browsers, or portable across multiple platforms.

For example, Netscape and Internet Explorer know how to look for the init and start methods.

.4.2 Behavior
An applet is controlled by the software that runs it. Usually, the underlying software is a

rowser, but it can also be appletviewer. The underlying software controls the applet by

calling the methods the applet inherits from the Applet class.

2.4.2.1 The init Method:
The init method is called when the applet is first created and loaded by the underlying

software. This method performs one-time operations the applet needs for its operation such as

creating the user interface or setting the font. In the example, the init method initializes the

text string and sets the background color.

2.4.2.2 The start Method:
The start method is called when the applet is visited such as when the end user goes to a web

page with an applet on it. The example prints a string to the console to tell you the applet is

starting. In a more complex applet, the start method would do things required at the start of

the applet such as begin animation or play sounds.
After the start method executes, the event thread calls the paint method to draw to the applet's

Panel. A thread is a single sequential flow of control within the applet, and every applet can

run in multiple threads. Applet drawing methods are always called from a dedicated drawing

and event-handling thread.

40

.2.3 The Stop and Destroy Methods:

The stop method stops the applet when the applet is no longer on the screen such as when the

end user goes to another web page. The example prints a string to the console to tell you the

applet is stopping. In a more complex applet, this method should do things like stop animation

or sounds.

The destroy method is called when the browser exits. Your applet should implement this

method to do final cleanup such as stop live threads.

2.5 Packages
The package groups together class libraries, such as the libraries containing information about

different commercial properties. A package is the largest logical unit of objects in Java.

Packages in Java group a variety of classes and/or interfaces together. In packages, classes

can be unique compared with classes in other packages. Packages also provide a method of

handling access security. Finally, packages provide a way to "hide" classes, preventing other

programs or packages from accessing classes that are for internal use of an application only.

2.5.1 The package Statement

Java programs are organized intopackages. Packages contain the source code declarations of

Java classes and interfaces. Packages are identified by the package statement. It is the first

statement in a source code file:
package packageName;

If a package statement is omitted, the classes and interfaces declared within the package are

put into the default package-the package with no name.

The package name and the CLASS PATH are used 'to find a class. Only one class or interface

may be declared as public for a given source code file.

2.5.2 The import Statement

The import statement is used to reference classes and interfaces that are declared in other

packages. There are three forms of the import statement:

41

port packageName;

port packageName.className;

port packageName.*;

The first form allows classes and interfaces to be referenced using the last component in the

package name. The second form allows the identified classes and interfaces to be referenced

rithout specifying the name of their package. The third form allows all classes and interfaces

in the specified package to be referenced without specifying the name of their package.

2.6 Action Listening
In addition to implementing the ActionListener interface, we have to add the event listener to

the JButton components. An action listener is the SwingUI object because it implements the

ActionListener interface

2.7 Event Handling
The actionPerformed method is passed an event object that represents the action event that

occurred. Next, it uses an if statement to find out which component had the event, and takes

action according to its findings.

2.8 Main Method
The main method creates the top-level frame, sets the title, and includes code that lets the end

user close the window using the frame menu.

The code for closing the window shows an easy way to add event handling functionality to a

program. If the event listener interface provides more functionality than the program actually
"

uses, use an adapter class. The Java APis provide adapter classes for all listener interfaces

with more than one method. This way, we can use the adapter class instead of the listener

interface and implement only the methods we need. In the example, the WindowListener

interface has 7 methods and this program needs only the windowClosing method so it makes

sense to use the WindowAdapter class instead.

42

This code extends the WindowAdapter class and overrides the windowClosing method. The

new keyword creates an anonymous instance of the extended inner class. It is anonymous

ause we are not assigning a name to the class and we cannot create another instance of the

lass without executing the code again. It is an inner class because the extended class

definition is nested within the SwingUI class.

This approach takes only a few lines of code, while implementing the WindowListener

interface would require 6 empty method implementations

WindowListener l = new WindowAdapter() {

//The instantiation of object l is extended to

//include this code:

public void windowClosing(WindowEvent e) {

System.exit(O);

} ;

frame.addWindowListener(l);

2.9 File Access by Applications and Applets

2.9.1 File Access by Applications
The Java® 2 Platform software provides a rich range of classes for reading character or byte

data into a program, and writing character or byte data out to an external file, storage device,

or program. The source or destination might be on the local computer system where the

program is running or anywhere on the network.
ı. Reading: A program opens an input stream on the file and reads the data in serially (in

the order it was written to the file).
2. Writing: A program opens an output stream.on the file and writes the data out serially.

The conversion from the SwingUI.java program to the FileIO.java program primarily

involves the constructor and the actionPerformed method as described.

43

.2 Exception Handling

exception is a class that descends from either java.lang.Exception or

ıva.lang.RuntimeExceptionthat defines mild error conditions our program might encounter.

.ther than letting the program terminate, we can write code to handle exceptions and

ntinue program execution.

java. lang.Object

I
java.la ng.Throwable

I
java.lang .Exception

Figure 2.9.2.1 : Exception Handling

The file input and output code in the actionPerformed method is enclosed in a try and catch

block to handle the java.lang.IOException that might be thrown by code within the block.

java.lang.IOException is what is called a checked exception. The Java platform requires that a

method catch or specify all checked exceptions that can be thrown within the scope of a

method.

Checked exceptions descend from java.lang.Throwable. If a checked exception is not either

caught or specified, the compiler throws an error.

In the example, the try and catch block catches and handles the java.io.IOException checked

exception. If a method does not catch a checked exception, the method must specify that it

can throw the exception because an exception that can be thrown by a method is really part of

the method's public interface. Callers of the method must know about the exceptions that a

method can throw so they can take appropriate actions.

44

I

owever, the actionPerformed method already has a public interface definition that cannot be

ged to specify the java.io.IOException, so in this case, the only thing to do is catch and

dle the checked exception. Methods that we define can either specify exceptions or catch

d handle them, while methods override must catch and handle checked exceptions. Here is

example of a user-defined method that specifies an exception so callers of this method can

catch and handle it:

public int aComputationMethod(int numberl,

int number2)

throws IllegalValueException{

//Body of method

When we catch exceptions in our code, we should handle them in a way that is friendly to our

end users. The exception and error classes have a toString method to print system error text

and a printStackTrace method to print a stack trace, which can be very useful for debugging

our application during development.

We can provide our own application-specific error text to print to the command line, or

display a dialog box with application-specific error text. Using application-specific error text

that we provide will also make it much easier to internationalize the application later on

because we will have access to the text.

For the example programs, the error message for the file input and output is handled with

application-specific error text that prints at the command line as follows:

//Do this during development

}catch(java.io.IOException e) {

System.out.println(e.toString());

System.out.println(e.printStackTrace());

//But deploy it like this

}catch(java.io.IOException e) {

System.out.println("Cannot access text.txt");

45

we want to make our code even more user friendly, we could separate the write and read

rations and provide two try and catch blocks. The error text for the read operation could be

Cannot read te.xt.t.xt,and the error text for the write operation could be Cannot write te.xt.t.xt.

.3 File Access by Applets

The file access code for the FileIOAppl.java code is equivalent to the FileIO.java application,

ut shows how to use the APis for handling data in character streams instead of byte streams.

e can use either approach in applets or applications. The choice to handle data in bytes

streams in the application and in character streams in the applet is purely random. In real-life

programs, we will base the decision on our specific application requirements.

The changes to instance variables and the constructor are identical to the application code, and

the changes to the actionl'erformed method are nearly identical with these two exceptions:

ı. Writing: When the textField text is retrieved, it is passed directly to the out.write call.

2. Reading: A character array is created to store the data read in from the input stream.

2.10 Java and Oracle Security Platform

2.10.1 Java Security Features
The developers of Java and Java-enabled browsers have a powerful set of security features in

the Java language, compiler, runtime system, and Web browsers. These security features

include security mechanisms that have been specifically designed to eliminate potential

security vulnerabilities; other mechanisms, although not intentionally designed for security

purposes, encumber both deliberate and inadvertent security threats. The following sections

describe these security features.

2.10.1.1 Language Security Features

A number of features have been incorporated into the Java language to make it more reliable•
and capable. Although these features may not have been driven by security concerns, they still

help to minimize security risks. The most important of these features is the removal of all

pointer-based operations from the Java language. The absence of pointers eliminates entire

classes of security vulnerabilities related to memory browsing, the modification of memory­

resident code, and illegal access to security-related objects.

46

va's use of strong typing also contributes to security. All objects are associated with a well­

fined type and cannot be freely converted from one type to another. Methods cannot be

d with classes to which they do not apply. Methods cannot return objects of a type that is

incompatible with their return type. Strong typing enforces the Java object-oriented approach

and prevents numerous kinds of errors that could lead to security-related malfunctions.

2.10.1.2 Compiler Security Features
The Java compiler also provides features that support security. These features are

implemented in the form of compiler checks that prevent errors and undesired actions.

The compiler enforces Java's strong typing by generating compilation errors for statements

that violate the language's strong typing rules. It ensures that all methods are appropriate for

the objects for which they are invoked.

The compiler checks array operations to make sure that they are valid for the array objects

being acted on and that memory overrun errors do not occur. These checks are duplicated and

extended by the runtime system.

The compiler checks all class, interface, variable, and method accesses to ensure that the

accesses are consistent with the access modifiers used in their declaration. This prevents

classes, interfaces, variables, and methods from being used in unintended ways and enforces

the information hiding capabilities provided by the access modifiers.

The compiler generates code that treats String objects as constants and supports String

operations through the String Buffer class. This eliminates overrun errors that could

cause in-memory modification of data or code.

The compiler also prevents uninitialized variablesfrom being read and constants from being

modified. These checks eliminate errors resulting from incorrect variable reading and writing.

2.10.1.3 Runtime Security Mechanisms
The Java runtime system is designed to prevent applets from modifying, deleting, or

disclosing your files, accessing in-memory programs and data, and misusing network

resources.

47

s is accomplished by preventing applets from accessing files on your computer, not

viding or disallowing services that enable control over other programs, data, or the host

rating system, and restricting network connections to the host computer from which an

plet is loaded. The specific security mechanisms that implement these controls are

· scussed in the following subsections.

2.10.1.4 Class Loader Security Checks

Applets are loaded over a network using a class loader. The class loader prevents classes that

are loaded from the network from masquerading as or conflicting with classes that are

resident on the local file system. This ensures that the security-critical classes of the Java API

are not replaced by less trustworthy classes that are loaded over a network.

The class loader separates local and network-loaded classes by placing those classes from a

particular network host into a name space that is unique to that host. This approach also keeps

network-loaded classes from different hosts from conflicting with each other.

2.10.1.5 The Bytecode Verifier

The security of classes that are loaded over a network is verified using the bytecode verifier.

The bytecode verifier checks that the loaded classes are correctly formed and that they do not

have the capability to violate type and name space restrictions.

The verifier uses a mini theorem prover to prove that the . class file initially satisfies

certain security constraints and that when it is executed it will always transition into states in

which these security constraints are satisfied. This proof by induction verifies that basic

security rules will be enforced throughout the execution of the . class file. The verifier

proves that no illegal conversion between types.can occur, that parameters are correct for the

methods and instructions to which they apply, that stack operations do not cause overflows or

underflows, that access modifiers are enforced, that no forged pointers can be created, and

that register operations do not lead to errors.

2.10.1.6 Memory Management and Control

The memory locations of Java classes and objects are determined at runtime based on the

platform hosting the runtime system and the current memory allocation maintained by the

operating system.

48

By performing memory layout decisions at runtime, the potential for inducing errors that

cause memory overruns and lead to security malfunctions is greatly reduced. This is because

· is very difficult to predict the memory locations at which objects will be stored during code

execution. Without this knowledge, complex memory overrun attacks are thwarted.

The Java garbage collector reduces the likelihood that an applet or program may make

mistakes in its management of memory resources. Since memory deallocation is

automatically handled through the garbage collection process, errors resulting from multiple

deallocation of the same memory area or failure to deallocate memory are avoided.

Runtime array bounds checking also reduces the likelihood that errors resulting in illegal

memory accesses can occur. By confining array operations to valid array locations, these

potential security-related errors are prevented.

2.10.1.7 Security Manager Checks
The Java security manager provides a central decision point for implementing Java security

rules. This ensures that security access controls are implemented in a manageable and

consistent manner. The Securi tyManager class of the j ava. lang package may be

overridden to implement a custom security policy for standalone Java programs such as those

that load applets. A Securi tyManager object cannot, however, be created, invoked, or

accessed by a network-loaded applet. This prevents applets from modifying the security

policy implemented by the runtime system's Securi tyManager object.

The applet security policy implemented by the default SecurityManager object varies

from one browser to another. Netscape Navigator 2.0 implements a security policy that

enforces the following rules for applets that are loaded over a network:

ı. Applets cannot create or install a class loader or security manager.

2. Applets cannot create classes in the local class name space.
3. Applets cannot access local packages outside the standard packages of the Java APL

4. Applets cannot access files and directories on the local system in any manner.

5. Applets may establish network connections only to the host system from which they

were loaded.
6. Applets cannot create or install a content handler, protocol handler, or socket

implementation.

49

7. Applets cannot read system properties that provide information about a user.

8. Applets cannot modify system properties.

9. Applets cannot run other programs or load dynamic link libraries on the local system.

10. Applets cannot terminate otherprograms or the runtime system.

11. Applets cannot access threads or thread groups that are outside of their thread group.

12. All windows created by an applet must be clearly labeled as being untrusted.

50

Chapter ill: Oracle Development Siute

3.1 Introduction to Nets
ı'ojet8 enables the machines in our network to communicate with one another. It facilitates and

manages communication sessions between. a client application and a remote database.
-

Specifically,Net8 performs three basic operations.

ı. Connection: opening and closing connections between a client or a server acting as a

client and a database server over a network protocol.

2. Data Transport: packaging and sending data such as SQL statements and data

responses so that it can be transmitted and understood between a client and a server.

3. Exception Handling: initiating interrupt requests from the client or server.

3.1.1 Advantages of Nets
Net8 provides the following benefits to users of networked applications.

3.1.1.1 Network Transparency
Net8 provides support for a broad range of network transport protocols including TCP/IP,

SPX/IPX, IBM LU6.2, Novell, and DECnet. It does so in a manner that is invisible to the

application user. This enables Net8 to interoperate across different types of computers,

operating systems, and networks to transparently connect any combination of PC, UNIX,

legacy, and other system without changes to the existing infrastructure.

3.1.1.2 Protocol Independence
Net8 enables Oracle applications to run over any supported network protocol by using the

appropriate Oracle Protocol Adapter. Applications can be moved to another protocol stack by

installing the necessary Oracle Protocol Adapter"and the industry protocol stack. Oracle

Protocol Adapters provide Net8 access to connections over specific protocols or networks. On

some platforms, a single Oracle Protocol Adapter will operate on several different network

interface boards, allowing you to deploy applications in any networking environment.

51

3.1.1.3 Media/f opology Independence

When Net8 passes control of a connection to the underlying protocol, it inherits all media
~

and/or topologies supported by that network protocol stack. This allows the network protocol

to use any means of data transmission, such as Ethernet, Token Ring, or other, to accomplish

low level data link transmissions between two machines.

3.1.1.4 Heterogeneous Networking
Oracle's client-server and server-server models provide connectivity between multiple

network protocols using Oracle Connection Manager.

3.1.1.5 Large Scale Scalability
By enabling us to use advanced connection concentration and connection pooling features,

Net8 makes it possible for thousands of concurrent users to connect to a server.

3.2 Net8 Features
Net8 Release 8.0 features several enhancements that extend scalability, manageability and

security for the Oracle network.

3.2.1 Scalability Features

Scalability refers to the ability to support simultaneous network access by a large number of

clients to a single server. With Net8, this is accomplished by optimizing the usage of network

resources by reducing the number of physical network connections a server must maintain.

Net8 offers improved scalability through two new features.

ı. Connection pooling.

2. Connection concentration.

Both of these features optimize usage of server network resources to eliminate data access

bottlenecks and enable large numbers of concurrent clients to access a single server.

Additionally, other enhancements such as a new buffering methods and asynchronous

operations further improve Net8 performance.

52

3.2.2 Manageability Features
"Net8 introduces a number of new features that will simplify configuration and administration

of the Oracle network for both workgroup and enterprise environments.

For workgroup environments, Net8 offers simple configuration-free connectivity through

installation defaults and a new name resolution feature called host naming. For enterprise

environments, Net8 centralizes client administration and simplifies network management with

Oracle Names. In addition to these new features, Net8 introduces the Oracle Net8 Assistant.

3.2.2.1 Host Naming
Host Naming refers to a new naming method which resolves service names to network

addresses by enlisting the services of existing TCP/IP hostname resolution systems. Host

Naming can eliminate the need for a local naming configuration file in environments where

simple database connectivity is desired.

3.2.2.2 Oracle Net8 Assistant
The Oracle Net8 Assistant is a new end user, stand-alone Java application that can be

launched either as a stand-alone application or from the Oracle Enterprise Manager console. It

automates client configuration and provides an easy-to-use interface as well as wizards to

configure and manage Net8 networks.

Because the Oracle Net8 Assistant is implemented in Java, it is available on any platform that

supports the Java Virtual Machine.

3.2.3 Multiprotocol Support Using Oracle Connection Manager

Oracle Connection Manager provides the capability to seamlessly connect two or more.
network protocol communities, enabling transparent Net8 access across multiple protocols. In

•" this sense, it replaces the functionality provided by the Oracle MultiProtocol Interchange with

SQL*Net. Oracle Connection Manager can also be used to provide network access control.

For example, links processed through Oracle Connection Manager can be filtered on the basis

of origin, destination, or user ID. It incorporates a Net8 application proxy for implementing

firewall-like functionality.

53

3.2.4 Oracle Trace Assistant

Net8 includes the Oracle Trace Assistant to help decode and analyze the data stored in Net8

trace files. The Oracle Trace Assistant provides an easy way to understand and take advantage

of the information stored in trace files, it is useful for diagnosing network problems and

analyzing network performance. It can be used to better pinpoint the source of a network.

problem or identify a potential performance bottleneck.

3.2.5 Native Naming Adapters
Native Naming Adapters, previously bundled with the Advanced Networking Option, are now

included with Net8. These adapters provide native support for industry-standard name

services, including Sun NIS/Yellow Pages and Novell NetWare Directory Services (NDS).

3.3 Net8 Operations
Net8 is responsible for enabling communications between the cooperating partners in an

Oracle distributed transaction, whether they be client-server or server-server. Specifically,

Net8 provides three basic networking operations:

ı. Connect Operations.

2. Data Operations.

3. Exception Operations.

3.3.1 Connect Operations

Net8 supports two types of connect operations.

3.3.1.1 Connecting to Servers ,
Users initiate a connect request by passing information such as a usemame and password

along with a short name for the database service that they wish to connect. That short name,

called a service name, is mapped to a network address contained in a connect descriptor.

Depending upon our specific network configuration, this connect descriptor may be stored in

one of the following.
ı. A local names configuration file called TNSNAMES.ORA.

2. A Names Server for use by Oracle Names.

3. A native naming service such as NIS or DCE CDS.

54

et8 coordinates its sessions with the help of a network listener.

3.3.1.2 Establishing Connections with the Network Listener
The network listener is a single process or· task setup specifically to receive connection

requests on behalf of an application. Listeners are configured to "listen on" an address

specified in a listener configuration file for a database or non-database service. Once started,

the listener will receive client connect requests on behalf of a service, and respond in one of

three ways:

ı. Bequeath the session to a new dedicated server process.

2. Redirect to an existing server process.

3. Refuse the session.

Dis p;:rt,::; ~ r

~
.~

L...-- . ,... Pres....,.._ -d D __..
• •....•..• mn9 ,,.,,,sısio .•. "'"- .---· ·- ..,.. ıc.z:ıted
..,;~5 .ırl f-ıı:: n •..• ,.::::,ıı::rver

i st,,,nı=r •

Re::lirı!!!c11a.an
"'ıa51 in9 p-aa,: =
(1a an"' ar.,-..,, a.,-..,,ıj

N.ete
Client

S~.ıı
ı:ırı:ı,==ı,,;.ıınd
l:ı e::ı ue.ııt, sıı:=ı;ian
1a i1

Figure 3.3.1.2.1 : Network Listener In a Typical Net8 Connection

3.3.1.2.1 Bequeathed Sessions to Dedicated Server Processes

If the listener and server exist on the same node, the listener may create or spawn dedicated

server processes as connect requests are received. Dedicated server processes are committed

to one session only and exist for the duration of that session.

55

When a client disconnects, the dedicated server process associated with the client closes.

Figure 2.2 depicts the role of the network listener in a bequeathed connection to a dedicated

server process.

C]CJ

G

Nettı
C1 ient

Figure 3.3.1.2.1. 1 : Bequeathed Connection To a Dedicated Server Process

3.3.1.2.2 Redirected Sessions to Existing Server Processes
Alternatively, Net8 may redirect the request to an existing server process. It does this by

sending the address of an existing server process back to the client. The client will then resend

its connect request to the server address provided.

3.3.1.2.2.1 Prespawned Dedicated Server Processes
Net8 provides the option of automatically creating dedicated server processes before the

request is received. These processes last for the life of the listener, and can be reused by

subsequent connection requests. The use of prespawned dedicated server processes requires

specification in a listener configuration file.

When clients disconnect, the prespawned dedicated server process associated with the client

returns to the idle pool. It then waits a specified length of time to be assigned to another

client. If no client is handed to the prespawned server before the timeout expires, the

prespawned server shuts down. Figure 3 .3. 1.2.2.1. 1 depicts the role of the network listener in

a redirected connection to a prespawned dedicated server process.

56

IOOl'Tlirg ~on
.ımi 'lei 111~
li~n,-r------ı

plJ)ı ~ LJ ,r --..._,- 'lıı. _,ıl

- :

__J ~ -~ts
Cl~nt

Figure 3.3.1.2.2.1.1 Redirected Connection To a Prespawned Dedicated Server Process

3.3.1.2.2.2 Dispatcher Server Processes
A dispatcher server process enables many clients to connect to the same server without the

need for a dedicated server process for each client. It does this with the help of a dispatcher

which handles and directs multiple incoming session requests to the shared server.

When an Oracle server has been configured as a multi-threaded server, incoming sessions are

always routed to the dispatcher unless either the session specifically requests a dedicated

server or no dispatchers are available. Once the dispatcher addresses are registered, the

listener can redirect incoming connect requests to them. The listener and the Oracle dispatcher

server are now ready to receive incoming sessions.

When clients disconnect, the shared server associated with the client stays active and

processes other incoming requests. Figure 3 .3. 1.2.2.2.1 depicts the role of the network listener

in a redirected connection to a dispatcher server process.

57

Dispather
I I

/
lno:ıningse~n
ıllni'ıı:5 .ıı1 tie

__..li-:r \ cP>)) l
Ne-ft
Listener

Mu tti- Th rmded
Server

NetS
Client

Figure 3.3.1.2.2.2.1 : Redirected Connection To a Dispatcher Server Process

3.3.1.2.3 Refused Sessions
The network listener will refuse a session in the event that it does not know about the server

being requested, or if the server is unavailable. It refuses the session by generating and

sending a refuse response packet back to the client.

3.3.2 Data Operations
Net8 supports four sets of client-server data operations.

ı. Send data synchronously.

2. Receive data synchronously.

3. Send data asynchronously.

4. Receive data asynchronously.

On t!ıe client side, a SQL dialogue request is forwarded using a send request in Net8. On the

server side, Net8 processes a receive request and passes the data to the database. The opposite

occurs in the return trip from the server.

Basic send and receive requests are synchronous. When a client initiates a request, it waits for

the server to respond with the answer. It can then issue an additional request.

58

et8 adds the capability to send and receive data requests asynchronously. This capability

ras added to support the Oracle shared server, also called a multi-threaded server, which

requires asynchronous calls to service incoming requests from multiple clients.

3.3.3 Exception Operations

.,et8 supports three types of exception operations.

ı. Initiate a break over the connection.

2. Reset a connection for synchronization after a break.

3. Test the condition of the connection for incoming break.

The user controls only one of these three operations, that is, the initiation of a break. When

the user presses the Interrupt key, the application calls this function. Additionally, the

database can initiate a break to the client if an abnormal operation occurs, such as during an

attempt to load a row of invalid data using SQL*Loader.

The other two exception operations are internal to products that use Net8 to resolve network

timing issues. Net8 can initiate a test of the communication channel, for example, to see if

new data has arrived. The reset function is used to resolve abnormal states, such as getting the

connection back in synchronization after a break operation has occurred.

3.4 Net8 and the Transparent Network Substrate (TNS)

Net8 uses the Transparent Network Substrate and industry-standard networking protocols to

accomplish its basic functionality. TNS is a foundation technology that is built into Net8

providing a single, common interface to all industry-standard protocols.

With TNS, peer-to-peer application connectivity is possible where no direct machine-level
•·~ connectivity exists. In a peer-to-peer architecture, two or more computers can communicate

with each other directly, without the need for any intermediary devices. In a peer-to-peer

system, a node can be both a client and a server.

59

•

3.5 Net8 Architecture

3.5.1 Distributed Processing
Oracle databases and client applications operate in what is known as a distributed processing

environment. Distributed or cooperative processing involves interaction between two or more

computers to complete a single data transaction. Applications such as an Oracle tool act as

clients requesting data to accomplish a specific operation. Database servers store and provide

the data.

In a typical network configuration, clients and servers may exist as separate logical entities on

separate physical machines. This configuration allows for a division of labor where resources

are allocated efficiently between a client workstation and the server machine. Clients

normally reside on desktop computers with just enough memory to execute user friendly

applications, while a server has more memory, disk storage, and processing power to execute

and administer the database.

This type of client-server architecture also enables you to distribute databases across a

network. A distributed database is a network of databases stored on multiple computers that

appears to the user as a single logical database. Distributed database servers are connected by

a database link, or path from one database to another. One server uses a database link to query

and modify information on a second server as needed, thereby acting as a client to the second

server.

3.5.2 Stack Communications
The concept of distributed processing relies on the ability of computers separated by both

design and physical location to communicate and interact with each other. This is

accomplished through a process known as stack communications.•

Stack communications can be explained by referencing the Open System Interconnection

model. In the OSI model, communication between separate computers occurs in a stack-like

fashion with information passing from one node to the other through several layers of code.

Figure 3.5.2 depicts a typical OSI Protocol Communications Stack.

60

Client
SideSm,:;k

'
Clieı1

~r ,._

~F,lic.ırian User ~F,lic.ırian
-------- .

~nı.ııiaı
System ~nı.ııiaı

Se.siaı Se.siaı

'
Tr.ıııspar1 Tr.ııı spar1

Netıı'aiı. Netıı'aiı.

Liık Liık
Netıı'aiı.

Caı~daı

I , ' Ph,p'5i c.ıı I / Ph,p'5i c.ıı I
I

''J

' - '- •..
•..

\

J
I

I ---
Client

I
I \

\ ..•
..•

\
\

Figure 3.5.2.1 : OSI Communications Stack

Information descends through layers on the client side where it is packaged for transport

across a network medium in a manner that it can be translated and understood by

corresponding layers on the server side. A typical OSI protocol communications stack will

contain seven such layers.

ı. Application: this is the OSI layer closest to the user, and as such is dependent on the

functionality requested by the user. For example, in a database environment, a Forms

application may attempt to initiate communication in order to access data from a

•• server. t,

2. Presentation: ensures that information sent by the application layer of one system is

readable by the application layer of another system. This includes keeping track of

syntax and semantics of the data transferred between the client and server. If

necessary, the presentation layer translates between multiple data representation

formats by using a common data format.
3. Session: as its name suggests, establishes, manages, and terminates sessions between

the client and server. This is a virtual pipe that carries data requests and responses.

61

The session layer manages whether the data traffic can go in both directions at the

same time referred to as asynchronous, or in only one direction at a time referred to as

synchronous.

4. Transport: implements the data transport ensuring that the data is transported reliably.

5. Network: ensures that the data transport is routed through optimal paths through a

series of interconnected subnetworks.

6. Link: provides reliable transit of data across a physical link.

7. Physical: defines the electrical, mechanical, and procedural specifications for

activating, maintaining and deactivating the physical link between client and server.

3.5.3 Stack Communications in an Oracle networking environment

Stack communications allow Oracle clients and servers to share, modify, and manipulate data

between themselves. The layers in a typical Oracle communications stack are similar to those

of a standard OSI communications stack.

3.5.3.1 Client-Server Interaction

In an Oracle client-server transaction, information passes through the following layers:

1. Client Application.

2. Oracle Call Interface.

3. Two Task Common.

4. Net8.

5. Oracle Protocol Adapters.

6 . Network Specific Protocols.

...

62

Client
Side Slzıck

Server
Side Slzıck

cı;,,n1 o-••~ ,a
~licaiaı User S=-------113 ---

OCI
Spt..m OPI

RDBMS
Tıııı:ı-Task Tıııı:ı-Task RDBMS
Caıımaı Caıımaı

~---, ··-

NI NI

Ndı N~NN"'-'A N~NN"'-'A NefJ

TNS TNS

0...de O...de
Pro'ıacd Pro'ıacd
Adııpı,,r Net.ıı-aio. Adııpı,,r

Caırıedaı Netıııı:ırl<.·Netıııı:ırl<.·
, ır Spe:iic / Spe:iic

Pro'ıacd Pro'ıacd

Figure 3.5.3.1.1 : Typical Communications Stack in an Oracle environment

3.6 Distributed Computing Using Java
Distributed systems require that computations running in different address spaces, potentially

on different hosts, be able to communicate. For a basic communication mechanism, the

Java™ language supports sockets, which are flexible and sufficient for general

communication. However, sockets require the client and server to engage in applications-level

protocols to encode and decode messages for exchange, and the design of such protocols is

cumbersome and can be error-prone.

An alternative to sockets is Remote Procedure Call, which abstracts the communication

interface to the level of a procedure call. Instead of working directly with sockets, the

programmer has the illusion of calling a local procedure, when in fact the arguments of the

call are packaged up and shipped off to the remote target of the call. RPC systems encode

arguments and return values using an external data repres~ntation.
••

RPC, however, does not translate well into distributed object systems, where communication

between program-level objects residing in different address spaces is needed. In order to

match the semantics of object invocation, distributed object systems require remote method

invocation or RMI. In such systems, a local surrogate object manages the invocation on a

remote object.

63

3.6.1 Distributed Object Applications
RMI applications are often comprised of two separate programs, a server and a client. A

typical server application creates a number of remote objects, makes references to those

remote objects accessible, and waits for clients to invoke methods on those remote objects. A

typical client application gets a remote reference to one or more remote objects in the server

and then invokes methods on them. RMI provides the mecahnism by which the server and the

client communicate and pass information back and forth. Such an applications is sometimes

referred to as a distributed object application.

Distributed object applications need to:
1. Locate remote objects: Applications can use one of two mechanisms to obtain

references to remote objects. An application can register its remote objects with RMI's

simple naming facility, the rmiregistry, or the application can pass and return

remote object references as part of its normal operation.
2. Communicate with remote objects: Details of communication between remote objects

are handled by RMI, to the programmer, remote communication looks like a standard

Java method invocation.
3. Load class bytecodes for objects that are passed as parameters or return values:

Because RMI allows a caller to pass pure Java objects to remote objects, RMI

provides the necessary mechanisms for loading an object's code as well as transmitting

its data.

The illustration below depicts an RMI distributed application that uses the registry to obtain

references to a remote object. The server calls the registry to associate a name with a remote..
object. The client looks up the remote object by its name in the server's registry and then

invokes a method on it. The illustration also shows that the RMI system uses an existing web

server to load Java class bytecodes, from server to client and from client to server, for objects

when needed. RMI can load class bytecodes using any URL protocol that is supported by the

Java system.

64

regiatry

client R}.[I
'I I ..•. •...

UR.l -- •.•.- •.
~oJ .••. :ı .•,.... ..•.. •.

•.•. •. ı. 'E3"•' ··a.a
.ı ,ı ıl I

Figure 3 .6. 1. 1 : The Distributed and Nondistributed Models Contrasted

The Java distributed object model is similar to the Java object model in the following ways:

1. A reference to a remote object can be passed as an argument or returned as a result in

any method invocation.
2. A remote object can be cast to any of the set of remote interfaces supported by the

implementation using the built-in Java syntax for casting.

3. The built-in Java instanceof operator can be used to test the remote interfaces

supported by a remote object.

The Java distributed object model differs from the Java object model in these ways:

1. Clients of remote objects interact with remote interfaces, never with the

implementation classes of those interfaces.
2. "Non-rerrıote arguments to, and results from, a remote method invocation are passed by

copy rather than by reference. This is because references to objects are only useful

within a single virtual machine.
3. A remote object is passed by reference, not by copying the actual remote

implementation.
4. The semantics of some of the methods defined by class j ava. lang. Object are

specialized for remote objects.

65

5. Since the failure modes of invoking remote objects are inherently more complicated

than the failure modes of invoking local objects, clients must deal with additional

exceptions that can occur during a remote method invocation.

3.6.2 RMI Interfaces and Classes
The interfaces and classes that are responsible for specifying the remote behavior of the RMI

system are defined in the java.rmi package hierarchy. The following figure shows the

relationship between several of these interfaces and classes.

(Remms)- -- - (IQE:x09pion)

i

•••--- •... exıerc:;ion
i mpemel"R!l1ion

Figure 3 .6.2.1 : RMI Interfaces and Classes

3.6.2.1 The java.rmi.Remote Interface
In RMI, a remote interface is an interface that declares a set of methods that may be invoked

from a remote Java virtual machine. In a remote method declaration, a remote object declared

• as a parameter or return value must be declared as the remote inteıjace, not the

implementation class of that interface. The interface /ava.rmi.Remote is a marker interface

that defines no methods. A remote interface must at least extend the interface

/ava.rmi.Remoteor another remote interface that extendsJava.rmi.Remote.

66

3.6.3 Parameter Passing in Remote Method Invocation
An argument to, or a return value from, a remote object can be any Java object that is

serializable. This includes Java primitive types, remote Java objects, and non-remote Java

objects that implement the j ava. io. Serializable interface.

3.6.3.1 Passing Non-remote Objects
A non-remote object, that is passed as a parameter of a remote method invocation or returned

as a result of a remote method invocation, is passed by copy, that is, the object is serialized

using the Java Object Serialization mechanism.

So, when a non-remote object is passed as an argument or return value in a remote method

invocation, the content of the non-remote object is copied before invoking the call on the

remote object. When a non-remote object is returned from a remote method invocation, a new

object is created in the calling virtual machine.

3.6.3.2 Passing Remote Objects
When passing a remote object as a parameter or return value in a remote method call, the stub

for the remote object is passed. A remote object passed as a parameter can only implement

remote interfaces.

3.6.3.3 Referential Integrity
If two references to an object are passed from one Virtual Machine to another Virtual

Machine in parameters in a single remote method call and those references refer to the same

object in the sending Virtual Machine, those references will refer to a single copy of the

object in the receiving Virtual Machine. Within a single remote method call, the RMI system

maintains referential integrity among the objects passed as parameters or as a return value in

the call. ••

3.6.3.4 Class Annotation
When an object is sent from one Virtual Machine to another in a remote method call, the RMI

system annotates the class descriptor in the call stream with the URL information of the class

so that the class can be loaded at the receiver. It is a requirement that classes be downloaded

on demand during remote method invocation.

67

3.6.3.5 Parameter Transmission
Parameters in an RMI call are written to a stream that is a subclass of the class

j av a . i o . Obje ct Outputs tr eam in order to serialize the parameters to the destination of the

remote call. The Obj ectOutputStream subclass overrides the replaceübj ect method to

replace each remote object with its corresponding stub class. Parameters that are objects are

written to the stream using the Obj ectOutputStream's wr i teübj ect method. The

Obj ectOutputstream calls the replaceObj ect method for each object written to the

stream via the wri teübj ect method. The replaceObj ect method of RMI's subclass of

Obj ectOutputStream returns the following:

1. If the object passed to replaceübj ect is an instance of .Java.rmil?emote, then it

returns the stub for the remote object. A stub for a remote object is obtained via a call

to the method j ava. rrni . server. RemoteObj ect. toStub.

2. If the object passed to replaceObj ect is not an instance of.Java.rmil?emote, then

the object is simply returned.

RMI's subclass of ObjectOutputStream also implements the annotateClass method that

annotates the call stream with the location of the class so that it can be downloaded at the

receıver.

Since parameters are written to a single Obj ectOutputStream, references that refer to the

same object at the caller will refer to the same copy of the object at the receiver. At the

receiver, parameters are read by a single Obj ectinputStream.

Any other default behavior of Obıec tout puts tr eam for writing objeels (and similarly

Obj ectinputStream for reading objects) is maintained in parameter passing. For example,~

the calling of wri teReplace when writing objects and readResol ve when reading

objects is honored by RMI's parameter marshal and unmarshal streams.

In a similar manner to parameter passing in RMI as described above, a return value (or

exception) is written to a subclass of Obj ectOutputStream and has the same replacement

behavior as parameter transmission.

68

3.6.4 Locating Remote Objects
A simple bootstrap name server is provided for storing named references to remote objects. A

remote object reference can be stored using the URL-based methods of the class

j ava. rmi. Naming.

For a client to invoke a method on a remote object, that client must first obtain a reference to

the object. A reference to a remote object is usually obtained as a parameter or return value in

a method call. The RMI system provides a simple bootstrap name server from which to obtain

remote objects on given hosts. The j ava. rmi. Naming class provides Uniform Resource

Locator (URL) based methods to look up, bind, rebind, unbind, and list the name-object

pairings maintained on a particular host and port.

3.6.5 Stubs and Skeletons
RMI uses a standard mechanism for communicating with remote objects, stubs and skeletons.

A stub for a remote object acts as a client's local representative or proxy for the remote object.

The caller invokes a method on the local stub which is reponsible for carrying out the method

call on the remote object. In RMI, a stub for a remote object implements the same set of

remote interfaces that a remote object implements.

When a stub's method is invoked, it does the following.

1. Initiates a connection with the remote VM containing the remote object.

2. Writes and transmits the parameters to the remote VM.

3. Waits for the result of the method invocation.

4. Reads the return value or exception returned.

5. Returns the value to the caller.

T~e stub hides the serialization of parameters and the_network-level communication in order

to present a simple invocation mechanism to the caller.

In the remote VM, each remote object may have a corresponding skeleton. The skeleton is

responsible for dispatching the call to the actual remote object implementation. When a

skeleton receives an incoming method invocation it does the following.

1 . Reads the parameters for the remote method.
2. Invokes the method on the actual remote object implementation.

69

3. Writes and transmits the return value or exception to the caller.

3.6.6 Thread Usage in Remote Method Invocations
A method dispatched by the RMI runtime to a remote object implementation may or may not

execute in a separate thread. The RMI runtime makes no guarantees with respect to mapping

remote object invocations to threads. Since remote method invocation on the same remote

object may execute concurrently, a remote object implementation needs to make sure its

implementation is thread-safe.

3.6.7 Garbage Collection of Remote Objects
In a distributed system, just as in the local system, it is desirable to automatically delete those

remote objects that are no longer referenced by any client. This frees the programmer from

needing to keep track of the remote objects clients so that it can terminate appropriately. RMI

uses a reference-counting garbage collection algorithm.

To accomplish reference-counting garbage collection, the RMI runtime keeps track of all live

references within each Java virtual machine. When a live reference enters a Java virtual

machine, its reference count is incremented. The first reference to an object sends a

referenced message to the server for the object. As live references are found to be

unreferenced in the local virtual machine, the count is decremented. When the last reference

has been discarded, an unreferenced message is sent to the server. Many subtleties exist in the

protocol, most of these are related to maintaining the ordering of referenced and unreferenced

messages in order to ensure that the object is not prematurely collected.

When a remote object is not referenced by any client, the RMI runtime refers to it using a

weak reference. The weak reference allows the Java virtual machine's garbage collector to

discard the object if no other local references to the"object exist. The distributed garbage

collection algorithm interacts with the local Java virtual -machine's garbage collector in the

usual ways by holding normal or weak references to objects.

As long as a local reference to a remote object exists, it cannot be garbage-collected and it can

be passed in remote calls or returned to clients. Passing a remote object adds the identifier for

the virtual machine to which it was passed to the referenced set. A remote object needing

unreferenced notification must implement the /ava.rmı:senıer. Unreferenced interface. When

those references no longer exist, the unreferenced method will be invoked.

70

unreferenced is called when the set of references is found to be empty so it might be

called more than once. Remote objects are only collected when no more references, either

local or remote, still exist.

Note that if a network partition exists between a client and a remote server object, it is

possible that premature collection of the remote object will occur (since the transport might

believe that the client crashed). Because of the possibility of premature collection, remote

references cannot guarantee referential integrity; in other words, it is always possible that a

remote reference may in fact not refer to an existing object. An attempt to use such a

reference will generate a RemoteException which must be handled by the application.

3.6.8 Dynamic Class Loading
RMI allows parameters, return values and exceptions passed in RMI calls to be any object

that is serializable. RMI uses the object serialization mechanism to transmit data from one

virtual machine to another and also annotates the call stream with the appropriate location

information so that the class definition files can be loaded at the receiver.

When parameters and return values for a remote method invocation are unmarshalled to

become live objects in the receiving VM, class definitions are required for all of the types of

objects in the stream. The unmarshalling process first attempts to resolve classes by name in

its local class loading context. RMI also provides a facility for dynamically loading the class

definitions for the actual types of objects passed as parameters and return values for remote

method invocations from network locations specified by the transmitting endpoint. This

includes the dynamic downloading of remote stub classes corresponding to particular remote

object implementation classes as well as any other type that is passed by value in RMI calls,

such as the subclass of a declared parameter type, that is not already available in the class

loading context of the unmarshalling side.

To support dynamic class loading, the RMI runtime uses special subclasses of

j ava. io. Obj ectOutputStream and j ava. io. Obj ectinputStream for the marshal streams

that it uses for marshalling and unmarshalling RMI parameters and return values. These

subclasses override the annotateClass method of ObjectOutputStream and the

re sol veClass method of ObjectinputStream to communicate information about where

to locate class files containing the definitions for classes corresponding to the class

descriptors in the stream.

71

For every class descriptor written to an RMI marshal stream, the annotate C 1 ass me

adds to the stream the result of calling
java.mıi.server.RMI C 1 ass Loader . getC las sAnno ta ti on for the class object, which

may be null or may be a string object representing the codebase URL path from which the

remote endpoint should download the class definition file for the given class.

For every class descriptor read from an RMI marshal stream, the res o 1ve C 1 as s method

reads a single object from the stream. If the object is a String, then res o 1ve C 1as s returns

the result of calling RMIClassLoader. ıoadClass with the annotated string object as

the first parameter and the name of the desired class in the class descriptor as the second

parameter.Otherwise, re sol vecıass returns the result of calling
RMIClassLoader. ıoactcıass with the name of the desired class as the only parameter.

3.6.9 RMI Through Firewalls Via Proxies
The RMI transport layer normally attempts to open direct sockets to hosts on the Internet.

Many intranets, however, have firewalls which do not allow this. The default RMI transport,

therefore, provides two alternate HTTP-based mechanisms which enable a client behind a

firewall to invoke a method on a remote object which resides outside the firewall.

3.6.9.1 How an RMI Call is Packaged within the HTTP Protocol
To get outside a firewall, the transport layer embeds an RMI call within the firewall-trusted

HTTP protocol. The RMI call data is sent outside as the body of an HTTP POST request, and

the return information is sent back in the body of the HTTP response. The transport layer will

formulate the POST request in one of two ways.

3.6.9.2 The Default Socket Factory
The RMI transport extends the java. r m i . server. RMISocketFactory class to provide ae

default implementation of a socket factory which is the resource-provider for client and server

sockets. This default socket factory creates sockets that transparently provide the firewall

tunnelling mechanism as follows.

l. Client sockets automatically attempt HTTP connections to hosts that cannot be

contacted with a direct socket.

72

2. Server sockets automatically detect if a newly-accepted connection is an HTI"PPOST
request, and if so, return a socket that will expose only the body of the request to the

transport and format its output as an HTTP response.

6.9.3 Configuring the Client
here is no special configuration necessary to enable the client to send RMI calls through a

ırewall. The client can, however, disable the packaging of RMI calls as HTTP requests by

etting tlı,e j ava. rmi. server. di sableH t tp property to equal the boolean value true.

~.6.9.4 Configuring the Server
In order for a client outside the server host's domain to be able to invoke methods on a

server's remote objects, the client must be able to find the server. To do this, the remote

references that the server exports must contain the fully-qualified name of the server host.

Depending on the server's platform and network environment, this information may or may

not be available to the Java virtual machine on which the server is running. If it is not

available, the host's fully qualified name must be specified with the property

j ava. rmi. server. host namewhen starting the server.

3.6.9.5 Performance Issues and Limitations
Calls transmitted via HTTP requests are at least an order of magnitude slower that those sent

through direct sockets, without taking proxy forwarding delays into consideration.

Because HTTP requests can only be initiated in one direction through a firewall, a client

cannot export its own remote objects outside the firewall, because a host outside the firewall

cannot initiate a method invocation back on the client.

73

:,nclusions

-a's security model is possibly the least understood aspect of the Java system. Because it's

usual for a language environment to have security facilities, some people have been

thered by the danger; at the same time, because the security restrictions prevent some

eful things as well as some harmful things, another group of people has wondered whether

curity is really necessary.

LVa security is important because it makes exciting new things possible with very little risk.

arly security holes caused by implementation bugs are being closed, and technology is being

elded that permits the strict security policy to be relaxed carefully and selectively. Resources

ıat can be used to destroy or steal data are being protected, and researchers are examining

vays to prevent applets from using other resources to cause annoyance or inconvenience.

\pplication developers can design their own security policies and supply parts of the third

ıayer of the Java security model to implement those policies in their applications.The Java

security architecture is sound. Early weaknesses and bugs are not a surprise, and the process

that has exposed those flaws has also helped remove them.

Java is an interesting new programming language designed to support the safe execution of

applets on Web pages. We and others have demonstrated an array of attacks that allow the

security of both HotJava and Netscape to be compromised. While many of the specific flaws

have been patched, the overall structure of the systems leads us to believe that flaws will

continue to be found. The absence of a well-defined, formal security policy prevents the

verification of an implementation. We conclude that the Java system in its current form

cannot easily be made secure. Significant redesign of the language, the bytecode format, and

the runtime system appear to be necessary steps toward building a higher-assurance system.

Without a formal basis, statements about a system's security cannot be definitive. The

resence of flaws in Java does not imply that competing systems are more secure. We

conjecture that if the same level of scrutiny had been applied to competing systems, the

results would have been similar. Execution of remotely-loaded code is a relatively new

phenomenon, and more work is required to make it safe.

74

References

Database system concepts
Henry F. Korth
Abraham Silberschatz
McGraw-Hill International Editions
Computer Science Series
Second Edition

Dr. Shuguang Hong, CIS, GSU
DB Driven Web Applications
Database Administration
Database Management Systems
Relational Algebra & SQL

David Toman
University of Waterloo
Database Management Systems
Computer Science 265 Lecture Notes

Drew Dean, Edward W. Felten, Dan S. Wallach
Department of Computer Science
Princeton University
Symposium on Security and Privacy, Oakland, CA, May 6-8, 1996.

S. R. Ames, Jr., M. Gasser, and R. G. Schell
Security kernel design and implementation: An introduction. Computer, July 1983

J. P. Anderson
Computer security technology planning study
Technical Report ESD-TR-73-51, U.S. Air Force,
Electronic Systems Division, Deputy for Command and
Management Systems, HQ Electronic Systems Division
(AFSC), L. G. Hanscom Field, Bedford, MA 01730 USA

N. S. Borenstein
In IFIP International Working Conference on Upper Layer Protocols, Architectures
and Applications, 1994.

G. Castagna
Covariance and contravariance: Con-flict without a cause. Technical Report LIENS-
94-18, D'epartement de Math'ernatiques et d'Informatique, Ecole Normale
Sup' erieure, Oct. 1994

W.R. Cheswick and S. M. Bellovin
Firewalls and Internet Security: Repelling theWily Hacker. Addison-Wesley, 1994.

D. Flanagan
Java in a Nutshell. O'Reilly & Associates, Inc., 1st edition, Feb. 1996.

J. Gosling and H. McGilton
The Java Language Environment. Sun Microsystems Computer Company,
http://java.sun.com/whitePaper/

R. Milner, M. Tofte, and R. Harper
The Definition of Standard ML. MIT Press, Cambridge, MA, 1990

National Computer Security Center
Department of Defense Trusted Computer System Evaluation Criteria. National
Computer Security Center

J. Roskind

75

Java and security. In Netscape Internet Developer Conference, Netscape
Communications Corp

David Hopwood
Network Security
WWW. users.zetnet. co.uk/hopwood/papers/ compsec97 .html

Gary McGraw and Edward Felten
Mobile Code and Security: Why Java Security Is Important

Joseph A. Bank
"Java Security", Dec. 8, 1995
http://swissnet.ai.mit.edu/-ibank/iavapaper/iavapaper.html

Mike Fletcher
Java 1. 1 Unleashed
Java Security

Macmillan Computer Publishing
Sun Microsystems

"Frequently Asked Questions-Applet Security", Jan. 9, 1996 version 1. O Beta 2
http ://java. sun.corn/ sfaq/
"HotJava: The Security Story", May 19, 1995
http://iava.sun.com/1 .Oalpha3/doc/security/security.html
"The Java Language Specification", DRAFT-Version 1.0 Beta, October 30, 1995
http ://i ava. sun.corn/ JDK-beta2/psfiles/i avaspec. ps

Princeton University
Department of Computer Science
Princeton Secure Internet Programming Team
http://www.cs.princeton.edu/-ddean/iava/
http://www.cs.princeton.edu/sip/iava-fag.html

,.,,,,.----

76

tpendices

ıpendix A: Program Example

.o r t;
ıort
ıort
ıort
»o r t;

java.sql.*;
. . *J avax.swıng. ;
java.awt.*;
java.awt.event.*;
java.util.*;

)lie class Testl extends JApplet implements ActionListener{

private Connection connection;
private JTable table;

JButton btnl;
JTextField textl;
JLabel labell;
JPanel panell;

String query="Select * from emp";
Statement statement;
ResultSet resultset;

public void init() {

panell=new JPanel();
panell.setLayout(new·GridLayout(l,3));

labell=new JLabel("Enter Index here >>"Y;
panell.add(labell);

textl=new JTextField(lS);
panell.add(textl);

btnl=new JButton("Sort!");
btnl.addActionListener(this);
panell.add(btnl);

getContentPane() .add(panell,BorderLayout.NORTH);.
//setup database connection.

try{
String

rl="jdbc:oracle:thin:@mycomWin2000:1521:dbl";
String user="scott";
String passw="tiger";
Class.forName("oracle.jdbc.driver.OracleDriver");

connection=DriverManager.getConnection(url,user,passw);
JOptionPane.showMessageDialog(null,"Connection

iuccessful");

77

catch(ClassNotFoundException cnfex) {
cnfex.printStackTrace();

JOptionPane.showMessageDialog(null,cnfex.toString());
}
catch(SQLException sqlex) {

sqlex.printStackTrace();

JOptionPane.showMessageDialog(null,sqlex.toString());
}
catch(Exception ex) {

ex.printStackTrace();
JOptionPane.showMessageDialog(null,ex.toString());

public void paint(Graphics g) {

try{

statement=connection.createStatement();
resultset=statement.executeQuery(query);
displayResultSet(resultset);
validate();
resultset.close();
statement.close();

catch(SQLException sqlex) {
sqlex.printStackTrace();

private void displayResultSet(ResultSet rs) throws
SQLException{

//position to first record.
boolean moreRecords=rs.next();

• //if no record, display message.
if (!moreRecords) {

JOptionPane.showMessageDialog(this,"No records to
display");

return;

Vector columnHeads=new Vector();
Vector rows=new Vector();

try{
//get column heads.
ResultSetMetaData rsrnd=rs.getMetaData();

78

for(int i=l;i<=rsmd.getColumnCount() ;i++)
columnHeads.addElement(rsmd.getColumnName(i));

//get row data
do{

rows.addElement(getNextRow(rs,rsmd));
}while (rs.next());

//display table with ResultSet contents.
table=new JTable(rows,columnHeads);
JScrollPane scroller=new JScrollPane(table);
getContentPane() .add(scroller, BorderLayout.CENTER);

catch(SQLException sqlex) {
sqlex.printStackTrace();

private Vector getNextRow(ResultSet rs, ResultSetMetaData rsmd)

throws SQLException{

Vector currentRow=new Vector();

for(int i=l;i<=rsmd.getColumnCount();i++)
currentRow.addElement(rs.getString(i));

return currentRow;

'----
}

public void destroy() {

try{
connection.close();
}
catch(SQLException sqlex) {

Syster:ı.err.p.:-::..ntln("Unable to disconnect");
sqlex.pr::..ntScack~race();

public void actionPerformed (Actio::ı~·.·ent e) {
if (e.getSource()==btnl) {

query="select * from emp order by 11-text:.getText()+"";

repaint();

79

