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ABSTRACT 

Any electrical communication system consists of a transmitter, a channel and a 
receiver. Transmitters and receivers may include filtering for various purposes. Bandlimited 
channels also act like a filter causing the received pulses overlap each other. As a result, the 
tail of one pulse smears into adjacent pulse. This is called intersymbol interference. 

Intersymbol interference disturbs the transmitted signal. Various ways exist for 
combating this interference and are investigated in this report. 

One way is to use raised cosine shape filter. This is not practically realizable therefore 
the use of channel equalizer is preferred. Zero forcing equalizer is a linear equalizer that 
attempts to reduce the effects of intersymbol interference. It has the disadvantage that it 
also amplifies the noise present in the channel. Another linear equalizer is an adaptive 
equalizer using the least mean squares algorithm. This report simulates a communication 
system using an adaptive equalizer with the least mean squares algorithm in Matlab and 
examines the effects of various parameters, such as the equalizer step size. Nonlinear 
equalizers such as the decision feed back equalizer also exist and are generally better 
performing than linear equalizers against intersymbol interference. 

11 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS 

ABSTRACT 

CONTENTS 

INTRODUCTION 

1. Basics of An Electrical Communication System 

1.1 Elements of An Electrical Communication System 

1.1.1 Transmitter 2 

11 

lll 

V 

1.1.2 The Channel 3 

1.1.3 The Receiver 4 

1.2 Digital Communication System 5 

1.3 Noise in Communication System 8 

2. Transmission Through Bandlimited A WGN Channels 13 

2.1 Digital Transmission Through Bandlimited A WGN Channels 13 

2.2 Digital Transmission Through Bandlimited Channels 13 

2.3 Digital PAM Transmission Through Bandlimited Baseband Channels 15 

2.4 Digital transmission Through Bandlimited Bandpass Channels 18 

3. Channel Distortion And Intersymbol Interference 22 

3.1 Intersymbol Interference (ISI) 22 

3.2 Pulse Shaping to Reduce ISI 

3.3 Equalization 

4. Channel Equalization 

4.1 Introduction to Channel Equalization 

4.1.1 Maximum Likely Hood Sequence Detection 

4.2 Linear Equalizers 

4.3 Adaptive Equalizers 

4.4 Decision Feedback Equalizers 

5. Results 

CONCLUSION 

REFERENCES 

25 

27 

31 

31 

33 

34 

40 

46 

50 

55 

56 

lll 



' APPENDIX A 

APPENDIX B 

APPENDIX C 

APPENDIXD 

IV 

57 

59 

61 

63 



INTRODUCTION 

Bandlimited communication channels and wireless channels suffer from the effects of 
intersymbol interference. lntersymbol interference occurs when transmitted pulses are 
distorted in the channel when they interfere with each other. A few ways exist for 
eliminating intersymbol interference including pulse shaping and channel equalization. 

This report discusses various types of equalizers. It particularly investigates the linear 
adaptive equalizer using the least mean squares algorithm. Using MATLAB simulation, the 
effects of different parameters on the equalizer adaptation is analyzed. It is shown that 
reducing the equalizer step size reduces the mean square error but it increases the time it 
takes to converge. Changing the number of iterations change the amount of variation of 
mean square error during convergence. Using a channel with more severe intersymbol 
interference increases the mean square error. 

The first chapter describes the elements of a digital communication system, and the 
noise within the system. 

Chapter two describes digital transmission through bandlimited additive white 
Gaussian noise channels. It explains digital pulse amplitude modulated transmission 
through bandlimited baseband channels and also digital transmission through bandlimited 
bandpass channels. 

Chapter three details intersymbol interference, pulse shaping to reduce intersymbol 
interference, and briefly introduces channel equalization. 

Chapter four explains the three kinds of equalizers, the linear zero-forcing-equalizer, 
the adaptive equalizer, and the feedback equalizer. 

Chapter five gives the results obtained through simulation. The MATLAB code is 
included in the appendix section. 

V 



SYSTEM 

CHAPTER 1 

BASICS OF AN ELECTRICAL COMMUNICATION 

1.1 Elements of An Electrical Communication System 

Electrical communication systems are designed to send messages or information from a 

source that generates the messages to one or more destinations. In general, a 

communication system can be represented by the functional block diagram shown in Figure 

I. I. 

The information generated by the source may be of the form of voice (speech source), a 

picture (image source), or plain text in some particular language, such as English, Japanese, 

German, French, etc. An essential feature of any source that generates information is that 

its output is described in probabilistic terms; that is, the output of a source is not 

deterministic. Otherwise, there would be no need to transmit the message. 

Output 
signal 

lnformation 
source and Transmitter - input transducer 

Channel 

Output 
Receiver i--- transducer 

FIGURE 1.1. Functional block diagram of a communication system. 

A transducer is usually required to convert the output of a source into an electrical 

signal that is suitable for transmission. For example, a microphone serves as the transducer 

that converts an acoustic speech signal into an electrical signal, and a video camera 



converts an image into an electrical signal. At the destination, a similar transducer is 

required to convert electrical signals that are received into a form that is suitable for the 

user; for example, acoustic signals, images, etc. 

The heart of the communication system consists of three basic parts, namely.t he 

transmitter, the channel, and the receiver. The functions performed by these three elements 

are described below. 

1.1.1 The Transmitter. 

The transmitter converts the electrical signal into a form that is suitable for 

transmission through the physical channel or transmission medium. For example, in radio 

and TV broadcast, the Federal Communications Commission (FCC) specifies the frequency 

range for each transmitting station. Hence, the transmitter must translate the information 

signal to be transmitted into the appropriate frequency range that matches the frequency 

allocation assigned to the transmitter. Thus, signals transmitted by multiple radio stations 

do not interfere with one another. Similar functions are performed in telephone 

communication systems, where the electrical speech signals from many users are 

transmitted over the same wire. 

In general, the transmitter performs the matching of the message signal to the 

channel by a process called modulation. Usually, modulation involves the use of the 

information signal to systematically vary the amplitude, frequency, or phase of a sinusoidal 

carrier. For example, in AM radio broadcast, the information signal that is transmitted is 

contained in the amplitude variations of the sinusoidal carrier, which is the center frequency 

in the frequency band allocated to the radio transmitting station. This is an example of 

amplitude modulation. In FM radio broadcast, the information signal that is transmitted is 
- 

contained in the frequency variations of the sinusoidal carrier. This is an example of 

frequency modulation. Phase modulation (PM) is yet a third method for impressing the 

information signal on a sinusoidal carrier. 

In general, carrier modulation such as AM, FM, and PM is performed at the 

transmitter, as indicated above, to convert the information signal to a form that matches the 

characteristics of the channel. Thus, through the process of modulation, the information 
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signai is translated in frequency to match the allocation of the channel. The choice of the 

type of modulation is based on several factors, such as the amount of bandwidth allocated, 

the types of noise and interference that the signal encounters in transmission over the 

channel, and the electronic devices that are available for signal amplification prior to 

transmission. In any case, the modulation process makes it possible to accommodate the 

transmission of multiple messages from many users over the same physical channel. 

In addition to modulation, other functions that are usually performed at the transmitter 

are filtering of the information-bearing signal, amplification of the modulated signal, and in 

the case of wireless transmission, radiation of the signal by means of a transmitting 

antenna. 

1.1.2 The Channel 

The communications channel is the physical medium that is used to send the signal 

from the transmitter to the receiver. In wireless transmission, the channel is usually the 

atmosphere (free space). On the other hand, telephone channels usually employ a variety of 

physical media, including wirelines, optical fiber cables, and wireless (microwave radio). 

Whatever the physical medium for signal transmission, the essential feature is that the 

transmitted signal is corrupted in a random manner by a variety of possible mechanisms. 

The most common form of signal degradation comes in the form of additive noise, which is 

generated at the front end of the receiver, where signal amplification is performed. This 

noise is often called thermal noise. In wireless transmission, additional additive 

disturbances are man-made noise and atmospheric noise picked up by a receiving antenna. 

Automobile ignition noise is an example of man-made noise, and electrical lightning 

discharges from thunderstorms is an example of atmospheric noise. Interference from other 

users of the channel is another form of additive noise that often arises in both wireless and 

wireline communication systems. 

In some radio communication channels, such as the ionospheric channel that is used for 

long-range, short-wave radio transmission, another form of signal degradation is multipath 

propagation. Such signal distortion is characterized as a nonadditive signal disturbance 

which manifests itself as time variations in the signal amplitude, usually called fading. 
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Both additive and nonadditive signal distortions are usually characterized as random 

phenomena and described in statistical terms. The effect of these signal distortions must be 

taken into account in the design of the communication system. 

The system designer works with mathematical models that statistically characterize the 

signal distortion encountered on physical channels. Often, the statistical description that is 

used in a mathematical model is a result of actual empirical measurements obtained from 

experiments involving signal transmission over such channels. In such case, there is a 

physical justification for the mathematical model used in the design of communication 

systems. On the other hand, in some communication system designs, the statistical 

characteristics of the channel may vary significantly with time. In such cases, the system 

designer may design a communication system that is robust to the variety of signal 

distortions. This can be accomplished by having the system adapt some of its parameters to 

the channel distortion encountered. 

1.1.3 The Receiver 

The function of the receiver is to recover the message signal contained in the received 

signal. If the message signal is transmitted by carrier modulation, the receiver performs 

carrier demodulation to extract the message from the sinusoidal carrier. Since the signal 

demodulation is performed in the presence of additive noise and possibly other signal 

distortion, the demodulated message signal is generally degraded to some extent by the 

presence of these distortions in the received signal. As we shall see, the fidelity of the 

received message signal is a function of the type of modulation, the strength of the additive 

noise, the type and strength of any other additive interference, and the type of any 

nonadditive interference. 

Besides performing the primary function of signal demodulation, the receiver also 

· performs a number of peripheral functions, including signal filtering and noise suppression. 

4 



1.2 Digital Communication System 

Up to this point, it was described that if an electrical communication system is in 

rather broad terms based on the implicit assumption that the message signal is a continuous 

time-varying waveform, such continuous-time signal waveforms are referred as analog 

signals and the corresponding information sources that produce such signals are referred as 

analog sources. Analog signals can be transmitted directly via carrier modulation over the 

communication channel and demodulated accordingly at the receiver. Such a 

communication system is called an analog communication system. 

Alternatively, an analog source output may be converted into a digital form and the 

message can be transmitted via digital modulation and demodulated as a digital signal at 

the receiver. There are some potential advantages to transmit an analog signal by means of 

digital modulation. The most important reason is that signal fidelity is better controlled 

through digital transmission than analog transmission. In particular, digital transmission 

allows us to regenerate the digital signal in long-distance transmission, thus eliminating 

effects of noise at each regeneration point. In contrast, the noise added in analog 

transmission is amplified along with the signal when amplifiers are used periodically to 

boost the signal level in long-distance transmission. Another reason for choosing digital 

transmission over analog is that the analog message signal may be highly redundant. With 

digital processing, redundancy may be removed prior to modulation, thus conserving 

channel bandwidth. Yet a third reason may be that digital communication systems are often 

cheaper to implement. 

In some applications, the information to be transmitted is inherently digital, e.g., in 

the form of English text, computer data, etc. In such cases, the information source that 

generates the data is called a discrete (digital) source. 

In a digital communication system, the functional operations performed at the 

transmitter and receiver must be expanded to include message signal discretization at the 

transmitter and message signal synthesis or interpolation at the receiver. Additional 

functions include redundancy removal, and channel coding and decoding. 

Figure 1.2 illustrates the functional diagram and the basic elements of a digital 

communication system. The source output may be either an analog signal, such as audio or 
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video signal, or a digital signal, such as the output of a teletype machine which is discrete 

in time and has a finite number of output characters. 

Output 
signal 

Information 
Source Channel Digital source and 

input transducer encoder encoder modulator 

• 

Channel 

Output Source Channel Digital 
transducer decoder decoder demodulator 

FIGURE 1.2. Basic elementes of a digital communication system. 

In a digital communication system, the messages produced by the source are usually 

converted into a sequence of binary digits. Ideally, it is more likely to represent the source 

output (message) by as few binary digits as possible. In other words, communication 

engineers seek an efficient representation of the source output that results in little or no 

redundancy. The process of efficiently converting the output of either an analog or a digital 

source into a sequence of binary digits is called source encoding or data compression. The 

sequence of binary digits from the source encoder, which known as the information 

sequence, is passed to the channel encoder. The purpose of the channel encoder is to 

introduce in a controlled manner some redundancy in the binary information sequence 

which can be used at the receiver to overcome the effects of noise and interference 

encountered in the transmission of the signal through the channel. Thus, the added 

redundancy serves to increase the reliability of the received data and improves the fidelity 

of the received signal. In effect, redundancy in the information sequence aids the receiver in 

decoding the desired information sequence. For example, a (trivial) form of encoding of the 

binary information sequence is simply to repeat each binary digit m times, where m is some 

positive integer. More sophisticated (nontrivial) encoding involves taking k information 

bits at a time and mapping each k-bit sequence into a unique n-bit sequence, called a code 

word. The amount of redundancy introduced by encoding the data in this manner is 
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measured by the ratio n/k. The reciprocal of this ratio, namely, kin, is called the rate of the 

code or, simply, the code rate. 

The binary sequence at the output of the channel encoder is passed to the digital 

modulator, which serves as the interface to the communications channel. Since nearly all of 

the communication channels encountered in practice are capable of transmitting electrical 

signals (waveforms), the primary purpose of the digital modulator is to map the binary 

information sequence into signal waveforms. To elaborate on this point, let us suppose that 

the coded information sequence is to be transmitted one bit at a time at some uniform rate R 

bits/s. The digital modulator may simply map the binary digit O into a waveform s0(t) and 

the binary digit 1 into a waveform s1(t). In this manner, each bit from the channel encoder 

is transmitted separately. We call this binary modulation. Alternatively, the modulator may 

transmit b coded information bits at a time by using M = 2b distinct waveforms si(t), i = 0, 
1, ... , M - 1, one waveform for each of the 2b possible b-bit sequences. This is called M-ary 

modulation (M > 2). Note that a new b-bit sequence enters the modulator every b/R 

seconds. Hence, when the channel bit rate R is fixed, the amount of time available to 

transmit one of the M waveforms corresponding to a b-bit sequence is b times the time 

period in a system that uses binary modulation. 

At the receiving end of a digital communications system, the digital demodulator 

processes the channel-corrupted transmitted waveform and reduces each waveform to a 

single number that represents an estimate of the transmitted data symbol (binary or M-ary). 

For example, when binary modulation is used, the demodulator may process the received 

waveform and decide on whether the transmitted bit is a O or 1. In such a case, this is said 

to be the demodulator has made a binary decision. As one alternative, the demodulator may 

make a ternary decision; that is, it decides that the transmitted bit is either a O or 1 or it 

makes no decision at all, depending on the apparent quality of the received signal. When no 

decision is made on -a particular bit, it is called that the demodulator has inserted an erasure 

in the demodulated data. Using the redundancy in the transmitted data, the decoder attempts 

to fill in the positions where erasures occurred. Viewing the decision process performed by 

the demodulator as a form of quantization, we observe that binary and ternary decisions are 

special cases of a demodulator that quantizes to Q levels, where Q ~ 2. In general, if the 

digital communications system employs M-ary modulation, where m = 0, 1, ... , M - 1 



represent the M possible transmitted symbols, each corresponding to k = log, M bits, the 

demodulator may make a Q-ary decision, where Q 2:: M. In the extreme case where no 

quantization is performed, Q = co, 
When there is no redundancy in the transmitted information, the demodulator must 

decide which of the M waveforms was transmitted in any given time interval. 

Consequently, Q = M, and since there is no redundancy in the transmitted information, no 

discrete channel decoder is used following the demodulator. On the other hand, when there 

is redundancy introduced by a discrete channel encoder at the transmitter, the Q-ary output 

from the demodulator occurring every k/R seconds is fed to the decoder, which attempts to 

reconstruct the original information sequence from knowledge of the code used by the 

channel encoder and the redundancy contained in the received data. 

A measure of how well the demodulator and encoder perform is the frequency with 

which errors occur in the decoded sequence. More precisely, the average probability of a 

bit-error at the output of the decoder is a measure of the performance of the demodulator­ 

decoder combination. In general, the probability of error is a function of the code 

characteristics, the types of waveforms used to transmit the information over the channel, 

the transmitter power, the characteristics of the channel (i.e., the amount of noise), the 

nature of the interference, etc., and the method of demodulation and decoding. 

As a final step, when an analog output is desired, the source decoder accepts the 

output sequence from the channel decoder, and from knowledge of the source encoding 

method used, attempts to reconstruct the original signal from the source. Due to channel 

decoding errors and possible distortion introduced by the source encoder and, perhaps, the 

source decoder, the signal at the output of the source decoder is an approximation to the 

original source output. The difference or some function of the difference between the 

original signal and the reconstructed signal is a measure of the distortion introduced by the 

digital communications system. 

1.3 Noise in Communication Systems 

The term noise refers to unwanted electrical signals that are always present in 

electrical systems. The presence of noise superimposed on a signal tends to obscure or 

mask the signal; it limits the receiver's ability to make correct symbol decisions, and 
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thereby limits the rate of information transmission. Noise arises from a variety of sources, 

both man-made and natural. Man-made noise includes such sources as spark-plug ignition 

noise, switching transients, and other radiating electromagnetic signals. Natural noise 

includes electrical circuit and component noise, atmospheric disturbances, and galactic 

sources. 

Good engineering design can eliminate much of the noise or its undesirable effect 

through filtering, shielding, the choice of modulation, and the selection of an optimum 

receiver site. For example, sensitive radio astronomy measurements are typically located at 

remote desert locations, far from man-made noise sources. However, there is one natural 

source of noise, called thermal or Johnson noise, that cannot be eliminated. Thermal noise 

is caused by the thermal motion of electrons in all dissipative components-resistors, wires, 

and so on. The same electrons that are responsible for electrical conduction are also 

responsible for thermal noise. 

We can describe thermal noise as a zero-mean Gaussian random process. A Gaussian 

process, n(t), is a random function whose value, n, at any arbitrary time, t, is statistically 

characterized by the Gaussian probability density function, p(n): 

1 [ J ( . 
2] 

p(n) = -= exp - ::;- !!.) 
a'\,/2'1T ,:. a 

(1.1) 

where er" is the variance of n. The normalized or standardized Gaussian density function of 

a zero-mean process is obtained by assuming that er = 1. This normalized pdf is shown 

sketched in Figure 1.3 

We will often represent a random signal as the sum of a Gaussian noise rand om 

variable and a de signal: 

z =a+ n 

where z is the random signal, a the de component, and n the Gaussian noise 

random variable. The pdf p(z) is then expressed as 

l [ 1 (z - a)2] p(z) = --exp - - -- 
crvri:;;: 2 er (1.2) 
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where, as before, · a2 is the variance of n. The Gaussian distribution is often used as the 

system noise model because of a theorem, called the central limit theorem [ 1 ], which states 

that under very general conditions the probability distribution of the sum of j statistically 

independent random variables approaches the Gaussian distribution as J - 00, no matter 

what the individual distribution functions may be. Therefore, even though individual noise 

mechanisms might have other than 

p(nJ ~ _1 - exp[-.! (!!.)2 J 
oy2,r 2 a 

-3 -2 -1 0 2 3 

n 

Figure 1.3. Normalized (a= 1) Gaussian probability density function. 

Gaussian distributions, the aggregate of any such mechanisms will tend toward the 

Gaussian distribution. 

White Noise: 

The primary spectral characteristic of thermal noise is that its power spectral density 

is the same for all frequencies of interest in most communication systems; in other words, a 

thermal noise source emanates an equal amount of noise power per unit bandwidth at all 

frequencies-from de to about 1012 Hz. Therefore, a simple model for thermal noise assumes 
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that i;s power spectral density Gn(f) is flat for all frequencies, as shown in Figure J .4(a), 
and is denoted as follows: 

watts/hertz 
(1.3) 

where the factor of2 is included to indicate that G(f) is a two-sided power spectral density. 

When the noise power has such a uniform spectral density, we refer to it as white noise.The 

adjective "white" is used in the sense that white light contains equal amounts of all 

frequencies within the visible band of electromagnetic radiation. 

The autocorrelation function of white noise is given by the inverse Fourier 

transform of the noise power spectral density denoted as follows: 

(1.4) 

Thus the autocorrelation of white noise is a delta function weighted by the factor N0/2 and 

occurring at t = 0, as seen in Figure 1.4b. Note that Rn(T) is zero for rt- O that is, any two 
different samples of white noise, no matter how close together in time they are taken, are 

uncorrelated. The average power, Ps, of white noise is infinite because its bandwidth is 

infinite. This can be seen by combining Equations (1.3) by another equation to yield. 

J"' N P n = _.2 df = ::0 _,, 2 
(1.5) 

Gn(f) 

I Rn(T) 
' l i 

I I Na12 t Na,2 
I I 0 0 

(a) (b) 

Figure 2.4 a) Power spectral density of white noise. b) Autocorrelation function of white 
noise. 
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Although white noise is a useful abstraction, no noise process can truly be white. However, 

the noise encountered in many real systems can be assumed to be approximately white. We 

can only observe such noise after it has passed through a real system which will have a 

finite bandwidth. Thus, as long as the bandwidth of the noise is appreciably larger than that 

of the system, the noise can he considered to have an infinite bandwidth. 

The delta function in Equation (1.4), means that the noise signal, n(t). is totally 

decorrelated from its time-shifted version. for any , > O. Equation (1.4) indicates that any 

two different samples of a white noise process are uncorrelated. Since thermal noise is a 

Gaussian process and the samples are uncorrelated. The noise samples are also independent 

[I]. Therefore, the effect on the detection process of a channel with additive white Gaussian 

noise(A WGN) is that the noise affects each transmitter sample independently. Such a 

channel is called a memoryless channel. The term 'additive' means that the noise is simply 

superimposed or added to the signal-that there are multiplicative mechanisms at work. 

Since thermal noise is present in all communication systems and is the prominent 

noise source for most systems. the thermal noise characteristics-additive, white, and 

Gaussian-are most often used to model the noise in communication systems. Since zero­ 

mean Gaussian noise is completely characterized by its variance, this model is particularly 

simple to use in the detection of signals and in the design of optimum receivers. In this 

report we shall assume, unless otherwise stated, that the system is corrupted by additive 

zero-mean white Gaussian noise, even though this is sometimes an oversimplification. 
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CHAPTER2 

TRANSMISSION THROUGH BANDLIMITED A WGN 

CHANNELS 

2.1 Digital Transmission Through Bandlimited A WGN Channels 

Digital communication over a bandlimited channel is modeled as a linear filter with a 

bandwidth limitation. Bandlimited channels most frequently encountered in practice are 

telephone channels, microwave LOS radio channels, satellite channels, and underwater 

acoustic channels. 

In general, a linear filter channel imposes more stringent requirements on the design 

of modulation signals. Specifically, the transmitted signals must be designed to satisfy the 

bandwidth constraint imposed by the channel. The bandwidth constraint generally 

precludes the use of rectangular pulses at the output of the modulator. Instead, the 

transmitted signals must be shaped to restrict their bandwidth to that available on the 

channel. The design of bandlimited signals is one of the topics treated in this section. We 

will see that a linear filter channel distorts the transmitted signal. The channel distortion 

results in intersymbol interference at the output of the demodulator and leads to an increase 

in the probability of error at the detector. Devices or methods for correcting or undoing the 

channel distortion, called channel equalizers, are then described. 

2.2 Digital Transmission Through Bandlimited Channels 
A bandlimited channel such as a telephone wireline is characterized as a linear filter with 

impulse response c(t) and frequency response C(f) where 

C(f) = 1: c(t)e-J2,rfi dt 
(2.1) 
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Figure 2.1. Magnitude and phase responses of bandlimited channel. 

If the channel is a baseband channel that is band limited to B Hz, then C(f) = O for If I> Be. 

Any frequency components at the input to the channel that are higher than B Hz will not be 

passed by the channel. For this reason, we consider the design of signals for transmission 

through the channel that are bandlimited to W = Be Hz, as shown in Figure 2.1. Henceforth, 
We will denote the bandwidth limitation of the signal and the channel. 

Now, suppose that the input to a bandlimited channel is a signal waveform gT(t). Then, 

the response of the channel is the convolution of gT(t) with c(t); i.e., 

h(t) = 1-: c(r)gr(t - r) dr = c(t) * gr(t) 
(2.2) 

or, when expressed in the frequency domain, we have 

H(f) = C(f)Gr(f) (2.3) 
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where GT(f) is the spectrum (Fourier transform) of the signal g(t) and H(f) is the spectrum 

of h(t). Thus, the channel alters or distorts the transmitted signal gT(t). 

Let us assume that the signal at the output of the channel is corrupted by A WGN. 

Then, the signal at the input to the demodulator is of the form h(t) + n(t), where n(t) denotes 
the A WGN. In the presence of A WGN, a demodulator that employs a filter which is 

matched to the signal h(t) maximizes the Signal to Noise Ratio at its output. Therefore, let 

us pass the received signal h(t) + n(t) through a filter that has a frequency response 

(2.4) 

where to is some nominal time delay at which the filter output is sampled. 

2.3 Digital PAM Transmission Through Bandlimited Baseband Channels 

Let us consider the baseband Pulse Amplitude Modulated communication system 

illustrated by the functional block diagram in Figure 2.2. The system consists of a 

transmitting filter having an impulse response g(t), the linear filter channel with A WGN, a 

receiving filter with impulse response gR(t), a sampler that periodically samples the output 

of the receiving filter, and a symbol detector. The sampler requires the extraction of a 

timing signal from the received signal. This timing signal serves as a clock that specifies 

the appropriate time instants for sampling the output of the receiving filter. 

Channel 
.C(JJ 

Input data 
Transmitting 

filter 

GT(f) 

1{1) Receiving J y(t) 
flltcr 
G,(fJ 

r(kT) 
Sampler i-:--J Detector 

Output data 

,I 

Noise 
11(1) 

Symbol 
timing 

estimator 

Figure 2.2. Block diagram of digital PAM system. 

First we consider digital communications by means of M-ary PAM. Hence, the input 

binary data sequence is subdivided into k-bit symbols and each symbol is mapped into a 

corresponding amplitude level that amplitude modulates the output of the transmitting 
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filter.. The baseband signal at the output of the transmitting filter (the input to the channel) 

may be expressed as 

00 

v(t) = L angr(t - nT) 
n=-oo (2.5) 

where T = k/R, is the symbol interval (1/T = Ri/k is the symbol rate), Rb is the bit rate, and 

{ an } is a sequence of amplitude levels corresponding to the sequence of k-bit blocks of 

information bits. 

The channel output, which is the received signal at the demodulator, may be 

expressed as 

00 • 

r(t) = L a.h(t - nT) + n(t) 
n=-oo (2.6) 

where h(t) is the impulse response of the cascade of the transmitting filter and the channel; 

i.e., h (t) = c(t) * gT(t), c(t) is the impulse response of the channel, and n(t) represents the 

AWGN. 

The received signal is passed through a linear receiving filter with impulse response 

gR(t) and frequency response GR (f). If gR (t) is matched to h(t) then its output SNR is a 

maximum at the proper sampling instant. The output of the receiving filter may be 

expressed as 

00 

y(f) = L anx(t - nT) + v(t) 
11=-00 (2.7) 

where x(t) = h(t) *gR(t) = grtt) *c(t)*gR(t) and v(t) = n(t)*g(t) denotes the additive noise at 

the output of the receiving filter. 

To recover the information symbols {an }, the output of the receivmg filter is 

sampled periodically, every T seconds. Thus, the sampler produces 
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eo 

y(mT) = L a11x(mT - nT) + v(mT) 
n=-oo 

or, equivalently, 

00 

Ym = L anXm-11 + 1)111 

n=-oo 

= xoam + L GnXm-n + Vm 
n-:j:m 

(2.8) 

(2.9) 

where xn.= x(mT), Vm = v(mT), and m= 0, ±1, ±2. A timing signal extracted from the 

received signal as described in Section 7 .8 is used as a clock for sampling the received 

signal. 
The first term on the right-hand side of Equation (2.9) is the desired symbol an scaled 

by the gain parameter x0. When the receiving filter is matched to the received signal h(t), 

the scale factor is 

xo == ;_: h2(t) dt = ;_: IH(f)12 df 

= 1-: !Gr(f)l2!C(f)!2 df = En (2.10) 

as indicated by the development of Equation (2.4), The second term on the RHS of 

Equation (2.9) represents the effect of the other symbols at the sampling instant t = mT, 

called the intersymbol interference(ISI). In general, ISI causes a degradation in the 

performance of the digital communication system. Finally, the third term, vm, that 

represents the additive noise, is a zero-mean Gaussian random variable with variance 

o} = NoEh/2 , 
By appropriate design of the transmitting and receiving filters, it is possib 1 e to 

satisfy the condition x» = 0 for n f- 0, so that the ISI term vanishes. In the case, the only 

term that can cause errors in the received digital sequenceis the additive noise. 
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2.4 Digital Transmission Through Bandlimited Bandpass Channels 

The development given in the last Section for baseband PAM is easily extended to 

carrier modulation via PAM, Quadrature Amplitude Modulation, and Phase Shift Keying. 

In a carrier-amplitude modulated signal, the baseband PAM given by v(t) in Equation (2.5) 

modulates the carrier, so that the transmitted signal u(t) is simply 

u(t) = v(r)cos2rrf,t (2.11) 

thus, the baseband signal v(t) is shifted in frequency by fc. A QAM signal is a bandpass 

signal which, in its simplest .form, may be viewed as two amplitude-modulated carrier 

signals in phase quadrature. That is, the QAM signal may be expressed as 

u(t) = Vc(t) cos 2nfct + Vs(t) sin 2nfct 
(2.12) 

where 

00 

Vc(t) = L ancgr(t - nT) 
n=-:-OO 

00 

Vs(t) = L ansgr(t - nT) 
n;:;;:-oo (2.13) 

and { anc} and {ans} are the two sequences of amplitudes carried on the two quadrature 

carriers. A more compact mathematical representation of the baseband signal is the 

equivalent complex-valued baseband signal 

v(t) = Vc(t) - jvs(t) 
00 

= L Cane - jans)gr(t - nT) 
n=-oo 
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n=-oo (2.14) 

where the sequence { an = anc - j ans) is now a complex-valued sequence representing the 

signal points from the QAM signal constellation. The corresponding bandpass QAM signal 

u (t) may also be represented as 

(2.15) 

In a similar manner, we can represent a digital carrier-phase modulated signal as in 

Equation (2.15), where the equivalent baseband signal is 

00 

v(t) = ~ angr(t - nT) 
n=-00 (2.16) 

and the sequence {a} takes the value from the set of possible (phase) values { e-jl,rm/M, 

m = 0, 1, ... , M -1}. Thus, all three carrier-modulated signals, PAM, QAM, and PSK 

can be represented as in Equations (2.15) and (2.16), where the only difference is in the 

values taken by the transmitted sequence { an } . 

The signal v(t) given by Equation (2.16) is called the equivalent lowpass signal. In 

the case of QAM and PSK, this equivalent Iowpass signal is a baseband signal which is 

complex-valued because the information-bearing sequence {an} is complex-valued. In the 

case of PAM, v(t) is a real-valued baseband signal. 

When transmitted through the bandpass channel, the received bandpass signal 

may be represented as 

w(t) = Re[r(t)ej2rrf,1] 
(2.17) 
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where r(t) is the equivalent lowpass (baseband) signal, which may be expressed as 

00 

r(t) = L anh(t - nT) + n(t) 
n=-oo 

cos 211[,r 

Re [J~,, x(r-nT~ + v(i) 

Received 
signal 

LPF L-.-.1m [ia,,x(r-nr0 + vk 
Gifl I . n=-"- J 

Figure 2.3. Conversion of the bandpass received signal to baseband. 

(2.18) 

and where, as in the case of baseband transmission, h(t) is the impulse response of the 

cascade of the transmitting filter and the channel; i.e., h(t) = c(t) * gT(t), where c(t) is the 
impulse response of the equivalent lowpass channel and n(t) represents the additive 

Gaussian noise expressed as an equivalent lowpass (baseband) noise. 

The received bandpass signal can be converted to a baseband signal by multiplying 

w(t) with the quadrature carrier signals cos (2 n f, t) and sin( 2 n f, t) and eliminating the 

double frequency terms by' passing the two quadrature components through separate 

lowpass filters, as shown in Figure 2.3. Each one of the lowpass filters is assumed to have 

an impulse response gR(t). Hence, we can represent the two quadrature components at the 

outputs of these lowpass filters as an equivalent complex-valued signal of the form 

00 

y(t) = I: GnX(t - nT) + v(t) 
m==-oo 

20 

(2.19) 



which is identical to the form given by Equation (2.7) for the real baseband signal. 

Consequently, the signal design problem for bandpass signals is basically the same as that 

described in the last Section for baseband signals. 
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CHAPTER3 

CHANNEL DISTORTION AND INTERSYMBOL 

INTERFERENCE 

3.1 Intersymbol Interference 

Figure 3 .1 a highlights the major filtering aspects of a typical baseband digital system. 

There are circuit reactances throughout the system-in the transmitter, in the receiver, and in 

the channel. The pulses at the input might be impulse-like samples, or flat-top samples. In 

either case, they are low-pass filtered at the transmitter to confine them to some desired 

bandwidth. Channel reactances can cause amplitude and phase variations that distort the 

pulses. The receiving filter, called the equalizing filter, should be configured to compensate 

for the distortion caused by the transmitter and the channel [2]. In a binary system with a 

Receiving 
filter 

(a) 

Pulse 1 

H(f) 
h(t) l xk: I 

I 
I I 
I I X3 

- T k-- Noise 

(b) 

Figure 3.1 Intersymbol interference in the detection process. (a) Typical baseband digital 

system. (b) Equivalent model. 
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commonly used pulse code modulation format, such as Non Return to Zero-Level. the 

detector makes symbol decisions by comparing the received bipolar pulses to a threshold; 

for example, the detector decides that a binary one was sent if the received pulse is positive, 

and that a binary zero was sent if the received pulse is negative. Figure 3.1 b illustrates a 

convenient model or the system, lumping all the filtering effects into one overall equipment 

system transfer function, H(f): 

H(f) H ,(f)H cU)H r(f) (3.1) 

where H1(f) characterizes the transmitting filter, H(f) the filtering within the channel, and 

Hr(f) the receiving or equalizing filter. The characteristic H(f), then, represents the 

composite system transfer function due to all of the filtering at various locations throughout 

the transmitter/channel/receiver chain. Due to the effects of system filtering, the received 

pulses overlap one another as shown in Figure 3 .1 b; the tail of one pulse "smears" into 

adjacent symbol intervals so as to interfere with the detection process; such interference is 

termed intersymbol interference (ISI). Even in the absence of noise, imperfect filtering and 

system bandwidth constraints lead to 1ST. In practice, Hc(f) is usually specified, and the 

problem remains to determine Hjf) and Hr(f) such that the ISI of the pulses are minimized 

at the output of Hr(f). 

Nyquist [3] investigated the problem of specifying a received pulse shape so that no 

ISI occurs at the detector. He showed that the theoretical minimum system bandwidth 

needed to detect Rs symbols/s, without ISI, is· Rs/2 Hertz. This occurs when the system 

transfer function, H(f), is made rectangular, as shown in Figure 3.2a. When H(f) is such an 

ideal filter with bandwidth 1/2T, its impulse response, the inverse Fourier transform of H(f) 

is h(t) = sine (t/T), shown in Figure 3.2b. Thus h(t) is the received pulse shape resulting 
from the application of an impulse at the input of such an ideal system. Nyquist established 

that if each pulse of a received sequence is of the form h(t), the pulses can be detected 

without ISL The bandwidth required to detect 1/T such pulses (symbols) per second is equal 

to 112T; in other words, a system with bandwidth W = 112T = Rs/2 hertz can support a 
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(al lb) 

maximum transmission rate of 2W = 1/T = Rs symbols/s (Nyquist bandwidth constraint) 

without ISL 

Hlf) h(t) 

1 0 1 

T- 

2T 

Figure 3.2 Nyquist channels for zero ISi. (a) Rectangular system transfer function H(f). (b) 

Received pulse shape h(t) = sine (t IT) 

Figure 3.2b illustrates how ISi is avoided. The figure shows two successive received 

pulses, h(t) and h(t - T), Even though h(t) has a long tail, it passes through zero at the 

instant that h(t - T) is sampled (at t = T) and therefore causes no degradation to the 

detection process. With such an ideal received pulse shape, the maximum possible symbol 

transmission rate per Hertz, called the symbol-rate packing, is 2 symbols/s/Hz, without ISL 

What does the Nyquist bandwidth constraint say about the maximum number of 

bits/s/Hz that can be received without ISI? It says nothing about bits, directly. The 

constraint deal only with pulses or symbols, and the ability to detect their amplitude values 

without distortion from other pulses. The assignment of how many hits each symbol 

represents is a separate issue. In theory. each symbol can represent M levels or k bits (M = 
2 k ): as k or M increases in value, so does the complexity of the system. For example, 

when k= 6 bits/symbol, each symbol represents M = 64 levels. The number of bits/s/Hz that 

a system can support is referred to as the bandwidth efficiency of the system. 

For most communication systems the goal is to reduce the required system bandwidth 

as much as possible; Nyquist has provided us with a basic limitation to such bandwidth 

reduction. What would happen if we tried to force a system to operate at smaller 

bandwidths than the constraint dictates? We would find that restricting the bandwidth 

would spread the pulses in time; this would degrade the system's error performance, due to 

the increase in ISL 
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3.2 Pulse Shaping to Reduce ISi 

The Nyquist requirement for a sine (t/T) received pulse shape is not physically 

realizable since it dictates a rectangular bandwidth characteristic and an infinite time delay. 

Also, with such a characteristic, the detection process would be very sensitive to small 

timing errors. In Figure 3.2b the pulse h(t) has zero value in adjacent pulse times only when 

the sampling is performed at exactly the correct sampling time; timing errors will produce 

ISL Therefore, we cannot implement systems using the Nyquist bandwidth; we need to 

provide some "excess bandwidth" beyond the theoretical minimum. One frequently used 

system transfer function, H(f), is called the raised cosine filter. It can be expressed as 

for Iii < 2 Wo - W 

H(f) = 2(TI Iii + W - 2Wa) 
cos - w w 4 - 0 

for 2 Wo - W < Iii < W 

0 for Iii> w (3.2) 

where W is the absolute bandwidth, and W0 = l/2T represents the minimum Nyquist 

bandwidth for the rectangular spectrum and the - 6-dB bandwidth (i.e., the fractional access 

bandwidth). For a given W0, r specifies the required excess bandwidth (as a fraction of W0) 

and characterizes the steepness of the filter roll-off. The raised cosine characteristic is 

illustrated in Figure 3.3a for roll-off values ofr = 0, r = 0.5, and r = 1.0. The r = 0 roll-off is 
the Nyquist minimum-bandwidth case. Notice that when r = 1.0, the required excess 
bandwidth is 100%; a system with such an overall spectral characteristic can provide a 

symbol rate of Rs symbols/s using a bandwidth of Rs Hertz (twice the Nyquist bandwidth), 

thus yielding a symbol rate packing of 1 symbol/s/Hz. The corresponding impulse response 

for the H(f) of Equation (3.2) is 

h(t) = 21l'o(sinc 2Wof) cos [2TT(W - Wo)t] 
l - 4(W _ HT .. \,: Yr (I J, 

(3.3) 

The impulse response is shown in Figure 3.3b for r = 0, r = 0.5, and r = 1.0. 
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Recall that for zero ISI, it is better to choose the system received pulse shape to be 

equal to h(t); we can only do this approximately, since strictly speaking, the raised cosine 

pulse is not precisely physically relizable. A realizable frequency characteristic must have 

a time response that is zero prior to the pulse turn-on time, which is not the case for the 

family of raised cosine characteristics. 

These unrealizable filters are noncausal (the filter impulse response begins at time 

t = - o: ). However, a delayed version of h(t), say h(t - t.), may be approximately generated 

by real filters if the delay to is chosen such that h(t -t,) = 0, fort< 0. Notice in figure 3.3b 

that timing errors will still result in some ISi degradation for r = 1. However, the problem is 

not as serious as it is for r = 0, because the tails of the h(t) waveform are of much smaller 

amplitude for r = 1 than they are for r = 0. 

The Nyquist bandwidth constraint states that the theoretical minimum required system 

bandwidth, W, for a symbol rate of Rs symbols/s without ISI, is R/2 hertz. A more general 

relationship between required bandwidth and symbol transmission rate involves the filter 

roll-off factor r, and can be stated as 

W = !(1 + r)Rs (3.4) 

Thus with r = 0, Equation (3.4) describes the required bandwidth for ideal rectangular 

filtering, also referred to as Nyquist filtering. Bandpass-modulated signals (baseband 

signals that have been shifted in frequency) such as amplitude shift keying (ASK) and 

phase shift keying (PSK), require twice the transmission bandwidth of the equivalent 

baseband signals. Such frequency- translated signals, occupying twice their baseband 

bandwidth, are often called double-sideband (DSB) signals. Therefore, for ASK- and PSK­ 

modulated signals, the relationship between the required DSB bandwidth, WDsB, and the 

symbol transmission rate, Rs, is 

WDSB = (1 + r)Rs (3.5) 
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Figure 3.3 Raised cosine filter characteristics. ( a) System transfer function. (b) System 

impulse response. 

3.3 Equalization 

In practical systems, the frequency response of the channel is not known with sufficient 

precision to allow for a receiver design that will compensate for the intersymbol 

interference (ISI) for all time. In practice, the filter for handling ISI at the receiver contains 

various parameters that are adjusted on the basis of measurements of the channel 

characteristics. The process of thus correcting the channel-induced distortion is called 

equalization. A transversal filter-a delay line with T-second taps (where T is the symbol 
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(3.6) 

durationj-is a common choice for the equalizer filter. The outputs of the taps are amplified, 

summed, and fed to a decision device. The tap coefficients, c. are set to subtract the effects 

of interference from symbols that are adjacent in time to the desired symbol. Consider that 

there are (2N + 1) taps with coefficients c_N, c-N+I, ... , cN as shown in Figure 3.4. Output 

samples, {y.}, of the equalizer are then expressed in terms of the input samples, {xj}, and 

tap coefficients as 

N 

Yk = ::E CnXk-n 
n= -N 

k = -2N, ... , 2N 

By defining the matrices y, c, and x as 

(3.7) 

X-N 

X-N+I 

0 0 
X-N 0 

0 ~.. l 
X-N 

~N-IJ 
XN (3.8) 

X = X-N+l 

0 
0 

0 0 
0 0 

we can simplify the computation for {Y} as follows: 

y= XC (3.9) 
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fork = 0 
for l: = ::: 1, :::: 2, .... ± .N 

(3.10) 

V 
Algorithm for 

~-------------------1 coefficient adjustment 

Figure 2.37 Transversal filter. 

The criterion for selecting the cn coefficients is typically based on the minimization of 

either peak distortion or mean-square distortion. Minimizing peak distortion can be 

accomplished by selecting the cn coefficients so that the equalizer output is forced to zero at 

N sample points on either side of the desired pulse. 

That is, 

then solving for cn by combining Equations (3.7) to (3.9) and solving 2N + 1 simultaneous 

equations. Minimizing the mean-square distortion similar results in 2N + 1 simultaneous 

equations. 

There are two general types of automatic equalization. The first, preset equalization, 

transmits a training sequence that is compared at the receiver with a locally generated 

sequence. The differences between the two sequences are used to set the coefficients c-, 

With the second method, adaptive equalization, the coefficients are continually and 

automatically adjusted directly from the transmitted data A. Disadvantage of preset 

equalization is that it requires an initial training session, which must be repeated after any 

break in transmission. Also, a time-varying channel can degrade in ISI since the 

coefficients are fixed. Adaptive equalization can perform well if the channel error 

performance is satisfactory. 
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However, if the error performance is poor, received channel errors may not allow 

the algorithm to converge. A common solution employs preset equalization initially to 

provide good channel error performance; once normal transmission begins, the system 

switches to an adaptive algorithm. A significant amount of research and development has 

taken place in the area of equalization during the past two decades [2, 4, 5]. 

30 



CHAPTER4 
CHANNEL EQUALIZATION 

4.1 Introduction to Channel Equalization 

In Section 2.4, we described the design of transmitting and receiving filters for digital 

PAM transmission when the frequency response characteristics of the channel are known. 

Our objective was to design these filters for zero ISI at the sampling instants. This design 

methodology is appropriate when the channel is precisely known and its characteristics do 

not change with time. 

In practice we often encounter channels whose frequency response characteristics are 

either unknown or change with time. For example, in data transmission over the dial-up 

telephone network, the communication channel will be different every time we dial a 

number, because the channel route will be different. Once a connection is made, however, 

the channel will be time-invariant for a relatively long period of time. This is an example of 

a channel whose characteristics are unknown a priori. Examples of time-varying channels 

are radio channels, such as ionospheric propagation channels. These channels are 

characterized by time-varying frequency response characteristics. These types of channels 

are examples where the optimization of the transmitting and receiving filters is not 

possible. 
Under these circumstances, we may design the transmitting filter to have a square- 

root raised cosine frequency response; i.e., 

Gr(/)= {./XrcU) e-j2rrfc0 
0 ' 
' 

lfl ::: w 
lfl > w ( 4.1) 

and the receiving filter, with frequency response GR(f), to be matched to Gr(f). Therefore, 

\Gr(f)IIGR(f)I = XrcCf) (4.2) 
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Then; due to channel distortion, the output of the receiving filter is 

00 

y(t) = I:= anx(t - nT) + v(t) 
n=-oo (4.3) 

where x (t) = g (t) * c(t) * g (t). The filter output may be sampled periodically to produce 

the sequence 

00 

Ym = L anXm-n + Vm 
n=-oo 

+oo 

= Xoam + ~ GnXm-n + '-'m 
n=-oo 
n:;tm 

(4.4) 

where x, = x(nT), n =O, ±1, ±2 The middle term on the right-hand side of Equation (4.4) 

represents the ISI. 

In any practical system, it is reasonable to assume that the ISI affects a finite number 

of symbols. Hence, we may assume that x, = 0 for n < -L 1 and n > L2, where L 1 and L2 are 
finite, positive integers. Consequently, the ISI observed at the output of the receiving filter 

may be viewed as being generated by passing the data sequence {am} through an FIR filter 

with coefficients { Xn, -LI::; n.:S L2}, as shown in Figure 4.1. This filter is called the 

equivalent discrete-time channel filter. Since its input is the discrete information sequence 

(binary or M-ary), the output of the discrete-time channel filter may be characterized as the 

output of a finite-state machine corrupted by additive Gaussian noise. Hence, the noise-free 

output of the filter is described by a trellis having ML states where L = LI + L2. 
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(a,,,) 
T T T 

L, 

Output= ~Xi.am-, 
k = -L, 

Figure 4.1 Equivalent discrete-time channel filter. 
/ 

4.1.1 Maximum-Likelihood Sequence Detection. 

The optimum detector for the information sequence { am) based on the observation of 

the received sequence (Ym), given by Equation (4.4), is a ML sequence detector. The 

detector is akin to the ML sequence detector described in the context of detecting partial 

response signals which have controlled ISL The Viterbi algorithm provides a method for 

searching through the trellis for the ML signal path. To accomplish this search, the 

equivalent channel filter coefficients {x.} must be known or measured by some method. At 

each stage of the trellis search, there are ML surviving sequences with ML corresponding 

Euclidean distance path metrics. 

Due to the exponential increase in the computational complexity of the Viterbi 

algorithm with the span (length L) of the ISi, this type of detection is practical only when 

M and L are small. For example in mobile cellular telephone systems which employ digital 

transmission of speech signals, M is usually selected to be small; e.g., M = 2 or 4, and 2 < 
L < 5. In this case, the ML sequence detector may be implemented with reasonable 

complexity. However, when M and L are large, the ML sequence detector becomes 

impractical. In such a case other more practical but suboptimum methods are used to detect 

the information sequence (am} in the presence of ISL Nevertheless, the performance of the 

ML sequence detector for a channel with ISI serves as a benchmark for comparing its 
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performance with that of suboptimum methods. Two suboptirnum methods are described 
below. 

4.2 Linear Equalizers. 

To compensate for the channel distortion, we may employ a linear filter with 

adjustable parameters. The filter parameters are adjusted on the basis of measurements of 

the channel characteristics These adjustable filters are called channel equalizers or, simply, 
equalizers. 

On channels whose frequency-response characteristics are unknown, but time­ 

invariant, we may measure the channel characteristics, adjust the parameters of the 

equalizer, and once adjusted, the parameters remain fixed during the transmission of data. 

Such equalizers are called preset equalizers. On the other hand, adaptive equalizers update 

their parameters on a periodic basis during the transmission of data. 

First, we consider the design characteristics for a linear equalizer from a frequency 

domain viewpoint. Figure 4.2 shows a block diagram of a system that employs a linear 
filter as a channel equalizer. 

The demodulator consists of a receiving filter with frequency response GR (f) m 

cascade with a channel equalizing filter that has a. frequency response GE(f). Since 

Transmitting 
filter 
Gr Cf) 

Channel 
C(f) 

Rece ivirig 
filter 
GR<f) 

Equalizer 
GE(f) 

To detector 
Input data 

Noise 
n(t) 

Figure 4.2 Block diagram of a system with an equalizer. 

GR(f) is matched to GT(f) and they are designed so that their product satisfies Equation( 4.2) 

IGE(f)I must compensate for the channel distortion. Hence, the equalizer frequency response 

must equal the inverse of the channel response; i.e., 
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2 ·_ No Jw !Xrc(f)! df 
O'v 2 -W LC(f)\2 (4.7) 

(4.5) 

where !GE (f) I = 1/jC(f) I and the equalizer phase characteristic 0E (f) = -0c(f). In this case, 
the equalizer is said to be the inverse channel filter to the channel response. 

We note that the inverse channel filter completely eliminates ISi caused by the 

channel. Since it forces the ISI to be zero at the sampling times t = nT, the equalizer is 
called a zero-forcing equalizer. Hence, the input to the detector is of the form 

where Vm is the noise component, which is zero-mean Gaussian with a variance 

a-;= 1: Sn(f)JGR(f)!2JGr(/)J2 dj 
= jw SnCf)\XrcU)l df 

-W !C(/)12 (4.6) 

where Sn (f) is the power-spectral density of the noise. When the noise is white, Sn(f) = 
N0/2 and the variance becomes 

In general, the noise variance at the output of the zero-forcing equalizer is higher than the 

noise variance at the output of the optimum receiving filter !GR (f) j. 

Let us now consider the design of a linear equalizer from a time-domain view-point. 

We noted previously that in real channels, the ISI is limited to a finite number of samples, 

say L samples. As a consequence, in practice the channel equalizer is approximated by a 
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Equalized 
output --.- 

finite. duration impulse response (FIR) filter, or transversal filter, with adjustable tap 

coefficients { c.}, as illustrated in Figure 4.3. The time delay T between adjacent taps may 

be selected as large as T, the symbol interval, in which case the FIR equalizer is called a 

symbol-spaced equalizer. In this case the input to the equalizer is the sampled sequence 

given by Equation (4.4). However, we note that when 1/ T < 2W, frequencies in the 

received signal above the folding frequency 1/ T 

· Unequalized 
input 

Algorithm for tap 
gain adjustment 

Figure 4.3 Linear transversal filter. 

are aliased into frequencies below 1 I T. In this case, the equalizer compensates for the 

aliased channel-distorted signal. On the other hand, when the time delay T between adjacent 

taps is selected such that 1/ T ?.2W> 1/T, no aliasing occurs and, hence, the inverse channel 

equalizer compensates for the true channel distortion. Since T <T, the channel equalizer is 

said to have fractionally spaced taps and it is called a fractionally spaced equalizer. In 

practice, T is often selected as T = T/2. Notice that, in this case, the sampling rate at the 

output of the filter GR(f) is T/2. 

The impulse response of the FIR equalizer is 

N L Cn8(t - nr) 
n=-N (4.8) 
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. 
and the corresponding frequency response is 

N 
G E(f) = ~ Cne-j2rrfnr 

n=-N ( 4.11) 

where { c.} are the (2N + 1) equalizer coefficients, and N is chosen sufficiently large so that 

the equalizer spans the length of the ISI; i.e., 2N + I 2:. L. Since X(f) = Gr(f)C(f)GR(f) and x 
(t) is the signal pulse corresponding to X (f), then the equalized output signal pulse is 

N 

q(t) = ~ c,,x(t - n r ) 
n=-N (4.9) 

The zero-forcing condition can now be applied to the samples of q (t) taken at times t 

= mT. These samples are 

N 

q(mT) = L c11x(mT - n r ), 
n=-N m = 0, ±1, ... , ±N (4.11) 

Since there are 2N + 1 equalizer coefficients, we can control only 2N + 1 sampled values of 

q (t). Specifically, we may force the conditions 

N {l, m = 0 
q(mT) = 'I: Cnx(mT - nr) = 0, m = ±1, ±2, ... ' ±N 

n=-N (4.12) 

which may be expressed in matrix form as Xe = q, where X is a (2N + 1) x (2N+ 1) matrix 

with elements {x(mT - m)}, c is the (2N + 1) coefficient vector and q is the (2N + 1) 

column vector with one nonzero element. Thus we obtain a set of 2N + 1 linear equations 

for the coefficients of the zero-forcing equalizer. 
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We should emphasize that the FIR zero-forcing equalizer does not completely 

eliminate ISI because it has a finite length. However, as N is increased the residual ISI can 

be reduced and in the limit as N -. co, the ISI is completely eliminated. 

One drawback to the zero-forcing equalizer is that it ignores the presence of additive 

noise. As a consequence, its use may result in significant noise enhancement. This is easily 

seen by noting that in a frequency range where C(f) is small, the channel equalizer GE(f) = 
1/C(f) compensates by placing a large gain in that frequency range. Consequently, the noise 

in that frequency range is greatly enhanced. An alternative is to relax the zero ISI condition 

and select the channel equalizer characteristic such that the combined power in the residual 

ISI and the additive noise at the output of the equalizer is minimized. A channel equalizer 

that is optimized based on the minimum mean-squar-error (MMSE) criterion accomplishes 

the desired goal. 

To elaborate, let us consider the noise-corrupted output of the FIR equalizer which is 

N 
z(t) = L Cny(t - nr) 

11=-N (4.13) 

where y(t) is the input to the equalizer, given by Equation (4.3). The output is 

sampled at times t = mT. Thus, we obtain 

z(mT) 
N I: Cny(m T - nr ) 

n = -N (4.14) 

The desired response sample at the output of the equalizer at t = mT is the transmitted 

symbol am The error is defined as the difference between am and z(mT). Then, the man­ 

square-error (MSE) between the actual output sample z(mT) and the desired values am is 
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N N N - L ~ c11c1,:Ry(n - k) - 2 ~ ckRAy(k) 
n=-Nk=-N k=-N ( 4.15) 

MSE = E[z(mT) - am)2 

l N 12 
- E ~N Cny(mT - nr) - am 

where the correlations are defined as 

Ry(n - k) == E[y(mT - nr)y(mT - kr)] 

RAr(k) == E[y(mT - kr)am1 (4.16) 

and the expectation is taken with respect to the random information sequence {am}, and the 

additive noise. 
The MMSE solution is obtained by differentiating Equation ( 4.15) with respect to the 

equalizer coefficients { c.}, Thus, we obtain the necessary conditions for the MMSE as 

N I: CnRy(n - k) = RrA(k), 
n=-N k = 0, ±1, ±2, ... , ±N (4.17) 

These are (2N + 1) linear equations for the equalizer coefficients. In contrast to the zero­ 
forcing solution described previously, these equations depend on the statistical properties 

(the autocorrelation) of the noise as well as the ISI through the autocorrelation Ry(n). 

In practice, we would not normally know the autocorrelation are y(n) and the cross 

correlation Ray(n). However, this correlation can be estimated by transmitting a test sigal 

over the channel and using the time average estimates 
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Copt = B-1d 
(4.20) 

RrCn) 
1 K 

- K Ly(kT - nr)y(kT) 
k=1 

" 1 K 
RAy(n) = - L, y(kT ~ nr) ak 

K k=1 
( 4.18) 

In place of the ensemble average to solve for the equalizer coefficient given by Equation 

(4.17). 

4.3 Adaptive Equalizers 

We have shown that the tap coefficients of a linear equalizer can be determined by solving 

a set of linear equations. In the zero-forcing optimization criterion, the linear equations are 

given by Equation(4.12). On the other hand, if the optimizationcriterion is based on 

minimizing the MSE, the optimum equalizer coefficients are determined by solving the set 

of linear equations given by Equation( 4.17). 

In both cases, we may express the set oflinear equations in the general matrix form 

Bc=d (4.19) 

Where B is a (2N + 1) x (2N + 1) matrix, c is a column vector representing the 2N + I 

equalizer coefficients, and d is a (2N + I) - dimensional column vector. The solution of 

Equation ( 4.19) yields 

in practical implementations of equalizers, the solution of Equation ( 4.19) for the optimum 

coefficient vector is usually obtained by an iterative procedure that avoids the explicit 
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(4.22) 

computation of the inverse of the matrix B. The simplest iterative procedure is the method 

of steepest descent, in which one begins by choosing arbitrarily the coefficient vector c, 

say c0. This initial choice of coefficients corresponds to a point on the criterion function 

that is begin optimized. For example, in the case of the MSE criterion, the initial guess c0 

corresponds to a point on the quadratic MSE surface in which is the derivative of the MSE 

with respect to the 2N + 1 filter coefficients, is then computed at this point on the criterion 

surface and each tap coefficient is changed in the direction opposite to its corresponding 

gradient component. The change in the fh tap coefficient is proportional to the size of the 
l gradient component. 

For example, the gradient vector, denoted as gK, for the MSE criterion, found by taking 

the derivative of the MSE with respect to each of the 2N + 1 coefficients, is 

(4.21) k=O,l, 2, ... 

Then the coefficient vector ck is updated according to the relation 

where A is the step-size parameter for the iterative procedure. To ensure convergence of the 

iterative procedure, A is chosen to be a small positive number. In such a case, the 

Figure 4.4 Example of convergence characteristics of a gradient algorithm. 

gradient vector gk converge toward zero; i.e., g, ---* 0 as k++ oo, and the coefficient vector CK 

-. Copt as illustrated in Figure (4.4) based on two -dimensional optimization. In general, 
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onvergence of the equalization tap coefficients to Copt can not be attained in a finite 

number if iterations with the steepest - descent method. However, the optimum solution 

Copt can be approached as closely as desired in a few hundred iterations. In digital 

communication systems that employ channel equalizers, each iteration corresponds to a 

time interval for sending one symbol and, hence, a few hundred iterations to achieve 

convergence to Copt corresponds to a fraction of a second. 

Adaptive channel equalization is required for channels whose characteristics change 

with time. In such a case, the ISI varies with time. The channel equalizer must track such 

time variations in the channel response and adapt its coefficients to reduce the ISL In the 

context of the above discussion, the optimum coefficient vectoir Copt varies with time due to 

time variations in the matrix Band, for the case of the MSE criterion, time variations in the 

vector d. Under these conditions, the iterative method described above can be modified to 

use estimates of the gradient components. Thus, the algorithm for adjusting the equalizer 

tap coefficient may be expressed as 

(4.23) 

where gk denotes an estimate of the gradient vector gK and ck denotes the estimate of the 

tap coefficient vector. 

In the case of the MSE criterion, the gradient vector gK given by Equation ( 4.21) may 

also be expressed as 

(4.24) 

An estimate gk of the gradient vector at the kth iteration is computed as 

(4.25) 
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(4.27) 

where. ek denotes the difference between the desired output from the equalizer at the k1h 

time instant and the actual output z(kT), and Yk denotes the column vector of 2N + 1 

received signal values contained in the equalizer at time instant k. The error signal ek is 

expressed as 

(4.26) 

where zk = z(kT) is the equalizer output given by Equation (4.16) and ak is the desired 
symbol. Hence, by substituting an equation for 6. into Equation (4.23), the result will be the 

adaptive algorithm for optimizing the tap coefficients (based on the MSE criterion ) as 

Since an estimate of the gradient vector is used in Equation ( 4.27) the algorithm is called a 

stochastic gradient algorithm. It is also known as the LMS algorithm. 

A block diagram of an adaptive equalizer that adapts its tap coefficient according to 

Equation (4.27) is illustrated in Figure (4.5). Note that the difference between the desired 

output ak and the actual output Zk from the equalizer is used to form the error signal ek. This 

error is scaled by the step-size parameter A, and the scaled error signal Aek multiplies the 

received signal values {y(kT - m)} at 2N + 1 taps. The products Aeky(kT - nr) at the (2N + 
1) taps are then added to the previous values of the tap computation is priviated for each 

received symbol. Thus, the equalizer coefficient are updated at the symbol rate. 

Initially, the adaptive equalizer is trained by the transmission of the known pseudo­ 

random sequence {am} over the channel. At the demodulator, the equalizer employs the 

known sequence to adjust its coefficients. Upon initial adjustment, 
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Figure 4.5 Linear adaptive equalizer based on the MSE criterion. 

the adaptive equalizer switches from a training mode to a decision-directed mode, in which 

case the decisions at the output of the detector are sufficiently reliable so that the error 

signal is formed by computing the difference between the detector output and the equalizer 

output; i.e., 

(4.28) 

where iik is the output of the detector. In general, decision errors at the output of the 

detector occur infrequently and, consequently, such errors have little effect on the 

performance of the tracking algorithm given by Equation ( 4.27). 

A rule of thumb for selecting the step-size parameter so as to ensure convergence and 

good tracking capabilities in slowly varying channels is 

1 
5(2N + l)PR 

(4.29) 
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·here.PR denotes the received signal-plus-noise power, which can be estimated from the 

received signal. 
The convergence characteristics of the stochastic gradient algorithm in Equation (4.27) 

is illustrated in Figure 4.6. These graphs were obtained from a computer simulation of an 

11-tap adaptive equalizer operating a channel with a rather modest amount oflSI. The input 

signal-plus-noise power PR was normalized to unity. The rule of thumb given in Equation 

(4.29) for selecting the step size gives 6 = 0.018. The effect of making 6 too large is 

illustrated by the large jumps in MSE as shown for 6 = 0.115. As 6 is decreased, the 
convergence is slowed somewhat, but a lower MSE is achieved, indicating that the 

estimated coefficients are closer to Copt. 

10-3 L I ) I I 
0 100 200 300 400 500 

Number of iterations 

Figure 4.6 Initial convergence characteristics of the LMS algorithm with different step 

sizes. 
Although we have described in some detail the operation of an adaptive equalizer 

which is optimized on the basis of the MSE criterion, the operation of an adaptive equalizer 

based on the zero-forcing method is very similar. The major difference lies in the method 

of estimating the gradient vectors gk at each iteration. A block diagram of an adaptive zero- 

forcing equalizer is shown in Figure 4.7. 
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Input 

a, Output 

Figure 4.7 An adaptive zero-forcing equalizer. 

4.4 Decision-Feedback Equalizer 

The linear filter equalizers described above are very effective on channels, such as 

wireline telephone channels, where the ISI is not severe. The severity of the ISI is directly 

related to the spectral characteristics and not necessarily to the time span of the ISL For 
example, consider the ISI resulting from two channels which are illustrated in Figure 4.8. 

The time span for the ISI in Channel A is 5 symbol intervals on each side of the desired 

signal component, which has a value of 0.72. On the other hand, the time span for the ISI in 

Channel B is one symbol interval on each side of the desired signal component, which has a 

value of 0.815. The energy of the total response is normalized to unity for both channels. 
In spite of the shorter ISI span, Channel B results in more severe ISL This rs 

evidenced in the frequency response characteristics of these channels. We observe that 

Channel B has a spectral null (the frequency response C(f) = 0 for some frequencies in the 

band \ f \ ~ W) at f = 1 /2T, whereas this does 
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0.407 
0.407 

Channel B 

Figure 4.8 Two channels with ISL 

not occur in the case of Channel A. Consequently, a linear equalizer will introduce a large 

gain in its frequency response to compensate for the channel null. Thus, the noise in 

Channel B will be enhanced much more than in Channel A. This implies that the 

performance of the linear equalizer for Channel B will be significantly poorer than that for 

Channel A. This fact is borne out by the computer simulation results for the performance of 

the linear equalizer for the two channels. Hence, the basic limitation of a linear equalizer is 

that it performs poorly on channels having spectral nulls. Such channels are often 

encountered in radio communications, such as ionospheric transmission at frequencies 

below 30 MHz and mobile radio channels, such as those used for cellular radio 

communications. 
A decision-feedback equalizer (DFE) is a nonlinear equalizer that employs previous 

decisions to eliminate the ISI caused by previously detected symbols on the current symbol 

to be detected. A simple block diagram for a DFE is shown in Figure 4.9. The DFE consists 

of two filters. The first filter is called a feedforward filter and it is generally a fractionally 

spaced FIR filter with adjustable tap coefficients. This filter is identical in form to the linear 

equalizer described above. Its input is the received filtered signal y(t). The second filter is a 
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feedback filter. It is implemented as an FIR filter with symbol-spaced taps having 

adjustable coefficients. Its input is the set of previously detected symbols. The output of the 

feedback filter is subtracted from the output of the feedforward filter to form the input to 

the detector. Thus, we have 

Ni N2 
Zm = I: Cny(mT - n t') - ~ bnCLm-n 

n==l n==l (4.30) 

where { c, } and [b, } are the adjustable coefficients of the feedforward and feedback 

filters, respectively, am-n, n == 1, 2, . , N2 are the previously detected symbols, N 1 is the 

length of the feedforward filter and N2 is the length of the feedback filter. Based on the 

input Zm, the detector determines which of the possible transmitted symbols is closest in 

distance to the input signal Zm- Thus, it makes its decision and outputs am. 

Output + In~ Feedforward \ i,, ( + ) • I 
~\ filter 

Detector 

Feedback 
filter 

Figure 4.9 Block diagram of DFE. 

What makes the DFE nonlinear is the nonlinear characteristic of the detector which 

provides the input to the feedback filter. 
The tap coefficients of the feedforward and feedback filters are selected to optimize 

some desired perforthance measure. For mathematical simplicity, the MSE criterion is 

usually applied and a stochastic gradient algorithm is commonly used to implement an 

adaptive DFE. Figure 4.10 illustrates the block diagram of an adaptive DFE whose tap 

coefficients are adjusted by means of the LMS stochastic gradient algorithm. 
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Feedback filter 

Feedforward filter 

.------."------. 

Figure 4.10 Adaptive DFE. 
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CHAPTERS 

RESULTS 

Figure 5.1 shows the mean square error (MSE) plot of an adaptive equalizer. Number 

)f iterations is 1000 and three different step sizes (~=[0.115 0.09 0.045] are used. The 

channel coefficients are ~.05 -0.063 0.088-0.126 -0.25 0.9047 0.25 0 0.126 0.0380.088]. 

- L',=0115 
- L',=0.09 
- L',=0.045 

~"v·'·--./\.,h.fvv'J•,,,,rr-i,r,--.r,llu~-J,1,,.;,,1,,,/',-.,vY.\/w,,rv,,-,,--r'-')V,'V""\~"'~ 

·~VY,~~~ 

10·3'--~~..L....~~--1...~~--'-~~~'--~~_L_~~__L~~____L~~__JL_~~.L....~__j 
0 50 100 150 200 250 300 350 400 450 500 

Time instant k 

Figure 5.1 Convergence of adaptive equalizer using 1000 iterations 

It can be seen from the figure that the smaller the step size, the longer it takes to reach to 

convergence and the smaller the mean square error. 

Figure 5.2 and 5.3 show the plots for same configurations as before but with 5000 and 

100 iterations respectively. It is observed that increasing the number of iterations provide 

more accurate convergence results. 
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Figure 5.2 convergence of adaptive equalizer using 5000 iterations. 
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Figure 5.3 convergence of adaptive equalizer using 100 iterations 

as may be seen clearly from the previous figures, as the number of iterations increase the 

more accurate the performance could be. 
Figure 5.4 (a) shows the amplitude spectrum of the channel described earlier, named 

channel A. also in figure 5.4 (b) it is shown the spectrum of channel B which has more 

severe intersymbol interference with channel coefficients= [0.04 -0.05 0.07 -0.21 -0.5 0.72 

0.36 0 0.21 0.03 0.07]. figure 5.5 shows the plot of convergence of the adaptive equalizer 

mean square error in channel B. 1000 iterations is used. It can be seen from the figure that a 

channel with more severe interference results in higher mean square error for equalizer 

convergence. 
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(b) channel B, coefficients= [0.04-0.05 0.07 -0.21 -0.5 0.72 0.36 0 0.21 0.03 0.07] 
Figure 5.4 amplitude spectra of channel A and B 
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and the performance of the adaptive equalizer with channel B with 1000 iterations is 

illustrated in figure 5.5 below. 

- t.=0.115 
- t.=0.09 
- t.=0.045 

102IL_1---:-:-:----:~~;--~-to~~~~~~ 
0 50 100 150 200 250 300 350 

Time instant k 
400 450 500 

Figure 5.5 convergence of adaptive equalizer in channel B 

54 



55 

CONCLUSION 

Channel equalization is used to eliminate intersymbol interference that occurs in 

bandlimited and wireless channels. Adaptive equalizers are preferred over zero forcing 

equalizers that have the disadvantage of amplifying the noise. This report analyzes and 

reports the results of simulating the convergence of an adaptive equalizer using least mean 

squares algorithm. 

It is shown that as the step size decreases, the mean square error also decreases. If the 

number of iterations is increased, the mean square error becomes more accurate. 

Adaptive equalizers do not deal well with bad intersymbol interference. Therefore, in 

the future decision feedback equalizers should be investigated as an alternative. In addition 

the enhancements of noise in linear equalizers have to be examined thoroughly. 
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APPENDIX A 

MATLAB CODE OF ADAPTIVE EQUALIZER WITH 

CHANNEL A. 1000 ITERATIONS IS USED 

N=500; 

K=5; 

actual_isi=[0.05 -0.063 0.088 -0.126 -0.25 0.904 7 0.25 0 0.126 0.038 0.088]; 

% length of the information sequence 

sigma=0.01; 

delta=[0.115 0.09 0.045]; 

Num_of_realizations=l 000; 

mse_av=zeros(3,N-2*K); 

for t=l :3 

for j=l :Num _ of _realizations, 

fori=l:N, 

if (rand<0.5), 

info(i)=-1; 

else 

info(i)=l; 

end; 

end 

y=filter( actual_ isi, 1,info); 

% 1234 

% y 

for i=I :N, 

noise(i)=sigma *randn; 

end; 

y=y+noise; 

% 22345 

% y 

estimated_c=[O O O O O 1 0 0 0 0 OJ; 
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• for k=l :N-2*K, 

y _k=y(k:k+2*K); 

z _k(k)=estimated _ c*y _ k'; 

e _ k=info(k)-z _ k(k); 

estimated c=estimated c+delta(t)*e k*y k; - - - - 
mse(k )=e _ k''2; 

end; 

mse_av(t,:)=mse_av(t,:)+mse; 

end; 

mse av(t,:)=mse av(t,:)/Num of realizations; - - - - 

end 

semilogy(l :490,mse _ av(l ,:), 1 :490,mse _ av(2,:), 1 :490,mse _av(3,:)) 

ylabel('Mean square error'),xlabel('Time instant k') 

legend('\Delta=O. l 15','\Delta=0.09','\Delta=0.045') 
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APPENDIXB 

MATLAB CODE OF ADAPTIVE EQUALIZER WITH 

CHANNEL A. 5000 ITERATIONS IS USED 
% length of the information sequence N=500; 

K=5; 

actual_isi=[0.05 -0.063 0.088 -0.126 -0.25 0.9047 0.25 0 0.126 0.038 0.088]; 

sigma=0.01; 

delta=[0.115 0.09 0.045]; 

Num _ of _realizations=5000; 

mse_av=zeros(3,N-2*K); 

fort=l:3 

for j=l :Num_of_realizations, 

for i=I :N, 

if (rand<0.5), 

info(i)=-1; 

else 

info(i)=l; 

end; 

end 

y=filter(actual_isi, I ,info); 

% 1234 

% y 

for i=I :N, 

noise(i)=sigma *randn; 

end; 

y=y+noise; 

% 22345 

% y 

estimated_c=[O O O O O 1 0 0 0 0 O]; 

for k=l :N-2*K, 
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. y_k=y(k:k+2*K); 

z k(k)=estimated c*y k'; - - - 

e _ k=info(k)-z _ k(k); 

estimated , c=estimated _ c+delta( t) * e _ k *y _ k; 

mse(k)=e _ kr'2; 

end; 

mse av(t,:)=mse av(t,:)+mse; - - 

end; 

mse _ av(t,: )=mse _ av(t,:)/Num _ of _realizations; 

end 

semilogy(l :490,mse_av(l ,:),l :490,mse_av(2,:),1 :490,mse_av(3,:)) 

ylabel('Mean square error'),xlabel('Time instant k') 

legend('\Delta=O. l l 5' ,'\Delta=0.09' ,'\Delta=0.045') 
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APPENDIXC 

MATLAB CODE WITH CHANNEL A.100 ITERATIONS 

IS USED 

N=500; 

K=5; 

actual isi=[0.05 -0.063 0.088 -0.126 -0.25 0.904 7 0.25 0 0.126 0.038 0.088]; 

% length of the information sequence 

sigma=0.01; 

delta=[0.115 0.09 0.045]; 

Num_of_realizations=l 00; 

mse av=zeros(3,N-2*K); 

for t=l :3 

for j=l :Num_of_realizations, 

for i=l:N, 

if (rand<0.5), 

info(i)=-1; 

else 

info(i)=l; 

end; 

end 

y=filter(actual_isi, 1,info ); 

% 1234 

% y 

for i=l:N, 

noise(i)=sigma*randn; 

end; 

y=y+noise; 

% 22345 

% y 
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• estimated_c==[O O O O O I O O O O OJ; 

for k=I :N-2*K, 

y_k==y(k:k+2*K); 

z_ k(k)==estimated _ c*y _k'; 

e _ k==info(k)-z _ k(k); 

estimated_ c==estimated _ c+delta( t) * e _ k *y _ k; 

mse(k)==e _ k''2; 

end; 

mse av(t,:)==mse av(t,:)+mse; - - 
end; 

mse av(t,:)==mse av(t,:)/Nwn of realizations; - - - - 
end 

semilogy(l :490,mse_av(l ,:),1 :490,mse_av(2,:),l :490,mse_av(3,:)) 

ylabel('Mean square error'),xlabel('Time instant k') 

legend('\Delta==O. l 15' ,'\Delta==0.09','\Delta==0.045') 

62 



APPENDIXD 

MATLAB CODE OF ADAPTIVE EQUALIZER WITH 

CHANNEL B. 1000 ITERATIONS IS USED. 
N=500; 

K=5; 

actual_isi= [0.04 -0.05 0.07 -0.21 -0.5 0.72 0.36 0 0.21 0.03 0.07]; 

% length of the information sequence 

sigma=0.01; 

delta=[0.115 0.09 0.045]; 

Num _ of _realizations= 1000; 

mse_av=zeros(3,N-2*K); 

for t=I :3 

for j=l :Num_of_realizations, 

for i=l :N, 

if (rand<0.5), 

info(i)=-1; 

else 

info(i)=l; 

end; 

end 

y=filter(actual_isi, I ,info); 

% 1234 

% y 

for i=l :N, 

noise(i)=sigma *randn; 

end; 

y=y+noise; 

% 22345 
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% y 

estimated_c=[O O O O O I O O O O O]; 

for k=I :N-2*K, 



,y_k=y(k:k+2*K); 

z_ k(k)=estimated _ c*y _ k'; 

e _ k=info(k)-z _k(k); 

estimated_ c=estimated _ c+delta(t)*e _ k*y _k; 

mse(k)=e _ k''2; 

end; 

mse_av(t,:)=mse_av(t,:)+mse; 

end; 
mse_av(t,:)=mse_av(t,:)/Nwn_of_realizations; 

end 
semilogy(l :490,mse_av(l ,:),1 :490,mse_av(2,:),1 :490,mse_av(3,:)) 

ylabel('Mean square error'),xlabel('Time instant k') 

legend('\Delta=0.115' ,'\Delta=0.09' ,'\Delta=0.045') 
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