
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

HOTEL DAT ABASE DESIGN

Graduation Project
COM-400

Student: Razib Ahmed (992051)

Supervisor: Assist. Prof. Dr. Adil Amirjanov

Nicosia-2006

ACKNOWLEDGMENT

First of all I would like to thank Assist. Prof. Dr. Adil Amirjanov for his endless and
untiring support and help and his persistence, in the course of the preparation of this
project.

Under his guidance, I have overcome many difficulties that I faced during the various
stages of the preparation of this project.

I would like to thank all of my friends who helped me to do the project according to the
necessity especially Mohammad Abdur Rob.

Finally, I would like to thank my family, especially my parents. Their love and guidance
made me to come at this end of my study. Their never-ending belief in me and their
encouragement has been a crucial and a very strong pillar that has held me together.

They have made countless sacrifices for my betterment. I can't repay them, but I do hope
that their endless effort will bear good fortune for me that may lead them, me and all who
surround me to a better future.

- 1

ABSTRACT

In this project development of software on 'Hotel' has been considered. This software
· complied with Microsoft Access Program which is a database program included
Microsoft Office Pack.

Nowadays, computers are used almost every area of business and life, with computers
and software they increased the speed of our calculation, transaction, necessary
information saving ... etc.

This application is designed for 'Hotel' which cover all the needs for the hotel business
as an administrative employee like 'Manager'. In this program it's able to hold customer
records, employee records, accounts, expenses, needs, transaction and we can get the
report of all individual sides very easily.

With this program maintenance of a hotel will be very easy, faster and reliable.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENT i

ABSTRACTS .ii

TABLE OF CONTENTS iii

LIST OF FIGURES vi

INTRODUCTION 1

CHAPTER ONE:
INTRODUCTION TO DATABASE MANAGEMENT SYSTEM

1.1 Overview 2

1.2 Database Models 3

1.2.1 Flat Model 3

1.2.2 Network Model 3

1.2.3 Relational Model. , 4

1.3 Why we use a Relational Database Design 5

1.3.1 Relationships between tables 5

1.3.2 One-to-One relationship 5

1.3.3 One-to-Many relationship 6

1.4 Relational Operations 7

1.4.1 Implementations and indexing 8

1.5 Application of databases 9

1.6 Data modeling 9

1.6.1 Database normalization 10

1.6.2 Primary key 10

1.6.3 Foreign key 11

1.6.4 Compound key 12

lll

CHAPTER TWO: STRUCTURED QUERY LANGUAGE (SQL)

2.1 Description of SQL. 13

2.2 SQL keywords 14

2.2.1 Data retrieval. 14

2.2.2 Data manipulation .15

2.2.3 Data transaction 15

2.2.4 Data definition 16

CHAPTER THREE: MICROSOFT ACCESS DATABASE SYATEM

3 .1 Introductory Microsoft Access 17

3.2 Working with Tables 17
'

3.3 Creating Tables manually 18

3.3.1 Data Types 19

3.3.2 AutoNumber Fields 19

3.3.3 Text Fields 20

3.3.4 Number Fields 20

3.3.5 Memo, OLE object, Date/Time and Yes/no Fields 21

3.3.6-Primary Key Field 22

3.3.7 Forms-Creating and Working with Forms 23

3.3.8 Switchboard Forms .24

3.3.8.1 Subforms 24

3.3.8.2 Parameter Queries 27

3 .4 Creating a Query 27

3.4.1 Restricting Query Data 28

3.4.2 Saving a Query 28

IV

3.4.3 Closing a Query 28

3.5 Working with Reports 28

3.5.1 Creating a Report 28

3.5.2 Changing the Report design 29

3.5.3 Saving a Report 29

3.5.4 Printing a Report 29

3.5.5 Closing a Report 29

3 .6 Security 30

3.6.1 Setting a database password 30

CHAPTER FOUR: HOTEL DATABASE DESIGN

4.1 Creating Tables for Hotel. 32

4.2 Constructing relationships between tables .41

4.3 Creating Forms for my application .42

4.3.1 Creating Pop-Up Form .47

4.4 Creating SQL Operation for Hotel.. 50

4.5 Creating Report for the Hotel. 52

4.6 Applying Switchboard Manager. 56

4.7 Applying security password to database 61

CONCLUSION 63

REFERENCES 64

V

LIST OF FIGURES

Figure 4.1 Employee Details Table 32

Figure 4.2 Customers Records Table 33

Figure 4.3 Room Information Table 34

Figure 4.4 Room Information Data Table .35

Figure 4.5 Reservations table 36

Figure 4.6 Accounts Table 37

Figure 4.7 Expenses Record Table 38

Figure 4.8 Products Table 39

Figure 4.9 Suppliers Record Table .40

Figure 4.10 Structure of relationship between the tables .41

Figure 4.11 Form Wizard Window .42

Figure 4.12 Layout selection window for the form .43

Figure 4.13 Style selection window for the form .43

Figure 4.14 Final window of the form wizard .44

Figure 4.15 Toolbox 44

Figure 4.16 Modifying the Form's Design .45

Figure 4.17 Command Button Wizard Window 46

Figure 4.18 Next step of the Command Button Wizard .46

Figure 4.19 Command Button Wizard .47

Figure 4.20 Command Button Wizard to Select Form .48

Figure 4.21 Creating Links Between Two Forms .48

Figure 4.22 Giving a Name to the Button .49

Figure 2.23 View of the Accounts Form .49

Figure 4.24 Creating query in Design view 50

Figure 4.25 Show Table Window 50

Figure 4.26 Query in Design View 51

Figure 4.27 SQL Command for the Query 51

Figure 4.28 Creating report by using wizard 52

Figure 4.29 Selecting Fields for Report 53

Figure 4.30 Choosing Sort Order 54

VI

Figure 4.31 Choosing the Style 54

Figure 4.32 Giving a Name for the Report 55

Figure 4.33 Accounts Report 55

Figure 4.34 Creating the Switchboard Manager. 56

Figure 4.35 Creating Switchboard Manager. 57

Figure 4.36 Editing Switchboard Page 57

Figure 4.37 Editing Switchboard Items 57

Figure 4.38 Switchboard Form in the Design View 58

Figure 4.39 Default Switchboard Form Named as 'Hotel' 59

Figure 4.40 Second Switchboard Form Named as 'Hotel Records' 60

Figure 4.41 Opening a Database in Exclusive Mode 61

Figure 4.42 Steps to Set Database Password 62

Vil

INTRODUCTION

A database is a means of collecting and organizing information. You can create simple ones

that contain a list of your business contacts, for example, or you can build a full-featured data

management system that you can use to manage a business. Microsoft Access gives us the

tools to build just about any kind of database we need.

Access is a popular development platform in large measure because it is the part of the

Microsoft Office suite. Many clients want their Access systems to interoperate with the rest

of Office, and they want systems that are transparent and easy to maintain without developer

assistance.

Once we have created a database and added information to it, we can use Access to create

forms or reports. With these we can retrieve the information we've put into the database.

With the program's built-in samples, templates, and wizards, it's easy for a beginner to get

started. Access 2000 is straightforward enough to allow a beginner to create quick and

simple, but very useful databases. As our skills grow, we can add more features that will

expand our database's usefulness to our business.

In the project development of database system was considered for 'Hotel' with Microsoft

Access programming.

In Chapter one: we discussed about database, data model, type of databases, relationships,

primary key, foreign key and compound key in details.

In Chapter two: general Sql structure and its most used keywords presented.

In Chapter three: introductory remarks on Microsoft Access programming are given.

Creating and modifying of Tables, Queries, Reports, Forms are explained. How to use wizard

is illustrated with figures.

In Chapter four: general structure of our application is given. Implementation of the

program is given step by step with explanation.

CHAPTER ONE: INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS

1.1 Overview

A database is a collection of information stored in a computer in a systematic way, such that

a computer program can consult it to answer questions. The software used to manage and

query a database is known as a database management system (DBMS). The properties of

database systems are studied in information science.

At the core of the concept of a database is the idea of a collection of facts, or pieces of

knowledge. Facts may be structured in a number of ways, known as data models. For

instance, one model is to associate each fact with a record representing an entity (such as a

person), and to arrange these entities into trees or hierarchies, which is called the hierarchical

data model. Another model is to arrange facts into sets of values which satisfy logical

predicates, which is called the relational data model.
\

Database management systems are ranged from extremely simple to highly complex.

Working from a blank page, creating a database application from scratch is a difficult task. In

fact, before we can do any customizing or programming, we have to get most of our database

in place and working. Fortunately, Microsoft Access includes several wizards that can help

us to get started quickly. Differences among DBMSes includes whether they are capable of

ensuring the integrity of the data; whether they may be used by many users at once; and

what sorts of conclusions they can be programmed to compute from a set of data.

The terms database and database management system are sometimes interchanged by

students. In the professional area, a database is always the collection of facts, not the

software program.

The first database management systems were developed in the year 1960. A pioneer in the

field was Charles Bachman. Two key data models arose at this time: the network model

2

followed by the hierarchical model. These were later usurped by the relational model, which

was contemporary with so-called flat model designed for very small tasks. Another

contemporary of the relational model is the object-oriented database (OODB). While the

relational model is based on the set theory, one proposed modification suggests fuzzy set

theory as an alternative.

1.2 Database Models

Various techniques are used to model data structures. Certain models are more easily

implemented by some types of database management systems than others. For any one

logical model various physical implementation may be possible. An example of this is the

relational model: in larger systems the physical implementation often has indexes which

point to the data; this is similar to some aspects of common implementations of the network

model. But in small relational database the data is often stored in a set of files, one per table,

in a flat, un-indexed structure. There is some confusion below and elsewhere in this article as

to logical data model vs its physical implementation.

1.2.1 Flat Model

The flat (or table) model consists of a single, two dimensional array of data elements, where

all members of a given column are assumed to be similar values, and all members of a row

are assumed to be related to one another. For instance, columns for name and password

might be used as a part of a system security database. Each row would have the specific

password associated with a specific user. Columns of the table often have a type associated

with them, defining them as character data, date or time information, integers, or floating

point numbers. This model is the basis of the spreadsheet.

1.2.2 Network Model

The network model allows multiple datasets to be used together through the use of pointers

(or references). Some columns contain pointers to different tables instead of data. Thus, the

tables are related by references, which can be viewed as a network structure. A particular

3

subset of the network model, the hierarchical model, limits the relationships to a tree

structure, instead of the more general directed graph structure implied by the full network

model.

1.2.3 Relational Model

The relational data model was introduced in an academic paper by E.F. Codd in 1970 as a

way to make database management systems more independent of any particular application.

It is a mathematical model defined in terms of predicate logic and set theory.

Although the basic idea of a relational database has been very popular, relatively few people

understand the mathematical definition and only a few obscure DBMSs implement it

completely and without extension. Oracle, for example, can be used in a purely relational

way, but it also allow tables to be defined that allow duplicate rows an extension (or

violat~on) of the relational model. In common English usage, a DBMS is called relational if it

supports relational operational operations, regardless of whether it enforces strict adherence

to the relational model. The following is an informal, not-technical explanation of how

"relational" database management systems commonly work.

A relational database contains multiple tables, each similar to the one in the "flat" database

model. However, unlike network databases, the tables are not linked by pointers. Instead,

keys are used to match up rows of data in different tables. A key is just one or more columns

in one table that correspond to columns in other tables. Any column can be a key, or multiple

columns can be grouped together into a single key. Unlike pointers, it's not necessary to

define all the keys in advance; a column can be used as a key even if it wasn't originally

intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique key. Typically

one of the unique keys is the preferred way to refer to row; this is defined as the table's

primary key.

4

When a key consists of data that has an external, real-world meaning (such as a person's

name, a book's ISBN, or a car's serial number), it's called a "natural" key. If no nature key is

suitable, an arbitrary key can be assigned (such as by given employees ID numbers). In

practice, most databases have both generated and natural keys, because generated keys can

be used internally to create links between rows that can't break, while natural keys can be

used, less reliably, for searches and for integration with other databases. (For example,

records in two independently developed databases could be matched up by social security

number, except when the social security numbers are incorrect, missing, or have changed).

1.3 Why we use a Relational Database Design

Maintaining,a simple, so-called flat database consisting of a single table doesn't require

much knowledge of database theory. On the other hand, most database worth maintaining are

quite a bit more complicated than that. Real life databases often have hundreds of thousands

or even millions of records, with data that are very intricately related. This is where using a

full-fledged relational database program becomes essential. Consider, for example, the

Library of Congress, which has over 16 million books in its collection. For reasons that will

become apparent soon, a single table simply will not do for this database.

1.3.1 Relationships Between Tables

When you create tables for an application, you should also consider the relationships between

them. These relationships give a relational database much of its power. There are three types

of relationships between tables: one-to-one, one-to-many and many-to-many relationships.

1.3.2 One-To-One Relationships

In a one-to-one relationship, each record in one table corresponds to a single record in a

second table. This relationship is not very common, but it can offer several benefits. First,

you can put the fields from both tables into a single, combined table. One reason for using

two tables is that each field is a property of a separate entity, such as owner operators and

5

their tracks. Each operator can operate just one truck at a time, but the fields for the operator

and truck tables refer to different entities.

A one-to-one relationship can also reduce the time needed to open a large table by placing

some of the table's columns in a second, separate table. This approach makes particular sense

when a table has some fields that are used infrequently. Finally, a one-to-one relationship can

support in a table requires security, placing them in a separate table lets your application

restrict to certain fields. Your application can link the restricted table back to the main table

via a one-to-one relationship so that people with proper permissions can edit, delete, and add

new records to these fields.

1.3.3 One-To-Many Relationships

A one-to-many telationship, in which a row from one table corresponds to one or more rows ~
from a second table, is more common. This kind of relationship can form the basis for a

Many-To-Many relationship as well.

Redundancy

The main problems associated with using a single table to maintain a database system from

the issue of unnecessary repetition of data, that is, redundancy. Some repetition of data is

always necessary, but the idea is to remove as much unnecessary repetition as possible. The

redundancy in the library flat table (Table 1.1) is obvious. For instance, the name and phone

number of Big House publishers is repeated in the table. In an effort to remove as much

redundancy as possible from a database, a database designer must split the data into multiple

tables. Here is one possibility for the library_ flat example, which splits the original database

into four separate tables.

• A books table, shown in table 1.2, in which each book has its own record

• An authors table, shown in table 1.3, in which each author has his or her

own record

6

• A publishers table, shown in table 1.4, in which each publisher has its own

record

• Book/author table, shown in table 1.5, the purpose of which we will explain

a bit later

To get a feel for the reduction in duplicate data achieved by the four-table approach, imagine

(as it reasonable) that the database also includes the addresses of each publisher. Then table

1.1 would need a new column containing many addresses many of which are duplicates. On

the other hand, the four-table database needs only one new column in the publishers table,

adding a total of three distinct addresses. To drive the difference home, consider the 16

million-book database of the Library of Congress. Suppose the database contains books from

10,000 different publishers. A publisher's address column in a flat database design would

contain 16 million addresses, whereas a multi-table approach would require only 10,000

addresses. Now, if the average address is 50 characters long, then the multi-table approach

would save. (16,000,000-10,000)* 50= 799 million characters.

Assuming that each character takes 2 bytes (in the Unicode that is used internally by

Microsoft Access), the single-table approach wastes about 1.6 gigabytes of space, just for the

address field. Indeed, the issue of redundancy alone is quite enough to convince a database

designer to avoid the flat database approach. However, there are several other problems with

flat databases, which we now discuss.

1.4 Relational Operations

You request data from a relational database by sending it a query that's written in a special

language, usually a dialect of SQL. Although SQL was originally intended for end-users, it's

much more common for SQL queries to be embedded into software that provides an easier

user interface.

7

In response to a query, the database returns a results set, which is just a list of rows

containing the answers. The simplest query is just to return all the rows from a table, but

more often, the rows are filtered in some way to return just the answer wanted.

Often, data from multiple tables gets combined into one, by doing a "join". Conceptually,

this is done by taking all possible combinations of rows (the "cross-product"), and then

filtering out everything except the answer. In practice, relational database management

systems rewrite ("optimize") queries to perform faster, using a variety of techniques.

The flexibility of relational databases allows programmers to write queries that were not

anticipated by the database designer. As a result, relational databases can be used by multiple

applications in ways the original designers didn't foresee, which is especially important for

databases that might be used for decades. This has made the idea and implementation of

relational databas~s very popular with businesses.

1.4.1 Implementations and indexing

All of these kinds of database can take advantage of indexing to increase their speed. The

most common kind of index is a sorted list of the contents of some particular table column,

with pointers to the row associated with the value. An index allows a set of table rows

matching some criterion to be located quickly. Various methods of indexing are commonly

used; b-tree, hashes, and linked lists are all common indexing techniques.

Relational DBMSs have the advantage that indices can be created or dropped without

changing existing applications, because applications don't use the indices directly. Instead,

the database software decides on behalf of the application which indices to use. The database

chooses between many different strategies based on which one it estimates will run the

fastest.

Relational DBMSs utilize many different algorithms to compute the result of an SQL

statement. The RDBMS will produce a plan of how to execute the query, which is generated

8

by analyzing the run times of the different algorithms and selecting the quickest. Some of the

key algorithms that deal with joins are Nested Loops Join, Sort-Merge Join and Hash Join.

1.5 Application Of Database

Databases are used in many applications, spanning virtually the entire range of computer

software. Databases are the preferred method of storage for large multi-user applications,

where coordination between many users is needed. Even individual users find them

convenient, though, and many electronic mail programs and personal organizers are based on

standard database technology.

A database management system (DBMS) is a computer program (or more typically, a suite of

them) designed to manage a database; a large set of structured data, and run operations on the

data requested by numerous users. Typical examples of DBMS use include accounting,

human resources and customer support systems. Originally found only in large companies

with the computer hardware needed to support large data sets, DBMSs have more recently

emerged as a fairly standard part of any company back office.

DBMS' s are found at the heart of most database applications. Sometimes DBMSs are built

around a private multitasking kernel with built-in networking support although nowadays

these functions are left to the operating system.

1.6 Data Modeling

In information system design, data modeling is the analysis and design of the information in

the system, concentrating on the logical entities and the logical dependencies between these

entities. Data modeling is an abstraction activity in that the details of the values of individual

data observations are ignored in favor of the structure, relationships, names and formats of

the data of interest, although a list of valid values is frequently recorded. It is by the data

model that definitions of what the data means is related to the data structures.

9

While a common term for this activity is "Data Analysis" the activity actually has more in

common with the ideas and methods of synthesis (putting things together), than it does in the

original meaning of the term analysis (taking things apart). This is because the activity

strives to bring the data structures of interest together in a cohesive, inseparable, whole by

eliminating unnecessary data redundancies and relating data structures by relationships. In

the early phases of a software development project, emphasis will be on the design of a

conceptual data model. This can be detailed into a logical data model sometimes called

functional data model. In later stages, this model may be translated into physical data model.

1.6.1 Database Normalization

Database normalization is a series of steps followed to obtain a database design that allows

for consistent storage and efficient access of data in a relational database. These steps reduce

data redundancy and the risk of data becoming inconsistent.

However, many relational DBMSs lack sufficient separation between the logical database

design and the physical implementation of the data store, such that queries against a fully

normalized database often perform poorly. In this case de-normalizations is sometimes used

to improve performance, at the cost of reduced consistency.

1.6.2 Primary Key

In database design, a primary key is a value that can be used to identify a particular row in a

table. Attributes are associated with it. Examples are names in a telephone book (to look up

telephone numbers), words in a dictionary (to look up definitions) and Dewey Decimal

Numbers (to look up books in a library).

In the relational model of data, a primary key is a candidate key chosen as the main method

of uniquely identifying a relation. Practical telephone books, dictionaries and libraries can

not use names, words or Dewey Decimal System Numbers as candidate keys because they do

not uniquely identify telephone numbers, word definitions or books. In some design

10

situations it is impossible to find a natural key that uniquely identifies a relation. A surrogate

key can be used as the primary key. In other situations there may be more than one

candidate key for a relation, and no candidate key is obviously preferred. A surrogate key

may be used as the primary key to avoid giving one candidate key artificial primacy over the

others. In addition to the requirement that the primary key be a candidate key, there are

several other factors which may make a particular choice of key better than others for a given

relation.

The primary key should generally be short to minimize the amount of data that needs to be

stored by other relations that reference it. A compound key is usually not appropriate.

(However, this is a design consideration, and some database management systems may be

better than others in this regard.)

The primary key should be immutable, meaning its value should not be changed during the

course of normal operations of the database. (Recall that a primary key is the means of

uniquely identifying a tuple, and that identity by definition, never changes.) This avoids the

problem of dangling references or orphan records created by other relations referring to a

tuple whose primary key has changed. If the primary key is immutable, this can never

happen.

1.6.3 Foreign Key

A foreign key (FK) is a field in a database record under one primary key that points to a key

field of another database record in another table where the foreign key of one table refers to

the primary key of the other table. This way references can be made to link information

together and it is an essential part of database normalization.

For example, a person sending an e-mail needs not to include the entire text of a book in the

e-mail. Instead, they can include the ISBN of the book, and interested persons can then use

the number to get information about the book, or even the book itself. The ISBN is the

primary key of the book, and it is used as a foreign key in the e-mail.

11

Note that using a foreign key often assumes its existence as a primary key somewhere else.

Improper foreign key/primary key relationships are the source of many database problems.

1.6.4 Compound Key

In database design, a compound key (also called a composite key) is a key that consists on 2

or more attributes.

No restriction is applied to the attribute regarding their (initial) ownership within the data

model. This means that any one, none or all, of the multiple attributes within the compound

key can be foreign keys. Indeed, a foreign key may, itself, be a compound key.

Compound keys almost always originate from attributive or associative entities (tables)

within the model, but this is not an absolute value.

12

CHAPTER TWO: STRUCTURED QUERY LANGUAGE (SQL)

Structured Query Language (SQL) is the most popular computer language used to create,

modify and retrieve data from relational management systems. The language has evolved

beyond its original purpose to support object-relational database management systems.

A seminal paper, "A Relational Model of data for Large Shared Data Banks, by Dr. Edgar F.

Codd, was published in June, 1970 in the Association for Computing Machinery (ACM)

journal, Communications of the acm." Codd's model became widely accepted as the

definitive model for the relational database management system (RDBMS).

During the 1970s, a group at IBM's San Jose research center developed a database system

"System R" based upon Codd's model. Structured English Query Language ("SEQUEL")

was designed to manipulate and retrieve data stored in System R. The acronym sequel was

later condensed to SQL due to a trademark dispute (the word "sequel" was held as a trade

mark by the Hawker-Siddeley aircraft company of the UK).

In 1979, Relational Software, Inc. (now Oracle Corporation) introduced the first

commercially available implementation of SQL and, soon many vendors developed dialects

ofit.

SQL was adopted as a standard by the ANSI (American National Standard Institute) in 1986

and IOS (International Organization for Standardization) inl 987. ANSI has declared that the

official pronunciation for SQL is "es queue el", although many English-speaking database

professionals still pronounce it as SEQUEL.

2.1 Description of SQL

SQL allows the specification of queries in a high level, declarative manner. For example, to

select rows from a database, the user need only specify the criteria that want to search by; the

13

details of performing the search operation efficiently is left up to the database system, and is

invisible to the user.

Compared to general purpose programming languages, this structure allows the

user/programmer to be less familiar with the information contained in the data. This blurs the

line between user and programmer, appealing to individuals who fall more into the 'business'

or 'research' area and less in the 'information technology' area. The original vision for SQL

was to allow non -technical users to write their own database queries. While this has been

realized to some extent, the complexity of querying an advanced database system using SQL

can still require a significant learning curve.

SQL contrasts with the more powerful database-oriented fourth-generation programming

languages such as focus or sas, however, in its relative functional simplicity and simpler

command set. This greatly reduces the degree of difficulty involved in maintaining the worst

SQL source code, but it also makes programming such questions as 'Who had the top ten

scores?' more difficult, leading to the development of procedural extensions, discussed

above. However, it also makes it possible for SQL source code to be produced (and

optimized) by software, leading to the development of a number of natural language database

query languages, as well as 'drag and drop' database programming packages with 'object

oriented' interfaces. Often these allow the resultant SQL source code to be examined, for

educational purposes, further enhancement, or to be used in a different environment.

2.2 SQL Keywords

SQL keywords fall into several groups, like:

2.2.1 Data Retrieval

The most frequently used operation in transactional databases are the data retrieval operation.

• SELECT is used to retrieve zero or more rows from one or more tables in a

database. In most applications, SELECT is the most commonly used DML

command. In specifying a select query, the user specifies a description of the

14

desired result set, but they do not specify what physical operations must be

executed to produce that result set. Translating the query into an optimal query

plan is to leave the database system, more specifically to the query optimizer.

• Commonly available keywords related to SELECT includes:

• FROM is used to indicate which tables the data is to be taken from, as well

as how the tables join to each other.

• WHERE is used to identify which rows to be retrieved, or applied to

GROUP BY.

• GROUP BY is used to combine rows with related values into elements of a

smaller set of rows.

• ORDER BY is used to identify which columns are used to sort the

resulting data.

2.2.2 Data Manipulation

First there are the standard Data Manipulation Language (DML) elements. DML is the subset

of the language used to add, update and delete data.

• INSERT is used to add the zero or more rows (formally tuples) to an existing table.

• UPDATE is used to modify the values of a set of existing table rows.

• DELETE removes zero or more existing rows from a table.

2.2.3 Data Transaction

Transaction, if available, can be used to wrap around the DML operations. BEGIN WORK

(or START TRANSACTION, depending on SQL dialect) can be used to mark the start of a

database transaction, which either completes completely or not at all

COMMIT causes all data changes in a transaction to be made permanent.

15

ROLLBACK causes all data changes since the last COMMIT or ROLLBACK to be

discarded, so that the state of the data is "Rolled Back" to the way it was prior to those

changes being requested.

COMMIT and ROLLBACK interact with areas such as transaction control and locking.

Strictly, both terminate any open transaction and release any locks held on data. In the

absence of a BEGIN WORK or similar statement, the semantics of SQL are implementation

dependent.

2.2.4 Data Definition

The second group of keywords is the Data Definition Language (DDL). DDL allows the user

to define new tables and associated elements. Most commercial SQL databases have

proprietary extensions in their DDL, which allow control over nonstandard features of the

database system.

The most basic items ofDDL are the CREATE and DROP commands. CREATE causes an

object (a table, for example) to be created within the database. DROP causes an existing

object within the database to be deleted, usually irretrievably. Some database systems also

have an ALTER command, which permits the user to modify an existing object in various

ways, for example, adding a column to an existing table.

16

CHAPTER THREE: MICROSOFT ACCESS DATABASE SYSTEM

3.1 Introductory Microsoft Access

• Starting Microsoft Access

• Opening Access

• Click Start, select All Programs and click on Microsoft Access

• Creating a Database

• Click File, New or click the new icon on the standard toolbar

• Select Blank Database from the Task Pane menu

• Type a name for the Database in the File Name window

• Click Create

• Closing a database click File, Close

• Opening a database click File, Open or click the open icon on the standard toolbar

• Browse, where to save the database

• Click the name of the database

• Click Open

3.2 Working with Tables

A table is a collection of data about a specific topic, such as products, employees, reservation

or companies.

Creating a table:

• From the main database window, click Tables under Objects on the left menu

• Create a table without any assistance, like:

• Double click on Create table in design view

• In the Field Name column type the name of data field (i.e. MailingListID)

• In the Data Type column select the type of data to be entered in the field

(i.e. Text, Number, OLE Objects etc)

• To save the table, click File, then click Save or click the save icon on the

Standard toolbar

• Type the name of the Table

17

• Click OK

• If we do not want any Primary Key, click no

• We can enter the data in the table straight or by using the form

Creating a table using the wizard:

• Double click on Create table by using wizard

• Select the type of table (Business or Personal)

• Choose a table from the Sample Tables list

• Select a data field to include in the table

• Click the single arrow

• Repeat these steps or if we want to get all the fields to include we have to

click on the double arrow

• Click Next if we want to make any field as the Primary Key field

• Then click Next if we want to make any form for the table to enter the data

straight in the table

• Click Finish

• Enter data into table straight or by using the form

3.3 Creating Tables Manually

To create a table manually, we double click on the 'Create Table In Design View' icon in the

database window to open a blank table window in the design view. From here, we can add

any fields, a Primary or a Composite Key or an index.

To add a field, type the field's name in a blank field name column in the Design view

window. Field names follow normal Visual Basic for Applications (VBA) naming

conventions. They can be up to 64 characters long, and the characters can be letters,

numbers, spaces, and special characters except the period, the exclamation mark, square

brackets and the grave accent character('). Also we can not start a field name with a space or

18

a control character (ASCII values O through 31). While we can include internal spaces in

field names, they must be bracketed in expressions and queries.

3.3.1 Data Types

In the data type column, we can specify a data type for the field. A drop down list box offers

10 options: Text, Memo, Number, Date/Time, Currency, AutoNumber, Yes/No, OLE

Object, Hyperlink and Lookup Wizard. (Data types are commonly used to identify the

information a field contains. A Text field contains a Text data type; an AutoNumber field

contains an AutoNumber data type and so on.) We can use the options within many of these

data types to further refine our data type specifications.

3.3.2 AutoNumber Fields

AutoNumber field types frequently serve as the Primary Key for a table. Access

automatically assigns a new value to the field when we add a record to the table. This field is

not manually updateable, so its values are ideal for uniquely marking a row within a table

Access automatically sets the value of AutoNumber field types. To cause an AutoNumber

field to increment sequentially, select Increment (the default value) from the New Values

drop-down list box on the General page at the bottom left of the table window. To indicate

that an AutoNumber field should have a randomly assigned value, select Random from the

New Values drop down list box.

We can use the General and Lookup pages to select other properties that affect the field, such

as whether the user must enter a value into the field or whether the field has a default value.

Field properties set as the table level propagate through to forms and reports. Maintaining

data properties at the table level also means that properties are changed in a single place

rather than within each form and report that uses a field.

19

Access 2000 is the first version of Access to enable programmatic control over the initial

value and step size of AutoNumber field type. We can use the Alter Table and Alter Column

keywords in Jet SQL to update the next start. The start and step properties of this data type

let us programmatically modify the next AutoNumber value and the step size for subsequent

values.

3.3.3 Text Fields

We use Text Fields to hold string entries that contain up-to 255 characters. The Text data

type can store items such as contact information and numerical data values that do not

require computation (for example, telephone numbers, addresses). We can also use Text

Fields in a table to persist computed string values. We can index Primary Keys for fast sorts

and retrieval based on last name or another Text Field type.

3.3.4 Number Fields

Number Fields are different from Text Fields because they can assume a variety of subtypes

ranging from a single byte (Byte subtype) to 16 bytes (Replication ID subtype). The other

data subtypes between these extremes include Integers, Long Integer, Single, Double and

Decimal. With the exception of the Byte and Replication ID subtypes. The Byte subtype is

similar to the Boolean variable data type. Both types can store Boolean values, but the Byte

subtype requires just 1 byte of storage while the Boolean data type 2 bytes. The Replication

ID data type is not available as a variable data type. Its primary use is in replication, but it

serves as a unique identifier. Its length and method of creation make it a more secure way to

ensure uniqueness than an AutoNumber field.

The decimal subtype facilitates the elimination of rounding errors while still accommodating

large numbers using Precision and Scale properties. These properties control the number of

digits on either side of the decimal point. Precision, which represents the total number of

digits that can be stored in the field, can range from 1 through 28. Scale, which indicates the

number of digits to the right of the decimal that can be stored in the field, can range from O

20

through the value in the Precision property. Because of the Scale property, the Decimal data

subtype can store more digits after the decimal point without rounding errors than other

Number data subtypes can.

The CurrencyBalance field uses the Currency data type; CurrencyFloat uses the Number data

type with the Double subtype and CurrencyBalanceDec field uses the Number data type with

the Decimal subtype. The CurrencyBalanceDec field has a Scale property setting of 6, which

indicates that the field can store six digits to the right of the decimal point. This is more digits

than theCurrency data type can precisely present its limit is four digits after the decimal. The

Double data subtype can represent a number with four, five or six places after the decimal,

but it does not perform this task with integer precision. The first row in persons displays the

value 1.0001 in Currency, Double and Decimal data formats. The second row expresses

1.00001 in the same three formats. Notice that in the Datasheet view the Currency format

initially shows 1.00001 as 1.0000 since it is limited to four places after the decimal. The

Double and Decimal representations appear identical.

3.3.5 Memo, OLE object, Date/Time and Yes/no Fields

Other data types includes the Memo data type, which holds very large text data strings that

can exceed the 255 characters limit of the text data type. A single Memo data type can grow

to 64 KB. We can access and write back its contents in 64 KB blocks using the GetChunk

and Append Chunk methods. Jet 4 supports indexing the first 255 characters of a Memo field.

This is particularly useful for Hyperlink data types that depend on the Memo data type.

OLE Object is another large data type. It works with objects in their binary format, such as a

Microsoft Excel workbook or a Microsoft Word document.

Date/Time data types can represent either Dates or Times. Date values are stored to the left

of the decimal point, Time values are stored to the right of the decimal point.

The Yes/No data type is the smallest data area. It always in one of two states, either Yes/No,

True/False or On/Off. It occupies a single byte of storage.

21

3.3.6 Primary Key Field

A Primary Key field is a field or combination of fields that uniquely identify each record in a

table. Primary Key features:

• In a table two records can not have the same value in the Primary Key field. Records

are automatically stored based on the Primary Key.

Primary Keys performs the following functions:

• , Prevent duplicate values

• Maintains the record order

• Creates a Primary index. Indexes are used to improve the speed of queries, reports,

and locating records

• Facilities relationships to other normalized data in the database. The Primary table to

be joined must have a Primary Key field.

NOTE: Memo, Yes/No, OLE Objects and Hyperlink fields can not be Primary Key fields.

Entering data in the Table:

• Double click on the table name

• Click in the field you wish to enter data

• Press Tab to move to the next field or press Enter to move to the next record sorting

data

• Click in the data field we wish to sort by

• Click a sort icon on the Standard Toolbar

• Or click Records, Sort

• Select the sort order (Ascending or Descending)

Deleting data from a Table:

• Click in the record we wish to delete

• Click Edit, Delete Record

Saving data in a Table:

• Click File, Save or click the save icon on the Standard Toolbar

Closing a Table:

• Click File, Close. Or click on the cross on the upper right corner of the window.

22

3.3.7 Forms-Creating and Working with Forms

While the Access Project user interface delivers extraordinary functionality with remote data

sources, we can automate and simplify processes by developing custom programmatic

solutions.

Opening a form

When we open a form with the Access Project interface, the form populates a local copy of

the remote data in the client workstation. This local copy is a snapshot, at a point in time, of

the remote data for the form. When we open the form, we must create the local copy of the

remote data. One advantage to opening a form in the program is that we can dynamically

assign values to the local cache of the remote data. Our application can do this because the

record set that we assign to the form with visual basic for applications overrides the record

source setting on the form's property sheet.

The procedure below constructs a record set for a form before opening it. It starts by setting a

reference to a new record set instance: it assigns adUseClient to the record set's

Cursor Location property to establish the location of the form's data. Next it opens the record

set with a SQL statement that extracts data from the remote source into the local copy. A

commented line shows a SQL statement that can override the form's default record source.

After making the local copy of the remote data, the procedure opens the form and assigns the

local copy to the form's record set property. This new property processes the functionality of

the RecordsetClone property; in addition, changes to the Recordset appear on the form

automatically; the RecordsetClone property provides a read-only copy of a form's Recordset.

Like the RecordsetClone property, a form's Recordset property is available only

pro grammatically.

23

3.3.8 Switchboard Forms

The 'Hotel' database we have created is more than an ordinary Access database: with its

Switchboard form and the other forms and reports it contains, the 'Hotel' database is an

application. This term refers to the fact that the database has its own custom-built user

interface, designed especially to help users of the database navigate through its forms and

reports and gets work done with the database. Database applications range from those as

simple as the 'Hotel' database, which has a very specific job, to complete business solutions

that contain many objects and large amounts of Visual Basic code.

IMPORTANT: The Switchboard Form that the wizard creates is a special form that we

should not try to change directly. It contains Visual Basic code that, along with the

Switchboard Items table, displays the text we see on the form and makes the buttons work.

Although we can not easily modify the Switchboard Form work, we can add or remove

buttons.

3.3.8.1 Subforms

A Subform, one of the most popular ways of displaying data in Access, is a form embedded

within a main form. The main form holds general information about an object (such as an

accounts or a reservation). One or more hierarchically related details (such as a expenses

record or room information) appear in one or more Subforms on the main from. At least one

common field must tie the record source of the main form and each Subform together. The

common field enables the Subform to show only records that match the current record in the

main form. When the user moves to a new record on the main form, the Subform displays a

new set of records that tie uniquely to the new record in the main form.

To create a Subform, open the main form in design view, make sure that the Control Wizard

button is selected on the Toolbox, and then drag a table, query or form from the database

window and drop it on the main form. The Subform appears as a control on the main form.

To synchronize the main form and the Subform, we must designate at least one common

24

field. Select the Subform container and set its Link Child and Link Master properties to the

common field.

A main form can have multiple Subforms. The only requirements that the source for each

Subform share at least one common field with the record source for the main form. If we

define relationships between tables and queries in the Relationships window or by using the

properties of a Subdatasheet, we can create a main form with an embedded Subform as easily

as we create a simple bound form. In the Database window, select the table or query on

which the main form will be based, and then click the New Object; AutoForm button. The

AutoForm wizard will build a main form with an embedded Subform. The Subform uses the

information in the Relationships windows or the Subdatasheet. We can manually drag other

tables, queries or forms to the main form in Design view to create additional Subform.

Creating a Form

From the main database window, click Forms under Objects on the left menu

Click Create form by using wizard

In the Tables/Queries drop down list, select the table or query we wish to create the

form from

In the Available Fields window, select a data field to include in the form and click

the Single arrow to select one data field in the Selected Fields

• Or click the Double arrow to include all data fields in the form's field

• Click Next

•
•
•

•

• Select a layout for the form, the click Next

• Select a style for the form, then click Next

• Type a name for the Form

• Click Finish

25

Entering data in a form

• Open a Form by double clicking on a form name

• Click in a data field and enter the data

• Click tab to move to the next data field

• To move between records, use the arrows on the record menu at the bottom of the

form

"• To insert a new record, click the arrow with the star sign (*) beside it

Changing the design of a form

• Click View, Design View or click the View icon on the Standard Toolbar

• To change the style, click Format, AutoFormat

• Select the new format, then click OK

• To move form objects, position the mouse over the object. When the hand sign

appears, click and hold the mouse button down then move the object to its new

location

• To change the color of an object, right click on the object and select a new fill or font

color

• To add any new button to the form, click the toolbox, check the toolbox's wizard

button is selected. Then click on the button sign in the toolbox, drag it to the footer of

the form and then in the designated location click the mouse. The wizard setting will

start and will ask to select the button type. After choosing the type we can give a

name to the button or can set a picture icon on it

• Then click Finish

Saving a Form

• Click File, Save or click the save icon on the Standard Toolbar

Closing a Form

• Click File, Close

26

Working with Queries

We use queries to view, change and analyze data in different ways. We can also use them as

a source of records for forms and reports. There are five types of queries: Select, Parameter,

Crosstab, Action and SQL.

3.3.8.2 Parameter Queries

Parameter queries are a special type of query that can return rows or perform actions. At run

time, a parameter query can prompt the user for input that controls how it performs. We can

prompt for one or more inputs by using different data type specifications. We tell the

parameter query what to do by inputting values to its prompts or by setting its parameters

with visual basic for applications code before executing the query to control the return set or

action that it performs. This allows the designation of a customer ID value at run time to

determine the customer about which a select query returns information.

As an alternative to a parameter query, our application can reference a SQL string for a select

or action query with string variables. Before executing the SQL statement in an ActiveX

Data Objects (ADO) command, assign the string variables specific values. This can provide

more flexible results than a parameter query since we can actually alter whole clauses in the

SQL statement for a query. For certain cases, parameter queries offset these benefits with

data typing and built-in prompts for values. In addition, parameter queries eliminate the need

to refine string concatenation statement as we refine our query's SQL statement.

3.4 Creating a Query

• From the main database window, click Queries under Objects on the left menu

• Double click on the Create query by using wizard option

• In the Tables/Queries drop-down list, select the table or query we wish to create for

query

27

• In the Available Fields window, select a data field. To select the field click the single

arrow

• Or to select all the fields we need to click the double arrow, which will include all

the fields in the query. We can chose fields from more than one table or query.

• Click Next

• Type a name for the query, then click Finish

3.4.1 Restricting Query Data

• Click View, Design or click the view icon on the Standard Toolbar

• Click in the criteria box of the field we wish to restrict

• Enter the value for the criteria

• Click View, Datasheet View or click the view icon on the Standard Toolbar to view

the query

3.4.2 Saving a Query

• Click File, Save or click on the save icon on the Standard Toolbar

3.4.3 Closing a Query

• Click File, Close

3.5 Working with Reports

We use reports to view, organize and summarize data in a printable format

3.5.1 Creating a Report

• From the main database window, click Reports under Objects on the left menu

• Double click on the Create report by using wizard option

• In the Tables/Queries drop-down list, select the table or query we wish to create the

report from

• In the Available Fields window, select a data field to include in the report and click

the single arrow

• Or click the Double arrow to include all the data fields to the report

28

• Click Next

• Click Next

• In the drop-down list, select the data field we wish to sort by Ascending/Descending

• Click Next

• Select a Layout

• Click Next

• Select a Style

• Click Next

• Type a Title for the Report

• Click Finish

3.5.2 Changing the Report design

Updating the report format

• Click View, Design View or click the view icon on the Standard Toolbar

• Click Format, AutoFormat

• Select a new Format

• Click OK

• Click View, Print Preview or click the view icon on the Standard Toolbar to return

to the report

Changing the Report Title

• Click View, Design View or click the view icon on the Standard Toolbar

• Click on the box containing the report Title

• Type the new Title for the Report

• Click View, Print Preview or click the view icon on the Standard Toolbar to return

to the report

3.5.3 Saving a Report

• Click File, Save or click the Save icon on the Standard Toolbar

3.5.4 Printing a Report

• Click File, Print or click the print icon on the Standard Toolbar

3.5.5 Closing a Report

• Click File, Close

29

3.6 Security

Access supports a rich array of security features to support the needs of different types of

Access applications. Most multi-user Access applications can be benefit from user-level

security, which lets developers designate groups of users. But some applications have more

specialized needs.

3.6.1 Setting a database password

We can require users to enter a password to gain unrestricted Access to all Access data and

database objects. Passwords are easy to administer compared to user level security. Password

security is appropriate if we have a group whose members need equal access to all elements

of a database file but not everyone in the office is a member of that group.

We can not use a password protected file as a member in a replica se because Jet database

replication can not synchronize with a password protected file. We should also be careful

about linking to database files with password protection because anyone who can access the

file that links the protected file has unrestricted access to the protected file. Access stores an

encrypted version of the password along with other information about the linked file. If

someone changes the data in the database then the users will be unable to get the information

according to the link of the data with other fields in other tables or queries. If someone

changes the password for a linked file, Access prompts for the new password the next time

another database file links to it.

To assign and remove a database password, we need exclusive access to the file. We can do

that by following these steps:

• Open a file by choosing Open Exclusive from the open button in the Open dialog

box to assign a password to a file

• Choose Security-Set Database Password from the Tools menu

30

• In the Set Database Password dialog box, we enter the password of choice in the

Password and verify text boxes and then click OK. The next time a user opens the

file, the application will ask for the password

• After opening a database exclusively, choose Tools-Security-Unset Database

Password. Remove the password by typing the password in the Unset Database

Password dialog box. This removes the initial prompt for a password before a

database is made available.

31

CHAPTER FOUR: HOTEL DATABASE DESIGN

In this chapter I described the works of a hotel and to describe the works in a easier method I

created one database using the Microsoft Access. Here I have given the data tables, queries,

forms, reports and the switchboard form.

4.1 Creating Tables for Hotel

Searching from some books I found that hotel's require some fixed fields in it. For every

hotel these fields are fixed, the data in the fields may vary hotel to hotel. For that reason I

started to create a table which is one of the main important part of a hotel, the 'Employee

Details' table.

Field Properties

General I Lool:yp'(
'Field Size " ·
Format
Decimal Places
Input Mask
Caption
Default Value
Validation Rule
Validation Text
Required
Indexed
Smart Tags

Long Integer

<>0

Auto

0

"Put A Non-Zero Value"
No
Yes (No Duplicates)

Figure 4.1 Employee Details Table

32

In a hotel if we create a database for that hotel, we must gather the information of the

employees. Here the 'Employee Details' table contains all necessary fields that we will try to

keep the data of an employee as an administrator or a manager. We have to put the

information of the employee, according to the field's necessity. I put the 'Employee ID' as

the primary key field. The employee ID must not be same for different employees. To search

for information of an employee, having an unique ID which is the primary key is much faster

and safer.

Another main part of the hotel for which we have to create a table to keep all the information,

the 'Customers Records' table. I create the 'Customers Records' table as shown in figure

below:

r > " , Field Properties
r~· '.!'JI,· .. . , .

General j Lookup I
Field Size Long Integer
Format
Decimal Places
Input Mask
Caption
Default Value
Validation Rule
Validation Text
Required
Indexed
Smart Tags

Auto

Customer ID

No
Yes (No Duplicates) ..

Figure 4.2 Customers Records Table

33

The table has created to keep all the information of customers. Each customer having a

Customer ID which is the primary key of the table. So that we can get the accurate data of a

customer. The table contains the duration the customer is staying in the hotel and the

payment terms.

The next table I created is the 'Room Information' table, which has shown in the figure

below:

On Suit
Roomrnformation : . , ..
_&entfl::!ig_ht -----
Ava1abality_YO . •· ,
Reservationm _ _ .
Fl.oon.J.Yiew. ••

Fiel~ Prop=er:..:t:.:ie.:.s __ ~---~.

Gener al I Lookup I
Field Size
Format
Input Mask
Caption
Default Value
Validation Rule
Vali,dation Text
Required
Allow Zero Length
Indexed
Unicode Compression
IME Mode
IME Sentence Mode
Smart Tags

50
A
fi
el
d
n
a
rn
e
C
a
n
b
e
u
p
to

No
Yes
Yes (No Duplicates)
Yes
No Control
None

Figure 4.3 Room Information Table

This table is used to keep the general information of the rooms of the hotel. To check which

room is available, what type of room is available and which customer is occupying which

room. The Reservation ID keeps the ID number for the advanced booked customers that will

34

keep reserved for the customer for the date it has reserved from and reserved till. By letting

know the ID number we can easily find that which room has been booked for that customer.

The data table will look like the figure I have given below:

Room Type
Single

Figure 4.4 Room Information Data Table

35

The next table I created is the 'Reservations' table. The fields section has shown in the figure

below:

Gen.er ~I j Lookup I
Field Size · Long I11t~ger

Decimal Places
Input Mask
Caption
Defeult Value
Validation Rule
Validation Text
Required
Indexed
SmartTags

Auto

Reservation ID

No
Yes (N9 Duplicates)

Figure 4.5 Reservations table

This table has been created to let the customers to book a room few days earlier of his

coming, so that he may get a room of the hotel definitely. ReservationID is the primary key

here, to keep the data unique for the relationships between the tables. This table contains the

customer ID, employee ID, reservation date, amount paid in advanced, room is confirmed for

the customer or not, and the transaction ID to keep the information of the payment the

customer has made in the account section .

36

The next table I created is the' Accounts' table. The fields section of the table has shown

below:

' • "' - . "" - ·-···· ····-·"········-· ····-·-'-'"···- ······-+ -·---···•.......... ·- ---· .••. """ .• ,, .•.............•..... j
---·-- ---···-·,,,,.,., ' ... -1-,------ ----- --- '"_;.,. _

Field Properties ----~------
General I Lookup I
Field Size
Format
Decimal Places
Input Mask
Caption
Default Value
Validation Rule
Validation Text
Required
Indexed
Smart Tags

Long Integer

Auto

Transaction ID

N,J
Yes (No Duplicates).

Figure 4.6 Accounts Table

This table keeps all the information of the monitory matters of the hotel. Here I just maid one

primary key which is the TransactionID. I can make two primary keys which will make it

composite key. But I chose the TransactionID as unique for this table where the other fields

like PaymentID, AccountID or the EmployeeID will work here as the foreign key fields. To

keep all the information of money getting from the customers or expenses done for the hotel,

this table will keep these information uniquely for all fields related to it.

37

The next table I created is the 'Expenses Record' table. The fields section of the table has

shown below:

iNuryipfr__
.Text

PlJrpos~ot~_:sp_~s_e_, _ -~Ji-ext.:=~~
AmountSpynt ~- _
Description _ .•••.•
DatePurchasecl - ---- -
Datesubmitted- -·
p~~mentr-<1ethpd ; .
Supplier ID
Jr ansactionID

Field Properties

Gener al ! Lookup J
Field Size Long Integer
Format
Decimal Pleces
Input Mask
Caption c:

Default Value
Validation Rule
Validation Text

. Required
Indexed
Smart Tags

Auto

Employee ID

No
Yes (No Duplicates)

Figure 4.7 Expenses Record Table

In this table we can keep all the information of the expenses has been made for the hotel.

Here I made the EmployeeID as the primary key as the expenses will definitely be made by

an employee and it can be easily saved here under the employees ID. Here the expenses type

keeps the information of the item the expenses has made for; purpose of expenses keeps the

information of the reason for the expense has been made. The other fields keep information

38

of the purchased date, the payment method, and the transaction ID to keep the amount of

expenses record in the 'Accounts' table.

The next table I created is the 'Products' table. The fields section of the table has shown

below:

Field Properties

General ltookl;Jp I
Field Size
Format.
Input Mask
Caption
D~fault Value
V alidatioh Rule
Validation Text
Required
Allow Zero Length
Indexed
Unicode Compression
!ME Mode
!ME Sentence Mode
Smart Tags

4

Product ID

No
No
Yes (No Duplicates)
No
No Control
None

Figure 4.8 Products Table

I have been created this table to keep all the information of the products has been bought for

the hotel. This will keep the data of the product bought, the description of the product,

supplier ID, unit price and the reorder level by which we can know the importance of the

order of this product.

The next table I created is the 'Suppliers Record' table. And the fields section of this table

has shown below:

:H~~~~:~~;=~~' 00 ·< , 4 tcA, • ,
0,

Gener al I L'2oki:!p
Field Size ··· '
Format
Decimal Places
Input Mask
Ceptlon
Default Value
Validation Rule
Validation Text
Required

!., Indexed
Smart Tags

Long Integer
A
fie
Id

Auto na
m
e
ca
n
be

Supplier ID

No
Yes (No Duplicates)

up

to

. 1·: --~~~~~~~~~.,.;..,.~~~~~~~~ ~·
Figure 4.9 Suppliers Record Table

This table has been created to keep all the information of the suppliers who will supply

different types of product necessary for the hotel. The suppliers will provide all the goods

need for the hotel, for that reason it's very important to keep the information of the suppliers

so that we can order the necessary product immediately.

40

4.2 Constructing relationships between tables

For getting the information quickly and exactly I need to create relationships between the

tables. The relationships will allow the tables to share all the data required for all the tables

between themselves. The relationship I established between the tables has shown in the

figure below:

SupplierName
ContactName
Address
City
Postal Code
StateOrProvince
Country/Region
PhoneNumber
!FaxNumber

11 Payment Terms
1 lEmailAddress

TransactionDate
TransactionDescription
TransactionAmount
Account!D
ReferenceNumber
WithdrawalAmount
DepositAmount
ServiceCharge
Tax
Employee ID

I Floor Number
I, Room Type
j On Suit
i Room Information
I:
1;1Rent/Night
JlAvaHabality
jl.ReservationID
!!Room View
,,.,,.,, ~

Figure 4.10 Structure of relationship between the tables

41

4.3 Creating Forms for my application

I created the forms by using the form wizard. The wizard made the job very easy while
creating the forms. There are all the options given for the forms type I want to see in my
form. I choose the wizard to create the form for the 'Accounts'. I selected the fields I need
for this type of form by clicking the single arrow shown in the figure below:

Which fields do you want on your form?

You can choose from more than one table or query.

I ables/Queries

fr able: A~c~unts
fl.vailable Fields:

PaymentID
Tr ansactionNumber
Tr ansactionDate
Tr ansactionDescription
Tr ansactionAmount
AccountID
ReferenceNumber

2,elected Fields:

Einish J
Figure 4.11 Form Wizard Window

After selecting the form's fields I clicked next to go to the next step of creating the form for
the accounts.

In the next step it's giving the layout selection for the form. I choose the 'Columnar' layout
for my 'Accounts' form.

42

What layout would you like for your form?

.. ._ I
r. \~olumnar.......... j ·
r Iabular

r Qatasheet

r Justified
r P[votTable

("" Pi::,,:otChart

Cancel f < ~ack j Next > L Einish

Figure 4.12 Layout selection window for the form

After selecting the layout I clicked the next button where the style selection window
appeared. The style selection window has shown below:

What style would you like?

Blends
Blueprint
Expedition
Industrial
International
Ricepaper
Sandstone
Standard
Stone
,Sumi Palntinq

---- ~--------·--··-~·--------·--··----··---·------·-·----,-----· --·-·-------·-

Cancel < ~ack l . Next > I Einish J
Figure 4.13 Style selection window for the form

43

I choose the 'Sumi Painting' style for my form. After that I clicked next, where I found the
'Title' window of the form wizard to choose a name for the form and the options to enter the
data directly using the form or I wish to modify the form's design. The figure has shown
below:

What title do you want for your form?

That's all the information the wizard needs to create your
form.

Do you want to open the form or modify the form's design?

r Qpen the form to view or enter information,

r.' /r:iodify the form's design. . ',, ·································•·•·

. .

······························

r Display t:J.elp on working with the form?

Cancel, I < ~ack ., J_ ~:<t > I Einish

Figure 4.14 Final window of the form wizard

I choose that I want to modify the form's design. Then I clicked 'Finish'. After clicking the
'Finish' button the form opened in the design mode like figure 4.16. From the 'Toolbox'
shown below I selected the 'Command Button' to create one button for the form which will
work in the form according to the command. I have to be sure that the 'Control Wizard'
option has been selected or not; if not I have to select the 'Control Wizard' option from the
'Toolbox'.

Figure 4.15 Toolbox

44

It is important to select the form's 'Header' and 'Footer' section. In the 'Footer' section we
have to put the 'Command Button' to let the 'Control Wizard' to work. Otherwise the
'Control Wizard' will not work for the 'Command Button'.

-ti Form Header

~r: I I = "" D ,;;,,:;;, .. ·······.- , ·:· :······· .
f.£:EJ ·.: <~• -·. -- I

Figure 4.16 Modifying the Form's Design

When I put the button in the 'Footer' section the 'Command Button Wizard' started. The
wizard has shown in the figure in the next page (Figure 4.17).

45

What action do you want to happen when the button is
pressed?

Different actions are available for each category.

~ategories: 8_ctions:

Record Navigation
Record Operations

Form Filter

Report Operations
Application
Miscellaneous

Edit Form Filter
Open Form
Open Page
Print a Form
Print Current Form
Refresh Form Data

< [2.ack L r1ext > EJnish Cancel

Figure 4.17 Command Button Wizard Window

There are six 'Categories', where in each category there are several 'Actions' options are
given. I choose the 'Form Operations' in the categories section and choose the 'Close Form'
in the actions section. Then I clicked 'Next'. The window shown in the figure below
appeared:

If you choose Text, you can type the text to display, If '>''OU
choose Picture, you cari click Browse to find a picture to display,

fclose Form

(.' j~icture·:' ·1 I Stop Sign
L .

-
Exit I ,,

B[OWSe... '.

r ~how All Pictures

C Caornl I < !2_ack · 1 r1ext > Einish j

Figure 4.18 Next step of the Command Button Wizard

46

I choose the 'Picture' section and selected the 'Exit' sign for the button I created. Then I
finished the wizard clicking the 'Finish' button.

4.3.1 Creating Pop-Up Form

I made one 'Pop-Up Form' in the 'Accounts (Customer Payment Entry Form)' form by
adding one 'Command Button' in the form 'Header' named 'Accounts'. In the 'Command
Button Wizard' I choose 'Form Operations' in the 'Categories' and choose 'Open Form'
in the 'Actions'. After selecting the form I want to see as 'Pop-Up' I clicked 'Next'. Clicked
'Open The Form And Find Specific Data To Display', and then clicked 'Next'. In the
wizard I created the links between 'Accounts (Customer Payment Entry Form)' form's
'CustomerlD' with 'Accounts' form's 'CustomerlD'. Then I selected the name for the
button which is 'Accounts'. Then I clicked 'Finish' button to end the process. All the
processes I did to create the 'Pop-Up' form have shown in the figures 4.19, 4.20, 4.21 and
4.22.

I opened the form to see the button I created is working according to the command or not. I
found that it's working properly.

What action do you want to happen when the button is
pressed? ·

Different ectlons are av,:1ila9le fo~ each category.

B.ctions:

Apply Form Filter
Close Form
Edit Form Filter

Report Operations
Application
Miscellaneous

Open Form
Open Page
Print a Form
Print Current Form
Refresh Form Data

. --· ·~-------------------·-··-----~------·-

Cancei I < §..oick I ~ext > I finish

Figure 4.19 Command Button Wizard

47

Accounts (Customer Payment Entry Form)
Accounts Checking Form
Accounts Entry form
l Customers Records
Employee Details
Employees Available Check Form

, Expenses Record

,, ~~--.-~----
Cancel < f,l_ack Next> EJnish I

Figure 4.20 Command Button Wizard to Select Form

Which fields contain matching data the button can use to look
up information? ·

d

Select the fields and then click the''<-> b"utton.

,, Accounts (Customer Payn .Accounts:
\:iisfr;ri,erID . . PaymentID

TransactionArnount
AccountID
ServiceCharge
Tax

FirstName
Paid
Deus

--- ------------------
Cancel < f,l_ack Next> Einish

Figure 4.21 Creating Links Between Two Forms

48

Do you want text or a picture on the button?

If you choose Text, you can type the text to display, If you
choose Picture, you can click Browse to find a picture to display,

r E'.Jcture: MS Access Form

r ~how 1?,11 Pictures

-------·····---------------···---~-----------··---------------- ·-------------·

Cancel < ~ack _ · .. J _ {:iext > f ::. _ Einish __ I
Figure 4.22 Giving a Name to the Button

After creating these two 'Command Button's in the 'Accounts (Customer Payment Entry
Form)', the table looks like the figure 4.23.

~ I ~, I ~*I of 6
Figure 2.23 View of the Accounts Form

49

4.4 Creating SQL Operation for Hotel

We need to create the query for getting the data from different tables in one query
application. This makes the work very easy. We can get the data very easily and quickly. I
have created the queries using the 'Create query in Design view' shown in the figure below:

Create query by using wizard

Accounts (Customer Base)

Customer Balance

Employee Details!

Employees Available For Rooms

Rooms Available

Rooms Available Query

Salary total

Groups

Favorites

Figure 4.24 Creating query in Design view

I choose 'Room Information' from the tables and add it to the query, then choose 'Rooms
Available' from the forms and add it to the query. The window of 'Show Table' has shown in
the figure below:

~~-·-J
Close .. j

Customers Records
Employee Details
Expenses Record
Products
Reservations 1m~1mm.1a

1

1 Suppliers Record
Switchboard Items

I
1.- ... -

tion

Figure 4.25 Show Table Window

50

I closed the 'Show Table' window and clicked right button on the query (Figure 4.26). I
selected the 'SQL View' to see the structured query language window to write the SQL
command for the 'Rooms Available' linked with the 'Room Information' to get the
appropriate data.

Field: I Room Number
Table: Rooms Available

On Suit
Room Informa
Rent/Night I
Availabality L

~ Data~heet View

~
. PivQtTable View .

~ PitotChart View - ~
Show I able, , ,

Parameters.,. ---
Q!,l.ery Type

SQL Specific ~

Room Number
Room Type
Availabality

• 1Room Type
Rooms Available

Sort: I I
Show: I ~ I ~

CriterJa:
or:

B.elationships. , ,

e_roperties, . ,

Figure 4.26 Query in Design View

The SQL command has shown in the figure below:

ELECT [Rooms Available].[Room Number], [Rooms Available),[Room Typ;j, [Rooms
vailable], Availabality
ROM [Rooms Available] INNER JOIN [Room Information] ON ([Rooms Available].[Room
umber]= [Room Information].[Room Number]) AND ([Rooms Available].[Room Type)=
Room Information].[Room Type]) AND ([Rooms Available].Availabality = [Room
nformation], Availabality);

Figure 4.27 SQL Command for the Query

51

4.5 Creating Report for the Hotel

Report is one of the main parts of the database. We can gather all the information of a
selected table and can print the data according to the necessity. I created four reports for my
project. I used the 'Create report by using Wizard' to create the reports (Figure 4.28).

Create report in Design view

Cre,:1te report bt using wizard
Customers Records

Expenses Record

Reservations

Suppliers Record

Modules'

~ Favorites

Figure 4.28 Creating report by using wizard

To create the report for 'Accounts' I selected the fields necessary for the report in the
'Selected Fields' by clicking the single arrow (Figure 4.29).

52

Which fields do you want on your report?

You can choose from more than one table or query.

I ables/Queries

fTable: A~~o~nis

f_vailable Fields: 2.elected Fields:

Tr ansactionDate
Tr ansactionDescription
Tr ansactionAmount
AccountID
ReferenceNumber

"·_> .I
,,)?.? I
, .. I'
'~

~fl
;~

Cancel ' I '< §_,:,ck j ~ext > j Einish

Figure 4.29 Selecting Fields for Report

Then I choose the sorting order for the fields and choose four orders for four fields (Figure
4.30). After choosing the sort order I clicked 'Next'. The window which appeared is the
'Style' selection window. There are many types of style. I choose the 'Bold' style, and then
clicked 'Next'. The window appeared is the selecting the 'Title' for the report. I gave the
name 'Accounts' and selected 'Preview the report'. The report page appeared.

All the steps I did to create report, I showed them as figure in the next pages as Figure 4.30,
Figure 4.31, Figure 4.32 and Figure 4.33.

53

You can sort records by up to four fields, in either
ascending or descending order,

[rransaction!D Ascendin,J

IPayment!D 3 Ascending

IAccount!D 3 Ascending

Ascending

Cancel < !;l_ack _ J · [iext > J Einish I
Figure 4.30 Choosing Sort Order

What style would you like?

;i:lo1cf"··· ·· ··· ·· ·· · ·· ····· · ·· ·

i 'JV'}'-,_<.,'\,-,, -,

,,.,~;~x XxXK--\t){J11t 1rJtB:1t:.%i1tv
:«:-:xx-·-~~><:-::-: ~--···/11,si). ·;~~~~-:>··~...-- c'\

V"'''·'~; · >:;<;{',::ti/\-,;/ \//'.-.-).;Y \~{:~:%>(:~}>;/f(},'.
~iil" :,:ir.i,::,:.c,:,

Casual
Compact
Corporate
Formal
Soft Gray

Label above Detail

Cancel < !;l_ack I - f:iext > . j Einish

Figure 4.31 Choosing the Style

54

What title do you want for your report?

That's all the information the wizard needs to create your
report.

Do you want to preview the report or modify the report's
design?

r.. !:,review the report.
r< tl_odify the report's design.

r· Display tielp on working with the report'?

i:an~el Einish J
Figure 4.32 Giving a Name for the Report

.A. cco unts

t!_elp

.• I ~lose J aetup I ~

hm1saction ID Pay1nent ID !Account ID !Reference Nmr•H:r I ransacrion Ntnnber
sssl I I

lrrmisaction Date

lrmns,1ction Description

Ir ransacnon Arno unt IVIMII dn:rl'1rn1 Amount Deposit Amount !service Charge
$0.00 I $000 I -

Ir (l.\(Err~,loyee m
$0.00

Figure 4.33 Accounts Report

55

4.6 Applying Switchboard Manager

I need to create a 'Switchboard Manager' to keep all the forms linked in it. In the
'Switchboard Manager' I have to create some buttons of which I have to give names and
have to link with the forms. The forms are already linked with the tables I created. So just by
creating the 'Switchboard Manager' I can get, add and edit the data saved in the tables.

OQline Collaboration

B.elationships, , ,

~ompact and Repair Database.,.

· · Bacl Up Database ...

!,_inked Table Manager

Q.atabase Splitter

ReQJication

. Start@ ...

[:1acro

Active 6. Controls, ..
Add-Ins

fl_utoCorrect Options ...

2_Witch~o?rcl Maria§lf~ ,,

l,Jpsizing Wizard

~ustomize ...

Figure 4.34 Creating the Switchboard Manager

In the database I clicked on 'Tools', highlighted the 'Database Utilities', then clicked the
'Switchboard Manager'. The 'Switchboard Manager' window started where we can create,
edit or delete any form or forms. I created a new 'Switchboard Manager' which I named as
'Hotel' and set it as default. Then I created one sub 'Switchboard Manager' form based on
the main 'Switchboard Manager' form and I named it as 'Hotel Records'. I double clicked on
the 'Hotel' to edit the switchboard page. I select the forms which I want to see in this
'Switchboard Manager'. I selected the forms and while double clicking on the forms, the edit
the switchboard items window opened to edit the forms. I selected the name of the form
which I want to see in the switchboard, in the 'Text' option. I gave the command for the form
I want to apply on it in the 'Command' option and selected the form I want to use for the
command in the 'Form' option. All the steps I did has shown in the figures in the next page
as Figure 4.45, Figure 4.46 and Figure 4.47.

56

Switchboard !:ages:
;Hotel. Default°·

Hotel Records
Main Switchboard

{iew .. ,

!;,dit .. ' J
Q.elete

Make Default I

Figure 4.35 Creating Switchboard Manager

(Hotel

!terns on this Switchboard:

~lose

Room Information
Reservation Form
Accounts (Customer Peyrnent Entry Form)
Enter/Edit Customer Records
Enter/View Other Informetlon.v..
Hotel Records

{iew ...

!;,dit .. ,

Q.elete

Figure 4.36 Editing Switchboard Page

~.:
;

OK _J
~ommand:

Eorm: !customers Record~
Cancel j

Figure 4.37 Editing Switchboard Items

57

If I want to add any buttons or want to edit the switchboard form I can open the form in the
design view and can add any options in it. But the 'Switchboard Manager' form contains a
strong Visual Basic code, so it would be better not to change the setting directly. To keep the
form safe and the code as well we can add some buttons in it. The 'Switchboard Manager'
form in design view looks like the figure given below:

~ I
i

Aa abl u ~- 1~,

@J:~~

!!lll!i11
...

Figure 4.38 Switchboard Form in the Design View

58

The 'Default' form which I named as 'Hotel' contains seven buttons, by which we can open
six different types of forms in different mode and by one we can open (Hotel Records
Button) the second page of the 'Switchboard' form which I named as 'Hotel Records'. In the
figure below I showed the first Switchboard form and its contents .

.LlJ Customer Form

_J Room Information

_J Reservation Form

_J Accounts [Customer Pa;.,ment Entry Form)

_J Enter/Edit Customer Records

_J. EnterNiew Other lrforrnefion;

_J Hotel Records

mView

Figure 4.39 Default Switchboard Form Named as 'Hotel'

In the design view I have added one button to stop the whole program. The button's named
as 'STOP'.

59

In the 'Switchboard Form' named as 'Hotel Records' I set seven buttons where six of the
buttons will open six different types of form which are very important for the persons
working as an administrator, but not necessary to open all the time. One button is to closing
the 'Hotel Records' form (Close Hotel Records) which will go back to the 'Hotel' form
closing this 'Hotel Records' form. The figure of the 'Hotel Records' form has shown below:

Jj Emplo),'ee Details EntwForm

_J Expenses Record Form

_J Suppliers Record Form

,_J Employees Available,

_J Products Information

..J Accounts Record Entry Form

_J Close Hotel Records

Figure 4.40 Second Switchboard Form Named as 'Hotel Records'

60

4. 7 Applying security password to database

I need to put a password for my database so that no one can change the data or settings of the
database. To put a password I need to open the database I created for the 'Hotel' which is
named as 'Project-400' in the exclusive mode. I selected the name of the database in the open
window. Then in the open button, which is on the lower right comer I selected the drop down
box and selected the 'Open Exclusive'. The steps to open database in the open exclusive
mode has shown in the figure below:

@·

M·t Recent
Documents

• Tools .•

Desktop

My J

My(""'"" I
l

L - - -
File [lame: _:J '·

Figure 4.41 Opening a Database in Exclusive Mode

61

The last step to create a password for the database I created, is to open the database and
selecting the 'tools' button. In the 'Tools' I need to highlight the security and then have to
select the 'Set Database Password ... ' option. The password giving window opens where I
need to give the password to set and then have to verify it. The figure to set database
password has given below:

OoJine Collaboration

B_elationships,, ,

Active~ Controls, , ,

Add-Ins

User and Group E'_ermissions,,,

User and Group /j_Ccounts, , ,

User-Level Security ~izard.,,

~ncode/Decode Database.,,
6utoCorrect Options, ..

\;;.ustomize ...

Qptions ...

Figure 4.42 Steps to Set Database Password

62

CONCLUSION

Microsoft Access is a powerful database programming tool that could be use in many

ways or many purposes to crate customize program to utilize, it can be used to create

small database program to large.

The program has been created to be automated a small hotel, It attempted to bring

together (for automation) most important sections/departments of a sample hotel in this

program.

According to this it's a very simple and user friendly program, it would be beneficiary to

anyone to use in practice.

63

REFERENCES

[1] Evan Callahan. Microsoft Access 2002 Visual Basic: For Applications Step by Step,

[2] Mahbubur Rahman. Microsoft Office 97 /2000: MS Access 97 /2000, Systech Publication,
July 2000.

[3] Bob Villareal. Access 2002 Programming By Example, Que Cooperation Press, July
2002.

[4] www.google.com.

[5] www.microsoft.com.

64

