
/ /',,,

#" ' ı.\

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

IMAGE PROCESSING TECHNIQUES AND NEURAL

NETWOKS

Graduation Project
COM -400

Student: Adeeb Al-Husseini

Supervisor: Asst. Prof. Dr Firudin Muradov

••

Nicosia - 2004

ACKNOWLEDGMENT

Praise be to GOD Most Gracious most Merciful

First of all, I would like to extend my utmost and deepest thanks to my advisor, Asst.

Prof. Dr. Firudin, for the intellectual support, encouragement, and enthusiasm, which made

this project possible.

I also pay tribute to my dearest parents, my friends and all my computer engineering

dept. staff members specially Assoc. Prof. Dr. Adnan K ashman, Assoc. Prof. Dr. Rahib

Abiyev , Mr. Umit ilhan, whom had taught me that no dream is impossible.

I am so happy and excited to complete the task which I had been given with the

blessing of God and also I am grateful to all the people in my life whom had supported me,

advised me, taught me and whom had always encouraged me to follow my dreams and

ambitions.

Also, my sincerest thanks must go to my friends, Dalia Hamdan , Samah Shoman,

Izz Al Deen Hanoun, Yazan Kassawne ,Qais Albene, Ahmad gharaibeh, Ahmad taweel,

Tayeb alatawne, magda, gintare, and specially my brother, Mahmoud Al-husseini, whom

shared their suggestions and evaluations throughout the completion of my project. The

comments from these friends enabled me to present this project successfully.

Finally, I thank God for giving me the will and courage to achieve my objectives .

••

ABSTRACT

Image processing is the process which can we apply over the image to manipulate some

features, such as removing the noise , edge detection , filtration, segmentation and so on

A neural network can be regarded as a machine that is designed to model, the way

ın which the brain performs a task or a function, the neural network is usually

implemented using electronic components or simulated software.

The novel idea is based on combining neural network arbitration and image

processing to automatically identify the object using edge detection techniques within

the image and manipulate some furthers within the image. An edge detection technique

is the process of doing extracting discontinuities in the gray level. The aim of edge

detection is that the objects can be recognized from only simple outlines

The project fulfills the request of combining image processing with neural network

to recognize the objects within the image. In this system user can teach the computer to

identify simple objects within the image, manipulate the image such as changing it to

gray level, make a filtration, object segmentation, edge detection.

"'

11

Table of Contents

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

INTRODUCTION
CHAPTER ONE: IMAGE PROCESSING
1.1 OVERVIEW

1 .2 IMAGE PROCESSING TECHNIQUES

1.2.1 Image compression

1.2.2 Image restoration

1.2.3 Image enhancement

1.2.4 Image recognition

1.2.5 Problems with image processing techniques

1.2.5.1 Speed

1.2.5.2 Computational expenses

1.2.5.3 Noise sensitivity and scale dependency

1.2.5.4 Low quality edge detection

1.2.5.5 Large amount of data

1 .3 SEQUENCE OF IMAGE 'PROCESSING

1. 3 .1 Image processing

1.3.1. 1 File organization

1.3.1.2 Pixel

1.3.1.3 Edge

1.3.1.4 Threshold

1.3.2 Image Segmentation

1 .3.2. 1 Segmentation problems

1.3.2.2 Segmentation method

1

11

111

VI

Vll

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

4

6

7
7

8

8

8

111

Table of Contents

CHAPTER TWO: NEURAL NETWORKS ıo

2. 1 OVERVIEW 10

2.2 NEURAL COMPUTING 1 O

2.3 NEURAL NETWORKS 10

2.4 ARTIFICIAL NEURAL NETWORKS 11

2.4. 1 The Analogy to the Brain 11

2.4.2 Intelligent Computing 11

2.4.2. 1 Artificial Intelligent System 12

2.4.2. 1. 1 Characteristics of Artificial Intelligent System 12

2.4.2.2 Experts system 12

2.4.2.3 Neural Networks 12

2.4.2.3. 1 Characteristics of Neural Networks 13

2.5 DESIGN NEURAL NETWORK 13

2.5. 1 Layers 13

2.5.2 Communication and types of connections 15

2.5.2. 1 Inter-layer Connections 15

2.5.3 Learning Process 16

2.5.3. 1 Off-line or On-line 17

2.5.3.2 Leaming laws 18

2.6 CLASSIFICATION OF NEURAL NETWORKS 19

2.6. 1 Classification of neural network according to flow of information 20

2.6.2 Classification of neural network according to there way gf learning 21

2.6.2.1 Supervised Leaming 21

2:6.2.1. 1 Perceptron 21

2.6.2. 1 .2 Back Propagation Algorithm 22

2.6.2. 1 .3 Hop field Network 24

2.6.2. 1 .4 Hamming Network 24

2.6.2.2 Unsupervised Leaming 25

2.6.2.2. 1 Kohonen's Leaming 25

2.6.2.2.2 Competitive Leaming 25

ıv

Table of Contents

2.6.2.2.3 Adaptive Leaming 25

2.6.3 Classification of neural network according to there objective functions 26

2.6.4 Where are Neural Networks being used 26

CHAPTER THREE: SYSTEM DEVELOPER 29

3. 1 OVERVIEW 29

3.2 PROGRAM IMPLEMENTATION 29

3.3 A BRIEF HISTORY OF C++ 29

3.3. 1 Cin C++ 30

3.3.2 Basic Concepts 30

3.3.3 Classes 31

3.3.4 Why Programming in C++ 33

3 .4 HISTORY OF MS ACCESS 34

3.5 BRIEF OVERVIEW OF RELATIONAL DATABASES AND DATABASE APPLICATIONS 34

3. 6 MS ACCESS ADVANTAGE 36

3.7 MS ACCESS DISADVANTAGE 37

CHAPTER FOUR: SOFTWARE IMPLEMENTAION
4.1 OVERVIEW

4.4 IMAGE SEGMENTATION

4.5 LEARNING

4.6 SEARCH ••

39

39

39

51

67

77

83

4.2 ENTERING THE SOFTWARE PROGRAM

4.3 PROGRAM TOOLS

CONCLUSION

REFERENCES

86

87

V

List of Abbreviations

LIST OF ABBREVIATIONS

RGB

A.I.S

I.B.M

N.N

E.S

UNIX

PCPL

ANSI

SQL

Red, Green, Blue

Artificial Intelligent System

International Business Machines

Neural Network

Expert System

UNiplexed Information and Computing system

Basic Combined Programming Language

American National Standards Institute

Structured Query Language

•

vı

INTRODUCTION

Image processing is the process which can we apply over the image to manipulate

some features, such as removing the noise , edge detection , filtration, segmentation and

so on.

Neural networks are computational constructs loosely modeled on the structure of

the human and animal brain. They are comprised of neurons that are the information

processor of a brain, and synapses, which are spaces between neurons that can be

thought of as weighted buses that connect these processors.

Chapter one presents a detail of image processing techniques and some applications

of it through topics covered in this chapter. It also describes the most fundamental parts

of image processing.

Chapter two describes neural computing, neural networks and the types of intelligent

computing, and the classification of neural network. it also show's the process of

designing and learning a neural network, in addition of some application for the neural

networks and where they are currently being used. Beside we are going to use the back

propagation algorithm to train the neural network.

Chapter three is intended to review a quick brief on the language which used to

implement the Project, and that is C++, and quick introduction to the database that I

used in my project by using Microsoft Access.

Chapter four describes details of software implementation and the source code for

each function of the software. It covers the most fundamental parts of image processing

algorithms and how can we use it to implement it in the real world.

•

vıı

Image Processing

CHAPTER I

IMAGE PROCESSING

1.1 Overview

In this chapter I will briefly give a detail view of image processing techniques and

some applications of it through topics covered in this chapter. It also describes the most

fundamental parts of image processing.

1.2 Image processing techniques
Image processing techniques can be categorized into four main areas:

1) Image compression.

2) Image restoration.

3) Image enhancement.

4) Image recognition.

1.2.1 Image compression
This is process where the amount of data necessary to store the image is reduced

.much as possible. There are two forms of image compression:

a) Information preserving compression: this retains all the original information within

the image. This compression yields good quality decompressed images but offers small

incompressins ratio.

b) Lossy compression: this dose not keeps all original information but has better

compression ratio.

1.2.2 Image restoration
This involves reconstructing an original image using knowledge of the nature of

degradation of the image. The image could have been corrupted through:

1. Loss of data.

2. Addition of unwanted data such as (noise).

Image restoration is often applied prior to implementing other ımage processıng

techniques in order to improve their success rate.

1

Image Processing

1.2.3 Image enhancement
This involves emphasizing some features within an image which are not clear to

the human or a recognition system. The aim of image enhancement is to make an image

more acceptable to certain applications. Its often applied prior recognition.

1.2.4 Image recognition
This involves classifying an object within an image or whole image into a set of

known classes. This can be done in two processes:

1. Low level process:

This uses little or no prior knowledge they are used as pre-processing stages for high

level process e.g. (edge detection).

2. High-level process:

This uses prior knowledge, where it takes the output of low-level process and further

process it e.g. (template matching).

1.2.5 Problems with image processing techniques
There are five main problems with image processing techniques:

a) Speed.

b) Computational expenses.

c) Noise sensitivity and scale dependency.

d) Low quality edge detection.

e) Large amount of data.

1.2.5.1 Speed
Speed could be a problem if the.size of image is large.

1.2.5.2 Computational expenses
This also related to image size a compromise is needed between image size and quality.

1.2.5.3 Noise sensitivity and scale dependency
Images can have noise and effects of noise is mostly shown when changing scale.

1.2.5.4 Low quality edge detection
Edge detection is low-level process that is applied prior to higher process. Usually

results are of low quality.

2

Image Processing

1.2.5.5 Large amount of data
Because of large amount of data more powerful computers are required. And for basic

processing parallel processing is needed like NN

1.3 Sequence of Image Processing
• Image processing.
• Image segmentation.
• Nural network.

1.3.1 Image processing

Image Bitmaps are defined as a regular rectangular mesh of cells called Pixels.

Each pixel containing a color value. Bitmaps are used to represent images on the

computer.

8-bit image

In this case each pixel takes 1 byte (8 bits) of storage resulting in 256 different

states_256 different color .By convention O is normally black and 256 is white. All other

colors lie in between, for example, 136 represent the color brown, and the bitmap has a

maximum of 256 colors. Each pixel in the bitmap is represented by 1 byte index into the

color palette

Pixel
200

l
200

...

Figure 1.1 8-bit image

•
3

Image Processing

24-bit image

200

600

l
c-zss I o-2ss I o-2ss

Figure 1 .2 24-bit image

This consists of three different types (each 8 bits): red, green, and blue each green,

blue, and red byte has its 256 combination.

1.3.1.1 File organization
Each Bitmap file Contains four different sections:

• Bitmap_file header.

• Bitmap _information header.

• Color palette.

• Bitmap data.

The BMP file header is 14 bytes in length, it is followed by a second header (the..
BMP header is 40 bytes in length), a variable si~ed palette, and finally, the BMP data

which from one image to another.

4

Image Processing

Figure 1.3 File Organization

The bitmap header contains information about the type, size, and layout of a

Bitmap file, the header is defined as a BITMAPFILEHEADER structure.

The color palette is defined as an, contains as many colors as there are colors in the

bitmap. The array of structures specifies the red , green , and blue intensity values of

each color in a display devices color palette .each pixel in the bitmap data stores a single

value used an index into the color palette .

The color information stored in the element at that index specifies the color of

that pixel. The color table is not present in the 24_bit bitmaps because each pixel is

represented by 24 bit red-green-blue (RGB) values in the actual bitmap data area, and

having a color palette in this case could be very impractical.

The last part immediately followed by the color table, consist of an array of? BYTE

values representing consecutive rows of the bitmap.

Table 1.1 Bitmap File Headers

BitmapFile Header consists of: Example
"

Type 19778

Size 3118 ..~
Reserved 1 o
Reserved 2 o
OffsetBits 118

5

Image Processing

Table 1 .2 Bitmap info Header

Size 40

Width 80

Height 75

Planes 1

BitCount 4

Compression O (always valued

to zero in the

images)

Sizelmage 3000

1.3.1.2 Pixel
A pixel or element is the smallest unit possible in an images, the physical size of a

pixel is determinated by the display or output device that expresses it, while the

computational size is limited only by the memory of the machine processing the picture,

the sampling Soft an images is an expression of pixel size, the depth of the pixel,

expresses the level of quantization.

- Histogram
Brightness histogram provides the frequency of the brightness value z in the image.

"'

HiO 200 255

Figure 1.4 Histogram

6

Image Processing

1.3.1.3 Edge

Locate sharp changes in the intensity function. Edges are pixels where brightness
changes abruptly.

Calculus describes change of continuous function using derivatives; an image function

depends on two variables - partial derivatives. A change of the image function can be

described by a gradient that points in the direction of the largest growth of the image

function. An edge is property attached to an individual pixel and is calculated from the

image function behavior in a neighborhood of the pixel. It is a vector variable:

• Magnitude of the gradient.

• Direction 0.

The gradient direction gives the direction of maximal growth of the function,

from black (f (i,j)=O) to white (f (i,j)=255) .

This is illustrated below; closed lines of the same brightness. The orientation O points

east. Edges are often used in image analysis for finding region boundaries. Boundary

and its parts (edges) are perpendicular to the direction of the gradient.

1.3.1.4 Threshold

• Gray level threshold is the simplest segmentation process.

• Many objects or image region are characterized by constant reflectivity or light

absorption their surface.

• Thresholding is computationally inexpensive and fast.

• Thresholding can easily be done in real time using specialized hardware.

• Complete segmentation can result from threshold in simple scenes.

• Normal threshold:

g (i ,j) = 1 for f (i ,j) >T

=O forf(i,j)<T.

• Binary threshold.

Segmentation an image into region of pixels with gray levels from a set D and into

background otherwise

g (i, j) = 1 for f (i ,j) 0 D

= O otherwise.

• Can also serve border detection.

7

Image Processing

1.3.2 Image Segmentation
One of the most important steps leading to the analysis of processed image data.

Its main goal is to divide an image into parts that have a strong correlation with objects

or areas of the real world contain. Complete segmentation -set of disjoint regions

uniquely corresponding with objects in the input image. Cooperation with higher

processing level which uses specific knowledge of the problem domain is necessary.

Partial segmentation - regions do not correspond directly with image objects. Image is

divided into separate regions that are homogeneous with respect to a chosen property

such as brightness, color, reflectivity, texture, etc.

In a complex scene, a set of possibly overlapping homogeneous regions may result.

The partially segmented image must then be subjected to further processing, and the

final image segmentation may be found with the help of higher level information.

Simple segmentation problems:

Contrasted objects on a uniform background.

Simple assembly tasks, blood cell, printed characters, ect.

Totally correct and complete segmentation of complex scenes usually cannot be

achieved in this processing phase. A reasonable aim is to use partial segmentation as an

input to higher level processing.

1.3.2.1 Segmentation problems
• Image data ambiguity.

• Information noise.

1.3.2.2 Segmentation method
• Global approaches, e.g. using histogram of image features.-• Edge-based segmentations.

• Region-based segmentations.

• Characteristics used in edge detection or region growing:

Brightness.

Texture.

Velocity field.

• Edge-based and region-bases segmentation approaches solve a dual problem

border x region.

8

Image Processing

• Because of different natures of the various edge-and region-and algorithms, the

may be expected to give somewhat different results and consequently different

information.

• The segmentation results of these two approaches can therefore be combined in

a single description structure.

9

Neural Networks

CHAPTER2

NEURAL NETWORKS

2.1 Overview

This chapter describes neural computing, neural networks and the types of

intelligent computing, and the classification of neural network. it also show's the process

of designing and learning a neural network, in addition of some application for the

neural networks and where they are currently being used. Beside we are going to use the

back propagation algorithm to train the neural network.

2.2 Neural Computing
It is a concept of processing data based on the way neurons in the brain process

information of communication with each other .neural computing is performed using

artificial neural network.

In order to know how dose it works we have to look how the brain works. The brain

consists of neurons it is high complex, on-linear and parallel computers.

It has capability to organize the neurons so as to perform certain computations many

times faster, than the fastest digital computer existence now days.

2.3 Neural Networks
A neural network is massively parallel distributed processors that has a neutral

ability for storing experimental knowledge and make it available for late use.

The neural network resembles the brain in two respects:

1. Knowledge is acquired by a network thought a learning process.

2. interconnection between neurons; known as synaptic weights and used to store the

knowledge.

10

Neural Networks

2.4 Artificial Neural Networks
Artificial Neural Networks is a system loosely modeled on the human brain. The

field goes by many, such as connectionism, parallel distributed processing.

Neuro-computing, neural intelligent systems, machine learning algorithms, and

artificial neural networks, it is an attempt to simulate within specialized hardware or

sophisticated software, the multiple layers of simple processing elements called neuron,

Each neuron is linked to cretin of its neighbors with varying coefficient of connectivity

that represent the strengths of these connections Leaming is accomplished by adjusting

these strengths to cause the overall network to output appropriate result.

2.4.1 The Analogy to the Brain
The most Basic component of neural networks are modeled after the structure of

the brain. Some neural network structures are not closely to the brain and some does not

have a biological counterpart in the brain.

However, neural networks have a strong similarity to the biological brain and

therefore great deal of the terminology is borrowed from neuroscience.

The most basic of the human brain is a specific type of cell, which provides us with

the abilities to remember, think, and apply previous experience to our every action.

These cells are known as neurons, each of these neurons can connect with up to

200000 other neurons. The power of the brain comes from the numbers of these basic

components and the multiple connections between them.

Even though all artificial neural networks are constructed form this building block

the fundamentals may very in these building blocks and these are differences.

2.4.2 Intelligent Computing
There are three kind of intelligent computing:

1. Artificial intelligent system (A.I.S).

2. Experts system (E.S).

3. Neural Networks (N.N).

11

Neural Networks

2.4.2.1 Artificial Intelligent System (A.LS)
Artificial intelligent systems used for computation and recognition .they follow

this general algorithm:

Input data Traditional computer Non-Intelligent computer

No

Stop
yes If optimization

achieved Optimized data

Figure 2. 1 Artificial intelligent Algorithm

2.4.2.1.1 Characteristics of Artificial Intelligent System (A.LS)
1. Imitation of human reasoning process.

2. Sequential information processing.

3. Explicit knowledge representation.

4. Use of deductive reasoning.

5. Leaming outside system.

2.4.2.2 Experts system (E.S)
Experts system is a data base system which stores detailed information given by

experts to be used by non-experts .such as system is usually found in medical systems.

Users see a user-friendly interface and only learn to apply using certain parameters.

2.4.2.3 Neural Networks (NN)
Neural networks are the data related to the brain. In a 3-pound brain, there are:

• 100 billion neuron (cells).

• 1 O billion computational cells.

• 60 trillion connections.

12

Neural Networks

2.4.2.3.1 Characteristics of Neural Networks (NN)
l. lınitation of the structure and function of the brain.

2. Parallel information processing.

3. Implicit knowledge representation.

4. Application of inductive reasoning.

5. Leaming is within the system.

2.5 Design Neural Network
The developer must go through a period of trial and error in the design decisions

before coming up with a satisfactory design.

The design issues in neural networks are complex and are the major concerns of the

system developers.

Designing a neural network consists of:

• Arranging neurons in various layers.

• Deciding the type of connections among neuron for different layers, as Well as

among the neurons within a layer.

• Deciding the way a neuron receives input and produces output.

• Determining the strength of connection weights by using a training data set.

The process of designing a neural network is an iterative process.

2.5.1 Layers
Biologically, neural networks are constructed in three dimensional ways from

microscopic component, these neuron seem capable of nearly unrestricted

interconnections. This is not true in any man-made network. Artificial neural networks

are the simple clustering of the primitive artificial neurons.

This clustering occurs bf creating layers, which are then connected to one

another .How these layers connect may also vary .basically, all artificial neural networks

have a similar structure of topology .Some of the neurons interface the real world to

receive its input and other neurons provide the real world with the network's output .All

the rest of the neurons are hidden from view.

13

Neural Networks

INPUT LAYER

HIDDEN LAYER

(there may be several hidden layers)

Figure 2.2. Architectural graph of Neural Network Layer,-

As the figure2.2 shows, the neurons are grouped into layers the input layer

consists of neurons that receive input from the external environment.

The output layer consists of neurons that communicate the output of the system to

the user or external environment. There are usually a number of hidden layers between

these two layers.

When the input layer receives the input its neurons produce output, which becomes

input to the other layers of the system. The process continues until a certain condition is

satisfied or until the output layer is invoked and fires their output to the external

environment.

To determine the number of hidden neurons the network should have to perform

its best one are often left out to•• the method trial and errors, if you increase the hidden

number of neurons too much you will get an over fit, that is the net will have problem to

generalize. The training set of data will be memorizes, making the network useless on

new data sets.

14

Neural Networks

2.5.2 Communication and types of connections
Neurons are connected via a network o f p aths c arrying the output o f neuron as

input to another neuron. These paths is normally unidirectional ,there might however be

a two-way connection between two neurons ,because there may be an another path in

reverse direction a neuron receive input from many neurons, but produce a single
output, which is communicated to other neurons.

The neuron in a layer may communicate with each other ,or they may not have any

connect one the neurons of one layer are always connect ed to the neurons of at least
another layer.

2.5.2.1 Inter-layer Connections
There are different types of connections used between layers; these connections

between layers are called inter-layer connections.

1. Fully connected: Each neuron on the first layer is connected to every neuron on the
second layer.

2. Partially connected: A neuron of the first layer does not have to be connected to
all neurons on the second layer.

3. Feed forward: The neurons on the first layers send their output to the neurons on

the second layer, but they do not receive any input back from the neurons on the second
layer.

4. Bi-directional: There is another set of connections could be fully - or partially
connected.

5. Hierarchical: If a neural network has hierarchical structure, the neurons of a lower

layer may only communicate with neurons on the next level of layer.

6. Resonance: The layer has bi-directions, and they can continue sending messages

across the connections a number of times until a condition is achieved.

2.5.2.2 Inter-layer Connections
In more complex structures the neurons communicate among themselves within a layer

this is known as intra-layer connections . there are two types of intra-layer connections.
1. Recurrent

The neurons within a layer are fully - or partially connected to one another .After

these neurons receive input form another layer, they communicate their output with one

another a number of times before they are allowed to send their outputs to another layer.

15

Neural Networks

Generally some conditions among the neurons of the layer should be achieved before

they communicate their output to another layer.

2. on-center I off surround

Neuron within a layer has excitatory connections to itself and its immediate

Neighbors, and has inhibitory connections to other neurons.

One can imagine this type of connection as a competitive gang of neurons each

Gang excites itself and its gang members and inhibits all member of other gang, After a

few round of signal interchange, the neurons with an active output value Will win, and

is allowed to update its and its gang member's weights. (There are two types of

connections between two neurons, excitatory or inhibitory. in the excitatory connections

the output of one neurons increase the action potential of the neurons to which it is

connected. When the connection type between two Neurons is inhibitory, then the

output of the neuron sending a message would reduce the activity or the action potential

of the receiving neuron. One causes the Summing mechanism of the next neuron to add

while the other causes it to Subtract, one excites while the other inhibits).

2.5.3 Learning Process
The brain basically learn form experience .Neural networks are sometimes called

machine learning algorithms, because changing of its connection weight (training)

Causes the network to learn the solution to a problem.

The strength of connection between the neurons is r\stored as weight-value for the

specific connection, the system learn new knowledge by adjusting these connection

weights.

The learning ability of a neural network is determined by its architecture and by

the algorithmic method chosen for training, the training method usually consists three

schemes:

Unsupervised learning

The hidden neurons must find a way to organize themselves without help from the

outside .In this approach ,no sample outputs are provided to the network against which

it can measure its predictive performance for given vector of inputs . This is learning

by doing.

16

Neural Networks

Reinforcement learning

This method works on reinforcement from the outside. The connections among the

neurons in the hidden 1 ayer a re randomly arranged, then reshuffled as the network is

told how close it is to solving the problem. Reinforcement learning is also called

supervised learning, because it requires a teacher the teacher may be a training set of

data or an observer who grades the performance of the network result. Both

unsupervised and reinforcement suffers from relative slowness and inefficiency relying

on a random shuffling to find the paper connection weights.

Back propagation

This method is proven highly successful in training of multiplayer neural nets. The

networks is not just given reinforcement for how it is doing on task .Information

about errors is also filtered back through the system and is used to adjust the

connections between the layers ,thus improving performance .A form of supervised

learning.

2.5.3.1 Off-line or On-line
One can categorize the learning method into yet another group, off-line. When the

system uses input data to change its weight to learn the domain knowledge, the system

could be in training mode or learning mode. When the system is being used as a

decision aid to make recommendations .it is in the operation mode, this is also sometime

called recall.

1. Off-line

In the off-line learning methdds, once the systems enters in to the operation mode, its

weight are fixed and do not change any more .Most of the networks are of the off-line

learning type.

2. On-line

In on-line or real time learning, when the system is not in operation mode (recall), it

continues to learn while being used as decision tool. This type of learning has a more

complex design structure.

17

'l

Neural Networks

2.5.3.2 Learning laws
The main idea in the Neural networks is to emulate the human thinking process,

how would a person recognize an object a pen or a car or a friend.

An important consideration in ANN is the use of appropriate learning algorithm

(training algorithms) there are a hundreds of methods, the learning algorithms can be

classified as supervised and unsupervised.
There are a variety of learning laws which are in common use. These laws are

mathematical algorithms used to update the connection weights. Most of these laws are

some sort of variation of the best known and oldest learning law, Hebb's Rule .Man;s

understanding of how neural processing actually works is very limited.

1. Hebb's Rule
The first and the best known learning rule was introduced by Donald Hebb .the

description appeared in his book the organization of Behavior in 1949 . this basic rule

is:" If a neuron receive an input form another neuron, and if both are highly active

(mathematically have the same sign), the weight between the neurons should be

strengthened".

2. Partially connected
A neuron of the first layer does not have to be connected to all neurons on the

second layer.

3. Hopfıeld Laws
This laws is similar to Hebb's Rule with exception that it specifies the magnitude of

the strengthening or weakening .It states ,"if the desired output and the input are both

active or both inactive ,increment the connection weight by the learning rate , otherwise

decrement the weight by the learning rate ". (Most learning functions have some

provision for a 1 earning rate, or a 1 earning constant. usually this term is positive and

between zero and one).

4. The Delta Rule
Delta Rule is further variation of Hebb's Rule , and it is one of the most commonly

used .this rule is based on the idea of continuously modifying the strengths of the input

connections to reduce the difference (the delta) Between the desired output value and

the and the actual output of a neuron.

18

Neural Networks

This rule changes the connection weight in the way that minimizes the mean squared

error of the network. The error is back propagated into pervious layers one at a time.

The process of the error is back propagating the network errors continues until the first

layer is reached the network type called Feed forward ,back-propagation derives its

name from this method of computing the error term.

This rule is also referred to as the Windrow-Hoff Leaming Rule and the Least Mean

Square Leaming Rule.

5. Kohonen's Learning Law

This procedure, developed by Teuvo Kohonen, was inspired by learning ın

biological systems. In this procedure, the neurons compete for the opportunity to

learn, or to update their weights.

The processing neuron with the largest output is declared the winner and has the

capability of inhibiting its competitors as well as exciting its neighbors are allowed to

update their connection weights.

The kohonen rule does not require desired output . therefore it is implemented in the

unsupervised methods of learning. Kohonen has used this rule combined with the on -

center/off-surround intra-layer connection to create the self-organizing neural network,

which has unsupervised learning. Only communicate with neurons on the next level of

layer

2.6 Classification of Neural Networks (N.N)
A neural network can be classified to three man section according to:

1. Flow of information.

2. Their way of learning.

3. There objective function.

19

Neural Networks

2.6.1 Classification of (N.N) according to flow of information
1. Feed forward N.N

Input data flows from (bottom to top) or (left to right) of the network.

Top

Layer

]
Input _

Buttom

Figure 2.3 Single Layer N.N (information flow from bottom to top)

Right Left

Input Layer

Figure 2.4 Single Layer N.N (information flow from bottom to top)

There are three main parts of a N.N:

1. Input object: non-processing element and normally contain a code for input data
~

they acts as gates
'2. Hidden object: these contain processing elements (neurons).and •. can be as many

•
layers as the N.N design needs.

3. Output object: processing element (neurons) and provide the N.N output.

20

Neural Networks

2. Recurrent N.N (feedback)

Here data is feedback from output layers to previous layer.

HIDDENLAYERS

Figure 2.5 Multi layer feedback N.N

2.6.2 Classification of (N.N) according to there way of learning
Neural Network (N.N) can be classified according to the way they learn:

a- Supervised basis.

b- Unsupervised basis.

2.6.2.1 Supervised Learning
In a supervised learning process the input data and its corresponding output are

presented to the neural network.

These networks will, according to defined 1 aw, change i ts weight in order to be

Example of supervised learners:

1. Perceptron.

2. Back propagation algorithm.

3. Hopfield algorithm.

4. Hamming algorithm.
••

2.6.2.1.1 Perceptron
A perceptron model is the building block of neural networks .its the smallest

network with two input nodes and one processing output neuron. It can make decision

and learn.When teaching a percepton an input and output are provided with each

example.

The difference between the target and output is called error . this used to update and

change the weight, thus giving the perceptron new memory.

21

Neural Networks

Output

o
I

~

:f ~

CJ ~ ,ı ı
X1 X2

Weights

Input

Figure 2.6 Architectural graph of Perceptron

2.6.2.1.2 Back Propagation Algorithm
Back propagation is short for back error propagation .the word PROPAGATION

is synonymous to broadcast , dissemination promulgation ,circulation , and if we take

the whole name it means disseminate the error of a result back to the input in order to

rectify the result . Back propagation (Bp) method is the Generalized Delta Rule. There

are two major steps in the Back Propagation (Bp):

Forward Pass:

The forward pass the network works as usual with each input multiplied by it own

random weight, then a transfer function is applied to the result (depending on the

number of layers) then armed with actual required and error value we start the

backward pass .

Backward Pass: ..
The backward pass the process is only to enhance the weight so that new weights will

be calculated to be used again in the forward pass, the Network usually has one more

hidden layers

22

Neural Networks

INPUT LAYER HIDDEN LAYER1 HIDDEN LAYER2 OUTPUT LAYER

INPUT
OUTPUT

Weights
input-hidden1

Weights
hidden 1-hidden2

Weights
hidden2-output

Figure 2. 7 Architectural graph of Back Propagation algorithm

In general the Bp works as follows:

• Initialize weight (W ij) with random values and set parameters

• Read in the inputs (Xi) vector and the desired output

• Compute the error =Desired output -Actual output or (delta)= Zj-Yj.

• Change the weights by working backwards from the output layer through the

hidden layers.

In the figure (2.8) I will show the network that I used in my project:

INPUT HIDDEN OUTPUT

(Destency)
X1

ı -----·------------·----·-----·ı
l F=£Wij*Xi j
I H= 1/ l+ e=-f Jı_ ı

net= £HiW ı
O= 1/l+e"-net

·-·--·- Q_<;_Q_:ÇJ j

(w/L)
X2

(Edges)
X3

(Number of object)
X4

23

Neural Networks

Figure 2.8 Back Propagation algorithm for software implementation

2.6.2.1.3 Hopfield Network
This network accepts binary inputs. Inputs are represented to the network in

discrete times it used feedback.

OUTPUT

INPUT

Figure 2.8 Architectural graph of Hop field Network

2.6.2.1.4 Hamming Network
This network based on Hopfield network and it has four layers:

- Ll: Input layer.

- L2: Score matching layer.

- L3: Hop field network.

- L4: Output layer.

L4: Output Layer

LJ: Score Matching Layer

Figure 2.9 Architectural graph of Hamming Network

24

Neural Networks

2.6.2.2 Unsupervised Learning
In this kind of learning only input vectors are presented to the network once this

input data is given to the network the weights are adjusted in an ordered way according

to some figure of merit.

Example of supervised learners:

1. Kohonen's self-organizing maps.

2. Competitive learning.

3. Adaptive Resonance Theory.

2.6.2.2.1 Kohonen's Learning
This type of learning based on placing neurons within layers in an organized way.

Assuming two layers arranged like a grid.

The dot product is calculated and the neuron with the highest value is allowed to

process, together with its neighbors.

2.6.2.2.2 Competitive Learning
In this type of learning the neurons are organized into inhibitory clusters. The

cluster with the highest total-dot product is allowed to learn and the other switches off.

2.6.2.2.3 Adaptive Learning
In this type of learning it can process both binary and continuous input data.

25

Neural Networks

2.6.3 Classification of (N.N) according to there objective functions
Neural networks can be classified according to there objective function into four parts:
1. Classification.

2. Association.

3. Optimization.

4. Self-organization.

r
N.N

I
I ı

I I I Ir I Self-organizationI I association optimization classification

Retrieval and recognition Finding best solution or Ability to adapt
Assignment of input data of objects based on output for the problem.to different group. incomplet data of object.

Figure 2. 1 Architectural graph ofN.N according to there objective function

2.7 Where are Neural Networks being used
Neural networks are performing successfully where other methods do not,

recognizing and matching complicated, vague or incomplete patterns.

Neural networks have been applied in solving a wide variety of problems. Them ost

common use for neural networks is to project what will most likely happen. There are

many areas where prediction ca'h help in setting priorities .for example, the emergency

room at a hospital can be hectic place, to know who the most critical needs help can

enable a more successful operation. , -

Basically, all organization must establish priorities, which govern the allocation of

their resources .Neural networks have been used as a mechanism of knowledge

acquisition for expert system in stock marker forecasting with astonishingly accurate

results. Neural networks have also been used for bankruptcy.

Although one may apply neural network systems for interpretation, prediction,

diagnosis planning, monitoring

26

Neural Networks

debugging , repair , instruction , and c antral , the mast successful applications of neural

networks are in categorization and pattern recognition .such a system classifies the

object under investigation (e.g. an illness , pattern, a picture ,a chemical compound ,a

word ,the financial profile of a customer) as one of numbers possible categories that ,in

return , may trigger the recommendation of an action (such as a treatment plan or

financial plan). \
A company called Nestor, have used neural networks for financial risk assessment

for mortgage insurance decisions, categorizing the risk of loans as good or bad .Neural

networks has also been applied to convert text to speech, NET talk is one of the systems

developed for this purpose .Image processing and pattern recognition from an important

area of neural networks, probably one of the most actively research areas of neural

networks.
An other of research for applications of neural networks is character recognition and

handwriting recognition. This area has use in banking, credit card processing and other

financial services. the pattern recognition capability of neural networks has been used to

read handwriting in processing checks, the amount must normally be entered into the

system by a human .A system that could automate this would expedite check processing

and reduce errors. One such system has been developed by HNC (hecht-Nielsen Co.) for

Bank Tee.
One of the best known applications is the bomb detector installed in some U.S.

airports. This device called SNOOPE, determine the presence of cretin compounds from

the chemical configuration of their components.

In a document form International Joint conference, one can find reports on using

neural networks in areas ranging from robotics, speech, signal prospecting, vision,

character recognition to musical composition, detection of heart malfunction and

epilepsy, fish detection and classifications, optimization, and scheduling. One may take

under consideration that most of the reported applications are still in research stage.

Basically, most application of neural networks falls into the following five categories:

27

Neural Networks

1. Prediction

Uses input values to predict some output. E.g. pick the best stocks in the market,
predict weather, and identify people with cancer risk.

2. Classification

Uses input values to determine the classification. E.g. is the input the letter A, is the

blob of the video data a plane and what kind ofplane is it .

3. Data association

Like classification but it also recognizes data that contains errors. E.g. not only

identify the characters that were scanned but identify when the scanner is not
working properly.

4. Data conceptualization

Analyze the inputs so that grouping relationships can be inferred. E.g. extract from a

database the names of those most likely to by a particular product.

5. Data Filtering

Smooth an input signal. E.g. take the noise out of a telephone signal

••

28

System Developer

CHAPTER3

SYSTEM DEVELOPER

3.1 Overview

This chapter is intended to review a quick brief on the language which used to

implement the Project, and that is C++, and quick introduction to the database that I

used in my project by using Microsoft Access.

3.2 Program Implementation
The program is divided in tow two parts: the database part and the application part.

For the database, to meet the flexibility, I have chosen MS ACCESS database which is

one of the main topic ofmy overall project as well.

For the application part, C++ is my choice due to its object-oriented functionality and

flexibility.

3.3 A Brief History of C++
The C++ Programming Language is basically an extension of the C Programming

Language. The C Programming language was developed from 1969-1973 at Bell labs, at

the same time the UNIX operating system was being developed there. C was a direct

descendant o fthe language B, which was developed by Ken Thompson as a systems

programming language for the fledgling UNIX operating system. B, in tum, descended

from the language BCPL which was designed in the 1960s by Martin Richards while at

MIT.

In 1 971 Dennis Ritchie at Bell Labs extended the B language (by adding types)

into what he called NB, for "New B". Ritchie credits some of his changes to language

construct found in Algol68, although he states "although it [the type scheme], perhaps,

did not emerge in a form that Algol's adherents would approve of' After restructuring

the language and rewriting the compiler for B, Ritchie gave his new language a name:

"C".

In 1983, with various versions of C floating around the computer world, ANSI

established a committee that eventually published a standard for Cin 1989.

29

System Developer

In 1983 Bjarne Stroustrup at Bell Labs created C++. C++ was designed for the

UNIX system environment, it represents an enhancement of the C programming

language and enables programmers to improve the quality of code produced, thus
making reusable code easier to write.

3.3.1 C in C++
To a large extent, C++ is a superset of C, and most carefully written ANSI C will

compile as C++. There are a few major caveats though:

• All functions must be declared b efore they are used, rather than defaulting to
Type int.

• All function declarations and definition headers must use new-style declarations,

e.g., extern int foo(int a, char* b);

The form extern int foo(); means that foo takes no arguments, rather than

arguments of an unspecified type and number. In fact, some advise using a C++

Compiler even on normal C code, because it will catch errors like misused Functions
that a normal C compiler will let slide.

• If you need to link C object files together with C++, when you declare the C

Functions for the C++ files, they must be done like this:

Extern "C" int foo(int a, char* b);

Otherwise the C++ compiler will alter the name in a strange manner.

• There are a number of new keywords, which you may not use as identifiers

some common ones are new, delete, const, and class.

3.3.2 Basic Concepts
Before giving examples of Ç++ features, I will go over some of the basic concepts

of Object-oriented languages.

Classes and objects: A class is similar to a C structure, except that the-definition of the

data structure, and all of the functions that operate on the data structure are Grouped

together in one place. An object is an instance of a class (an instance of the data

structure); objects share the same functions with other objects of the same Class, but

each object (each instance) has its own copy of the data structure. A Class thus defines

two aspects of the objects: the data they contain, and the Behavior they have.

30

System Developer

Member functions: These are functions which are considered part of the object and are

declared in the class dentition. They are often referred to as methods of the class. In

addition to member functions, a class's behavior is also defined by:

(a) What to do when you create a new object (the constructor for that object) in other

words initialize the object's data.
(b) What to do when you delete an object (the destructor for that object).

Private vs. public members: A public member of a class is one that can be read or

written by anybody, in the case of a data member, or called by anybody, in the Case of a

member function. A private member can only be read, written, or called by a member

function of that class.

Classes are used for two main reasons:
(1) It makes it much easier to organize your Programs if you can group together data

with the functions that manipulate that Data.
(2) The use of private members makes it possible to do information hiding, so that

you can be more confident about the way information flows in your programs

3.3.3 Classes
C++ classes are similar to C structures in many ways. In fact, a C++ struct is really a

class that has only public data members. In the following explanation of how classes

work:

Member functions;
This class has two data members, top and stack, and one member function, Push

the notation class: .function denotes the function member of the class class. (In the

Style we use, most function names are capitalized.) The function is de_ ned beneath it.

As an aside, the definition of class Stack would typically go in the file stack.h and the

definitions of the member functions, like Stack: :Push, would go in the file stack. cc. The

purpose of member functions is to encapsulate the functionality of atype of object along

with the data that the object contains. A member function does not take up space in an

object of the class.

31

System Developer

Private members:

One can declare some members of a class to be private, which are hidden to all

But the member functions of that class, and some to be public, which are visible

and accessible to everybody. Both data and function members can be either public or

private. Fined how the data members are stored without changing how you Access

them.

Constructors and the operator new:

In order to create a new object of type in C++ is as follows:

Stack *s = new Stack (17); The new function takes the place of malloci). To specify

how the object should be Initialized, one declares a constructor function as a member of

the class, with the Name of the function being the same as the class name: Note there

are two ways of providing arguments to constructors: with new, you Put the argument

· st after the class name, and with automatic or global variables, You put them after the

'cı.'Y\cı.~\<t,~cı.Th"t-.

It is crucial that you always define a constructor for every class you define, and that

the constructor initializes every data member of the class. If you don't define your own

constructor, the compiler will automatically define one for you, and believe me, it won't

do what you want (\the unhelpful compiler"). The data members will be initialized to

random, unrepeatable values, and while your program may work anyway, it might not

the next time you recompile (or vice versa!). The new operator can also be used to

allocate arrays, illustrated above in allocating an array of int, of dimension size:

Stack = new int[size J;

Destructors and the operator delete:

The destructor has the job of de allocating the data the constructor allocated. Many-
classes won't need destructors, and some will use them to close files and otherwise clean

up after themselves.

The destructor for an object is called when the object is de allocated. If the object was

created with new, then you must call delete on the object, or else the object will

continue to occupy space until the program is over this is called "a memory leak."

32

I'

System Developer

3.3.4 Why Programming in C++
So what is so special about C++? Why should you use C++ to develop your

applications? First, C++ is not the best language to use in every instance. C++ is a great

choice in most instances, but some special circumstances would be better suited to
another language.

There are a few major advantages to using C++:

1- C++ allows expression of abstract ideas.

C++ is a third generation language that allows a programmer to express their
Ideas at a high level as compared to assembly languages.

2- C++ still allows a programmer to keep low-level control.

Even though C++ is a third generation language, it has some of the "feel" of an

Assembly language. It allows a programmer to get down into the low-level Workings

and tune as necessary. C++ allows programmers strict control over Memory
management.

3- C++ has national standards (ANSI)

C++ is a language with national standards. This is good for many reasons. Code

Written in C ++that conforms to then ational standards can be easily integrated with

preexisting code. Also, this allows programmers to reuse certain common Libraries, so

certain common functions do not need to be written more than once, and these functions
behave the same anywhere they are used.

4- C++ is reusable and object-oriented

C++ is an object-oriented 1 anguage. This makes programming conceptually easier

(once the object paradigm has been learned) and allows easy reuse of code, or Parts of
code through inheritance.

5- C++ is widely used and taught

C++ is a very widely used programming language. Because of this, there are

many tools available for C++ programming, and there is a broad base of
Programmers contributing to the C++ "community".

33

System Developer

3.4 History of Ms Access
The Microsoft Access lines of products are not all created equal. Access 1.0 came

out in 1992, which was quickly followed by version 1.1. This initial offering was a

cheap ($99) desktop database with a competitive feature set that enjoyed instant

popularity amongst Windows users. Access 2.0 was a major update released in May

1994. For 16 bit Windows development, Access 2.0 with the service pack to update the

JET engine to v2.5 is now the industry standard. No serious development should be

attempted with Access version 1.x.

The first 32 bit Windows version was Access 95 (a.k.a. Access 7.0). Released in

November 1995, this is a program to be avoided at all costs. There are difficulties with

the release that were never completely resolved. Access 97 (a.k.a. Access 8.0) has been

around since January 1997 and is a great improvement on the previous versions.

Although it has a few bugs of its own, Access 97 is quite a stable product overall with a

greatly enhanced development environment. Access 2000 is a worthy successor with a

greatly improved database architecture. Unfortunately, forms and other parts of the

Windows interface are a bit bloated. For Windows application development, Access97

is still a preferred choice among many developers. However, if you are writing for the

Web or in Visual Basic you owe it to yourself to use the 2000 database engine. Coming

soon is Office XP showing Microsoft's commitment to continuously updating its big

money making products.

3.5 Brief overview of Relational Databases and Database Applications
The first databases implemented during the 1960s and 1970s were based upon

either flat data files or the hierarchical or networked data models. These methods of

storing data were relatively inflexible due to their rigid structure and heavy reliance on

applications programs to perform even the most routine processing.

In the late 1970s, the relational database model which originated in the academic

research community became available in commercial implementations such as IBM

DB2 and Oracle. The relational data model specifies data stored in relations that have

some relationships among them (hence the name relational).

In relational databases such as Sybase, Oracle, IBM DB2, MS SQL Server and MS

Access, data is stored in tables made up of one or more columns (Access calls a column

afield). The data stored in each column must be of a single data type such as Character,

34

Number or Date. A collection of values from each column of a table is called a record

or a row in the table.

Different tables can have the same column in common. This feature is used to

explicitly specify a relationship between two tables. Values appearing in column a in

one table are shared with another table.

Below are two examples of tables in a relational database for a local bank:

Table 3 .1 Customer

1001 i Mr. Smıth ·ı Lexington I Smithville I KY I 91232

1002 : Mrs. Jones 12 Davis Smithville KY 91232
I Ave.

~i Mr. Axe I Grinder I Broadville I GA I 81992

1004 Mr. & Mrs. 'I """' ,. "'''""' I St · t · ·11 · · I GA I 81990B ild ; n,.] ree Vl eıuı aer:

Table 3.2 Accounts

2000.00

1000.00

6000.00

The Customer table has 6 columns (CustomerID, Name, Address, City, State and

Zip) and 4 rows (or records) of data. The Accounts table has 5 columns (CustomerID,

AccountNumber, AccountType, Dateüpened and Balance) with 7 rows of data.

35

System Developer

Each of the columns conforms to one of three basic data types: Character, Number

or Date. The data type for a column indicates the type of data values that may be stored

in that column.

• Number - may only store numbers, possibly with a decimal point.

• Character - ma'{ store numbers, letters and çunctuation, Access calls this data

type Text.

• Date - may only store date and time data.

In some database implementations other data types exist such as Images (for

pictures or other data). However, the above three data types are most commonly used.

Notice that the two tables share the column CustomerID and that the values of the

CustomerID column in the Customer table are the same the values in the CustomerID

column in the Accounts table. This relationship allows us to specify that the Customer

Mr. Axe has both a Checking and a Savings account that were both opened on the same

day: December 1, 1994.

Another name given to such a relationship is Master/Detail. In a master/detail

relationship, a single master record (such as Customer 1003, Mr. Axe) can have many

details records (the two accounts) associated with it.

In a Master/Detail relationship, it is possible for a Master record to exist without any

Details. However, it is impossible to have a Detail record without a matching Master

record. For example, a Customer may not necessarily have any account information at

all. However, any account information must be associated with a single Customer.

Each table also must have a special column called the Key that is used to uniquely

identify rows or records in the table. Values in a key column (or columns) may never be

duplicated. In the above tables, the CustomerID is the key for the Customer table while

the AccountNumber is the key for the Accounts table.

3.6 MS Access advantage

1. Multi- user sharing.

2. Can eliminate repeated data.

3. Data entry available.

4. Simple debugging.

36

System Developer

5. No upper row limit.

6. Tabular or other display formats.

7. User level Security.

8. Data validation & checking.

9. Search, retrieval, & sub-sets.

3.7 MS Access disadvantage

ı. Harder to setup.

2. Graphics harder to setup.

3. Calculations are not cell based.

ln this chapter I will show the data base I used to implement my software by storing the

weights (memory) which are very important for the training process to identify the

objects that I will present to my neural network as follows:

37

Table 3.3 Objects

: Din1_sı9646islfrs2463359243IOıüisi964s1s -2 s51si40236 -17452019861

0.2Jull Circle . . .

OJ Full Circle fo937235ll0512[0i1B747792B2[Ü "'·
0.4· Full Circle ' 0.91792876781 0.7223780792(0 71792676781 0§223/807924. .. ,. , , , .

70042536471: o 50032745493: o 50042536471 I 030032~454991 o 30042536471' o 00032745499: -03519009222 041527368207
4569440933' 0.49983530684' 034569440933! 0.29983530684 0.04569440933 -0.0616327127 0.66547481139

• --••mv•.•'>V""""''"'·'"C·"·V"'"'"·'"'·"'""'"'"""-V·.-,,•v•co•,wvv•••y, ·mw•w.·•·v.·:•,•••,-n•••y•••••yv•.•.••.•v••n•y••w••••• • • """'""'"' ·· ·· -••••· • ·••v• ••····••••,• • ••• .••• ·v

12821033723500512, 001874//9282, -0.8912033533 -0Ill19987538
9241 0317928767810.02237807924 -0.6125943198 0.16365894365

0.5 Circle
0.6 Circle
07 Circle
0.8 line
0.9 line

1 Full Circle
o

m9179s268: o 500100113041 04D99179826Bi o.300100173041 o.10991798268 o.24277777968 o.93924757046
12122isi61iisöö341msio·s12üi36si~[o3003.41l2453lo 2Y!J?~876 o.5983996666· 1.2nD6001n 4

1.7069368954: O 81046528172! 150693689541 0.61046528172\ 130693689541 O 410465281721 I 10693689541 0.11046528172 3.88444472852 3.956293536
f · O'. ol o· ·· ol o' o· o o o

In the table (3 .3) I showed some simple objects that I will present them to my neural

network (N.N) in order to identify them.

..

38

Software Implementation

CHAPTER4

SOFTWARE IMPLEMENTATION

4.1 Overview

This chapter describes details of software implementation and the source code for

each function of the software. It covers the most fundamental parts of image processing

algorithms and how can we use it to implement it in the real world.

4.2 Entering the Software program
After opening the Software, the user will see a white screen with three drop down

menus from the tool bar File, Tool, and Help.

• File

Choosing File will display a drop down menu with the following option:

Figure 4. 1. Program Interface

39

Software Implementation

• Open
By clocking on Open, will automatically opens a dialog box where we can choose any

an existing Bitmap image whether it is an 8 bitmap image or 2 4 bitmap image. The

selected image will have the extension of ".bmp", another file is also created

automatically that has a ".txt:" extension. in the previously created text file : file header

information ,bitmap header information are called and displayed Note that in order to do

so, the image manipulated has to be either 8 _bit image or 24_bit image, otherwise a

message will alert the user that a wrong file format file has been chosen. The biBitCount

member of the BITMAPINFOHEADER structure determines the number of bits that

define each pixel and the maximum number of colors in the Bitmap

void CGraduateView::OnFileOpen()

{

Invalidate(true);

his= false;

threesho = false;

gray = false;

segment = false;

X = 90;

y=90;
II Build a filter for use in the file open dialog

static char BASED_CODE szFilter[] = "Bitmap

Files(*.bmp)I*.bmpl]";

II create the file open dialog

CFileD~alogm_ldFile(TRUE, ".bmp", FileName,

OFN_HIDEREADONLY I OFN_OVERWRITEPROMPT,szFilter);

if (m_ldFile.DoModal() == IDOK)

{

•

II Get the File name selected

FileName = m_ldFile.GetPathName();

p = fopen (FileName,"rb");

q = fopen(FileOut,"w");

FNameS = m_ldFile.GetFileTitle ();

Matrix();

}}

40

Software Implementation

If an 8_bit image is selected, its color table and image data are being extracted and

added to the text file, also the image is opened and displayed through the Software.

Figure 4.2. 2 8-bit image

void CGraduate View: :Display(UCHAR image[200] [200],UCHAR

Color[25 6] [4])

{

CClientDC cd(this);

for (i =O; i < BH.biWidth; i++)

for (k = O ; k .::= BH.biHeight; k++)

{

j = image[k][i];
cd.SetPixel(i+x, k+y,RGB(Color[j] [2],Color[j] [1],Color[j] [OJ));

}

}

41

Software Implementation

If a 24_bit image is selected, the image data are being extracted and added to the text

file .also the image is opened and displayed through the Software.

Figure 4.3. 24-bit image

void CGraduate View: :Displaym()

{

CClientDC cd(this);

UCHAR R,G,B;

int h = O; -
for (i =O; i < BH.biHeight; i++)

{

j = O;

for (k =O; k < BH.biWidth*3 -3 ; k++)

{

B = mimage[i][k];

G = mimage[i][k+ 1];

R = mimage[i][k+2];

cd.SetPixel(j+x, h+y,RGB(R,G,B));

k=k+2;

•

42

J++;

}

h++;

} }

Software Implementation

Table 4.1. Color palette

Blue Green Red
o o o
o o 128
o 128 o
o 128 128

128 o o
128 o 12:8
128 128 o
192 192 192
192 220 192
240 202 166

o 32 64
o 32 96
o 32 128
o 32 160
o 32 192
o 32 224
o 64 o
o 64 32
o 64 64
o 64 96
o 64 128
o 64 160

f< o 64 192
o 64 224
o 96 o
o 96 32
o 96 64
o 96 96
o 96 128
o 96 160

43

•

Software Implementation

Blue Green Red
o 96 194
o 96 224
o 128 o
o \28, 32
o 128 64
o 128 96
o 128 128
o 128 160
o 128 192
o 128 224
o 160 o
o 160 32
o 160 64
o 160 96
o 160 128
o 160 160
o 160 192
o 160 224
o 192 o
o 192 · 32
o 192 64
o 192 96
o 192 128
o 192 160
o 192 192
o 192 224
o 224 o
o 224 32
o 224 64
o 224 96
o 224 128
o 224 160

44

Software Implementation

Blue Green Red
o 224 193
o 224 224
64 o o
64 o 32
64 o 64
64 o 96
64 o 128
64 o 160
64 o 192
64 o 224
64 32 o
64 32 32
64 32 64
64 32 96
64 32 128
64 32 160
64 32 192
64 32 224
64 64 o
64 64 32
64 64 64
64 64 96
64 64 128
64 64 160
64 64 192
64 64 224
64 96 o
64 96 32
64 96 64
64 96 96
64 96 128
64 96 160

45

Software Implementation

Blue Green Red
64 96 193
64 96 224
64 128 o
64 128 32
64 128 64
64 128 96
64 128 128
64 128 160
64 128 192
64 128 224
64 160 o
64 160 32
64 160 64
64 160 96
64 160 128
64 160 160
64 160 192
64 160 224
64 192 o
64 192 32
64 192 64
64 192 96
64 192 128
64 192 160
64 192 192
64 192 224
64 224 o
64 224 32
64 224 64
64 224 96
64 224 128

•

46

Software Implementation

Blue Green Red
64 224 160
64 224 192
64 224 224
128 o o
128 o 32
128 o 64
128 o 96
128 o 128
128 o 160
128 o 192
128 o 224
128 32 o
128 32 32
128 32 64
128 32 96
128 32 128
128 32 160
128 32 192
128 32 224
128 64 o
128 64 32
128 64 64
128 64 96
128 64 128
128 64 160
128 64 192
128 64 224
128 96 o
128 96 32
128 96 64
128 96 96
128 96 128

47

Software Implementation

Blue Green Red
128 96 160
128 96 192
128 96 224
128 128 o
128 128 32
128 128 64
128 128 96
128 128 128
128 128 160
128 128 192
128 128 224
128 160 o
128 160 32
128 160 64
128 160 96
128 160 128
128 160 160
128 160 192
128 160 224
128 192 o
128 192 32
128 192 64
128 192 96
128 192 128
128 192 160
128 192 192
128 192 224
128 224 o
128 224 32
128 224 64
128 224 96
128 224 128

48

Software Implementation

I Blue I Green I Red I
\'lı. \ L1.A \ \E)ı_\ \
128 224 192
128 224 224
192 o o
192 o 32
192 o 64
192 o 96
192 o 128
192 o 160
192 o 192
192 o 224
192 32 o
192 32 32
192 32 64
192 32 96
192 32 128
192 32 160
192 32 192
192 32 224
192 64 o
192 64 32
192 64 64
192 64 96
192 64 128
192 64 160
192 64 192
192 64 224
192 96 o
192 96 32
192 96 64
192 96 96
192 96 128

49

Software Implementation

Blue Green Red
192 96 160
192 96 192
192 96 224
192 128 o
192 128 32
192 128 64
192 128 96
192 128 128
192 128 160
192 128 192
192 128 224
192 160 o
192 160 32
192 160 64
192 160 96
192 160 128
192 160 160
192 160 192
192 160 224
192 192 o
192 192 32
192 192 64
192 192 96
192 192 128
192 192 160
240 251 255
164 160 160
128 128 128
o o 255
o 255 o
o 255 255

255 o o

Blue Green Red
255 o 255
255 255 o
255 255 255

•

50

Software Implementation ',~, ,_ ",'0..
l,:'.~~}.~

4.3 Program Tools /" ··\~\
I' ~, • Tool ı ,... ı, r -;

" \ J ""<

By choosing Tool, will display a drop menu with the following options: , " ""' ,J
Histogram, Gray level, Threshold, Filter, Edges, Segmentation, Learning, and ~ea~~~y

1- Histogram

That will branch into 2 main options: one for the 8_bit Bitmap image, and the other
for the 24_bit Bitmap image.

Histogram 8_bits: the following function is established to relatively calculate the

repetition of each color in each pixel in the image. Bearing in mind, that we have her

256 different colors in the color palette. To do so, we created a special canvas form the

paint dialog to perform the drawing on, Note that each pixel her is 1 byte long.

••.,.•

Figure 4.4. 8-bit Image histogram

Histogram 24_bits: the following function is established to relatively calculate the

repetition of Red, Green, and Blue in each pixel in the image. Bearing in mind, that we

have her 256 different combinations of colors for each of the three colors. To do so, we

created a special canvas form the Rgb dialog to perform the drawing on, Note that each
pixel her is three byte long.

51

Software Implementation

Figure 4.5. 24-bit image histogram

void CGraduateView::OnHistogram()

{

if (BH.biBitCount = = 8 II gray)

{

X = 90;
'y = 180 + BH.biHeight;

for (i =O; i < 256; i++)

CountColor[i] = O;

for (i =O ; i < BH.biWidth; i++)

for (k = O; k < BH.biHeight; k++)

{
j = cimage[k][i];

CountColorLi]++;

}
for (i =O; i < 256; i++)

52

Software Implementation

fprintf(q, "the Count of The color %d = %ld\n", i, CountColor[i]);

Displayl (CountColor);

}

else if (BH.biBitCount == 24 && lgray)

{

int R,G,B;

for (i = O ; i < 256 ; i++)

{

countBlue[i] = O;

countGreen[i] = O;

countRed[i] = O;

}

for (i =O; i < BH.biWidth; i++)

for (k = O; k < BH.biHeight*3 && i 1 < BH.biHeight ;)

{

R = mimage[i][k+2];

countRed[R]++;

BW[R][O] = O;

BW[R][l] = O;

BW[R][2] = R;

k = k + 3;

}

X = 150 + 259*2;

y = 180 + BH.biHeight;

Displayl (countRed);

for (i =O; i < BH.biWidth; i++)

for (k = O; k < BH.biHeight*3 && il < BH.biHeight;)

{

B = mimage[i][k];

countBlue[B]++ ;

BW[B][O] = B;

BW[B][l] = O;

••

53

Software Implementation

BW[B][2] = O;

k = k + 3;

}

X = 90;

y = 180 + BH.biHeight;

Displayl (countBlue);

for (i =O; i < BH.biWidth; i++)

for (k = O; k < BH.biHeight*3 && il < BH.biHeight;)

{

G = mimage[i][k+ 1];

countGreen[G]++;

BW[G][O] = O;

BW[G][l] = G;

BW[G][2] = O;

k = k + 3;

}

X = 379;

y = 180 + BH.biHeight;

Displayl (countGreen);

}

}

54

Software Implementation

2- Gray Level

The Gray level option is done on the 24 Bitmap image before filtering, or an error

message would show.

Figure 4.6. Gray level image histogram

void CGraduate View:: OnGraylevel()

{

gray= true;

if(BH.biBitCount = = 8)

{

y=90;

x = 180 + BH.biWidth;

int value;

for (i =O; i < BH.biHeight; i++)

for (i = O; j < BH.biWidth; j++)

••

{

k = image[i][j];

55

Software Implementation

value= (int)(0.59 * Color[k)[l] + 0.3 * Color[k)[2) + O.11 * Color[k)[O]);

BW[value)[OJ = BW[value)[l] = BW[value)[2] = value;

cimage[i)U] = value;

}

}

else if(BH.biBitCount == 24)

{

y= 90;

x = 180 + BH.biWidth;

int value;

for (i =O; i < BH.biHeight; i++)

{

k=O;

for (j = O; j < BH.biWidth*3 ;)

{

value = (int)(0.59 * mimage[i][j+l] + 0.3 * mimage[i][j+2) + 0.11 *

mimage[i][j]);

BW[value)[O] = BW[value)[l] = BW[value)[2] = value;

cimage[i][k] = value;

j = j + 3;

k++;

}

}

}

Display(cimage,BW);

}

56

Software Implementation

3- Filtering

Filtering was performed on both the 8_bit and the 24_bitmap images as well the

concept of filtering is to make the displayed images noisy and blur, filtering comes in

two different degrees:

3x3 Filtering, and the 5x5 Filtering the Filtering (3x3) is called for the two types of

ımages.

Figure 4.7. (3*3) gray level filtration

void CGraduateView::OnFilter3()

{

y = 90;

x = 180 + BH.biWidth;

for (i =O; i < BH.biHeight; i++)

for (j = O; j < BH.biWidth; j++)

imagebw[i][i] = cimage[i][i];

for (i = 1 ; i < BH.biHeight-1; i++)

for (j = 1; j < BH.biWidth - 1; j++)

57

Software Implementation

{

imagebw[i][j] = (cimage[i][j] + cimage[i-l][j-1] + cimage[i][j-1] +

cimage[i+ 1][j-1] + cimage[i-1][j] + cimage[i+ 1] [j] + cimage[i-1][j+ 1] +

cimage[i] Li+ 1] + cimage[i+ 1] Li+ 1])/9;

}

for (i =O; i < BH.biHeight; i++)

for (i = O;j < BH.biWidth ;j++)

cimage[i][j] = imagebw[i][j] ;

Display(cimage,B W);

}

The Filtering (SxS) is called for the two types of images.

The following is the Filtering (SxS) performed also on 24_bitmaps after performing the

Gray level operation on it.

Figure 4.7. (5*5) gray level filtration

58

Software Implementation

void CGraduateView: :OnFilter5()

{

y=90;

x = 180 + BH.biWidth;

for (i =O; i < BH.biHeight; i++)

for (j = O; j < BH.biWidth; j++)

imagebw[i][j] = cimage[i][j];

for (i = 2 ; i< BH.biHeight-2; i++)

for (j = 2; j < BH.biWidth - 2; j++)

{
imagebw[i][j] = (cimage[i][j] + cimage[i-l][j-1] + cimage[i][j-1] +

cimage[i+l][j-1] + cimage[i-l][j] + cimage[i+l][j] + cimage[i-1][.i+l] +

cimage[i][j+ 1]+cimage[i+ 1][j+ 1]+cimage[i-2][j-2]+cimage[i-1][j-2]+

cimage[i][j-2]+

cimage[i+ 1][j-2J+cimage[i+2][j-2]+cimage[i-2][j-1]+cimage[i+2][j-1]+

cimage[i-2][.i]+

cimage[i+2][j]+cimage[i-2][j+ 1 J+cimage[i+2][j+ 1 J+cimage[i-2] [j+ 1]+

cimage[i+ l][j+2]+

cimage[i][j+2]+ cimage[i+ l][j+2]+ cimage[i+2][j+2])/25;

}

for (i =O; i < BH.biHeight; i++)

for (j = O; j < BH.biWidth; j++)

cimage[i][j] = imagebw[i][j] ;

Display(cimage,B W);

}

59

Software Implementation

4- Edges

Edging was performed on both the 8_bit and the 24_Bitmap images as well.

This function show how edging is called form the menu bar.

void CGraduate View:: OnEdges()

{

int l;

y= 90;

x = 180 + BH.biWidth;

for (i =O; i < BH.biHeight; i++)

for (j = O; j < BH.biWidth; j++)

imagebw[i][j] = 255;

for (i =O; i < BH.biHeight -1; i++)

for (j = O;j < BH.biWidth-l;j++)

{

1 = abs(cimage[i][j] - cimage[i+ 1][j+ 1]) + abs(cimage[i+ 1][j] - cimage[i][j+ 1]);

if (1 >O)

imagebw[i][j] = O;

else

imagebw[i][j] = 255;

}

if(BH.biBitCount = = 8)

{

Display(imagebw,Color);

}

else if(BH.biBitCount = = 24)

{

CClientDC cd(this);

for (i =O; i < BH.biWidth; i++)

for (k = O ; k < BH.biHeight; k++)

{

if (imagebw[i][k] ==O)

60

Software Implementation

cd.SetPixel(k+x, i+y,RGB(0,0,0));

else if (imagebw[i][k] = = 255)

cd.SetPixel(k+x, i+y,RGB(255,255,255));

}

}

}

Edging can performed on the 24_bitmap images after performing the Gray Level

operation.

Figure 4.8. 24-bit image Edge detection •

61

Software Implementation

void CGraduate View: :Edge()

{

int l;

for (i = O ; i < BH.biHeight; i++)

for (j = O; j < BH.biWidth; j++)

imagebw[i][j] = 255;

for (i =O; i < BH.biHeight -1; i++)

for (j = O; j < BH.biWidth -1; j++)

{
1 = abs(cimage[i][j] - cimage[i+l][j+l]) + abs(cimage[i+l][j] - cimage[i][j+l]);

if (1 >O)

imagebw[i][j] = O;

else

imagebw[i][j] = 255;

}

for(k = O ; k < y ; k++)

{

distency[k][2] = O;

for(i = point[k][3] ; i <= point[k][4] ; i++)

{

for(j = point[k][l] ; j <= point[k][2] ; j++)

if (imagebw[j][i] == O)

distency[k][2]= distency[k][2] + 1;

}

distency[k] [2] = distency[k] [2]/1000 ;

}

•

}

62

Software Implementation

5- Threshold

Threshold was performed on both 8_bit and 24_Bitmaps as well, when we select the

threshold option, the two type of threshold will appear Normal threshold and binary

threshold.

Threshold can performed on the 24_bitmap images after performing the Gray Level

operation.

Figure 4.9. 24-bit image normal threshold

By selecting the normal threshold option a normal dialog will appear, and you have to

input one value between O and 255.

Etıter a,rıurtıber.fmrrı 'll To 255

OK] Cancel

Figure 4.1 O. Normal Threshold Dialog

63

Software Implementation

After entering the value the image will change taking the value, making in to point of

black and white.

Figure 4.11. Apply Normal Threshold to image

void CGraduateView::OnNthreshold()

{

y= 90;

x = 180 + BH.biWidth;

d.m_ColorNum = O;

if (d.DoModal() == IDOK)

{

threesho = true;

for (i =O; i < BH.biWidth; i++)

for (j = O; j < BH.biHeight; j++)

if (cimage[i][j] <= d.m_ColorNum)

imagebw[i][j] = 255;

else

imagebw[i][j] = O;

if(BH.biBitCount = = 8)

64

Software Implementation

{

Display(imagebw, Co lor);

}

else if(BH.biBitCount == 24)

{

CClientDC cd(this);

for (i =O; i < BH.biWidth; i++)

for (k =O; k < BH.biHeight; k++)

{

if (imagebw[i][k] == O)

cd.SetPixel(k+x, i+y,RGB(0,0,0));

else if (imagebw[i] [k] == 255)

ed.SetPixel(k+x, i+y,RGB(25 5,255,255));

}

}

}

}

By selecting the Binary threshold option the Binary dialog will appear, and you have to

input two values between O and 255 and the first value must be less than the second.

Er,ter two number froro.0-25'5
Number1<Number2

from to

[OK Cancel

Figure 4. 12. Binary Threshold Dialog

65

Software Implementation

void CGraduateView::OnBtreshold()

{

y= 90;

x = 180 + BH.biWidth;

d2.m_ColorNuml = O;

d2.m_ColorNum2 = O;

if (d2.DoModal() = = IDOK)

{

threesho = true;

if (d2.m_ColorNuml > d2.m_ColorNum2)

MessageBox("Color number I > Color number 2","error");

else

{

for (i =O; i < BH.biWidth; i++)

for (j = O; j < BH.biHeight; j++)

if (cimage[i][j] >= d2.m_ColorNuml && cimage[i][j] <= d2.m_ColorNum2)

imagebw[i][j] = 255;

else

imagebw[i][j] = O;

}

if(BH.biBitCount = = 8)

{

Display(imagebw,Color);

}

else if(BH.biBitCount == 24)

{

CClientDC cd(this);

for (i = O ; i < BH.biWidth; i++)

for (k = O ; k < BH. biHeight; k++)

{

if (imagebw[i][k] ==O)

cd.SetPixel(k+x, i+y,RGB(0,0,0));

else if (imagebw[i][k] == 255)

cd.SetPixeI(k+x, i+y,RGB(255,255,255)); } } } }

66

Software Implementation

4.4 Image Segmentation

•

Figure 4.13. Image Segmentation

void CGraduate View:: OnSegmentation()

{

segment = true;

X =O;

int c = O;

y=O;

for (i =O; i < 20000; i++)

seg[i] = 202;

for (i =O; i < BH.biHeight; i++)

{
for (i = O; j < BH.biWidth ; j++)

{if(c==O)

{ if (imagebw[i][j] = = 255)

{ seg[y] = j;

C = 1;

67

Software Implementation

y++;

}

}

elseif(c==l)

{ if(imagebw[i][j] ==O)

{ seg[y] = j-I;

C = O;

y++;

seg[y] = 201;

y++;

}

}

}

y++;

}

lon = y;

for (i =O; i < lon; i++)

{ fprintf(q, "the seg[%d]\t = %d",i,seg[i]);

fprintf(q,"\n");

}

counting();

PreCount();

Displayseg();

}

68

Software Implementation

void CGraduate View: :counting()

{

X =O;

count= O;

for (i = O ; seg[i] = = 202 && i < lon ;i++);

for (j = i ; seg[j] != 202 && j < lon ; j++)

if (segU} = = 201)

{

count++;

segU1= count;

}

X = ı;

for (k = j+ 1 ; k <= lon - 3 ;)

{

if (seg[k] != 202)

{

if (seg[x] >= seg[k] && seg[x+ 1] <= seg[k+ 1])

overflag = true;

else if (seg[x] <= seg[k] && seg[x+l] >= seg[k+l])

overflag = true;

else if (seg[x] >= seg[k] && seg[x] <= seg[k+ 1])

overflag = true;

else if (seg[x+ 1] >= seg[k] && seg[x+ 1] <= seg[k+ 1])

overflag = true;

else if(seg[x+l] = = seg[x] && seg[k] = = seg[k+l] &&(seg[x]+l = = seg[k] II
seg[k] + 1 = = seg[x]))

overflag = true;

else if (seg[x]+ 1 = = seg[k] II seg[k] + 1 = = seg[x])

overflag = true;

else if (seg[x+ 1]+ 1 = = seg[k] II seg[k] + 1 = = seg[x+ 1])

overflag = true;

else if (seg[x]+ 1 = = seg[k+ 1] II seg[k+ 1] + 1 = = seg[x])

overflag = true;

69

Software Implementation

else if (seg[x+ 11+ 1 = = seg[k+ 11 \\ segik+ l J +l = = segtx+ l J)
overflag = true;

else
overflag = false;

if (overflag)

{

seg[k+2] = seg[x+2];

if (seg[k+3] = = 202 && seg[x+3] = = 202)

{ k = k + 4; X = x+4; }

else if (seg[k+3] != 202 && seg[x+3] != 202)

{k=k+3;x=x+3;}

else if(seg[k+3] != 202 && seg[x+3] = = 202)

{k=k+3;}
else if (seg[k+3] = = 202 && seg[x+3] !=202)

{k = k + 4;

for (i = x ; seg[i] != 202; i++);

X = i+ l;

}
}

else

{
if (seg [x+3] == 202)

{
count++;

seg[k+2] = count;

if (seg[k+ 3] = = 202)

{ k = k + 4; X = x+4;}

else

k= k + 3;

}

else

X = x+3;

}

70

Software Implementation

}

else

{
for (i = k; seg[i] = = 202 && i < Ion ;i++);

for (j = i; seg[j] != 202 &&j < lon;j++)

if (seg[j] = = 201)

{

count++;

seg[j] = count;

}

X = ı;

k=j +1;

}

}

for (i =O; i <Ion; i++)

{

fprintf(q, "the seg[%d]\t = %d",i,seg[i]);

fprintf(q,"\n");

}

Object Count

void CGraduate View: :ObjectCount()

{

for(k = O ; k < y ; k++)

distency[k] [3] = 1;

for(k = O ; k < y ; k++)

{ i = point[k][O];

for (j = O; j < lonpre; j++)

{ if (i == precount[j] [OJ)

distency[k] [3] = distency[k] [3] + 1;} }

71

Software Implementation

Object Recount

void CGraduateView::PreCount()

{

y=O;

x= O;

for (i =O; seg[i} = = 202 && i < lon ;i++);

for (j = i; seg[j} != 202 && j < lon; j++);

X = 1;

for (k = j+ 1 ; k <= lon - 3 && y < 20000 && x < lon ;)

{

if (seg[k 1 != 202)

{

if (seg[x 1 >= seg[k] && seg[x+ 1] <= seg[k+ 1])

overflag = true;

else if (seg[x] <= seg[k] && seg[x+ 1] >= seg[k+ 1])

overflag = true;

else if (seg[x] >= seg[k] && seg[x] <= seg[k+ 1])

overflag = true;

else if (seg[x+ 1] >= seg[k] && seg[x+ 1] <= seg[k+ 1])

overflag = true;

else if (segix+l.] = = seglx] && seglk] = = seglk+I] &&(seg[x1+1 = = seg[k1 II seglk]

+ 1 = = seg[x]))

overflag = true;

else if(seg[x]+l = = seg[k] II seg[k] +l = = ~eg[x])

overflag = true;

else if(seg[x+l]+l = = seg[k] II seg[k] +1 = = seg[x+l]) •
overflag = true;

else if (seg[x]+ 1 = = seg[k+ 1] II seg[k+ 1] + 1 = = seg[x])

overflag = true;

else if (seg[x+ 1]+ 1 == seg[k+ 1] II seg[k+ 1] + 1 == seg[x+ 1])

overflag = true;

else

overflag = false;

72

Software Implementation

if (overflag)

{

if (seg[k+2] = = seg[x+2])

{

if (seg [x+3] = = 202)

{

if (seg[k+3] == 202)

{

k = k +4;

X = X + 4;

ı = x;

}

else

{

k = k +3;

X = ı;

}

}

else x = x+3;

}

else

{

precount[y] [1] = seg[k+ 2];

precount[y][O] = seg[x+2];

y++;

count = count - 1;

if (seg [x+3] == 202) ••

{

if (seg[k+ 3] == 202)

{

k = k +4;

X = X + 4;

ı = x;

73

Software Implementation

}

else

{

k = k +3;

X = ı;

}

}

else x = x+3;

}

}

else

{

if (seg [x+3] == 202)

{

if (seg[k+3] == 202)

{

k =k +4;

X = X + 4;

ı = x;

}

else

{

k = k +3;

X = ı;

}

}

else x = x+3;

}

}

else {

for (i = k; seg[i] = = 202 && i < Ion ;i++);

for U = i; seg[j] != 202 &&j < lon;j++);

X = ı;

k=j +l;

74

Software Implementation

}

}
for (i = O; i < y ; i++)

for U = O; j < y; j++)

if (precount(i](l1 = = precount(j](O])

precount(j](O] = precount(i](O];

for (i =O; i < y ; i++)

{
fprintf(q,"%d %d", precount(i](O] ,precount(i](l]);

fprintf(q,"m");

}

lonpre = y;
for(x = O; x < y; x++)

{
for (i =O; seg(i] == 202 && i < lon ;i++);

J = ı;
for(k = j ; k < lon ;)

{
if (seg(k] != 202)

{
if (seg(k+ 2] == precount(x1 [11)

seg(k+21 = precount(x][O];

if (seg (k+ 31 == 202)

k = k +4;

else

k = k +3;

}

else

{
for (i = k; seg[i] == 202 && i < lon ;i++);

k = J;
}

}

75

Software Implementation

}

for (i =O; i <Ion; i++)

{
fprintf(q, "the seg[%d]\t = %d" ,i,seg[i]);

fprintf(q,"\n");

}

}

76

Software Implementation

4.5 Learning
By clicking on learn option, a dialog will appear to input the name of the object and

the number of the objects.

N urı-.bet of obj;ect

N otıe,: The Object Nı.,.ımber betv,ıe,en O - 1 (>O and <1)

OK I Cance.I

Figure 4. 14. Learning object dialog

void CGraduate View: :OnLearning()

{

Distency();

Obj ectCount();

Edge();

for(i =O; i< count; i++)

{

d3.m_output = O;

d3.m_name = 1111;

waitl [O][O] = 0.9;

waitl [0][1] = 0.8;

waitl[l][O] = 0.7;

waitl[l][l] = 0.6;

waitl [2][0] = 0.5;

waitl [2][1] = 0.4;

wait1[3][0] = 0.3;

wait1[3][1] = 0.1;

wait2[0] = 0.2;

wai t2 [1] = O. 9;

if (d3.DoModal() = = IDOK)

{

t = d3.m_output;

77

Software Implementation

name= d3.m_name;

m_pSet->MoveFirst();

found= false;

while (!found && !m_pSet->IsEOFO)

{

m_pSet->Edit();

if (t = = m_pSet->m_IDNO)

found = true;

else

m_pSet->MoveNext();

}

! ! //// ! ! /// ! ! // !/! ! /// !! //// !!//!/!/!!I//!//!!!!//!!! /I///!//!

if(!found)

{

m_pSet->MoveLast();

e = 0.09;

my=O;
while (e >= 0.00000001 II e <= -0.00000001 && my< 3000000)

{

my++;

for(k = O; k < 2; k++)

hidden[k] = O;

for(j = O; j < 2; j++)

{

for(k =O; k < 4; k++)
hidden[j] = hidden[j] + distency[i][k] * waitl[k][i];

hidden[j] = l/(l+exp(hidden[j]*-1));

}

net= O;

for (k =O; k<2; k++)

net= net+ wait2[k] * hidden[k];

o= 1 I (1 + exp (net* -1));

78

Software Implementation

e = o - t;

if (e >= 0.00000001 II e <= -0.00000001)

{

s=(t-o)*(l-o)*o;

for(k = O;k<2;k++)

w[k] = O.OS* s * hidden[k];

for(k=O; k<2;k++)

{

sl[k]=hidden[k]*(l - hidden[k]) * wait2[k] *. s;

for(j= O ;j < 4 ; j++)

wl[j][k]= 0.05* sl[k] * distency[i][k];

}

for(k=O;k<2;k++)

wait2[k]=wait2[k] + w[k];

for(k=O;k<2;k++)

for (j=O;j<4;j++)

waitl [j] [k]=waitl [j][k] + w 1 [j][k];

}

}

for (k =O; k < 4; k++)

{

for(j = O; j<2; j++)

fprintf(q,"\t%f', waitl [k][j]);

fprintf(q,"\n");

}

for(j = O; j<2; j++)

{

fprintf(q,"%f', wait2[.i]);

fprintf(q,"\n");

}

fprintf(q,"%f\n", o);

CRecordset* pSet = OnGetRecordset();

79

Software Implementation

if(pSet->CanUpdate() && !pSet->IsDeleted ())

pSet->Edit ();

if(!UpdateData())

return;

pSet->Update ();

m_pSet->AddNew();

m_pSet->m _IDNO = t;

m_pSet->m_name = name;

m_pSet->m_wl 1 = waitl[OJ[O];

m_pSet->m_w12 = waitl[OJ[l];

m_pSet->m_w21 = waitl[l][O];

m_pSet->m_w22 = waitl[l][l];

m_pSet->m_w3 l = wait1[2][0];

m_pSet->m_w32 = wait1[2][1];

m_pSet->m_w41 = wait1[3][0];

m_pSet->m_ w42 = waitl [3][1];

m_pSet->m_whl = wait2[0];

m_pSet->m_wh2 = wait2[1];

m_pSet->Update ();

m_pSet-> Requery();

m_pSet->MoveLast ();

else

MessageBox("The Record has been existed" ,"error");

}

}

void CGraduate View: :Distency()

80

Software Implementation

{

BOOL flag= true;

y=O;

x=O;

for (i =O; seg[i] == 202 && i < Ion ;i++);

X = 1;

for (j = i ; j < Ion && y < 20000;)

{

if (seg[i] != 202)

{

for (k =O; k < y && k < 20000; k++)

{

if (point[k][O] == seg[j+2])

{

flag = false;

break;

}

else flag = true;

}

if (flag)

{

point[y][O] = seg[j+2];

point[y][l] = x;

point[y][2] = x;

point[y][3] = seg[j];

point[y][4] = seg[j+ 1];

sum[y] = seg[j+ 1] - seg[i] + 1;

y++;

}

else

{

point[k][2] = x;

if (seg[i] < point[k][3])

point[k] [3] = seg[i];

81

Software Implementation

if (seg[j+ 1] > point[k][4])

point[k][4] = seg[j+ 1];

sum[k] = sum[k] +(seg[j+ 1] - seg[j] + 1);

if(seg[j+3] == 202)

j = j+4;

x++·'

else

j = j + 3;

}

else

{

for (i = j ; seg[i] == 202 && i < Ion ;i++)

x++·'

}

for (i = O ; i < y; i++)

{

int value;

value= (point[i][2] - point[i][l] +1) * (point[i][4] -point[i][3]+1);

fprintf(q,"%d \n", value);

distency[i][O] = (float) sum[i]/ value;

if ((point[i][4] - point[i][3]+ 1) <= (point[i][2] - point[i][l] + 1))
•..

distency[i][l] = (float) (point[i][4] - point[i][3]+1) /(point[i][2] - point[i][l] +l);

else
distency[i][l] = (float) (point[i][2] - point[i][l]+ 1) /(point[i][4] - point[i][3] +1);

}

}

82

Software Implementation

4.6 Search
By clicking on Search option, the program will try to find the nearest image close to

the object and how percent it is close.

ll'1%ffttJililH!IWı11\$;i ·
ı-4· r~'**' ~~;

Figure 4.14. presentation graph for searching process

void CGraduate View:: OnSearch()

{

Distency();

ObjectCount();

Edge();

msg= "";

for(i = O; i < count; i++)

{ ••

m_pSet->MoveFirst();

found = false;

while (!found && !m_pSet->IsEOF ())

{

m_pSet->Edit();

t = m_pSet->m_IDNO;

83

Software Implementation

name= m__pSet->m_name;

waitl[O][O] = m__pSet->m_wl 1 ;

waitl[O][l] = m__pSet->m_wl2;

waitl[l][O] = m__pSet->m_w21;

waitl[l][l] = m__pSet->m_w22;

waitl [2][0] = m__pSet->m_w3 l;

waitl[2][1] = m__pSet->m_w32;

waitl[3][0] = m__pSet->m_w41;

waitl [3][1] = m__pSet->m_w42;

wait2[0] = m__pSet->m_whl;

wait2[1] = m__pSet->m_wh2;

for(k = O; k < 2; k++)

hidden[k] = O;

fortj = O; j < 2; j++)

{
for(k =O; k < 4; k++)

hidden[j] = hidden[j] + distency[i][k] * waitl[k][j];

hidden[j] = l/(l+exp(hidden[j]*-1))

}
net= O;

for (k =O; k<2; k++)

net= net+ wait2[k] * hidden[k];

o = 1 I (1 + exp(net * -1));

e = 0.5 * pow(o-t,2);

if (e <= 0.0000001)

{
pointer.Format("o/od", (i+ 1));

namel [i] = "Object "+pointer+" is "+ name;

found = true;

}

else

{
pointer.Format("o/od", (i+ 1));

namel[i] = "Object "+pointer+" is not found";

84

85

Software Implementation

,et->MoveNext() ;

}

O; i < count; i++)

;g = msg + namel [i] +"\n";

essageBox(msg,"Objects");

_pSet->MoveLast ();

CONCLUSION

lmage processing techniques are developed with the goal of manipulate some

es within the image for some application such as weather prediction photographs

mphasizing some features within an image which are not clear to the human or

nition system.
Neural networks are developed with the goal of modeling information processing

earning in the brain applied to a number of practical applications in various fields,

ding computational molecular biology.
Artificial neural networks offer an ability to perform tasks outside the scope of

tional processors. They can recognize patterns within vast data sets and then

ralize those patterns into recommended courses of action. Neural networks learn,

are not programmed.
Yet, event hough they aren ot traditionally programmed, the designing of neural

vorks does require a skill. It requires an "art." This art involves the understanding of

various network topologies, current hardware, current software tools, the application

ıe solved, and a strategy to acquire the necessary data to train the network. This art

her involves the selection of learning rules, transfer functions, summation functions,

l how to connect the neurons within the network.
The art of neural networking requires a lot of hard work as data is fed into the

tem, performances are monitored, processes tweaked, connections added, rules

ıdified, and on and on until the network achieves the desired results.
The project fulfills the request of combining image processing with neural network

recognize the objects within the image. In this system user can teach the computer to

entify simple objects within the image, manipulate the image such as changing it to

ay level, make a filtration, object segmentation, edge detection.

86

REFERENCES

[1] Kenneth R. Castleman, Digital Image Processing, Prentice-Hall, 1996.

[2] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Second Ed,

Prentice-Hall, 2001.
[3] Wayne Niblack, An Introduction to Digital Image Processing,Prentice-Hall

International, 1985.
[4] Anil K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

[5] Wegman, E.J., DePriest,D.J. (eds) (1986) STATISTICAL IMAGE PROCESSING graphics,

NY,Marcel Dekker Inc.
[6] Kashman Adnan,Jmage Processing lectures note ,Near East University ,2003.

[7] Anderson, James A. and Rosenfeld, E. (eds.) (1988) Neurocomputing.

[8] Bishop, Christopher M. (1995) Neural Networks for Pattern Recognition.

[9] Chauvin, Yves (1989) 'A Back-Propagation Algorithm with Optimal Use of Hidden

Units.

[10] Chauvin, Yves (1990) 'Dynamic Behavior of Constrained Back-Propagation

Networks.
[11] Churchland, P. and Sejnowski, T, "The Computational Brain", MIT Press

Cambridge, 1992.
[12] Bishop, C. M., "Neural Networks for Pattern Recognition". Oxford University

Press, 1995.
[13] Hopfield, J. J., "Neural networks and physical systems with emergent

computational abilities", Proceedings of the National Academy of Sciences, 79:2554,

1982
[14] Kashman Adnan,neural networks (N.N) lectures note ,near east university ,2003.

[15] Herbert Schildt. Greg Guntle, Borland C++ Builder, McGraw-Hill, 2003.

[16] Microsoft Access tutorials help.

87

