
NEAR EAST UNIVERSITY

FACULTY OF ENGINEERING

••

DEPARTMENT Ot= -COMPUTER ENGINEERJNG

Student:

DATABASE SYSTEM FOR A
TOURISM COMPANY

GRADUATION PROJECT
COl,Vl-400

Faisal Iqbal Qureshi

su·pervisor: Asst. Prof. Dr Firudin Muradov

Nicosia - 2004

Acknowledgements

Praise be to GOD Most Gracious most Merciful.

I would like to thanks my parents for there support in finishing this project.

My second thanks goes to my brothers for there valuable information and continuous

support in writing this project.

Finally I would like to thank my supervisor Asst Prof. Dr. Firudin Muradov for his

advice on the topics, of whom without his support this project would never had come to

end

•

Abstract

• 7 Z we system is nothing more than a computerized record keeping system. The

be regarded as a kind of electronic filling cabinet. The RDBMS such as

complete reference as well as the most securest RDBMS that gives user a

verage as well as fulfills the needs of one who actually uses it.

of today's language which gives user a unique touch of object orientation.

can connect to the database using the JDBC feature which allows Java to

~t fulfills the request of a database system for a Tourism company. In this

can add, view, delete and change,the database as of his/her requirements.

•

ii

Table of Contents

Table of Contents

ACKNOWLEDGEMENT

ABSTRACT II

TABLE OF CONTENTS ııı

LIST OF ABBRIVIA TIO NS vii

INTRODUCTION viii

CHAPTER ONE: INTRODUCTION TO DATABASE ı
MANAGEMENT SYSTEM

1.1 Introduction ı
1.2Data Model I

1.3 Relational Model 2

1.4Network Model 2

1.5 Hierarchical Model 2

1.6 Benefits ofDBMS Approach 2

1.7 Three Levels of Architecture 3. '

I . 7. I Internal Level 3

1. 7 .2 Conceptual Level 4

1.7.3 External Level 4

1.8 Who Uses a DBMS 5

"'1.9Entity 5

1.1 O Relationship

1.11 Mapping

1. I 1. I Conceptual I Internal Mapping

I .11.2 External conceptual Mapping

1.12 Database Administration

1.13 The Database management System

1.14 Relational Database Management System

1.15RDBMS Components

•• 5

6

6

7

7

7

8

8

ııı

Table of Contents

1.16 The RDBMS Kernel

CHAPTER TWO.:ORACLE AND JAVA

INEtCONNECTIVITY
2.1 Overview

2.2 Oracle Database

2.3 Oracle Files

2.3.1 Oracle Database Files

2.3.2 Oracle Control Files

2.3.3 Oracle Redo Logo

2.4 System and User Processes

2.4.1 Mandatory System Processes

2.4.l.1 DBWR

2.4.l.2 LGWR

2.4. 1.3 SMON

2.4.1.4 PMON

2.4.2 User Processes

2.4.2.1 Single Task

2.4.2.2.5. l Dedicated Server Processes

2.4.2.3 Multithreaded Server

2.5 Oracle Memory

2.5.1 SGA "

2.5.1.1 DB Buffer Code

2.5.1.2 Redo Buffer Code

2.5. 1.3 Shared pool Area

2.5.1.4 SQL Area

2.5 .1.5 Dictionary Cache
2.5.2 PGA

2.6 Oracle Access with JDBC

2.6.1 Driver Type

2.6.1.1 Thin Driver

ıv

8

9

9

9

9

10

10

10

11

11

11

11

12

12

12

13

13

13

14

14

14
• ts

15

16

16

17

17

18

18

Table of Contents

2.6.1.2 OCI8 Driver

2.6.2 Driver Manager Class

. 2.6.3 Driver Class

2.6.4 Connection Class

2.6.5 Statement Class

2.6.6 Result Set Class

2.7 SQLJ

2.7.1 SQLJ Components

2.7.1.l Oracle SQL.T Translator

2.7.1.2 Oracle SQLJ Runtime

2.7.1.3 Oracle SQL.T Profiles

2.7.2 Oracle Extensions to the SQLJ Standards

2.7.3 Basic Translation Steps and Runtime Processing

2.7.3.1 Translation Steps

2.7.3.2 Runtime Processing

2.7.4 SQL.T Declarations

2.7.5 Stored Procedures and Function Calls

2.7.6 Multithreading in SQLJ

2.7.7 SQL.T and .TDBC Interconnectivity

2.7.7.1 Connecting from connection Context to JDBC

2.7.7.2 Connecting from JDBC to Connection Context

2.7.7.3 Shared Connections

2.7,8 SQLJ in the Server •

2.7.8.1 Creating SQL.T Code for use with the Server

2.7.8.2 Database connection with the'Server

2.7.8.3 Name Resolution In Server

2.7.8.4 SQL Name Vs JAVA Name

2.8 Introduction to Net8

2.8. l Advantages ofNet8

2.8.1. l Network Transparency

2.8.1.2 Protocol Independent

;ı.8.1.3 Media I Topology Independence

2.8.1.4 Heterogeneous Networking

V

18

19

19

20

20

21

21

22

22

22

23

23

24

24

25

26

26

27

28

28

29

29

30

30
••

30

31

32

32

32

32

33

33

33

Table of Contents

2.8. I .5 Large Scale Scalability 33

2.8.2 Net8 Features 33

2.8.2.1 Scalability Feature 34

2.8.2.2 Manageability Features 34

i) Hosting Name 34

ii) Oracle 8 Assistant 34

2.8.8.3 Oracle Trace Assistant 35

2.8.8.4 Native Naming Adapters 35

2.8.3 Net 8 operations 35

2.8.4 Connection Operations 35

2.8.4. l Connecting to Servers 36

2.8.4.2 Establishing Connections with the Network Listener 36

2.8.5 Disconnecting From Servers 36

2.8.5.l User Initiated Disconnect 37

2.8.5.2 Additional Connection Request 37

2.8.5.3 Abnormal Connection Termination 37

2.8.5.4 Timer Initiated Disconnect or Dead Connection Detection 37

2.8.6 Data Operators 38

2.8.7 Exception Operations 38

2.8.8 TNS 39

2.8.9 NETS Architecture

2.8.9.1 Distributed Processing

2.8.9.2 Stak

ii) Client Server Interaction

i) Server Server Interaction •

39

39

39

40
43

CIIAPTER THREE: TOURISM COMPANY DATABASE 46

Overview 46

3 .1 Interconnectivity 46

3 .2 Program Implementation 46

3.2.1 Database 49

3 .2.2 Application 49

vi

Table of Contents

APPENDIX

CONCLUSION

REFERENCES

51

91

92

••

vıı

List of Abbreviations

Abstract Window Toolkit (AWT)
ollectiorı of graphical user interface (GUI) components that were implemented using

tive-platform versions of the components. These components provide that subset of
tionality which is common to all native platforms. Largely supplanted by the

Project Swing component set.

stract
A. Java(TM) programming language keyword used in a class definition to specify that a
class is not to be instantiated, but rather inherited by other classes. An abstract class can
have abstract methods that are not implemented in the abstract class, but in subclasses.

pha value
..\ value that indicates the opacity of a pixel.

API
Application Programming Interface. The specification of how a programmer writing an
application accesses the behavior and state of classes and objects.

applet
A component that typically executes in a Web browser, but can execute in a variety of
other applications or devices that support the applet programming model.

argument
A data item specified in a method call. An argument can be a literal value, a variable, or
an expression.

Bean
A reusable software component. Beans can be combined to create an application.

bit
The smallest unit of information in a computer, with a value of either O or l.

bitwise operator
An operator that manipulates two values comparing each bit of one value to the
corresponding bit of the other value.

•
block
In the Java(TM) programming language, any code between matching braces. Example:
{ X = l; } .

business logic
Tbe code that implements the functionality of an application. In the Enterprise
Javalleans model, this logic is implemented by the methods of an enterprise bean.

VH

byte
A sequence of eight bits. The Java(TM) programming language provides a
corresponding byte type.

bytecode
Machine-independent code generated by the Java(TM) compiler and executed by the
Java interpreter.

catch
A Java(TM) programming language keyword used to declare a block of statements to be
executed in the event that a Java exception, or run time error, occurs in a preceding "try"
block.

class.
In the Java(TM) programming language, a type that defines the implementation of a
particular kind of object. A class definition defines instance and class variables and
methods, as well as specifying the interfaces the class implements and the immediate
superclass of the class. If the superclass is not explicitly specified, the superclass will
implicitly be Object.

class method
A method that is invoked without reference to a particular object. Class methods affect
the class as a whole, not a particular instance of the class.

class path
A classpath is an environmental variable which tells the Java(TM) virtual machine" and
Java technology-based applications (for example, the tools located in the JDK(TM)
1.1.X\bin directory) where to find the class libraries, including user-defined class
libraries.

class variable
A data item associated with a particular class as a whole=not with particular instances
of the class. Class variables are defined in class definitions.

client
In the client/server model öf coı~nuncations, the client is a process that remotely
accesses resources of a compute server, such as compute power and large memory
capacity. ••.•

code base
Works together with the code attribute in the <APPLET> tag to give a complete
specification of where to find the main applet class file: code specifies the name of the
file, and codebase specifies the URL of the directory containing the file.

commit

vııı

The point in a transaction when all updates to any resources involved in the transaction
are made permanent.

compilation unit
The smallest unit of source code that can be compiled. In the current implementation of
the Java(TM)platfonn, the compilation unit is a file.

compiler
A program to translate source code into code to be executed by a computer. The
Java(TM) compiler translates source code written in the Java programming language
into bytecode for the Java virtual machine.

component
An application-level software unit supported by a container. Components are
configurable at deployment time. The J2EE platform defines four types of components:
enterprise beans, Web components, applets, and application clients.

constructor
A pseudo-method that creates an object. In the Java(TM) programming language,
constructors are instance methods with the same name as their class. Constructors are
invoked using the new keyword.

couta iner
An entity that provides life cycle management, security, deployment, and runtime
services to components. Each type of container (EJB, Web, JSP, servleı, applet, and
application client) also provides component-specific services.

CORBA
Common Object Request Broker Architecture. A language independent, distributed
object model specified by the Object Management Group (OMO).

declaration
A statement that establishes an identifier and associates attributes with it, without
necessarily reserving its storage (for data) or providing the implementation

•.
encapsulation
The localization of knowledge within a module. Because objects encapsulate data aı.d
implementation, the user of an object can view the object as a black boı that provides

. services. Instance variables and methods can be added, deleted, or changed, but as long
as the services provided by the object remain the same, code that uses the object can
continue to use it without being rewritten.

enterprise bean
A component that implements a business task or business entity; either an entity beans
or a session bean.

Enterprise JavaBcans(TlVI) (EJB)

IX

A component architecture for the development and deployment of object-oriented,
distributed, enterprise-level applications. Applications written using the Enterprise
Javalleans architecture are scalable, transactional, and multi-user and secure.

exception
An event during program execution that prevents the program from. continuing
normally; generally, an error. The Java(TM) programming language supports
exceptions with the try, catch, and throw keywords. See also exception handler.

exception handler
A block of code that reacts to a specific type of exception. If the exception is for an
error that the program can recover from, the program can resume executing after the
exception handler has executed,

executable content
An application that runs from within an HTML file.

extends
Class X extends class Y to acid functionality, either by adding fields or methods to class
Y, or by overriding methods of class Y. An interface extends another interface by
adding methods. Class X is said to be a subclass of class Y. ·

garbage collection
The automatic detection and freeing of memory that is no longer in use. The JavatTM)
runtime system performs garbage collection so that programmers never explicitly free
objects.

GUI
Graphical User Interface. Refers to the techniques involved in using graphics, along
with a keyboard and a mouse, to provide an easy-to-use interface to some program.

HTML
Hyper'Text Markup Language. This is a file format, based on SGML, for hypertext
documents on the Internet. It is very simple and allows for the embedding of images,
sounds, video streams, form fields and simple text formatting. References to other
objects are embedded using URLs.

HTTP •
HyperText Transfer Protocol. The Internet protocol, based on TCP/IP, used to fetch
hypertext objects from remote hosts.

HTTPS
HTTP layered over the SSL protocol.

IDL
Interface Definition Language. APis written in the Java(TM) programming language
that provide standards-based interoperability and connectivity with CORBA (Common
Object Request Broker Architecture).

X

HOP
Internet Inter-ORB Protocol. A protocol used for communication between CORBA
object request brokers.

inıplements
A Java(TM) programming language keyword optionally included in the class
declaration to specify any interfaces that are implemented by the current class.

instance
An object of a particular class. In programs written in the Java(TM) programming
language, an instance of a class is created using the new operator followed by the class
name.

interpreter
A module that alternately decodes and executes every statement in some body of code.
The Java(TM) interpreter decodes and executes bytecode for the Java virtual machine

.JAR Files (.jar)
Java ARchive. A file format used for aggregating many files into one.

Java(TM)
is Sun's trademark: for a set of technologies for creating and safely running software
programs in both stand-alone and networked environments.

Java Application Environment (JAE)
The source code release of the Java Development Kit (JDK(TM)) software .

.fava Development Kit (JDK(TM))
A software development environment for writing applets and applications in the Java
programming language.

Java(TM) Platform
Consists of the Java language for writing programs; a set of APls, class libraries, and
other programs used in developing, compiling, and error-checking programs; and a Java
virtual machine which loads and executes the class files. "

JavaScript(TM)
A Web scripting language that is used in both browsers and Web servers. Like all
scripting languages, it is used primarily to tie other components together or to accept
user input.

.Iave'Server Pagcs(TM) (.JSP)
An extensible Web technology that uses template data, custom elements, scripting
languages, and server-side Java objects to return dynamic content to a client. Typically

xı

the template data is HTML or XML elements, and in many cases the client is a Web
browser.

Javaı'I'M) virtual machine (JVM)
A software "execution engine" that safely and compatibly executes the byte codes in
Java class files on a microprocessor (whether in a computer or in another electronic
device).

Jini(Tl\ıl) Technology
a set of Java APis that may be incorporated an optional package for any Java 2 Platform
Edition. The Jini APis enable transparent networking of devices and services and
eliminates the need for system or network administration intervention by a user.

The Jini technology is currently an optional package available on ali Java platform
editions.

JlVIAPI
Java(TM) Management APL A collection of Java programming language classes and
interfaces that allow developers to build system, network, and service management
applications.

,JNDJ
Java Naming and Directory lnterface(TM). A set of APis that assist with the interfacing
to multiple naming and directory services .

•fPEG
Joint Photographic Experts Group. An image file compression standard established by
this group. It achieves tremendous compression at the cost of introducing distortions
into the image which are almost always imperceptible.

oTRE
Java(TM) runtime environment. A subset of the Java Developer Kit for end-users and
developers who want to redistribute the runtime environment. The Java runtime
environment consists of the Java virtual machine", the Java core classes, and supporting
files.

Just-in-time (J[T) Compiler
A compiler that converts all pf the bytecode into native machine code Jlıst as a
Java(TM) program is run. This results in run-time speed improvements over code that is
interpreted by a Java virtual machine".

JVM
Java(TM) Virtual Machine*. The part of the Java Runtime Environment responsible for
interpreting bytecodes.

multithreaded
Describes a program that is designed to have parts of its code execute concurrently.

SAX

Xll

Simple API for XML. An event-driven, serial-access mechanism for accessing XML
documents.

Secure Socket Layer (SSL)
A protocol that allows communication between a Web browser and a server to be
encrypted for privacy.

servlet
A Java program that extends the functionality of a Web server, generating dynamic
content and interacting with Web clients using a request-response paradigm.

SQL
Structured Query Language. The standardized relational database language for defining
database objects and manipulating data.

TCP/IP
Transmission Control Protocol based on IP. This is an Internet protocol that provides for
the reliable delivery of streams of data from one host to another.

thread
The basic unit of program execution, A process can have several threads running
concurrently, each performing a different job, such as waiting for events or performing
a time-consuming job that the program doesn't need to complete before going on. When
a thread has finished its job, the thread is suspended or destroyed.

throw
A Java(TM) programming language keyword that allows the user to throw an exception
or any class that implements the "throwable" interface.

throws
A Java(TM) programming language keyword used in method declarations that specify
which exceptions are not handled within the method but rather passed to the next higher
level of the program.

try
A Java(TM) programming language keyword that defines a block of statements that
may throw a Java language exception. If an exception is thrown, an opporıal "catch"
block can handle specific exceptions thrown within the "try" block. Also, an optional
"finally" block will be executed regardless of whether an exception is thrown or not

URL
Uniform Resource Locator. A standard for writing a text reference to an arbitrary piece
of data in the WWW. A URL looks like "protocol.z/host/localinfo" where protocol
specifies a protocol to use to fetch the object (like HTTP or FTP), host specifies the
Internet name of the host on which to find it, and localinfo is a string (often a file name)
passed to the protocol handler 911 the remote host.

Xlll

Introduction

A Database management system is a collection of programs that enables users to create

and maintain a database.

A RDBMS is a computerized record keeping system that stores maintains and provide

access to the information. A Database system consists of four major components , that

are Data, Hardware, Software and Users. DBMS are used by any reasonably self

contained commercial , scientific .technical or other organization for a single individual

to a large company and a DBMS is used for a many reasons. The objective of this

project was to design a software for a company which deals with Tourism Industry so

fully qualified software was made for a Tourism Company.

This project consists of three chapters with appendix full of coding section.

Chapter One introduces some basics about Database and l)BMS components that are

used by any RDBMS software available 11ow...idays.

Chapter Two giv~ a briefly detailed features of Oracle IU)BMS and it's connectivity

using Java as a modern language approach .

Chapter Three gives a view of a Tourism Company Database .the ER-Diagram and

Java Database connectivity.

•

xiv

Introduction to Database Management Systems

Chapter 1

Introduction to Database Management Systems

1.1 Introduction

A Database system is essentially nothing more than a computerized record keeping

system. The database itself can be regarded as a kind of electronic filling cabinet; or in

other words it is repository for a collection of computerized data files. The information

concerned can be any thing that is deemed to be significant to the individual or the

organization , the system is intended to serve anything.

[Database

[
App.lication
programs _____.

Figure I, I Simplified Picture of a Database Management System

1.2 Data lVlodel

The model of data that they follow characterizes database management systems. A data

model has tow components namely structure and operations. The structure refers to the

way the system structures to the data or at least the way the users of the DBMS feel that

Introduction to Database Management Systems

the data is structured. What is crucial is the way things feel to the user it does not matter

how the designers of the dbms chose to implement these facilities behind the scenes.

There are three models for the vast majority of the DBMS's.

1) Relational Model

2) Network Model

3) Hierarchical Model

1.3 Relational I\,fodel

The user as being just a collection of tables perceives a relational model database.

Formally these tables are called relations and this is where relational model gets it's

name. Relation ships are implemented through common columns in two or more tables.

1.4 Network lVlodel
The user as a collection ofrecord types as relationships between these record types

perceives a network model database such a structure is a network, and it is from there

that model takes name.

1.5 Hierarchical Model

The data is represented to the user in the form of a set of tree structures and the

operators provided for manipulating such structures include operators for traversing

hierarchical paths up and down the trees .

1.6 Benefits of DBMS Approach •
• In this section I will only list the most benefits to be given to users via those who

applied this approach are

l) Redundancy carı be avoided

2) Inconsistency can be avoided

3) The Data can Be Shared

4) Standards can be Enforced

5) Security Restrictions can be Applied

2

lıuroduction to Database Management Systems

6) Integrity can be maintained

7) Conflicting requirements can be balanced

L7 Three Levels of Architecture
The three level architecture is an architecture for a DBMS to provide a framework for

describing database concepts and stnıctures. Not all DBMS fit neately into this

architecture , but mostly do . This ANSI/SPARC architecture is divided into three

levels, known as

1) Internal level

2) Coneeptual level

3) External level

r·-Conceptual Mod~! J
L. ·-----------

l----·--ı__ ıııt~nıal Model

Figure 1.2 The Three Levels of the Architecture

L7.1 Internal level
The internal level of the three level architecture is a low level representation of the

entire database it consists of multiple types of internal records. It does not deal with

block/pages or device dependent concepts like cylinders and tracks. The internal system

defines types of stored records and index, how fields are represented, various storage

3

Introduction to Database ~1anageınent Systems

structure used, whether they chose pointer chains and hashing, what sequence they are
!

in and so on. The internal schema is written yet by another data definition language , the
i

internal DDL. ı
I

Programs accessing this level directly are dangerous since they have by passed the
I

security and integrity checks which the DBM$ program normally takes responsibility
I

of.

1.7.2 Conceptual level

The conceptual level of the three level architecture ls essentially a representation of the
I
I

entire information content of the database in a'form abstracted from physical storage. Iı
I

may also be quite different or similar to external views held by a particular user. It is
I

data as it really is . Rather than as users are fotced to see it's multiple occurrences of
I

multiple types of conceptual records. I
I

The conceptual schema is defined by concepllfal data definition language or DDL

. There is no reference in the conceptual DDL to store record concepts sequences. I

indexing bass addressing pointers etc the references are solely to the definition of the

information content, in order to preserve data ~ndependence.

1.7.3 External level
The external level of the three level architecture is the individual user level. At this level

I

'each user has a language at their disposal of which they will use a data sub language.
I

For the application programmer the applicatiop will be a conventional language . For
i

the End user it is be a normal like query or sqı. language . In principle any given data
i

language consists of DDL and a DML to manipulate these objects.
I

An individual users view is an external view yiıich is thus the content of the database as

seen by that particular user. There will thus bq multiple occurrences of-multiple types of
!

external records. The external view is definedby an external schema, which in turn is
I

defined by the DDL part of the user's data sutj language.
I

4!

Introduction to Database Management Systems

1.8 Who uses a DBl\ıIS

There are three broad classes of users who use a DBMS

1) Application Programmer

2) End Users

3) Database Administrators

1.9 Entity

An entity is any distinguishable real world object that is to be represented into the

database. Each entity will have attributes and properties.

1.10 Relationship

It is defined as an association among entities or The Entities in a database are likely to

interact with other entities. The inter connection between the entity sets are called

relationship.

•

5

Scheııı'M ~1nd
M,;ı,ı;ing$ bum
,md m,,int,ıim,ıl

!OBA.t

St-Oıi"-ılige­
snucuue
dMinetioı.
ıııııeıııal
Sciıeou·ı

1.11 Mappings

Introduction to Database Management Systems

Useı IH Useı Bl Useı IH

Figure 1.3 Detailed System Architecture

Referring to figure 1.3 the person will observe two levels ofmapping in the architecture

one from the conceptual level to the internal level and one from the external level to the

conceptual level.

1.11.1Internal I Conceptual mapping
It defines the correspondence between the conceptual view and the stored database; It

specifies how conceptual records and fields are represented at the internal level. If the

structure of the stored database is changed then the conceptual internal mapping must be

changed accordingly so that the conceptual schema can remain invariant. In other words

6

Introduction to Database Management Systems

the effects of such changes must be isolated below the conceptual level in order that

data independence might be preserved.

1.11.2 External I Conceptual mapping
It defines the correspondence between a particular external and conceptual view .In
general the differences that can exist between these two levels are similar to those that

can exist between these two levels are similar to those that can exist between the

conceptual view and the stored database.

1.12 Database Administrator

The DBA is responsible for the overall control of the system at a technical level. Now

I will describe some of the functions of the DBA in Points.

1. Defining The Conceptual Schema

2. Defining the Internal Schema

3. Liaising with Users

4. Defining Security and Integrity Rules

5. Defining Backup and Recovery Procedures

6. Monitoring Performance & Responding to Changing Requirements

1.13The Database management System
The Database management System is a software that handles all access to the database .

The functions of DBMS are as follows

I. Data definition

2. Data Manipulation

3. Data Security and Integrity

4. Data Recovery and concurrency

5. Data Dictionary

••

7

Introduction to Database Management Systems

l.14Relational Database Management System

A database is an integrated collection of related data. Given a specific data item, the

structure of a database facilitates the access to data related to it. A relational database is

a type of database based in the relational model. A relational database management

system is the software that manages a relational database. These systems come in

several varieties, ranging from single-user desktop systems to full-featured, global,

enterprise-wide systems, such as Oracle8.

1.15 RUBMS Components

Two important pieces of an RDBMS architecture are the kernel, which is the software,

and the data dictionary, which consists of the system-level data structures used by the

kernel to manage the database.

1.16 The RDBlVISKernel

You might think of an RDBMS as an operating system or set of subsystems, designed

specifically for controlling data access, its primary functions are storing, retrieving, and

securing data. Like an operating system, Oracle8i manages and controls access to a

given set of resources for concurrent database users. The subsystems of an RDBMS

closely resemble those of a hosf'opcrating system and tightly integrate with the host's

services for machine-level access to resources such as memory, CPU, devices, and file

structures. An RDBMS such as Oracle8i maintains its own list of autllorized users and

their associated privileges, manages memory caches and paging, controls locking for

concurrent resource usage, dispatches and schedules user requests, and manages space

usage within its tablespace structures. Figure 1. 1 illustrates the primary subsystems of

the Oracle8i kernel that manage the database.

8

lntroductian to Database Management Systems

~""":~...

"'··· t t'ııılır~
~"""9-.

,.,------.-..._
"'

. RllBMS)

~-- .~/

Figure l.2 General architecture of a RDBl\'IS ORACLE Si

•

9

Oracle and Java Interconnectivity

CHAPTER2

Oracle and Java Iııtercoııııectivity

2.1 Overview

In this chapter I will briefly give a detail view of Oracle RDBMS and the connectivity

of RDBMS with Java . Though topics I have covered in this chapter are the most

fundamental parts of ORACLE RDBMS as well as those of Java .On other hand Java is

a very powerful tool to develop a system based on database .

2.2 ORACLE Database

Physically, an Oracle database is nothing more than a set of files somewhere on disk.

The physical location of these files is irrelevant to the function of the database. The files

are binary files that we can only access using the Oracle kernel software. Querying data

in the database files is typically done with one of the Oracle tools using the Structured

Query Language.

Logically, the database is divided into a set of Oracle user accounts, each of which is

identified by a username and password unique to that database. Tables and other objects

are owned by one of these Oracle users, and access to the data is only available by

logging in to the database using an Oracle username and password. Without a valid

username and password for the database, you are denied access to anything on the

database. The Oracle username and password is different from the operating system

username and password.

••
2.3 ORACLE FILES

In this part, I discuss the different types of files that Oracle uses on the hard disk drive

of any machine.

9

Oracle and Java Interconnectivity

z.s.r Database Files

The database files hold the actual data and are typically the latgest in size, from a few

megabytes to many gigabytes. The other files support the rest of the architecture.

Depending on their sizes, the tables and other objects for all the user accounts can

obviously go in one database file, but that's not an ideal situation because it does not

make the database structure very flexible for controlling access to storage for different

Oracle users, putting the database on different disk drives, or backing up and restoring

just part of the database.

We must have at least one database file, but usually, we have many more than one. In

terms of accessing and using the data in the tables and other objects, the number or

location of the files is immaterial. The database files are fixed in size and never grow

bigger than the size at which they were created.

2.3.2 Control Files

Any database must have at least one control file, although we typically have more than

one to guard against loss. The control file records the name of the database, the date and

time it was created, the location of the database and redo logs, and the synchronization

information to ensure that all three sets of files are always in step. Every time we add a

new database or redo log file to the database, the information is recorded in the control

files.

2.3.3 Redo Logs

Any database must have at least two redo logs. These are the journals for the database,
•

the redo logs record ali changes to the user objects or system objects. If any type of

failure occurs, such as loss of one or more database files, we can use the changes

recorded in the redo logs to bring the database to a consistent state without losing any

committed transactions. In the case of non-data loss failure, such as a machine crash,

Oracle can apply the information in the redo logs automatically without intervention

from the database administrator. The SMON background process automatically

reapplies the committed changes in the redo logs to the database files.

10

Oracle and Java hıterconnectivity

Like the other files used by Oracle, the redo log files are fixed in size and never grow

dynamically from the size at which they were created.

2.4 SYSTEM AND USER PROCESSES

In this part, I discuss some of the Oracle system processes that must be running for the

database to be useable, including the optional processes and the processes that are

created for users connecting to the Oracle database.

2.4.1 Mandatory System Processes

The four Oracle system processes that must always be up and running for the database

to be useable include DBWR (Database Writer), LGWR (Log Writer), SMON (System

Monitor), and PMON (Process Monitor).

2.4.1.1 DBWR (Database Writer)

The database writer background process writes modified database blocks in the SGA to

the database files. It reads only the blocks that have changed. These blocks are also

called dirty blocks. The database writer writes out the least recently used blocks first.

These blocks are not necessarily written to the database when the transaction commits,

the only thing that always happens on a commit is that the changes are recorded and

written to the online redo log files. The database blocks will be written out later when

there are not enough buffers free in the SGA to read in a new block.

2.4.1.2 l,GWR (Log Writer)

The log writer process writes the entries in the SGA's redo buffer for one or more•
transactions to the online redo log files. For example, when a transaction commits, the

log writer must write out the entries in the redo log buffer to the redo log files on disk

before the process receives a message indicating that the commit was successful. Once

committed, the changes are safe on disk even though the modified database blocks are

still in the SGA's database buffer area waiting to be written out by DBWR. The SMON

can always reapply the changes from the redo logs if the memory's most up-to-date copy

of the database blocks is lost.

11

Oracle mıd Java Interconnecüvity

2.4.1.3 SMON (System Monitor)

The system monitor process looks after the instance. If two transactions are both waiting

for each other to release locks and neither of them can continue known as a deadlock or

deadly embrace, SMON detects the situation and one of the processes receives an error

message indicating that a deadlock has occurred.

SMON also releases temporary segments that are no longer in use by the user processes

which caused them to be created.

During idle·periods, SMON compacts the free-space fragments in the database files,

making it easier and simpler for Oracle to allocate stotage for new database objects or

for existing database objects to grow.

2.4.1.4 PMON (Process Monitor)

The process monitor monitors the user processes. If any failure occurs with the user

processes, PMON automatically rolls back the work of the user process since the

transaction started. It releases any locks taken out and other system resources taken up

by the failed process.

2.4.2 User Processes

User processes logically consist of two halves. The Oracle server code, which translates

and executes SQL statements and reads the database files and memory areas, and the

tool-specific code, which is the executable code for the tool that is used!" The server code

is the same regardless of the tool that is executing the SQL statement, the same steps are

involved. The server code is sometimes known as the Oracle kernel code.

e can configure the user processes in Oracle three different ways, all of which could

xist for the same instance. These three configurations are single task, dedicated

·er, or multi-threaded server.

12

Oracle and Java Interconııecüvlıy

~.4.2.1 Siıigle Task

In the single-task configuration, the tool-specific code and database server code are both

configured into one process running on the machine. Each connection to the database

has one user process running on the machine.

2.4.2.2 Dedicated Server Processes

In the dedicated server configuration, the two parts of a user process are implemented as

two separate processes running on the machine. They communicate with each other

using the machine's interprocess communication mechanisms. Each connection to the

database has two processes running on the machine. The Oracle kernel software in one

process is sometimes called the shadow process.

This configuration is common for UNIX platforms because the operating system cannot

protect the Oracle code and memory areas from the application code. It is also common

for client/server configurations where the server code resides on the server machine and

the tool-specific code runs on the client machine with communication over a network.

The way the two component parts of one logical process coımnunicate is fundamentally

the same as if one process were implemented on the same machine, except that the two

halves of the logical process happen to reside oh two machines and communicate over

the network using Net8 rather than the interprocess communication mechanisms of the

operating system.

The dedicated server configuration can be wasteful because memory is allocated to the

shadow process and the number of processes that must be serviced on the machine

increases, even when the user is not making any database requests. The-dedicated server

will only process requests from one associated client process.

2.4.2.3 The l\1ulti-Threaded Server

The multi-threaded server configuration enables one Oracle server process to perform

work for many user processes. This overcomes the drawbacks of the dedicated server

configuration. It reduces the number of processes running and the amount of memory

13

Oracle and Java Interconnectivity

used on the machine and can improve system performance. The multi-threaded server

introduces two new types of system processes that support this part of the architecture.

Using one of the shared server processes that comes as part of the multi-threaded server

configuration is not appropriate when a user process is making many database requests

such as an export backup of the database. For that process, we could use a dedicated

server. A mixture of both configurations can coexist.

2.5 ORACLE Memory

In this part, I discuss how Oracle uses the machine's memory. Generally, the greater the

real memory available to Oracle, the quicker the system runs.

2.5.1 System Global Area (SGA)

The system global area, sometimes known as the shared global area, is for data and

control structures in memory that can be shared by all the Oracle background and user

processes running on that instance. Each Oracle instance has its own SGA. In fact, the

GA and background processes is what defines an instance. The SGA memory area is

allocated when the instance is started, and it's flushed and deallocated when the instance

is shut down.

The contents of the SGA are divided into three main areas, the database buffer cache,
"' the shared pool area, and the redo cache. The size of each of these areas is controlled by

parameters in the !NIT.ORA file. The bigger you can make the SGA and the more of it
••that can fit into the machine's real memory as opposed to virtual memory, the quicker

your instance will run.

2.5.l.1 Database Buffer Cache

The database buffer cache of the SGA holds Oracle blocks that have been read in from

the database files. When one process reads the blocks for a table into memory, all the

processes for that instance can access those blocks.

14

Oracle and Java Interconnectivity

If a process needs to access some data, Oracle checks to see if the block is already in

this cache. If the Oracle block is not in the buffer, it must be read from the database files

into the buffer cache. The buffer cache must have a free block available before the data

block can be read from the database files.

The Oracle blocks in the database buffer cache in memory are arranged with the most

recently used at one end and the least recently used at the other. This list is constantly

changing as the database is used. If data must be read from the database files into

memory, the blocks at the least recently used end are written back to the database files

first. The DBWR process is the only process that writes the blocks from the database

buffer cache to the database files. The more database blocks you can hold in real

memory, the quicker your instance will run.

2.5.1.2 Redo Cache

The online redo log files record all the changes made to user objects and system objects.

Before the changes are written out to the redo logs, Oracle stores them in the redo cache

memory ama. For example, the entries in the redo log cache are written down to the

online redo logs when the cache becomes full or when a transaction issues a commit.

The entries for more than one transaction can be included together in the same disk

write to the redo log files.

The LGWR background process is the only process that writes out entries from this redo

cache to the online redo fog files.

2.5.1.3 Shand Pool Area

" •
The shared pool area of the SGA has two main components, the SQL area and the

dictionary cache. You can alter the size of these two components only by changing the

size of the entire shared pool area.

15

Oracle aııd Java Interconnectlvlty

2.5.l.4 SQL Area

A SQL statement sent for execution to the database server must be parsed before it can

execute. The SQL area of the SGA contains the binding information, nm-time buffers,

parse tree, and execution plan for alJ the SQL statements sent to the database server.

Because the shared pool area is a fixed size, you might not see the entire set of

statements that have been executed since the instance first came up, Oracle might have

flushed out some statements to make room for others.

If a user executes a SQL statement, that statement takes up memory in the SQL area. If

another user executes exactly the same stateınent on the same objects, Oracle doesn't

need to reparse the second statement because the parse tree and execution plan is

already in the SQL area. This part of the architecture saves on reparsing overhead. The

SQL area is also used to hold the parsed, compiled form of PL/SQL blocks, which can

also be shared between user processes on the same instance.

2.5.1.5 Dictionary Cache

The dictionary cache in the shared pool area holds entries retrieved from the Oracle

system tables, otherwise known as the Oracle data dictionary. The data dictionary is a

set of tables located in the database files, and because Oracle accesses these files often,

it sets aside a separate area of memory to avoid disk I/0.

The cache itself holds a subset of the data from the data dictionary. It is loaded with an

initial set of entries when the iastance is first started and then populated from the

database data dictionary as further information is required. The cache holds information

about all the users, the tables and other objects, the structure, securityt storage, and so

on.

The data dictionary cache grows to occupy a larger proportion of memory within the

shared pool area as needed, but the size of the shared pool area remains fixed.

16

Oracle and Java Interconnecüvtty

2.5.2 Process Global Area

The process global area, sometimes called the program global area or PGA, contains

data and control structures for one user or server process. There is one PGA for each

user process to the database.

The actual contents of the PGA depend on whether the multi-threaded server

configuration is implemented, but it typically contains memory to hold the session's

variables, arrays, some rows results, and other information. If you're using the multi­

threaded server, some of the information that is usually held in the PGA is instead held

in the common SGA.

The size of the PGA depends on the operatirtg system used to nm the Oracle instance,
and once allocated, it remains the same. Memory used in the PGA does not increase

according to the amount of processing performed in the user process. The database

administrator can control the size of the PGA by modifying some of the parameters in

the instance parameter file !NIT.ORA.

2.6 ORACLE ACCESS WITH JDBC

Java is designed to be platform independent. A pure Java program written for a

Windows machine will run without recompilation on a Solaris Spare, an Apple

Macintosh; or any platform with the-appropriate Java virtual machine.
..

JDBC extends this to databases. If we write a Java, program with JDBC, given the

appropriate database driver, that program will nm against any database without having

to recompile the Java code. Without JDBC, our Java code would need to run platform

specific native database code, thus violating the Java motto, Write Once, Run

Anywhere.
JDBC allows us to write Java code, and leave the platform specific code to the driver. In

the event we change databases, we simply change the driver used by our Java code and

·e are immediately ready to run against the new database.

17

Oracle and Java Interconnectivity

JDBC is a rich set of classes that give us transparent access to a database with a single

application programming interface, or APL This access is done with plug-in platform­

specific modules, or drivers. Using these drivers and the JDBC classes, our programs

will be able to access consistently any database that supports JDBC, giving us total

freedom to concentrate on our applications and not to worry about the underlying

database.

All access to JDBC data sources is done through SQL. Sun has concentrated on JDBC

issuing SQL commands and retrieving their results in a consistent manner. Though we

gain so much ease by using this SQL interface, we do not have the raw database access

that we might be used to. With the classes we can open a connection to a database,

execute SQL statements, and do what we will with the results.

2.6.1 Driver Types

As mentioned above, our Java JDBC code is portable because the database specific code

is contained in a Java class known as the driver. The two most common kinds of driver

for connecting to an Oracle database are the thin driver and the OCI driver.

2.6.1.1 Thin driver

The thin driver is known as a Type IV driver, it is a pure Java driver that connects to a

database using the database's native protocol. While we can use the thin driver in any
"'environment, the Type IV driver is intended for use in Java applets and other client-side

'
programs. A Java client can be nm on any platform. For that reason, the JDBC driver

• •
downloaded with an applet or used by a Java client may not have access to platform

native code and must be pure Java.

2.6.1.2 ocıs driver

The OCI8 driver is known as a Type II driver. It uses platform native code to call the

database. Because it uses a native API, it can connect to and access a database faster

than the thin driver. For the same reason, the Type lI driver cannot be used where the

18

Oracle aııd Java Iıııerconnectivity

program does not have access to the native APL This usually applies to applets and

other client programs which may be deployed on any arbitrary platform.

2.6.2 The DriverManager Class

The cornerstone of the JDBC package is the DriverManager class. This class keeps

track of all the different available database drivers. We won't usually see the

Ori verManager's work, though. This class mostly works behind the scenes to ensure

that everything is cool for our connections.

The DriverManager maintains a Ve c t o r that holds information about all the drivers

that it knows about. The elements in the Vector contain information about the driver

such as the class name of the Driver object, a copy of the actual Driver object, and the

Ori ver security context.

The Ori verManager, while not a static class, maintains all static instance variables

with static access methods for registering and unregistering drivers. This allows the

Ori verManager never to need instantiation. Its data always exists as part of the Java

runtime, The drivers managed by the Ori verManager class are represented by the

Ori ver class.

2.6.3 The Dr.iver Class

•
If the cornerstone of JDBC is the OriverManager, then the Ori ver class is most

certainly the bricks that build the JDBC. The Oriver is the software wedge that

communicates with the platform-dependent database, either directly or using another

piece of software.. How it communicates really depends on the database, the platform,

and the implementation.

It is the Drive r's responsibility to register with the Ori verManage:r and connect with

the database. Database connections are represented by the Connection class.

19

Oracle and Java Intercoıınecıivity

2.6.4 The Connection Class
'

The Connection class encapsulates the actual database connection into an easy-to-use

package. Sticking with our foundation building analogy here, the Connection class is

the mortar that binds the JDBC together. It is created by the Dri verManager when its

getConnection () method is called. This method accepts a database connection URL

and returns a database Connection to the caller.

When we call the getConnection () method, the Ori verManager asks each driver that

has registered with it whether the database connection URL is valid. If one driver

responds positively, the Dri verManager assumes a match. If no driver responds

positively, an SQLException is thrown. The Ori verManager returns the error "no

suitable driver," which means that of all the drivers that the Dri verManager knows

about, not one of them could figure out the URL you passed to it.

Assuming that the URL was good and a Ori ver loaded, then the Dri verManager will

return a Connection object to us. What can we do with a Connection object? Not

much. This class is nothing more than an encapsulation of our database connection. It is
'

a factory and manager object, and is responsible for creating and managing statement

objects.

2.6.5 The Statement Class

Picture the Connection as an open pipeline to our database. Database transactions
•••

travel back and forth between our program and the database through this pipeline. The

Statement class represents these transactions.

The statement class encapsulates SQL queries to our database. Using several methods,

these calls return objects that contain the results of our SQL query. When we execute

an SQL query, the data that is returned to us is commonly called the result set

20

Oracle anti Java Interconnectivity

2.6.6 The ResultSet Class

As we've probably guessed, the Resuıtset class encapsulates the results returned from

an SQL query. Normally, those results are in the form of rows of data. Each row

contains one or more columns. The ResultSet class acts as a cursor, pointing to one

record at a time, enabling us to pick out the data we need.

2.7 SQLJ

SQLJ enables us to embed static SQL operations in Java code in a way that is

compatible with the Java design philosophy. A SQLJ program is a Java program

containing embedded static SQL statements that comply with the ANSI-standard SQLJ

Language Reference syntax. Static SQL operations are predefined, the operations

themselves do not change in real-time as a user runs the application, although the data

values that are transmitted can change dynamically. Typical applications contain much

more static SQL than dynamic SQL. Dynamic SQL operations are not predefined, the

operations themselves can change in real-time .and require direct use of JDBC

statements. However, we can use SQLJ statements and JDBC statements in the same

program.

SQLJ consists of both a translator and a runtime component and is smoothly integrated

into our development environment. The developer runs the translator, with translation,

compilation, and customization taking place in a single step when the sqlj front-end~
utility is run. The translation process replaces embedded SQL with calls to the SQLJ

runtime, which implements the SQL operations. In sta~dard SQLJ this is Jypically, but

not necessarily, performed through calls to a JDBC driver. In the case of an Oracle

database, we would typically use an Oracle JDBC driver. When the end user runs the

SQLJ application, the runtime is invoked to handle the SQL operations.

The Oracle SQLJ translator is conceptually similar to other Oracle precompilers and

allows the developer to check SQL syntax, verify SQL operations against what is

available in the schema, and check the compatibility of Java types with corresponding

21

Oracle and Java Interconnectivity

database types. In this way, errors can be caught by the developer instead of by a user at

runtime.

The SQLJ methodology of embedding SQL operations directly in Java code is much

more convenient and concise than the JDBC methodology. In this way, SQLJ reduces

development and maintenance costs in Java programs that require database connectivity.

When dynamic SQL is required, however, SQLJ supports interoperability with JDBC

such that we can intermix SQLJ code and JDBC code in the same source file.

Alternatively, we can use PL/SQL blocks within SQLJ statements for dynamic SQL.

2.7.1 SQLJ Components

Oracle SQLJ consists of two major components.

2.7.1.1 Oracle SQLJ Translator

This component is a precompiler that developers run after creating SQLJ source code.

The translator, written in pure Java, supports a programming syntax that allows us to

embed SQL operations inside SQLJ executable statements. SQLJ executable statements,

as well as SQLJ declarations, are preceded by the #sql token and can be interspersed

with Java statements in a SQLJ source code file. SQLJ source code file names must

have the .sqlj extension.

The translator produces a .java file and one or more SQLJ profiles, which contain

information about our SQL oııerations. SQLJ then automatically invokes a Java

compiler to produce .class files from the .java file.

•
2.7.1.2 Oracle SQLJ Runtime

This component is invoked automatically each time an .end user runs a SQLJ

application. The SQLJ runtime, also written in pure Java, implements the desired

actions of our SQL operations, accessing the database using a JDBC driver. The generic

SQLJ standard does not require that a SQLJ runtime use a JDBC driver to access the

database, however, the Oracle SQLJ runtime does require a JDBC driver, and, in fact,

requires an Oracle JDBC driver if our application is customized with the default Oracle

customizer.

22

Oracle and Java Interconnectivity

In addition to the translator and runtime, there is a component known as the customizer.

A customizer tailors our SQLJ profiles for a particular database implementation and

vendor-specific features and datatypes. By default, the Oracle SQLJ front end invokes
an Oracle customizer to tailor our profiles for an Oracle database and Oracle-specific

features and datatypes.

When we use the Oracle customizer during translation, our application will require the

Oracle SQLJ runtime and an Oracle JDBC driver when it runs.

2.7.1.3 SQLJ Profiles

SQLJ profiles are serialized Java resources generated by the SQLJ translator, which

contain details about the embedded SQL operations in our SQLJ source code. The

translator creates these profiles, then either serializes them and puts them into binary

resource files, or puts them into .class files according to our translator option settings.

SQLJ profiles are used in implementing the embedded SQL operations in our SQLJ

executable statements. Profiles contain information about our SQL operations and the

types and modes of data being accessed. A profile consists of a collection of entries,

where each entry maps to one SQL operation. Each entry fully specifies the

corresponding SQL operation, describing each of the parameters used in executing this

instruction.

SQLJ generates a profile for each connection context class in our application, where,

typically, each connection context class corresponds to a particular set of SQL entities

we use in our database operations. The SQLJ standard requires that the profiles be of

standard format and content. Therefore, for our application to use vendor-specific

extended features, our profiles must be customized. By default, this occurs

automatically, with our profiles being customized to use Oracle-specific extended

features.

2.7.2 Oracle Extensions to the SQLJ Standard

Beginning with Oracle8i, Oracle SQLJ supports the SQLJ ISO specification. Because

the SQLJ ISO standard is a superset of the SQLJ ANSI standard, it requires a 1DK 1.2

23

Oracle and Java İnterconııectivity

or later environment that complies with J2EE. The SQLJ ANSI standard requires only

.TDK 1.1.x. The Oracle SQlJ translator accepts a broader range of SQL syntax than the
ANSI SQLJ Standard specifies.

The ANSI standard addresses only the SQL92 dialect of SQL, but allows extension

beyond that. Oracle SQLJ supports Oracle's SQL dialect, which is a superset of SQL92.

If we need to create SQLJ programs that work with other DBMS vendors, avoid using

SQL syntax and SQL types that are not in the standard and, therefore, may not be

supported in other environments.

2.7.3 Basic Translation Steps and Runtime Processing

2.7.3.1 Translation Steps

The following sequence of events occurs, presuming each step completes without fatal
error.

1. The JVM invokes the SQLJ translator.

2. The translator parses the source code in the .sqlj file, checking for proper SQLJ

syntax and looking for type mismatches between our declared SQL datatypes

and corresponding Java host variables.

3. The translator invokes the semantics-checker, which checks the semantics of
embedded SQL statements.

The developer can use online or offline checking, according to SQLJ option~
settings. If online checking is performed, then SQLJ will connect to the database

••
to verify that the database supports all the database tables, stored procedures,

r

and SQL syntax that the application uses, and that the host variable types in the

SQLJ application are compatible with datatypes of corresponding database
columns.

4. The translator processes our SQLJ source code, converts SQL operations to

SQLJ runtime calls, and generates Java output code and one or more SQLJ

profiles. A separate profile is generated for each coımection context class in our

24

Oracle and Java Iııterconnectivity

source code, where a different connection context class is typically used for each

interrelated set of SQL entities that we use in our database operations.

5. The JVM invokes the Java compiler, which is usually, but not necessarily, the

standardjavac provided with the SimMicrosystems JDK.

6. The compiler compiles the Java source file generated in step 4 and produces

Java .class files as appropriate. This will include a .class file for each class we

defined, a .class file for each of our SQLJ declarations, and a .class file for the

profile-keys class.

7. The JVM invokes the Oracle SQLJ customizer or other specified customizer.

8. The customizer customizes the profiles generated in step 4.

2.7.3.2 Runtime Processing

When a user runs the application, the SQLJ runtime reads the profiles and creates

connected profiles", which incorporate database conııections. Then' the following

occurs each time the application must access the database.

\

l. SQLJ,.generated application code uses methods in a SQLJ-geıierated profile-

ke-ys class to access tlıe connected profı\e and read the re\evant SQL operations.

There is mapping between SQLJ executable statements in the application and

SQL operations in the profile.

2. The SQLJ-generated application code calls the SQLJ runtime, which reads the

SQL operations from the profile. •

3. The SQLJ runtime calls the JDBC driver and passes the SQL operations to the

driver,

4. The SQLJ runtime passes any input parameters to the JDBC driver.

5. The 1DBC driver executes the SQL operations.

25

Oracle and Java Interconnectivity

6. If any data is to be returned, the database sends it to the JDBC driver, which

sends it to the SQLJ runtime for use by our application.

2.7.4 SQLJ Declarations

A SQLJ declaration consists of the #sql token followed by the declaration of a class.

SQLJ declarations introduce specialized Java types into our application. There are

currently two kinds of SQLJ declarations, iterator declarations and connection context

declarations, defining Java classes.

Iterator declarations define iterator classes. Iterators are conceptually similar to JDBC

result sets and are used to receive multi-row query data. An iterator is implemented as

an instance of an iterator class.

Connection context declarations define connection context classes. Each connection

context class is typically used for connections whose operations use a particular set of

SQL entities. That is to say, instances of a particular connection context class are used

to connect to scheınas that include SQL entities with the same names and

characteristics. SQLJ implements each database connection as an instance of a

connection context class.

context expression must not be preceded by a colon.

2.7.5 Stored Procedure and Function Calls

SQLJ provides convenient syntax for calling stored procedures and stored functions in

the database. These procedures and functions could be written in Java, PL/SQL, or any
•other language supported by the database. "

A stored function requires a result expression in our SQLJ executable statement to

accept the return value and can optionally take input, output, or input-output parameters

as well.

A stored procedure does not have a return value but can optionally take input, output, or

input-output parameters. A stored procedure can return output through any output or

input-output parameter.

26

Oracle and Java Interconııectivhy

z,7.6 Multithreading in SQLJ

We can use SQLJ in writing multithreaded applications; however, any use of

multithreading in our SQLJ application is subject to the limitations of our JDBC driver.
This includes any synchronization limitations.

We are required to use a different execution context instance for each thread. We can
accomplish this in one of two ways.

ı. Specify connection context instances for our SQLJ statements such that a

different connection context instance is used for each thread. Each connection

context instance automatically has its own default execution context instance.

2. If we are using the same connection context instance with multiple threads, then

declare additional execution context instances and specify execution context

instances for our SQLJ statements such that a different execution context
instance is used for each thread.

If we are using one of the Oracle JDBC drivers, multiple threads can use the same

connection context instance as long as different execution context instances are

specified· and there are no synchronization requirements directly visible to the user.

However, that database access is sequential, only one thread is accessing the database at
any given time.

If a thread attempts to execute a SQL operation that uses an execution context that is in

use by another operation, then .the thread is blocked until the current operation

completes. If an execution context were shared between threads, the results of a SQL

operation performed by one thread would be visible in the other thread."lf both threads

were executing SQL operations, a race condition might occur, the results of an

execution in one thread might be overwritten by the results of an execution in the other

thread before the first thread had processed the original results. This is why multiple

threads are not allowed to share an execution context instance.

27

Oracle aııd Java Interconnectivity

2.7.7 SQLJ and JDBC Interoperability

We can use SQLJ statements for static SQL operations, but not for dynamic operations.

We can, however, use JDBC statements for dynamic SQL operations, and there might

be situations where our application will require both static and dynamic SQL

operations. SQLJ allows us to use SQLJ statements and JDBC statements concurrently

and provides interoperability between SQLJ constructs and JDBC constructs.

Two kinds of interactions between SQLJ and JDBC are particularly useful:

• between SQLJ connection contexts and JDBC connections

• between SQLJ iterators and JDBC result sets

2.7.7.1 Converting from Connection Contexts to JDBC Connections

If we want to perform a dynamic SQL operation through a database connection that we

have established in SQLJ, then we must convert the SQLJ connection context instance

to a JDBC connection instance.

An.'] ~Qfil\.eç:,\\m.\ \'..Q\\\e~\ \.m,\a\"\.Ce \\\ ü ':::ıQlJ 'i\\)\)\ka.\\Q\\, 'Nb.etb.et a\\ instat\ce Gf the saj\.

runtime.ref.Default Context class or of a declared connection context class, contains an

underlying JDBC connection instance and a getConnection() method that returns that

JDİ3Cconnection instance. Use the JDBC connection instance to create JDBC statement

objects if you want to use any dynamic SQL operations.

2.7.7.2 Converting from JDBC Connections to Connection Contexts •

If we initiate a connection as a JDBC Connection or Oraclef'onrıection instance but later

want to use it as a SQLJ connection context instance, then we can convert the JDBC

connection instance to a SQLJ connection context instance.

The DefaultContext class and all declared connection context classes have a constructor

that takes a JDBC connection instance as input and constructs a SQLJ connection

context instance.

28

Oracle and Java Interconnectivity

2.7.7.3 Shared Connections

A SQL.T connection context instance and the associated .TDBC connection instance share

the same underlying database connection. When we get a JDBC connection instance

from a SQL.T connection context instance, the Connection instance inherits the state of

the connection context instance. Among other things, the Connection instance will

retain the auto-commit setting of the connection context instance.

When we construct a SQLJ connection context instance from a JDBC connection

instance, the connection context instance inherits the state of the Connection instance.

Among other things, the connection context instance will retain the auto-commit setting

of the Connection instance.

Given a SQLJ connection context instance and associated JDBC connection instance,

calls to methods that alter session state in one instance will also affect the other

instance, because it is actually the underlying shared database session that is being

altered.

Because there is just a single underlying database connection, there is also a single

underlying set of transactions. A COMMIT or ROLLBACK operation in one

connection instance will affect any other connection instances that share the same

underlying connection.

2.7.8 SQLJ In the Server

SQLJ code, as with any Java code, can run in the Oracle8i server in stored procedures,

stored functions, triggers, Enterprise JavaBeans, or CORBA objects. Database access is
•

through a server-side implementation of the SQLJ runtime in combination with the

Oracle JDBC server-side internal driver.

In addition, an embedded SQLJ translator in the Oracle8i server is available to translate

SQLJ source files directly in the server.

Considerations for running SQLJ in the server include several server-side coding issues

as well as decisions about where to translate our code and how to load it into the server.

We must also be aware of how the server deterınines the names of generated output. We

29

Oracle and Java Interconnectivity

can either translate and compile on a client and load the class and resource files into the

server, or we can load .sqlj source files into the server and have the files automatically

translated by the embedded SQLJ translator.

The embedded translator has a different user interface than the client-side translator.

Supported options can be specified using a database table, and error output is to a

database table. Output files from the translator, .java and .ser, are transparent to the

developer.

2.7.8.l Creating SQLJ Code for Use within the Server

With few exceptions, writing SQLJ code for use within the target Oracle8i server is

identical to writing SQLJ code for client-side use. The few differences are due to Oracle

JDBC characteristics or general Java characteristics in the server, rather than being

specific to SQLJ.

2.7.8.2 Database Connections within the Server

The concept of connecting to a server is different when our SQLJ code is running within

this server itself, there is no explicit database connection. By default, an implicit

channel to the database is employed for any Java program running in the server. We do

not have to initialize this connection, it is automatically initialized for SQL.T programs.

We do not have to register or specify a driver, create a connection instance, specify a

default connection context, specify any connection objects for any of our #sql

statements, or close the connection. "

The internal driver does not support auto-commit functionality, the auto-conıınit setting
•

is ignored within the server. Use explicit COMMIT or ROLLBACK statements to

implement or cancel your database updates,

2.7.8.3 Name Resolution in the Server

Class loading and name resolution in the server follow a very different paradigm than

on a client, because the environments themselves are very different. Java name

resolution in the Oracle8i JVM includes the following:

30

Oracle a,ıd Java Iııtercoııııeçtiııi(ıı

ı. Class resolver specs, which are schema lists to search in resolving a class

schema object.
2. The resolver, which maintains mappings between class schema objects that

reference each other in the server.

A class schema object is said to be resolved when all of its external references to Java

names are bound. In general, all the classes of a Java program should be compiled or

loaded before they can be resolved.

When all the class schema objects of a Java program in the server are resolved and none

of them have been modified since being resolved, the program is effectively pre-linked

and ready to run.

A class schema object must be resolved before Java objects of the class can be

iiıstantiated or methods of the class can be executed.

2.7.9 SQL Names versus Java Names

SQL names such as names of source, class, and resource schema objects are not global

in the way that Java names are global. The Java Language Specification directs that

package names use Internet naming conventions to create globally unique names for

Java programs. By contrast, a fully qualified SQL name is interpreted only with respect

to the current schema and database.

Because of this inherent difference, SQL names must be interpreted and processed~ .

differently froın Java names. SQL names are relative names and are interpreted from the

point of view of the schema where a program is executed. This is central to how the••
program binds local data stored at that schema. Java names are global names, and the

classes that they designate can be loaded at any execution site, with reasonable

expectation that those classes will be classes that were used to compile the program.

31

Oracle aml Java Jntercomıectiııi(V

2.8 Introduction to Net8

Net8 enables the machines in our network to communicate with one another. It

facilitates and manages communication sessions between a client application and a

remote database. Specifically, Net8 performs three basic operations.

ı. Connection: opening and closing connections between a client or a server acting

as a client and a database server over a network protocol.

2. "Data Transport: packaging and sending data such as SQL statements and data

responses so that it can be transmitted and understood between a client and a

server.
3. Exception Handling: initiating interrupt requests from the client or server.

2.8.lAdvantages of Net8

Net8 provides the following benefits to users of networked applications.

2.8.l.1 Network Transparency

Net8 provides support for a broad range of network transport protocols including

TCP/IP, SPX/IPX, IBM LU6.2, Novell, and DECnet. It does so in a manner that is

invisible to the application user. This enables Net8 to interoperate across different types

of computers, operating systems, and networks to transparently connect any

combination of PC, UNIX, legac§, and other system without changes to the existing

infrastructure.
•

2.8.l.2 Protocol Independence

Net8 enables Oracle applications to run over any supported network protocol by using

the appropriate Oracle Protocol Adapter. Applications can be moved to another protocol

stack by installing the necessary Oracle Protocol Adapter and the industry protocol

stack. Oracle Protocol Adapters provide Net8 access to connections over specific

protocols or networks. On some platforms, a single Oracle Protocol Adapter will

32

Oracle aiıd Javo Interconnectivity

operate on several different network interface boards, allowing you to deploy

applications in any networking environment.

2.8.1.3 Mediartopology Independence

When Net8 passes control of a connection to the underlying protocol, it inherits all

media and/or topologies supported by that network protocol stack. This allows the

network protocol to use any means of data transmission, such as Ethernet, Token Ring,

or other, to accomplish low level data link transmissions between two machines.

2.8.1.4 Heterogeneous Networking

Oracle's client-server and server-server models provide connectivity between multiple

network protocols using Oracle Connection Manager.

2.8.1.5 Large Scale Scalability

By enabling us to use advanced connection concentration and connection pooling

features, Net8 makes it possible for thousands of concurrent users to connect to a server.

2.8.2 Net8 Features

Net8 Release 8.0 features several enhancements that extend scalability, manageability

and security for the Oracle network.

2.8.2.1 Scalability

Scalability refers to the ability to support simultaneous network access by a large
•

number of clients to a single server. With Net8, this is accomplished by optimizing the

usage of network resources by reducing the number of physical network connections a

server must maintain. Net8 offers improved scalability through two new features.

ı. Coıuıection pooling,

2. Connection concentration.

Both of these features optimize usage of server network resources to eliminate data

access bottlenecks and enable large numbers of concurrent clients to access a single

33

Oracle aııd Java lıuercoımectivity

server. Additionally, other enhancements such as a new buffering methods and

asynchronous operations further improve Net8 performance.

2.8.2.2 Manageability Features

Net8 introduces a number of new features that will simplify configuration and

administration of the Oracle network for both workgroup and enterprise environments.

For workgroup environmehts, Net8 offers simple configuration-free connectivity

through installation defaults and a new name resolution feature called host naming. For

enterprise environments, Net8 centralizes client administration and simplifies network

management with Oracle Names. In addition to these new features, Net8 introduces the

Oracle Net8 Assistant.

i.Host Naming

Host Naming refers to a new naming method which resolves service names to network

addresses by enlisting the services of existing TCP/IP hostname resolution systems.

Host Naming can eliminate the need for a local naming configuration file in

environments where simple database connectivity is desired.

il. Oracle Net8 Assistant

The Oracle Net8 Assistant is a new end user, stand-alone Java application that can be

launched either as a stand-alone application or from the Oracle Enterprise Manager

console. It automates client configuration and provides an easy-to-use interface as well

as wizards to configure and manage Net8 networks.
•

Because the Oracle Net8 Assistant is implemented in Java, it is available on any

platform that supports the Java Virtual Machine.

2.8.2.3 Oracle Trace Assistant

Net8 includes the Oracle Trace Assistant to help decode and analyze the data stored in

Net8 trace files. The Oracle Trace Assistant provides an easy way to understand and

take advantage of the information stored in trace files, it is useful for diagnosing

34

Oracle a11d Java Interconnectivity

network problems and analyzing network performance. It can be used to better pinpoint

the source of a network problem or identify a potential performance bottleneck.

2.8.2..4Native Naming Adapters

Native Naming Adapters, previously bundled with the Advanced Networking Option,

are now included with Net8. These adapters provide native support for industry­

standard name services, including Sun NIS/Yellow Pages and Novell NetWare

Directory Services (NDS).

2.8.3 Net8 Operations

Net8 is responsible for enabling communications between the cooperating partners in an

Oracle distributed transaction, whether they be client-server or server-server.

Specifically, Netx provides three basic networking operations:

ı. Connect Operations.

2. Data Operations.

3. Exception Operations.

2.8.4 Connect Operations

Net8 supports two types of connect operations.

2.8.4.1 Connecting to Servers

Users initiate a connect request by passing information such as a usemame and~
password along with a short name for the database service that they wish to connect.

•
That short name, called a service name, is mapped to a network address contained in a

connect descriptor. Depending upon our specific network configuration, this connect

descriptor may be stored in one of the following.

ı. A local names configuration file called TNSNAMES.ORA.

2. ANames Server for use by Oracle Names.

3. A native naming service such as NIS or DCE CDS.

Net8 coordinates its sessions with the help of a network listener.

35

Oracle and Java Interconnectivity

2.8.4.2 Establishing Connections with the Network Listener

The network listener is a single process or task setup specifically to receive connection

requests on behalf of an application. Listeners are configured to "listen on" an address

specified in a listener configuration file for a database or non-database service. Once

started, the listener will receive client connect requests on behalf of a service, and

respond in one of three ways:

ı. Bequeath the session to a new dedicated server process.

2. Redirect to an existing server process.

3. Refuse the session.

tı;•ımtr.litl·,ı
fl'Y.liıı:;,:!rn mı
,,,,c,.1iı9 ;:foa,,:,;.
(h.:ıı~<Ji!'~•,'l~ıj

Figure2.1 Network Listener In a Typical Net8 Connection

"
2.8.5 Disconnecting from Servers

••
Requests to disconnect from the server can be initiated in the following ways.

2.8.5.1 User-Initiated Disconnect

A user can request a disconnection from the server when a client-server transaction

completes. A server can also disconnect from a second server when all server-server

data transfers have been completed, and no need for the link remains.

36

Oracle am/ Java Interconneaivity

2.8.5.2 Additional Connection Request

If a client application is connected to a server and requires access to another user

account on the same or other server, most Oracle tools will first disconnect the

application from the server to which it is currently connected. Once the disconnection is

completed, a connection request to the new user account on the appropriate server is

initiated.

2.8.5.3 Abnormal Connection Termination

Other components willoccasionally disconnect or aboıt communications without giving

notice to NetS. In this event, NetS will recognize the failure during its next data

operation, and clean up client and server operations, effectively disconnecting the

current operation.

2.8.5.4 Timer Initiated Diseonnect or Dead Connection Detection

Dead connection detection is a feature that allows Net8 to identify connections that have

been left hanging by the abnormal termination of a client. On a connection with dead

connection detection enabled, a small probe packet is sent from server to client at a

user-defined interval, If the connection is invalid, the connection will be closed when an

error is generated by the send operation, and the server process will terminate the

connection.

This feature minimizes the waste of resources by connections that are no longer valid. It

also automatically forces a database rollback of uncommitted transactions and locks

held by the user of the broken connection. "
•

2,8.6 Data Operations

NetS supports four sets of client-server data operations.

ı. Send data synchronously. ,

2. Receive data synchronously.

3. Send data asynchronously.

4. Receive data asynchronously.

37

Oracle and Java Iııterconnectivity

On the client side, a SQL dialogue request is forwarded using a send request in Net8.

Ort the server side, Net8 processes a receive request and passes the data to the database.

The opposite occurs in the return trip from the server.

Basic send and receive requests are synchronous. When a client initiates a request, it

waits for the server to respond with the answer. It can then issue an additional request.

Net8 adds the capability to send and receive data requests asynchronously. This

capability was added to support the Oracle shared server, also called a multi-threaded

server, which requires asynchronous calls to service incoming requests from multiple

clients.

2.8.7 Exception Operations

Net8 supports three types of exception operations.

ı. Initiate a break over the connection.

2. Reset a connection for synchronization after a break.

3. Test the condition of the connection for incoming break.

The user controls only one of these three operations, that is, the initiation of a break.

Wlıen tlıe user presses the Inienupt key, the application calls this function. Additionally,
the database can initiate a break to the client if an abnormal operation occurs, such as

during an attempt to load a row of invalid data using SQL*Loader.

The other two exception operations are internal to products that use Net8 to resolve

network timing issues. Net8 can initiate a test of the communication channel, for

example, to see if new data has arrived. The reset ftmction is used to resolve abnormal

states, such as getting the connection back hı synchronization after a break operation has

occurred.

2.8.8 Net8 and the Transparent Network Substrate (TNS)

Net8 uses the Transparetıt Network Substrate and industry-standard networking

protocols to accomplish its basic :functionality.TNS is a foundation technology that is

built into Net8 providing a single, common interface to all industry-standard protocols.

38

Oracle and Java Interconnecüvity

With TNS, peer-to-peer application connectivity is possible where no direct machine­

level connectivity exists. In a peer-to-peer architecture; two or more computers can

communicate with each other directly, without the need for any intermediary devices. In

a peer-to-peer system, a node can be both a client and a server.

2.8.9 Net8 Architecture

Oracle networking environments are based on two concepts.

2.8.9.1 Distributed Processing

Oracle databases and client applications operate in what is known as a distributed

processing environment. Distributed or cooperative processing involves interaction

between two or more computers to complete a single data transaction. Applications such

as an Oracle tool act as clients requesting data to accomplish a specific operation.

Database servers store and provide the data.

In a typical network configuration, clients and servers may exist as separate logical

entities on separate physical machines. This configuration allows for a division of labor

where resources are allocated efficiently between a client workstation and the server

machine. Clients normally reside on desktop computers with just enough memory to

execute user friendly applications, while a server has more memory, disk storage, and

processing power to execute and administer the database.

This type of client-server architecture also enables you to distribute databases across a
"'network. A distributed database is a network of databases stored on multiple computers

that appears to the user as a single logical database. Distributed database servers are••
connected by a database link, or path from one database to another. One server uses a

database link to query and modify information on a second server as needed, thereby

acting as a client to the second server.

2.8.9.2 Stack Communications in an Oracle networking environment

Stack communications allow Oracle clients and servers to share, modify, and

manipulate data between themselves. The layers in a typical Oracle communications

stack are similar to those of a standard OSI communications stack.

39

Oracle and Java Intercoıınectivlty

i.Client-Server Interaction

In an Oracle client-server transaction, information passes through the following layers

l. Client Application.

2. Oracle Call Interface.

3. Two Task Common.

4. Net8.

5. Oracle Protocol Adapters.

6. Network Specific Protocols.

Figure 2.6 depicts a typical communications stack in an Oracle networking

environment.

t.:ııenı
\"iJ:(':l,;ısı,\

Cliı!rı,
~lbtıl<tı

OCI

T•....-:,·Tııoft
G<:ı~rnq,

1-·I------

ı-- ..•. ------.-

Oııd~
Fr'Ç!l>ç.i
>\<lıfııe,
N,~ıw:ırlt·
Sv,;;ıl,:
P\'aljo~

~~.,
t,.,,:t;,!!'ı,ı,~~

u•••. , O,ıı,± .t,
s..e ..• -e-

ı-------,f-~

OPI

Tw:ı·T1t!21
~Olllsl''ı------1-

w

·------·!---
1NS

Oırd-.
fı-~·:d

N:tıo."'k H· ,\<!ı,.1ııı, I l
C,:rıf?.!d<rı--,, r,~...,rı,-

:£:~jk
httla,:dL

Figure2.6 Typical Communications Stack in an Oracle environment

1. Client Application

•

Oracle client applications provide all user-oriented activities, such as character or

graphical user display, screen control, data presentation, application flow, and other

application specifics. The application identifies database operations to send to the server

and passes them through to the Oracle Call Interface.

40

Oracle and Java Interconnectivity

2. Oracle Call Interface (OCI)

The OCI code contains all the information required to initiate a SQL dialogue between

the client and the server. It defines calls to the server to:

J. Parse SQL statements for syntax validation.

2. Open a cursor for the SQL statement.

3. Bind client application variables into the server shared memory.

4. Describe the contents of the fields being returned based on the values in the

server's data dictionary.

5. Execute SQL statements within the cursor memory space.

6. Fetch one or more rows of data into the client application.

7. Close the cursor.

The client application uses a combination of these calls to request activity within the

server. OCI calls can be combined into a single message to the server, or they may be

processed one at a time through multiple messages to the server, depending on the

nature of the client application. Oracle products attempt to minimize the number of

messages sent to the server by combining many OCI calls into a single message to the

server. When a call is performed, control is passed to Net8 to establish the connection

and transmit the request to the server.

3. Two-Task Common

Two-Task Common provides character set and data type conversion between different

character sets or formats on the client and server. This layer is optimized to perform

conversion only when required on a per connection basis. •

At the time of initial connection, Two Task Common is responsible for evaluating

differences in internal data and character set representations and determining whether

conversions are required for the two computers to communicate.

4. Net8

et8 provides all session layer functionality in an Oracle communications stack. It is

responsible for establishing and maintaining the connection between a client application

41

Ottrcle and Java Interconnecıivity

and server, as well as exchanging messages between them. Net8 itself has three

component layers that facilitate session layer functionality.

ı. Network Interface: This layer provides a generic interface for Oracle clients,

servers, or external processes to access Net8 functions. The NI handles the break

and reset requests for a connection.
2. Network Routing/ Network Naming/ Network Authentication: NR provides

routing of the session to the destination. This may include any intermediary

destinations or 'hops', on the route to the servet destination. NN resolves aliases

to a Net8 destination address. NA negotiates any authentication requirement

with the destination.
3. Transparent Network Substrate: TNS is an underlying layer of Net8

providing a common interface to industry standard protocols. TNS receives

requests from Net8, and settles all generic machine-level connectivity issues,

such as the location of the server or destination, whether one or more protocols

will be involved in the coıuıection, and how to handle interrupts between client

and server based on the capabilities of each. The generic set of TNS functions

passes control to an Oracle Protocol Adapter to make a protocol-specific call.

Additionally, lNS supports encryption and sequenced cryptographic message

digests to protect data in transit.

5. Oracle Protocol Adapters

Oracle Protocol Adapters are responsible for mapping TNS functionality to industry­

standard protocols used in the client-server connection. Each adapter is responsible for

mapping the equivalent functions between TNS and a specific protocol.

6. Network-Specific Protocols

All Oracle software in the client-server connection process require an existing network

protocol stack to make the machine-level connection between the two machines. The

network protocol is responsible only for getting the data from the client machine to the

server machine, at which point the data is passed to the server-side Oracle Protocol

Adapter.

42

Oracle qı,ıd Java Interconnectlvity

7. Server-Side Interaction

Information passed from a client application across a network protocol is received by a

similar coınımtnications stack on the server side. The process stack on the server side is

the reverse of what occurred on the client side with information ascending through

communication layers. The one operation unique to the server side is the act of

receiving the initial connection through the network listener.

The following components above the Net8 session layer are different from those on the

client side.

ı. Oracle Program Interface

2. Oracle Server

1. Oracle Program Interface

The OPİ performs a complementary function to that of the OCI. It is responsible for

responding to each of the possible messages sent by the OCI. For example, an OCI

request to fetch 25 rows would have ah OPI response to return the 25 rows once they

have been fetched.

2. Oracle Server

The Oracle Server side of the connection is responsible for receiving dialog requests

from the client OCI code and resolving SQL statements on behalf of the client

application. Once received, a request is processed ana the resulting data tis passed to the

OPI for responses to be formatted and retumed to the client application.

ii.Server-to-Server Interaction

When two servers communicate to complete a distributed transaction, the process,

layers, and dialogues ate the same as in the client-server scenario, except that there is no

client application. The server has its own version of OCI, called the Network Program

43

Oracle and Java Iııtercoınıectivity

Interface (NPI). The NPI interface performs all of the functions that the OCI does for

clients, allowing a coordinating server to construct SQL requests for additional servers .

•

44

Chapter 3

Tourism Company Database

Overview
This chapter covers the topics related with the designing of the database .In this chapter

I have discussed the ER Diagram of the Tourism Company ,the tables and the

relationships between each one of them.

The tables in the Tourisrn Company database are as follows

1) Table_Customer

2) lnstayType

j) Table Tours

4) Tour__Days

5) Price Table

3.1 Interconnectivity
The goal of this project is to make the Database system of Tourism Company. Student

registration is a very time consuming process, but by using a flexible software, we can

reduce this headache. The life of the staff can be made easy by the following features:

a) New information regarding clients, clients in stay time information .Tour

information, Clients tour price can be Entered.
"b) Clients details can be viewed.

c) The data can be deleted.

· d) The data can be changed.

e) The system is very easy to understand.

f) The system is very secure.

3.2 Program Implementation
The program is divided into two parts: The database part and the application part. For

the database, to meet the security and flexibility issues, I have chosen Oracle database

which is one of the main topic of my overall project as well.

46

For the application part, java is my choice due to its object-oriented functionality and

security features.

•

47

[·--·~ J
Tour Days _

--~-~
~~

C..~:~
Fig 3.l Shows the E:R Diagram of the Tourism Company

48

3.2.1 Database

To create the database, first I installed the Oracle 9i Server's Enterprise edition and

configured it properly to function correctly. After basic installation, I created a database

on Oracle Server. In the database, there are tables which hold the Tour record. Each

table has primary and foreign key constraints and ate related to each other using one-to­

one and one-to-many relationships for the data integrity issues. To create the tables,

there are two ways I have used time by time.

1. The first way is by using the SQL*Plus, here we need to write the SQL

commands to create the table, specify the fields, specify if we want any

constraints.

2. The second way I have used is by using a Java application. In the Java

application, using appropriate code, connect to the database and then write the

table definition. After compiling, run the program, the table will be created in

the database.

Once the table has been created, its definition can be altered any time. To alter the

structure of the table, we can implement any of the two ways discussed above.

3,2.2 Application

In the application, I have used the standard packages in Java to create user interface,

connect to the database, event handling and other functions used in my application. The

important packages used are:

I. java.awt. *
"

2. java.awt.event. *
,., javax.swing. *.) .

4. java.sql."

5. java.util. *
6. java.lang. *

Java's Abstract Windowing Toolkit and Swing packages are to create the user interface.

These packages have all the components necessary to give the application a viewable

look. These packages contain the Frame, TextField, TextArea, Button, Label, List box,

49

Combo box, Check box, Option button, Horizontal and Vertical Scrollbar, Menu and

Popup Menu components. The event handling mechanism in these packages is used to

handle the events which occur during program execution and respond properly. All

these components and event handling mechanism have been used in the application to

give the flexibility to the user to understand and use the application easily.

The java.sql package is used İ<Jr database connectivity and manipulation functionality.

To connect to the database and to do transactions we need to import this package.

This project is fix Tourism Company database where client its Instay data, 'four

information , Clients data can be added, deleted, viewed and altered accurately with

security. All the steps in the source code in Appendix A have been commented to

understand the function of each step

50

Appendix

Appendix.

' ' ' Cl' t d I t ' ' ',no~ ıeu e e.·e~nn:
import java.awt.event. *;
import java.sql, ";
import javax.swing.";
import java.awt. ":

public class Clientl.ıelete extends JFrame implements Actionl.istener]

private J'Textf'ield txtBookingNo :== new JTextFiekl();
private JTextField txtFirstName ±: new JTextField();
private JTextField txtLastName = new JTextField();
private J'Textf'ield txtAddress = new JTextField();
private JTextField txtTelNo = new JTextField();
private JTextField txtFaxNo = new JTextField();
private J'Fextf'ield txtEmail = new JTextField();
private JTextField txtPersonld =- new .TTextField(};
private J'Iextl'ield txtDOB = new JTextField();
private JTextField txtxearch = new JTextField();

private .!Button cmdSearch = new JButton();
private Jl.abel jl.abel I = new Jl.abelı);
private Jl.abel jLabel2 =--= new JLabel();
private JJ .abel jLabel3 = new JLabel();
private Jl.abel jLabe14 = new JLabel();
private Jl.abel jLabel5 = new JLabel();
private Jl.abel jLabel6 = new Jl.abelı);
private Jl.abel jLabel7 = new Jl.abelt);
private Jl.abel jLabel8 = new JLabel();
private Jl.abel jLabel9 = new JLabel();
private Jl.abel jl.abel l O = new JLabel();
private JButton cmdOK = new JButton();

Connection connect;
String ml; •

public ClientDelete()
{
try
{

tlıis.getContentPan~().setLayout(null);
this.setSize(new Dimension(550, 450));
txtBookingNo.setBounds(new Rectangle(l90, 90, 140, 25));
txtFirstName.setBounds(new Rectangle(190, 125, 140, 25));
txtLastName.setBounds(new Rectangle(l90, 160, 140, 25));
txtAddress.setBounds(new Rectangle(l90, 195, 140, 25));

51

Appendix

public void actionPerformed(ActionEvent ae){

if(ae.getSource()===cmdSearch){

if(txtSearch.getText().length()==O){
JOptionPane.showMessageDialog(ıiull, "Enter Student Number to

Search.");

if(txtSearch.gelText().lengqı() ! =O) {
try]
Statement statement=connect. creates tatement();

String query="Select * from Table_ customer "+
"where BranchNo= "'+
txtSearch. getT ext()+""';

ResultSet rs=statement.executetjueryı query);
//display rs
try]

rs.next();
int recordl-lumber=rs.getlnu 1);
ifirecordl-lumberl=O) {

txtBookingNo.setText(String.valueüf(tecordNumber));
txtFirstN anıe.serT ext(rs .getString(2));
txtLastName.setText(rs.getString(3));
txtAddress.setText(rs.getString(4));
txtTeJN o. setText(String. valueOf(recordNumber)) ;
txtFaxNo.setText(String.valueOf(recordNurnber));
txtEmail.setText(rs.getString(1 O));
txtPersonld.setText(rs.getString(5));
txtDOB.set'l"'ext(r:s.getStrlıig,(7));

}
else ,.
.JOptionPane.showMessageDialog(null',"No Record Found");

} catch(SQLException sqlex){
sqlex.printfitack'Iracet);
JOptionPane.showMessageDialog(null, "No Such Record Found.");

statement.closet);
l
J
catclı(SQLException sqlex){

sqlex.printStackTrace();
//output.append(sqlex.toString());

)
cmdOK.addActionListener(this);

54

Appemlix

l
J

}

if(ae.getSource()===cmdOK){

try]
Statement statement! =comıect.createStatement();

String query l ="Delete * from Table_ customer"+
"where BranchNo= "'+
txtSeardı. getText()+ '"";

int result=statementl .executel.I pdatet queryl);
if(result=::::1)

JOptio11Pane.sl10wMessageDialog(11un"Changes Committed.");

JOptionPane.showMessageDialog(null,"Could Not Update,
Please try some other timel! '1);

statement I .close();
}
catch(SQLExceptiori sqlex){

sq lex. printStackTrace();

else

}
1
J

public static void mainı String args[]){

Clientl.ıelete app=new ClientJJelete();

app.addWi ndowl.istenertrıew Window Adapter() {
public void windowClosing(WindowEvent e){

Syst:em.exit(O);
}

}
).;
1
J

l
.1

import java.awt. *;
import javax.swing. border.BevelBorder;
import java.awt.event.";
import java.sql. *;
import javax.swing.";

public class Clientl-lew extends .TFraıneimplements Actionl.istener{

55

Appendix

txtIelblo.setlsoundsinew Rectangle(l90, 230, 140, 25));
txtFaxNo.setBounds(new Rectangle(l90, 265, 140, 25));
txtEmail.setBounds(new Rectangle(l90, 300, 140, 25));
txtPersonld.setBounds(new Rectangle(190, 335, 140, 25));
txtDOB.setBounds(new Rectangle(l90, 370, 140, 25));
txtSearch.setBounds(new Rectangle(l 75, 20, 100, 25));
cmdSearch.setText("Search");
cmdSearch.setBounds(new Rectangletôüü, 20, 90, 25));
cmdSearch.addActionListener(this);
j Label l .setText(''Booking Number:");
jl.abell .setBounds(new Rectangle(76, 20, 140, 25));
jLabel2.setText("Booking Number:");
jLabel2.setBounds(new Rectangle(90, 90, 100, 25));
jLabel3 .setText("First Name:");
jLabel3.setBounds(new Rectangle(l25, 125, 105, 20));
jLabe14.setText(''Last Name:");
jLabe14.setBounds(new Rectangle(l25, 155, 95, 25));
jLabe15.setText("Address:");
jLabel5.setBounds(new Rectangle(l38, 195, 75, 20));
··1 b l[·1·· ·11T· JN ").J .a e o.set. exu e .. o: ;
jLabel6.setBounds(new Rectangle(l50, 230, 8:5, 25));
jLabel7.setText("FaxNo:");
jLabel7.setBounds(new Rectangle(l 50, 265, 85, 25));
jLabe18.setText("Email:");
jLabel8.setBounds(new Rectangle(152, 300, 85, 25));
jLabel9 .set'I'extt'Persould: ");
jLabel9.setBounds(new Rectangle(135, 335, 85, 25));
jl.abel l O.setText("DOB:");
jLabellO.setBounds(new Rectangle(l20, 385, 85, 25));
cmdOK.setText("OK");
cındOK.setBounds(new Rectangle(350, 285, 70, 25));
tlıis.getContentPane().add(cmdOK, null);
tlıis.getCoııtentPane().add(j Labell O, null);
this.getContentPane().add(jLabe19, null);
this.getContentPane().add(jLabelf, null);
this.getContentPane().add(jLabel7, null);
this.getf.ontentl'anefj.addfjl.abelô, null);

.this,getContentPane().add(jLabel5, null);
this .getContentPane().add(jLabel4, null);
this. getı.ontentl'aneı). add (jl.abelI, null);
this.getContentPane().add(jLabel2, null);
this.getContentPane().add(iLabel 1, null);
this.getContentPane().add(cmdSearch, null);
this.getContentPane().add(txtSearch, null);
this.getContentPane().add(txtDOB, null);
tms.getContentPane().add(txtPersonld, null);
tlıis.getContentPane().add(txtEmail, null);
this.getContentPane().add(txtFaxNo, null);
this.getContentPaıie().add(txtTelNo, null);

52

Appendix

tlıis.getContentPane().add(tx:tAddress, null);
this.getContentPane().adcl(txtLastNaıne, null);
this.getContentPane().;.ıdd(txtFirstNaıne, null);
this. getContentPane().add(txtBookingN o, null);

txtBookingNo.setEditable(false);
txtFirstName.setEditable(false);
txtLastName.setEditable(false);
txtAddress. setEditab leıfalse);
txt Iell-io.setliditableffalse);

txtf'axl-lo.setliditableffalse);
txtliınail .setliditableıfalse);
tx:tPersonid.setEditable(false);
txtDO B. setfidi table(false);

catchtlixception e)
(
l

e.pıinrStack'Irecef);
I
f

setSize(500,400);
set'Fitleı"
show();

Client Delete Option");

//setup database connection.
try]

rnJ="jdbc:oracle:thin:@faisalqureshi: 1521 .name";
String useı="Faisal";
String passw=varsenal";
Class.forNaıne("oracle.jdbc.driver.OracleDriver11);

connect=DriverManager.getConnection(url,user,passw);
)
.I

catclırClasslvoıf oundException cnfex){
. !'I

cnfex.printf tackTrace();
JOptionPane.showMessageDialog(null,"Could not connect to the

Database"); ..
}
catch(SQ LException sqlex) {

sqiex.printStackTrace();
JOptionPane.showMessageDialog(null,"Could not connect to the

Database");
)
J
catch(Exception ex) {

ex.printStackTrace();
JOptionPane,showMessageDialog(nuU;"Could not connect to the

Database");
}

53

Appendix ~,:"-;?~ V '- 1t, ',
i t • (; C- ••.•

private Jlsutton cmdRegister = new JButton();
private JTextField txtBookingNo = new JTextField();
private JTextField txtFirstName = new JTextField();
private JTextField txtLastName = new JTextField();
private JTextField txtAddress = new JTextField();
private J!extField txtTelNo = new JTextField();
private JTextField txtFaxNo = new JTextField();
private JTextField txtEmail = new JTextField();
private JTextField txtl'ersonld = new JTextField();
private JTextField txtDOB = new JTextFieJd(};
private Jl.abel jl.abell = new Jl.abelf);
private JLabeljLabel2 = new JLabel();
private Jl.abel jLabel3 = new JLabel();
private Jl.abel jLabel4 = new JLabel();
private Jl.abel jLabel5 = new JLabel();
private Jl.abel jLabel6 = new JLabel();
private JLabeljLabel7 '= new JLabel();
private Jl.abel jLabel8 = new JLabel();
private Jl.abel jLabel9 = new JLabel(};
private Connection connect;
String url;

I.',, ,)

i
-;_J;i}~-,,, /j/f ,..--9'::.~"

public ClientNew() {
try
(
l

jblnit();
setSize(550,450);
setTitlet"
show(};

New Client Entry");

//setup database connection,
try]

url="jdbc:oracle:thin:@faislqureshi: 1521 :name";
String user="faisal";
S . . "ıı l"tnng passw= arsena ;
Class.forName("orade.jdbc.driver.OracleDriver");
connect=DriverManager.getConnection(url.user.pas •.sw);

}
catdı(ClassNotFotmdException cnfex) {

cnfex.prinrxtack'Iracet);
JOptiorıPane.showMessageDialog(null,"Could not connect to the

Database");
)
J
catch(SQLException sqlex){

sqlex.printStackTrace();
JOptionPane.showMessageDialog(null,"Could not connect to the

Database");
}
catch(Exception ex){

56

Appendix

ex.printf tack'Iraceı);
JOptionPane.slıowMessageDialog(nuU,"Could not connect to the

Database");
}

}
catchdixception e)
{
e.printStackTrace();

}

private void jblniu) throws Exception]

this.getContentPane().setLayout(null);
this.setxizeuıew Dimension(493, 350));
cmdkegister.set'Iextr'Reglster'');
cmdRegister.addActionListener(this);
cmdkegister.setüoundsüıew Rectangle(350, 330, 120, 35));
çmdRegister.setToolTipText("Click Here to get confirmation. ");
txtBookingNo.setBounds(new Rectangleflvô, 75, 115, 25));
txtBooki ngNo .setllorderıflorderf actory.crearel.iııellorderrColor.cyan, 1));
txtBookingNo.setFo.reground(SystemCoior.desktop);
txtFirstName.setBounds(new Rectangle(195, l 05, 115, 25));
txtFirstName.setBorder(BotderFactory.createLineBorder(Color.cyan, 1));
txtFirstName.setForeground(SysteınColor.desktop);
txtLastName.setBounds(new Rectangle(195, 135, 115, 25));
txtLastNaırie.setBorder(BorderFactory.createLineBorder(Color.cyan, 1));
txtLastName.setForeground(SystemColor.desktop);
txtAddress.setl3omıds(new Rectanglet lvô, 165,115, 25));
txtAddress. setBorder(BorderF actory. createLineBorder(Color .cyan, 1));
txtAddress.setFo.reground(SystemColor.desktop);
txtTelNo.setBounds(new Rectangfö(l95, 195, I 15, 25));
txtTelN o .setBorder(BorderF actory. createl.inelsorden Col or.cyan, 1)) ;
txtTelNo.setForeground(SystemColor.desktop);
txtFaxNo.setBounds(new Rectangleı l 95,225, 115, 2'5));
txtFaxNo.setBorder(BorderFactory.createLiheBorder(Color.cyan, l));
txtFaxNo.setForeground(SysternColor.desktop);
txtlsmail.setfsoundstnew Rectangle(l95, 255,115, 25));
txtEmail.setBorder(BorderFactory.createLineBorder(Color.cyan, l));
txtEmail.setForeground(SysteınColor.desktop);
txtl'ersonld.setlsoundstnew Rectangle(l95, 285, l 15, 25));
txtPersonld.setBoı'der(BorderFactory1createLineBorder(Color.cyan, 1));
txtPersonid.setForeground(SystemColor.desktop);
txtDOB.setBounds(new Rectangle(195, 315, 115, 25));
txtDOB. setBorder(BorderF actory. createLirıeBotder(Co lor. cyan, 1));
txtDOB. setf oreground(SystemColor.des.ktop);
jLabell.setText("Client Booking No:");

•

57

Appendix

jl.abel l .setBounds(new Rectangle(85, 75, 105, 25));
jLabell .setBackgroünd(Color.black);
j Label l . setBorder(BorderF actory .createLineBorder(Co Ior.green, 1));
jl.abel I .setForeground(SystemColor.desktop);
jLabel2.setText("First Name:");
jLabel2.setBounds(new Rectangle(85, 105, 105, 25));
jLabel2.setBorder(BorderFactory.createLineBorder(Color.green, l));
jLabel2.setForeground(SystemColor.desktop);
n b J"' Cr t(·"ı N ") ·J .a e .,.set ex .ast ame: ;
jLabel3.setBounds(new Rectangle(85, 135, 105, 25));
jLabel3.setBorder(BorderFactory.createLineBorder(Color.green, 1));
jLabel3 .setForeground(SystemColor.desktop);
·1 l· 14 'I' ·("Add' ·")·J .,a Je... set .. ext - . tess. ;
jLabe\4.setBounds(hew Rectangle(85, 165, 105, 25));
jLabeI4.setBorder(BorderFactory.crt?ateLineBorder(Color.green, l));
j Label-l .setf oregrolind(SysteınColor .desktop);
j Label5.setText("T elNo:");
jLabel5.setBounds(new Rectangle(85, 195, 105, 25));
j Label5 .setBorder(BorderFactory .createLineBorder(Color .green, l));
jLabel5 .setForeground(SystemColor.desktop);
jLabel6.setText("FaxNo:");
jLabel6.setBounds(new Rectangle(85, 225, l 05, 25));
j Label 6.setBorder(l:}orderF actory .createLineBorder(Color. green, 1));
jl.abelô .setForeground(S ystemColor.desktop);
jLabel7.setText(''EmaH:");
jLabel7.setBounds(new Rectangle(85, 255, 105, 25));
jLabel7.setBorder(BorderFactory.createLineBorder(Color.green, l));
jLabel7.setForeground(SystemColor.clesktop);
jLabel8.setText("Persoııld: ");
jLabel8.setBounds(new Rectangle(85, 285, 105, 25));
j Label 8. setBorder(BorderF actory. createLineBorder(Color. green, l));
jLabel8.set:Foreground(SysteınColor.desktop);
jLabel9.setText("DOB:");
jLabel9.setBounds(new Rectangle(85, 315, 105, 25));
j LabeJ9 .setBorder(BorderF actory .createLineBorder(Co lor. green, l));
jLabel9 .setForeground(S ystemColor.desktop);
this.getContentPane().addQLabel9, null); "
this.getContentPane().addQLabe18, null); •
this. getContentP ane(). addtjl.abel 7, null);
this.getContentPane().addQLabel6, null);
this.getContentPane().addQLabel5, null);
this.getContentPane().add(iLabel4, null);
this.getContentPane().add(iLabel3, null);
this.getContentPane().add(jLabel2, null);
this.getContentPane().addQLabel 1, null);
this. getConterrtPaneO. add(txtBookingN o, null);
this.getConterrtPane().add(txtFirstName, null);
this. getContentPane() .. add(txtLastN ame, null);
this.getContentPane().add(txtAddress, null);

58

Append be

1
J

this.getContentPane().add(txtTelNo, null);
this.getContentPane().add(txtFaxNo, null);
this. getContentPane(). add(txtEmaiI, null);
this.getContentPane().add(txtPersonid, null);
this.getContentPane(). add(txtDOB, null);
this.getContentPane().add(cmdRegister, null);

public void actionPerformed(ActionEvent ae){

if(ae. getSource()=--=cmdRegister) {

boolean flag=true;
if(txtBookingNo. getr ext() .1 ength()==O) {

flag=false;

JOptioriParıe.slıowMessageDialog(mıll, "Booking Number Required!");1
J
if(flag) {

if(txtFirstName.getText()Jength()==O){
flag=false,

JOptionPane.showMessageDialog(nulI,"Enter First Name, then PressRegister.");
}

if(flag){
if(txtLastName.get'f ext().Iength():c;.,:::::O){
flag=false;

JOptionPane.showMessageDialog(null,''Enter Last Name, then PressRegister.");

}

it(flag) f
if(txtTeJNo,getText().length()~=O){
flag=false;

JOptionPane.showMessageDialog(nüll,"Enter Telephone No, then Press

•

Register.");
1.
j

}
if(flag){

if(txtPersonld.getText().Jerıgth()==O){
flag=false;

JOptionPane.showMessageDialog(nuU,"Personid is Must Type, then
Proceed To Register.");

}
}

59

I
A.ppeıuUx

if(flag){
try (I

Statement statement=coımect.createStatement();

String query="INSERT INTO
1

Table custorner(''+"BookingNo,FirstNaıhe,LastName,TelNo,Personld"+")
value~'"+txtBookingNo.getText()+"','"+txtFirstName.getText()+"','"+txtLastName.get:T
ext()+"',1111+txtTelNo.getText()+"1,111+txtP,ersonld.getText()+"1)11;

I

int result=statement.executeUpddte(query);

it{result== l){ ı
. . JOptionPane.showMessa~eDialog(null,"Client Registered, Press OK to
Register Another."); i

txtBoolcingNo.setText("");
txtFirstName.setText("");!

I

txtLastName.setText(""); l
txtaddress.setf'cxtf'");
txtTelNo.setText("");
txtF axN o.setText(" ");
txtEmail. setTextt?");
txtPersonld.setText("");
txtDO B.setTextı"");

)
)

else i
JOptionPane.showMessa$eDialog(nuU,"Could not Register into

Datalsase");
statement.closet);
}
catdı(SQLException sqlex){

sqlex.printStackTrace(); i
II output.append(sqlex, to~tring());

I
}
}
}

)
J ..

public static void main/String args[]){
i

I
Clientl-lew app=ııew Clientblewt);

I

I

app.addWindowListener(new WtndowAdapter(){
public void windowClosi~ıg(WiııdowEvent e) {

Systeırt.exit(O); ·
}

60

Appendix

l
.I
);
l l
I I

~"**lnstay lnfo*"'0~

import javax.swing. ";
import java.awt.";
import java.awt.event. ";

public class Instaylnfo extends JFrame implements Actionl.isterıer]

private JMenultem menullelp/ıbout = new JMenultem();
private Jlvlenu memıHelp = new JMenu();
private JMemılteın menuNew = new JMenultem();
private Jlvierıu menufile = new JMenu();
private JMenuBar menuBar = new JMeııuBar();
private JMenuitern menuChange = new Jlvlenultetnf);
private JMenulten:'ı menuftelete ı= new JMenultem();
private JMenultem menu View = new JMenulteın();
private JMenultem menulixit = new JMeııultem();
private JButton cmdNew = new]Button();
private JButton cmdChange == new JButton();
private JButton cmdDelete = new .JButton();
private JButton cmdView = new HJuttoh();
private Jlsutton cmdExit = new JButton();

public Instaylnfot)l
try]

jblnit();
setSize(S00,400);
setTitle("
show();

Instay Information");

l
J
catch(Exception e){

e.printStackTrace();

private void j blniu) throws Exception {

this.setJMenuBar(menuBar);
this.getContentPaııe().setLayout(null);
this.set.Size(new Dimensioıu. 44 7, 363));
menuFile.setText("File");
menuChange.setText("Change");
menuChange.setForeground,(Color.black);

111twuCJwnge.addActjo11Ustener(tl1is);' .

menttDelete.setText("Delete");

61

62

Appendix

memıDeletc.setForeground(Color.black);
menuView.setText("View AH");
menuView.setForeground(Color.black);
menuExit.setText("Exit");
nıenuExitsetForeground(Color.red);
cmdNew.setText("Register New Instay");
cmdNew.setBounds(ne:w Rectangle(l40, 35, 165, 35));
crndNew.setBackground(Color.lightGray);
cmdNew.setBorder(BorderFactory.cteateLineBorder(Color.blue, l));
cmdChange.setText(''Change Instay Details");
cmdChange.setBounds(new Rectangle(140, 90, 165, 35));
cmdChange.setBackground(Color.lightGray);
cmdChange.setBorder(BorderFactory.createLineBorder(Color.blue, l));
crndDelete.setText(''Delete Iııstay Details");
cmdDelete.setBounds(new Rectangle/ 140, 145, 165, 40));
cmdDelete. setBackground(Color .lightGray);
cmdDelete.setBorder(Borderfactory.createLineBorder(Color.blue, l));
cıud'View.set'Iextı'View AH Instay Record");
cmdView.setBounds(new Rectangle(l40, 205, 165, 40));
cmdView.setBackground(Color.IightGrny);
cmclView.setBorder(BorderFactory.createLineBorder(Color.bJue, 1));

cmdNew.addActionListener(this);
crndChange.addActionListener(tlıis);
cmdDelete.addActionListener(this);
cınd'View .add/ıctionl.istenerühis);

menuDelete.addActionListener(this);
menu View. add.Actionl.istenert this);
menuExitadclActionListener(this);

menul-l ew,setT ext("N ew");
rnenuNew.setForeground(Color.black);
menuN ew .addActiorıListener(this);
menul-lelp.seı'IexuHelp'');
menuHelpAbout.setText("Abour");
menuJlelpAbout.setForeground(Color.black); ''"
menuHelpAbout.addActioııListeüer(this);
men uf ile. add(ınenuNew);

· menuFile.add(mentıCJıange);
menuf'ile.addünenuljelete);
menul'ile.addunenu View);
memıBar.add(menuFile);
menllHelp.add(rnemıHelpAbout);
menuBar.add(menuHelp);
this.getContentPaııe().add(cmdExit, null);
this. getContentPane(). acld(cmd View, null);
this.getContentPane().add(cmdfrelete, null);
this.getContentPane().add(cmdChange, null);

Appendix

this.getContentPane().add(cmdNew, null);
}

public void actionPerformed(ActionEvent ae){

if(ae.getSource()==cmdN ew)
new InstayNew();

if(ae.getSource()==menuNew)
new InstayNew();

if(ae.getSource()==cmdChange)
new InstayClıange();

ii{ae.getSource()==menuClıange)
new lnstayClıange();

if(ae.getSource()==cmdDelete)
new InstayDelete();

if(ae.getSource()==menuDelete)
new Instaylreletet):

if(ae.getSource()==ınenu View)
new lnstayView();

it{ae.getSource()==cmdView)
new Instayviewt);

public static void ınain(String args[]){

Instaylnfo app=new Instaylnfo();

app.addWindowListener(new Window Adaptert) {
public void windowClosing(WindovvEvent e){

Systeın.exit(O);
}

1
J
);

}

import javax.swing. *;
import java.awt. ":

63

Appendix

import java.awt.event.*;

public class Main extends JFrame rmplements ActionListener{

private J[Vlenultem menuHelpAbout = new JMenultem();
private JMenu menuflelp = new .TMenu();
private Jiv1enulteın menuNew = new JMenultem();
private Jlvlenu menul'ile = new JMenu();
private JMenuBar menullar = new JMenuBar();

private JJ\1enultem menuClientlnfo = new JMenulteın();
private .Hvlenultem menulnstaylnfo = new JMenuiteın();
private JMenulteın menuTourlnfo = new JMenultem();

private JMenultem 111.enuTourDayslıifo= new JMenulteın();
private .IMenultem menuPriceJnfo = new JMenultem();
private JMeırnltem menu.Exit= new JMenultem();

private JButton cmdClientlnfo = new JButton();
private JButton cmdlnstaylnfo = new JButton();
private JButton cmdTomlnfo = new JButton();

private .mutton crhdTourDaysinfo = new JButton();
private Jllutton cmdPricelnfo = new JButton();

private JButton cmdExit = new .TButton();

public Main(){
try{

.ibinit();
setSize(S00,450);
setTitle(" ***Welcome to a Turism Company

DataBase***");
show();

1.
J
catch(Exception e){

e.printStad(frace();
I
f

private void jblrıitı) throws Exception{

this.setJMeımBar(menuBar);
this.getCont~ntPane().setLayout(null);
this.set'Sizetnew Diınension(447, 363));
menuFile.setText("File");
menuClientlnfo.setText("Client lnfo");
menuClientlnfo.setForeground(Colot.black);
menuJnstaylnfo.setText("Instay Info");

64

I));

I));

Appendix

memılnstaylnfo.setForeground(Color.black);
memffourlnfo.setText("Tour Info");
menuToutlnfo.setForeground(Color.black);
nıenuTourDayslnfo.setText("Tour Days Info");
menuTourDaysinfo.setForeground(Color.black);

ınenuPriceinfo.setText("Price Info");
rnenuExit.setforeground(Color.red);

l));

cnıdCiientfafo.setText("Client Information");
cmdClientlnfo.setBounds(new Rectangle(140, 35, 165, 35));
cmdClientinfo.setBackground(Color.JightGray);
cmdClientlnfo.setBorder(Bordeı'Factory.createLineBorder(CoJor.green,

1));

cmdlnstaylnfo.setText("lnstay Information");
cmdlnstaylnfo.setBounds(new Rectang1e(l40, 90, 165, 35));
cındlnstaylnfo.setBac~<ground(Color.lightGray);
cmdinstayInfo.setBorder(BorderFactory.createLineBorder(Color.green,

cmdTourlnfo.setText("Tour Informatiom");
cmdTourlııfo.setBourıds(new Rectangle(l40, 145, 165, 40));
cmdToudnfo. setBackground(Color.lightGray);
cnıdTourinfo.setBorder(BorderFactory.createLineBorder(Color.green,

cmdTourDayslrıfo.setText("Tour Days lnformatiom");
cmdTourDaysinfo.setBounds(new Rectangle(l40, 205, 165, 40));
cmdTourDaysinfo.setBackgrqnııd(Color.lightGray);

cmdTourDayslrıfo.setBorder(BorderFactory.createLineBorder(Color.green, 1));
cındPricelhfo.setText(''Price Information");

cmdPricelnfo.setBounds(new Rectangle(l 40, 265, 165, 40));
cmdPricelnfo.setBackground(Color.lightGray);
cmdl'ricelııfo. setBorder(BorderFactory.createLineBorder(Color.green,

cmdExit.setText("Exit'');
cındExit.setBounds(ne;wRectangle(360, 305, 70, 30));
cmdExit.setBackground(Color.lightGray);
cmdExitsetBorder(BorderFactory.createLineBorder(Color.cyan, I));

••
cmdClientlnfo.addActionListener(this);

cmdlnstayinfo.addActionListener(this);
crndTourlnfo.addActionListener(t!tis);
cmdTourDayslnfo.addActionListener(this);

cmdf'ricefnfo.addActionListener(this);
cmdExit.adclActionListener(this);

menuCJientlnfo.addActionListener(this);
ırıenulnstayInfo.addActionListener(this);

menuTourInfo.addActionListener(this);
rnenuTourDaysinfo.addActionListener(this);

65

Appendix

ınemıPri celnfo .addActionListener(this);
memıExit.addActionListener(tlıis);

menuClientlnfo. setText(" Client Info");
menuClientinfo.setForeground(Color.black);
mentıHeip.setText("Help'');
menuHeJpAbout.setText("About");
menuHelpAboot.setForegromıd(Color.hüıck);
memıI--:IelpAbout.addActionListener(this);

menuFile.acld(menuClientinfo);
memıFiJe.add(menuinstayinfo);
menuFile.add(menuTourlnfo);
mentıFile.acld(nienuTourDays1nfo);

menuFile.add(menuPricelnfo);

menuFile.add(menuExit);
nıemıBar.add(menuFile);
menuHeip.add(menuHelpAbout);
menuBar. add (ınenul-Ielp);
this.getContentPane().add(cmdExit, null);
this.getContentPane().add(cıiıdPriceinfo, null);
this. getContentPane(). add(cmdT ourDayslnfo, nu il);

this.getContentPaııe().add(cındTourlnfo, null);
this.getContentPane().acld(cırıdlnstaylnfo, null);
this.getContentPaı1e().add(cmdClientlnfo, null);

}

public void actionPerformed(ActionEvent ae){

iJ(ae.getSource()==cnıdClientiııfo)
new Clientlnfo();

if(ae,getSource()==mentıClientiııfo)
new Clientinfo();

if(ae.getSource()==cmdJ nstaylnfo)
new Instayinfo();

i:t(ae.getSource()==menulnstaylnfo)
new Instaylnfo();

if(ae.getSource()==cındTourinfo)
new Toudnfo();

if(ae.getSource()=menu Tourlnfo)
new Tourlnfo();

66

Appendix

if(ae.getSource()=cmdl'ourDaysJ_nfo)
new TourDayslnfo();

if(ae. getSource()==menu TourDaysinfo)
new ToutDayslnfo();

if{ae.getSource()==memıPricelnfo)
new Pricelnfo();

if(ae.getSource()==cmdPricelnio)
new Priceinfo();

if(ae.getSource()==cmdExit)
System.exit(O);

if(ae.getSource()==menuExit)
System.exit(O);

}

public static void main(Strüıg args[]){

Main app=rıew Main();

app.addWindowListener(new Window Adapter() {
public void windowClosing(WindowEvent e){

System.exit(());
}

}
);

}}

import java.awtevent. ":
import java.sql. *;
import javax.swing. *;
import java.awt. *;

.,.

public class PriceChange extends JFrnme implements ActionListener{

private JTextField txtTPrice = new JTextField();
private JTextField txtBookingNo = new JTextField();
private JTextField txtlnvoice = new JTextField();
private J'Iextf'ield txt'I'ax == new JTextField();
private J'Fextf'ield txtSearch = new JTextField();

67

•

Appendix

this.getContentPane().add(txtinvoice, null);
this.getContentPane().adcl(txtBookingNo, null);
this.getContentPane().add(txtTPrice, null);

txtTPrice.setEditable(false);
txtBooJcingNo.setEditable(false);
txtlnvoice.setEditabJe(false);
txtTax.setEditable(faJse);

catch(Exception e)
{
e.printStackTrace();

(
J

setSize(400,300);
set'I'itlet" Change Price Information"};
show();

//setup database connection.
try (

url="jdbc:oracle:tlıin:@FaisaJqureslıiWinXP: 152 I .db J ";
String user="faisal";
String passw=" arsenal";
Class.forName("oracle.jdbc.dri ver.OracleDri ver");
connect=DtiverManager.getCoımection(url,user,passw);

Database");

}
catdı(ClassNotFoundException cnfex){

cnfex.printStackTrace();
JOptionPane.showMessageDialog(null, "Could not connect to the

Database");

)
J

catch(SQLException sqlexj]
sq lex.printStackTrace();
JOptionPane.showMessageDialog(null,"CouJd not connect to the

Database");

}
catch(Exception ex){

ex.prints tackTrace();
JOptionPane.showMessageDialog(null,"Could not connect to the

}

}

public void actionPerfonned(ActionEvent ae){

if(ae.getSource()==cmdSearch) {

if(txtSearch. getText(). length()==O) {

69

Appendix

Search.");
,}

JOptionPane.showMessageDialog(nulJ,"Enter Booking Number to

if(txtSearch.getText()Jength()l=O){
trv l... l

Statement statement±connect.createStateınent();

String query="Seiect * froth Price Table "+
"where BookirıgNo= '"+
txtSearclı. getText()+'''";

Rcr.ultSet rs=statement.execüteQuery(query);
//display rs
try]

rs.nextı);
int recordNumber=rs.getlnt(l);
ifirecordl-! umber! =O) {

txtTPrice.setEditable(true);
txtlnvoice, setEditable(true);
txtTax.setEditahle(true);

txtTPrice,setText(String.vaiueOf(recordNumber));
txtBookingNo.setText(String.valueOf(recotdNuınber));
txtlnvoice.setT ext(rs.getS tring(l O));
txtTax.setıext(String.valueOf(recordNumber));
}

else
JOptionPane.showMessageDiaiog(nulI,"No Record Found");

}catch(SQLException sqlex){
sqlex. printStackTrace();
.TOptionPane.showMessageDialog(null,ııNo Such Record Found.");

ı
J

statement.close/);
}
catch(SQLException sqlex){

sqlex.printStackTrace();
//outputappend(sqlex.toString());

}
cmdOK.addActionListener(this);
}
}

if(ae.getSource()==cmdOK){

try]

70

Appendix

Statement statementl =co nnect.createS tatement();

String query l="Update Price Table set"+
"Tl'rice=v+txt'I'Price.get'I'exuj+
"',lnvoice='"+txtlıivoice.getText()+
''',Tax='"+txtTax.getText()+
"where BookingNo="+txtBookingNo.getText();

int result=statementl .executeUpdate(query1);
if{result== l)

JOptioııPane.showMessageDialog(null,"Changes Committed.");
else

JOptionPane.showMessageDialog(null,"Could Not Update,
Please Retry Later!");

staternentl .close();
}
catch(SQLExc~ption sq lex){

sqlex.printfitack'Iracef);
I
J
1-J

}

public static void main(String args[D{

PriteChange app=new PriceChange();

app.add'Windowl.istenerüıew \Vind owAdapter() {
public void windov.Closingt Windowlivent e){

System.exinü);
}

)
J

);
}

}

import javax.swing. *;
import java.awt. ";
import j ava.~wt.event. ";

public class Pricelnfo extends Jl'rame implements Actionl.isterıer]

private JMenultem menuHelpAbout = new .TMenultem();
private JMenu menuHelp = new JMenu();
private JMenultem menuNew = new Jlvlenultemt);
private JMenu menul'ile = new JMenu();
private Jlvlenullar rnenuBar = new JMenuBar();
private JMenuitem menuChange = new JMenuitem();
private JMenultem menuDelete = new JMeımitem();
private Jlvlenultem menu View= new JMenuitem();

71

Appemlix

private JMenuitem menuExit = new JMenultem();
private JButton cmdr-lew = new]Button();
private Jlsutton cmdChange = new]Button();
private .mutton cmdDelete = new .TButton();
private]Button cmd'View = new JBııtton();

public Pricelnfor)l
try{

jbinit();
setSize(S00,400);
setTitle("
show();

Price Information");

)
J
catch(Exception e){

e.printStackTrace();
}

}

private void jblnit() throws Exception {

this.setJMenuBar(menuBar);
this.getContentPane().setLayout(rıull);
this.setSize(new Dimension(447, 363));
menuF ile.setT ext("F ile '');
menuChaııge.setText("Çhange");
ınenuChange.setForegrourıd(Color.black);
menuChange.addActionListener(this);
menuDelete.setText("Delete");
menuDelet:e.setForeground(Color.black);
menuView.setText("View All");
menuView.setForeground(Color.black);
menpExit.setText("Exit");
menuExit.setForeground(Color.ted);
cmdNew.setText("New Price");
cmdNew.setBounds(new Rectangle(l40, 35, 16§, 35));
cmdNew.setBackground(Color.lightGray);
cmdNew "setBor<ler(BorderFactory.cteateLiııeBorder(Color. blue, 1));
cnidChange.setText("Change Price");
crndChange.setBounds(new Rectangle(l40, 90, 165, 35));
cmdChange.setBackground(Color.lightGray);
cmdChange.setBorder(Borderhıctory .createLineBorder(Color. blue, 1));
cmdDelete.setText("Delete Price");
cmdDelete.setBounds(new Rectangle(l40, 145; 165, 40));
crndDelete.setBackground(Color.lightGray);
cmdDelete.setBorder(BorderFactory.createLineBorder(Color.blue, 1));
cmdViev,r.setText("Show All Prices");

72

Appendix

cındView.setBounds(new Rectangletl 40, 205, 165, 40));
cınd View. setBackground(Color. lightGray);
cmdView.setBorder(BorderFactory.createLineBorder(Color.blue, 1));

crndNew.addActionListener(this);
cındChruıge.addActionListener(this);
crndl.ıelete .addActionListeneı'(this);
cındvicw.add.Actionl.istenen this);

menuDel ete. addActionListener(this);
menuView .addActionListener(this);
men uExi t,addActionListener(this);

menuNew.setText("New'');
menuNew.setForeground(Color.black);
menul-lew .adctActionl.istenert this);
menullelp.set'I' ext("Help");
meımHeJpAbout.setText("About");
menuHelpAbout.setForeground(Color.black);
menuHel pAbout.addActioı:iListener(this);
memıFile.add(meııuNew);
menuFile.add(menuChange);
menuFile.add(menuDelete);
ınenuFile.add(menuView);
menuFile.add(menuExit);
ınenuBar.add(menuFile);
menuHeJp.add(menuHelpAbout);
menuBar.add(menuHelp);

}

this.getContentPane().add(cındView, null);
this.getContentPane().add(cmdfrelete, null);
this.getContentPane().add(cmdChange, null);
this.getContentPaneQ.add(cmdl-Iew, null);

public void actionPerformed(ActionEvent ae){

if(ae.getSource()=cmdNew)
new PriceNew();

if(ae.getSource()==menuNew)
new PriceNew();

if(ae.getxourcefl=scmdChaııge)
new PrkeCJıange();

ii:(a.e.getSource()==menuChange)

73

Appendix

new Priceı.hangeı);

ifiae.getSource()==cmdDelete)
new PriceDelete();

if{ae. getSource()""=menuDelete)
new PriceDelete();

if(ae.getSource()==ınenuView)
new Price View();

if(ae.getSource()==cmdView)
new PriceView();

}

public static void main(String args[]){

Pricelnfo app=new Pricelnfo.);

app.add\ViiıdowListener(new Window Adapter() {
public void windowClosing(WindowEvent e){

System.exit(O);
}

}
) .
'}

}

import java.awt.event. *;
import java.sql. *;
import javax.swing. *;
import java.awt. ";

.,

public class TourDaysChange extends JFrame implements Actionlıistener{'

private J'Textl'ield txtPackageld = new JTextField();
private JTextField txtOperational = new JTextField();
private JTextField txtSearch = new JTextField();

private JButton cmdSearch = new }Button();
private Jl.abel jl.abel 1 =- new JLabel();
private Jl.abel jLabe12 = new .TLabel();
private Jl.abel jLabel.3 = new JLabel();
private JButton cmdOK = new JButton();

74 -.••••......... ~~~

Appendix

Connection connect;
String url;

txtl'ackageld.setliditabletfalse);
txtüperational.setEditable(false); -~

public TourDaysChange()
{
try

this. getContentPane(). setl.ayoutı null);
this.setxizeüıew Dimension(400, 250));
rxtl'ackageld.setlıoundstnew R.ectangle(l60, 90, 140, 25));
txtOperational.setBounds(new Rectangle(160, 125, 140, 25));
txtSearch.setBounds(new Rectangle(l20, 20, 120, 25));
cmdxearch.set Text(" Search");
cmdSearch.setBounds(new Rectangle(260, 20, 90, 25));
cmdSearch.addActionListener(this);
jLabell .setText("Package Id:");
jLabel l .setBounds(new Rectangle(20, 20, 100, 25));
jLabel2.setText("Package No:");
jLabel2.setBounds(new Rectangle(80, 90, 100, 25));
jLabeJJ.setText(" Days Operated:");
jl.abelô.setboundsmew Rectangle(60, 125, 105, 20));
cındOK .. setText("OK");
cmdOK.setBounds(new Rectangle(250, 170, 70, 25));
this.getContentPane().add(emelOK, null);
this.getContentPane().add(jLabel3, null);
this.getCoııtentPatıe().add(jLabe.l2, null);
this.getContentPane().add(jLabell, null);
this.getContentPane().add(cmdSearch, null);
this.getContentPane().aclcl(txtSearclı, null);

füis.getContentPane().add(txtOperational, null);
this.getContentPane().add(txtPackageld, null);

I
J

catchflixception e)
{
e.printxtack'Iracef);

}

setSize(400,250);
set'Iitler'' · Change Tour Days Information");
show();

//setup database connection.
try{

75

Appendix

url="jdbc:oracle:thin:@FaisalqureshiWiııXP: 1521 :db 1 ";
String user=Ifaisal";
String passw="arsenal";
Class.forName("oracle.jdbc.driver.OracleDriver");
connect=DriverManager. getCoıinection(url, user.passw);

Database");

)
}

catch(ClassNotFoundEx.ception cnfex) {
cnfex.printStackT race();
JOption.Pane.showMessageDialog(nuU,"Could not connect to the

Database");

\
J
r:atch(SQLException sqlex) {

sq lcx.printxtack'Iracet};
JOptionPane.showMessageDialog(null,"Cotlld not connect to the

}
catchrlixception ex){

ex.prints tack Trace();
JOptidnPane.showMessageDialog(null,"Could not connect to the

Database");
I.
J

}

public void actionl'erformedrActionlivent ae){

it{ae. getSource()===cmdSearch) {

if(txtSearclı.getText().lengtH()=O){
JOptionPane.showMessageDialog(nuH,"Enter Tour Id Number to

Search.");
}

if(txtSearch.getText().Jength()!=O){
try]
Statement stateınent=connect.createStatement();

String query=Select * from Tour_Days 11+
. , "where Packageld= "'+

txtSearch.getText()+"'";

•

ResultSet rs=statement, executeQuery(query);
//display ts
try]

rs.nextı);
int recordNmnber=rs.getlnt(l);
iflrecordlvunıberl=Oj]

txtl'ackageld.setliditahlettrue);
txtOperati.onal. setEditable(true);

76

Appendix

txtPackageld.setText(String.valueOf{recordNumber));
t:xtOperational.setT ext(rs.getS tring(1 O));

l
J
else
JOptioııPane.showMessageDialog(ntıll,ııNo Record Found");

} catch(SQLException sqlex) {
sqlex.printStack.Trace();
JOptiorıl'ane.showMessageDialog(null, "No Such Record Found.");

l
J
statement. closet);
i
J
catch(SQLException sqlex)]

sqlex.printStackTrace();
//output.append(sqlex.toStdng());

}
cmdOK.addActionListener(this);
}
\
J

if{ae.getSource()==cmdOK){

try]
Statement statement! =connect.createStatement();

String qperyl="Update Tour __Days set"+
ııoperational='"+txtOperational.getText()+
"where Packageld=="+txtPackageld.getText();

int result=statementl .execute Update(queryl);
ifiresult=> 1)

JOptionPane.showMessageDialog(null, "Changes Committed.");

JOptionPane.showMessageDialog(ntıll,"Could Not Update,

Please Retry Later!");
statement I .close(); ••
i •
J •

catch(SQLException sqlex){
sqlex.printStackTrace();

else

}

public static void ınain(String args[]){

TourDaysChange app=ııew TourDaysChange();

77

Appendix

aJJp.addWindowListener(ne"v Window Adapter() {
public void windowClosing(WindowEvent e) (

System.exit(O);
i.
J

l
J

);
I.
J

\
J

***Tour Days Infö*1'n1:

import javax.swing, ";
import java.awt.";
import java.awt.event. *;

public class TourDaysinfo extends JFrnme implements ActionListener{

private JTvfenultem menul-lelp.About = new Jlvlenulternf);
private JMenu menuflelp == new JMenu();
private JMenuiteın menuNew = new JMenultem();
private JMenu menuf'ile = new JMenu();
private JMenuBar menuBat = new JMenuBar();
private Jlvlenulteın metuıf'hange = new JMenultem();
private JMenultem menuDelete = new JMeımltem();
private JMemıltem ınenuview = new JMenultem();
private JMemıltem menuExit = new JMenultem();
private JButton cındNew =" new JButton();
private JButton cındChange = new JButton();
private JButton cındDelete = new JBütton();
private Jlıuuon cmdView = new JButton();

public TourDayslnfo(){
try]

jblnitı);
setSize(S00,400);
setTitle("
show();

Tour Days· Information"); •

)
J
catch(Exception e) {

e.prints tackT race();

}

private void jblnit() throws Exception{

this.setJf\1emıBar(menuBar);

78

•

Appendix

this.getContentPane().setLayout(null);
this.setSize(new Dimensioru-l-l", 363));
ınenuFile.setText("File");
menuChange.setText("Clıange");
menuChange.setF oreground(Color.black);
menu Change .addActionListener(this);
menufıelete. setT ext("Delete");
menuDelete.setForeground(Color.black);
menu View.setText("View All");
menuView.setForeground(Color.black);
nıenuExit.setText("Exit");
menuExit.setForeground(Color.red);
cındNew.setText("New Tour Day");
crndNew.setBounds(new Rectangle(140, 35, 165, 35));
crndl-lew. setBackground(Color .lightGra y);
cmdNew.setBordeı-(BorderFactory.createLineBorder(Color.blue, l));
cmdChange.setText("Change Tour Days");
cmdChange.setBounds(new Rectangle(140, 90, 165, 35));
cmdChange.setBackgfound(Color.lightGray);
cmdChange.setBorder(BorderF actory.createl.inelsorder/Color. blue, 1)):
cmdDelete.setText("Remove Tour Days");
cmdDelete.setBounds(new Rectangle(l40, 145, 165, 40));
crndDelete.setBackgrot1nd(Color.lightGray);
crndDelete.setBorder(BorderFactory .createLineBorder(Color. blue, I));
cmdView.setText("Show All Tour's Days");
cmdview.setlsoundsüıew Rectangle(l40, 205, 165, 40));
cnıdView.setBackground(Color.lightGray);
cmdView.setBorcler(BorclerFactory.createLineBorder(Color.blue, l));

cmdl-Iew.addActionl.istenertthis);
cnıdChange .addActionListener(this);
cmclDelete. adclActionListener(this);
cmdView .addActioııListener(this);

menuDelete.addActionListener(tlıis);
menuView.addActionListener(this);
rnenuExit. addActionListener(this);

menuxew.sctf exu'New");
menuNew.setForeground(Color.black);
menııNew.addActionListener(tlıis);
m.enuHelp.setText(''Help");
nıenuHeJpAbout.setText("About");
menul lelpAbout.setF ore ground(Color. black);
menuHelp About.add/xctionl.istenerf this);
memıFile.add(menuNew);
menuFile.add(menuChange);
menuFile.add(menuDelete);

79

Appendix

ınenuFile.add(menuView);
menuFile.add(menuExit);
menuBar.add(ınenuFile);
menuHelp.add(menuHelpAbout);
menuBar .add(menulIelp);

if(ae.getSource()==cmdView)
new TomDaysView(); ••

this.getContentPane().add(cmdView, null);
this. getContentPane() .add(cmdDeJ ete, null);
tl:ıis.getContentPane().add(cmdChmıge, null);
this.getContentPane().add(cındNew, null);

public void actionPerformed(ActionEvent ae){

if(ae.getSource()==cındNew)
new TourDaysNew();

if(ae. getS ource()===ınenuNew)
new TourDaysNew();

If(ae.getSource()==cmdChange)
new TourDaysChange();

iflae.getxourceq=nnenuılıange)
new TourDaysChange();

if(ae.getSource()=cındDelete)
new Tourfraysljeietet);

if(ae.getSourçe()==ınenuDelete)
new TourDaysDelete();

if(ae.getSource()==menu View)
new TourDaysView();

"'

public static void main(String args[]){

TourDayslnfo app=rıew TourDayslufo();

app. addWindow Listener(new Window Adapter() {
public void windowClosing(WindowEvent e){

System.exit(O);

80

Appendix

}
)
J
);

}
}

*"c*Tour Change***
import java.awt.event. *;
import java.sq l. ";
import javax.swing, ";
import java.awt. *;

public class TourChange extends JFrame implements ActionListener{

private JTextField txtl'aokageld = new JTextField();
private JTextField txtRegion = new JTextField();
private JTextField txtFroın = new JTextField();
private JTextField txtTol = new JTextField();
private J'Textf'ield txt'I'o'Z = new JfextField();
private JTextField txtTo3 = new JTextField();
private JTextField txtTo4 = new JTextField();
private J'I'extf'ield txtTo5 ~= new JTextField();
private JTextField txtl'inal = new JTextField();
private J'Textl'ield txtSearch =-0 new JTextField();

private JButton cmdSearch = new JButton();
private Jl.abel jLabel l = new JLabeJ();
private Jl.abel jLabel2 = new JLabel();
private Jl.abel jLabel3 = new JLabel();
private Jl.abel jLabel4 == new Jl.abek);
private Jl.abel jLabel5 = new JLabel();
private Jl.abel jLabel6 = new JLabel();
private Jl.abel jl.abel? = new JLabel();
private JLabel jLabel8 = new JLabel();
private Jl.abel jLabel9 = new JLabel();
private Jl.abel jl.abell O = new JLabel();
private Jlsutton cmdOK = new JButtoıı();

•
Connection connect;
String url;

public TourChange()
{
try
{

this.getContentPane().setLayout(null);
this.serSize/new Dimension(550, 450));
txtPackageld.setBounds(new Rectangle(190, 90, 140, 25));

81

Appendix

txt.Region.setBounds(new Rectangle(l90, 125, 140, 25));
txtFrom.setBounds(new Rectangle(190, 160, 140, 25));
txtTol.setBounds(new Rectangle(l90, 195, 140, 25));
txtTo2.setBonnds(new Rectangle(l90; 230, 140, 25));
txtTo3.setBounds(new Rectangle(19Q, 265, 140, 25));
txtTo4.setBounds(new Rectanglerlvü, 300, 140, 25));
txtTo5.setBounds(new RectapgJe(l90, 335, 140, 25));
txtFinal.setBounds(new Rectangle(l 90, 370, 140, 25));
txtSearch.setBounds(ııew RectangJe(200, 20, 120, 25));
cmdSearch.setText(''Searclı");
cmdSearch.setBounds(new Rectangle(330, 20, 90, 25));
crud Search .addActionListener(this);
jLabel 1.setText("Tour Id:");
jLabell.setBnunds(new Rectangle(l50, 20, 100, 2.5));
jLabel2.setText("Tour Id:");
jLabet?.setBounds(new Rectangle(l35, 90, 100, 25));
jLabel3 .setT ext(l!Region: ");
jLabeI3.setBounds(new Rectangle(l35, 125, 105, 20));
jLabe14.setText(''From:");
jLabel4.setBounds(new Rectangle(l35, 155, 95, 25));
jLabel5 .setText("To l: ");
jLabel5.setBounds(new Rectangle(l45, 195, 75, 20));
jLabel6.setText("To2:");
jLabel6.setBounds(new Rectangle(l45, 230, 85, 25));
.L.. b 1'7 T (""I- ..., ")J a e.. set ext OJ: ;

jLabeI7.setBounds(new Rectangle(l45, 266, 85, 25));
jLabe18.setText(''To4:");
jLabel8.setBounds(new Rectangle(l45, 298, 85, 25));
.iL.abe19.setText("To5:"J;
jLabel9.setBounds(new Rectangle(l45, 335, 85, 25));
jl.abel 1 O.setText("Final: ");
jLabellO.setBounds(new Rectangle(145, 370, 85, 25));
cmJOK.setText("OK");
cındOK.setBounds(new Rectangle(380, 285, 70, 25));
this.getContentPane().add(cmdOK, null);
tlıis.getContentPane().add(jLabell O, null);>
this.gel:ContentPane().add(jLabel9, null);
this.getContentPane().add(jLabe18, null);
this.getContentPane().add(jLabel7, null);
this.getContentPane().add(jLabel6, null);
this.getContentPane().add(iLabe15, null);
this.getContentPane().add(jLabel4, null);
this.getContentPane().add(jLabel3, null);
this.getContentPane().add(jLabel2, null);
this.getContentPane().add(jLabel 1; null);
this.getContentPane().add(cındfiearch, null);
this.getContentPane().add(txtSearch, null);

•

this.getContentPane().add(txtFinal, null);

82

Appeıuüx

this.getContentPane().add(txtTo5, nuU);
this.getContentPane().add(txtTo4, null);
this.getContentPane().add(txtTo3, null);
this.getContentPane().add(txtT o2, null);
this.getContentPane().add(t<,ı:tTo 1, null);
this.getContentPane().add(txtFrom, null);
tlüs.getContentPane().adcl(txtRegion, null);
this.getContentPane().add(txtPackageld, null);

txtPackageid.setEditab!e(false);
txtlcegion. setEdfrable(false);
txtFroın.setEdit1cıhle(false);
txtTo l .setEditable(false);
txtTo2.setEditable(false);
txtTo3 .setEditable(foJse);
txtTo4.setEditable(false);
txtTo5. setEditable(false);
txtFinal.setEditable(false);

catch(Exception e)
r
'l

e.printStackTrace();
)
j

83

setSize(550,450);
seffitle("
show();

Tour Change Information");

//setup database connection.
try]

ud="jdbc:oracle:thin:@FaisalqureshiWinXP: 1521 .db l ";
String user="faisal";
String passw="arsenal";
Class.forNanıe("oracle.jdbc.driver.OracleDriver");
connect= Driverlvlanager, getConnection(ud, user.passw);

"

Database'');

}
catch(ClassNotFoundException cnfexj] ,..

cnfex.printStackTrace(); • . •
.TOptionPane.showMessageDialog(null,"Could not connect to the

Database");

}
catdı(SQLException sqlex) {

sqlex.printStackTrace();
.TOptionPane.showMessageDialog(null,''Could not connect to the

}
catch(Exception ex){

ex.printStackTrace();

Appendix

JOptimiPane.showMessageDialog(null,"Could not connect to the
Database");

}

}

public void actionPerformed(ActionEvent ae) {

if(ae.getSource()==,cmdSearch){

if(t1~tSearch.getT ext().length()=O){
JOptionPane.showMessageDialog(null,"Enter Tour Id Number to

Search.");
}

if(txtSearch.getText().length()!=O){
try]
Statement statement=conhect.createStatement();

String query="Select * from Table Tours "+
"where Packageld= "'+
txtSearch.getText()+"'";

ResultSet rs=stateınent.executeQuery(query);
//display rs
try{

rs.next();
int recordNumber=rs.getlnt(1);
if(recordNumber!=O){

txtRegion.setEditable(true);
txtFrom.setE<litable(true);
txtTol .setEditable(tıue);
txtTo2.setEditable(true);
txtTo3.setEditable(true);
txtT o4.setEditable(.true);
txtT o5 .setEditable(true);
txtFinal.setEditable(true);

•
txtPackageld.setText(String.valueüf(recordNumber));
txtRegion.setText(rs.getString(l O));
txtltroın.set'Iexurs.getôtringı l O));
txtTol .settext(rs.getString(l 5));
txtTo2.setText(String.valueüf(recordNuınber));
txtT o3. setText(String. valueüf(recordN umber));
txtTo4.setText(rs.getString(l O));
txtTo5.setText(String.valueOf(recordNumber));
txtFinaLsetText(rs.getString(7));

•

1
J
else

84

Appendix

JOptionPane.showMessageDialog(null,"No Record Found");
}catclı(SQLException sqlex){

sqlex.printxtackf race();
JOptionPane.showMessageDialog(null,"No Such Record Found.");

}
statenıent.closerj;
}
catch(SQLException sqlex) {

sq lex .prints tack'I'race();
//output.append(sqJex.toString());

}
cmdOK.addActionListener(this);
}
}

if{ae.getSource()=çmdOK){

try{
Statement statementl =connect.createStateınent();

String queryl=Tlpdate Table Tour set "+
''Region='"+txtRegion.getText()+
''',From='"+txtFrom.getText()+
'",Tol="'+txtTol.getText()+
"',To2='"+txtTo2.getText()+
"',To3='"+txtTo3.getText()+
"',To4='"+txtTo4.getText()+
"',To5='"+txtTo5.getText()+
"',Final='"+txtFinal.getText()+
"where Paclrngeid=İ'+txtPackageld.getText();

int result=statemenrl .execute Update(query 1);
if(result=r I)

JOptionPane.showMessageDialog(nuH,"Chartges Committed.");
else

JOptioı-ıPane.showMesşageDialog(nullı"Could Not Update,
Please Retry Later!");

statement! .closet);
}
catch(SQLException sqlex){

sqIex.prints tackTrace();

85

}
}

}

public static void main(Stı:ing args[J) {

Appendix

TourChange app=new TourChange();

app.add'Windowl.istenertnew WindowAdapter(){
public void windowClosing(WindowEvent e){

System.exit(O);
}

}
) .
'}

}

import java.awt.eveııt. ";
import java.sql. ";
import javax.swing. *;
import java.awt. *;

public class TourDelete extends JFraıne implements ActionListener{

private J'I'extf'ield txtPackageld == new JTextField();
private .TTextField txtRegion = new JTextField();
private JTextField txtFrom = new JTextField();
private JTextField txtTol = new JTextField();
private J'Fextf'ield txt:To2 = new JTextField();
private JTextField txtTo3 == new JTextField();
private JTextField txtTo4 = new JTextFieJd();
private J'l'extf'ield txtİo5 == new JTextField();
private J'Textf'ield txtFinal = new JTextField();
private JTextField txtSearch = new JTextField();

private JButton cmdSearch = new JButton();
private Jl.abel jl.abel l = new JLabel();
private Jl.abel jLabel2 = new JLabel();
private JLabeljLabel3 = new JLabel();
private JLabeİ jLabel4 = new JLabel();
private Jl.abel jLabel5 = new JLabel();
private Jl.abel jLabe16 = new JLabel();
private JLabel jLabel7 = new JLabel();
private Jl.abel jLabel8 = new JLabel();
private Jl.abel jLabel9 = new JLabel();
private Jl.abel jLabellO = new JLabel();
private JButton cmdOK = new JButton();

•

Connection connect;
String url;

public TourDelete()
f
l
try
{

86

Appendix

this.getContentPane().setLayout(nuU);
this.setSize(new Dimension(550, 450));
txtPackageld.setBounds(new Rectangle(l 90, 90, 140, 25));
txtRegion.setBounds(new Rectangle(l90, 125, 140, 25));
txtl'rom.setlloundsüıew Rectangle(l90, 160, 140,25));
txtTol.setBounds(new Rectangle(l90, 195, 140, 25));
txtTo2.setBounds(new Rectangleı lvü, 230, 140, 25));
txtTo3.setBounds(new Rectangle(l90, 265, 140, 25));
txtTo4.setBounds(nev,, Rectangle(190, 300, 140, 25));
txffo5.setBounds(new R.ectangle(l90, 335, 140, 25));
txtf'inal.setlloundsuıew Rectangle(l90, 370, 140, 25));
txtSeardı.setBounds(new Rectangleı l 75, 20, 100, 25));
cmdSearch.setText("Search ");
cmdSearch.setBounds(new Rectangle(300, 20, 90, 25));
cmdSearçh.addActionListener(this);
jl.abell .setText("Package ID:");
jLabell .setBounds(new Rectangle(80, 20, 120, 25));
jLabel2.setText("Package Id:");
jLabel2.setBounds(new Rectangle(I 15, 90, 100, 25));
jLabeB .setText("Region: ");
jLabel3.setBounds(new Rectangle(l35, 125, 105, 20));
jLabel4.setText("From: ");
jLabel4.setBounds(new Rectangle(145, 155, 95., 25));
jLabel5.setText("Tol :");
jLabel5.setBounds(new Rectangleı l 50, 195, 75, 20));
jLabel6.setText(''To2:");
jLabel6.setBounds(new Rectangle(150, 230, 85, 25));
jLabd7.setText("To3:");
jLabel7.setBomıds(new Rectangle(150, 265, 85, 25));
jLabel8.setText("To4:");
jl.abetx.setlloundstrıew Rectangle(150, 300, 85, 25));
jLabel9.setText("To5:");
jLabel9.setBounds(new Rectangle(150, 335, 85, 25));
jLabellO.setText("Fiııal:"); "
jLabe110.setBounds(new Rectangle(145, 385, 85, 25));
cmdOK.setText("OKn); "
cmdOK.setBounds(new Rectangle(350, 285, 70, 25));
this.getContentPaııe().add(cmdOK, null);
this.getContentPane().add(iLabell O, null);
this.getCoııtentPane().add(iLabel9, null);
this.getConteııtPaııe().add(iLabel8, null);
tbis.getContentPane().add(iLabel7, null);
this.getContentPane().add(jLabel6, null);
this.getCo.ntentPane().add(jLabel5, null);
this.getContentPane().add(jLabel4, null);
this.getContentPane().add(jLabel3, null);
this.getContentPane().add(jLabel2, null);
this.getContentPane().add(jLabell, null);

87

Appendix

this.getContentPane().add(cmdSearch, null);
thjs.getContentPane().add(txtSearch, null);
this.getContentPane().adcl(txtFinal, null);
tbis.getContentPane().add(txtTo5, null);
thı.s.getCmıtent"Pane\).add(txfio4, null);
this.getContentPane().add(txtTo3, null);
this.getContentPane().add(txtTo2, null);
this.getContentPane().add(txtTo l, null);
this.getContentPane().add(txtFrom, null);
this.getContentPane().add(txtRegion, null);
this.getContentPane().add(txtPackageld, null);

txtPackageld.setEditable(false);
txtRegion.setEditable(false);
txtFrom.setEditable(false);
txtTo 1 .setEditable(false);
txtTo2.setEditable(false);

txtTo3 .setEditable(false);
txtTo4.setEditable(false);
txtTo5 .setEditable(false);
txtFiııaLsetEditable(false);

}
catclıtfixception e)
{
e._printStackTrace();

}

setSize(500,400);
setTitle("
show();

Tour Delete Option");

//setup database connection.
try{

urJ="jdbc:oracle:t}ı.in:@faisalqureshiWinXP: 1521 :dbl";
String user=l'Faisal'';
String passw=varsenal''; ·~
Class.forName("oracle.jdbc.driver.Ü\acleDriver"); •
connect=priverManager.getConnection(ud,tiser,passw);

Database");

}
catch(ClassNotF oundException cnfex) {

cnfex.printStackTrace();
JOptionPane.showMessageDiaJog(nulJ,''Could not connect to the

Database");

}
catch(SQLException sqlex){

sqlex.printStackTrace();
JOptionPane.showMessageDialog(null,"Could not connect to the

88

Appendix

l
J
catch(Exception ex) {

ex.printStackTrace();
JOptionPane.showMessageDialog(null,"Could not connect to the

Database");
}

ı
I

public void actionPerformed(ActionEvent ae){

if(ae.getSource()==cmdSearch){

if{txtSearch.getText().length()==O){
JOptionPane.showMessageDialog(null,"Enter Package Id to Search.");

}

if(txtSearch.getText().length()!=O){
try (
Statement statement=c:onnect.createStatement();

String query=Select * from Table Tour "+
"where packageld= "'+
txtSearch.getT ext()+""';

ResultSet rs=statement.execııterjueryı query);
//display rs
try]

rs.next();
int recordl-lnmber=rs.getlntt İ);
if(recordNumber!=O){

}
else
JOptioıiPane.showMessageDialog(tiull,"No Record Found");

} catch(SQLExceptioıı sqlex){
sqlex.printxtack'Iraceı);
JOptionPane.showMessageDialog(null,"No Such Record Found:");

txtPackageld.setText(String.valueüf(recordNumber));
txtkegion.set'Iexttrs.getxtringfzj);
txtFrnm.setText(r;;.getString(3));
txt Tol .setText(rs.getString(4));
txtTo2.setText(String.valueüf(recordNumber));
txtTo3.setText(String.vahıeüf(recor~Number)); •
txtTo4.setText(ts.getString(1 O));
txtTo5 .setText(rs.getString(5));
txtFinal. setText(rs.~etString(7));

)
J
s tateırıen t. closet);

89

Conclusion

The field database has evolved from ordinary files to a complete Database Management

System. There are over a thousand RDBMS software's now available in the world .

Some has advantages and other lack behind in many respect. Amongst these is Oracle

which has tremendous amount of capability in handling Database Applications, from
simple desktop to mainframes .

Oracle with Java has· a grate amount of potential as Java is new to this field new

developments are adding up day by day . One such development is JDBC which

enables Java to connect to the Database using the most securest way of accessing a

database. But still lacks behind in compilation which is time consuming .

The project fulfills the request of a database system for a Tourism Company. In this

system user can add, delete, view and change the database as of company's
requirements.

••

91

References

[11 CJ Date, An Introduction to Database Systems 2nd ed., 1997

[2] John Carter, Database Design and Programming Second Edition, 2003

[3] Ramon Mata Toledo, Pauline Cushman, Fundamentals ofSQL Programming
Mc Graw Hill, 2000

[4] Deitel And Deitel, Java How to Program Third Edition, 2000

[5] Quin Charatan, Aaron Kans, Java in Two Semesters, Mc Graw Hill, 2002

[6] Herbert Shildt, Java 2 The Complete Reference, Mc Graw Hill Fourth Edition, 2000

[7] Java™ 2 SDK, Standard Edition Documentation Version 1.3, 2003

[8] John Papageorge Getting Started With JDBC

[9] Sun Micro Systems from the World Wide Web http://www.sun.com

[10] Oracle Corporation from the World Wide Web http://www.oracle.com

(11] Ministry of Tourism Turkey from the World Wide Web

http://www.go-turkey.gov. tr

[12] Anadolu Tourism Associate from the World Wide Web

http://www.anadoluturizm.net.tr

[13] Yahoo web pages from the World Wide Web http://www.yahoo.com

[14] Google Search Engine from the World Wide Web http://www.google.com

92

