
Student: 

Supervisor: 

NEAR EAST UNIVERSITY 

Faculty of Engineering 

Department of Computer Engineering 

FUZZY CONTROL SYSTEM DESIGN 

Graduation Project 

COM-400 

Biilent Ozsobac, 

ASST.PROF.DR RAHIB ABIYEV 

Nicosia - 2001 



• 

ACKNOWLEDGEMENT 

"First, I would like to pay my respect and thanks to my supervisor, Assist. Prof Dr 

Rahib Abiyev for his primary advice and his full belief in my work over the course of 
this Graduation Project. 

Second, I would like to express my gratefulness to Near East University for the 
erudition that helped me move my life closer to reality. 

Third, I thank my family for their continuous support and encouragement during the 

grounding of this project and for the ardent environment they have provided all these 
years." 



ABSTRACT 

In industry same technological processes are characterized by unpredictable and 

hard formulized factors, uncertainty and fuzziness of information. In this situation 

deterministic models is not enough adequately describe those processes and at the 

results control on their base begin difficult. In these conditions it is advisable to use 

fuzzy technology, which provide independency of the model to disturbance and 

adequacy of the model. 

The aim of thesis is the development of the fuzzy control system for 

technological processes. To solve this problem the structure and operation principle of 

fuzzy control system are considered. Different fuzzy processing mechanisms are 

analyzed. 

The development of fuzzy control system is performed. The one of main 

problem in synthesis of fuzzy system is the development fuzzy knowledge base. The 

synthesis of the fuzzy knowledge base for PD-like fuzzy controller is carried out. 

Processing mechanisms of fuzzy rules are described. By using max-min fuzzy 

processing of Zade the inference mechanism of fuzzy system is realized. 

The fuzzy controller for control temperature of heater is modeled. 

The simulation and obtained results satisfy the efficiency of application of fuzzy 

technology to industry. 
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INTRODUCTION 

Presently large class of industrial processes is characterized with non-linearity, 

time-variance, the overlapped presence of various disturbance and so on. As a result, it 

is difficult to develop sufficiently adequate models of these processes and, 

consequently, to design a control system using traditional methods of the control theory, 

even if sophisticated mathematical models are applied. 

At the same time it is surprising that a skilled human-expert successfully 

performs his duties due to a great amount of a qualitative information which he uses 

intuitively while elaborating a control strategy. Usually, he keeps in mind this 

information in the form of linguistic rules, which make up an intrinsic control 

algorithm. Furthermore, a human operator often is able to aggregate a great amount of 

quantitative information, to extract most essential peculiarities and interconnections as 

well as to define the most important qualitative control indices. 

Fuzzy set theory was found to be a very effective mathematical tool for dealing 

with the modeling and control aspects of complex industrial and not industrial processes 

as an alternative to other, much more sophisticated mathematical models. Further, the 

latter circumstance led to the appearance at the beginning of the 1970's of fuzzy logic 

computer controllers which became a powerfully tool for coping with the complexity 

and uncertainty with which we are faced in many real-world problems of industrial 

process control. The first investigations in this field had to answer the question: Is it 

possible to realize a process controller which deals like a man with the involved 

linguistic information? The results of these inquires led to the design of the first fuzzy 

control systems which implemented in hardware and software a linguistic control 

algorithm. Such a control algorithm was then formulated by a control engineer on the 

base of the interviews with human experts who currently work as process operators. The 

most simple fuzzy feedback control systems contain a fuzzy logic controller (FLC) in 

the form of a table of linguistic rules, or fuzzy relation matrix and input-output 

interfaces. 

Fuzzy logic has been successfully applied to many of industrial spheres, in 

robotics, in complex decision making and diagnostic system, for data compression, in 

TV and others. Fuzzy sets can be used as a universal approximator, that is very 

important for modeling unknown objects. Fuzzy technology has such characteristics as 
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interpretability, transparency, plausibility, graduality, modeling, reasoning, imprecision 

tolerance. 

In the thesis the development of fuzzy system for technological processes control is 

considered. The thesis consist of introduction, 4 chapters and conclusion. 

Chapter 1 describes the architecture of fuzzy systems for technological 

processes control. The structure of fuzzy systems, the functions of its main blocks are 

described. The structures of PD-like fuzzy controller are described. 

Chapter 2 presents the operations in fuzzy system. The description of linguistic 

rules, their characteristics, fuzzy rules firing, different types of fuzzy processing 

mechanisms are given. The representation of max-min processing of Zade is described. 

Chapter 3 describes the development of fuzzy system for technological process 

control. Using fuzzy desired time response characteristic of the system, fuzzy model of 

the technological processes the synthesis of fuzzy control system is performed. 

Chapter 4 describes the simulation of the fuzzy system to control temperature of 

heater. The results of simulation of PD-like fuzzy control system are described. The 

efficiency of its application is analyzed. 

Conclusion presents the obtained important results and contributions in the 

thesis. 
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CHAPTER ONE: ARCHiTECTURE OF FUZZY CONTROLLER 

1.1 Structure Of General Fuzzy System 

There are specific components characteristic of a fuzzy controller to support a 

design procedure, in the block diagram in Figl.1, the controller is between a 

preprocessing block and a post-processing block. The following explains the diagram 
block by block. 

Input signals entering to the preprocessing unit after scaling and performing some 

operation are enter to the fuzzification block. On the output of fuzzification block the 

fuzzy values of input signals are determined. Inference engine using these fuzzy input 

signal and rule base block made decision. Obtained output signals after defuzzification 

are entered to the postprocessing unit , where the scaling of the output signal is carried 
out. 

Fuzzy 001,troller 
,---------------. 
I I 
I ~u!e Prepro. Fuzz!- base I _ I Oefuzz.1. 

__...., oessln9 fle:atlon ~ ffcatlon 
· Infer&~ 

engine 

PostprQ­ 
Ce$Sin9 

--------------- 
Figure 1.1. Blocks of a fuzzy controller 

1.2 Structure of PD-Like Fuzzy controller 

The most simple fuzzy feedback control systems contain a fuzzy logic controller 

(FLC) in the form of a table of linguistic rules ( or fuzzy relations matrix) and input­ 

output interfaces. A linguistic rule consists of one or more premises and one or more 
consequences, f .i. in the form: 

IF (premises:a and b and c ... ) hold 

THEN( consequences:x and y and z ... ) hold too. 
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A controller (see Fig.1.2)presents and informationloop with: 

-an input signal gas an advising set-point(for example, a quality control); 

-a comparatorwhich checks, if the emitted process output x is the correct reaction to the 

set-point g,and which emits himself an error signal e as an input to the decision element 

TLR,in order to report him,how much the process output x deviatesfrom the preset 

value of g; 

-a decision element TLR which emits for each value of e an output u which, on his side, 

becomes an input to a process with output x to be controlled. 

A fuzzy logic controller is a synthesis of both, a controller's loop and a set of 

linguistic rules which are the content of the decision elementof the controller. The 

purpose of the input interface is to convert the non-fuzzy signals of error,either 

derivative( e'")or sum error( or both) into those input fuzzy sets which serve as premises 

in the correspondent linguistic rule of the FLC. The output fuzzy set( or the consequent 

of the linguistic rule)is converted by the output interface to the non-fuzzy control 

actionwhich is transferred to the input of an indistrial process. 

1 2 3 

__r-1 ldfu,y~ 4 1 
rela:ti.on U I Arg 
matrix 

/1El(ILR) 1 

Process y 

Fig.1.2 A structure of a fuzzy controller 

The transient performance demonstrated by these controllers as well as the noise 

immunity and robustness were essentially better then that of usual PID (Proportional, 

Integral, Differential) controllers. At the same time,the practical use of fuzzy control 

systems revealed the following problems: 

a.there is not yet a satisfactory approach to the construction of input-output interfaces 

being sufficientlysupported by logical evidence; 
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b.there is no definitive agreement about how to proceed with an incomplete table of 

linguistic rule(TLR).Thus, no actualrule in the TLR can be applied to a concrete 

decision case,if the features of parameters p of this caseappear nowhere in the TLR as 

premises. Then, a new consequent c, as the missing term of a new rule r(p,c )must be 

introduced(this is done,for instance,by interviewing the human process operator). On 

the other hand ,the broadened TLR demands an expensivestudy of the processand does 

not guarantee a desirable transient performance of the system in the case of a time 

variant process. 

Moreover , the efficiency of fuzzy systems deoends on the competence of the 

experts interviewed during the Knowladge elicitation process. Therefore , a wide 

application of single-loop fuzzy control systems is restiricted, because of their inability 

to cope with complex decision cases. 

1.3 Fuzzy Analysis 

1.3.lFuzzy Analysis 

To specify rules for the rule-base, the expert will use a "linguistic description"; hence, 

linguistic expressions are needed for the inputs and outputs and the characteristics of the inputs 

and outputs. We will use "linguistic variables" ( constant symbolic descriptions of what are in 

general time- 

varying quantities) to descnbe fuzzy system inputs and outputs. For our fuzzy system, linguistic 

variables denoted by u, are used to descnbe the inputs u, . Similarly linguistic variables denoted 

by Yi are used to descnbe outputs Yi· For instance , an input to the fuzz system may be yz = 

''voltage in." 

1.3.2 Linguistic Values 

Just as u ; and y i take on values over each universe of discourse U; and :It, respectively, 

linguistic variables u, and Yi take on "linguistic values" that are used to describe characteristics 

of the variables. Let A ji denote the j th linguistic value of the linguistic variable u, defined 
over the universe of discourse U;. If we assume that there exist many linguistic values defined 

over U; , then the linguistic variable u, takes on the elements from the set of linguistic values 

denoted by 
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( sometimes for convenience we will let the J indices take on negative integer values, as in the 

inverted pendulum example where we used the linguistic-numeric values). Similarly, let B I j 

denote the j th linguistic value of 

the linguistic variable Yi defined over the universe of discourse Yi.The linguistic variable Yi 

takes on elements from the set of linguistic values denoted by 

( sometimes for convenience we will let the p indices take on negative integer values). Linguistic 

values are generally descriptive terms such as "positive large," "zero," and "negative big" (i.e., 

adjectives). For example, if we assume that ui denotes the linguistic variable "speed," then we 

may assign A\ == "slow," A21 == "medium," and A31 == "fast" so that u1 has a value from 

1.3.3 Linguistic Rules 

The mapping of the inputs to the outputs for a fuzzy system is in part characterized by a 

set of condition ~ action rules, or in modus ponens (If- Then) form, 

H premise Then consequent. (2.3) 

Usually, the inputs of the fuzzy system are associated with the premise, and the outputs 

are associated with the consequent. These If -Then rules can be represented in many forms. Two 

standard forms, multi-input multi-output (MIMO) and multi-input single-output (MISO), are 

considered here. The MISO form of a linguistic rule is 

if u, is A1i and u2 is A/ and, ..... , and Un is A1n Then Yq is BP q (2.4) 

It is an entire set of linguistic rules of this form that the expert specifies on how to 

control the system. Note that if ur "velocity error" and A1j= "positive large," then" U1 is 

A/' a single term in the premise of the rule, means "velocity error is positive large." It can be 

easily shown that the MIMO form for a rule (i.e., one with consequents that have terms 

associated with each of the fuzzy controller outputs) can be decomposed into a number of MISO 

rules using simple rules from logic. For instance, the MIMO rule with n inputs and m==2 outputs 
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If u 1 is A1j and u2 is A/ and, ... , and Un is in Then Y1 is Bir and Y2 is 

B/ is linguistically (logically) equivalent to the two rules 
If · j d · k d d · A1Th · Br U 1 IS A 1 an U2 IS A2 an , , an Un IS n, en Y 1 IS 1 

If u 1 is Al and U2 is At and, , and Un is An1, Then Y2 is B2s 

This is the case since the logical "and" in the consequent of the MIMO rule is still 

represented in the two MISO rules since we still assert that both the first "and" second rule are 

valid. For implementation, we would specify two fuzzy systems, one with output Y1 and the 

other with output y2. The logical "and" in the consequent of the MIMO rule is still represented 

in the MISO case since by implementing two fuzzy systems we are asserting that ones set of 

rules is true "and" another it true. 

We assume that there are a total of R rules in the rule-base numbered 1, 2 ... R, and we 

naturally assume that the rules in the rule-base are distinct (i.e., there are no two rules with 

exactly the same premises and consequents); however, this does not in general need to be the 

case. For simplicity we will use tuples 

(j,k, ... ,I ;p,q)i 

to denote the ith MISO rule of the form given in Equation (2.4). Any of the terms associated 

with any of the inputs for any MISO rule can be included or omitted. For instance, suppose a 

fuzzy system has two inputs and one output with ui = "position," u: = "velocity," and yt = 

"force." Moreover, suppose each input is characterized by two linguistic values A/ = "small" 

and A2i = "large" for i = 1,2. Suppose further that the output is characterized by two 

linguistic values B11 = "negative" and B / = "positive." A valid If -Then rule could be 

If position is large Then force is positive 

even though it does not follow the format of a MISO rule given above. In this case, one 

premise term (linguistic variable) has been omitted from the If-Then rule. We see that we 

allow for the case where the expert does not use all the linguistic terms ( and hence the fuzzy sets 

that characterize them) to state some rules.6 

'Finally, we note that- if all tbe premise tel1115 are used in every rule and a rule is formed for 

each possible combination of premise elements, then there are 

n TI Ni = NI * N2 * .... * Nn 
i=l 
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rules in the rule-base, For example, if n = 2 inputs and we have N = 11 rrembership functions on 

each universe of discourse, then there are 1 lxl l = 121 possible rules. Clearly, in this case the 

number of rules increases exponentially with an increase in the number of fuzzy controller inputs 

or membership :functions. 
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CHAPTETR TWO: OPERATiON OF FUZZY CONTROLLER 

2.1 Preprocessing 

The inputs are most often hard or crisp measurements from some measuring 

equipment, rather than linguistic. A preprocessor, the first block in Fig. 4, conditions the 

measurements before they enter the controller Examples of preprocessing are: 

• Quantisation in connection with sampling or rounding to integers; 

• normalisation or scaling onto a particular, standard range; 

• filtering in order to remove noise; 

• averaging to obtain long term or short term tendencies; 

• a combination of several measurements to obtain key indicators; and 

• differentiation and integration or their discrete equivalences. 

A quantiser is necessary to convert the incoming values in order to find the best 

level in a discrete universe. Assume, for instance, that the variable error has the value 

4. 5, but the universe is : 

u = (-5, -4, .. ,0, .. ,4,5). The quantiser rounds to 5 to fit it to the nearest level. Quantisation 
is a means to reduce data, but if the quantisation is too coarse the controller may 

oscillate around the reference or even become unstable. 

Nonlinear scaling is an option (Fig. 5). In the FL Smidth controller the operator is asked 

tor 
.•... 
::3 
Q. 

0 -~ 
"Q 

5 

.m 
re - " 

0 
t) -ror (/'J 

input 
.5 

Figure 2.1: Example of nonlinear sealing of an input measurement. 
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to enter three typical numbers for a small, medium and large measurement respectively 

(Holmblad & Ostergaard. 1982). They become break-points on a curve that scales the 

incoming measurements ( circled in the figure). The overall effect can be interpreted as a 

distortion of the primary fuzzy sets. It can be confusing with both scaling and gain 

factors in a controller; and it makes tuning difficult. 

When the input to the controller is error, the control strategy is a static mapping 

between input and control signal. A dynamic controller would have additional inputs, 

for example derivatives, integrals, or previous values of measurements backwards in 

time. These are created in the preprocessor thus making the controller multi­ 

dimensional, which requires many rules and makes it more difficult to design. 

The preprocessor then passes the data on to the controller. 

2.2 Fuzzification 

The first block inside the controller is fuzzification, which converts each piece 

of input data to degrees of membership by a lookup in one or several membership 

functions. The fuzzification block thus matches the input data with the conditions of the 

rules to determine how well the condition of each mie matches that particular input 

instance. There is a degree of membership for each linguistic term that applies to that 

input variable. 

2.3 Rule Base 

The rules may use several variables both in the condition and the conclusion of 

the niles. The controllers can therefore be applied to both multi-input-multi-output 

(MIMO) problems and single-input-single-output (SISO) problems. The typical 5150 

problem is to regulate a control signal based on an error signal. The controller may 

actually need both the error, the change in error, and the accumulated error as inputs, 

but we will call it single-loop control, because in principle all three are formed from the 

error measurement. To simplify, this section assumes that the control objective is to 

regulate some process output around a prescribed setpoint or reference. The 

presentation is thus limited to single-loop control. 

10 
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Rule formats Basically a linguistic controller contains rules in the if-then 

format, but they can be presented in different formats. In many systems, the rules are 

presented to the end-user in a format similar to the one below, 

1. If error is Neg and change in error is Neg then output is NB 

2. If error is Neg and change in error is Zero then output is NM 

3. If error is Neg and change in error is Pos then output is Zero 

4. If error is Zero and change in error is Neg then output is NM 

5. If error is Zero and change in error is Zero then output is Zero 

6. If error is Zero and change in error is Pos then output is PM 

7. If error is Pos and change in error is Neg then output is Zero 

8. If error is Pos and change in error is Zero then output is PM 

9. If error is Pos and change in error is Pos then output is PB 

The names Zero, Pos, Neg are labels of fuzzy sets as well as NB, NM, PB and 

PM (negative big, negative medium, positive big, and positive medium respectively). 

The same set of rules could he presented in a relational format, a more compact 

representation. 

Error Change in error Output 
eo Pos Zero -b 

eg Zero NM 
Ieg Neg NB 
Zero Pos PM 
Zero Zero Zero 
Zero Neg NM 
Pos Pos PB 
Pos Zero PNI 
Pos Neg Zero 

The top row is the heading. with the names of the variables. It is 

understood that the two leftmost columns are inputs, the rightmost is the output, and 

each row represents a rule. This format is perhaps better suited for an experienced user 

who wants to get an overview of the rule base quickly The relational format is certainly 

suited for storing in a relational database. It should be emphasised, though. that the 

relational format implicitly assumes that the connective between the inputs is always 

logical and - or logical or for that matter as long as it is the same operation for all 

11 
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rules - and not a mixture of connectives. Incidentally, a fuzzy rule with an or 

combination of terms can be converted into an equivalent and combination of terms 

using laws of logic (DeMorgan's laws among others). A third format is the tabular 

linguistic format. 

Change in error 
Neg Zero Pos 

cg 
Error Zero 

Pos 

NB NM Zero 
NM Zero P1V1 
Zero P~1 PB 

This is even more compact. The input variables are laid out along the axes, and 

the output variable is inside the table. In case the table has an empty cell, it is an 

indication of a missing rule, and this format is useful for checking completeness. When 

the input variables are error and change in error, as they are here, that format is also 

called a linguistic phase plane. in case there are n > 2 input variables involved, the table 

grows to an n-dirnensional array; rather user-unfriendly. 

To accommodate several outputs, a nested arrangement is conceivable. A rule 

with several outputs could also be broken down into several rules with one output. 

Lastly, a graphical format which shows the fuzzy membership curves is also possible 

(Fig. 3). This graphical user-interface can display the inference process better than the 

other formats, but takes more space on a monitor. 

Connectives In mathematics, sentences are connected with the words and. or, 

if- then ( or implies), and if and only if, or modifications with the word not. These five 

are called connectives. It also makes a difference how the connectives are implemented. 

The most prominent is probably multiplication for fuzzy and instead of minimum. So 

far most of the examples have only contained and operations, but a rule like "If error is 

very neg and not zero or change in error is zero then ... '' is also possible. 

The connectives and and or are always defined in pairs, for example, 

a and b = min (a. b) mnumum 

a orb= max (a. b) maxnnum 

or (1) 

a and b= a* b algebraic product 
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a orb= a+ b - a * b algebraic or probabilistic sum 

There are other examples (e.g., Zimmermann. 1991, 31 32),but they are more complex. 

Modifiers A linguistic modjfier, is an operation that modifies the meaning of a 

term. For example, in the sentence "very close to O". the word very modifies Close to 0 

which is a fuzzy set. A modifier is thus an operation on a fuzzy set. The modifier very 

can be defined as squaring the subsequent membership function, that is 
very a= a2 

Some examples of other modifiers are 

(2) 

extremely a = a3 

slightly a =a113 

somewhat a= moreorless a and not slightly a 

A whole family of modifiers is generated by aP where p is any power between 

zero and infinity With p = oo the modifier could be named exactly, because it would 

suppress all memberships lower than 1.0. 

Universes Elements of a fuzzy set are taken from a universe oldiscourse oriust 

universe. The universe contains all elements that can come into consideration. Before 

designing the membership functions it is necessary to consider the universes for the 

inputs and outputs. Take for example the rule 

If error is Neg and change in error is Pos then output is 0 

Naturally, the membership functions for Neg and Pos must be defined for all 

possible values of error and change in error, and a standard universe may be 

convenient. 
Another consideration is whether the input membership functions should be 

continuous or discrete. A continuous membership function is defined on a continuous 

universe by means of parameters. A discrete membership function is defined in terms of 

a vector with a finite number of elements. In the latter case it is necessary to specify the 

range of the universe and the value at each point. The choice between fine and coarse 

resolution is a trade off between accuracy, speed and space demands. The quantiser 

13 



takes time to execute, and if this time is too precious, continuous membership functions 

will make the quantiser obsolete. 

Example 1 (standard universes) Many authors and several commercial controllers use 

standard universes. 

• The FL Smidth controller, for instance, uses the real number interval [-1, 1]. 

• Authors of the earlier papers onfuzzv control used the integers in [-6.6]. 

• Another possibiliti' is the interval [-100, 100] corresponding to percentages of 

full scale. 

• Yet another is the integer range [O, 4095] corresponding to the output from a 12 

bit analog to digital converter 

• A variant is [-2047. 2048], where the interval is shifted in order to accommodate 

negative numbers. 

The choice of datatypes may govern the choice of universe. For example, the voltage 

range [-5,5] could be represented as an integer range [-50,50], or as a floating point 

range [-5.0, 5.0], a signed byte datatvpe has an allowable integer range [-128, 127]. 

A way to exploit the range of the universes better is scaling. If a controller input 

mostly uses just one term, the scaling factor can be turned up such that the whole range 

is used. An advantage is that this allows a standard universe and it eliminates the need 

for adding more terms. 

Membership functions Every element in the universe of discourse is a 

member of a fuzzy set to some grade, maybe even zero. The grade of membership for 

all its members describes a fuzzy set, such as Neg. In fuzzy sets elements are assigned a 

grade of membership, such that the transition from membership to non-membership is 

gradual rather than abrupt. The set of elements that have a non-zero membership is 

called the support of the fuzzy set. The function that ties a number to each element x of 

the universe is called the membership function µ (x). 

The designer is inevitably faced with the question of how to build the term sets. There 

are two specific questions to consider: 

(i) How does one determine the shape of the sets? and (ii) How many sets are necessary 

and sufficient? For example, the error in the position controller uses the family of terms 

14 
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Neg, Zero, and Pos. According to fuzzy set theory the choice of the shape and width is 

subjective, but a few rules of thumb apply. 

• A term set should be sufficiently wide to allow for noise in the measurement. 

• A certain amount of overlap is desirable; otherwise the controller may run into 

poorly defined states, where it does not return a well defined output. 

A preliminary answer to questions (i) and (ii) is that the necessary and sufficient 

number of sets in a family depends on the width of the sets, and vice versa. A solution 

could be to ask the process operators to enter their personal preferences for the 

membership curves; but operators also find it difficult to settle on particular curves. 

The manual for the TIL Shell product recommends the following (Hill, Horstkotte & 

Teichrow, 1990). 

-05 
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Figure 2.2: Examples of membership functions. Read from top to bottom, left to right: 

(a) s-function, (b) n- function, (c) z-function, (d-f) triangular versions, (g-i) 

trapezoidal versions, (j) flat n- function. (k) rectangle. (I) singleton. 
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• Start with triangular sets. All membership functions for a particular input or 

output should be symmetrical triangles of the same width. The leftmost and the 

rightmost should be shouldered ramps. 

• The overlap should be at least 50%. The widths should initially be chosen so 

that each value of the universe is a member of at least two sets, except possibly for 

elements at the extreme ends. If, on the other hand, there is a gap between two sets no 

rules fire for values in the gap. Consequently the controller function is not defined. 

Membership functions can be flat on the top, piece-wise linear and triangle 

shaped, rectangular, or ramps with horizontal shoulders. Fig. 2 shows some typical 

shapes of membership functions. 

Strictly speaking, a fuzzy set A is a collection of ordered pairs 

A={(x, µ (x))} (3) 

Item x belongs to the universe andµ (x) is its grade of membership in A. A single pair 

(x, µ(x)) is a fuzzy singleton; singleton output means replacing the fuzzy sets in the con­ 

clusion by numbers (scalars). For example 

1. If error is Pos then output is 10 volts 

2. If error is Zero then output is O volts 

3. If error is Neg then output is -10 volts 

There are at least three advantages to this: 

• The computations are simpler; 

• it is possible to drive the control signal to its extreme values; and 

• it may actually be a more intuitive way to write rules. 

The scalar can be a fuzzy set with the singleton placed in a proper position. For example 

10 volts, would be equivalent to the fuzzy set (0,0,0,0, 1) defined on the universe 

(-10,-5,0,5,10) volts. 

16 



Example 2 (membership functions) Fuzzy controllers use a variety of membership 

functions. A common example of a function that produces a bell curve is based on the 

exponential function, 

µ (x) = exp [ - ( x - x O ) 
2 

] 

2 CT 2 
(4) 

This is a standard Gaussian curve with a maximum value of 1 ,x is the independent 

variable on the universe, x to is the position of the peak relative to the universe, and o is 

the standard deviation. Another definition which does not use the exponential is 

(5) 

The FL Smidth controller uses the equation 

µ (x)-1-exp [-( x~Jl (6) 

The extra parameter a controls the gradient of the sloping sides. It is also possible to 

use other functions, for example the sigmoid known from neural networks. 

A cosine function can be used to generate a variety of membership junctions. The s­ 

curve can be implemented as 

0 x c x, 

(7) 

1 X > x; 

where x, is the left breakpoint, and x, is the right breakpoint. The z-curve is just a 
reflection, 

17 



• 

r.h,mi~Jllftr« 0~1i-i1 

J 
I I .I I 1,_ 

..,~"" .... I I I I '-- 
I I I II 

I r, I 
I 1! I 
I J I 
I .1 I 
I I I 

/ I I 11 
·NO I 1(•) I. 111 A .I 

-s~ ,..-.4c, ('40 
.(11 ~ 

ffflll 

·1 

-- ", 
\ '--- 

_L r~ 
J'/.;·· 1 ··'-,, 

""~- 

/ 

•)(• 1')1 

Figure2.3 :Graphical construction of the control signal in a fuzzy PD 

controller(generated in the Matlab Fuzzy Logic Toolbox). 

1 X < xi 

z(xz,x,,x)=) I I {x-x,. J X1 ~ X ~ X, \. (8) -+-co :r 
2 2 X, -X1 

0 X > x; 

Then the z-curve can be implemented as a combination of the s-curve and the z-curve, 

such that the peak is fiat over the interval [x2, x3] 

(9) 
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2.4 Inference Engine 

Figures 2.3 and 2.4 are both a graphical construction of the algorithm in the core 

of the controiler In Fig. 2.3. each of the nine rows refers to one rule. For example, the 

first row says that if the error is negative (row 1, column 1) and the change in error is 

negative (row 1, column 2) then the output should be negative big (row 1, column 3). 

The picture corresponds to the rule base in (2). The rules reflect the strategy that the 

control signal should be a combination of the reference error and the change in error, a 

fuzzy proportional-derivative controller. We shall refer to that figure in the following. 

The instances of the error and the change in error are indicated by the vertical lines on 

the first and second columns of the chart. For each rule, the inference engine looks up 

the membership values in the condition of the rule. 

Aggregation The aggregation operation is used when calculating the degree of 

lfillment or firing strength ak . of the condition of a rule k. A rule, say rule I, will 

~\I!. a fu7.:DJ ml!.mb~x-~hl'Q value \le I C(mlini from the error and a membership value 

\\,Cl!.\ c,mm\% trcim \\\.1!. chanie in error mea~u1:ement. The aiireiation is their 

combination, 

~1 and ~1 
(10) 

Similarly for the other rules. Aggregation is equivalent to fuzzification, when 

there is only one input to the controller. Aggregation is sometimes also calledfulfilment 

of the rule or firing strength. 

Activation The activation of a rule is the deduction of the conclusion, possibly 

reduced by its firing strength. Thickened lines in the third column indicate the firing 

strength of each rule. Only the thickened part of the singletons are activated, and min or 

product (*) is used as the activation operator. It makes no difference in this case, since 

the output membership functions are singletons, but in the general case of s-. re-, and 

z- functions in the third column, the multiplication scales the membership curves, thus 

preserving the initial shape, rather than clipping them as the min operation does. Both 

methods work well in general, although the multiplication results in a slightly smoother 

control signal. In Fig. 2.3, only rules four and five are active. 
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A rule k can he weighted a priori by a weighting factor wk€ [0,1]. which is its 

degree of confidence. In that case the firing strength is modified to 

(11) 

The degree of confidence is determined by the designer, or a learning program trying to 

adapt the rules to some input-output relationship. 

Accumulation All activated conclusions are accumulated, using the max 

operation, to the final graph on the bottom right (Fig. 2.3). Alternatively, sum 

accumulation counts overlapping areas more than once (Fig. 2.4). Singleton output (Fig. 

2.3) and sum accumulation results in the simple output 

a 1 * S1 + a 2 * S2 + + an * Sn (12) 

The alpha's are the firing strengths from the n rules and s., ... Sn, are the output 

singletons. Since this can be computed as a vector product, this type of inference is 

relatively fast in a matrix oriented language. 

There could actually have been several conclusion sets. An example of a one­ 

input-two-outputs rule is "if ea is a then o, is x and o2 is y" The inference engine can 

treat two ( or several) columns on the conclusion side in parallel by applying the firing 

strength to both conclusion sets. In practice, one would often implement this situation as 

two rules rather than one, that is, "If ea is a then or is x", "If ea is a then 02 is y". 

2.5 Defuzzyfication 

The resulting fuzzy set (Fig. 2.3, bottom right; Fig. 2.4, extreme right) must be 

converted to a number that can be sent to the process as a control signal. This operation 

is called defuzzification, and in Fig. 2.4 the x-coordinate marked by a white, vertical 

dividing line becomes the control signal. The resulting fuzzy set is thus defuzzified into 

a crisp control signal. There are several defuzzification methods. 

Centre of gravity (COG) The crisp output value u (white line in Fig.2.4) is the 

abscissa under the centre of gravity of the fuzzy set, 
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u 
L i µ(xi )xi 
Liµ(xi) 

(13) 

Here Xi is a running point in a discrete universe, and µ (xi) is its membership value in 

the membership function. The expression can be interpreted as the weighted average of 

the elements in the support set. For the continuous case, replace the summations by 

integrals. It is a much used method although its computational complexity is relatively 

high. This method is also called centroid of area. 

Centre of gravity method for singletons (COGS) If the membership functions 

of the conclusions are singletons (Fig. 2.3), the output value is 

u 
L iµ (s i )s i 
L iµ (s i) (14) 

Here Si is the position of singleton i in the universe. and µ ( Si) is equal to the firing 

strength a i of rule i. This method has a relatively good computational complexity and u 

is differentiable with respect to the singletons Si, which is useful in neurofuzzy systems. 

Bisector of area (BOA) This method picks the abscissa of the vertical line that 

divides the area under the curve in two equal halves. In the continuous case, 

u { x\L µ(x }ix (15) 

Here xis the running point in the universe, µ (x) is its membership. 

Min is the leftmost value of the universe, and Max is the rightmost value. Its 

computational complexity is relatively high, and it can be ambiguous. For example. if 

the fuzzy set consists of two singletons any point between the two would divide the area 
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in two halves; consequently it is safer to say that in the discrete case. BOA is not 

defined. 
Mean of maxima (MOM) An intuitive approach is to choose the point with the 

strongest possibility i.e. maximal membership. It may happen. though, that several such 

points exist, and a common practice is to take the mean of maxima (MOM). This 

method disregards the shape of the fuzzy set, but the computational complexity is 

relatively good. 
Leftmost maximum (LM), and rightmost maximum (RM) Another possibility is to 

choose the leftmost maximum (LM), or the rightmost maximum (RM). In the case of a 

robot, for instance, it must choose between left or right to avoid an obstacle in front of 

it. 

0.5 

-~00 00 result 

0 ·100 
pos 

~ 

1 

0.5 

0 I I ,. I 0. --- 
-100 0 100 -100 0 10i:) 

Error Output 

Figure2.4:0ne input, one output rule base with non-singleton output sets. 

The defuzzifier must then choose one or the other, not something in between. 

These methods are indifferent to the shape of the fuzzy set, but the computational 

complexity is relatively small. 

2.6 Postprocessing 

Output scaling is also relevant. In case the output is defined on a standard 

universe this must be scaled to engineering units, for instance, volts meters, or tons per 
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hour. An example is the scaling from the standard universe [ -1, 1] to the physical units [ - 

10, 10] volts. 

The postprocessing unit often contains an output gain that can be tuned , and 

sometimes also an integrator. 

Example 3(inference) How is the inference in Fig. 8 implemented using discrete 

fuzzy sets? 

Behind the scene all universes were divided into 201 points from -100 to 100. but for 

brevity , let us just use five points. Assume the universe u, common to all variables, is 

the vector 

U= -100 -50 0 50 JOO 

A cosine function can be used to generate a variety of membership functions. The s­ 

curve can be implemented as: 

0 x c x, 

s(x1,x,,x) = ..<_ I I ( x-x, ) X1 :S X :S X, ;> (16) -+-cos 1r 
2 2 X, -X1 

1 X > x; 

where x1 is the left breakpoint, and x, is the right breakpoint. The 

z-curve is just a reflection, 

1 x <x, 

z(x1,x,,x) = -< I I { x-x, ) X1 :S X :S X, ~ (17) -+-co * 1r 
2 2 X, -X1 

0 X > x, 

Then the n-curve (see for example Fig. 2.2 ( j )) can be implemented as a combination 

of the s-curve and the z-curve, such that the peak is flat over the interval [x2,x3] 
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(18) 

A familv of terms is defined bv means of the n-function, such that 

:11erc = 1r (-100, -1100., -oo~ 101 u) =I 1 I 0.195 I o.o5 1 o I o I 
zero = 1i (-90, -:20, 20t 90, u) = I O I 0.61 11 I 0.61 I O I 
pos = 1r ( -10, 60~ 100, 100, u) = l O I O l 0.05 I 0.95 I I I 

Above we inserted the whole vector u in place of the running point x; the result is thus a 

vector. The figure assumes that error= -50 (the unit is percentages of full range). This 

corresponds to the second position in the universe, and the first rule contributes with a 

membership neg(2) = 0.95. This firing strength is propagated to the conclusion side of 

the rule using min, such that the contribution from this rule is 

0.95 min n~g = I 0.95 I 0.95 ,, 0.05 I O ! 0 ! 

The activation operation was min here. Apply the same pmcedure to the two remaining 

rules, and stack all three contributions on top of each other, 

0.95 0.95 0.05 0 0 
0 0.61 0.61 0.,61 0 
0 0 0 0 0 

To find the accumulated output set, perform a max operation down each column. The 
result is the vector 

0.95 min neg=! 0.95 ! 0.95 ! 0 .. 05 ! 0 ! 0 ! 
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The centre of gravity method yields 

(21) 

u 
I i µ(xi )xi 
I iµ(xi) 

_ 0.95 * (-100)+ 0.95 * (-50)+ 0.61 * 0 + 0.61 * 50 + 0 *100 
0.95 + 0.95 + 0.61 + 0.61 + 0 

= -35 .9 

which is the control signal (before postprocessing). 

(19) 

(20) 
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CHAPTER THREE: DEVELOPMENT OF FUZZY CONTROL 

SYSTEM 

3.1. Fuzzy Control System Architecture 

We introduce each of the components of the fuzzy controller for a simple problem of 

balancing an inverted pendulum on a cart, as shown in Figure 3 .1. Here, y denotes the 

angle that the pendulum makes with the vertical (in radians), 1 is the half-pendulum 

length (in meters), and u is the force input that moves the cart (in Newtons). We will 

use r to denote the desired angular position of the pendulum. The goal is to balance the 

pendulum in the upright position (i.e., r = 0) when it initially starts with some nonzero 

angle off the vertical (i.e., y<>O). This is a very simple and academic nonlinear control 

problem, and many good techniques already exist for its solution .. 

Reference 
input 

r--------------------------, 
I 
I , Inputs 
I 
I U(t) 
I 

Proces 

Output 
Y(t) Fuz 

-------aizifi Inference 
Engine catio 

n n 

Knowledge 
Base 

__________________________ J 

Fig 3.1 Inverted pendulrn on a cart. 

3.2 Choosing Fuzzy Controller Inputs and Outputs 

The fuzzy controller is to be designed to automate how a human expert who is 

successful at this task would control the system. First, the expert tells us (the designers 

of the fuzzy controller) what information she or he will use as inputs to the decision- 
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making process. Suppose that for the inverted pendulum, the expert (this could be you!) 

says that she or he will use 
E(t)=r(t)-y(t) and de(t)/dt 

as the variables on which to base decisions. Certainly, there are many other choices 

( e.g., the integral of the error e could also be used) but this choice makes good intuitive 

sense. Next, we must identify the controlled variable. For the inverted pendulum, we are 

allowed to control only the force that moves the cart, so the choice here is simple. 

For more complex applications, the choice of the inputs to the controller and 

outputs of the controller (inputs to the plant) can be more difficult. If the designer 

believes that proper information is not available.for making control decisions, he or she 

may have to invest in another sensor that can provide a measurement of another system 

variable. Alternatively, the designer may implement some filtering or other processing 

of the plant outputs. 
Once the fuzzy controller inputs and outputs are chosen, you must determine what 

the reference inputs are. For the inverted pendulum, the choice of the reference input r 

= 0 is clear. In some situations, however, you may want to chooser as some nonzero 

constant to balance the pendulum in the off vertical position. To do this, the controller 

must maintain the cart at a constant velocity so that the pendulum will not fall. 

After all the inputs and outputs are defined for the fuzzy controller, we ca~ specify the 

fuzzy control system. The fuzzy control system for the inverted pendulum, with our 

choice of inputs and outputs, is shown in Figure 3.2. Now, within this framework we 

seek to obtain a description of how to control the process. We see then that the choice of 

the inputs and outputs of the controller places certain constraints on the remainder of the 

fuzzy control design process. If the proper information is not provided to the fuzzy 

controller, there will be little hope for being able to design a good rule-base or inference 

mechanism. Moreover, even if the proper information is available to make control 

decisions, this will be of little use if the controller is not able to properly affect the 

process variables via the process inputs. It must be understood that the choice of the 

controller inputs and outputs is a fundamentally important part of the control design 

process. 
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Fig. 3.2 Fuzzy controller for an inverted pendulum on a cart. 

3.3 Linguistic Descriptions Of Knowledge 

Suppose that the human expert shown provides a description of how best to 

control the plant in some natural language (e.g., English). We seek to take this 

"linguistic" description and load it into the fuzzy controller, as indicated by the arrow 

in Figure 3.2 

The linguistic description provided by the expert can generally be broken into several 

parts. There will be "linguistic variables" that describe each of the time-varying fuzzy 

controller inputs and outputs. For the inverted pendulum, 

"error" describes e(t) 

"change-in-error" describes de(t)/dtt; 

"force" describes u (t) 

The linguistic descriptions as short as possible ( e.g., using "e(t)" as the linguistic 

variable for e(t)), yet accurate enough so that they adequately represent the variables 

Suppose for the pendulum example that "error," "change-in-error," and "force" 

take on the following values: 

"neglarge ", "negsmall ". "zero", ''possmall ". ''poslarge" 

Note that we are using "negsmall" as an abbreviation for "negative small in size" 

and so on for the other variables. Such abbreviations help keep the linguistic 

descriptions short yet precise. Here neg is negative, pos is positive. Every linguistic 

value nicely represent that the varible has a numeric quality. 

The linguistic variables and values provide a language for the expert to express her 

or his ideas about the control decision-making process in the context of the :framework 

established by our choice of fuzzy controller inputs and outputs. Recall that for the 

inverted pendulum 

r = 0 and e = r - y so that e=-y and de/dt=-dy/dt. 
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since dr/dt = 0. First, we will study how we can quantify certain dynamic behaviors with 

linguistics. 

For the inverted pendulum each of the following statements quantifies a different 

configuration of the pendulum : 

• The statement "error is poslarge" can represent the situation. where the 

pendulum is at a significant angle to the left of the vertical. 

• The statement "error is negsmall" can represent the situation where the 

pendulum is just slightly to the right of the vertical, but not too close to the 

vertical to justify quantifying it as "zero" and not too far away to justify 

quantifying it as "neglarge." 

• The statement "error is zero" can represent the situation where the pendulum is 

very near the vertical position (a linguistic quantification is not precise, hence 

we are willing to accept any value of the error around e(t) = 0 as being 
quantified linguistically by "zero" since this can be considered a better 

quantification than "possmall" or "negsmall"). 

• The statement "error is poslarge and change-in-error is "possmall" can 

represent the situation where the pendulum is to the left of the vertical and, 

since dy/dt<O, the pendulum is moving away from the upright position (note 

that in this case the pendulum is moving counterclockwise). 

• The statement "error is negsmall and change-in-error is possmall" can 

represent the situation where the pendulum is slightly to the right of the vertical 

and, since dy/dt<O, the pendulum is moving toward the upright position (note 

that in this case the pendulum is also moving counterclockwise). 

3.3.1 Rules 

Next, we will use the above linguistic quantification to specify a set of rules that 

captures the expert's knowledge about how to control the plant. In particular, for the 

inverted pendulum in the three positions shown in Figure 3.3, we have the following 

rules 

1.If error is neglarge and change-in-error is neglarge Then force is poslarge 

This rule quantifies the situation in Figure 3.3(a) where the pendulum has a large 

positive angle and is moving clockwise; hence it is clear that we should apply a 
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strong positive force (to the right) so that we can try to start the pendulum 

moving in the proper direction. 

2. If error is zero and change-in-error is possmall Then force is negsmall 

This rule quantifies the situation in Figure3.3(b) where the pendulum has nearly a zero 

angle with the vertical ( a linguistic quantification of zero does not imply that e(t) = 0 

exactly) and is moving counterclockwise; hence we should apply a small negative force 

(to the left) to counteract the movement so that it moves toward zero (a positive force 

could result in the pendulum overshooting the desired position). 

3. If error is poslarge and change-in-error is negsmall Thenforce is negsmall 

This rule quantifies the situation in Figure 3.3(c) where the pendulum is far to the left of 

the vertical and is moving clockwise; hence we should apply a small negative force (to 

the left) to assist the movement, but not a big one since the pendulum is already moving 

in the proper direction. 

Each of the three rules listed above is a "linguistic rule" since it is formed solely 

from linguistic variables and values. Since linguistic values are not precise 

representations of the 

. . 

~ _.~ ~ 
0 0 

c) a) b) 

Fig 3.3 

underlying quantities that they describe, linguistic rules are not precise either. They are 

simply abstract ideas about how to achieve good control that could mean somewhat 

different things to different people. 

The general form of the linguistic rules listed above is 

If premise Then consequent 
As you can see from the three rules listed above, the premises (which are 

sometimes called "antecedents") are associated with the fuzzy controller inputs and are 

on the left-hand-side of the rules. The consequents (sometimes called "actions") are 

associated with the fuzzy controller outputs and are on the right-hand-side of the rules. 
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3.3.2 Rule-Bases: 

Using the above approach, we could continue to write down rules for the pendulum 

problem for all possible cases. Note that since we only specify a finite number of 

linguistic variables and linguistic values, there is only a finite number of possible rules. 

For the pendulum problem, with two inputs and five linguistic values for each of these. 

there are at most 52 = 25 possible rules. 

A tabular representation of one possible set of rules for the inverted pendulum · 

shown in Table 1. Notice that the body of the table lists the linguistic-numern 

consequents of the rules, and the left column and top row of the table contain the 

linguistic-numeric premise terms. Then, for instance, the (2, -1) position (where the "2" 

represents the row having "2" for a numeric-linguistic value and the "-1" represents the 

column having "-1" for a numeric-linguistic value) has a -1 ("negsmall") in the body of 

the table and represents the rule 

If error is poslarge and change-in-error is negsmall Then force is negsmall 

which is rule 3 above. Table 1 represents abstract knowledge that the expert has about 

how to control the pendulum given the error and its derivative as inputs. 

Table 1 

force Change-in-error e' 
u NL NS z PS PL 
Error NL PL PL PL PS z 
e NS PL PL PS z NS 

z PL PS z NS NL 
PS PS z NS NL NL 

PL z NS NL NL NL 

Notice the diagonal of zeros and viewing the body of the table as a matrix we 

see that it has a certain symmetry to it. This symmetry that emerges when the rules are 

tabulated is no accident and is actually a representation of abstract knowledge about 

how to control the pendulum; it arises due to a symmetry in the system's dynamics. 



3.4 Fuzzy Quantification of Knowledge 

3.4.1 Membership Functions 

The membership function quantifies, in a continuous manner, whether varues o 

e(t) belong to (are members of) the set of values that are "possmall," and hence · 

quantifies the meaning 

{ I\ possmal 
4 e .,. 

Fig 3.4 

of the linguistic statement "error is possmall." This is why it is called a 

membership function. It is important to recognize that the membership function in 

Figure3.4 is only one possible definition of the meaning of "error is possmall"; you 

could use a bell-shaped function, a trapezoid, or many others. 

" possmall' 

~ 
a)Trapezoid 

IA 
b)Gaussian 

c)Sharp peak d) Skewed triangle 

Fig3.5 

Depending on the application and the designer (expert), many different choices 

of membership functions are possible. 

A "crisp" (as contrasted to "fuzzy") quantification of "possmall" can also be 

specified, but via the membership function shown in Figure 3.6. This membership 
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function is simply an alternative representation for the interval on the real line. and it 

indicates that this interval of numbers represents "possmall." Clearly, this 

characterization of crisp sets is simply another way to represent a normal interval (set) 

of real numbers. 

Now that we know how to specify the meaning of a linguistic value via a membership 

function (and hence a fuzzy set), we can easily specify the membership functions for 

all 15 linguistic values (five for each input and five for the output) of our inverted 

pendulum example. Figure3. 7 for one choice of membership functions. 

µ 

t« 
Fig.3.6 Membership function for a crisp set. 

-2 
NL 

-1 
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de/dt 

l)O<yO(\ ~ . . 

- - u(t) 

Fig3.7 

For the output u, the membership functions at the outermost edges cannot be 

saturated for the fuzzy system to be properly defined. The basic reason for this takes 

actions an exact value for the process input. We do not generally indicate to a process 

actuator, "any value bigger than, say, 10, is acceptable." 
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The rule-base of the fuzzy controller holds the linguistic variables, linguistic values, 

their associated membership functions, and the set of all linguistic rules (shown in 

Table 1), so we have completed the description of the simple inverted pendulum. 

3.4.2 Fuzzification 

It is actually the case that for most fuzzy controllers the fuzzification block in 

Figure 1 can be ignored since this process is so simple. For now, the reader should 

simply think of the fuzzification process as the act of obtaining a value of an input 

variable ( e.g., e(t )) and finding the numeric values of the membership function(s) that 

are defined for that variable. For example, if e(t) = n/4 and de(t)ldt = n/16, the 

fuzzification process amounts to finding the values of the input membership functions 

for these. In this case µ possma1=l (with all others zero) and µzero(de(t)/dt)= µ 

possmat( de( t )/ dt )=O. 5. 
Some think of the membership function values as an "encoding" of the fuzzy 

controller numeric input values. The encoded information is then used in the fuzzy 

inference process that starts with "matching." 

3.5 Matching: Determining Which Rules to Use 

1. The premises of all the rules are compared to the controller inputs to determine 

which rules apply to the current situation. This "matching" process involves 

determining the certainty that each rule applies, and typically we will more strongly 

take into account the recommendations of rules that we are more certain apply to the 

current situation. 
2. The conclusions (what control actions to take) are determined using the rules that 

have been determined to apply at the current time. The conclusions are characterized 

with a fuzzy set ( or sets) that represents the certainty that the input to the plant 

should take on various values. 

3.6 Premise Quantification via Fuzzy Logic 

To perform inference we must first quantify each of the rules with fuzzy logic. To do 

this we first quantify the meaning of the premises of the rules that are composed of 
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several terms, each of which involves a fuzzy controller input. Consider Figure 9, where 

we list two terms from the premise of the rule 

If error is zero and change-in-error is possmall Then force is negsmall 

Above, we had quantified the meaning of the linguistic terms "error is zero" and 

"change-in- error is possmall" via the membership functions shown in Figure 8. Now 

we seek to quantify the linguistic premise "error is zero and change-in-error is 

possmall." Hence, the main item to focus on is how to quantify the logical "and" 

operation that combines the meaning of two linguistic terms. While we could use 

standard Boolean logic to combine these linguistic terms, since we have quantified 

them more precisely with fuzzy sets (i.e., the membership functions), we can use these. 

To see how to quantify the "and" operation, begin by supposing that e(t)=n/8 and 

de(t)/dt=n/32, so that using Figure3.7 (or Figure3.8) we see that 

'error is zero 
quantified with 

and change-in-error is possmal" 
quantified with 

1 0 ' 
zero 

µpossmal 

o n/4 e(t) n1s n/4 de(t)/dt 
Fig.3.8 

µzero (e(t))=0.5 and µpossmal( de/ dt )=O. 5 

What, for these values of e(t) and de(t)/dt, is the certainty of the statement 

"error is zero and change-in-error is possmall" 

that is the premise from the above rule? We will denote this certainty by µpremise· There 

are 

actually several ways to define it: 

Minimum: Deineµpremise=min{0.5,0.25}=0.25, tht is, using the minimum of the two 

membership values. 

Product: Deine µpremise=(0.5)(0.25)=0.125, that is, using the product of the two 

membership values. 

Notice that both ways of quantifying the "and" operation in the premise indicate 

that you can be no more certain about the conjunction of two statements than you are 

about the individual terms that make them up (note that Osµpremisesl for either case) .. 
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While we have simply shown how to quantify the "and" operation for one value of 

e(t) and de(t)/dt, if we consider all possible e(t) and de(t)/dt values, we will obtain a 

multidimensional membership function µpremise(e(t), de(t)ldt) that is a function of e(t) 

and de(t)/dt for each rule. For our example, if we choose the minimum operation to 

represent the "and" in the premise, then we get the multidimensional membership 

function µpremise(e(t),de(t)/dt). Notice that if we pick values for e(t) and de(t)/dt, the 

value of the premise certainty µpremise(e(t),de(t)ldt) represents how certain we are that 

the rule 
If error is zero and change-in-error is possmall Then force is negsmall 

is applicable for specifying the force input to the plant. As e(t) and de(t)/dt change, the 

value of µpremise(e(t),de(t)/dt) changes according to Figure3.9, and we become less or 

more certain of the applicability ofthis rule. 

µpremise 

Fig.3.9 Membership function of the premise for a single rule. 

3. 7 Determining Which Rules Are On 

Determining the applicability of each rule is called "matching." We say that a rule 

is "on at time t'' if its premise membership function µpremise(e(t),de(t)/dt) > 0. Hence, 

the inference mechanism seeks to determine which rules are on to find out which rules 

are relevant to the current situation. 
Consider, for the inverted pendulum example, how we compute the rules that are 

on. Suppose that 

e(t)=O and de(t)/dt=n/8-n/32(=0.294) 

Figure 11 shows the membership functions for the inputs and indicates with thick black 

vertical lines the values above for e(t) and de(t)/dt. Notice that Jlzera(e(t))=l but that the 

other membership functions for the e(t) input are all "off' (i.e., their values are zero). 

36 



For the de(t)/dt input we see that Jlzero(de(t)/dt)=0.25 and µpossma1(de(t)/dt) = 0.75 and 

that all the other membership functions are off. This implies that rules that have the 

premise terms 

"error is zero" 

"change-in-error is zero" 

"change-in-error is possmall" 

are on (all other rules have µpremise(e(t),de(t)/dt) = 0. So, which rules are these? Using 

Table 1 on, we find that the rules that are on are the following: 

1. If error is zero and change-in-error is zero Then force is zero 

2. If error is zero and change-in-error is possmall Then force is negsmall 

Note that since for the pendulum example we have at most two membership 

functions over- lapping, we will never have more than four rules on at one time (this 

concept generalizes to many inputs). Actually, for this system we will either have one, 

two, or four rules on at any one time. To get only one rule on choose, for example, e(t) 

= 0 and de(t)/dt=n/8 so that only rule 2 above is on. What values would you choose for 

e(t) and de(t)/dt to get four rules on? For this system, to have exactly three rules on? 

"neglarge" ''poslarge· 

e(t), (rad'. 

- --z 
"poslarge" 

1t 1t 1t 
16 s 4 

Fig 3.10.Input membeship functions with input values 

It is useful to consider pictorially which rules are on. Consider Table 2, which is a copy 

of Table 1 with boxes drawn around the consequents of the rules that are on (notice that 

these are the same two rules listed above). Notice that since e(t) = O(e(t) is directly in 
the middle between the membership functions for "possmall" and "negsmall") both 
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these membership functions are off. If we perturbed e(t) slightly positive (negative), 

then we would have the two rules below (above) the two highlighted ones on also. 

Table 2 

force Change-in-error e' 
u NL NS z PS PL 
Error NL PL PL PL PS z 
e NS PL PL PS z NS 

z PL PS ~ Ml NL 
PS PS z NS NL NL 

PL z NS NL NL NL 

3.8 Inference Step: Determining Conclusions 

Next, we consider how to determine which conclusions should be reached when 

the rules that are on are applied to deciding what the force input to the cart carrying the 

inverted pendulum should be. To do this, we will first consider the recommendations of 

each rule independently. Then later we will combine all the recommendations from all 

the rules to determine the force input to the cart. 

3.9 Recommendation from One Rule 

Consider the conclusion reached by the rule 

If error is zero and change-in-error is zero Then force is zero 

which for convenience we will refer to as "rule (1)." Using the minimum to represent 

the premise, we have 

µpremise] =min{0.25, I} =0.25 

(the notation µpremisel represents µpremise for rule (1)) so that we are 0.25 certain that 

this rule applies to the current situation. The rule indicates that if its premise is true 

then the action indicated by its consequent should be taken. For rule (1) the consequent 

is "force is zero" (this makes sense, for here the pendulum is balanced, so we should 

not apply any force since this would tend to move the pendulum away from the 

vertical). The membership function for this consequent is shown in Figure 3.1 l(a). The 
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membership function for the conclusion rea_ched by rule (1), which we denote by µ1, 

is shown in Figure 3 .11 (b) and is given by 

µ1(u) =min{0.25, Jlzera(u)} 

this membership function defines the "implied fuzzy set'" for rule (1) (i.e., it is the 

conclusion that is implied by rule (1)). The justification for the use of the minimum 

operator to represent the implication is that we can be no more certain about our 

consequent than our premise. 

Notice that the membership function µ1(u) is a function of u and that the 

minimum operation will generally "chop off the top" of the Jlzera(u) membership 

function to produce µ1(ut). For different values of e(t) and de(t)/dt there will be 

different values of the premise certainty µpremise(e(t),de(t)ldt) for rule (1) and hence 

different functions µ1(u) obtained (i.e., it will chop off the top at different points). 

We see that µJ(u ) is in general a time-varying function that quantifies how 

certain rule (1) is that the force input u should take on certain values. It is most certain 

that the force input should lie in a region around zero ( see Figure 3 .11 (b) ), and it 

indicates that it is certain that the force input should not be too large in either the 

positive or negative direction-this makes sense if you consider the linguistic meaning 

of the rule. The membership function µ1(u) quantifies the conclusion reached by only 

rule (1) and only for the current e(t) and de(t)ldt. It is important that the reader be able 

to picture how the shape of the implied fuzzy set changes as the rule's premise certainty 

changes over time. 

10 
a) 

-10 10 
0.25 

(a) Consequent membership function and (b) implied fuzzy set with membership 

function µJ(u) for rule (1 ). Recall that the units for u(t) are Newtons (N). 

3.10 Recommendation From Another Rule 

Next, consider the conclusion reached by the other rule that is on, 
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If error is zero and change-in-error is possmall Then force is negsmall wbi, 

convenience we will refer to as "rule (2)." Using the minimum to represent the premise. 
we have 

µpremise2(u)=min{O. 75,1)=0. 75 

so that we are 0.75 certain that this rule applies to the current situation. Notice that we 

are much more certain that rule (2) applies to the current situation than rule (1). For 

rule (2) the consequent is "force is negsmall" (this makes sense, for here the pendulum 

is perfectly balanced but is moving in the counterclockwise direction with a small 

velocity). The membership function for this consequent is shown in Figure3.12 (a). The 

membership function for the conclusion reached by rule (2), which we denote by µ2{u), 

is shown in Figure 3. l 2(b) ( the shaded region) and is given by 

µ2(u) =min{O. 7 5, µnegsmau(u) 

this membership function defines the implied fuzzy set for rule (2) (i.e., it is the 

conclusion that is reached by rule (2)). Once again, for different values of e(t) and 

de(t)/dt there will be different values of µpremise2(e(t),de(t)/dt) for rule (2) and hence 

different functions µ2(u) obtained. Rule (2) is quite certain that the control output 

(process input) should be a small negative value. This makes sense since if the 

pendulum has some counterclockwise velocity then we would want to apply a negative 

force (i.e., one to the left). As rule (2) has a premise membership function that has 

higher certainty than for rule (1), we see that we are more certain of the conclusion 

reached by rule (2). 

-1 -1 

-20 -10 
a) 

u(t) -20 -10 
b) 

u(t) 

Fig3.12 

This completes the operations of the inference mechanism in Figure 1. 

input to the inference process is the set of rules that are on, its o 

implied fuzzy sets that represent the conclusions reached 

For our example, there are at most four conclusio 

rules on at any one time. (In fact, you co 



.. 
reached for our example, but that the implied fuzzy sets for some of the rules may have 

implied membership functions that are zero for all values.) 

3.11 Converting Decisions into Actions 

Next, we consider the defuzzification operation, which is the final component of 

the fuzzy controller shown in Figure 1. Defuzzification operates on the implied fuzzy 

sets produced by the inference mechanism and combines their effects to provide the 

"most certain" controller output (plant input). Some think of defuzzification as 

"decoding" the fuzzy set information produced by the inference process (i.e., the 
implied fuzzy sets) into numeric fuzzy controller outputs. 

To understand defuzzification, it is best to first draw all the implied fuzzy sets on 

one axis as shown in Figure3.13 We want to find the one output, which we denote bv 

v=: that best represents the conclusions of the fuzzy controller that are represented 
with the implied fuzzy sets. There are actually many approaches to defuzzification. 

3.12 Combining Recommendations 

Due to its popularity, first consider the "center of gravity" (COG) 

defuzzification method for combining the recommendations represented by the implied 

fuzzy sets from all the rules. Let bi denote the center of the membership function (i.e., 

where it reaches its peak for our example) of the consequent of rule (i). For our 
example we have 

and ~=-10 

-20 -It O 10 
-6.81 

u(t) 

Fig.3.13 
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as shown in Figure3.13 Let f u, 
denote the area under the membership function µ;. The COG method conznnes 

be 

0 

L)ifA 
Ucrisp = I fA (1) 

This is the classical formula for computing the center of gravity. In this case it :­ 

com- puting the center of gravity of the implied fuzzy sets. Three items about Equario 

(1) are important to note: 

1. Practically, we cannot have output membership functions that have infinite area 

since even though they may be "chopped off in the minimum operation for the 

implication ( or scaled for the product. operation) they can still end up with infinite 

area. This is the reason we do not allow infinite area membership functions for the 

linguistic values for the controller output (e.g., we did not allow the saturated 

membership functions at the outermost edges as we had for the inputs shown in 

Figure 3.7). 

2. You must be careful to define the input and output membership functions so that the 

sum in the denominator of Equation (1 ) is not equal to zero no matter what the inputs 

to the fuzzy controller are. Essentially, this means that we must have some sort of 

conclusion for all possible control situations we may encounter. 

3. While at :first glance it may not appear so, f u, is easy to compute for our example. 

For the case where we have symmetric triangular output membership functions that 

peak at one and have a base width of w, simple geometry can be used to show that 

the area under a triangle "chopped off at a height of h (such as the ones · 

Figures3.l 1 and 3.12) is equal to 

Given this, the computations needed to compute »= are not too siznificanr 
We see that the property of membership functions being symmetric 

important since in this case no matter whether the minimum o: ~ 

represent the implication, it will be the case that the ce 

be the same as the center of the consequent fuzzy set ii 

output membership functions are not symme 
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the computation of the COG, will change depending on the ;:;:e: iw: a 
premise. This will result in the need to recompute the center at 

Using Equation ( 1) with Figure 3 .13 we have 

Ucrisp = (0)(4.375)+ (-10)(9.375) = _6_81 
4.375 + 9.375 

the 

as the input to the pendulum for the given e(t) and de(t)/dt (see 

3.13 Other Ways to Compute and Combine Reeo P E 

As another example, it is interesting to consider how to -:;.:i:; ~ • 

operations that the fuzzy controller takes when we use the p 

implication or the "center-average" defuzzi:fication method. 

First, consider the use of the product. Consider Figure3.14 

the output membership functions for "negsmall" and "zero" as do­ 

fuzzy set from rule ( 1) is given by the membership function 

µJ(u) =0.25 Jlzero(u) 

shown in Figure 15 as the shaded triangle; and the implied fuzzy 

by the membership function 

the 

--•the 

,lied 

µ2(u)=O. 75µnegsmau(u) 

shown in Figure3.14 as the dark triangle. Notice that computation ·­ 

since we can use 1 wh as the area for a triangle with base width w -~ 

we useproduct to represent the implication, we obtain 

Ucrisp = (0)(2.5) + (-10)(7.5) = _ 7_5 
2.5 + 7.5 

which also makes sense 

-1 0 

negsmall ,, i\:z,;ero.. ··· 0.75 0.25 
/ ' I .... \ 

/ ' / ' 7,K.-\r \, ·················· 
~ ', 

' 

-20 -10 0 10 20 

Fig3.14 

Next, as another example of how to combine recommendarsxs, 

introduce the 'center-average" method for defuzzi:fication. For this metho 
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Lb 1 µ premise, 

crisp _ 1 

u - " 
~µpremisei 

(2) 

where to compute µpremisei we use, for example, minimum. We call it the "center­ 

average" method since Equation (2) is a weighted average of the center values of 

output membership function centers. Basically, the center-average method replaces 

areas of the implied fuzzy sets that are used in COG with the values of µpremisei . This :­ 

a valid replacement since the area of the implied fuzzy set is generally proportional to 

µpremisei since µpremisei is used to chop the top off (minimum) or scale (product 

triangular output membership function when COG is used for our example. For the 

above example, we have 

Ucrisp = (0)(0.5)+(-10)(0.75) =-7.5 
0.25 + 0.75 

which just happens to be the same value as above. Some like the center-average 

defuzzification method because the computations needed are simpler than for COG and 

because the output membership functions are easy to store since the only relevam 

information they provide is their center values (b; ) (i.e., their shape does not matter, 

just their center value). 

Notice that while both values computed for the different inference and 

defuzzification methods provide reasonable command inputs to the plant, it is difficult 

to say which is best without further investigations ( e.g., simulations or 

implementation). This ambiguity about how to define the fuzzy controller actually 

extends to the general case and also arises in the specification of all the other fuzzy 

controller components, as we discuss below. Some would call this "ambiguity" a 

design flexibility, but unfortunately there are not too many guidelines on how best to 

choose the inference strategy and defuzzification method, so such flexibility is of 

questionable value. 

3.14 Graphical Depiction of Fuzzy Decision Making 

For convenience, let is summarize the procedure that the fuzzy controller uses 

to compute its outputs given its inputs in Figure3 .15. Here, we use the minimum 

operator to represent the "and" in the premise and the implication and COG 

defuzzification. The reader is advised to study each step in this diagram to gain a fuller 

understanding of the operation of the fuzzy controller. To do this, develop a similar 

diagram for the case where the product operator is used to represent the "and" in the 
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premise and the implication, and choose values of e(t) and de(t)/dt that will re 

four rules being on. Then, repeat the process when center-average de(r, 

defuzzification is used with either minimum or product used for the premise. ~' ·~ 

learn how to picture in your mind how the parameters of this graphical represem 

of the fuzzy controller operations change as the fuzzy controller inputs change. 

AA.. , . ....,,. ,. \ ,' \ 
------ ' "0.2S 

e(I) -.l!. .l!..1 .!l, d e(I) -10 10 u(I), (N) 
4 I 4 8 I~ 8 i1i 

H error is zero and change-in-error is zero Then force is zero 

'~­ 

~) 
4 4 • 

H error is zero and change-in-error is possmall Then force is negsmall 

Fig.3 .15 Graphical representation of fuzzy controller operations 

This completes the description of the operation of a simple fuzzy controller. 

You will find that while we will treat the fully general fuzzy controller in the next 

section, there will be little that is conceptually different &om this simple example. We 

simply show how to handle the case where there are more inputs and outputs and show 

a fuller range of choices that you can make for the various components of the fuzzy 

controller. 

45 



CHAPTER FOUR: FUZZY SYSTEM FOR :-,_~.1-.~.!I ~• 

CONTROL 

The description of this project is given in [Adap96]. Ht}.:-.s:f:J:lc • I - cs 

use heaters, such as ovens, rice cookers, toasters, should come ,__.~ 

temperature maintain it regardless of changes in conditions 

Heating elements, because of thermal inertia, require a certain ZTu-J. 

temperature. This between control and response causes the -. 

oscillate about the desired temperature. Once the temperature 

environmental conditions often throw the heater back into osci ,. w ·­ 

heaters have poor temperature control due to the use of crude. o:u-c:5"~ 

is an inefficient and inconsistent operation. 

To overcome this drawback, many industrial and consumer ~ 

industrial chambers, ovens, rice cookers, toasters and irons 

could benefit advantages and feature enhancements of fuzzy lo_ 

heater control has been designed that uses a fuzzy controller - 

compare it to the user-selected temperature and control heater f"I~ 

dedicated fuzzy logic device is an adaptive controller that p 

providing consistent performance under all conditions. 

We will describe both the fuzzy logic rules and desig 

Most appliance heaters are controlled by bimetallic strips or ~<4-1= 

with heat and switch the heater on or off. These crude mechanical a....:::c..:>'.Iii:r:s ~ 

react to temperature fluctuations and cannot anticipate when 

the selected temperature. When the element passes through 

switch opens, cutting power to the heater. But by this time, tbJ 

to carry the system temperature far above the selected range 

return. 

The switch stays open until the heater cools to the co 

point the switch closes, but some time is required before the 

sufficient heat and the system cools well below the correct temperarure. 



and undershoot process can continue for minutes or hours. A change in the selected 

temperature or in environment ( such as changing air conditions in a heating system or 

opening an oven door) may cause the heater to go into oscillation again. 

Heaters have widely varying characteristics. They are specified in terms of their 

form including length, shape, thickness and material composition. Heating elements 

may add instability to a system because of their slow response time and thermal inertia. 

The heater specifications are based on the requirements of the end product. The end 

product also has a range of thermal characteristics that influence the behavior of the 

heater. Many variables of heating systems make the design of a controller for different 

systems a difficult task. A control system using a fuzzy controller brings the 

temperature of the heater to the selected temperature quickly and keeps it there 

regardless of any changes in the load or environment. This results in a more stable and 

reliable operating temperature. 

There are three external inputs monitored by the controller. The first comes from 

a thermistor to monitor the temperature. The second is the user-selected, desired 

temperature setting. Input three is, again, the measured thermistor value signal only 

delayed by a small amount of time. This last input enables the controller to know the 

direction and magnitude of the temperature change in addition to the absolute 

temperature. The controller samples the input data, processes it and outputs a pulse 

width modulated (PWM) output signal that switches a triac controlling the current 

through the heater. 

The fuzzy controller design parameters (inputs, outputs, fuzzy variables and 

rules) are given in (Fig. 4.5), followed by a brief description of the fuzzy controller 

operation. The main part of any fuzzy controller is implemented as a set of rules. It 

performs the control algorithm. By studying the rules, one can see the criteria for taking 

actions such as switching the heater on or off. These rules make decisions based on 

adjustable membership function definitions. The rules are easily modified to respond to 

different criteria. The following describes the rules' purposes in relation to the inputs, 

their associated fuzzy variables, and the action taken when a rule is fired. 

Timer rules (Rules 1 and 2) are used to generate the timer for pulse switching 

the triac and to adjust the data processing rate. Rule one increments the ramp output if it 

is in the count membership function. When the ramp reaches the reset function, then the 

reset rule will be fired and return the ramp to zero to begin to increment through the 

count again. The rate of an increment is set to 12, but could be any non-zero value 
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according to the requirements of the application. The increment and reset actions 

implement a timer that causes the ramp to sweep across an axis. 

The heater output is used to define the center value of membership functions On 

and Off. On and Off are, in turn, used by later rules to switch the triac on and off. Rules 

3-19 consider both the current temperature and the previous value of temperature 

whenever the time has reached reset. The winning rule in this group will add to or 

subtract from the value of the heater. 
The fuzzy variables classify the temperature as matching the selected value, or 

being too hot or cold. The membership functions used the user selected temperature 

(TSET) as a floating center value to compare the selected temperature with the actual 

temperature. As the user vanes the desired temperature value, the membership function 

centers move left or right. Other fuzzy variables use the current temperature value to 

define their centers. As the temperature varies, the functions shift right or left. The 

fuzzy variables compare the current temperature with its time delayed value. The 

comparison is a calculation of the derivative value and sign of the temperature. By 

comparing both the current value and derivative of temperature with the desired 

temperature, one can calculate a temperature correction value based on both the 

absolute difference and the rate of change of temperature. The calculation allows for 

precise control and minimizes the overshoot. 
Rules 3-19 use one fuzzy variable from each set to adjust the value of the heater. 

The actions of the rules are designed to move the heater towards the desired 

temperature without causing it to overshoot. (Table 4.2) summarizes the various 

conditions and actions of the heater control rules. Note, if all of these rules are not fired 

(i.e., the blank boxes scenarios in Table 4.2) then the value of the heater is not changed. 

Some of the rules are described below. Values indicated are added from the heater 

based upon die winning condition of TEMP and DELAY. No action is taken where 

there are blanks. 
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NL NM NS N PS PM PL 

PL -15 

PS -8 -6 -1 -2 

N 25 5 1 0 -1 -5 -25 I 
NS 2 1 6 8 

~ 
NL 15 1: 

NL: Negative Large. 

NM: Negative Medium. 

NS: Negative Small. 

PL: Positive Large. 

Fragment of knowledge base:. 

N: Normal. 

PS: Positive Small. 

PM: Positive Medium. 

1. If T = N and Td = N Then U = + 0. 
2. If T = NL and Td = N Then U = +25. 
3. If T = PL and Td = N Then U = - 25. 
4. If T = NM and Td = PL Then U = - 15. 
5. If T = NM and Td = PS Then U = - 8. 
6. If T = PM and Td = NL Then U = + 15. 
7. If T = PM and Td = NL Then U = + 8. 
8. If T = NM and Td = N Then U = + 5. 
9. If T = PM and Td = N Then U = - 5. 
10. If T = NS and Td = NL Then U = + 2. 
11. If T = NS and Td = PS Then U = - 6. 
12. If T = NS and Td = N Then U = + 1. 
13. If T = PS and Td = N Then U = - 1. 
14. If T = PS and Td = NS Then U = + 6. 
15. If T = PS and Td = PS Then U = - 2. 
16. If T = N and Td = NS Then U = + 1. 
17. If T = N and Td = PS Then U = - 1. 

Rule 3, for example, is true if the tempe 

selected range, and leaves the heater unchanged. 



be far from the selected value and not changing. These - 

decreases of the heat. Rules 6 and 7 both consider 

temperature (TMLOW), but they consider different de · 

values. Rule 6 considers a large positive delayed value (DLl 

a small one (DSPOS). At first glance, the correction actions 

be counterintuitive. In each rule the temperature is too low .. 

the value of the heater which decreases temperature when - 

that in each rule the derivative is positive indicating that the te , e Miwt 

increasing. The reduction in the value of heat prevents o 

temperature to reach the set point. 

The corrective action from Rule 6 is larger than t 

former rule the derivative value of the air temperature was 

increase in temperature. The larger previous value subtracts 

15) than does the smaller (-8). The same reasoning holds · 

set. As the heater moves closer to the desired point, other rules 

it there. 

Rules 20 and 22 guard against the heating unit from E­ 

decreases the heater value in small increments when the temoe •• _ •.• :. 

safety level. During this process, at the same time, Rule 22 P 

of System the triac and keeps it off until the temperature decreases 

value. Note that Rule 23 (which turns on the pulse) will ne 

temperature is greater than the safety value. Even if the fuzzy ""· .::....:ia:i:s • a 
and TEMP is OverT should evaluate to the same value, the preee •;-;:a: 

rule (Rule 22) for determining the action. If the temperature ~.,. "' 

TEMP is OverT will always be evaluated as a maximum value. 

the PWM output, triac, turning it on and off. The decision is basec. - 

of the ramp feedback value to the heater value. The heater value s 

membership functions ON and OFF. As the ramp moves across 

it also moves between the functions ON and OFF. Depending on -r 

the position of the center value for the two functions will move to - 

will vary the amount of time during a given sweep that the 

moving the heater, one changes the width of the pulse contro 

heater temperature. 
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CONCLUSION • ~i . ;; 
,, 0 

The analysis of some industrial and non-industrial processes show, tha;1b.'e..y~-f 

characterized with uncertainty of their functioning principle, fuzziness of information. 

In these condition the fuzzy system is effective mathematical tool for modeling and 

control both industrial and non-industrial processes. 

The structure of fuzzy system for technological processes control is given. The 

functions of its main bloks- fuzzification, inference engine, defuzzification, fuzzy 

knowledge base are described. 
The development of fuzzy PD-like controller is performed. Using time response 

characteristics of system and fuzzy model of the processes the fuzzy knowledge base 

for this controller is developed. The inference engine mechanism is realized by using 

max-min type fuzzy processing of Zade. Defuzzification mechanism is realized by 

using "Center of Gravity" algorithm. 
The modeling of fuzzy controller for control of temperature of heater is carried 

out. The simulation of system is realized in C programming language. In the result of 

simulation obtained time response characteristics of system show the efficiency of 

application of fuzzy controller in complicated processes. 
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